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[1] The Discrete Element Method (DEM) is used in this study to explore the highly
nonlinear dynamics of a granular bed when exposed to stress conditions comparable to
those at the bed of warm-based glaciers. Complementary to analog experiments, the
numerical approach allows a detailed analysis of the material dynamics and the shear
zone development during progressive shear strain. The geometry of the heterogeneous
stress network is visible in the form of force-carrying grain bridges and adjacent,
volumetrically dominant, inactive zones. We demonstrate how the shear zone thickness
and dilation depend on the level of normal (overburden) stress, and we show how high
normal stress can mobilize material to great depths. The particle rotational axes tend to
align with progressive shear strain, with rotations both along and reverse to the shear
direction. The results from successive laboratory ring-shear experiments on simple
granular materials are compared to results from similar numerical experiments. The
simulated DEM material and all tested laboratory materials deform by an elastoplastic
rheology under the applied effective normal stress. These results demonstrate that the
DEM is a viable alternative to continuum models for small-scale analysis of sediment
deformation. It can be used to simulate the macromechanical behavior of simple granular
sediments, and it provides an opportunity to study how microstructures in subglacial
sediments are formed during progressive shear strain.
Citation: Damsgaard, A., D. L. Egholm, J. A. Piotrowski, S. Tulaczyk, N. K. Larsen, and K. Tylmann (2013), Discrete element
modeling of subglacial sediment deformation, J. Geophys. Res. Earth Surf., 118, 2230–2242, doi:10.1002/2013JF002830.

1. Introduction
[2] Deformation of subglacial sediment may be a major

contributor to the overall movement of warm-based glaciers
and ice streams [e.g., Alley et al., 1986; Boulton and
Hindmarsh, 1987; Engelhardt et al., 1990; Kamb, 1991;
Boulton, 1996], and it is also suspected to influence the peri-
odic dynamics of surge-type glaciers [Boulton and Jones,
1979; Clarke et al., 1984 Evans and Rea, 1999; Murray
et al., 2000, 2003]. In addition, subglacial deformation is
sometimes regarded as the primary mechanism for sediment
advection/discharge [e.g., Kjær et al., 2006; Nygård et al.,
2007]. However, the physics of subglacial sediment defor-
mation are still debated, and the deformation mode remains
one of the most controversial elements of glacier dynam-
ics [e.g., Boulton and Hindmarsh, 1987; Hindmarsh, 1998;
Fowler, 2003; Tulaczyk, 2006; Cuffey and Paterson, 2010].
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[3] Based on field measurements of deep sediment defor-
mation, Boulton and Hindmarsh [1987] suggested that
subglacial sediment behaves like a viscoplastic material.
Viscoplastic continuum models have since been popular
among computational ice sheet models [e.g., Alley et al.,
1987; Hindmarsh, 1998; Fowler, 2000; Ng, 2000], for
which the rate-dependent viscous models offer a convenient
one-to-one relationship between stress and strain rate. Con-
trasting this approach, Schoof [2006] described a possible
implementation of a basal boundary condition with a plas-
tic yield stress to glacial flow models. The coupled system
of glacial hydrology and nonlinear basal sediment behavior
has been reported to be of great importance for stick-slip
events [Bueler and Brown, 2009; Bougamont et al., 2011;
Bougamont and Christoffersen, 2012].

[4] As noted by, e.g., Kamb [1991] and Iverson [2010],
laboratory shear experiments on subglacial sediment do not
confirm the rate-dependent viscous plastic model but instead
indicate that subglacial sediment deforms due to Coulomb
slip, independently of the applied strain rate. Tulaczyk et al.
[2000] and Iverson and Iverson [2001] demonstrated that
subglacial till, deforming according to the Mohr-Coulomb
plastic rheology, may also produce the deep-seated defor-
mation profiles that are observed in the field and often
associated with a viscoplastic behavior.

[5] However, subglacial sediment is first and foremost
a granular material with an inherent ability to change
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mechanical behavior, depending on the stress state, defor-
mation rate, and pore water pressure. This study presents
the first effort to apply the Discrete Element Method
(DEM, also called the distinct element method) [Cundall
and Strack, 1979] for studying the granular physics of
subglacial till deformation. This method was first sug-
gested in this context by Iverson and Iverson [2001] and
Fowler [2003].

[6] We explore the applicability of the DEM as an alter-
native to the continuum-based visco-elastic-plastic methods
for modeling subglacial deformation. A discrete model-
ing approach can capture the highly nonlinear dynamics
of subglacial deformation, as demonstrated by laboratory
shear experiments on subglacial sediment samples [Iverson
et al., 1997; Tulaczyk, 1999; Thomason and Iverson, 2006;
Rathbun et al., 2008; Iverson, 2010]. As a supplement to
laboratory experiments, numerical modeling offers complete
control over all model parameters, such as grain size distri-
bution, geotechnical properties of the material, and boundary
conditions. This facilitates a more transparent experimen-
tal setup whereby it is possible to repeat experiments and
quantify the effects of all input parameters. The numerical
approach allows a detailed analysis of the particle kine-
matics, during and after the experiment. This small-scale
analysis exceeds the capacity of laboratory experiments, but
the numerical experiments are, however, constrained by the
number of particles and simplifying assumptions about the
particle shapes.

[7] Here we first present previous studies on the topic
of granular mechanics. We then describe the details of the
applied numerical model, as well as the setup and results of
shear experiments. We take a closer look at the internal char-
acteristics of the shear zone from the numerical experiments
and the implications for subglacial deformational processes.
Finally, we compare the modeled macroscopical mechanical
behavior to the results of laboratory ring-shear experiments
on different granular materials.

2. Granular Mechanics During Shear
[8] In the field of glacial micromorphology, microscale

deformation structures have been categorized as either brit-
tle, ductile, or polyphase, suggesting a natural variability
in the mode of deformation [van der Meer, 1993, 1996;
Menzies, 2000; Larsen et al., 2006; Phillips et al., 2013;
Vaughan-Hirsch et al., 2013]. Generally, the physical prop-
erties of granular materials cannot be fully described by ideal
viscous or elastoplastic continuum relationships. Depending
on the average kinematic energy of each grain or particle,
a granular assemblage can assume properties of solid-like,
fluid-like, or even gaseous states [e.g. Jaeger et al., 1996].
At rest, under the influence of gravity and confining stress,
granular matter forms a stable packing and behaves like a
solid, and the same material can take a range of packing den-
sities, dependent on the style of deposition and the stress
history [Herrmann, 2002]. Overall, the rheology of all dry
granular materials is strain rate independent at low shear-
ing velocities, where they deform in a pseudo static state.
If granular materials deform under higher shearing veloc-
ities, particle inertia dominates and deformation becomes
rate dependent (Bagnold flow) [Zang and Campbell, 1992;
Campbell, 2006; Krimer et al., 2012]. In confined shear

experiments, the dimensionless inertia parameter I is
defined by

I = P! Nr
r
"

#0
(1)

where P! is the shear strain rate, Nr is the mean particle radius,
" is the material density, and #0 is the magnitude of the
normal stress [GDR-MiDi, 2004]. Experiments and simula-
tions show that the material deforms in a pseudo static and
rate-independent manner when I < 10–3 [GDR-MiDi, 2004].

[9] Aharonov and Sparks [2002] conducted two-
dimensional DEM simulations of shear experiments on
granular material and recognized two different modes of
strain localization, depending on the applied levels of shear
velocity and normal stress. With relatively low normal stress
and high shear velocity, the deformation was characterized
by shallow deformation in a persistent boundary layer shear
zone. In contrast, the deformation was deep and distributed
for higher stress levels and lower shearing velocities.

[10] Reynolds [1885] and Mead [1925] recognized that
initially consolidated, rigid granular materials, subjected to
a shearing stress, require an increase in volume (dilatancy)
to deform. When the shearing motion stops, the shear zone
collapses and compacts due to the compressive stress. The
shear strain is often localized in shear zones, which can have
a range of sizes, dependent on the boundary conditions and
material properties. The minimal thickness in noncohesive
materials is in the order of 5–10 grain diameters [de Gennes,
1999]. Herrmann [2001] suggested a typical shear band
thickness minimum, based on considerations of the force
acting to mobilize particles. As a result of contact friction
between neighboring particles, the magnitude of the mobi-
lization force is inversely proportional to the distance along
the stress-bearing force chains. This stabilizing effect causes
the shear-induced particle velocity to decay exponentially
with the distance from the center of the shear band.

[11] If elastic deformation is ignored, the behavior of
granular materials (including tills) can be approximated
by the Mohr-Coulomb failure criterion [e.g., Boulton and
Jones, 1979; Nedderman, 1992; Hooke et al., 1997; Clarke,
2005; Iverson, 2010]. For Mohr-Coulomb materials, the
macromechanical angle of internal friction ($) and the cohe-
sion (C) are defined from the linear representation of the
value of the material peak or ultimate shear strength (%p,u)
under a range of normal stress magnitudes (#0):

%p,u = Cp,u + #0 tan ($p,u) (2)

Most materials can display a range of shear strengths,
depending on the consolidation state. Consolidated materi-
als in a prefailure state typically have a higher peak value of
shear strength (%p) than materials in the critical state with a
fully developed, active shear zone and a residual, ultimate
shear strength (%u) [Schofield and Wroth, 1968; Atkinson
and Bransby, 1979; Nedderman, 1992]. Similarly, the mate-
rial cohesion can change during deformation. In particular,
the peak cohesion is higher than the ultimate cohesion if
the cohesive bonds between grains are not reestablished
after breaking.

3. The Discrete Particle Model
[12] The Discrete Element Method was initially formu-

lated by Cundall and Strack [1979]. The computational
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Figure 1. The DEM particles are represented by spheres
with center position x and radius r. The velocity vector of a
particle is denoted Px, and the angular velocity vector is !.
A particle pair is characterized by the interparticle vector xij

and the contact normal vector nij.

method simulates the physical behavior of discontinuous
materials in a way that is ideal for reproducing the highly
nonlinear dynamics of granular materials. The DEM has,
in addition to geotechnical simulations [e.g., Cheng et al.,
2003; Potyondy and Cundall, 2004], already been used for
simulating various sedimentological transport modes, such
as debris flows [Yohannes et al., 2012], bed load trans-
port [Drake and Calantoni, 2001], aeolian saltation [Sun
et al., 2001], mechanical sorting [e.g., Rosato et al., 2002;
Kudrolli, 2004], as well as sandbox deformation experi-
ments [Egholm et al., 2007, 2008] and mechanical properties
of fault gouges in the earthquake generation process [e.g.,
Morgan and Boettcher, 1999; Morgan, 1999, 2004; Mair
and Abe, 2008].

[13] The DEM simulates the micromechanical behavior
and interaction of discrete, unbreakable particles with their
own mass and inertia, under the influence of, e.g., gravity
and boundary conditions such as moving walls. The particu-
late nature of the DEM is optimal not only for capturing the
discrete nature of granular physics but also for simulating
the large strains observed in soft subglacial beds. In contrast,
mesh-based continuum numerical methods (e.g., the finite
element method, the finite difference method, and the finite
volume method) cannot simulate high deformation without
frequent remeshing, which is often a very complicated and
computationally expensive task. Additionally, the shear zone
dynamics in standard continuum plasticity models are often
affected by the grid resolution and the mesh-line orientation
[Rudnicki and Rice, 1975; de Borst, 1991].

[14] The DEM includes deformation-induced porosity
changes as an inherent property because, like true sedi-
ment grains, model particles must move past each other. In
addition, the DEM responds naturally with granular-style
deformation patterns, which can take place in a distributed
manner over larger parts of the volume or in localized
shear zones.

[15] In the applied DEM formulation, the particles are
represented as spheres, which reduces the complexity of
the contact search and dynamics. The geometric extent of
each particle is represented by a position vector x, and a
radius r. Each particle has individual kinematic attributes,
as illustrated in Figure 1. Based on the net force acting on
each particle, the resulting movement is calculated in every
small time step (&t) by application of Newton’s law of
motion for particles of constant mass. For a particle i with nc

contacts, the sums of translational and rotational forces are
expressed by

mi Rxi = mig +
ncX
j

!
f ij
n + f ij

t

"

„ ƒ‚ …
Sum of translational forces

(3)

I i P!i =
ncX
j

!
–
#
ri + 0.5ıij

n
$

nij ! f ij
t

"

„ ƒ‚ …
Sum of torques

(4)

where m is the particle mass, g is the gravitational force vec-
tor, I is the moment of inertia, and ! is the angular velocity.
A dot denotes time derivation and a bold formatted symbol
represents a three-dimensional vector.

[16] A particle is in contact with another particle or a wall
if the volumes overlap. For a pair of spherical particles, here-
after denoted with superscripts i and j, the contact search
is a simple operation, involving only the particle center
coordinates and radii. The particle overlap is

ıij
n = ||xij|| – (ri + r j) (5)

where x ij = xi–x j is the interparticle vector. Particles overlap
when ıij

n < 0, in which case the force components normal
( fn) and tangential ( ft) to the contact plane are assumed to
obey a conventional linear-elastic contact model (Figure 2):

f ij
n = –knı

ij
n nij and f ij

t = –ktı
ij
t (6)

where nij = xij/||xij|| is the contact normal vector. kn and kt are
the linear-elastic (Hookean) spring coefficients. The tangen-
tial displacement along the contact plane (ıij

t ) is calculated
incrementally by temporal integration of the tangential con-
tact velocity and saved for the duration of the contact. The
contact velocity Pı is found from the translational and rota-
tional velocities of the particles in contact [Hinrichsen and
Wolf, 2006]:

Pıij = (Pxi – Px j) + ri(nij !!i) + r j(nij !!j) (7)

The contact velocity is further decomposed into normal
( Pın) and tangential ( Pıt) components. The magnitude of the

Figure 2. Schematic representation of the contact model
components, normal and tangential to the contact plane.
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Figure 3. Model geometry in the numerical shear experi-
ments. Grey particles have a fixed horizontal velocity; zero
for the lower particles and u for the upper particles. The
resultant shear stress (%) is a function of the time (t), the
shear velocity (u), the effective normal stress (# 0), the mate-
rial stiffnesses (kn,t), and the coefficients of friction ('s,d).
The boundaries to the left, right, front, and back are periodic.

tangential force is limited by the Coulomb-friction criterion
of static and dynamic friction:

|| f ij
t || " 's|| f ij

n || if || Pıt|| = 0
'd|| f ij

n || if || Pıt|| > 0 (8)

where the static friction coefficient ('s) is larger or equal to
the dynamic friction coefficient ('d). If the tangential force
exceeds the static friction, the contact starts to slip along the
contact plane. Strain-softening behavior at the contact can
be introduced by having a lower dynamic than static friction
coefficient value.

[17] The macroscopic geotechnical behavior of the sim-
ulated particle assemblage is generally a result of the self-
organizing complexity of the particles, but it is influenced
by the micromechanical parameters. As demonstrated by
Belheine et al. [2009], the normal and shear stiffnesses (kn,t)
effectively control Young’s modulus and Poisson’s ratio,
which are macroscopic parameters. The friction coefficients
('s,d) control the level of dilatancy during deformation,
which in turn governs the shear strength.

[18] Our DEM implementation is three-dimensional. This
allows for particle rotation around arbitrary axes, which
facilitates particle interlocking and gives a realistic three-
dimensional geometry of the interparticle voids. Two-
dimensional DEM models tend to overfacilitate particle
rolling [e.g., Morgan, 1999], since the rotational axes of par-
ticles are always parallel. The enhanced rolling in a 2-D
setup ultimately results in low shear strengths of the material.

[19] The kinematic grain behavior is time integrated in
a fully explicit manner, resulting in a simple three-step
algorithm:

[20] 1. Contact search (equation (5)): Interparticle and
wall-particle contacts are identified.

[21] 2. Interaction (equations (6), (7), and (8)): For each
particle contact, the contact forces and rotational moments
are calculated.

[22] 3. Integration (equations (3) and (4)): Particle kine-
matics are updated using the sum of forces and torques, and
time is increased by &t.

[23] For the temporal integration, a second-order half-
step leapfrog Verlet integration scheme is used [Fraige and
Langston, 2004; Kruggel-Emden et al., 2008]. The length
of the time step must be small enough to allow multiple
updates of the kinematics, while the elastic wave travels
through even the smallest particle in the assemblage. We
therefore define the time step value on the basis of the nat-
ural undamped frequency (!0 =

p
k/m) in a linear spring

system (&tcrit = 2/!0) [O’Sullivan and Bray, 2004], which is
a function of the elastic P wave velocity (vp):

&t = f

s
min (m)

max(kn, kt)
= f

min (r)
q

28
9 m–1( min (r)
vp

(9)

where min (m) is the smallest particle mass and min (r) is
the smallest particle radius. The constant f is introduced as a
safety factor to account for the irregular contact network. It
generally depends on the packing and the particle size dis-
tribution. In our experiments, a value of f = 0.075 was used
[Zhang and Campbell, 1992].

[24] To cope with the high-computational requirements,
the algorithm is formulated for graphics-processing unit
computation using the CUDA C API [Kirk and Hwu,
2010; NVIDIA, 2013a, 2013b]. The sphere DEM soft-
ware is a free and open-source software, licensed under the
GNU Public License v. 3 (https://gnu.org/licenses/gpl.html).
The project is maintained at https://github.com/anders-dc/
sphere.

3.1. Model Configuration
[25] We have adapted a model geometry where infinite

shear strains can be obtained with periodic lateral boundaries
(Figure 3). When a particle moves across a periodic bound-
ary, it immediately re-enters through the opposite side. The
particle contact search also works across these boundaries,

Table 1. Micromechanical Properties and Geometrical Values
for Particles in the DEM Shear Experiment

Parameter Symbol Value

Particle count N 10,000
Mean diameter 2Nr 0.04 m
Standard deviation of diameter ! 0.000187 m
Spatial domain dimensions L 0.86! 0.86! 0.94 m
Material density " 2.6! 103 kg m–3

Normal stiffness kn 1.16! 109 Nm–1

Tangential stiffness kt 1.16! 109 Nm–1

Friction coefficient (static) #s 0.3
Friction coefficient (dynamic) #d 0.3
Normal stress range !0 10 to 120 kPa
Shear velocity u 0.0369 ms–1

Wall mass mw 6.42 kg
Time step length $t 6.33! 10–7 s
Simulation length ttotal 20 s
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Figure 4. (top) Shear friction and (bottom) dilation as a
function of shear strain, at different normal stress values in
the DEM experiments.

so particle pairs can be in contact, although they are placed
at opposite margins.

[26] The particles are initially positioned randomly but
without particles in physical contact. The particle assem-
blage is then gravitationally consolidated by running the
model through time, until the deficit potential energy, after
temporarily being transformed to kinetic and rotational
energy, is stored in the elastic components of the contacts or
is dissipated away by the frictional components of the sys-
tem. Next, the particles are subjected to consolidation under
a normal stress (#0), applied to the dynamic top wall. The
particles are afterward sheared at a constant velocity (u). The
lowermost particles are fixed at their horizontal positions,
while the uppermost particles are given a uniform, nonzero
horizontal velocity. The fixed particles are defined to have
a zero angular velocity. The shear stress (%) and effective
normal stress (# 0) values are calculated as the sum of the
force components acting on the upper fixed particles, along
the axis of movement and normal to the top wall, respec-
tively. The particle assemblage is free to dilate, as long as
the upper stress boundary condition is satisfied. The numer-
ical particles are indestructible, and the DEM experiments
are therefore without grain crushing and abrasion.

[27] The values of the physical and geometrical param-
eters are listed in Table 1. For simplicity, equal values are
used for the normal and tangential stiffnesses, as well as for
the static and dynamical coefficients of friction. The particle
radii are drawn from a log-normal distribution.

[28] The selected parameter values in the numer-
ical experiments result in inertia parameter values

(I, equation (1)) between 7.5 ! 10–4 and 2.2 ! 10–4. With
these values, it is reasonable to assume that the material is
deforming in a pseudo static state without significant effects
of particle inertia. The shearing velocity exceeds the defor-
mation rate under glaciers by several orders of magnitude,
but since the material deforms rate independently beneath
I = 10–3, the larger velocity only helps to minimize the
computational time required.

4. Results
[29] During the preshear consolidation phase, the numer-

ical material compacts with exponentially decaying volu-
metric strain rates, which is typical for granular materials
[Nedderman, 1992]. When sheared after consolidation, the
numerical DEM material also behaves as a normally consol-
idated granular material, with clearly distinguishable peak
and ultimate shear strength values (Figure 4). The peak and
ultimate shear friction values depend on the level of normal
stress. A high level of normal stress requires larger shear
strains before the ultimate shear strength is reached. Further-
more, the magnitude of the total dilation increases with the
magnitude of the normal stress.

[30] The Mohr-Coulomb relationship (equation (2)) is fit-
ted to the shear stress data using a nonlinear least squares
Marquardt-Levenberg algorithm. The regressed coefficients
and their asymptotic standard error values are $p = 32ı ˙
0.31ı, Cp = 1.2 ˙ 0.21 kPa in the peak failure state and
$u = 22ı ˙ 0.47ı and Cu = 0.51 ˙ 0.31 kPa in the critical
failure state. The linear correlation confirms that the mate-
rial deforms according to the Mohr-Coulomb theory. The
measured values of the macromechanical angle of internal
friction are within the range found in other tests involv-
ing real materials, ranging from 17ı for smooth spherical
particles to about 56ı for angular particles [Nedderman,
1992].

Figure 5. Visualization of the dispersive pressures of the
heterogeneous stress network in the simulated material with
#0 = 80 kPa.
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Figure 6. Force distribution in the nonfixed particles dur-
ing (top) consolidation and during (bottom) shear. #0 =
80 kPa in both cases. The width and color of the line
segments are determined by the magnitude of the contact
normal force (|| fn||). The shear movement in the lower plot
takes place along the top boundary toward the right. Several
of the contacts forces are greatly exceeding the upper limit
of the color bar.

[31] Within the modeled material, stress is distributed
heterogeneously along a complex network of force chains
(Figures 5 and 6). Particles in a force chain are often
subjected to stress magnitudes more than 4 times the macro-
scopic confining stress (Figure 5). The force chains are gen-
erally aligned with the direction of maximum compressive

Figure 7. Trend and plunge of the 50% strongest DEM
interparticle normal forces (fn) during (left) consolidation
and during (right) shear. #0 = 80 kPa in both cases. The plots
are equal angle stereographic projections on the lower hemi-
sphere, with the stereonet equator situated in the horizontal
(x1, x2) plane. The white plus symbols denote the trend and
plunge of the maximum compressive stress (! 0 + "). The
arrows in the right plot denote the shearing direction.
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Figure 8. Laterally averaged strain-depth profiles at the
end of the numerical DEM experiments with varying levels
of overburden normal stress. The individual particle values
for the #0 = 10 kPa experiment are underlain to visualize
the horizontal variance of the displacement. The total shear
distance is 0.738 m.

stress, resulting from the combined influence of the over-
burden normal stress and the shear movement (Figure 7).
Therefore, force chains are predominantly vertical during
consolidation and subhorizontal during shear. In the lat-
ter situation with shear, the force chain network is rapidly
reconfiguring, even faster than the grain reorganization
(A supplementary animation is available at: http://users-cs.
au.dk/adc/files/shear-80kPa-pressures.mp4 (29 MB)).

[32] In the absence of friction from the sides, the shear
zone develops near the top boundary since this configuration
requires a minimum of material to be accelerated. Further-
more, the material strengthens with depth because the weight
of the overburden material increases the normal stress and
the shear strength of particle contacts (equation (8)).

[33] The numerical experiments demonstrate how the ver-
tical particle displacement profiles depend on the applied
normal stress (Figure 8). In the simulations with low normal
stress, a shear band develops at the top boundary and par-
ticle velocities decrease with depth. Due to the absence of
a strong interparticle cohesion, the deformation accumulates
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Figure 9. Porosity values of horizontally integrated slabs
at the final time step in the numerical experiments.
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Figure 10. Particle kinematics inside the shear zone at three stages during the DEM experiment with
#0 = 80 kPa. The particles are visualized as disks according to the intersection with the center (x1, x3)
plane. The particle color corresponds to the contact pressure, rotational velocities are indicated using black
arrows, linear velocities with white arrows, and interparticle slip velocities are shown with green arrows
starting at the contact center. Particles spinning positively around the second axis are marked with a black
border. It should be noted that with this type of planar visualization, the porosity appears larger than the
true value and the spherical particles may be in physical contact although they appear not to be here. A
supplementary animation is available at http://users-cs.au.dk/adc/files/shear-80kPa-plane.mp4 (53 MB).

in shear bands of variable thickness instead of along sharp
planes of failure [e.g., Tchalenko, 1970]. The shear zone
thickness is equivalent to approximately seven mean particle
diameters. For higher levels of normal stress, the deforma-
tion profile is deeper and the shear zone thicker. The internal
porosity values (Figure 9) are strongly connected to the cor-
responding deformation profile (Figure 8), since shear strain
in normally consolidated materials increases the porosity in
the absence of particle crushing. Overall, the experiments
with the lowest normal stress values have the highest poros-
ity values in the upper zone of the material, which is a
consequence of the shallow band of active deformation. The
experiments with high normal stress values show a deeper
increase of porosity, owing to the increased shear zone thick-
ness. The shear zone itself displays a complex system of
self-organized particle mechanics in highly transient patterns
(Figure 10). The particle contact stresses result in rolling or
interparticle slip, depending on which kinematic response
requires the minimal amount of activation energy.

5. Discussion
5.1. Force Chains

[34] Granular materials are by definition heterogeneous,
and the force network providing the stability of the system is
nonuniform [Jaeger et al., 1996]. The force network is repre-
sented by the force chains that transmit stress through grain
bridges or arches. Previous investigations have established
that the mesh size of the force network has a characteristic
size, about 10 times larger than the grain diameter, although
sensitive to grain size variance [Clement, 1999]. It is likely
that this length scale of the force network also defines the
minimum thickness of shear zones.

[35] Our numerical experiments demonstrate that the
force chains carry stress of high magnitude. Although parti-
cle breakage is not part of the modeling method, the DEM
simulations hence support the hypothesis that force chains
are effective mechanisms of grain crushing, even distant

from the rapidly deforming shear zones. Yet grain size mod-
ification due to particle abrasion is likely favored inside the
shear zone, where the relative movement between particles
is greatest. Grain bridges in till are mainly aligned oblique
to the shear direction and are often associated with crushed
grains [Hooke and Iverson, 1995; Iverson et al., 1996;
Larsen et al., 2007]. Hooke and Iverson [1995] and Iverson
et al. [1996] showed that failure of grains in force chain
networks during shear significantly modifies the particle
sizes, leading to a self-similar, fractal grain size distribution.
As the grain sizes decrease, the finer components become
more active in distributing stresses through the system. Since
the mesh spacing in the stress network is a function of
the typical grain size, the force chain distance decreases
and the stress network becomes more homogeneous with
less stress fluctuation [Iverson et al., 1996; Morgan, 1999;
Iverson, 2010].

[36] The failure of force chains in a subglacial bed can
be caused by particle crushing, particle rotation, interpar-
ticle sliding, or a change in the stress field, for instance
induced by changes in subglacial hydrology. If the bed fails
to establish a new force chain, exerting flow-resistant fric-
tion to the glacier base, the force chain failure can result in
a propagating instability, possibly resulting in a glacial slip
event. Clearly, the description of slip initiation and failure
propagation in stress-limited systems requires more atten-
tion in future studies. A numerical DEM model, perhaps
extended by angular particles for increased particle inter-
locking, is ideal for such studies, since it allows for a detailed
quantification of the internal sediment mechanics at seismic
time scales.

5.2. Variability of the Vertical Strain Distribution
[37] Our DEM simulations demonstrate a clear relation-

ship between the applied normal stress and the depth of
deformation (Figure 8). This result can be explained by con-
sidering the frictional strength of particle contacts. Accord-
ing to Mohr-Coulomb theory, the frictional strength of
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particle contacts depends on pressure and force chain stabil-
ity is therefore strengthened by high levels of normal stress.
The strong force chains transmit stress over large distances,
causing weak contact planes at greater depths to fail and the
thickness of the deforming zone to increase.

[38] In situ measurements of subglacial water pressure
[e.g., Engelhardt et al., 1990; Murray and Clarke, 1995;
Hooke et al., 1997; Engelhardt and Kamb, 1997; Hart
et al., 2009; Bartholomaus et al., 2011] and sedimentary
indications of palaeo-subglacial conditions [Piotrowski and
Tulaczyk, 1999; Boyce and Eyles, 2000; Larsen et al., 2004;
Piotrowski et al., 2001, 2006] show that the magnitude of
the pore water pressure often lies close to the ice overburden
pressure, modulated by diurnal and seasonal variations. In
such cases, our numerical results suggest a deformation pro-
file of convex shape (Figure 8). The subglacial transport rate
of a warm-based glacier with a well-developed drainage sys-
tem, resting on a granular bed, thus seems to be controlled by
the value of the normal stress, the effective diameter of the
granular material, and the basal velocity. The granular fric-
tional mechanisms included here are, however, not sufficient
to explain very thick deformation profiles, which may be
due to thermal effects, ice-bed interface roughness, varying
lithology, or hydrological feedbacks such as dilative harden-
ing [e.g., Iverson et al., 1998; Evans et al., 2006; Kjær et al.,
2006; Rathbun et al., 2013]. However, the DEM results con-
firm that convex-upward displacement profiles are possible
in Mohr-Coulomb granular materials, as also demonstrated
by Tulaczyk et al. [2000] and Iverson and Iverson [2001].

5.3. Dynamics of Dilation and Porosity
[39] As a consequence of the relative movement of grains,

normally consolidated granular materials initially dilate dur-
ing shear [Reynolds, 1885]. The dilation stops when a
critical stage is reached. Our numerical DEM setup behaves
similarly. Furthermore, shifting configurations of the force
chains cause frequent fluctuations of the DEM model thick-
ness, although these are bound to decrease with increasing
number of particles [Iverson et al., 1996; Morgan, 1999; Li
and Aydin, 2010].

[40] The implications of volumetric changes during shear
band formation depend on the influence and properties of
pore fluid flow. Importantly, the pore fluid can have two
opposite effects, depending on the degree of grain crush-
ing in the shear zone. Without significant grain crushing,
the shear zone dilates under deformation. If the strain rate
is sufficiently high, relative to the hydraulic permeabil-
ity of the material, deformation decreases the local pore
water pressure, which in turn increases the effective pres-
sure. This increase in normal stress strengthens the material
(equation (2)) and causes dilatant hardening [Iverson et
al., 1998]. Such hardening effects may drive migration of
the shear zone. In contrast, shear zones may contract if
grain crushing allows for repacking of the gains [Wafid
et al., 2004; Iverson et al., 2010]. This contraction low-
ers the shear strength because of the pore water pressure
increases (equation (2)). Furthermore, the fine-grained prod-
ucts of widespread grain crushing may accelerate this effect
by decreasing the hydraulic conductivity and lowering the
excess pore water pressure dissipation rate [Okada et al.,
2004; Iverson et al., 2010]. The effect of such strain-induced
softening is to stabilize the active shear zones.
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Figure 11. Scatterplots of the particle rotation, decom-
posed along each Euclidean axis. The results shown are from
the last time step of the numerical DEM experiment with
#0 = 80 kPa.

[41] In the absence of grain crushing and pore fluid trans-
port, the DEM experiments indicate that the decrease of
hydraulic pressure internally in the shear zone is a function
of normal stress (Figure 9). A low level of normal stress
results in the formation of a narrow shear zone with a highly
reduced hydraulic pressure, whereas higher levels of normal
stress result in a smaller pressure decrease. Still, the total
deficit of hydraulic pressure is greater under high normal
stress because it affects a much thicker zone (Figure 4, bot-
tom). The effects of dilatant hardening are thus expected to
be stronger under higher normal stresses.

[42] Our future numerical studies will focus on the
mechanical interaction with a simulated pore fluid, by incor-
porating a full two-way coupling between pore fluid flow
and the granular skeleton. This coupled methodology will
allow small-scale investigations of the two-way interac-
tion of moving grains and the interparticle fluid, even with
complex geometries of the upper, moving boundary, such
as during plowing [Tulaczyk et al., 2001; Thomason and
Iverson, 2008]. As highlighted by Iverson et al. [1998], the
rheology of a grain-fluid mixture is likely to contain viscous
components if the characteristic time scale for the diffusion
of hydraulic pressures is smaller than the characteristic time
scale for dilation.

5.4. Particle Rotation
[43] The particles in the numerical setup can have both

translational and rotational movement components. Angular
accelerations, velocities, and positions are handled as quater-
nions (three-dimensional rotation), whereby the direction of
the quaternion denotes the rotational axis and the quaternion
length relates to the rotation magnitude. The rotation follows
the right-hand rule, implying that a particle with an angular
velocity of ! = {0, 1, 0} rad s–1 represents a rotation around
the second axis, where the upper tangential velocity points
in the positive direction of the first axis.

[44] Unidirectional rolling is assumed to dominate par-
ticle transport in the conceptual model of van der Meer
[1997]. However, our DEM experiments demonstrate that
particles in contact prefer to roll in opposite directions in
order to avoid large contact slips (Figure 10). Since the tan-
gential contact strength is scaled by the magnitude of the
normal force (equation (8)), contacts between grains situated
in a force chain are mechanically strong. For this reason,
grains in force chains prefer to roll in opposite direction
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Figure 12. Geometry of the laboratory ring-shear appara-
tus sample chamber, which is filled with sediment during the
shear tests. The dotted line marks the shearing gap in the
side walls between the stationary upper loading platen and
the lower mobile part.

in order to avoid slips, while slip on contacts in the adja-
cent, low-pressure areas are more frequent. During the small
range of shear strain increments displayed in Figure 10, the
stress-bearing force network is slightly relocated and sev-
eral grains change rotational direction. This shows how the
micromechanical system to a large extent reconfigures itself
through a relatively small range of shear strain values. Yet
it should be noted that the spheres of the numerical experi-
ment likely favor rotation instead of slip, due to the absence
of interlocking caused by grain angularity and elongation.

[45] The angular position can for each particle be calcu-
lated by integrating the rotational velocity, i.e.,#i =

R t
0 !

idt.
For the experiment with #0 = 80 kPa, the estimated mean
values of the total rotation per Euclidean axis are O'(#) =
{–0.0027, 0.50, –0.0053} rad s–1, with empirical variances
of s2(#) = {0.76, 1.1, 0.68} (Figure 11). These results illus-
trate that the mean direction of the rotational axes has a
strain signature and that this trend in rotational direction
is already developed at a shear strain of ! = 1. The rela-
tively large variance values indicate, however, that rotational
microstructures are to be expected in any orientation. The
direction of shear strain can thus theoretically be deduced
only from a very large data set of rotational axis orienta-
tions. Rotational structures are often very abundant in tills
[e.g., van der Meer, 1993; Menzies, 2000; Hiemstra and
Rijsdijk, 2003], and they have been identified in thin sections
both parallel and perpendicular to the shear stress direc-
tion, suggesting that they may form in various stress regimes
and with an inherent variability in the orientation of the
rotational axes.

5.5. Comparison to Laboratory
Ring-Shear Experiments

[46] Ring-shear machines have previously been used to
investigate the mechanical behavior of till [e.g., Iverson
et al., 1996, 1997, 1998; Tulaczyk et al., 2000; Müller and
Schlüchter, 2000; Moore and Iverson, 2002] and the devel-
opment of strain signatures [e.g., Iverson et al., 1996, 1997;
Hooyer and Iverson, 2000a, 2000b; Müller and Schlüchter,
2000; Thomason and Iverson, 2006; Larsen et al., 2006;
Iverson et al., 2008]. Here stress measurements from ring-
shear experiments are compared to the simulated DEM
granular behavior. Our ring-shear apparatus (Figure 12)
(see also Larsen et al. [2006] and Bateman et al. [2012])
has a sample chamber volume of 14480 cm3, a cham-
ber width of 12.0 cm, and a chamber height of 8.0 cm.

The centerline diameter is 54.0 cm. The upper platen is rota-
tionally fixed, while the lower platen is moved at a constant
velocity (u = 1.67 ! 10–5 m s–1 = 1.0 mm min–1). To quan-
tify the distribution of strain, we inserted coarse (2–4 mm),
angular quartz and feldspar grains as strain markers.

[47] The geometry of the numerical setup (Figure 3) and
the ring-shear apparatus (Figure 12) both allow infinite
shear strains, owing to the absence of boundaries in the
shear direction. On the other hand, factors that are likely
to produce significant differences between laboratory and
numerical experiments are associated with side wall fric-
tion in the ring-shear sample chamber, the elastic response
and acceleration of the mechanical parts in the ring-shear
apparatus, and the difference in particle numbers.

[48] In order to provide a wide framework for compar-
ison, we performed laboratory experiments with several
types of materials. The first material consisted of spheri-
cal glass beads with a mean grain size of approximately
4.0 ! 10–4 m (best fitted with a log-normal distribution with
' = –5.5 and # = 0.21). The second material used was
an industrially sorted, angular to subangular, aeolian quartz
sand, also with a mean grain size of approximately 4.0 !
10–4 m (best log-normal fit with ' = –5.5 and # = 0.26).
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Figure 13. (top) Shear stress and (bottom) dilation as a
function of shear strain, recorded during the laboratory shear
tests on quartz sand (QS), glass beads (GB), till, and the
numerical discrete element method material (DEM). The
normal stress is #0 = 80 kPa for all tests, except for the till,
where #0 = 85 kPa. The till shear stress values are scaled to
account for the differences in normal stress.
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Figure 14. Mohr-Coulomb failure analysis of three lab-
oratory granular materials and one numerical material.
Equation (2) was fitted to the (#0, %p,u) data sets using
the nonlinear least squares Marquardt-Levenberg algorithm.
(top) Peak shear strength values (%p). (bottom) Ultimate
shear strength values (%u).

The experiments on these materials were performed under
dry conditions. Also used for the comparison study was a
previous Mohr-Coulomb failure analysis on a Weichselian-
age basal till from the Scandinavian Ice Sheet [Tylmann
et al., 2013], performed in the same ring-shear apparatus.
The till was sheared under water-saturated conditions with
a hydrological connection through filters in the chamber top
and bottom to atmospheric pressure. The till was poorly
sorted with a bimodal grain size distribution with peaks in
the sand and silt fractions.

[49] We use the laboratory results to compare the sim-
ulated DEM granular behavior with that of real materials
under similar conditions. Due to the side wall friction, the
magnitude of the material shear strength is likely to be
higher in the laboratory materials. We can, however, com-
pare the stress-strain dynamics observed by the two methods
(Figure 13) and attempt to explain the differences in the
material behavior (Figure 14 and Table 2), bearing in mind
the aforementioned caveats.

[50] The shearing of a granular material from a prefailure,
normal consolidated state can be subdivided into multiple
stages [cf. Li and Aydin, 2010], which we recognize in both
the laboratory and the numerical settings:

[51] 1. stage: The initial shearing motion results in con-
traction, caused by the combined effect of increased elastic
deformation, and reorganization of the grains. Both effects
are caused by the increased magnitude and reorientation
of the maximum compressive stress (! 0 + "). The increase
in maximum compressive stress promotes consolidation
and decreases porosity [Nedderman, 1992; Tulaczyk et al.,
2000]. The elastic response is increased if the grains are
angular, which can stabilize the intergrain contacts mechan-
ically [Nedderman, 1992; Weatherley et al., 2012]. The
numerical DEM material does not exhibit contraction dur-
ing stage 1 shear, since particles are spherical and for this

reason cannot develop interlocking. The glass beads and the
quartz sand both display a transient contraction during this
stage. Owing to the angularity of grains, the quartz sand dis-
plays the strongest contraction and the longest duration of
this stage.

[52] 2. stage: The material dilates due to relative particle
movement [Reynolds, 1885; Mead, 1925] and exhibits its
peak shear strength value (%p). The shear zone evolves into a
high-porosity layer [de Gennes, 1999]. The numerical mate-
rial, the glass beads, and the quartz sand dilate during this
stage. The numerical material dilates to approximately 0.75
grain diameters, the glass beads dilate to 1.5 grain diame-
ters, the quartz sand to 2.0 grain diameters. The till continues
to contract. This contraction is caused by the volumetric
decrease due to microfabric and macrofabric development
and subsequent diffusion of the increased internal hydraulic
pressures. In addition to this, a small volume of till was after
the experiments observed to having been squeezed out of the
sample chamber.

[53] 3. stage: In the final stage, the shear zone becomes
fully developed, as the material reaches the critical state.
The shear strength decreases to the ultimate value (%u) and
dilation stops [Schofield and Wroth, 1968]. This behavior
is observed in the numerical material, the quartz sand, and
the till. The materials display no low-frequency volumetric
and shear strength changes, only high-frequency fluctuations
caused by fracturing of the grains or reorganization of the
internal force-bearing network [Iverson et al., 1996; Li and
Aydin, 2010]. As observed in similar experiments [Mair et
al., 2002], the glass beads show stick-slip behavior at this
stage, owing to elasticity of the apparatus. No measurable
products of grain crushing are detected, which rules out
fracturing of grains as the cause of the fluctuations.
5.5.1. Particle Shape and Angularity

[54] Comparing the stress-strain relationships of the DEM
and the laboratory materials highlights the importance of
grain shape and angularity for the macroscopical geotech-
nical behavior. The initial elastic response, the peak shear
strength, and the total dilation are all higher in the materials
with angular grains, such as the quartz sand. The spherical
materials, such as the glass beads and the numerical DEM
particles, are mechanically weaker and show lower values
of dilation. For a normal stress of 80 kPa, the shear zone is
approximately 4 mm thick in the glass beads and 6 mm thick
in the quartz sand. As demonstrated by Mueth et al. [2000],
spherical and smooth particles generally exhibit deforma-
tion in narrow shear bands. The shear strength of materials
tends to increase with grain angularity [e.g., Mair et al.,
2002; Anthony and Marone, 2005; Azéma et al., 2012]. The
shear strength also tends to increase with grain elongation
[Azéma and Radjaï, 2010], which is a prerequisite for fab-
ric development [Hooyer and Iverson, 2000a; Mair et al.,

Table 2. Fitted Values of the Mohr-Coulomb Relationship
(Equation (2)) at the Peak (p) and Ultimate (u) Failure Stages of the
Materials

Material %p [ı] Cp [kPa] %u [ı] Cu [kPa]

Quartz sand 45 3.7 44 2.4
Glass beads 37 1.8 35 1.5
DEM 32 1.2 22 0.51
Till 18 3.1 18 0.69
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2002; Thomason and Iverson, 2006]. Therefore, the sim-
plified grain shape in the DEM relative to real materials
evidently influences the levels of stress and dilation. Still,
the Mohr-Coulomb model is equally valid for the numerical
and laboratory materials.

[55] Future studies will focus on expanding the numer-
ical method to simulate interparticle bonds [Potyondy and
Cundall, 2004; Wang et al., 2006; Wang, 2009; Obermayr
et al., 2012]. With particle bonds, it is possible to include
irregularly shaped, breakable aggregates of bonded spheres.
By simulating angular particle clusters instead of loose
spheres, the initial, low-strain elastic response during stage
1 shear may be improved due to greater interlocking of par-
ticles inside force chains, which is likely to increase the
material shear strength. The bond functionality will also
enable studies of fabric development and modifications of
grain size distribution during progressive shear.
5.5.2. Particle Size Distribution and Mineralogy

[56] In comparison to the DEM, the laboratory materi-
als contain a wider range of particle sizes. Morgan and
Boettcher [1999] showed that in two-dimensional shear
experiments with a variety of grain size distributions, the
presence of fine particles caused strain localization, which is
consistent with the theory of the shear zone thickness being
a function of the grain size [de Gennes, 1999; Herrmann,
2001]. Mair et al. [2002] demonstrated no significant shear
strength differences between narrow and wide grain size dis-
tributions of spherical glass beads, whereas Morgan [1999]
reported a slight shear strength decrease with the volumetric
increase of fine, but micromechanically identical particles.

[57] Clay minerals are known to behave differently than
coarser granulates, and a high clay content may therefore
influence the macromechanical material behavior signifi-
cantly [Iverson et al., 1997]. Often, shear zones in clay
are more narrow due to the smaller grain size, and cohe-
sion causes clays to deform by both folding and faulting
and fracturing [Eisenstadt and Sims, 2005]. Clay particles
interact not only with mechanical repulsion upon contact
but with a variety of physicochemical interactions causing
repulsion and attraction at different spatial configurations.
Yao and Anandarajah [2003] introduced a methodology for
simulating clay minerals in DEM models, which will serve
as a basis for future quantification of the role of clays in
glacial diamicts.

6. Conclusions
[58] The discrete element method, although parameter-

ized by micromechanical properties, is useful for modeling
the macroscopic mechanical properties of simple granular
materials, sheared under dry conditions. The concept of
a numerical DEM model may complement analog experi-
ments, since it allows a detailed investigation of the micro-
physics. The DEM displays dilation during deformation and
self-organizing particle kinematics. Both effects are difficult
to capture in conventional numerical models based on con-
tinuum mechanics. From numerical shear experiments, we
show how relatively high values of normal overburden stress
result in deep, distributed profiles of deformation and a thick
zone of increased porosity. A lower overburden stress results
in relatively narrow boundary layers of deformation that
are characterized by high porosity. Our DEM experiments

demonstrate how stress in a granular material is heteroge-
neously distributed along force-bearing particle chains. The
force chains are transient in nature, but the mean orienta-
tion of the load-bearing contacts is clearly governed by the
direction of the maximum compressive stress. We suggest
that the transient stability of the force chains represents an
important aspect of subglacial sediment deformation. Par-
ticle rotational axes tend to align with progressive shear,
although closer examination shows that particles in contact
often rotate in opposite directions in order to avoid slip along
the interparticle contact interfaces.
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