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Supplementary Note 1. Methods

GDR-MiDi (1) presented a non-dimensional inertia number that summarizes the mechanical behavior of dry and dense
granular deformation. The rate dependence on mechanical properties evolved into an empirical continuum rheology in
(2) and (3), where apparent friction and porosity depend on the inertia number. However, these models are local, meaning
that local stresses determine the local strain-rate response alone. As a consequence, material properties do not influence
shear zone width, which is not consistent with observations (1, 4–6). Granular deformation contains numerous non-local
effects, where flow rates in neighboring areas influence the tendency of a sediment parcel to deform. Granular shear zones
are an example of the non-locality as they have a minimum width dependent on grain characteristics (7–9).

Original non-local granular fluidity (NGF) model

Henann and Kamrin (10) presented the non-local granular fluidity (NGF) model where a fluidity field variable accounts for
the non-local effects on deformation. The model builds on previous continuum rheologies for granular materials (2, 3) and
accurately describes non-local strain distribution in a variety of experimental settings. The physical basis for the NGF model
is the statistics of a kinetic elasto-plastic mechanism, which envisions mesoscopic regions undergoing localized yielding
and inducing elastic deformation in nearby, jammed regions. The consequence is a non-local picture of the flow that is
characterized by a finite cooperation length. Fluidity acts as a state variable, describing the phase transition between non-
deforming (jammed) and actively deforming (flowing) regions in the sediment (10, 11). All material is assumed to have
a uniform porosity and to be in the critical state. The modeled sediment deforms with yield beyond the Mohr-Coulomb
failure limit (10, 12), but unlike classical plastic models it includes a closed form relation that predicts the stress-strain
rate relation at and slightly beyond yield.

In the NGF model, shear deformation is contributed by elastic (γ̇e) and plastic (γ̇p) shear strain rate :

γ̇= γ̇e + γ̇p (1)

where the plastic contribution to shear strain rate is given by:

γ̇p = g(µ,σn)µ. (2)

Here, µ = τ/σn is the dimensionless ratio between shear stress (τ [Pa]) and normal stress (σn [Pa]), and g [s−1] is the
granular fluidity. The fluidity g is a kinematic variable governed by grain velocity fluctuations and packing fraction (11),
and consists of local and non-local components:

∇2 g =
1

ξ2(µ)
(g − glocal), (3)

The degree of non-locality is scaled by the cooperativity length ξ [m], which, in turn, scales with non-local amplitude A
[-]:

ξ(µ) =
Ad

p

|µ−µs|
, (4)

1

anders@adamsgaard.dk


Preprint submitted to Communications Earth & Environment Copyright 2020 A. Damsgaard, L. Goren, J. Suckale

where d [m] is the representative grain diameter and µs [-] is the static Coulomb yield coefficient. The local contribution
to fluidity is defined as:

glocal(µ,σn) =

¨
p

d2σn/ρs(µ−µs)/(bµ) if µ > µs, and

0 if µ≤ µs.
(5)

where ρs [kg m−3] is grain mineral density, and b [-] controls the non-linear rate dependence beyond yield. The failure
point is principally determined by the Mohr-Coulomb constituent relation in the conditional of Eq. 5. However, the non-
locality in Eq. 3 implies that deformation can occur in places that otherwise would not fail, in cases where the surrounding
areas have a high local fluidity.

Numerical solution procedure

We solve the cohesive non-local granular fluidity model with pore fluid (CNGF-PF) equations in a one-dimensional setup
where simple shear occurs along a horizontal axis x , orthogonal to a vertical axis z. The spatial domain is Lz = 8 m long and
is discretized into cells with equal size to the representative grain size d. The upper boundary, i.e. the “ice-bed interface”,
exerts effective normal stress and shear stress on the granular assemblage. We neglect the minuscule contribution to
material shear strength from water viscosity. The effective normal stress within the layer is found by adding the lithostatic
contribution that increases with depth to the normal stress applied from the top:

σn(z) = σn,top + (1−φ)ρsG(Lz − z), (6)

where G [m s−2] is gravitational acceleration, and

σ′n(z) = σn(z)− pf(z). (7)

Normal stress σn(z = Lz) and fluid pressure pf(z = Lz) at the top are described by the boundary condition as constant or
time-variable values. The shear stress τ is constant over the domain, while effective normal stress varies. We compute the
apparent friction coefficient µ, which is the ratio between shear and effective normal stress, as:

µ(z) = µ0,top

σ′n,top

σ′n(z)
. (8)

where µ0,top is the initial friction at the top at t = 0. The shear stress τ(z) = µ(z)σ′n(z) is constant in time and space for
stress-controlled experiments, and dynamic for speed-controlled experiments.

We assign depth coordinates zi , granular fluidity gi , and fluid pressure pf,i to a regular grid with ghost nodes and cell
spacing ∆z. The ghost nodes are imaginary grid nodes outside of the top and bottom boundaries, and their values are
dynamically adjusted to provide the desired boundary condition. The fluidity field g is solved for a set of mechanical
forcings (µ, σ′n, boundary conditions for g), and material parameters (A, b, d). We rearrange Eq. 3 and split the Laplace
operator (∇2) into a 1D central finite difference 3-point stencil. We apply an iterative scheme to relax the following
equation at each grid node i:

gi = (1+αi)
−1
�

αi glocal(σ
′
n,i ,µi) +

gi+1 + gi−1

2

�

, (9)

where

αi =
∆z2

2ξ2(µi)
. (10)

We apply fixed-value (Dirichlet) boundary conditions for the fluidity field (g(z = 0) = g(z = Lz) = 0). This condition
is appropriate for confined flows. Neumann boundary conditions, which are not used here, create a velocity profile
resembling a free surface flow.

The pore-pressure solution (Eq. 3 in the main text) is constrained by a hydrostatic pressure gradient at the bottom
(dpf/dz(z = 0) = ρfG), and a pressure forcing at the top, for example sinusoidal: pf(z = Lz) = Af sin(2π f t) + pf,0.
Here, Af is the forcing amplitude [Pa], f is the forcing frequency [1/s], and pf,0 is the mean pore pressure over time [Pa].
As for the granular fluidity field (Eq. 3), we also use operator splitting and finite differences to solve the equation for
pore-pressure diffusion (Eq. 3 in the main text):

∆pf,i =
1

ηf(α+φiβf)
∆t
∆z

�

2ki+1ki

ki+1 + ki

pi+1 − pi

∆z
−

2kiki−1

ki + ki−1

pi − pi−1

∆z

�

. (11)
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For each time step ∆t, we compute a solution to Eq. 11 through the Crank-Nicholson method (13–15). In this procedure,
the pressure field at t +∆t is found by mixing explicit and implicit solutions with equal weight. The method is uncon-
ditionally stable and second-order accurate in time and space. Our implementation of grain and fluid dynamics is highly
efficient, and for the presented experiments each time step completes in less than 1 ms on a single CPU core.

Speed-controlled experiments

The model form presented above is suited for resolving strain rate and shear velocity from a given stress forcing, i.e., in a
stress-controlled setup. However, the basal conditions under glaciers and ice streams are highly variable and certain cases
are better approximated by a speed-controlled limit where a specified shear speed at the interface results in a strain-rate
distribution and shear stress inside the subglacial bed. For our system of equations, this case represents an inverse problem
that we compute by adjusting the applied friction at the top until the resultant shear speed matches the desired value.
We implement an automatic iterative procedure that can be set to match a shear speed, or limit the speed to a specified
value. First, we calculate an initial top speed value v∗x is calculated in a forward manner on the base of an arbitrary value
for friction µ∗. We use the difference between v∗x and the desired speed vd

x in the calculation of a normalized residual r:

r =
vd

x − v∗x
v∗x + 10−12

. (12)

We add the value 10−12 to the denominator to avoid division by zero if the initial applied friction value µ∗ does not cause
yield. If the residual value r is negative, the current applied friction produces a shear speed that exceeds the desired
value, and vice versa. If the absolute value of the residual exceeds the tolerance criteria (|r| > 10−3), we adjust the
applied friction:

µ∗new = µ
∗(1.0+ θ r), (13)

where θ = 10−2 is a chosen relaxation factor. The computations are then rerun with the new applied friction until the
tolerance criteria is met.

Supplementary Note 2. Analytical solution for maximum deformation depth

Under the assumption that the bed is a semi-infinite halfspace, we can solve for the depth profile and transient behavior
of effective normal stress σ′n analytically by extending a solution for dispersion of a sinusoidal forcing through a diffusive
medium (16). Here, z′ is the depth below the ice-bed interface, i.e., z′ = Lz − z:

σ′n(z
′, t) = σn + (ρs −ρf)Gz′ − pf,top − Af exp

�

−
z′

ds

�

sin
�

ωt −
z′

ds

�

. (14)

We compute the vertical gradient of the effective normal stress by evaluating,

dσ′n
dz′
(z′, t) = (ρs −ρf)G +

Af

ds
exp

�

−
z′

ds

��

sin
�

ωt −
z′

ds

�

+ cos
�

ωt −
z′

ds

��

, (15)

where ω = 2π f is the circular forcing frequency [s−1]. For this study, we want to find the depth z′ where dσ′n/dz′ = 0.
At this depth the effective normal stress is at a minimum and deep deformation can occur. In our simulations we observe
that the deepest deformation occurs when water pressure is at its minimum at the ice-bed interface, which means that
t = 3π/2ω:

0= sin
�

3π
2
−

z′

ds

�

+ cos
�

3π
2
−

z′

ds

�

+
(ρs −ρf)Gds

Af
exp

�

z′

ds

�

(16)

In the main text, the above equation is presented in shorter form using the identity, sin(x) + cos(x) =
p

2 sin(x + π/4).
With a sinusoidal water-pressure forcing, the above equation has no solution if dσ′n/dz(z = 0)> 0. This is the case if the
pressure perturbation is too weak to reverse the effective normal stress curve at depth, causing shear deformation to occur
at the top throughout the water-pressure cycle.

We use Brent’s method (15) for numerically finding depth (z′) values that satisfy the above equation within z′ ∈ [0;5ds].
Our implementation, the program max_depth_simple_shear, takes command-line arguments of the same format as
the main NGF program, 1d_fd_simple_shear, and prints the maximum deformation depth (z′) as the first column of
output, and the skin depth (ds) as the second column. See "max_depth_simple_shear -h" for usage details.
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Supplementary Note 3. Parameter sensitivity test

Supplementary Figure 3 contains a systematic analysis of parameter influence in the model equations. Several observations
emerge from this parameter sensitivity analysis. The representative grain size d has a major influence on the strain
distribution, where finer materials show deeper deformation. The material is slightly weaker with larger grain sizes. The
shear zone is more narrow with higher material static friction coefficients (µs), as the material is less prone to failure.
Our implementation of cohesion does not influence strain after yield. Static friction and cohesion both linearly scale the
bulk friction, as expected with Mohr-Coulomb materials. The non-local amplitude A slightly changes the curvature of the
shear strain profile, but does not affect the overall friction. There is a significant strengthening when the bed thickness Lz
begins to constrict the shear zone thickness.
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Supplementary Fig. 1. Strain distribution in local-only granular fluidity (LGF) model (A≈ 0).
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Supplementary Fig. 2. Deformation dynamics during sinusoidal water-pressure forcing from the top. Stress and shear velocity are
measured at the top of the sediment bed. a-d) Stress-controlled setup with applied shear stress 0.4σ′n. e-h) speed-controlled setup with
applied shear velocity vx = 1 km/a.
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Supplementary Fig. 3. Analysis of parameter influence on steady-state strain distribution and bulk friction during shear. All experiments
are performed under constant shear rate of 300 m a−1 and a normal stress of σ′n = 100 kPa. Parameter values marked with an asterisk
(*) are used outside of the individual parameter sensitivity tests.
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Supplementary Table 1. Material parameters for model simulations emulating discrete element method (DEM) particles (17) (Fig.
1D), an idealized till (remaining figures), and West Antarctic Ice Sheet (WAIS) till. Parameter values from the literature are used where
marked with a reference symbol: a: (17), b: (17), c: (12), d: (18), e: (19), f: (20).

Parameter Symbol Units DEM particles Idealized till WAIS till

Friction coefficient µs – 0.404a 0.40 0.45f
Cohesion C kPa 0a 0 3f
Representative grain size d m 0.04 1.0× 10−3 1.0× 10−3

Hydraulic permeability k m2 2.1× 10−15
b 2.1× 10−15 —

Nonlocal amplitude A – 0.50 0.48c 0.48c
Nonlinear rate dependence b – 0.022 0.94c 0.94c
Grain material density ρs kg m−3 2.6× 103

a 2.6× 103 2.6× 103

Porosity φ – 0.25a 0.25 0.35f
Dynamic fluid viscosity ηf Pa s 1.787× 10−3

d 1.787× 10−3
d —

Pore-skeleton compressibility α Pa−1 10−8 10−8 —
Adiabatic fluid compressibility βf Pa−1 3.9× 10−10

e 3.9× 10−10
e —

Fluid diffusivity D m2 s−1 — — 10−8
f
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