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INTRODUCTION TO NUMERICAL
GEODYNAMIC MODELLING

Until now, numerical modelling of geodynamic processes has been the domain
of highly trained mathematicians with long experience of numerical and compu-
tational techniques. Now, for the first time, students and new researchers in the
Earth Sciences can learn the basic theory and applications from a single, accessible
reference text.

Assuming only minimal prerequisite mathematical training (simple linear alge-
bra and derivatives) the author provides a solid grounding in the basic mathemati-
cal theory and techniques, including continuum mechanics and partial differential
equations, before introducing key numerical and modelling methods. Eight well-
documented and state-of-the-art visco-elasto-plastic, 2D models are then presented,
which allow robust modelling of key dynamic processes such as subduction, litho-
spheric extension, collision, slab break-off, intrusion emplacement, mantle convec-
tion and planetary core formation.

Incorporating 47 practical exercises and 67 MATLAB examples (for which codes
are available online at www.cambridge.org/gerya) this textbook provides a user-
friendly introduction for graduate courses or self-study, and encourages readers to
experiment with geodynamic models first hand.
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Introduction

Theory: What is this book? What this book is not. Get started. Seven
golden rules to learn the topic. Short history of geodynamics and numer-
ical geodynamic modelling. Few words about programming and visu-
alisation. Nine programming rules.
Exercises: Starting with MATLAB. Visualisation exercise.

What is this book?

This book is a practical, hands-on introduction to numerical geodynamic mod-
elling for inexperienced people, i.e. for young students and newcomers from other
fields. It does not require much background in mathematics or physics and is
therefore written with a maximum amount of simple technical details. If you are
inexperienced – this book is for you!

What this book is not

This book is not a treatise or a compendium of knowledge for experienced
researchers. It does not contain large overviews of existing numerical techniques
and only simple approaches are explained. If you are experienced in numerical
methods, read Chapter 17 first and then decide if you wish to read about the
technical details presented in previous chapters.

Get started

Already decided?! Then let us get started! In recent decades numerical modelling
has become an essential approach in geosciences in general and in geodynamics
in particular. This is a very natural process (‘instinctive evolution’) since direct
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2 Introduction

human observation scales are extremely limited in both time and space (depth)
and rapid progress in computer technology offers every day new and exceptional
possibilities to explore sophisticated mathematical models and this is true in every
discipline, and even industrial applications. Numerical modelling in geosciences
is widely used for both testing and generating hypotheses and strongly pushing
geology from an observational, intuitive to a deductive, predictive natural sci-
ence. Geo-modelling and geo-visualisation play a strong role in relating different
branches of geosciences. Therefore, it has become necessary to have some knowl-
edge about numerical techniques before planning and conducting state-of-the-art
interdisciplinary research in any branch of geosciences. In this respect, geodynam-
ics is traditionally ‘infected’ by numerical modelling and promotes the progress of
numerical methods in geosciences.

Before starting with numerical modelling we should consider one of the very
popular ‘myths’ among geologists, who often declare (or think) something like:

Numerical modelling is very complicated; it is too difficult for people with a traditional
geological background and should be performed by mathematicians.

I used to think like that before I started. I always remember my feeling when I heard
for the first time the expression, ‘Navier–Stokes equation’. ‘Ok, forget it! This is
hopeless,’ I thought at that time, and that was wrong. Therefore, let me formulate
the seven ‘golden rules’ elaborated during my learning experience.

Golden Rule 1. Numerical modelling is simple and is based on simple mathe-
matics.

All you need to know is:

� linear algebra,
� derivatives.

Most of the ‘complicated’ mathematical knowledge is learned in school before we
even start to study at university! I often say to my students that all is needed is:

strong MOTIVATION,
usual MATHS,
clear EXPLANATIONS,
regular EXERCISES.
Motivation is most important, indeed . . .

Golden Rule 2. When numerical modelling looks complicated see Rule 1.

Golden Rule 3. Numerical modelling consists of solving partial differential equa-
tions (PDEs).

There are only a few equations to learn (e.g. Lynch, 2005). They are generally not
complicated, but it is essential to learn and understand them gradually and properly.
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Fig. Introduction.1 Rule 6: Visualisation is important!

For example, to model the broad spectrum of geodynamic processes discussed in
this book, it is necessary to know three principal conservation PDEs only:

� the equation of continuity (conservation of mass),
� the equation of motion (conservation of momentum – Navier–Stokes equation!)
� the temperature equation (conservation of heat).

So, only three equations have to be understood and not tens or hundreds of them!

Golden Rule 4. Read books on numerical methods several times.
There are many excellent books on numerical methods. Most of these books are,

however, written for physicists and engineers and need effort to be ‘digested’ by
people with a traditional geological background.

Golden Rule 5. Repeat transformations of equations involved in numerical mod-
elling.

These transformations are generally standard and trivial, but repeating them
develops a familiarity with the PDEs (maybe you will even start to like them . . . ),
and allows you to understand the structure of the different PDEs. This book, by the
way, is full of such trivial detailed transformations – follow them too.

Golden Rule 6. Visualisation is important!
Without proper visualisation of results, almost nothing can be done with numer-

ical modelling (Fig. Introduction.1). Modellers often spend more time on visuali-
sation than on computing and programming.

Golden Rule 7. Ask!
This is the most efficient way of learning. In numerical geodynamic modelling

also many small hints and details exist. They are extremely important, but rarely
discussed in publications (in contrast to this book).
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Short history of geodynamics and numerical geodynamic modelling

The numerical modelling approaches discussed in this book are adopted for solv-
ing thermomechanical geodynamic problems. Geodynamics – dynamics of the
Earth – is a core geological subject that was very actively progressing during the
last century, especially since the establishment of plate tectonics in the 1960s. This
was a really great time for geology that ‘drifted’ strongly from a descriptive (qual-
itative) field, to a predictive (quantitative) physical science. The overall history of
the development of geodynamics was not, indeed, very ‘dynamic’ but rather slow
and complicated. A brilliant introduction to this field (which I strongly recom-
mend you to read) is written by Donald L. Turcotte and Gerald Schubert (2002).
According to this introduction and other sources, the following steps were historic
in understanding the Earth as a dynamic system:

1620: Francis Bacon pointed out the similarity in shape between the west coast of Africa
and the east coast of South America.

This was about 400 years ago (!) and several centuries were needed to start interpreting
this similarity.

1665: Athanasius Kircher, in his two-volume ‘Mundus subterraneus’, probably the first
printed work on geophysics and vulcanology, held that much of the phenomena on
earth were due to the fact that there is ‘fire’ under the terra firma.

This was, indeed, very unusual teaching for those days (about 350 years ago!) and very
much in line with the thermal origin of the mantle convection.

Early part of eighteenth century: Gottfried Wilhelm Leibniz proposed that the Earth
has a molten core and anticipated the igneous nature of the mantle.

The understanding of the Earth as a hot layered planetary body. One should really have
a vision to guess this around 300 years ago!

Latter part of the nineteenth century: Establishing the fluid-like behaviour of the
Earth’s mantle based on gravity studies: mountain ranges have low-density roots.

This crucial finding was ‘coupled’ to Earth dynamics only one hundred years later and
was not explored in the continental drift hypothesis.

1895–1915: The unforeseen discovery of radioactivity.
That ‘killed’ the concept of progressive dissipation of the heat of the Earth, and then

the correlative contraction as the mechanism for orogenic stresses. It also changed
the estimation of the age of the Earth and stratas by an order of magnitude . . . All
this forced further serious rethinking of geological concepts about dynamic processes
shaping the Earth.

1910: Frank B. Taylor, Continental Drift hypothesis.
The real beginning of ‘drifting’ toward plate tectonics, still a long way to go.
1912–1946: Alfred Wegener, further developed the Continental Drift hypothesis, and

showed a correspondence of the geological provinces, relict mountain ranges and
fossil types. Driving forces – tidal/rotation of the Earth. Single protocontinent –
Pangea.



History of numerical geodynamic modelling 5

The principal questions are considered to be, ‘why do continents move?’ and ‘what
are the driving forces?’ and not yet, ‘how do continents move?’ and ‘what is the
movement mechanism?’

1916: Gustaaf Adolf Frederik Molengraaff proposed mid-ocean ridges to be formed by
seafloor spreading as the result of the movement of continents in order to account for
the opening of the Atlantic Ocean as well as the East Africa Rift.

The mid-ocean ridges were ‘re-discovered’ for plate tectonics 40 years later . . .
1924: Harold Jeffreys showed the insufficiency of Wegener’s forces to move continents.
Computing forces for testing a geodynamic hypothesis is one of the core principles

of modern geodynamics as well! Another point to learn – opposition to the Conti-
nental Drift hypothesis using physical arguments was always strong and probably
considerably delayed the theory of plate tectonics.

1931: Arthur Holmes suggested that thermal convection in the Earth’s mantle can drive
continental drift.

This crucial idea answered a question about driving forces, but not about the movement
mechanisms. It was known from seismic studies, that the Earth’s mantle is in a solid
state and elastic deformation does not allow thousands of kilometres of motion of the
continents.

1935: N. A. Haskell established the fluid-like behaviour of the mantle (viscosity 1020

Pa s) based on the analysis of beach terraces in Scandinavia and the existence of
post-glaciation rebound.

Actually, this was also established earlier from inferring crustal roots. The question
about the physical mechanisms of solid-state mantle deformation remains open.

1937: Alexander du Toit suggested the existence of two protocontinents – Laurasia and
Gondwanaland, separated by the Tethys ocean.

This is a really dramatic story: geologists were continuously developing and supporting
the Continental Drift hypothesis, but the general idea of large lateral displacements
of continents was continuously rejected by geophysicists.

1950s: Improved understanding of the worldwide network of mid-ocean ridges during
the extensive exploration of the seafloor.

Evidence is critically growing in line with Molengraaff’s ideas . . .
1950s: Finding mechanisms of solid-state creep of crystalline materials applicable, for

example, for the flow of ice in glaciers.
The answer to the second crucial question was finally found in material science!

Breakthrough! The Great 1960s have started!

1960s: Palaeomagnetic studies, the finding of regular patterns of magnetic anomalies
on the sea floor.

1962: Harry Hess suggested that the seafloor was created at the axis of the ridge.
In fact, this was a refinement of the Molengraaff’s hypothesis.
1965: B. Gordon proposed the quantitative link between solid-state creep and mantle

viscosity.
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1968: Jason Morgan formulated the basic hypothesis of Plate Tectonics (mosaic of rigid
plates in relative motion with respect to one another as a natural consequence of
mantle convection).

1968: Isacks and co-workers attributed earthquakes, volcanoes and mountain building
to plate boundaries.

1967–1970: Development and broad acceptance of Plate Tectonics.
Before this time, continental drift was always opposed by geophysicists based on the

rigidity of the solid elastic mantle and the ‘absence’ of physical mechanisms allowing
horizontal displacements of thousands of kilometres for continents.

The crucial point that was finally understood by the geological community is that
both viscous (i.e., fluid-like) and elastic (i.e., solid-like) behaviour is a characteristic
of the Earth depending on the timescale of deformation: the Earth’s mantle, which
is elastic on a human timescale is viscous on geological timescales (>10 000
years) and can be strongly internally deformed due to solid state creep. There is an
amazing substance demonstrating a similar ‘dual’ viscous–elastic behaviour. This
is silicon putty or ‘silly putty’ which is frequently used as an analogue of rocks in
experimental tectonics. It deforms like clay in the hands, but when dropped on the
floor it jumps up like a rubber ball (see animation Silly_putty.mpg).

Plate tectonics has largely established both a conceptual and a physical basis
of geodynamics. The next rapid development of numerical methods of continuum
mechanics in this field is the logical consequence of both theoretical and techno-
logical progress. Numerical modelling is a necessary tool for geodynamics since
tectonic processes are too slow and too deep in the Earth to be observed directly.
The snapshot-like history of 2D/3D numerical geodynamic modelling (1D models
appeared even earlier!) looks as follows (partly subjective literature-web-search-
based view, more details on this issue can be found in several overviews on mantle
convection modelling: Richter, 1978; Schubert, 1992; Bercovici, 2007):

1970: First 2D numerical models of subduction (Minear and Toksoz, 1970). Exactly the
time when the ‘Plate Tectonics Era’ had just started! The first subduction model was
purely thermal, with a prescribed velocity field corresponding to the downgoing slab
inclined at 45◦.

1971: First 2D mantle thermal convection models (Torrance and Turcotte, 1971).
This paper discussed possible implications of mantle convection with temperature-
dependent viscosity for continental drift. Thermomechanical models based on the
stream function formulation for the mechanical part were explored. A rectangular
model domain, with a temperature-dependent viscosity and resolution up to 22 × 16
nodal points was used.

1972, 1978: First 2D numerical (finite-element) models of salt domes dynamics (Berner
et al., 1972; Woidt, 1978). Before that, geodynamic modelling studies of crustal
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diapirism used analytical and analogue modelling approaches. Paper by Woidt (1978)
pointed out inconsistency of the numerical approach used by Berner et al. (1972).

1977–1980: First 2D mantle thermal-chemical convection models (Keondzhyan and
Monin, 1977, 1980). A binary stratified medium was used to study the effects of
compositional layering on mantle convection.

1978: First numerical models of continental collision (Daignières et al., 1978; Bird,
1978). Mechanical models exploring the finite-element approach.

1985–1986: First 3D spherical mantle convection models (Baumgardner, 1985,
Machetel et al., 1986). The first 3D models were spherical and not Cartesian as
one would expect. Also, for some reason, the first paper appeared in the Journal of
Statistical Physics, which is not really a geophysical journal . . .

1988: First 3D Cartesian mantle convection models (Cserepes et al., 1988; Houseman,
1988).

Since the 1980s, numerical geodynamic modelling has been developing very
rapidly in terms of both the number of various applications and numerical tech-
niques explored. Geodynamic modelling now stands as one of the most dynamic
and advanced fields of Earth Sciences.

A few words about programming and visualisation

In this book MATLAB is used for the exercises and for visualisation. This is a
good language of choice for people starting with modelling as it allows both easy
computing and visualisation. C and FORTRAN are often used for advanced studies
that involve usage of supercomputers and computer clusters. In these studies,
visualisation is mostly done as a post-processing step that allows independent use
of specialised visualisation packages. In our short book, we are more interested
to see results instantaneously, during computations. In addition, MATLAB greatly
simplifies the solving of system of linear equations which is the core of numerical
modelling.

In this book we will consider many example programs, since learning to write
programs (and not just using them) is an essential part of numerical geodynamic
modelling. There are nine important programming rules (which I call Bug Rules)
which you should follow when writing your own programs.

Bug Rule 1: Think before programming! Think carefully about the algorithm of your
new code and the most efficient way of making modifications to your old code – you
will then develop the program faster and more efficiently and will not need too much
code re-thinking and re-writing.

Bug Rule 2: Comment! Making comments in the code is essential to enable the code
to be used, debugged and modified correctly. The ratio between comment lines and
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program lines in a good numerical code is larger then 1:1. Do not be lazy, explain
every program line – this will save you a lot of time afterwards!

Bug Rule 3: Programming makes bugs! We always introduce bugs (i.e. programming
errors) while writing a code. We typically introduce at least one bug when we modify
one single line and we have to test the modified code until we find the bug!

Bug Rule 4: Programming means debugging! Be prepared that only 1% of the time
will be spent on programming and 99% of your time will be for debugging.

Bug Rule 5: Most difficult bugs are trivial ones! There are three types of the most
common bugs:

� errors in index (90% of your bugs!), e.g. y = x(i, j) + z(12) instead of y = x(j, i) − z(2)
� errors in sign, e.g. y = x + z instead of y = x−z or y = 1e − 19 instead of y = 1e + 19
� errors in order of magnitude, e.g. y = 0.0831 instead of y = 0.00831.

Don’t be surprised that finding these ‘trivial’ bugs will sometimes be very
difficult (we simply don’t see them) and will take a lot of time – this is normal.

Bug Rule 6: If you see something strange– there is a bug! Be suspicious, do not
ignore even small strange things and discrepancies that you see when computing
with your code – in 100% of cases you will find that a bug is the cause. Never try
to convince yourself (although this is what we typically tend to do) that a single last
digit discrepancy in results with the previous version of the code is due to computer
accuracy – it is due to either old or new bugs!

Bug Rule 7: Single bug can ruin 10 000-lines code! We should really be motivated to
carefully debug and test codes. Don’t think that one single small error in the code
can be ignored – it will spoil results of months of calculations.

Bug Rule 8: Wrong model looks beautiful and realistic! Often erroneous models do
not look bad or strange and some of them are really beautiful. Therefore, be prepared
that of the numerical modelling results you like, some are actually wrong . . .

Bug Rule 9: Creating a good, correct and nicely working code is possible! This is
what should motivate us to follow the eight previous rules!

Units

In this book, the metre-kilogram-second (MKS) system is used in all basic equations
as a standard, with only occasional specified deviations toward other conventional
units widely used in geosciences (kbar, ◦C etc.).

How to use this book

Once again, this is a textbook which is primarily aimed at people inexperienced with
numerical methods. Therefore, it is organised in a way that, after my learning and
teaching experience, provides the easiest path for learning the basics of continuum
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mechanics and numerical geodynamic modelling. Follow it from one chapter to
the next and do all the exercises. Do all the programming by yourself and study
code examples ONLY when you are stuck or unsure what to do (all 67 quoted
MATLAB codes are provided with this book). The complexity of the programming
exercises gradually increases from one chapter to the next, introducing more and
more complex aspects of continuum mechanics and numerical modelling. Just trust
this way and don’t give up!

Programming exercises and homework

Exercise Introduction.1
Open MATLAB and use it for the first time. Study the following (use MATLAB
Help to read about various functions and operations):

(a) Defining variables, vectors and matrixes
(b) Using mathematical functions (+, −, ∗, .∗, /, ./, ˆ, .ˆ, exp, log10, etc.)
(c) Opening/closing text files and loading/writing data from/to them (fopen, fclose, fscanf,

fprintf)
(d) Plotting of data in 2D and 3D (figure, plot, pcolor, surf, xlabel, ylabel, shading, light,

lighting, axis, colorbar)
(e) programming loops (for, while, end) and conditions (if, else, end, switch, case, &&, ‖,

==, ∼=, >, <, >=, <= etc.)

Exercise Introduction.2
Write your first MATLAB code for visualising sin, cos functions in 2D (plot,
pcolor, contour) and 3D (surf, light, lighting). An example is in Visualisa-
tion_is_important.m.





1

The continuity equation

Theory: Definition of a geological medium as a continuum. Field vari-
ables used for the representation of a continuum. Methods for definition
of the field variables. Eulerian and Lagrangian points of view. Conti-
nuity equation in Eulerian and Lagrangian forms and their derivation.
Advective transport term. Continuity equation for an incompressible
fluid.
Exercises: Computing the divergence of velocity field in 2D.

1.1 Continuum – what is it?

What we should understand from the very beginning is that geodynamics considers
major rock units, such as the Earth’s crust and mantle as continuous geological
media. Continuity of any medium implies that, on a macroscopic scale, the material
under consideration does not contain mass-free voids or gaps (there can indeed be
pores or cavities but they are also filled with some continuous substances). Different
physical properties of a continuum may vary at every geometrical point and we thus
need a continuous description. In continuum mechanics, the physical properties of
a continuum (field properties) are described by field variables such as pressure,
temperature, density, velocity, etc. There are three major types of field variables:

scalars (e.g., pressure, temperature, density),
vectors (e.g., velocity, mass flux, heat flux),
tensors (e.g. stress, strain, strain rate).

Field variables can be represented in a fully continuous manner (analytical
expressions, Fig. 1.1(a)) or in a discrete-continuous way (by arrays of values which
characterise selected nodal geometrical points, Fig. 1.1(b–d)). In the latter case,

11
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(a) (c)

(b) (d)

Fig. 1.1 Continuous (a) and discrete-continuous (b)–(d) representations of a field
variable as a function of a coordinate. Note that in the case of the discrete-
continuous representation with linear interpolation between nodal points, the rep-
resentation accuracy notably increases with increasing number of nodal points
(compare (a) with (b), (c) and (d)).

(a) (b)

Fig. 1.2 Example of the deformation of a continuous medium (dark grey) due to
the buoyant rise of a rigid block (light grey). (a) initial stage. (b) final stage with the
corresponding velocity field indicated by arrows. Note that no voids are formed
where the block was initially located (dashed contour). Individual black and white
dots in (a) and (b) correspond to different Lagrangian points displaced by the flow.
Diagrams are computed numerically with the code developed by Gerya and Yuen
(2003a), and an animation is shown in file Fig1_2.ppt associated with this chapter.

various linear and non-linear interpolation rules are used to calculate values of field
variables between the nodal points (Fig. 1.1(b)–(d)).

Continuity also implies that displacements of different portions of the medium
are not fully independent. These displacements must proceed without creating
macroscopic voids and gaps: if some rocks are displaced from a certain area (for
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example due to tectonic extrusion), other rocks must come into this area and substi-
tute the displaced fragment (Fig. 1.2). In a way, this type of continuous behaviour
is very similar to that of water or, generally, any fluid which can be described by
fluid mechanics (e.g., Landau and Lifshitz, 1987; Kundu and Cohen, 2002). Since
on long timescales rocks behave like slowly creeping fluids, geodynamic processes
in the Earth’s mantle, as for example mantle convection, are often also referred to
as processes of geophysical fluid dynamics.

1.2 Continuity equation

Our qualitative, intuitive understanding of continuity can, indeed, be transformed
into a quantitative mathematical formalism. This formalism is widely used in
numerical geodynamic modelling in form of a continuity equation which describes
the conservation of mass during the displacement of a continuous medium. Let’s
write this equation and try to understand its structure in detail.

The first thing that we have to learn is that the form of the mass conservation
equation (and many other time-dependent conservation equations) can be either
Eulerian or Lagrangian depending on the nature of a geometrical point for which
this equation is written. The Eulerian continuity equation is written for an immobile,
or fixed point in space; it has the form:

∂ρ

∂t
+ div(ρ�v) = 0. (1.1a)

Or, in a slightly different symbolic notation often used in continuum mechanics

∂ρ

∂t
+ ∇ · (ρ�v) = 0, (1.1b)

where
∂

∂t
is the Eulerian time derivative; ρ is the local density, which characterises

the amount of mass per unit volume (kg/m3); �v is local velocity (m/s) and div() or
∇· denotes the divergence operator. The divergence is a scalar function of a vector
field, and is defined as follows,

in one dimension (1D): div(�v) = ∂vx

∂x
, (1.2a)

in two dimensions (2D): div(�v) = ∂vx

∂x
+ ∂vy

∂y
, (1.2b)

in three dimensions (3D): div(�v) = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
, (1.2c)

where x, y and z are Cartesian coordinates and vx , vy and vz are components parallel
to the respective coordinate axes of the velocity vector �v (Fig. 1.3). In simple words,
the divergence of a vector at a given point is positive when the surrounding vector
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Fig. 1.3 Components of a local velocity vector �v (grey arrow) in one (a) two (b)
and three (c) dimensions.

Fig. 1.4 Examples of divergent (a) convergent (b) and neutral (c) 2D velocity fields
around a point.

field is directed outward from the point (divergent flow, Fig. 1.4(a)) and is negative
when this field is directed towards the point (convergent flow, Fig. 1.4(b)).

The Lagrangian continuity equation is written for a moving point of reference;
it has the form:

Dρ

Dt
+ ρdiv(�v) = 0, (1.3a)

or

Dρ

Dt
+ ρ∇ · �v = 0, (1.3b)

where
D

Dt
is the Lagrangian time derivative and the other parameters were explained

before (see Eq. (1.1)).

1.3 Eulerian and Lagrangian points – what is the difference?

Understanding the difference between Eulerian and Lagrangian points is funda-
mental for continuum mechanics. A Lagrangian point is strictly connected to a
single material point and is moving with this point. Therefore, the same material
point is always found in a given Lagrangian point independent of the moment of

time. For this reason, the Lagrangian time derivative of density
Dρ

Dt
(i.e., changes in

density with time at the Lagrangian point) is also called the substantive or objective
time derivative. On the other hand, an Eulerian point is an immobile observation
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point, not related to any specific material point. Therefore, at different moments
of time, different Lagrangian material points can be found at the same Eulerian
point. In other words, different Lagrangian material points are passing through the
same Eulerian observation point with time. Many equations of continuum mechan-
ics containing time derivatives can be written in both Eulerian and Lagrangian
forms which differ from each other (e.g. Eqs. (1.1) and (1.3)). Choosing either the
Eulerian or Lagrangian form of an equation notably affects the way of represent-
ing advective transport processes (i.e. the movement of material with the flow)
which will be discussed in detail in Chapter 8, together with the advantages and
disadvantages of the two approaches.

1.4 Derivation of the Eulerian continuity equation

Let’s now analyse the Eulerian continuity equation (Eq. (1.1)) which contains
both vector (velocity) and scalar (density) variables. This equation establishes the
balance of mass in an elementary observation volume. It implies, in particular, that
if mass is leaving (fluxing out of) the volume (i.e., div(ρ�v) > 0), the local density

(i.e., the amount of mass per unit volume) decreases with time (i.e.,
∂ρ

∂t
< 0).

First we need to understand that ρ�v is nothing else but the local mass flux
vector

ρ�v = (ρvx, ρvy, ρvz), (1.4)

which has the dimension of unit mass, fluxing through a unit surface, per unit time(
kg

m2s

)
. This definition follows from the fact that the velocity in a continuous

medium can be considered as material volume flux (Fig. 1.5) i.e., unit volume

fluxing through a unit surface per unit time

(
m

s
= m3

m2s

)
. Therefore, velocity (i.e.

volume flux) multiplied by the density (i.e. mass per unit volume) gives the mass
flux.

The Eulerian continuity equation can be derived by analysing material fluxes
through a small, immobile, rectangular Eulerian (observation) volume of constant
dimensions �x, �y and �z (Fig. 1.6(a)). Let’s assume that the initial mass of fluid
in this volume is m0. Then, the initial average fluid density (ρ0) within this volume
is thus

ρ0 = m0

�x �y �z
. (1.5)

Mass enters the volume through the boundaries A, C and E and leaves it through
the opposite boundaries B, D and F. Material fluxes affect the mass of fluid in the
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Fig. 1.5 Relationship between the flow velocity v and material volume V, passing
through the element S of the immobile Eulerian surface (grey) during the time t.
The relations V = S L and L = v t allows one to formulate velocity as the material

volume flux v = V

S t
.

Fig. 1.6 Eulerian (a) and Lagrangian (b) elementary volumes considered for the
derivation of the continuity equation. Arrows in (a) show the velocity components
which are responsible for material fluxes through the respective boundaries (A,
B, C, D, E and F). Arrows in (b) show the velocity components responsible for
moving the respective boundaries.

observation volume and after a small period of time �t (or time increment), this
mass becomes m1 and the average fluid density (ρ1) changes to

ρ1 = m1

�x �y �z
. (1.6)
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The balance between the old (m0) and new (m1) mass results in the following
relation

m1 = m0 + min − mout,

min = mA + mC + mE,

mout = mB + mD + mF,

mA = ρAvxA�y�z�t,

mB = ρBvxB�y�z�t, (1.7)

mC = ρCvyC�x�z�t,

mD = ρDvyD�x�z�t,

mE = ρEvzE�x�y�t,

mF = ρFvzF�x�y�t,

where min and mout are the incoming and outgoing mass, respectively; mA – mF are
masses that passed through the respective boundaries during the time �t; ρA – ρF

is the density at the respective boundaries; vxA – vzD are the velocity components
responsible for material fluxes through the boundaries (Fig. 1.6(a)). If �t is small,
we can now write an approximate expression for the Eulerian time derivative of
the average density in the volume as:

∂ρ

∂t
≈ �ρ

�t
= ρ1 − ρ0

�t
= m1 − m0

�x �y �z �t
. (1.8)

By using Equation (1.7) the following expression can be further obtained (verify
as an exercise)

�ρ

�t
= −ρBvxB − ρAvxA

�x
− ρDvyD − ρCvyC

�y
− ρFvzF − ρEvzE

�z
, (1.8a)

or

�ρ

�t
= −�(ρvx)

�x
− �(ρvy)

�y
− �(ρvz)

�z
, (1.8b)

or

�ρ

�t
+ �(ρvx)

�x
+ �(ρvy)

�y
+ �(ρvz)

�z
= 0,

�(ρvx) = ρBvxB − ρAvxA,
(1.8c)

�(ρvy) = ρDvyD − ρCvyC,

�(ρvz) = ρFvzF − ρEvzE,

where �(ρvx), �(ρvy) and �(ρvz) are differences in the mass fluxes in x, y and z
directions respectively (i.e. through the respective pairs of boundaries, Fig. 1.6(a)).
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Obviously, in such cases when �t, �x, �y and �z all tend to zero, the differences
can be replaced by derivatives and we obtain the Eulerian continuity equation

∂ρ

∂t
+ ∂(ρvx)

∂x
+ ∂(ρvy)

∂y
+ ∂(ρvz)

∂z
= 0, (1.9a)

or

∂ρ

∂t
+ div(ρ�v) = 0. (1.9b)

1.5 Derivation of the Lagrangian continuity equation

Similarly, the Lagrangian continuity equation can be derived by analysing the
motion of a small, mobile, rectangular Lagrangian (material) volume of initial
dimensions �x0, �y0 and �z0 (Fig. 1.6(b)). In contrast to the steady Eulerian
volume, the amount of mass m in the moving Lagrangian volume remains constant
(since this volume is always related to the same material points), but the dimensions
of the volume may change due to internal expansion/contraction processes. The
initial average fluid density (ρ0), within the volume is given by

ρ0 = m

�x0 �y0 �z0
. (1.10)

Internal expansion or contraction affects the dimensions of the Lagrangian volume,
and after a small period of time �t, these dimensions become �x1, �y1 and �z1

and the average fluid density (ρ1) changes to

ρ1 = m

�x1 �y1 �z1
. (1.11)

The relationship between the old (�x0, �y0, �z0) and the new (�x1, �y1, �z1)
dimensions of the Lagrangian volume can be established on the basis of the relative
movements of the boundaries of the volume (A, B, C, D, E, F, Fig. 1.6(b)) which
leads to the following relations

�x1 = �x0 + �t �vx, (1.12)

�vx = vxB − vxA

�y1 = �y0 + �t �vy, (1.13)

�vy = vyD − vyC

�z1 = �z0 + �t �vz, (1.14)

�vz = vzF − vzE

where �vx , �vy and �vz are the differences in the velocity components that corre-
spond to the relative movements of their respective pairs of boundaries (Fig. 1.6(b)).
Taking �t to be small, we can now write an approximate expression for the
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Lagrangian time derivative of the average density in the volume as

Dρ

Dt
≈ �ρ

�t
= ρ1 − ρ0

�t
= m

�x1 �y1 �z1 �t
− m

�x0 �y0 �z0 �t
. (1.15)

By using the equations derived for �x1, �y1 and �z1 (Eqs. (1.12)–(1.14)) the
following expression can be obtained (verify as an exercise)

�ρ

�t
= ρ0

1 −
(

1 + �t
�vx

�x0

)(
1 + �t

�vy

�y0

)(
1 + �t

�vz

�z0

)

�t

(
1 + �t

�vx

�x0

)(
1 + �t

�vy

�y0

)(
1 + �t

�vz

�z0

) , (1.16a)

or

�ρ

�t
= ρ0

−�vx

�x0
− �vy

�y0
− �vz

�z0
− �t

(
�vx

�x0

�vy

�y0
+ �vx

�x0

�vz

�z0
+ �vy

�y0

�vz

�z0
+ �t

�vx

�x0

�vy

�y0

�vz

�z0

)
(

1 + �t
�vx

�x0

)(
1 + �t

�vy

�y0

)(
1 + �t

�vz

�z0

) ,

(1.16b)
or

�ρ

�t
+ ρ0

�vx

�x0
+ �vy

�y0
+ �vz

�z0
+ K1

K2
= 0,

K1 = �t

(
�vx

�x0

�vy

�y0
+ �vx

�x0

�vz

�z0
+ �vy

�y0

�vz

�z0
+ �t

�vx

�x0

�vy

�y0

�vz

�z0

)
, (1.16c)

K2 =
(

1 + �t
�vx

�x0

)(
1 + �t

�vy

�y0

)(
1 + �t

�vz

�z0

)
,

where K1 and K2 are coefficients which respectively tend to zero and unity when �t
tends to zero. Obviously in the case when �t, �x0, �y0 and �z0 all tend towards
zero, the differences in Eq. (1.16c) can be replaced by derivatives and taking K1 = 0
and K2 = 1 we obtain the Lagrangian continuity equation

Dρ

Dt
+ ρ

∂vx

∂x
+ ρ

∂vy

∂y
+ ρ

∂vz

∂z
= 0, (1.17a)

or

Dρ

Dt
+ ρdiv(�v) = 0. (1.17b)
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1.6 Comparing Eulerian and Lagrangian continuity equations.
Advective transport term

Let’s now perform transformations of the Eulerian continuity equation (Eq. (1.1))
in order to decipher its structure and to establish a relationship with the Lagrangian
continuity equation (Eq. (1.3)). It is convenient to decompose div(ρ�v) using the
standard product rule (also called Leibniz’s law) (u · v)′ = u′ · v + v′ · u, or in an

alternative notation
∂

∂x
(uv)′ = ∂u

∂x
· v + ∂v

∂x
· u.

div(ρ�v) = ρdiv(�v) + �v grad(ρ), (1.18a)

or in a different symbolic notation

∇ · (ρ�v) = ρ∇ · �v + �v∇ρ, (1.18b)

or ‘deciphering’ what we actually are doing in three dimensions

∂

∂x
(ρvx) + ∂

∂y
(ρvy) + ∂

∂z
(ρvz) =

(
ρ

∂vx

∂x
+ ρ

∂vy

∂y
+ ρ

∂vz

∂z

)

+
(

vx

∂ρ

∂x
+ vy

∂ρ

∂y
+ vz

∂ρ

∂z

)
, (1.18c)

where grad(ρ) or ∇ρ is the gradient of the density ρ. The gradient is a vector
function of a scalar field defined as follows

in one dimension (1D): grad(ρ) = ∂ρ

∂x
, (1.19a)

in two dimensions (2D): grad(ρ) =
(

∂ρ

∂x
,
∂ρ

∂y

)
, (1.19b)

in three dimensions (3D): grad(ρ) =
(

∂ρ

∂x
,
∂ρ

∂y
,
∂ρ

∂z

)
. (1.19c)

Therefore, both ∇ρ and �v in Eq. (1.18) are vectors and scalar multiplying of these
two vectors (1.18c) gives the following result

in one dimension (1D): �v grad(ρ) = vx

∂ρ

∂x
, (1.20a)

in two dimensions (2D): �v grad(ρ) = vx

∂ρ

∂x
+ vy

∂ρ

∂y
, (1.20b)

in three dimensions (3D): �v grad(ρ) = vx

∂ρ

∂x
+ vy

∂ρ

∂y
+ vz

∂ρ

∂z
. (1.20c)

Now by comparing Equations (1.1), (1.3) and (1.18) we can establish the relation-

ship between the Eulerian (
∂ρ

∂t
) and Lagrangian (

Dρ

Dt
) time derivatives of density
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Fig. 1.7 Schematic representation of the advective transport in the case of uniform
1D movement of a fluid with a linear density distribution. The dashed and solid
thick lines correspond to the density distribution for the moments of time t0 and
t1, respectively. Circles A and B denote the density for two different Lagrangian
points passing through an Eulerian observation point (solid rectangle C) at the
different moments of time (t0 and t1, respectively).

as

Dρ

Dt
= ∂ρ

∂t
+ �v grad(ρ). (1.21)

The extra term, �v grad(ρ) in the Eulerian continuity equation is an advective trans-
port term that reflects changes of density in an immobile (Eulerian) point, due
to the movement of an inhomogeneous medium with existing density gradients
relative to this point (Fig. 1.7). Obviously, the advective transport terms in the
Eulerian continuity equation are only relevant (i.e. nonzero) in situations when
both the velocity of the medium and density gradient are nonzero. On the other
hand, substantive changes of density (Dρ/Dt) in the moving Lagrangian point do
not depend on density gradients and the Lagrangian continuity equation (1.3) thus
does not contain advective terms.

When the density in all moving material points does not change with time

(i.e.
Dρ

Dt
= 0) the Eulerian continuity equation reduces to the Eulerian advective

transport equation

∂ρ

∂t
= −�v grad(ρ). (1.22)

The minus sign in the right-hand side of equation (1.22) reflects the relation between
the density gradient and the direction of motion (Fig. 1.7): if a medium is moving
in the direction of decreasing density (i.e. �v grad(ρ) < 0), then the density in an

immobile observation point increases with time (i.e.,
∂ρ

∂t
> 0).

Let’s now derive the advective transport relation (Eq. (1.22)) for the simple 1D
case shown in Fig. 1.7. A fluid with a linear density distribution moves at a constant
velocity vx . At the moment of time t0 the density (ρA) in the Eulerian observation
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point C (solid rectangle) corresponds to the Lagrangian point A (solid circle). Due
to fluid motion, the density profile shifts to the right with time. Therefore, at a later
moment of time t1, the density (ρB) at the same Eulerian point C will correspond to
another Lagrangian point B (open circle). Under the assumption that the difference
in time between the two moments (�t = t1 − t0) is small, we can approximate the
time derivative of density at the Eulerian point C as

∂ρ

∂t
≈ �ρt

�t
= ρB − ρA

t1 − t0
, (1.23)

where �ρ t corresponds to changes in density with time at the Eulerian point C. If
on the other hand, the displacement of the density profile (i.e. the distance between
two Lagrangian points A and B, �x = x1 − x0) is also small, we can approximate
the local derivative of density with respect to x, at the moment of time t1 as

∂ρ

∂x
≈ �ρx

�x
= ρA − ρB

x1 − x0
, (1.24)

where �ρx corresponds to a change in density with coordinate in the proximity of
the Eulerian point C at the instant when time equals t1. Note that �ρ t and �ρx

are different quantities, and that in the case considered they are similar in absolute
value but are different in sign (cf. Eq. (1.23) and (1.24)). Taking into account the
relationships

�x = vx�t

and
�ρx = −�ρt,

the following expression can be obtained (derive as an exercise)

�ρt

�t
= −vx

�ρx

�x
. (1.25)

When �t and respectively �x tend to zero, the differences in Eq. (1.25) can be
replaced by derivatives and we obtain the 1D advection equation

∂ρ

∂t
= −vx

∂ρ

∂x
. (1.26)

The advective transport equation is very important for geodynamic modelling since
it describes changes in the distribution of transport properties (such as density,
temperature, composition, etc.) in non-homogeneous, deforming media. We will
come back to this issue in Chapter 8.



Analytical exercise 23

1.7 Incompressible continuity equation

For many geological media (such as the Earth’s crust and mantle), one may assume
an incompressibility condition (i.e. density of material points does not change with
time), which is written as:

Dρ

Dt
= ∂ρ

∂t
+ �v grad (ρ) = 0. (1.27)

It is valid in cases when pressure and temperature changes are not very large and
no phase transformations leading to volume changes occur in the medium. In this
situation, one can use an incompressible continuity equation which is the same in
both Eulerian and Lagrangian forms

div(�v) = 0. (1.28)

The incompressible continuity equation is broadly used in numerical geodynamic
modelling, although in many cases it is a rather big simplification (e.g. in the case of
the whole Earth mantle convection, e.g., Tackley, 2008). Typical examples of geo-
dynamic settings where deformations are strongly defined by the incompressibility
condition are, for example, corner flow in the mantle wedge above subducting
slabs (e.g. Turcotte and Schubert, 2002) and circulation of tectonic melanges in
subduction channels (e.g. Cloos, 1982).

Analytical exercise

Exercise 1.1
In a region of the Earth’s mantle, the velocity field is given by

vx = 10−10 + x · 10−13 + y · 10−13 + z · 10−13

vy = 10−10 − x · 10−13 + y · 2 × 10−13 + z · 3 × 10−13

vz = 10−10 − x · 10−13 − y · 10−13 − z · 2 × 10−13.

The mantle density field in the same region is given by

ρ = 3300 + x · 0.001 − y · 0.002 + z · 0.001.

Calculate ρ, div(�v),
∂ρ

∂t
and

Dρ

Dt
for the point with coordinates x = 1000, y = 1000,

z = 1000.
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Programming exercise and homework

Exercise 1.2
Write a MATLAB code for computing and visualising a 2D velocity field and its
divergence. Model design: an area of the mantle (1000 × 1500 km) is convecting
with one central upwelling in the middle of the model box and two downwellings
at the sides. The velocity field is given by the following equations

vx = −vx0 sin
(

2π
x

W

)
cos

(
π

y

H

)
,

vy = vy0 cos
(

2π
x

W

)
sin
(
π

y

H

)
,

where x and y are respectively horizontal and vertical coordinates inside the box in
m; W = 1 000 000 m and H = 1 500 000 m are the width and height of the model,
respectively (i.e., 1000 × 1500 km); vx0 = 10−9 m/s and vy0 = 10−9 m/s are scaling
values for respectively horizontal and vertical velocity components (10−9 m/s ≈
3 cm/year). Compute (analytically) vx , vy ,

∂vx

∂x
,
∂vy

∂y
and div(v̄) = ∂vx

∂x
+ ∂vy

∂y
on

a 2D grid of points (e.g. 31 × 31) which are regularly distributed inside the model
and visualise these parameters separately as colourmaps (pcolor) in order to see
how they are distributed relative to each other. Visualise the velocity as an arrow
field (quiver). Try to tune the scaling velocity values vx0 and vy0, such that the
divergence of velocity goes to (almost) zero in the entire model (i.e. absolute values

of div(v̄) should be many orders of magnitude less then that of
∂vx

∂x
and

∂vy

∂y
). An

example is in Divergence.m.
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Density and gravity

Theory: Density of rocks and minerals. Thermal expansion and com-
pressibility. Dependence of density on pressure and temperature. Equa-
tions of state. Poisson equation for gravitational potential and its
derivation.
Exercises: Computing and visualising density, thermal expansion and
compressibility.

2.1 Density of rocks and minerals. Equations of state

Many geodynamic processes are either directly or indirectly driven by the gravity
force due to the spatial variation of rock density inside the Earth. The density of
rocks (ρ) depends on pressure (P), temperature (T), chemical composition (C) and
mineralogical composition (M)

ρ = f (P, T , C, M). (2.1)

These factors are not fully independent. The mineralogical composition of a rock
with a constant composition may for example change due to changes in pressure and
temperature. Easy-to-remember densities of major rock types used in geodynamics
are:

felsic rocks (e.g., granites) ∼2700 kg/m3,
mafic rocks (e.g. basalts) ∼3000 kg/m3,
ultramafic rocks (e.g., peridotites) ∼3300 kg/m3.

Other relevant rock densities are given in Table 17.2 and in Appendix 2 of Turcotte
and Schubert (2002).
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Variations in the density of minerals and rocks with T and P are often charac-
terised by thermal expansion (α) and compressibility (β)

α = − 1

ρ

∂ρ

∂T
, (2.2)

β = 1

ρ

∂ρ

∂P
. (2.3)

The thermal expansion of rocks and minerals is typically positive (α > 0), i.e.
density decreases with increasing temperature (cf. minus in the right part of
Eq. (2.2)). There are, indeed, exceptions, for example, beta-quartz possesses a
density which remains almost constant with increasing temperature at room pres-
sure (α ≈ 0). Typical values of α are on the order of n × 10−5 K−1. Compressibility
is always positive (β > 0) and density always increases with increasing pressure.
Typical values of β are on the order of n × 10−2 GPa−1 (or n × 10−11 Pa−1). In
cases of constant α and β, integration of Equations (2.2) and (2.3) versus T and P
gives

ρ = ρreβ(P−Pr )−α(T −Tr ), (2.4a)

where ρr is the density of a given material at reference pressure Pr (typically 105

Pa = 1 bar) and temperature Tr (typically 298.15 K = 25 ◦C).
Since both α(T − Tr) and β(P − Pr) are typically very small (much less then

unity), the equations can be simplified either to (using the rules that ea ≈ 1 + a

and e−a ≈ 1 − a when a 
 1)

ρ = ρr [1 + β(P − Pr )] × [1 − α(T − Tr )] , (2.4b)

or (using the rules that ea ≈ 1 + a and e−a = 1
ea

≈ 1

1 + a
when a 
 1) to

ρ = ρr

1 + β(P − Pr )

1 + α(T − Tr )
. (2.4c)

Equations (2.4a)–(2.4c), however, do not account for changes in density due to
changes in mineralogical composition with changing pressure and temperature.
These equations of state (EOS) are much simplified since they are based on the
assumption that α and β remain constant with pressure and temperature. For real
rocks and minerals, these two parameters however strongly depend on both P and
T (Fig. 2.1) and therefore more realistic EOS must be used for describing the
density changes (e.g. Anderson, 1995). If compressibility of the mineral depends
on pressure, then the following well-known equations can be used:
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(a) (b)

(c) (d)

Fig. 2.1 Gibbs free energy (a), density (b), thermal expansion (c) and compress-
ibility (d) of periclase (MgO) computed on the basis of the semi-empirical param-
eterisation of Gerya et al. (2004d) for a broad range of temperature and pressure
values. Note that pressure axis in (c) and (d) is inverted compared to (a) and (b).
Results are computed with the code Periclase_EOS.m.

Murnaghan equation of state (Murnaghan, 1944)

ρ = ρ0

(
1 + B ′

0
P

B0

)1/B ′
0

, (2.5)

Birch–Murnaghan equation of state (Birch, 1947)

P (ρ) = 3B0

2

[(
ρ

ρ0

)7/3

−
(

ρ

ρ0

)5/3
]{

1 + 3

4

(
B ′

0 − 4
) [( ρ

ρ0

)2/3

− 1

]}
,

(2.6)
where B0 = 1/β0 is the bulk modulus (this quantity will be also discussed in
relation to elasticity in Chapter 12) at P = 0 (β0 is the compressibility at P = 0),

B ′
0 =

(
∂B

∂P

)
T =const

is the pressure derivative of the bulk modulus at a constant

temperature and ρ0 is the density at P = 0. The Murnaghan equation is derived with
an experimentally based assumption that the pressure derivative of the bulk modulus
B ′

0 is independent of pressure (many substances have a fairly constant B ′
0 value of

about 3.5). The Birch–Murnaghan equation (2.6) is also derived empirically based
on measurements of volumes of solid substances, held at a constant temperature.
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Obviously, this equation has to be solved iteratively to obtain a density at a given
pressure.

Equations (2.5) and (2.6), however, do not establish the dependence of density
upon temperature, and therefore, an even more complicated EOS must be used
when the density description over a wide range of both pressure and temperature
values is needed. For example, in mineralogy and petrology, the molar volume
of minerals (V) is described in many cases by semi-empirical equations (e.g. the
Murnaghan-like EOS) with additional temperature-dependent terms (Holland and
Powell, 1998)

V = Vr

[
1 + a (T − Tr ) + b

(√
T −

√
Tr

)]
×
{

1 − B ′
rP

Br [1 − c (T − Tr )] + B ′
rP

}1/B ′
r

,

(2.7)

where Vr is molar volume at Pr and Tr (i.e. at a reference PT-conditions) and a,
b and c are empirical parameters computed from experimental measurements of
molar volume at elevated pressures and temperatures.

It should also be mentioned that in mineralogy and petrology, self-consistent
descriptions of thermodynamic properties (including density) of minerals and flu-
ids is often based on formulating the equations for their molar thermodynamic
potentials (typically either for Gibbs G(P, T) or for Helmholz F(V, T) potential, e.g.,
Karpov et al., 1976; Helgesson et al., 1978; Dorogokupets and Karpov, 1984;
Berman, 1988; Holland and Powell, 1990, 1998). Density as well as many other
physical properties (such as heat capacity, thermal expansion, compressibility, etc.)
are then computed from the potential (Fig. 2.1) using standard thermodynamic
relations

V =
(

∂G(P,T )

∂P

)
T =cont

, (2.8)

P = −
(

∂F(V,T )

∂V

)
T =cont

, (2.9)

V = m

ρ
, (2.10)

where m is molar mass, kg/mol.
Self-consistent thermodynamic databases (e.g., Karpov et al., 1976; Helgesson

et al., 1978; Berman, 1988; Holland and Powell, 1990, 1998) are often based on
the standard formulation of Gibbs free energy in the form:

G
m(P,T ) = �Hr − T · Sr +

T∫
Tr

[CPr(T )]dT − T ·
T∫

Tr

[CPr(T )/T ]dT +
P∫

Pr

[V(P,T )]dP,

(2.11)
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Fig. 2.2 Equilibrium mineral assemblages (a) and the corresponding density
(kg/m3) map (b) computed for a typical composition of metamorphosed aluminous
sediment (high-grade metapelite) on the basis of Gibbs free energy minimisation
(Gerya et al., 2001). Quartz, plagioclase and Fe-Ti oxides are present in all mineral
assemblages. Other minerals are: Bt = biotite, Chl = chlorite, Crd = cordierite,
Ep = epidote, Grt = garnet, Kfs = K-feldspar, Ky = kyanite, Mu = muscovite,
Opx = opthopyroxene, Sil = sillimanite. Heavy dashed lines in (b) indicate sharp
changes in density related to changes in the mineral assemblages.

where Gm(P, T) is the molar Gibbs free energy (i.e. Gibbs potential) at a given P
and T; �Hr and Sr are the enthalpy of formation and entropy respectively, of a
substance at standard pressure Pr and temperature Tr; CPr(T) is the heat capacity as
a function of temperature at a standard pressure Pr; V(P, T) is the molar volume of
substance as a function of pressure and temperature defined by a semi-empirical
EOS-function (such as, for example, Eq. 2.7).

Natural rocks typically contain several different minerals and therefore the den-
sity of a rock can be calculated from its mineralogical composition as follows

ρrock =
n∑

i=1

ρiXi, (2.12)

where n is the number of different minerals in the rock, Xi is the volumetric
fraction of the i-th mineral in the rock and ρ i is the density of the i-th mineral as
a function of P and T. At any given P, T and chemical composition of the rock,
both the amount and the composition of the minerals can be computed using the
concept of thermodynamic equilibrium. According to this concept, the Gibbs free
energy of the rock in an equilibrium state corresponds to a global minimum. The
amount and composition of minerals can then be obtained from internally consistent
thermodynamic databases by using the so-called Gibbs free energy minimisation
approach (e.g. Karpov et al., 1976; Dorogokupets and Karpov, 1984, Connolly and
Kerrick, 1987; de Capitani and Brown, 1987). In this case, the density of rocks in
an equilibrium state (Sobolev and Babeyko, 1994; Petrini et al., 2001; Gerya et al.,
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2001; Kaus et al., 2005) can be computed from Eqs. (2.8), (2.10), (2.11) and (2.12)
by using the densities and volumetric fractions of minerals composing a computed
equilibrium mineral assemblage (Fig. 2.2). Such an approach has recently been
used to constrain coupled petrological-thermomechanical numerical geodynamic
models (e.g. Gerya et al., 2004c, 2006; Tackley, 2008; Mishin et al., 2008) which
take into account changes of rock density and thermal properties during the course
of various geodynamic processes (we will discuss the details of this approach in
Chapter 17).

2.2 Gravity and gravitational potential

The density distribution in a continuous medium is inherently related to the grav-
itational field in this medium. This can be formulated in the form of a so-called
Poisson equation, which describes spatial changes in gravitational potential �

inside a self-gravitating continuum

∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= 4πGρ(x,y,z), (2.13a)

or in a different symbolic notation

�� = 4πGρ(x,y,z), (2.13b)

or

∇2� = 4πGρ(x,y,z), (2.13c)

where G = 6.672 × 10−11 (N · m2)/kg2 is the gravitational constant, ρ(x,y,z) is
the spatially variable density and � (big delta), or ∇2 is the Laplace operator
or Laplacian, which is a differential operator (like the divergence and gradient
operator from Chapter 1) often used in continuum mechanics for representing the
sum of second-order partial derivatives of a variable A

In 1D: �A = ∇2A = ∂2A

∂x2
, (2.14a)

In 2D: �A = ∇2A = ∂2A

∂x2
+ ∂2A

∂y2
, (2.14b)

In 3D: �A = ∇2A = ∂2A

∂x2
+ ∂2A

∂y2
+ ∂2A

∂z2
. (2.14c)

The gravitational potential �(J/kg), characterises the amount of potential energy
per unit mass for a given location, related to the interaction of the local mass with all
other surrounding masses. Another interpretation of � is the amount of work needed
to be done to move a unit mass (i.e. overcoming its gravitational interactions with
surrounding masses) from a given location to infinity (where no interactions with
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other masses occur). Since such work is always positive, the amount of potential
energy and therefore the gravitational potential is maximal at infinity. The relative
gravitational potential (i.e. changes in potential energy relative to infinity) will then
always be negative.

The Poisson equation (2.13) can be derived from Newton’s law of gravitation
which quantifies the gravitational attraction force fg acting between two bodies
with masses m1 and m2, separated by a distance r

fg = G
m1m2

r2
, (2.15a)

or in 3-D vector notation

fx1 = G
m1m2

r2

(x2 − x1)

r
, (2.15b)

fy1 = G
m1m2

r2

(y2 − y1)

r
, (2.15c)

fz1 = G
m1m2

r2

(z2 − z1)

r
, (2.15d)

gx1 = G
m2

r2

(x2 − x1)

r
, (2.15e)

gy1 = G
m2

r2

(y2 − y1)

r
, (2.15f)

gz1 = G
m2

r2

(z2 − z1)

r
, (2.15g)

where fx1, fy1 and fz1 are components of the gravitational force vector f̄1 acting
on mass m1 and gx1, gy1 and gz1 are components of gravitational acceleration
vector ḡ1 felt by mass m1 (in accordance with the second Newton’s law of motion,

acceleration can be defined as the amount of force per unit mass, gi1 = fi1

m1
).

The simplified explanation of such a derivation is the following. Firstly, we
should realize that local derivatives of gravitational potential by the spatial co-
ordinates are equal to the respective components of the gravitational acceleration
vector �g, taken with a negative sign

∂�

∂x
= −gx, (2.16a)

∂�

∂y
= −gy, (2.16b)

∂�

∂z
= −gz. (2.16c)

The minus sign in the right-hand side of equations (2.16a)–(2.16c) reflects the fact
that the potential energy � should increase in the direction opposite to the direction
of the local gravity force, i.e. work contributing to the increase in potential energy
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has to be done by applying a force �f in the opposite direction compared to the
local gravity force

d�x = fxdx = −gxdx, (2.17a)

d�y = fydy = −gydy, (2.17b)

d�z = fzdz = −gzdz, (2.17c)

where d�x, d�y and d�z are increments in potential energy of a given unit mass
due to small changes (dx, dy and dz) in the respective coordinates of this unit
mass. According to Newton’s law of gravitation (Eq. 2.15), the acceleration (i.e.
gravitational force per unit mass) ḡ = (gx, gy, gz) felt at any given point within a
continuum with coordinates x, y, z due to the gravitational attraction from surround-
ing masses is obtained by summing up (i.e. integrating) the accelerations exerted
by each small mass element (δmi), as follows

gx =
∞∑
i=1

G
δmi

r2
i

(xi − x)

ri

, (2.18a)

gy =
∞∑
i=1

G
δmi

r2
i

(yi − y)

ri

, (2.18b)

gz =
∞∑
i=1

G
δmi

r2
i

(zi − z)

ri

, (2.18c)

ri =
√

(xi − x)2 + (yi − y)2 + (zi − z)2, (2.18d)

where xi, yi, zi are the coordinates of the i-th mass element and ri is the dis-
tance between this element and the given point. The divergence of the integrated
acceleration field at a given point can be then computed as follows (verify as an
exercise)

− �� = ∂

∂x

(
−∂�

∂x

)
+ ∂

∂y

(
−∂�

∂y

)
+ ∂

∂z

(
−∂�

∂z

)

= div(ḡ) = ∂gx

∂x
+ ∂gy

∂y
+ ∂gz

∂z
, (2.19a)

div(ḡ) =
∞∑
i=1

Gδmi

[
∂

∂x

(
x − xi

r3
i

)
+ ∂

∂y

(
y − yi

r3
i

)
+ ∂

∂z

(
z − zi

r3
i

)]
, (2.19b)

div(ḡ) =
∞∑
i=1

Gδmi

[(
3 (x − xi)2

r5
i

− 1

r3
i

)
+
(

3 (y − yi)2

r5
i

− 1

r3
i

)

+
(

3 (z − zi)2

r5
i

− 1

r3
i

)]
, (2.19c)
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Fig. 2.3 Sphere of radius δr and mass δm considered for the derivation of the Pois-
son equation. Black arrows show respective components of gravitational accelera-
tion vector felt at the surface of the sphere in six different points (black dots, A, B,
C, D, E and F). Open circle shows the centre of the sphere in which the divergence
of the gravitational acceleration is computed.

and finally by using Eq. (2.18)

div(ḡ) =
∞∑
i=1

Gδmi

[
3
r2
i

r5
i

− 3
1

r3
i

]
. (2.19d)

Note that differentiation is done with respect to the coordinates x, y, z of the given
point and not by those of the surrounding masses (xi, yi, zi) which are independent
of x, y, z.

For all ri 
= 0, Eq. (2.19d) is obviously zero. This means that the divergence of
gravitational acceleration at a given point is independent of the surrounding masses
and must come from the point itself (i.e. for x = xi, y = yi, z = zi and ri = 0).
Then one may restrict the volume of integration to a small sphere with mass δm
and radius δr centred on this point (Fig. 2.3). The divergence of acceleration for
this small sphere can be approximated by differences with the use of six points (A,
B, C, D, E and F, Fig. 2.3) located on the sphere as follows

div(�g) = gxB − gxA

2δr
+ gyD − gyC

2δr
+ gzF − gzE

2δr
, (2.20)

where gxA − gzF are the respective components of the acceleration vector at different
points on the sphere’s surface. Density inside the sphere can be considered constant
since the mass inside the small sphere is uniform. Therefore, at the considered six
points, the respective components obviously coincide with the acceleration vectors
directed toward the centre of the sphere and can be computed from the common
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gravity formula for a sphere (see Turcotte and Schubert, 2002, Eqs. (5–1)–(5–15))
as

gxA = gyC = gzE = G
δm

δr2
, (2.21a)

gxB = gyD = gzF = −G
δm

δr2
. (2.21b)

Combining Equations (2.14) and (2.15) and taking into account that the average

density inside the sphere with volume V = 4

3
πδr3 is given by ρ = δm

V
= 3δm

4πδr3
,

under the condition that δr tend to zero we obtain the Poisson equation (verify as
an exercise)

�� = −div(ḡ) = 3G
δm

δr3
= 4πGρ. (2.22)

It should be noted that our derivation is simplified and uses a standard expression
(Eq. (2.21)) for the gravitational acceleration at the surface of the sphere, which
can in turn be obtained by integrating Equation (2.18) for a point outside the sphere
(see Turcotte and Schubert, 2002, Eqs. (5–1)–(5–15) for details of this derivation).
It can also be shown on the basis of Gauss’s theorem that one can consider not only
a spherical geometry, but any arbitrary shape of the local mass and still obtain the
same Poisson equation.

Analytical exercise

Exercise 2.1
Molar Gibbs potential of periclase (MgO, molar mass m = 0.0403044 kg/mol) is
given by the following equation (Gerya et al., 2004d)

Gm(P,T ) = Hr + Vr	 +
3∑

i=1

ci[RT ln(l − ei) − �Hieoi/(l − eoi)],

ei = exp[−(�Hi + �Vi	)/RT ],

eoi = exp(−�Hi/RTr ),

	 = 5/4(P r + φ)1/5[(P + φ)4/5 − (Pr + φ)4/5],

where R = 8.314 J/mol is the gas constant, Pr = 100 000 Pa and Tr = 298.15 K
are the reference pressure and temperature respectively, and Hr =−601 500.00
J, Vr = 1.122 28 × 10−5 J/Pa, φ = 30 179 500 000 Pa, c1 = 1.966 12, c2 = 4.12 756,
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c3 = 0.536 90, �H1 = 2966.88 J, �H2 = 5621.69 J, �H3 = 27 787.19 J, �V1 =
�V2 = 3.52971 × 10−8 J/Pa, �V3 = 1.984 956 8 × 10−6 J/Pa are empirical param-
eters.

Derive expressions for the density ρ, thermal expansion α and compressibility
β as functions of pressure and temperature (Fig. 2.1) using the equations given in
this chapter.

Programming exercises and homework

Exercise 2.2
Compute and visualise as colour maps with isolines (pcolor, contour, contourf) and
surfaces (surf, light, lighting) the density ρ, thermal expansion α and compress-
ibility β for periclase (Fig. 2.1) based on the equations derived for the analytical
exercise. Take a temperature interval from 100 to 4000 K and a pressure interval
from 109 to 1011 Pa (1 to 100 GPa). Try also to define the Gibbs free energy
equation as an external function Gm(P, T) and use differences instead of derivatives
to compute V(P, T), ρ(P, T), α(P, T) and β (P, T).

ρ(P,T ) = m

V(P,T )
, where

V(P,T ) =
(

∂Gm(P,T )

∂P

)
T =const

≈ �Gm(P,T )

�P
= Gm(P+�P,T ) − Gm(P,T )

�P

α(P,T ) = − 1

ρ(P,T )
× ∂ρ(P,T )

∂T
≈ − 1

ρ(P,T )
× �ρ(P,T )

�T
= − 1

ρ(P,T )
× ρ(P,T +�T ) − ρ(P,T )

�T
,

β(P,T ) = 1

ρ(P,T )
× ∂ρ(P,T )

∂P
≈ 1

ρ(P,T )
× �ρ(P,T )

�P
= 1

ρ(P,T )
× ρ(P+�P,T ) − ρ(P,T )

�P
,

where �P and �T are small increments in pressure and temperature, respectively.
Compare the results based on differences with your analytical solutions. An

example is in the code Periclase_EOS.m which calls function G_periclase.m.

Exercise 2.3
Load from files (fopen, fscanf, fclose) and visualise (pcolor) density maps (Mishin
et al., 2008) corresponding to the phase diagrams computed for pyrolite (mantle, file
m895_ro) and MORB (oceanic crust, file morn_ro) based on a Gibbs free energy
minimisation approach. Compute and visualise the density difference between
these two contrasting types of rocks at various P–T parameters. Check at which P
and T this difference is maximal/minimal.

The first nine positions in the data files are as follows

pl8951 350 350 800.003 10001.5 9.16904 4269.33 T(K) P(bar)
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where pl8951 denotes the rock identification (skip that); 350 and 350 are resolutions
for T and P respectively; 800.003 and 10001.5 are starting value for T (K) and P
(bar, 1 bar = 105 Pa), respectively; 9.16904 and 4269.33 are steps for T (K) and P
(bar), respectively; T (K) and P (bar) are P and T identifications (to skip). Further
data in the files are 350 × 350 maps of rock density (kg/m3) at variable T (inner
cycle) and P (outer cycle). An example is in Density_map.m.
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Numerical solutions of partial
differential equations

Theory: Analytical and numerical methods for solving partial differen-
tial equations. Using finite differences to compute various derivatives.
Eulerian and Lagrangian approaches. Transition from partial differen-
tial equations to systems of linear equations. Methods of solving large
systems of linear equations: iterative methods (Jacobi iteration, Gauss–
Seidel iteration), direct methods (Gaussian elimination). Indexing of
unknowns in 1D and 2D.
Exercises: Numerical solutions of Poisson equation in 1D and 2D.

3.1 Finite-difference method

Two principal methods are used for solving partial differential equations (PDEs) of
continuum mechanics: analytical and numerical. Analytical methods are restricted
to relatively simple problems and cannot be applied to a general case. This caveat is
due, in particular, to the fact that it is sometimes impossible to analytically express
the distribution of field variables (T, P, �v, η, ρ, etc.) in space and time. In effect,
analytical methods are very useful for the general understanding of geodynamic
processes (e.g. Turcotte and Schubert, 2002). In addition, analytical solutions are
broadly used for benchmarking numerical codes (testing accuracy, Chapter 16).

Numerical methods for solving PDEs are universal and can be applied for
both continuous and discontinuous distributions of field variables (e.g. Gustafsson,
2008). The following groups of numerical approaches are most used in geomod-
elling (e.g. Lynch, 2005; Zhong et al., 2007):

(1) finite-difference methods (FDM)
(2) finite-volume methods (FVM)
(3) finite-element methods (FEM)
(4) spectral methods

37



38 Numerical solutions of partial differential equations

Fig. 3.1 1D numerical grid stencil (i.e. pattern of points) used for computing the

first order derivative of the gravity potential
∂�

∂x
by using finite differences.

Fig. 3.2 1D numerical grid stencil used for computing the second derivative of the

gravity potential
∂2�

∂x2
by using finite differences.

In this book, we will concentrate on the finite-difference method (e.g. Patankar,
1980), which is the simplest of the four methods both for understanding and
from a programming point of view. Finite differences are linear mathematical
expressions which are used to represent derivatives to a certain degree of accuracy.
For example, the first derivative of gravity potential by x-coordinate (Fig. 3.1) can be
computed within a certain degree of accuracy (locally) by using finite differences as
follows

∂�

∂x
= ��

�x
= �2 − �1

x2 − x1
, (3.1)

where ��= �2 − �1 and �x = x2 − x1 are the differences in gravity potential
and x-coordinate respectively between points 1 and 2. The smaller the distance
�x between points 1 and 2 becomes, the more accurate the computed derivative
is.

By analogy, higher-order derivatives can be computed using lower-order deriva-
tives. For example, the second derivative of gravity potential (Fig. 3.2) can be
computed by repetitive use of finite-differences equation (3.1) as follows

∂2�

∂x2
=

(
∂�

∂x

)
B

−
(

∂�

∂x

)
A

xB − xA

, (3.2)
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where (
∂�

∂x

)
A

= �2 − �1

x2 − x1
,(

∂�

∂x

)
B

= �3 − �2

x3 − x2
.

Using a similar procedure we can formulate third-, fourth-, fifth- and higher-order
derivatives as well.

As follows from the above examples, we need a grid of points representing the
distribution of field variables in space (and time) to apply finite differences. This
so called numerical grid is also often called a numerical mesh. Similarly, two types
of geometrical points may exist, grid points can be either Eulerian or Lagrangian.
Eulerian points have steady positions and an Eulerian grid does not deform with
deformation of the medium. Lagrangian points move according to the local flow
and a Lagrangian grid deforms with the deformation of medium. Time derivatives
of field variables for Eulerian and Lagrangian points may differ from each other
e.g.,

Dρ

Dt
= ∂ρ

∂t
+ �v grad(ρ), (3.3)

where
Dρ

Dt
is the substantive time derivative of density for a moving Lagrangian

point and
∂ρ

∂t
is the time derivative of density for an immobile Eulerian point in

the same location. The main advantage of using an Eulerian grid is the possibility
of having a relatively simple grid geometry that does not change during the model
deformation; this simplifies the numerical formulation. The main disadvantage is
the necessity to account for advective terms in time-dependent PDEs, which often
causes numerical problems (e.g. numerical diffusion, Chapter 8). For a Lagrangian
grid it is the contrary: a deforming grid ultimately produces numerical problems
(and requires re-gridding or re-meshing when it is deformed too strongly) while the
absence of advective terms in PDEs is an advantage. The use of either an Eulerian,
or a Lagrangian grid depends on the partial differential equations to be solved as
well as on the type of physical processes to be modelled. In geodynamic mod-
elling, combinations of Eulerian and Lagrangian grids for different field variables
are often used to explore advantages of both approaches (see e.g. Zhong et al.,
2007).

What are we actually gaining by approximating derivatives by finite differences?
This is a very important issue at the ‘core’ of numerical modelling. The use of
finite differences allows us to transform partial differential equations, which are
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Fig. 3.3 1D numerical grid for solving 1D Poisson equation in form
∂2�

∂x2
= 1.

applicable to every geometrical point of a continuum (i.e. to an infinite amount
of points), into a system of finite amount of linear equations formulated for a
limited amount of grid points. The logical steps of applying finite differences are as
follows:

(1) Replacing an infinite amount of geometrical points of a continuum within the model
by a finite amount of grid points.

(2) Defining physical properties of the continuum at these points.
(3) Applying partial differential equations (including boundary condition equations) to

the grid points and substituting them by linear equations expressed via finite differ-
ences. These linear equations relate the physical properties defined for different grid
points.

(4) Solving the resulting system of linear equations and obtaining unknown values of the
physical parameters for the grid points.

Let’s consider an example of this procedure for solving the 1D Poisson equation

of the form
∂2�

∂x2
= 1, with the boundary conditions �(x1) = R1 and �(x4) = R4,

where x1, x4 are coordinates of the model boundaries and �(x1), �(x4) are the
values of the gravity potential at these boundaries.

Step (1): defining a numerical grid. A 1D grid for this problem is shown in
Fig. 3.3. Different symbols on this grid show different grid points (also called nodal
points or nodes) where different parameters are defined and different equations are
applied:

� nodes [1] and [4] (empty squares) are basic boundary nodes where only the gravitational
potential � is defined and the boundary condition equation is applied

� = R1 when x = x1,

� = R4 when x = x4,
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� nodes [2] and [3] (solid squares) are basic internal nodes where both gravitational

potential � and its second derivative
∂2�

∂x2
are defined and the Poisson equation is

applied

∂2�

∂x2
= 1.

� nodes [A], [B] and [C] (open circles) are additional nodes located exactly in the middle
of the intervals between the basic nodes. At these additional nodes, the first derivative of

gravitational potential
∂�

∂x
is defined, however no equations are applied. We only need

these additional nodes to formulate second derivatives in the basic internal nodes by
using finite differences.

Step (2): applying equations for the nodes and converting them to linear equations.
The following equations are applied for different nodes

node [1]: � = R1

node [2]:

(
∂2�

∂x2

)
2

= 1

node [3]:

(
∂2�

∂x2

)
3

= 1

node [4]: � = R4.

To transform these equations, we first define a way of computing the derivatives
via finite differences for nodes [2] and [3]

node [2]:

(
∂2�

∂x2

)
2

=

(
∂�

∂x

)
B

−
(

∂�

∂x

)
A

xB − xA

where (
∂�

∂x

)
A

= �2 − �1

x2 − x1(
∂�

∂x

)
B

= �3 − �2

x3 − x2

node [3]:

(
∂2�

∂x2

)
3

=

(
∂�

∂x

)
C

−
(

∂�

∂x

)
B

xC − xB
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where (
∂�

∂x

)
B

= �3 − �2

x3 − x2(
∂�

∂x

)
C

= �4 − �3

x4 − x3
.

Applying these finite differences results in the following system of four
equations

�1 = R1

(�3 − �2) / (x3 − x2) − (�2 − �1) / (x2 − x1)

(x3 − x1)/2
= 1

(�4 − �3) / (x4 − x3) − (�3 − �2) / (x3 − x2)

(x4 − x2)/2
= 1

�4 = R4.

Assembling coefficients for each unknown gives a final system of four linear
equations

1 × �1 = R1 (3.4)

2/(x2 − x1)

(x3 − x1)
× �1 + −2/(x2 − x1) − 2/(x3 − x2)

(x3 − x1)
× �2 + 2/(x3 − x2)

(x3 − x1)
× �3 = 1

(3.5)

2/(x3 − x2)

(x4 − x2)
× �2 + −2/(x3 − x2) − 2/(x4 − x3)

(x4 − x2)
× �3 + 2/(x4 − x3)

(x4 − x2)
× �4 = 1

(3.6)

1 × �4 = R4. (3.7)

In order to be able to find a solution, the number of independent linear equa-
tions must be equal to the number of unknown parameters. In this example, we
know the coordinates x1, x2, x3 and x4 as well as coefficients R1 and R4 for the
boundary equations. Unknown parameters are the discrete values of gravitational
potential � in the basic grid points, i.e. �1, �2, �3 and �4. Therefore, the
number of equations (four) is equal to the number of unknowns (four) and
these equations are linear with respect to the unknowns and, thus, can be easily
solved.

Step (3): solving the system of linear equations. Solving the above system of
equations is trivial since we have only four equations with only four unknowns.
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As an exercise solve this problem manually for the following values of coordinates
and coefficients.

x1 = 0, x2 = 1, x3 = 2, x4 = 3, R1 = 0, R4 = 0.

This example looks trivial. Why should we spend so much time discussing it in so
many details that are apparently so obvious? This is just to be finally convinced that
the mathematical basis of numerical modelling is exactly trivial. What one needs
to know are derivatives and linear algebra as was postulated in the Introduction
(Golden Rule 1).

3.2 Solving linear equations

What is going to change if, instead of four basic nodes we have one thousand? Not
much . . . We will merely have to formulate and solve thousands of linear equations
to obtain values of thousands of unknowns. Of course, our numerical solution will
be more accurate and it is not necessary to solve thousands of equations manually.
One can obtain much larger systems of equations trying to numerically solve
geodynamic problems in 2D and 3D. Such systems typically contain thousands,
millions and even billions of linear equations (such as (3.4)–(3.7)) having the
following general form

L1,1S1 + L1,2S2 + L1,3S3 + · · · + L1,n−1Sn−1 + L1,nSn = R1

L2,1S1 + L2,2S2 + L2,3S3 + · · · + L2,n−1Sn−1 + L2,nSn = R2

· · · (3.8)

Ln−1,1S1 + Ln−1,2S2 + Ln−1,3S3 + · · · + Ln−1,n−1Sn−1 + Ln−1,nSn = Rn−1

Ln,1S1 + Ln,2S2 + Ln,3S3 + · · · + Ln,n−1Sn−1 + Ln,nSn = Rn

where Sl are unknowns, which are components of an n-dimensional vector {S}
(i.e. n × 1 array, line), Lk,l are coefficients, which are elements of an n × n square
matrix {L}, Rk are the right-hand sides which are components of an n-dimensional
vector {R} (i.e. 1 × n array, column). Obviously, the system of equations can only
be solved when the number of linearly independent equations in the system is
equal to the number of unknowns. In the case of numerical modelling with finite
differences, most of the coefficients Lk,l in the equations are equal to zero, i.e. the
{L} matrix of coefficients is sparse. This is because linear equations formulated
with finite differences for a node only contain parameters from the nearest nodes
and not from all nodes of the grid (e.g. Eq. (3.5)). The methods of solving large
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systems of equations are subdivided into iterative (e.g., Jacobi iteration, Gauss–
Seidel iteration) and direct (e.g. Gaussian elimination) methods.

In order to apply iterative methods, initial guesses for the unknown vari-
ables are first defined, which represent a current approximation of the solu-
tion Scurrent

1 , Scurrent
2 , . . . , Scurrent

n (all unknowns can for example initially be set
to zeros). Then residuals (i.e. errors) for each equation can be computed as
follows

�R1 = R1 − L1,1S
current
1 − L1,2S

current
2 − L1,3S

current
3 − · · ·

− L1,n−1S
current
n−1 − L1,nS

current
n

�R2 = R2 − L2,1S
current
1 − L2,2S

current
2 − L2,3S

current
3 − · · ·

− L2,n−1S
current
n−1 − L2,nS

current
n

. . . (3.9)

�Rn−1 = Rn−1 − Ln−1,1S
current
1 − Ln−1,2S

current
2 − Ln−1,3S

current
3 − · · ·

− Ln−1,n−1S
current
n−1 − Ln−1,nS

current
n

�Rn = Rn − Ln,1S
current
1 − Ln,2S

current
2 − Ln,3S

current
3 − · · ·

− Ln,n−1S
current
n−1 − Ln,nS

current
n .

The values of the residuals can then be used to obtain new, more accurate, values
of the unknowns

Snew
1 = Scurrent

1 + θ1
�R1

L1,1

Snew
2 = Scurrent

2 + θ2
�R2

L2,2

. . .

Snew
n−1 = Scurrent

n−1 + θn−1
�Rn−1

Ln−1,n−1

Snew
n = Scurrent

n + θn

�Rn

Ln,n

,

(3.10)

where θ1, θ2, . . . , θn are relaxation parameters defining how strongly the computed
residuals �R1, �R 2, . . . , �R n will contribute to the changes in the current values
of the unknown. Relaxation parameters are typically taken within the range between
0 and 1. In the case when the relaxation parameters are equal to 1, a new solution
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can be obtained with the use of simplified formulas (please derive)

Snew
1 = R1 − L1,2S

current
2 − L1,3S

current
3 − · · · − L1,n−1S

current
n−1 − L1,nS

current
n

L1,1

Snew
2 = R2 − L2,1S

current
1 − L2,3S

current
3 − · · · − L2,n−1S

current
n−1 − L2,nS

current
n

L2,2

· · · (3.11)

Snew
n−1 = Rn−1 − Ln−1,1S

current
1 − Ln−1,2S

current
2 − Ln−1,3S

current
3 − · · · − Ln−1,nS

current
n

Ln−1,n−1

Snew
n = Rn − Ln,1S

current
1 − Ln,2S

current
2 − Ln,3S

current
3 − · · · − Ln,n−1S

current
n−1

Ln,n

.

New values of the unknowns are then used for the next iteration to obtain the
next (more accurate) solution. Iteration cycles are repeated several times to reach
a certain level of accuracy which is defined by values of residuals.

There are several methods of doing such iterations. In the Jacobi iteration, new
values are assigned to all unknowns simultaneously after finishing one cycle of
iterations for all n equations. In Gauss–Seidel iterations, new values are assigned
to each unknown during the cycle of iterations, immediately after obtaining the
updated value from the respective equation. Residuals for the following equations
in the cycle are then computed using the new values of unknowns obtained from
the previous equations.

Computational advantages of iterative methods are (i) small amount of consumed
memory, typically proportional to the number of unknowns and (ii) small amount
of operations, also typically proportional to the number of unknowns per solution
cycle. Therefore, iterative solvers are frequently used in 3D when the number of
equations is large. Among the disadvantages are (i) lowered accuracy of solution
and (ii) problems of convergence to an accurate solution, which are especially
relevant for solving problems with large variations in material properties (e.g.,
mechanical problems with strong and sharp variations in viscosity). Indeed, there
are various possibilities for notable improvement of the iterative methods discussed
here based for example on the multigrid approach, which will be discussed in
Chapter 14.

Direct methods of solutions do not require an initial guess and are based on
mathematical transformations of the matrix {L} and vector {R}, which allows one
to compute the vector {S}. One of the best known direct methods is Gaussian
elimination, which produces a diagonal matrix {Ldiagonal} and a corresponding
new vector {Rdiagonal} that can be then used to directly compute vector {S}. The
procedure of Gaussian elimination is as follows
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(a) Divide all Equations (3.8) by their respective (non-zero) coefficients at S1 to obtain a
new system with new coefficients at the unknowns and new right-hand sides

S1 + L1,2

L1,1
S2 + L1,3

L1,1
S3 + · · · + L1,n−1

L1,1
Sn−1 + L1,n

L1,1
Sn = R1

L1,1

S1 + L2,2

L2,1
S2 + L2,3

L2,1
S3 + · · · + L2,n−1

L2,1
Sn−1 + L2,n

L2,1
Sn = R2

L2,1

· · · (3.12)

S1 + Ln−1,2

Ln−1,1
S2 + Ln−1,3

Ln−1,1
S3 + · · · + Ln−1,n−1

Ln−1,1
Sn−1 + Ln−1,n

Ln−1,1
Sn = Rn−1

Ln−1,1

S1 + Ln,2

Ln,1
S2 + Ln,3

Ln,1
S3 + · · · + Ln,n−1

Ln,1
Sn−1 + Ln,n

Ln,1
Sn = Rn

Ln,1
.

(b) Subtract the first equation from all other equations (starting from the second one) to
obtain a subsystem of n − 1 equations with n − 1 unknowns (since S1 will be eliminated
from all equations starting from the second one), i.e. new matrix {L1} and vector {R1}(

L2,2

L2,1
− L1,2

L1,1

)
S2 +

(
L2,3

L2,1
− L1,3

L1,1

)
S3 + · · · +

(
L2,n−1

L2,1
− L1,n−1

L1,1

)

× Sn−1 +
(

L2,n

L2,1
− L1,n

L1,1

)
Sn = R2

L2,1
− R1

L1,1
· · ·(

Ln−1,2

Ln−1,1
− L1,2

L1,1

)
S2 +

(
Ln−1,3

Ln−1,1
− L1,3

L1,1

)
S3 + · · · +

(
Ln−1,n−1

Ln−1,1
− L1,n−1

L1,1

)
(3.13)

× Sn−1 +
(

Ln−1,n

Ln−1,1
− L1,n

L1,1

)
Sn = Rn−1

Ln−1,1
− R1

L1,1(
Ln,2

Ln,1
− L1,2

L1,1

)
S2 +

(
Ln,3

Ln,1
− L1,3

L1,1

)
S3 + · · · +

(
Ln,n−1

Ln,1
− L1,n−1

L1,1

)

× Sn−1 +
(

Ln,n

Ln,1
− L1,n

L1,1

)
Sn = Rn

Ln,1
− R1

L1,1
,

or by using new notations for the coefficients in the left-hand side L1
k,l = Lk,l

Lk,1
− L1,l

L1,1

and for the right-hand side R1
k = Rk

Lk,1
− R1

L1,1
we write

L1
2,2S2 + L1

2,3S3 + · · · +L1
2,n−1Sn−1 + L1

2,nSn = R1
2

· · · (3.14)

L1
n−1,2S2 + L1

n−1,3S3 + · · · +L1
n−1,n−1Sn−1 + L1

n−1,nSn = R1
n−1

L1
n,2S2 + L1

n,3S3 + · · · +L1
n,n−1xn−1 + C1

n,nxn = R1
n.

(c) Repeat (a) and (b) on this new subsystem to obtain a subsystem of n − 2 equations
with n − 2 unknowns.

(d) Repeat (a) and (b) on the new subsystem (in total n − 1 elimination cycles are needed).
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(e) The last equation in the final system (diagonal matrix) will have the form

Ln−1
n,n Sn = Rn−1

n , (3.15)

i.e., will only contain only one coefficient Ln−1
n,n for the unknown xn and right-hand side

Rn−1
n . Then Sn can be directly calculated as

Sn = Rn−1
n

Ln−1
n,n

. (3.16)

(f) The penultimate equation will have the form

Ln−2
n−1,n−1Sn−1 + Ln−2

n−1,nSn = Rn−2
n−1, (3.17)

and Sn−1 can be calculated with the already known Sn as follows

Sn−1 = Rn−2
n−1 − Ln−2

n−1,nSn

Ln−2
n−1,n−1

. (3.18)

(g) Repeat for all other unknowns from Sn−2 to S1.

The main advantage of direct methods is that the solution can be done to computer
accuracy and no iterations are needed. Among their disadvantages are (i) large
amounts of consumed memory, typically proportional to the square of the number
of unknowns and (ii) large amounts of operations, typically proportional to the
square or even to the cube of the number of unknowns. Due to limitations in
computer power, direct solvers are more often used in 1D and 2D modelling,
particularly for solving numerical problems, where iterative solvers are inefficient.

3.3 Geometrical and global indexing of unknowns

In composing the system of Equations (3.4)–(3.7), we indexed our unknown param-
eters �1, �2, �3 and �4 in 1D using the principle of growing index of the param-
eter with x-coordinate of the respective geometrical point to which this unknown
is assigned (cf. points 1, 2, 3 and 4 in Fig. 3.3). We may then have an impression
that a general system of equations (3.8) can only be applicable for 1D problems
since in 2D unknown parameters should have both horizontal and vertical indices,
for example �i,j and respectively Si,j. This is not correct and it is a small, but
important point to understand. Geometrical indexing of unknowns �i,j in a 2D
grid is different from overall global indexing of these unknowns given by Sl and
used in the system of equations (3.8). Global indexing of unknowns (Fig. 3.4) is
always needed when direct methods are used for solving the equations as one has
to compose the matrix {L} and vector {R}. In the case of iterative solutions, one
can formulate equations (such as (3.4)–(3.7)) using a geometrical indexing.
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Fig. 3.4 Geometrical indexing of gravity potential values �i,j assigned to the nodes
of 2D grid and global indexing (italic numbers) of these parameters in the vector
{S}. The global indexing is done by columns of nodal points.

Programming exercises and homework

Exercise 3.1

Solve the 1D Poisson equation, written in form
∂2�

∂x2
= 1, on a regular grid of 1000

points with finite differences and visualise the solution. The model length is 1000
km. Use sparse initialisation for the matrix of coefficients {L}, i.e. L = sparse(1000,
1000). Compose a matrix {L} and a right-hand side vector {R} (use Eqs. (3.4)–
(3.7) as an example) and obtain the solution vector {S} with a direct solver (in
MATLAB with the command S = L\R). Use � = 0 as the boundary condition for
the two external nodes of the grid (e.g. Fig. 3.3). An example is in Poisson1D.m.

Exercise 3.2
Solve the 2D Poisson equation with finite differences and visualise the solution.
The governing equation is given by

∂2�

∂x2
+ ∂2�

∂y2
= 1, (3.19)

on a regular grid of 31 × 41 points. The model size is 1000 × 1500 km. Use
the principle of global indexing in 2D as shown in Fig. 3.4. A finite-difference
representation of the Poisson equation in 2D can be derived from Eq. (3.19)
by analogy with Eq. (3.2), but applied separately for the x and y directions
(Fig. 3.5)

�i,j−1 − 2�i,j + �i,j+1

�x2
+ �i−1,j − 2�i,j + �i+1,j

�y2
= 1, (3.20)
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Φi, j

Φi+1, j

Φi, j+1

Fig. 3.5 2D numerical grid stencil (5-point cross) used for formulating the Poisson
equation by using finite differences on a regular rectangular grid.

or by assembling coefficients at each unknown(
1

�x2

)
�i,j−1 +

(
1

�x2

)
�i,j+1 +

( −2

�x2
+ −2

�y2

)
�i,j

+
(

1

�y2

)
�i−1,j +

(
1

�y2

)
�i+1,j = 1. (3.21)

Use � = 0 as the boundary conditions for all external nodes of the grid. Compute
the global index of unknown k, based on geometrical indices i and j (Fig. 3.5) as

k = Ny × (j − 1) + i, (3.22)

where Ny is vertical resolution. An example is in Poisson2D_direct.m.

Exercise 3.3
Solve the same 2D problem using Gauss–Seidel iterations. Use Eq. (3.9) to compute
residuals. Use θ = 1.5 as a relaxation factor for all points (Eq. (3.10)). Plot
the gravitational potential and residuals every 10 iterations. An example is in
Poisson2D_Gauss_Seidel.m.

Exercise 3.4
Solve the same 2D problem using Jacobi iterations. Use θ = 1.0 as relaxation factor
for all points (Eq. (3.10)). An example is in Poisson2D_ Jacobi.m.
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Stress and strain

Theory: Deformation and stresses. Definition of stress, strain and
strain-rate tensors. Deviatoric stresses. Mean stress as a dynamic (non-
lithostatic) pressure. Symmetry of stress tensor. Stress and strain rate
invariants.
Exercises: Computing the strain rate tensor components in 2D from the
material velocity fields.

4.1 Stress

Tensors are field variables which characterise the internal state of a continuum and
are, perhaps, the most difficult quantities to intuitively understand. Indeed, at least
three of them have to be used in the following and these are the stress, strain and
strain rate tensors.

Stress is the internal distribution and intensity of force acting at any point
within a continuum in response to various internal and external loads applied
to the continuum. Stress is defined as a force per unit area and we can easily
‘apprehend’ its effect by pressing two fingers against each other – equal force is
applied from both sides and therefore nothing moves, but we have a feeling of
pressure between the fingers, which is a sign of the presence of stress. This stress
is directly proportional to the applied force – the stronger we press the stronger
the feeling is. On the other hand, the stress is inversely proportional to the contact
surface between the fingers – if we press one finger with the nail of the other the
feeling is much stronger because the same force is applied to a much smaller area.
This is why pricking a finger with a needle is so painful – the force applied to the
needle is not big but the contact surface of the needle with the finger is very small
and the resulting stress is consequently very big.
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Fig. 4.1 Components of stress tensor defined from the force balance on a surface.
(a) relationship between the stress components (thin arrows σ xx, σ yx, σ zx and
−σ xx, −σ yx, −σ zx) and force vectors (thick arrows �f(x) and − �f(x)) acting on the
two sides of the unit element (grey) of a Lagrangian surface orthogonal to x-axis
(i.e. x-surface). White arrow in (a) shows the direction of shear along the surface.
(b) physical analogy: normal and shear stress components acting on a thin plate
(cross-section of the plate in x-y-plane is shown).

In order to characterise the stress tensor, let us consider the force �f(x) acting
on a unit element of a Lagrangian x-surface (i.e. surface orthogonal to the x-axis)
(Fig. 4.1(a)). First of all, we need to understand that the force vector �f(x) acting
on one side of the surface element is balanced by the counterforce vector − �f(x)

which acts on the other side, and therefore this stressed surface element does
not move. Thus, in order to characterise the force balance state of the stressed
surface element, one needs to characterise the magnitude and direction of the force
(balanced by the counterforce) acting on this element. Let us adopt a convention
that the characterisation will be based on the force vector �f(x), applied to the side
of the x-surface from which the x-axis is exiting. As we will see in the following,
according to this convention, extensional stresses are positive as is usually assumed
in continuum mechanics (e.g., Ranalli, 1995). Notice that this usual continuum
mechanics convention is opposite to that used in the book of Turcotte and Schubert
(2002), where stresses are taken positive under compression (which geoscientists
find more intuitive since pressure is also positive under compression).

The force vector �f(x) can obviously be decomposed into three components (σ xx,
σ xy, σ xz) parallel to each coordinate axis (Fig. 4.1(a)). These are the components
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of the stress tensor since force �f(x) is acting on the unit element. According to
the common continuum mechanics convention (e.g. Ranalli, 1995), which is again
opposite to that used in the book of Turcotte and Schubert (2002), the first index
(i) of a stress component σ ij denotes the axis along which this stress component
is taken (i.e. i = z for the component parallel to the z axis) and the second index
(j) indicates the surface on which force balance is considered (i.e. j = x for the
surface orthogonal to x axis). It should be pointed out that our ‘hard choice’ of a
stress definition and notation is, indeed, very convenient for formulating several
crucial equations, such as the momentum equation and the rheological constitu-
tive relationships, which is the main reason why we deviated from the ‘geological
convention’. On the other hand, our vertical axis y, is always pointing down, thus
preserving common ‘geological logic’ that the vertical coordinate is depth (and not
height as in continuum mechanics) and increases downward rather than upward.
A stress component that is orthogonal to the surface (cf. σ xx in Fig. 4.1(a)) is
called a normal stress component and the components which are parallel to the
surface are called shear stress components (cf. σ yx and σ zx in Fig. 4.1(a)). The
normal stress component characterises the magnitude of extension/compression
across the surface. The two shear stress components characterise the magnitude
and direction (cf. white arrow in Fig. 4.1) of shearing applied along the consid-
ered surface. A useful physical analogy (Fig. 4.1(b)) – if one imagines that the
force and counterforce are applied on two sides of a very thin plate, then the
normal component defines how strongly two opposite surfaces of the plate are
forced to be shifted from/toward each other and the shear stress components define
where and how strong these surfaces are forced to be shifted parallel to each
other.

In order to fully characterise the force balance at a point (a small material
volume), it is convenient to represent the stress tensor as a N × N matrix where N
is the dimension of the problem such that in one, two and three dimensions we will
have one, four and nine stress components respectively (Fig. 4.2)

1D stress tensor, N = 1 (Fig. 4.2(a)): σij = (σxx),

2D stress tensor, N = 2 (Fig. 4.2(b)): σij =
(

σxx σxy

σyx σyy

)
,

3D stress tensor, N = 3 (Fig. 4.2(c)): σij =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


,

where i and j are symbolic coordinate indices (x, y, z) which vary in vertical and
horizontal directions, respectively. In continuum mechanics books a numerical
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Fig. 4.2 Components of the stress tensor (black and grey arrows) defined in one-
(a) two- (b) and three- (c) dimensions on faces of a small interval, square and cube,
respectively. The faces are always oriented orthogonal to the main axis. Thin lines
in (b) and (c) connect pairs of shear stress components which should be equal to
each other in the absence of internal sources of angular momentum.

(1, 2, 3) notation for the coordinate indices i and j and stresses (σ 11, σ 12, σ 32, etc.)
is commonly used as well (e.g. Ranalli, 1995). Note that i and j are indices and not
spatial coordinates of geometric points.

Normal stresses are always located on the main diagonal of the matrix. Due
to the condition of force balance in the absence of internal sources of angular
momentum, this matrix is symmetric relative to the main diagonal so that

σij = σji,

i.e. (Fig. 4.2(b), (c))

σxy = σyx,

σxz = σzx,

σyz = σzy.

Like components of a vector, components of the stress tensor at a point depend on
the orientation of the coordinate system. We will discuss this in more detail later
in relation to elasticity (Chapter 12).

In continuum mechanics, pressure is defined as the mean normal stress:

P = −(σxx + σyy + σzz)/3 (4.1)

where the negative sign on the right-hand side of Eq. (4.1) reflects another con-
vention according to which pressure is positive under compression. Pressure is an
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invariant and, thus, does not change with changing the coordinate system. In the
case of a hydrostatic stress state (which is the state of a fluid at rest) all shear
stresses are zero and all normal stresses are equal to each other

σxy = σyx = σxz = σzx = σyz = σzy = 0 (4.2a)

σxx = σyy = σzz = −P. (4.2b)

In geosciences, pressure is often considered as corresponding to the hydrostatic
condition everywhere and it is computed as a function of depth y and vertical
density profile ρ(y)

P (y) = P0 + g

y∫
0

ρ(y)dy, (4.3)

where P0 = 0.1 MPa is pressure on the Earth’s surface and g is the gravitational
acceleration.

This simplification does not hold when deformations of geological media occur
and real dynamic pressure may notably deviate from the lithostatic value given by
Eq. (4.3).

It is often convenient to define the deviatoric stresses σ ′
ij, which are deviations

of stresses from the hydrostatic stress state (i.e., deviations from conditions (4.2))

σ ′
ij = σij + Pδij, (4.4)

where δij is the Kronecker delta: δij = 1 when i = j and δij = 0 when i 
= j, i and
j are coordinate indices (x, y, z). The Kronecker delta is a peculiar abbreviation
used in the mechanics of continuum. It only takes values of either 1 or 0 and is
analogous to the logical operator ‘if’ used in many programming languages. Any
equation with δij represents a group of equations. For example, Eq. (4.4) in 3D
represents the following equations:

Normal deviatoric stresses

σ ′
xx = σxx + P,

σ ′
yy = σyy + P,

σ ′
zz = σzz + P,

and shear stresses which are entirely deviatoric

σ ′
xy = σ ′

yx = σxy = σyx,

σ ′
xz = σ ′

zx = σxz = σzx,

σ ′
yz = σ ′

zy = σyz = σzy.
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It is worth mentioning that the sum of the normal deviatoric stresses is zero by
definition (Eq. (4.4))

σ ′
xx + σ ′

yy + σ ′
zz = 0,

since

σxx + σyy + σzz = −3P.

The second invariant of the deviatoric stress tensor can be calculated as follows:

σII =
√

1/2σ
′
ij

2, (4.5)

where the indices ij imply a summation! This is another abbreviation that is com-
monly used in continuum mechanics and makes equations shorter (but, indeed, not
easier to understand for inexperienced readers). The spelled-out form of Eq. (4.5)
is much longer

σII =
√

1/2
(
σ ′2

xx + σ ′2
yy + σ ′2

zz + σ 2
xy + σ 2

yx + σ 2
xz + σ 2

zx + σ 2
yz + σ 2

zy

)
, (4.6a)

or, using the condition of force balance σ ij = σ ji

σII =
√

1/2
(
σ ′2

xx + σ ′2
yy + σ ′2

zz

)+ σ 2
xy + σ 2

xz + σ 2
yz. (4.6b)

The second stress invariant σ II does not depend on the coordinate system and
characterises the local deviation of stresses in the medium from the hydrostatic
state.

4.2 Strain and strain rate

Another important quantity is the strain γ , that characterises the amount of defor-
mation. Strain is dimensionless and is computed as the ratio of displacement �L
to the initial length of deforming body L (Fig. 4.3)

γ = �L

L
. (4.7)

By analogy with stress, one can discriminate normal and shear strain corresponding
to axial and shear deformation, respectively (Fig. 4.3(a) and (b)).

The definition of strain given by Eq. (4.7) can only be applied in cases of rela-
tively simple axial and shear deformations. In case of more complex deformation,
the strain tensor εij, is defined as

εij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
, (4.8)
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(a) (b)

L L

Fig. 4.3 Axial (a) and shear (b) deformation corresponding to normal and shear

strain components. The strain in both cases is estimated as γ = �L

L
. Note that

in case of shear deformation length L is measured orthogonal to the displacement
direction.

where i and j are coordinate indices (x, y, z) and xi and xj are spatial coordinates
(i.e., xx, xy and xz are x-, y- and z-coordinates respectively). Note that in contrast
to symbolic i- and j-indices xi and xj are physical coordinates of geometrical
points. Do not confuse them with each other! In 3D, we can define nine tensor
components:

three normal strain components

εxx = 1

2

(
∂ux

∂x
+ ∂ux

∂x

)
= ∂ux

∂x
,

εyy = 1

2

(
∂uy

∂y
+ ∂uy

∂y

)
= ∂uy

∂y
,

εzz = 1

2

(
∂uz

∂z
+ ∂uz

∂z

)
= ∂uz

∂z

and six shear strain components

εxy = εyx = 1

2

(
∂ux

∂y
+ ∂uy

∂x

)
,

εxz = εzx = 1

2

(
∂ux

∂z
+ ∂uz

∂x

)
,

εyz = εzy = 1

2

(
∂uz

∂y
+ ∂uy

∂z

)
.

Note that stress and strain tensors are very different physical quantities (although
they can be strongly correlated in case of reversible elastic deformation,
Chapter 12): stress characterises the distribution of forces acting in a continuum at a
given moment of time, while strain quantifies in an integrated way the entire defor-
mation history of the continuum from the initial state, up until this given moment
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(Fig. 4.3). The symmetric form of the strain tensor subtracts the rotational compo-
nent of the velocity field which does not contribute to the deformation (rotation of
a rigid body has gradients in material displacement, but does not produce any inter-
nal deformation). In Eq. (4.8), ui and uj are components of material displacement
vector, ū = (ux, uy, uz) which characterise the displacement of a material point
relative to its original position (i.e. before deformation). The time derivative of the
displacement vector is the velocity vector �v = (vx, vy, vz) so that

vi = Dui

Dt
(4.9)

and, in 3D deformation

vx = Dux

Dt
,

vy = Duy

Dt
,

vz = Duz

Dt
.

The strain tensor is widely used when elastic deformation is considered
(Chapter 12).

In numerical geodynamic modelling, it is convenient to use the strain rate, which
characterises the dynamics of changes in the internal deformation rather then the
strain which characterises the total amount of deformation compared to the initial
state. The strain rate tensor ε̇ij is the time derivative (indicated by the dot on top of
the strain symbol) of the strain tensor εij. Components of the strain rate tensor are
defined via spatial gradients of the velocity as follows

ε̇ij = 1

2

(
∂vi

∂xj

+ ∂vj

∂xi

)
, (4.10)

where i and j are coordinate indices and xi and xj are spatial coordinates such that
in 3D we can define nine tensor components:

three normal strain rate components

ε̇xx = 1

2

(
∂vx

∂x
+ ∂vx

∂x

)
= ∂vx

∂x
,

ε̇yy = 1

2

(
∂vy

∂y
+ ∂vy

∂y

)
= ∂vy

∂y
,

ε̇zz = 1

2

(
∂vz

∂z
+ ∂vz

∂z

)
= ∂vz

∂z
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and six shear strain rate components

ε̇xy = ε̇yx = 1

2

(
∂vx

∂y
+ ∂vy

∂x

)
,

ε̇xz = ε̇zx = 1

2

(
∂vx

∂z
+ ∂vz

∂x

)
,

ε̇yz = ε̇zy = 1

2

(
∂vy

∂z
+ ∂vz

∂y

)
.

Similarly to the strain tensor, the symmetric form of the strain rate tensor is obtained
by subtracting the rotational component of the velocity field: it is easy to check that
rigid body rotation in 2D has gradients in the velocity field which do not produce
any internal deformation, i.e.

ε̇xy = 1

2

(
∂vx

∂y
+ ∂vy

∂x

)
= 0.

By analogy to the stress tensor, the strain rate tensor can also be subdivided to
isotropic ε̇kk (which is an invariant) and deviatoric ε̇′

ij components

ε̇kk = ε̇xx + ε̇yy + ε̇zz = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= div(v̄), (4.11)

ε̇′
ij = ε̇ij − δij

1

3
ε̇kk, (4.12)

where i, j and k are coordinate indices.
According to Eqs. (4.11), (4.12) the sum of normal deviatoric strain rate com-

ponents is zero

ε̇′
xx + ε̇′

yy + ε̇′
zz = 0. (4.13)

Like the second stress invariant, the second invariant of the deviatoric strain rate
tensor is calculated as follows

ε̇II =
√

1/2ε̇
′2
ij . (4.14)

Analytical exercise

Exercise 4.1
Show that the symmetric form of the strain rate tensor satisfies the condition

ε̇xy = 1

2

(
∂vx

∂y
+ ∂vy

∂x

)
= 0,
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Fig. 4.4 Geometrical relationship in the case of 2D rigid body rotation.

in the case of rigid body rotation with constant angular velocity. Use the fact that
coordinates of a rotating point in 2D are given by (Fig. 4.4)

xr = xc + r cos(α), yr = yc + r sin(α),

where r is the distance to the centre of rotation, xc and yc are the coordinates of the
centre and α is the clockwise rotation angle taken from the horizontal axis.

Programming exercise and homework

Exercise 4.2
Compute and visualise the deviatoric strain rate tensor components and invariants
for the model described in the Exercise 1.2. An example is in Strain_rate.m.
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The momentum equation

Theory: Momentum equation. Viscosity and Newtonian law of viscous
friction. Navier–Stokes equation for the motion of a viscous fluid. Stokes
equation of slow laminar flow of highly viscous incompressible fluid and
its application to geodynamics. Simplification of the Stokes equation
in case of constant viscosity and its relation to the Poisson equation.
Analytical example for channel flow. Stream function approach.
Exercises: Solving continuity and momentum equations for the case of
constant viscosity with a stream function approach.

5.1 Momentum equation

The deformation of continuous media always results from the balance of various
internal and external forces that act on these media. In order to relate forces and
deformation, an equation of motion should be used. This is the so-called momentum
equation, which describes the conservation of momentum for a continuous medium
in the gravity field:

Eulerian form:
∂σij

∂xj

+ ρgi = ρ

(
∂vi

∂t
+ vj

∂vi

∂xj

)
, (5.1a)

Lagrangian form:
∂σij

∂xj

+ ρgi = ρ
Dvi

Dt
. (5.1b)

The momentum equation is a differential equivalent to the famous Newton’s second
law of motion, which describes changes in velocity of an object with mass m
according to

f = ma, (5.2)

61
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Fig. 5.1 Lagrangian elementary volume considered for the derivation of the respec-
tive form of x-momentum equation. Thin arrows show x-components of stress-
related forces acting from the outside of the volume on respective boundaries (A,
B, C, D, E and F). The thick arrow inside the volume shows the x-component of
the gravity force (mgx) which is proportional to the mass (m) embedded inside
the volume. Orientation and components of gravity vector �g = (gx, gy, gz) are
displayed outside of the volume.

where f is a net force acting on the object and a = Dv

Dt
, is the acceleration of the

object. This law can be written in vector form:

�f = m�a or fi = mai, (5.3a)

which gives three equations for 3D considerations

fx = max, (5.3b)

fy = may, (5.3c)

fz = maz, (5.3d)

where i denotes the coordinate index and ai = Dvi

Dt
are the components of the

acceleration vector �a. Equation (5.1b) can in fact be derived from Equation (5.3a)
while considering each material point of the continuum as a very small Lagrangian
volume, for which the net acting force can be computed locally.

Let us make this derivation on an intuitive basis by considering forces that act
on a small Lagrangian volume with dimensions �x, �y and �z (Fig. 5.1). From
Equation (5.3b), one first obtains the expression for the x-momentum equation. The
net force fx acting in the x-direction on the Lagrangian volume in a gravity field
can be represented as a sum of seven elementary forces

fx = fxA + fxB + fxC + fxD + fxE + fxF + mgx, (5.4)



5.1 Momentum equation 63

where fxA − fxF are stress-related forces acting from the outside of the volume on
the respective boundaries (A–F) and mgx is the gravity force, which is proportional
to the mass embedded in the volume. Stress-related forces are proportional to the
surfaces of the respective boundaries and can be computed as follows

fxA = −σxxA�y�z, (5.5a)

fxB = +σxxB�y�z, (5.5b)

fxC = −σxyC�x�z, (5.5c)

fxD = +σxyD�x�z, (5.5d)

fxE = −σxzE�x�y, (5.5e)

fxF = +σxzF�x�y, (5.5f)

where σ xxA, σ xxB and σ xyC, σ xyD, σ xzE, σ xzF are the normal and shear stress
components defined at respective boundaries. Note that the sign in front of the
stress components on the right-hand side of Equations (5.5a)−(5.5f) solely depends
on whether the force (positive sign, boundaries B, D and F) or the counterforce
(negative sign, boundaries A, C and E) is acting on the respective boundary from
outside of the volume (see Fig. 4.1 for the stress convention). On the other hand,
the stress components themselves can also be either positive or negative in sign.
By combining Eqs. (5.3b) and (5.4)−(5.5), one can now write Newton’s second
law of motion for the considered Lagrangian volume (verify as an exercise)

fxA + fxB + fxC + fxD + fxE + fxF + mgx = max, (5.6a)

or

(σxxB−σxxA)�y�z + (σxyD−σxyC)�x�z + (σxzF − σxzE)�x�y + mgx =max.

(5.6b)

Normalising both sides of Eq. (5.6b) by the considered Lagrangian volume

V = �x�y�z, (5.7)

we can now obtain the x-momentum equation in the differences representation
(verify as an exercise)

(σxxB − σxxA)�y�z

V
+ (σxyD − σxyC)�x�z

V
+ (σxzF − σxzE)�x�y

V
+ m

V
gx = m

V
ax,

(5.8a)

or

(σxxB − σxxA)

�x
+ (σxyD − σxyC)

�y
+ (σxzF − σxzE)

�z
+ ρgx = ρax, (5.8b)
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or

�σxx

�x
+ �σxy

�y
+ �σxz

�z
+ ρgx = ρax, (5.8c)

ρ = m

V
, (5.8d)

�σxx = σxxB − σxxA, (5.8e)

�σxy = σxyD − σxyC, (5.8f)

�σxz = σxzF − σxzE, (5.8g)

where ρ is the average material density in the Lagrangian volume V, and �σ xx,
�σ xy, �σ xz are differences of the respective stress components taken in x- y- and
z-directions (i.e. between respective pairs of boundaries), respectively.

When �x, �y and �z all tend towards zero, the differences in Eq. 5.8c can be
replaced by derivatives and we obtain the Lagrangian x-momentum equation

∂σxx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
+ ρgx = ρax, (5.9a)

or

∂σxj

∂xj

+ ρgx = ρax. (5.9b)

In this differential equation, written for an infinitely small Lagrangian volume, the
density ρ corresponds to the local density at a point. Obviously, based on similar
considerations y- and z-momentum equations can also be derived (verify as an
exercise).

5.2 Newtonian law of viscous friction

As we discussed in the Introduction, rocks often behave on a geological time
scale as highly viscous fluids. For this reason, the viscous rheological relationship
between stress and strain rate known as Newtonian law of viscous friction is widely
used in geodynamic modelling. The Newtonian law of viscous friction relates the

shear stress τ (Pa) with the shear strain rate
∂v

∂x
(1/s) according to

τ = η
∂v

∂x
, (5.10)

where η (Pa s), the viscosity, characterises the degree of resistance a material
has to shear deformation. Viscosity is generally different for different materials
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and may also depend on pressure (P), temperature (T), strain rate and some other
parameters. The viscosity of rocks is typically greater than 1017 Pa s: the viscosity
of the asthenospheric upper mantle, for example, is about 1021 Pa s (Turcotte and
Schubert, 2002). We will discuss this issue in more detail in the next chapter.

In 3D, the law of viscous friction is formulated with the components of both the
deviatoric stress (σ ′

ij) and the deviatoric strain rate (ε̇′
ij) tensors in form of viscous

constitutive relationship as follows:

σ ′
ij = 2ηε̇′

ij + δijηbulkε̇kk, (5.11a)

or

σ ′
ij = 2η(ε̇ij − 1/3δijε̇kk) + δijηbulkε̇kk, (5.11b)

where η and ηbulk are the shear viscosity and bulk viscosity, respectively; ε̇kk is
the bulk strain rate (Eq. 4.11) in response to irreversible inelastic volume changes
(such as due to phase transformation or compaction).

In the absence of mineralogical phase transformations, rocks exhibit rela-
tively small density variations (see Chapter 2). Therefore, the incompressible fluid

approximation (ρ = const,
Dρ

Dt
= 0, see Chapter 1) is generally valid. In this case,

ε̇kk = div(v̄) = 0, ε̇′
ij = ε̇ij and the law of viscous friction can be simplified to:

σ ′
ij = 2ηε̇ij. (5.12)

5.3 Navier–Stokes equation

Using the momentum equation (5.1b) and the relationship between the total (σij)
and deviatoric (σ ′

ij) stresses (Eq. 4.4), we can introduce pressure into the momentum
equation (5.1b) and obtain the Navier–Stokes equation of motion, which describes
the conservation of momentum for a fluid in the gravity field:

∂σ ′
ij

∂xj

− ∂P

∂xi

+ ρgi = ρ
Dvi

Dt
, (5.13)

where i and j are coordinate indices; xi and xj are spatial coordinates; gi is the

i-th component of the gravity vector �g = (gx, gy, gz);
Dvi

Dt
is the substantive time

derivative of i-th component of the velocity vector (i.e., acceleration vector). By
analogy to other substantive time derivatives, it can be related to the Eulerian time
derivative as:

Dvi

Dt
= ∂vi

∂t
+ �v · grad(vi), (5.14)
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or in 3D via

Dvx

Dt
= ∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z
,

Dvy

Dt
= ∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z
,

Dvz

Dt
= ∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z
.

In the case of 3D deformation, the Navier–Stokes equation of motion corresponds
to a system of three partial differential equations:

x-Navier–Stokes equation
∂σ ′

xx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
− ∂P

∂x
+ ρgx = ρ

Dvx

Dt
, (5.15)

y-Navier–Stokes equation
∂σ ′

yy

∂y
+ ∂σyx

∂x
+ ∂σyz

∂z
− ∂P

∂y
+ ρgy = ρ

Dvy

Dt
, (5.16)

z-Navier–Stokes equation
∂σ ′

zz

∂z
+ ∂σzx

∂x
+ ∂σzy

∂y
− ∂P

∂z
+ ρgz = ρ

Dvz

Dt
. (5.17)

In highly viscous flows, the inertial forces (ρ
Dvi

Dt
) are negligible with respect to

viscous resistance and gravitational forces. For example, a typical plate velocity
in geodynamics is on the order of several cm/year (n × 10−9 m/s) and it may
notably change only within millions of years (n × 1013 s). Consequently, the typical

magnitude of mantle flow ‘accelerations’ will be on the order of
Dvi

Dt
≈ �v

�t
=

n × 10−9

n × 1013
= n × 10−22 m/s2. This makes the right-hand side of the Navier–Stokes

equation ρ
Dvi

Dt
negligible compared to the ρgi term in the left-hand side of the

equation, since the magnitude of the gravitational acceleration gi is on the order
of 10 m/s2, i.e. 1023 times bigger than the mantle flow accelerations. Under such
circumstances deformation of highly viscous flows can be accurately described by
the Stokes equation of slow flow:

∂σ ′
ij

∂xj

− ∂P

∂xi

+ ρgi = 0, (5.18)

or

x-Stokes equation
∂σ ′

xx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
− ∂P

∂x
+ ρgx = 0, (5.19)

y-Stokes equation
∂σ ′

yy

∂y
+ ∂σyx

∂x
+ ∂σyz

∂z
− ∂P

∂y
+ ρgy = 0, (5.20)

z-Stokes equation
∂σ ′

zz

∂z
+ ∂σzx

∂x
+ ∂σzy

∂y
− ∂P

∂z
+ ρgz = 0. (5.21)
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The equations can be further simplified if the viscosity is constant and the fluid is
incompressible. In this case, the Stokes equations simplify to:

η
∂2vi

∂x2
j

− ∂P

∂xi

+ ρgi = 0. (5.22)

Let us go through the logic of this simplification for the x-Stokes equation (5.19).
First, applying Eq. (5.12) we obtain

∂

∂x
(2η ε̇xx) + ∂

∂y
(2η ε̇xy) + ∂

∂z
(2η ε̇xz) − ∂P

∂x
+ ρgx = 0. (5.23)

Then using Eq. (4.10) for strain rate components, we get

η

[
∂

∂x

(
∂vx

∂x
+ ∂vx

∂x

)
+ ∂

∂y

(
∂vx

∂y
+ ∂vy

∂x

)
+ ∂

∂z

(
∂vx

∂z
+ ∂vz

∂x

)]
− ∂P

∂x
+ ρgx = 0.

(5.24a)
Further regrouping of the above equation gives

η

[(
∂2vx

∂x2
+ ∂2vx

∂y2
+ ∂2vx

∂z2

)
+
(

∂2vx

∂x∂x
+ ∂2vy

∂x∂y
+ ∂2vz

∂x∂z

)]
− ∂P

∂x
+ ρgx = 0

(5.24b)

η

[(
∂2vx

∂x2
+ ∂2vx

∂y2
+ ∂2vx

∂z2

)
+ ∂

∂x

(
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)]
− ∂P

∂x
+ ρgx = 0.

(5.24c)

And finally using the fact that for the incompressible fluid
∂vx

∂x
+ ∂vy

∂y
+

∂vz

∂z
= div(v̄) = 0, we obtain

η

(
∂2vx

∂x2
+ ∂2vx

∂y2
+ ∂2vx

∂z2

)
− ∂P

∂x
+ ρgx = 0, (5.24d)

which is analogous to Eq. (5.22). Obviously, one can get similar expressions for
both the y-Stokes and z-Stokes equations (derive as an exercise).

As usual, for the case of 3D deformation we have three equations;

η

(
∂2vx

∂x2
+ ∂2vx

∂y2
+ ∂2vx

∂z2

)
− ∂P

∂x
+ ρgx = 0 or η�vx = ∂P

∂x
− ρgx,

η

(
∂2vy

∂x2
+ ∂2vy

∂y2
+ ∂2vy

∂z2

)
− ∂P

∂y
+ ρgy = 0 or η �vy = ∂P

∂y
− ρgy,

η

(
∂2vz

∂x2
+ ∂2vz

∂y2
+ ∂2vz

∂z2

)
− ∂P

∂z
+ ρgz = 0 or η �vz = ∂P

∂z
− ρgz,

where � = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is the Laplace operator.
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Fig. 5.2 Vertical laminar flow of a viscous fluid in a planar channel.

5.4 Poisson equation

If the pressure gradients are constant, Eq. (5.24) can be written in the form of the
Poisson equation

�vi = consti where consti = 1

η

(
∂P

∂xi

− ρgi

)
. (5.25)

In 3D it is always worth writing out the system of three equations explicitly:

x-Poisson equation �vx = constx, where constx = 1

η

(
∂P

∂x
− ρgx

)
,

y-Poisson equation �vy = consty, where consty = 1

η

(
∂P

∂y
− ρgy

)
,

z-Poisson equation �vz = constz, where constz = 1

η

(
∂P

∂z
− ρgz

)
.

Despite its simplicity, the Poisson equation is valid for several important geody-
namic problems, for example in uniaxial (e.g. purely vertical) flow of a fluid in a
channel (e.g. magma flow in the magmatic channel, rock flow in the subduction
channel etc.).

In a vertical planar channel of width L (Fig. 5.2), the vertical velocity depends

on the x-coordinate only, vx = 0, vz = 0,
∂vy

∂y
= 0,

∂vy

∂z
= 0 and the system of three

Poisson equations (5.25) reduces to

∂2vy

∂x2
= 1

η

(
∂P

∂y
− ρgy

)
. (5.26)
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This can be solved analytically by a two-fold integration process;

∂vy

∂x
=
∫

∂2vy

∂x2
dx =

∫
1

η

(
∂P

∂y
− ρgy

)
dx = 1

η

(
∂P

∂y
− ρgy

)
x + C1, (5.27)

vy =
∫

∂vy

∂x
dx =

∫ [
1

η

(
∂P

∂y
− ρgy

)
x + C1

]
dx

= 1

2η

(
∂P

∂y
− ρgy

)
x2 + C1x + C2, (5.28)

where C1 and C2 are integration constants which can be defined from the boundary
conditions:

left boundary, vy = vy0 when x = 0 and then,

vy0 = 1

2η

(
∂P

∂y
− ρgy

)
x2 + C1x + C2 = C2

so that

C2 = vy0;

right boundary, vy = vy1 when x = L. So then,

vy1 = 1

2η

(
∂P

∂y
− ρgy

)
x2 + C1x + C2 = 1

2η

(
∂P

∂y
− ρgy

)
L2 + C1L + C2 so that

C1 = vy1 − vy0

L
− 1

2η

(
∂P

∂y
− ρgy

)
L,

where vy0 and vy1 is vertical velocity of the left and right wall, respectively. The
final expression for the vertical velocity profile is then

vy = 1

2η

(
∂P

∂y
− ρgy

)
(x2 − Lx) + vy0 + (vy1 − vy0)

x

L
. (5.29)

If the walls are immobile, vy0 = vy1 = 0 and Eq. (5.29) simplifies to

vy = 1

2η

(
∂P

∂y
− ρgy

)
(x2 − Lx). (5.30)

Analytical exercises with the Poisson equation are very useful as analytical solu-
tions are often used for benchmarking (i.e., testing the accuracy of) numerical
solutions (Chapter 16).

5.5 Stream function approach

The stream function approach is a way to formulate and solve the coupled momen-
tum and continuity equations for 2D incompressible flow with only one scalar
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variable – the stream function (	) – whose derivatives are given by

∂	

∂y
= vx, (5.31)

∂	

∂x
= −vy. (5.32)

Consequently, the 2D incompressibility condition is automatically
satisfied

div(v̄) = ∂vx

∂x
+ ∂vy

∂y
= ∂

∂x

(
∂	

∂y

)
+ ∂

∂y

(
−∂	

∂x

)
= ∂2	

∂x∂y
− ∂2	

∂y∂x
= 0.

Also, the 2D Stokes equations for an incompressible fluid are first modified as

x-Stokes equation
∂

∂y

(
∂σ ′

xx

∂x
+ ∂σxy

∂y
− ∂P

∂x
+ ρgx

)
= 0, (5.33)

y-Stokes equation
∂

∂x

(
∂σ ′

yy

∂y
+ ∂σyx

∂x
− ∂P

∂y
+ ρgy

)
= 0, (5.34)

and then Eq. (5.34) is subtracted from Eq. (5.33) in order to eliminate
pressure

(
∂2σ ′

xx

∂x∂y
+ ∂2σxy

∂y2

)
−
(

∂2σ ′
yy

∂x∂y
+ ∂2σyx

∂x2

)
= ∂ρ

∂x
gy − ∂ρ

∂y
gx. (5.35)

Using the constitutive relation (5.12) and Eqs. (5.31), (5.32) we can now reformu-
late Eq. (5.35) using the stream function only

∂2

∂x∂y
(2ηε̇xx) + ∂2

∂y2
(2ηε̇xy) − ∂2

∂x∂y
(2ηε̇yy) − ∂2

∂x2
(2ηε̇xy) = ∂ρ

∂x
gy − ∂ρ

∂y
gx,

(5.36a)

∂2

∂x∂y

(
2η

∂vx

∂x
− 2η

∂vy

∂y

)
+ ∂2

∂y2

(
η
∂vx

∂y
+ η

∂vy

∂x

)
− ∂2

∂x2

(
η
∂vx

∂y
+ η

∂vy

∂x

)

= ∂ρ

∂x
gy − ∂ρ

∂y
gx, (5.36b)

∂2

∂x∂y

(
4η

∂2	

∂x∂y

)
+ ∂2

∂y2

(
η
∂2	

∂y2
− η

∂2	

∂x2

)
− ∂2

∂x2

(
η
∂2	

∂y2
− η

∂2	

∂x2

)

= ∂ρ

∂x
gy − ∂ρ

∂y
gx. (5.36c)
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In the case of constant viscosity η, Eq. (5.36c) can be further simplified to

η

[
4

∂4	

∂x2∂y2
+ ∂4	

∂y2∂y2
− ∂4	

∂x2∂y2
− ∂4	

∂x2∂y2
+ ∂4	

∂x2∂x2

]
= ∂ρ

∂x
gy − ∂ρ

∂y
gx,

(5.37a)

η

[
∂2

∂y2

(
∂2	

∂x2
+ ∂2	

∂y2

)
+ ∂2

∂x2

(
∂2	

∂x2
+ ∂2	

∂y2

)]
= ∂ρ

∂x
gy − ∂ρ

∂y
gx, (5.37b)

to obtain the so called vorticity formulation

∂2ω

∂y2
+ ∂2ω

∂x2
= 1

η

(
∂ρ

∂x
gy − ∂ρ

∂y
gx

)
, (5.38)

where ω is vorticity defined as

∂2	

∂x2
+ ∂2	

∂y2
= ω. (5.39)

As one can see, Eqs. (5.39) and (5.38) are both Poisson equations which can be
solved subsequently, such that the solution of Eq. (5.38) goes into the right-hand
side of Eq. (5.39). Obviously, boundary conditions should be formulated for both
the vorticity and the stream function.

Analytical exercise

Exercise 5.1
Calculate the vertical velocity of a magma flow (vy) in the middle of the vertical
planar channel (Fig. 5.2) of width L = 100 m, for magma with a viscosity η = 1016

Pa s and a density ρ = 2800 kg/m3. The pressure gradient along the channel is
∂P

∂y
=

25000 Pa/m. Gravitational acceleration is gy = 10 m/s2, directed downward. The
velocity on the channel boundaries is zero. Also calculate the solution when the
right boundary is moving upward at a velocity vy1 = 10−3 m/s.

Programming exercise and homework

Exercise 5.2
Solve the momentum and continuity equations with finite differences using
the stream function – vorticity formulation (Eqs. 5.38, 5.39) on a regular grid
(Fig. 5.3) of 51 × 41 points. Program a numerical model for buoyancy driven flow
in a vertical gravity field (gx = 0, gy = 10 m/s2 in Eq. 5.38) for a density structure
with two vertical layers (3200 kg/m3 and 3300 kg/m3 for the left and right layer,
respectively). The model size is 1000 × 1500 km (i.e. 1 000 000 × 1 500 000 m).
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(a) (b) (c)

Fig. 5.3 Numerical grid stencils used for solving the coupled momentum and
continuity equations in 2D with the stream function – vorticity formulation via
finite differences, on a regular rectangular grid, in the case of constant viscosity
and purely vertical gravity. (a), (b) stencils for formulating the Poisson equation
for vorticity (Eq. 5.38) (a) and stream function (Eq. 5.39) (b). (c) stencil for
computing the velocity components from the stream function.

Use a constant viscosity η = 1021 Pa s for the entire model. Compose a matrix of
coefficients {L} and a right-hand side vector {R} and obtain the solution vector {S}
with direct solver (S = L\R) for the two Poisson equations (first for Eq. 5.38 and
then for Eq. 5.39). A finite-difference representation of the Poisson equations in
2D can be formulated by analogy with Eq. (3.20) as follows (Fig. 5.3(a)(b))

ωi,j−1 − 2ωi,j + ωi,j+1

�x2
+ ωi−1,j − 2ωi,j + ωi+1,j

�y2
= gy

ρi,j+1 − ρi,j−1

η2�x
, (5.40)

	i,j−1 − 2	i,j + 	i,j+1

�x2
+ 	i−1,j − 2	i,j + 	i+1,j

�y2
= ωi,j . (5.41)

Use ω = 0 and 	 = 0 as boundary conditions for all external nodes of the grid. Use
the principle of global indexing of ω and 	 in 2D shown in Fig. 3.4. Compute the
global index k based on geometrical indices i and j (Fig. 5.3(a)(b)) according to
Eq. (3.22).

After obtaining the solution for the stream function, convert it into the velocity
field using finite differences (Fig. 5.3(c)) based on Eqs. (5.31), (5.32)

vx(i,j ) = 	i+1,j − 	i−1,j

2�y
, (5.42)

vy(i,j ) = −	i,j+1 − 	i,j−1

2�x
. (5.43)

Note that velocity components should only be computed for the internal nodes of
the grid (i.e. for 49 × 39 points).

Plot the results for vorticity (pcolor), stream function (contour) and velocity
(quiver) on the same diagram with the vertical axis directed downward (axis ij).

An example is in Streamfunction2D.m.
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Viscous rheology of rocks

Theory: Solid-state creep of minerals and rocks as the major mechanism
of deformation of the Earth’s interior. Dislocation and diffusion creep
mechanisms. Rheological equations for minerals and rocks. Effective
viscosity and its dependence on temperature, pressure and strain rate.
Formulation of the effective viscosity from empirical flow laws.
Exercises: Programming viscous rheological equations for computing
effective viscosities from empirical flow laws.

6.1 Rock rheology

Rheology is the physical property characterising flow/deformation behaviour of
a material. Here we will discuss in more detail the meaning of viscosity and,
generally, the rheology of rocks reflecting peculiarities of solid-state creep, which
is the major mechanism of rock deformation. Solid-state creep is the ability of
crystalline substances to deform irreversibly under applied stresses. Solid-state
creep is the major deformation mechanism of the Earth’s crust and mantle. Two
major types of creep are known: diffusion creep and dislocation creep.

Diffusion creep is typically dominant at relatively low stresses and results from
the diffusion of atoms through the interior (Herring–Nabarro creep) and along the
boundaries (Coble creep) of crystalline grains subjected to stresses. As a result of
this diffusion, grain deformation leads to bulk rock deformation. Diffusion creep
is characterised by a linear (Newtonian) relationship between the strain rate γ̇ and
an applied shear stress τ

γ̇ = Adiff τ, (6.1)

73
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where Adiff is a proportionality coefficient which is independent of stress, but
depends on grain size, pressure, temperature, oxygen and water fugacity.

Dislocation creep is dominant at higher stresses and results from migration of
dislocations (imperfections in the crystalline lattice structure). Dislocation density
strongly depends on stresses, and therefore dislocation creep results in a non-linear
(non-Newtonian) relationship between the strain rate and deviatoric stress

γ̇ = Adislτ
n, (6.2)

where Adisl is a proportionality coefficient which is independent of stress and grain
size, but depends on pressure, temperature, oxygen and water fugacity, and n > 1
is the stress exponent.

Both diffusion and dislocation creep rheologies are often calibrated from exper-
imental data using a simple parameterised relationship (also called flow law)
between the applied differential stress σd (the difference between maximal and
minimal applied stress) and the resulting ordinary strain rate γ̇

γ̇ = ADhm(σd)n exp

(
−Ea + VaP

RT

)
, (6.3)

where P is pressure (Pa), T is temperature (K), R is the gas constant (8.314 J/K/mol),
h is grain size (m) and AD, n, m, Ea and Va are experimentally determined rheologi-
cal parameters: AD is the material constant (Pa−ns−1m−m), n is the stress exponent
(n = 1 for diffusion creep and n > 1 in case of dislocation creep), m is the grain
size exponent, Ea is activation energy (J/mol) and Va is activation volume (J/Pa).
Dislocation creep is grain size independent and therefore m = 0 and hm = 1. In
contrast, diffusion creep notably depends on grain size and the grain size exponent
m is negative (i.e. strain rate increases with decreasing grain size).

6.2 Effective viscosity

In order to use the experimentally parameterised Equation (6.3) in numerical mod-
elling, one needs to reformulate it in terms of an effective viscosity (ηeff), written as
a function of the second invariant of either the deviatoric stress (σII), or strain rate
(ε̇II). The following general relation which is valid for isotropic, incompressible
materials can be used

σII = 2η eff ε̇II, (6.4a)

or

ηeff = σII

2ε̇II
. (6.4b)
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Fig. 6.1 Schematic geometrical relations for an axial compression (a) and a simple
shear (b) experiment.

The reformulation should also take into account the type of performed rheological
experiments in order to establish the proper relations between σII and σd, as well
as between ε̇II and γ̇ . The resulting expressions for the effective viscosity are as
follows

ηeff = F1
1

ADhm (σII)(n−1) exp

(
Ea + VaP

RT

)
, (6.5a)

or

ηeff = F2
1

(AD)1/n hm/n (ε̇II)(n−1)/n
exp

(
Ea + VaP

nRT

)
, (6.5b)

where dimensionless coefficients F1 and F2 depend on the type of experiments
used for calibration of Equation (6.3). Strain-rate-based formulations (6.5b) are
more suitable for numerical modelling with viscous (visco-plastic) rheology, while
a stress-based formulation is appropriate for visco-elastic (visco-elasto-plastic)
problems (Chapter 12, 13). Below, two principal types of rheological experiments
are considered in order to derive F1 and F2: axial compression (Fig. 6.1(a)) and
simple shear (Fig. 6.1(b)). Note that in our consideration we will always use the
incompressibility assumption div(v̄) = 0.

In case of an axial compression experiment (Fig. 6.1(a)) the F1 and F2 coeffi-
cients are obtained as follows (under compression oriented along y axis):

1. Establish the relationship between ε̇II and γ̇ :

γ̇ = −∂vy

∂y
= −ε̇yy,

ε̇yy = −γ̇ ,

ε̇xx = ε̇zz = −1

2
ε̇yy,

ε̇II =
√

1

2
ε̇2
xx + 1

2
ε̇2
yy + 1

2
ε̇2
zz =

√
3

4
ε̇2
yy =

√
3

2
γ̇ ,

γ̇ = 2√
3
ε̇II. (6.6)
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2. Establish the relationship between σII and σd:

σ ′
xx = σ ′

zz = −1

2
σ ′

yy,

σd = σmax − σmin = σxx − σyy = σ ′
xx − σ ′

yy = −3

2
σ ′

yy,

σ ′
yy = −2

3
σd,

σII =
√

1

2
σ ′2

xx + 1

2
σ ′2

yy + 1

2
σ ′2

zz =
√

3

4
σ ′2

yy = 1√
3
σd,

σd = √
3σII. (6.7)

3. Rewrite Equation (6.3) in term of ε̇II and σII using Equations (6.6) and (6.7)

2√
3
ε̇II = ADhm(

√
3σII)

n exp

(
−Ea + VaP

RT

)
, (6.8a)

or

ε̇II = 3(n+1)/2

2
ADhm(σII)

n exp

(
−Ea + VaP

RT

)
, (6.8b)

or

σII = 21/n

3(n+1)/2n
(ε̇II)

1/n 1

(AD)1/n hm/n
exp

(
Ea + VaP

nRT

)
. (6.8c)

4. Write an expression for ηeff as a function of the second invariant of deviatoric
stress σII using Equations (6.4b) and (6.8b). Define F1 by comparing with Equ-
ation (6.5a)

ηeff = σII

2ε̇II
= σII

2

[
3(n+1)/2

2
ADhm(σII)

n exp

(
−Ea + VaP

RT

)] ,

ηeff = 1

3(n+1)/2
× 1

ADhm(σII)(n−1)
exp

(
Ea + VaP

RT

)
,

F1 = 1

3(n+1)/2
. (6.9)
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5. Write an expression for ηeff as a function of the second strain rate invariant ε̇II using
Equations (6.4b) and (6.8c). Define F2 by comparing with Equation (6.5b)

ηeff = σII

2ε̇II
=

[
21/n

3(n+1)/2n
(ε̇II)

1/n 1

(AD)1/n hm/n
exp

(
Ea + VaP

nRT

)]
2ε̇II

,

ηeff = 1

2(n−1)/n3(n+1)/2n
× 1

(AD)1/n hm/n (ε̇II)(n−1)/n
exp

(
Ea + VaP

nRT

)
,

F2 = 1

2(n−1)/n3(n+1)/2n
. (6.10)

In case of simple shear experiments (Fig. 6.1(b)), under applied shear stress
τ = 1/2σd (by the way, τ may also be sometimes used in Eq. (6.3) instead of σ d for
calibrating experiments). In the case of an xy-shear τ = |σxy |, the coefficients F1

and F2 are obtained as follows:

1. Establish a relationship between ε̇II and γ̇

ε̇xx = ε̇yy = ε̇zz = ε̇xz = ε̇yz = 0,

γ̇ = −∂vx

∂y
= −2ε̇xy,

ε̇II =
√

ε̇2
xy = 1

2
γ̇ ,

γ̇ = 2ε̇II. (6.11)

2. Establish a relationship between σII and σd

σ ′
xx = σ ′

yy = σ ′
zz = σxz = σyz = 0,

σd = 2τ = −2σxy,

σII =
√

σ 2
xy = 1

2
σd,

σd = 2σII. (6.12)

3. Rewrite Equation (6.3) in terms of ε̇II and σII using Equations (6.11) and (6.12)

2ε̇II = ADhm(2σII)
n exp

(
−Ea + VaP

RT

)
, (6.13a)

or

ε̇II = 2n−1ADhm(σII)
n exp

(
−Ea + VaP

RT

)
, (6.13b)

or

σII = 1

2(n−1)/n
(ε̇II)

1/n 1

(AD)1/n hm/n
exp

(
Ea + VaP

nRT

)
. (6.13c)
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4. Write an expression for ηeff as a function of the second invariant of deviatoric stress σII

by using Equations (6.4b) and (6.13b). Define F1 by comparing with Equation (6.5a)

ηeff = σII

2ε̇II
= σII

2

[
2(n−1)ADhm(σII)n exp

(
−Ea + VaP

RT

)] ,

ηeff = 1

2n
× 1

ADhm(σII )(n−1)
exp

(
Ea + VaP

RT

)
,

F1 = 1

2n
. (6.14)

5. Write an expression for ηeff as a function of the second strain rate invariant ε̇II using
Equations (6.4b) and (6.13c). Defining F2 by comparing with Equation (6.5b)

ηeff = σII

2ε̇II
=

[
1

2(n−1)/n
(ε̇II)

1/n 1

(AD)1/n hm/n
exp

(
Ea + VaP

nRT

)]
2ε̇II

,

ηeff = 1

2(2n−1)/n
× 1

(AD)1/n hm/n (ε̇I I )(n−1)/n
exp

(
Ea + VaP

nRT

)
,

F2 = 1

2(2n−1)/n
. (6.15)

It is also important to mention that in rocks and mineral aggregates, both disloca-
tion and diffusion creep occur simultaneously under applied stress, which can be
expressed in the following relation for the effective viscosity

1

ηeff
= 1

ηdiff
+ 1

ηdisl
, (6.16)

where ηdiff and ηdisl is the viscosity for diffusion and dislocation creep respectively,
which are defined by Eq. (6.5). This relation follows from the assumption that
under condition of constant applied deviatoric stress σ ′

ij, the strain rate ε̇ij can be
decomposed to the contribution of dislocation (ε̇ij(disl)) and diffusion (ε̇ij(diff )) creep

ε̇ij = ε̇ij(disl) + ε̇ij(diff ). (6.17)

where

ε̇ij = σ ′
ij

2η eff
, ε̇ij(disl) = σ ′

ij

2η disl
, ε̇ij(diff ) = σ ′

ij

2η diff
. (6.18)

Substituting relations (6.18) into Eq. (6.17) gives formula (6.16) (verify as an
exercise).
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6.3 Non-Newtonian channel flow

One important consequence of having a fluid with a non-Newtonian rheology is
that the Poisson equation is no longer valid for channel flow (see Chapter 5) and
the Stokes equation should be applied instead. Let’s analyse such a non-Newtonian
channel flow. In the case of a planar channel (Fig. 5.2), the Stokes equation reduces
to

∂σxy

∂x
= ∂P

∂y
− ρgy.

Under the assumption of a non-linear relationship between the stress and strain
rate of the form ε̇xy = Aσn

xy , the Stokes equation can be solved as follows. First we
integrate Eq. (6.19) to obtain stress profile

σxy =
∫ (

∂σxy

∂x

)
dx =

(
∂P

∂y
− ρgy

)
x + C1, (6.19)

where C1 is our first integration constant. Then we represent the stress as a function
of strain rate

σxy =
(

ε̇xy

A

)1/n

, (6.20)

and modify Eq. (6.19) using Eq. (6.20) and the relation ε̇xy = 1

2

∂vy

∂x
to give

(
ε̇xy

A

)1/n

=
(

∂P

∂y
− ρgy

)
x + C1,

ε̇xy = A

[(
∂P

∂y
− ρgy

)
x + C1

]n

,

∂vy

∂x
= 2A

[(
∂P

∂y
− ρgy

)
x + C1

]n

. (6.21)

Integrating Eq. (6.21) we obtain an expression for vertical velocity profile

vy =
∫ (

∂vy

∂x

)
dx = 2A/(n + 1)

∂P/∂y − ρgy

[(
∂P

∂y
− ρgy

)
x + C1

]n+1

+ C2, (6.22)

where C1 and C2 are integration constants which can be defined from the boundary
conditions.

For example, let us assume the following boundary conditions:

vy = vy0 when x = 0,
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and

σxy = 0 when x = L/2.

The latter condition is in fact an equivalent of the condition of symmetric velocity
profile

vy = vy0 = vy1 when x = L.

Then our integration constants become as follows (derive as an exercise based on
Eqs. 6.19, 6.22)

C1 = −
(

∂P

∂y
− ρgy

)
L

2
, (6.23)

C2 = vy0 − 2A/(n + 1)

∂P/∂y − ρgy

Cn+1
1 . (6.24)

Programming exercises and homework

Exercise 6.1
Calculate and visualise a logarithmic viscosity profile across a 100 000 m (100 km)
thick mantle lithosphere with a temperature which linearly increases from 400 ◦C at
the top, to 1200 ◦C at the bottom. Apply the conditions of constant strain rate ε̇II =
10−14s−1. Take the following mantle rheological parameters: AD = 2.5 × 10−17

1/Pan/s, n = 3.5, Ea = 532 000 J/mol, m = 0; Va = 0 (representative for dry olivine
under upper mantle conditions). Take into account that all parameters are
based on axial compression experiments (Fig. 6.1(a)). An example is in Viscosity_
profile.m.

Exercise 6.2
Use the flow law from the previous exercise to compute and visualise a logarithmic
viscosity map for the mantle in coordinates of temperature (400–1400 ◦C) and log
stress (103–109 Pa). An example is in Viscosity_map.m.

Exercise 6.3
Repeat the previous exercise for an effective mantle viscosity based on
Eqs. (6.4) and (6.16) using the flow laws for diffusion and dislocation creep written
in the following form (Karato and Wu, 1993).

ε̇II = A

(
h

b

)m (
σII

µ

)n

exp

(
−Ea + VaP

RT

)
, (6.25)



Programming exercises and homework 81

Table 6.1 Flow parameters for olivine (Karato and Wu, 1993).

Mechanism Dry Wet

Dislocation creep
A, 1/s 3.5 × 1022 2.0 × 1018

n 3.5 3
m 0 0
Ea , J/mol 540 000 430 000
Va , m3/mol 15 × 10−6 to 25 × 10−6 10 × 10−6 to 20 × 10−6

Diffusion creep
A, 1/s 8.7 × 1015 5.3 × 1015

n 1 1
m –2.5 –2.5
Ea , J/mol 300 000 240 000
Va , m3/mol 6 × 10−6 5 × 10−6

where b = 5 × 10−10 m is the Burgers vector, µ= 8 × 1010 Pa, R = 8.314 J/K/mol.
The other flow law parameters are given in Table 6.1. In your calculations,
assume that the grain size, h = 0.001 m (1 mm) and P = 0. Produce and compare
log viscosity plots characteristic for dry and wet conditions. An example is in
Viscosity_comparison.m.





7

Numerical solutions of the momentum and
continuity equations

Theory: Types of numerical grids and their applicability for differ-
ent differential equations. Staggered, half-staggered and non-staggered
grids in one, two and three dimensions. Discretisation of the continuity
and Stokes equations on a rectangular grid. Conservative and non-
conservative discretisation schemes for Stokes equations. Mechanical
boundary conditions and their numerical implementation. No slip and
free slip conditions.
Exercises: Programming different mechanical boundary conditions.
Solving continuity and momentum equations for the case of variable
viscosity.

7.1 Grids

As we already discussed, the numerical solution of partial differential equations
(PDEs) requires the definition of a grid of nodal points within the numerical model.
The choice of this grid depends strongly on the type of equations to be solved.
Discretisation schemes for these equations will also change with the changing
types of numerical grids. The following types of numerical grid exist in numerical
geodynamic modelling:

� Depending on the dimension of the problem, the numerical grid can be one, two and
three dimensional (1D, 2D, 3D) (Fig. 7.1).

� Depending on the shape of the basic elements, the grid can be rectangular and triangular
(Fig. 7.2).

� Depending on the distribution of nodal points, the grid can be regular and non-regular
(irregular) (Fig. 7.3).

� Depending on the distribution of different variables within the grid, it can be non-
staggered or staggered (Fig. 7.4).

83
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1D grid

2D grid

3D grid

Fig. 7.1 Examples of 1D, 2D and 3D numerical grids.

Fig. 7.2 Examples of rectangular and triangular 2D numerical grids.

Fig. 7.3 Examples of regular and non-regular 1D numerical grids.
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Fig. 7.4 Examples of non-staggered and staggered 1D numerical grids.

Non-staggered 2D grid

Vx , Vy , P, ,

y

r h

x

Fig. 7.5 Example of a non-staggered 2D numerical grid.

Half-staggered 2D grid

basic nodes additional nodes
Vx ,Vy , r,  h P

y

x

Fig. 7.6 Example of a half-staggered 2D numerical grid.

The simplest grids are non-staggered. All variables are defined at the same
nodal points (Fig. 7.5). When using finite differences (FD) with such a grid, all
equations are formulated at the same nodal points. Non-staggered grids are the
natural choice for solving the Poisson, heat conservation and advective transport
equations.

In the staggered grid, several types of nodal points exist (Fig. 7.6) at which
different variables are defined. A half-staggered grid in two dimensions (Fig. 7.6)
is a combination of a basic non-staggered grid, with an additional set of points
defined at the centres of cells formed by the basic grid. Part of the variables is then
defined at these additional nodes and not at the basic nodal points. A half-staggered
grid is convenient for solving the combination of Stokes and continuity equations
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Fully staggered 2D grid

Vx Vy P,

y

r h

x

Fig. 7.7 Example of a fully staggered 2D numerical grid.

in case of constant viscosity when unknown parameters are components of velocity
(vx , vy) defined at the basic nodes, and pressure (P) defined at the additional nodes
(Fig. 7.6). Accordingly, x- and y-Stokes equations (Eq. 5.22) are formulated at
basic nodes, whilst the continuity equation is formulated at the additional nodes.
Yet, half-staggered grids are less natural for mechanical and thermomechanical
problems with variable viscosity.

Fully staggered grids are applied in two and three dimensions and consist of a
combination of several types of nodal points having different geometrical positions
(Fig. 7.7). Different variables are then defined at different nodal points. Differ-
ent equations are also formulated at different nodal points. Despite the apparent
geometrical complexity, fully staggered grids are the most convenient choice for
thermomechanical numerical problems with variable viscosity when finite dif-
ferences are used for solving the continuity, Stokes and temperature equations.
Discretisation of thermomechanical equations on the fully staggered grid is very
natural and gives simple FD formulas. Also, the accuracy of a numerical solution
obtained on a fully staggered grid is notably (up to four times, Fornberg, 1995)
higher then that on a non-staggered grid. Therefore: ‘think in a fully staggered
way!’ (I’ve done this since 2002).

7.2 Discretisation of the equations

The discretisation of the equations depends on the type of numerical grid that
is employed. The following discretisation schemes can for example be used to

describe the 2D incompressible continuity equation
∂vx

∂x
+ ∂vy

∂y
= 0 in the case of

non-staggered (half-staggered) and a fully staggered 2D grid.
Non-staggered (half-staggered) grid (Fig. 7.8):

vx3 − vx1 + vx4 − vx2

2�x
+ vy2 − vy1 + vy4 − vy3

2�y
= 0. (7.1)
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Fig. 7.8 Stencil used for the discretisation of the continuity equation for a 2D
non-staggered grid.

Fig. 7.9 Stencil used for the discretisation of the continuity equation for a 2D fully
staggered grid.

Fully-staggered grid (Fig. 7.9):

vx2 − vx1

�x
+ vy2 − vy1

�y
= 0. (7.2)

In both examples, the continuity equation is formulated at the centre of a cell that
forms an elementary volume of the numerical grid. However, in the case of a fully
staggered grid, the stencil (i.e. pattern of points) used to represent the equation
on the grid is more natural for the continuity equation (cf. Figs. 7.8 and 7.9)
and therefore the resulting finite-difference formula involves fewer unknowns (cf.
Eqs. 7.1 and 7.2).

7.3 Conservative finite differences

In order to discretise the Stokes equations in the case of variable viscosity, conser-
vative finite differences should be used. Such finite differences provide conservation
of stresses between nodal points and thus allow a correct numerical solution. Below,
examples of non-conservative and conservative finite differences for the 1D incom-

pressible Stokes equation (
∂σ ′

xx

∂x
− ∂P

∂x
= 0, where σ ′

xx = 2η
∂vx

∂x
) are compared

for 1D staggered grid (Fig. 7.10).
An erroneous non-conservative FD formulation of Stokes equation for two

basic nodes 2 and 3 can be constructed, for example, (we can ‘arrive’ at this
formula assuming erroneously that all we need to do is to use Eq. 5.24 and use a
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Fig. 7.10 Example of a 1D staggered grid used for the discretisation of Stokes
equation with a variable viscosity. 1, 2, 3, 4 are basic nodes of the grid where
Stokes equations are formulated. A, B, C, are additional (stress) nodes of the grid
where the stresses are formulated.

different viscosity for each of the different nodes)

node 2: 2η2
(vx3 − vx2) /�x2 − (vx2 − vx1) /�x1

(�x1 + �x2) /2
− PB − PA

(�x1 + �x2) /2
= 0,

(7.3a)

node 3: 2η3
(vx4 − vx3) /�x3 − (vx3 − vx2) /�x2

(�x2 + �x3) /2
− PC − PB

(�x2 + �x3) /2
= 0,

(7.3b)

which implicitly means that formulation of the deviatoric stress σ ′
xxB in Stokes

equation written for nodes 2 and 3 are different due to different viscosities η2

and η3:

node 2: σ ′
xxB = 2η2

vx3 − vx2

�x2
,

node 3: σ ′
xxB = 2η3

vx3 − vx2

�x2
.

This implies that stress is not conserved and artificially ‘jumps’ between the two
nodes in response to the changing viscosity.

On the other hand a proper conservative FD formulation of Stokes equation is

node 2:
2ηB (vx3 − vx2) /�x2 − 2ηA (vx2 − vx1) /�x1

(�x1 + �x2) /2
− PB − PA

(�x1 + �x2) /2
= 0,

(7.4a)

node 3:
2ηC (vx4 − vx3) /�x3 − 2ηB (vx3 − vx2) /�x2

(�x2 + �x3) /2
− PC − PB

(�x2 + �x3) /2
= 0,

(7.4b)
which means that formulations of the deviatoric stress σ ′

xxB , used in the Stokes
equation written for nodes 2 and 3 are the same:

σ ′
xxB = 2ηB

vx3 − vx2

�x2
,

implying that stress is conserved between the two nodes.
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Thus, the conservative FD formulation is based on the following three formal
rules:

(1) The Stokes equation is initially discretised in terms of stress components for the basic
nodes of the grid (cf. nodes 2, 3, Fig. 7.10),

node 2:
σ ′

xxB − σ ′
xxA

(�x1 + �x2) /2
− PB − PA

(�x1 + �x2) /2
= 0,

node 3:
σ ′

xxC − σ ′
xxB

(�x2 + �x3) /2
− PC − PB

(�x2 + �x3) /2
= 0.

(2) These stress components are formulated at the additional (stress) nodes of the grid (cf.
nodes A, B, C, Fig. 7.10)

node A: σ ′
xxA = 2ηA

vx2 − vx1

�x1
,

node B: σ ′
xxB = 2ηB

vx3 − vx2

�x2
,

node C: σ ′
xxC = 2ηC

vx4 − vx3

�x3
.

Note that we have to use viscosity values ηA, ηB and ηC for the additional nodes
(A, B, C) where the stress components are defined. If these values are not directly
available at these locations, they can be computed by e.g. arithmetic averaging of
the known viscosity values from the basic nodes (1, 2, 3, 4)

ηA = η1 + η2

2
,

ηB = η2 + η3

2
,

ηC = η3 + η4

2
.

(3) Identical formulations of the stress components are used for the Stokes equation at the
different basic nodes.

Applying these rules in 2D, the following conservative formulations can be
derived for x- and y-Stokes equations (derive them as an exercise based on above
principles)

x-Stokes equation (Fig. 7.11):

2
σ ′

xxB − σ ′
xxA

�x1 + �x2
+ σxy2 − σxy1

�y2
− 2

PB − PA

�x1 + �x2
= −ρ1 + ρ2

2
gx (7.5)
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Fig. 7.11 Stencil of a 2D staggered grid used for discretisation of x-Stokes equation
with a variable viscosity. The crossed square corresponds to the node at which the
x-Stokes equation is formulated.

where

σxy1 = 2η1

(
vx3 − vx2

�y1 + �y2
+ vy3 − vy1

�x1 + �x2

)
,

σxy2 = 2η2

(
vx4 − vx3

�y2 + �y3
+ vy4 − vy2

�x1 + �x2

)
,

σ ′
xxA = 2ηA

vx3 − vx1

�x1
,

σ ′
xxB = 2ηB

vx5 − vx3

�x2
.

If values of viscosity for the centres of cells (A, B) are not known, they can be
computed by e.g. arithmetic averaging of the known viscosity values from the basic
nodes (cf. black squares in Fig. 7.11)

ηA = η1 + η2 + η3 + η4

4
,

ηB = η1 + η2 + η5 + η6

4
.

y-Stokes equation (Fig. 7.12):

2
σ ′

yyB − σ ′
yyA

�y1 + �y2
+ σyx2 − σyx1

�x2
− 2

PB − PA

�y1 + �y2
= −ρ1 + ρ2

2
gy (7.6)
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Fig. 7.12 Stencil of a 2D staggered grid used for the discretisation of the y-Stokes
equation with a variable viscosity. The crossed circle corresponds to the node at
which the y-Stokes equation is formulated.

where

σyx1 = 2η1

(
vy3 − vy1

�x1 + �x2
+ vx2 − vx1

�y1 + �y2

)
,

σyx2 = 2η2

(
vy5 − vy3

�x2 + �x3
+ vx4 − vx3

�y1 + �y2

)
,

σ ′
yyA = 2ηA

vy3 − vy2

�y1
,

σ ′
yyB = 2ηB

vy4 − vy3

�y2
.

If values of viscosity for the centres of cells (A, B) are not known, they can be
computed by e.g. arithmetic averaging of the known viscosity values from the basic
nodes (cf. black squares in Fig. 7.12)

ηA = η1 + η2 + η3 + η4

4
,

ηB = η1 + η2 + η5 + η6

4
.

Note that in all the examples above, the medium is assumed to be incompressible
and that the deviatoric stress components σ ′

ij, are formulated via the strain rate
tensor components ε̇ij, and viscosity according to the Equations (4.10) and (5.12)
as follows

σ ′
ij = 2η ε̇ij,
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where ε̇ij = 1

2

(
∂vi

∂xj

+ ∂vj

∂xi

)
, i and j are coordinate indices and xi and xj are spatial

coordinates.

7.4 Boundary conditions

As we have discussed before, in order to obtain numerical solutions, boundary
conditions have to be defined. Mechanical boundary conditions depend on the type
of numerical problem which is studied. The following boundary conditions are
often used in geomodelling:

(1) free slip
(2) no slip
(3) free surface
(4) fast erosion
(5) infinity-like (external free slip, external no slip, Winkler basement)
(6) prescribed velocity (moving boundary)
(7) periodic
(8) combined conditions

(1) A free slip condition requires that the normal velocity component on the boundary is
zero and the two other components do not change across the boundary (this condition
also implies zero shear strain rates and stresses along the boundary). For example, for
the boundary orthogonal to the x axis, the free slip condition is formulated as follows

vx = 0, (7.7a)
∂vy

∂x
= ∂vz

∂x
= 0. (7.7b)

(2) A no slip condition requires all velocity components on the boundary to be zero

vx = vy = vz = 0. (7.8)

(3) A free surface condition requires both shear and normal stresses at the boundary to be
zero

σ ′
ij = 0. (7.9)

This condition allows the surface to be deformed. Numerical implementation of this
condition requires programming either a deformable grid following the deforming
surface, or the introduction of a low viscosity layer above the free surface (e.g.
Schmeling et al., 2008). This will be further discussed in Chapters 11 and 17.

(4) A fast erosion condition requires that all velocity components do not change across
the boundary. For example, for the upper model boundary which is orthogonal to the y
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axis, fast erosion condition is formulated as follows

∂vx

∂y
= ∂vy

∂y
= ∂vz

∂y
= 0. (7.10)

This condition corresponds to an infinitely fast erosion/deposition at the upper
free surface. This surface is always kept horizontal since erosion is so fast that
all mountains are instantaneously scraped off and are deposited in valleys. This
condition also ensures that the mass in the model is conserved.

(5) An infinity-like condition either mimics the absence of a boundary, or implies that this
boundary is located very far away. External free slip (Burg and Gerya, 2005; Gerya et
al., 2008b) implies that conditions (7.7a) and (7.7b) are satisfied at a parallel boundary
located at the distance �L from the actual boundary of the model and the velocity
gradient between these two boundaries is constant. For example, the external free slip
condition applied to the lower boundary of the model which is orthogonal to the y-axis
is:

∂vy

∂y
�L + vy = 0, (7.11a)

∂vx

∂y
= 0. (7.11b)

∂vz

∂y
= 0. (7.11c)

By analogy, the external no slip condition at the same boundary is formulated as

∂vx

∂x
�L + vx = 0, (7.12a)

∂vy

∂y
�L + vy = 0, (7.12b)

∂vz

∂z
�L + vz = 0. (7.12c)

Note that relations (7.11) and (7.12) insure global conservation of mass in the
computational domain, despite the presence of an ‘open’ boundary.

The Winkler’s pliable basement (e.g. Burov et al., 2001; Yamato et al., 2008)
assumes isostatic equilibrium at the model bottom and implies that the model
overlies an infinite space filled with an inviscid fluid having a small density contrast
(e.g. 10 kg/m3) within the lower part of the model. This is a sort of free surface
condition, applied at the lower boundary of the model, which is typically placed
in the mantle asthenosphere. It assumes that the material underneath the boundary
has zero viscosity and moves infinitely fast.
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Fig. 7.13 Stencil of a 2D non-staggered grid used for the formulation of no slip
and free slip boundary conditions.

(6) The prescribed velocity condition implies non-zero velocity at a model boundary.
When velocity is prescribed orthogonal to the boundary (inward/outward flow), then
a compensating outward/inward velocity should be prescribed on the other model
boundary(ies) in order to insure mass conservation in the model. In this case, the
model boundaries can also be displaced with time in response to the material movement
(moving boundary condition, Chapter 17).

(7) Periodic boundary conditions are typically established for paired parallel lateral bound-
aries of a model and prescribe that all material properties as well as pressure and velocity
fields at both sides of each boundary are identical. From a physical point of view, this
implies that these two boundaries are open and that flow leaving the model through
one boundary immediately re-enters through the opposite side. This condition is often
used in mantle convection modelling to simulate part of a spherical/cylindrical shell
with a convecting mantle (or mimic it, in Cartesian coordinates).

(8) Combined conditions represent a mixture between several types of boundary condi-
tions.

All of the described boundary conditions can be time dependent. This could partic-
ularly imply that the physical location of the boundary condition may be a function
of time (Chapter 17). Boundary conditions can also be applied inside the model.

We will now concentrate on the numerical implementation of the most common,
and most simple, free slip and no slip conditions (we will discuss several examples
of more complex conditions in Chapters 16 and 17). The numerical implementation
of boundary conditions depends on the type of grid.

Non-staggered grid (Fig. 7.13):

free slip, vx1 = 0, vy1 = vy2, (7.13)

no slip, vx1 = 0, vy1 = 0. (7.14)

Staggered grid (Fig. 7.14):

free slip, vx1 = 0, vy1 = vy2, (7.15)

no slip, vx1 = 0, vy1 = vy2
�x1

2�x1 + �x2
. (7.16)

Condition for the vertical velocity vy1 implies that zero vertical velocity on the
boundary vyb = 0 (Fig. 7.14) is linearly extrapolated from vertical velocities in two
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Fig. 7.14 Stencil of a 2D staggered grid used for the formulation of non slip and
free slip boundary conditions.

internal nodes as

vyb = vy1 + (vy1 − vy2)
�x1

�x1 + �x2
= 0.

7.5 Indexing of unknowns

Another very important issue, in relation to solving the Stokes and continuity
equations on a fully staggered grid, is the indexing of the unknowns. This is
particularly relevant when the system of linear equations (global matrix) formulated
with finite differences is solved with Gaussian elimination as discussed in Chapter 3.
This is a somewhat boring subject but it is extremely important to understand it
properly. Remember, 90% of the bugs in your code are made with the indexing
(Bug Rule 5 in the Introduction). Both the possibility of obtaining the solution
and the amount of computational work will strongly depend on the method used
to index the unknowns (P, vx and vy) on the staggered grid. One of the optimal
ways of numbering is illustrated in Fig. 7.15. The following rules are used for this
indexing:

1. Staggered nodes of the grid are related in a uniform manner (cf. dashed arrows in
Fig. 7.15) to the basic nodes of the grid formed by the intersections of the horizontal
and vertical gridlines. The same amount of unknowns should be related to each basic
node (P, vx and vy give us three unknowns per basic node, Fig. 7.15). If no staggered
node with respective unknowns can be found inside the grid then ‘ghost unknowns’ are
added (e.g., outside the grid) for the uniformity of numbering. Such ‘ghost unknowns’
are not used in the numerical solution and are set to zeros (cf. nodes with over-lined
indices in Fig. 7.15).

2. Basic nodes of the grid are indexed (cf. indices in italics in Fig. 7.15) from 1 to
Nx × Ny , where Nx and Ny is the basic grid resolution (i.e. number of gridlines) in the
horizontal and vertical direction, respectively (6 and 5, respectively in Fig. 7.15). The
index numbering increase in the direction of the smallest amount of gridlines (i.e. in the
vertical direction in Fig. 7.15) to ensure a minimal amount of computational work for
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Fig. 7.15 Indexing of unknowns (P, vx and vy) for a 6 × 5 2D staggered grid.
Dotted arrows show relations of staggered nodes to the basic nodes of the grid.
Underlined indices denote parameters for which boundary conditions are defined.
Over-lined indices correspond to the ‘ghost unknowns’ introduced for the unifor-
mity of numbering and are not used in the numerical solution (these unknowns are
set to zero). Indices in italics correspond to numbering of basic nodes. Indices i and
j correspond to numbering of gridlines in the vertical and horizontal directions,
respectively.

global matrix inversion

innode = (j − 1) × Ny + i, (7.17)

where innode is the index for the given node, i and j are the indices of the vertical and
horizontal gridlines which are intersecting at the node (Fig. 7.15).

3. Unknown parameters attached to each basic node are indexed from 1 to Nx × Ny × 3,
according to the increasing basic node index

inP = 3 × innode − 2, (7.17a)

invx
= 3 × innode − 1, (7.17b)

invy
= 3 × innode, (7.17c)
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Fig. 7.16 Sparse tri-diagonal global 90 × 90 matrix corresponding to the staggered
grid shown in Fig. 7.15. Coloured rectangles correspond to non-zero coefficients.
Black rectangles are located on the main diagonal of the matrix. Note the absence
of coefficients on the main diagonal when the continuity equation is solved in
order to obtain pressure.

where inP , invx
and invy

are indices for P, vx and vy related to the given basic node
innode.

As one can see on Fig. 7.15, index inP located in the centre of a grid cell is always
bigger then the indices invx

and invy
for the velocity nodes surrounding this cell.

This is an important condition since pressure is obtained by solving the continuity
equation. An incompressible continuity equation does not initially contain pressure
and the solution is guaranteed by the order of processing during the inversion of
the global matrix (Fig. 7.16).

The continuity equation (Eq. (1.28)) for pressure in a given cell (cf. Fig. 7.9)
is processed after all Stokes equations (Eq. 5.18) for all surrounding vx- and vy-
nodes (cf. Figs. 7.11, 7.12) which contain pressure in the cell. For this reason, the
pressure values in the four corners of the grid (cf. pressure nodes 19, 28, 79 and 88 in
Fig. 7.15) cannot be computed from the continuity equation since these pressure
nodes are not used in the formulation of the momentum equation and are surrounded
by vx and vy nodes for which boundary conditions are formulated (cf. nodes
with underlined indices in Fig. 7.15). For these pressure nodes, some boundary
conditions (e.g. horizontal symmetry) should be used instead. Additionally, the
pressure value should be given at one of the remaining pressure nodes (cf. P-node
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34 in Fig. 7.15) of the grid such that absolute pressure values can be defined
through the pressure gradients present in the momentum equation. We thus need to
formulate boundary conditions for five pressure nodes.

The idea about obtaining a solution for pressure by formulating an equation that
does not contain pressure may sound bizarre. Let us just convince ourselves on a
simple example. We apply Gaussian elimination (Eqs. 3.12–3.18) to the analogue
system of three equations with variables vx , vy and P having the global indices 1,
2 and 3 respectively

equation A1 (formulated for vx): 2vx + 4vy + 2P = 10,

equation A2 (formulated for vy): 3vx + 9vy + 6P = 21,

equation A3 (formulated for P ): vx + 3vy = 5.

Dividing all equations by a number to normalise the coefficient of vx , we get

equation B1: vx + 2vy + P = 5,

equation B2: vx + 3vy + 2P = 7,

equation B3: vx + 3vy = 5.

Eliminating vx by subtracting equation B1 from B2 and B3 yields

equation B1: vx + 2vy + P = 5,

equation C2: vy + P = 2,

equation C3: vy − P = 0.

Note that after the elimination operation, P indeed appears in equation C3.
Eliminating vy by subtracting equation C2 from C3 yields

equation B1: vx + 2vy + P = 5,

equation C2: vy + P = 2,

equation D3: −2P = −2,

Obtaining the solution for P from equation D3

P = −2/(−2) = 1.

Obtaining solution for vy from equation C2

vy = 2 − P = 2 − 1 = 1.

Obtaining the solution for vx from equation B1

vx = 5 − 2vy − P = 5 − 2 − 1 = 2.
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So it works and we obtained all the required solutions, including one for P by
the Gaussian elimination (we could also have inferred this from the fact that
we have three equations for the three unknowns vx , vy and P). Of course, it
would be impossible to apply (without reordering of equations and re-indexing of
unknowns) the same Gaussian elimination approach if the order of global indices
(and respectively equations) was inverted, i.e.

equation 1 (formulated for P ): 3vy + vx = 5,

equation 2 (formulated for vy): 6P + 9vy + 3vx = 21,

equation 3 (formulated for vx): 2P + 4vy + 2vx = 10.

It should be mentioned, however, that more advanced direct solvers (including ‘\’
command of MATLAB) have internal re-ordering procedures that allow one to
obtain solutions in the latter case as well.

An alternative staggered grid structure uses ghost velocity nodes to formulate
boundary condition equations for vx and vy velocity components (Fig. 7.17). These
equations are not explicitly added to the global matrix and therefore the respective
unknowns for the ghost nodes are not indexed. Instead, these boundary condition
equations are used in an implicit manner by taking them into account while dis-
cretising the momentum and continuity equations for the internal nodes of the grid
located next to the ghost nodes. Values of vx and vy velocities in the ghost nodes are
recovered from the boundary condition equations after obtaining a global solution
for internal nodes. The manner of indexing unknowns is shown in Fig. 7.17 and
again is based on a convention that relates staggered nodes to (part of) the basic
nodes of the grid, numbered as

innode = (j − 1) × (Ny − 1) + i,

where innode is the index for the given node, i and j are indices for the vertical
and horizontal gridlines intersecting at the considered node (Fig. 7.17). Note that
only (Nx − 1) × (Ny − 1) basic nodes are numbered. Unknowns attached for each
numbered basic node are indexed respectively from 1 to (Nx − 1) × (Ny − 1) × 3
according to the increasing basic node index

invx
= 3 × innode − 2,

invy
= 3 × innode − 1,

inP = 3 × innode.

This way of indexing again ensures that the index for pressure in a cell is bigger than
the indices for all the velocities surrounding the cell. The main advantage of this
staggered grid structure is that there is a smaller number of unknowns in the global
matrix equal to (Nx − 1) × (Ny − 1) × 3. In addition, the boundary condition for
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Fig. 7.17 Indexing of unknowns (P, vx and vy) for 6 × 5 2D staggered grid with
the use of ‘ghost velocity nodes’. Dotted lines show the relationship of the stag-
gered nodes to the basic nodes of the grid (note that only part of the nodes is
numbered). Underlined indices denote parameters for which boundary conditions
are defined. Over-lined indices correspond to the ‘ghost unknowns’, which are
introduced for the uniformity of numbering but not used in the numerical solution
(these unknowns are simply set to zero). Empty symbols correspond to the ghost
nodes where velocity boundary condition equations are defined. These boundary
condition equations are implicitly used in the numerical solution when formulat-
ing momentum and continuity equations for the internal (numbered) nodes of the
grid located next to the ghost nodes. Indices i and j correspond to the numbering
of gridlines in the vertical and horizontal directions, respectively.

pressure only needs to be defined in a single cell (see first cell in the top left corner
in Fig. 7.17). The implementation of ghost nodes, however, requires additional
programming as the formulation of the momentum and continuity equations for
the ‘near-boundary’ nodes must be done in a special manner in order to take into
account variable velocity boundary conditions.

Compared to the stream function approach (Chapter 5), the use of a pressure–
velocity formulation (also called primitive variable formulation) requires three
times more equations for the same grid resolution. The advantages are, however, that
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Fig. 7.18 Stencils used for the discretisation of the continuity (a) and Stokes (b),(c)
equations on a 2D regular staggered grid for models with constant viscosity based
on the pressure–velocity formulation. Indexing of gridlines corresponds to basic
(density) nodal points. Indexing of different unknowns is made according to
Fig. 7.15.

the solution for pressure is obtained and that lower (second) order derivatives are
required compared to the fourth-order derivatives required by the stream function-
based equation (5.36).

Programming exercises and homework

Exercise 7.1
Solve the momentum and continuity equations with finite differences for the
case of constant viscosity using a pressure–velocity formulation (Eqs. (5.22),
(1.28)) on a regular staggered grid (Figs. 7.15, 7.18) of 31 × 21 points. Program
the numerical model for buoyancy-driven flow in a purely vertical gravity field
(gx = 0, gy = 10 m/s2 in Eq. 5.22) for a density structure with two vertical layers
(3200 kg/m3 and 3300 kg/m3 for the left and right layer, respectively). The model
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size is 1000 × 1500 km (i.e. 1 000 000 × 1 500 000 m). Use constant viscosity
η = 1021 Pa s for the entire model.

Compose the matrix of coefficients {L}, the right-hand side vector {R} and
obtain the solution vector {S} with the direct solver (S = L\R) using relations
(7.17) and Fig. 7.15 for global indexing of the unknowns. Boundary conditions
for the velocity are free slip on all boundaries (Eq. 7.15). Boundary conditions for

pressure at the four corners is horizontal symmetry
∂P

∂x
= 0, i.e. pressure is the

same as in the neighbouring cells in the horizontal direction. Boundary condition
for pressure in the additional cell (i = 2 and j = 3, Fig. 7.15) is P = 0. Do not
forget that the equations for all ghost unknowns (P = 0, vx = 0, vx = 0) should also
be added to the matrix of coefficients {L} and right-hand side {R} (see over-lined
numbers in Fig. 7.15 for indexing of these unknowns).

The finite-difference representation of the momentum and continuity equa-
tions in 2D are formulated by analogy to Eqs. (3.20), (7.5) and (7.6) and follows
(Fig. 7.18)

η
vx(i,j−1) − 2vx(i,j ) + vx(i,j+1)

�x2
+ η

vx(i−1,j ) − 2vx(i,j ) + vx(i+1,j )

�y2

−Kcont

P ′
i+1,j+1 − P ′

i+1,j

�x
= 0, (7.18)

η
vy(i,j−1) − 2vy(i,j ) + vy(i,j+1)

�x2
+ η

vy(i−1,j ) − 2vy(i,j ) + vy(i+1,j )

�y2

−Kcont

P ′
i+1,j+1 − P ′

i,j+1

�y
= −gy

ρi,j + ρi,j+1

2
, (7.19)

Kcont

(
vx(i−1,j ) − vx(i−1,j−1)

�x
+ vy(i,j−1) − vy(i−1,j−1)

�y

)
= 0, (7.20)

where the scaled pressure P ′ = P

Kcont
and coefficients Kcont = 2η

�x + �y
are used

to ensure relatively uniform (i.e. not differing by many orders of magnitude) coef-
ficients in all equations. Similarly, both the left and right parts of all boundary

condition equations should be multiplied by a coefficient Kbond = 4η

(�x + �y)2 .

This scaling helps obtaining an accurate solution when direct solvers are applied for
models with large viscosities. After solving the global matrix for the velocity com-
ponents and scaled pressure P ′, the unscaled pressure is computed as P = P ′Kcont.

After obtaining a solution for velocity on staggered nodes, compute the velocity
components vx and vy for the internal basic nodes of the grid (i.e. for 29 × 19 points)
by averaging velocity from surrounding staggered nodes (use the two nearest
velocity nodes for each component). Plot the results for pressure (pcolor) and
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Fig. 7.19 Stencils used for the discretisation of the Stokes equations on a 2D
regular staggered grid for models with variable viscosity based on pressure–
velocity formulation. Indexing of gridlines corresponds to basic (density) nodal
points. Indexing of different unknowns is made according to Fig. 7.15.
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velocity (quiver) on the same diagram with the vertical axis directed downward
(axis ij).

An example is in Stokes_continuity_constant_viscosity.m.

Exercise 7.2
Modify the previous example for a variable viscosity case. Use different viscosities
for the two vertical layers (1020 Pa s and 1022 Pa s for the left and right layer,
respectively). Define the viscosity both at the basic nodes (ηs) and at the centres of
cells (ηn) (Fig. 7.19). Indexing for the later one should be the same as for pressure
nodes (Fig. 7.15).

The finite-difference representation of the continuity equation is the same as
before (Eq. 7.20). Stokes equations are formulated by analogy with Eqs. (7.5) and
(7.6) as follows (Fig. 7.19)

2ηn(i+1,j+1)
vx(i,j+1) − vx(i,j )

�x2
− 2ηn(i+1,j )

vx(i,j ) − vx(i,j−1)

�x2

+ ηs(i+1,j )

(
vx(i+1,j ) − vx(i,j )

�y2
+ vy(i+1,j ) − vy(i+1,j−1)

�x�y

)
− ηs(i,j ) (7.21)

×
(

vx(i,j ) − vx(i−1,j )

�y2
+ vy(i,j ) − vy(i,j−1)

�x�y

)
− Kcont

P ′
i+1,j+1 − P ′

i+1,j

�x
= 0

2ηn(i+1,j+1)
vy(i+1,j ) − vy(i,j )

�y2
− 2ηn(i,j+1)

vy(i,j ) − vy(i−1,j )

�y2

+ ηs(i,j+1)

(
vy(i,j+1) − vy(i,j )

�x2
+ vx(i,j+1) − vx(i−1,j+1)

�x�y

)
(7.22)

− ηs(i,j )

(
vy(i,j ) − vy(i,j−1)

�x2
+ vx(i,j ) − vx(i−1,j )

�x�y

)

− Kcont

P ′
i+1,j+1 − P ′

i,j+1

�y
= −gy

ρi,j + ρi,j+1

2

Kcont

(
vx(i−1,j ) − vx(i−1,j−1)

�x
+ vy(i,j−1) − vy(i−1,j−1)

�y

)
= 0, (7.23)

where Kcont = 2ηmin

�x + �y
and Kbond = 4ηmin

(�x + �y)2 (computed with the value of

minimal viscosity in the model, ηmin) are again used for scaling the coefficients.
An example is in Stokes_continuity_variable_viscosity.m.
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The advection equation
and marker-in-cell method

Theory: Advection equation. Solution methods for continuous and dis-
continuous variables. Eulerian schemes: upwind differences, higher-
order schemes, flux corrected transport (FCT). Lagrangian schemes:
marker-in-cell method. Runge–Kutta advection schemes. Numerical
interpolation schemes between markers and nodes.
Exercises: Programming of various advection schemes and markers

8.1 Advection equation

As we already know, the deformation of a continuum changes the spatial distribution
of physical properties. These changes can be described by the advection equation.
For a scalar function (A) at an Eulerian point, this equation is written as follows:

∂A

∂t
= −�v · grad (A) (8.1a)

or in 3D,
∂A

∂t
= −vx

(
∂A

∂x

)
− vy

(
∂A

∂y

)
− vz

(
∂A

∂z

)
(8.1b)

For a Lagrangian point, the following advection equation relates changes in its
coordinates with material velocities �v = (vx, vy, vz);

Dxi

Dt
= vi, (8.2a)

or in 3D,
Dx

Dt
= vx, (8.2b)

Dy

Dt
= vy, (8.2c)

Dz

Dt
= vz, (8.2d)

where i is a coordinate index and xi is a spatial coordinate.
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Fig. 8.1 Numerical solutions for the advection of a sharp density wave (i.e.
perturbation) obtained using upwind finite differences with different size time
steps, �t.

8.2 Eulerian advection methods

The advection equations appear trivial, but this is an apparent simplicity. Solving
them numerically often causes problems (headaches . . . ). One such problem is the
numerical diffusion of sharp gradients during advection. To illustrate the problem,
we solve

∂ρ

∂t
= −vx

(
∂ρ

∂x

)
, (8.3)

on a regular Eulerian 1D grid with constant spacing between the nodes (�x = 1),
for the case of constant material velocity (vx = 1) by applying upwind differences
(Fig. 8.2(a))

ρt+�t
i = ρt

i − vx�t
ρt

i − ρt
i−1

�x
, (8.4)

and using different values of the time step �t. Figure 8.1(b) demonstrates how a
sharp density wave (i.e. perturbation) smoothes out (diffuses) during the numerical
solution of a 1D advection equation obtained using upwind finite differences.

The intensity of the numerical diffusion depends on the number of numeri-
cal steps performed and not on the absolute time of advection (Fig. 8.1(b), (c)).
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Fig. 8.2 Stencil of a 1D grid used for the discretisation of the Eulerian advection
equation with upwind (a), central (b) and downwind (c) differences.

Therefore, smaller time steps give more numerical diffusion for the same total
duration of advection (compare Fig. 8.1(b) and (c)). On the other hand, to ensure
stability of the numerical solution, the time step should be sufficiently small to
satisfy the time limitation condition

�t ≤ �x

vx

, (8.5a)

which states that the material should not move for more than one grid step per
one time step (this is also called the Courant criteria). Condition (8.5a) should be
satisfied in every Eulerian point to prevent oscillations (Fig. 8.1(d)). Therefore,
one should use the minimal ratio between local grid step (which can be variable)
and local flow velocity (which can be variable as well) found in a model. In 2D
and 3D, this limitation may be even stricter

�t ≤ �x

2vx

(8.5b)

to prevent artificial oscillations from appearing in the numerical solutions.
Figure 8.3 shows the progress of numerical diffusion during only four time steps.

Upwind differences (Eq. 8.4, Fig. 8.2(a)) are applied along with a constant time
step (�t = 1/2�x/vx), which results in the FD formulation:

ρt+�t
i = ρt

i − ρt
i − ρt

i−1

2
, (8.6)
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Fig. 8.3 Progress (a)–(d) in the development of the numerical diffusion during four
time steps (�t = 1/2�x/vx = 0.5 s) in the case of a 1D advection of a square
density wave, with constant velocity (vx = 1 m/s) on a regular Eulerian grid
(�x = 1 m).

which results in strong numerical diffusion (Fig. 8.3(e)). The diffusion term, hidden
in Eq. 8.4, can be ‘exposed’ by analysing this equation on the basis of symmetrical
central differences

(
∂ρ

∂x

)central

i

= ρt
i+1 − ρt

i−1

2�x
.

Eq. 8.4 can be reformulated as follows

ρt+�t
i = ρt

i − vx�t

2�x

(
2ρt

i − 2ρt
i−1 + ρt

i+1 − ρt
i+1

)
, (8.7a)

ρt+�t
i − ρt

i

�t
= −vx

ρt
i+1 − ρt

i−1

2�x
+ vx�x

2

(
ρt

i−1 − 2ρt
i + ρt

i+1

�x2

)
, (8.7b)
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taking that

(
∂2ρ

∂x2

)
i

= ρt
i−1 − 2ρt

i + ρt
i+1

�x2
we obtain

(
∂ρ

∂t

)
i

= −vx

(
∂ρ

∂x

)central

i

+ D

(
∂2ρ

∂x2

)
i

, (8.7c)

where D = vx�x/2 is the numerical diffusion coefficient. This means that upwind
differences inherently contain numerical diffusion compared to central differences.
On the other hand, applying central and downwind differences for solving the
Eulerian advection equation:

central FD (Fig. 8.2(b)): ρt+�t
i = ρt

i − vx�t
ρt

i+1 − ρt
i−1

2�x
, (8.8)

downwind FD (Fig. 8.2(c)): ρt+�t
i = ρt

i − vx�t
ρt

i+1 − ρt
i

�x
, (8.9)

results in a strong oscillation of the numerical solution compared to the exact one
(Fig. 8.4(b),(c)), which is even more dramatic than the numerical diffusion prob-
lem which is characteristic for upwind differences (compare Fig. 8.4(a),(b),(c)).
The oscillations are caused by the erroneous evaluation of the spatial derivative
of density. With both central and downwind differences (in contrast to upwind
differences), we take into account the density distribution in the outgoing material
flow which is useless for predicting density distribution in the incoming material
flow.

One way to minimise numerical diffusion for the Eulerian advection equation is
to use higher-order numerical schemes such as the Flux-Corrected Transport (FCT)
algorithm (Boris and Book, 1973). The FCT is a conservative shock-capturing
scheme that can, in particular, be used for solving the advection equation. An FCT
algorithm consists of two stages, (I) a transport stage and (II) a flux-corrected
anti-diffusion stage. The numerical diffusion errors introduced in the first stage
are corrected by the anti-diffusion stage. The implementation of the FCT is more
complex than for upwind FD and is based on more nodal points (Fig. 8.5). For
the case of constant velocity and constant grid spacing, the algorithm of updating
advected parameters (e.g. density) on an Eulerian grid is as follows;

(I) Transport stage – using highly diffusive mass-conservative advection scheme (such as
upwind differences, Eqs. (8.4), (8.7)) to obtain preliminary values of density (ρ̃t+�t

i )
at the next time instant t + �t

ρ̃t+�t
i = ρt

i − vx�t
ρt

i+1 − ρt
i−1

2�x
+ D�t

(
ρt

i−1 − 2ρt
i + ρt

i+1

�x2

)
, (8.10)

where D = �x2

�t

[
1

8
+ 1

2

(
vx�t

�x

)2
]

is a numerical diffusion coefficient.
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Fig. 8.4 Deviation of the numerical solution from the exact one after only two
time steps in the case of upwind (a) central (b) and downwind (c) finite differences
for advection of a square wave. The best results are, indeed, obtained by upwind
differences, while downwind FD yield strong numerical oscillations. Parameters
are as in Fig. 8.3.
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Fig. 8.5 Stencil of a 1D grid used for discretisation of the Eulerian advection
equation with FCT algorithm.

(II) Anti-diffusion stage – correcting the numerical diffusion introduced during the trans-
port stage by defining anti-diffusive fluxes to the left (f ad

i−1/2), and to the right (f ad
i+1/2)

of the nodal point i,

ρt+�t
i = ρ̃t+�t

i − f ad
i+1/2 + f ad

i−1/2, (8.11)

where

f ad
i−1/2 = Si−1/2 max

[
0, min

(
Si−1/2�ρ̃t+�t

i−3/2,
1

8

∣∣∣�ρ̃t+�t
i−1/2

∣∣∣ , Si−1/2�ρ̃t+�t
i+1/2

)]
,

f ad
i+1/2 = Si+1/2 max

[
0, min

(
Si+1/2�ρ̃t+�t

i−1/2,
1

8

∣∣∣�ρ̃t+�t
i+1/2

∣∣∣ , Si+1/2�ρ̃t+�t
i+3/2

)]
,

�ρ̃t+�t
i−3/2 = ρ̃t+�t

i−1 − ρ̃t+�t
i−2 ,

�ρ̃t+�t
i−1/2 = ρ̃t+�t

i − ρ̃t+�t
i−1 ,

�ρ̃t+�t
i+1/2 = ρ̃t+�t

i+1 − ρ̃t+�t
i ,

�ρ̃t+�t
i+3/2 = ρ̃t+�t

i+2 − ρ̃t+�t
i+1 ,

Si−1/2 = sign
(
�ρ̃t+�t

i−1/2

)
,

Si+1/2 = sign
(
�ρ̃t+�t

i+1/2

)
.

Here, sign(A) is a function that gives −1, 0 and 1 if A < 0, A = 0 and A > 0,
respectively.

The FCT algorithm stencil (Fig. 8.5) involves five nodal points in a 1D grid,
compared to two nodal points in the case of upwind differences (Fig. 8.2(a)).
FCT stabilises the numerical diffusion (i.e. advected wave shape stops changing
after some amount of time steps) and gives noticeably better results compared to
upwind differences (compare Fig. 8.6(a) and (b)). These results, however, are still
not perfect and depend on the exact shape of the advected structures (e.g. triangular
waves are subjected to a noticeable decrease in amplitude compared to square
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Fig. 8.6 1D advection of a square and triangular density waves with upwind
differences (a), FCT (b) and marker-in-cell method (c). The results have been
obtained with the programs Upwind_1D.m, FCT_1D.m and Markers_1D.m.
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Fig. 8.7 Stencil of 1D Eulerian–Lagrangian grid used for advection with the
marker-in-cell technique. Mobile Lagrangian markers (open squares) move with
a prescribed velocity vx and carry information on material density. At every time
step, the density at the Eulerian nodes is interpolated from markers found within
two grid cells around the nodes.

waves, Fig. 8.6(b)). It should also be mentioned that various existing higher-order
Eulerian schemes such as FCT do not eliminate numerical diffusion completely,
but rather stabilise it to a certain acceptable level (Fig. 8.6(b)).

8.3 Marker-in-cell techniques

If numerical diffusion needs to be strongly minimised, Lagrangian and Eulerian–
Lagrangian advection algorithms can be used. In geomodelling, for example, very
accurate advection of non-diffusive properties such as rock type (composition)
with strongly discontinuous (e.g., layering) distribution in space is often required.
One of the most popular methods in this case is to combine the use of Lagrangian
advecting points (markers, tracers or particles) with an immobile, Eulerian grid
(e.g., Woidt, 1978; Christensen, 1982; Schmeling, 1987; Weinberg and Shmelling,
1992). In this approach, properties are initially distributed on a large amount of
Lagrangian points that are advected according to a given/computed velocity field.
The advected material properties (e.g. density) are then interpolated from the
displaced Lagrangian points to the Eulerian grid (Fig. 8.7) by using a weighted-
distance averaging such as the following linear interpolation formula

ρt+�t
i =

∑
m

ρmwm(i)

∑
m

wm(i)

,

wm(i) = 1 − �xm(i)

�x
,

(8.12)

where wm(i) is the weight of the m-th marker for the i-th node, �xm(i) denotes the
distance from the m-th marker, to the i-th node. In 1D, the density at an Eulerian
node is interpolated only with the markers found in the two surrounding cells (i.e.
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within one grid space from the node). For a more local interpolation, fewer markers
found within the surrounding cell (e.g. half grid space from the node) can be used.

This method is called the marker-in-cell (MIC) technique. Obviously, the results
of pure advection (e.g. of density, Fig. 8.6(c)) with MIC are not subjected to
numerical diffusion (with the exception of non-accumulating interpolation errors
between Lagrangian markers and Eulerian nodes) since markers always retain their
original density values and only change positions with time.

In order to move a Lagrangian marker A, different advection schemes can be
used. The most simple is the first-order accurate advection scheme

xt+�t
A = xt

A + vxA�t, (8.13a)

yt+�t
A = yt

A + vyA�t, (8.13b)

zt+�t
A = zt

A + vzA�t, (8.13c)

where xt
A, yt

A and zt
A are the coordinates of marker A at the current time (t); xt+�t

A ,
yt+�t

A and zt+�t
A are the coordinates of the same marker at the next moment in time

(t + �t); vxA, vyA and vzA are components of the material velocity vector at the
point A, at time t. The velocity of the Lagrangian point A can significantly change
during the displacement if there is a strong spatial variation of the velocity field.
In this case, a first-order advection scheme will not be very accurate. This problem
can be rectified, by either using smaller time steps (�t), or by using higher-order
advection schemes.

One of the most popular in geomodelling is the Runge–Kutta advection scheme,
given as

xt+�t
A = xt

A + veff
x �t, (8.14a)

yt+�t
A = yt

A + veff
y �t, (8.14b)

zt+�t
A = zt

A + veff
z �t, (8.14c)

where v
eff
x , v

eff
y and v

eff
z are components of the effective material velocity vector for

the point A over the period between current (t) and next (t +�t) moments of time.
Components of the effective material velocity are computed by using the material
velocity at several different points in space (varying from 2 to 4, depending on the
order of the scheme).

The second-order Runge–Kutta scheme uses two points (A and B)

veff
x = vxB, (8.15a)

veff
y = vyB, (8.15b)

veff
z = vzB, (8.15c)
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where the coordinates of point B are computed as

xB = xt
A + vxA

�t

2
, yB = yt

A + vyA

�t

2
, zB = zt

A + vzA

�t

2
. (8.15d)

The third-order Runge–Kutta scheme uses three points (A, B and C)

veff
x = 1

6
(vxA + 4vxB + vxC), (8.16a)

veff
y = 1

6
(vyA + 4vyB + vyC), (8.16b)

veff
z = 1

6
(vzA + 4vzB + vzC), (8.16c)

where the coordinates of points B and C are computed as

xB = xt
A + vxA

�t

2
, yB = yt

A + vyA

�t

2
, zB = zt

A + vzA

�t

2
, (8.16d)

xC = xt
A + (2vxB − vxA)�t, yC = yt

A + (2vyB − vyA)�t,

zC = zt
A + (2vzB − vzA)�t. (8.16e)

And finally, the classical fourth-order Runge–Kutta scheme uses four points (A, B,
C and D)

veff
x = 1

6
(vxA + 2vxB + 2vxC + vxD), (8.17a)

veff
y = 1

6
(vyA + 2vyB + 2vyC + vyD), (8.17b)

veff
z = 1

6
(vzA + 2vzB + 2vzC + vzD), (8.17c)

where the coordinates of points B, C and D are computed as

xB = xt
A + vxA

�t

2
, yB = yt

A + vyA

�t

2
, zB = zt

A + vzA

�t

2
, (8.17d)

xC = xt
A + vxB

�t

2
, yC = yt

A + vyB

�t

2
, zC = zt

A + vzB

�t

2
, (8.17e)

xD = xt
A + vxC�t, yD = yt

A + vyC�t, zD = zt
A + vzC�t. (8.17f)

The last advection scheme is very accurate in space (fourth-order accuracy) but less
accurate in time (first-order accuracy) if the velocity field for the current moment
of time (i.e. A-configuration velocity field) is used for B, C and D points. An
alternative algorithm is to use the Runge–Kutta scheme in both space and time:
all markers are first displaced to their B points and then material properties are re-
interpolated to Eulerian nodes and a new B-configuration velocity field is computed
by solving the momentum and continuity equations, this B-velocity field is then
used for moving markers to their C points for computing a C-configuration velocity
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Fig. 8.8 Stencil of 2D grid used for the interpolation of physical properties from
the markers to the nodes. The dashed boundary indicates the area from which
markers are used for interpolating properties to node (i, j ) in the case of a local
interpolation scheme.

field etc. Obviously this approach is computationally more expensive. Therefore, in
the case of non-steady flows (i.e. with strong variations in velocity field with time),
first-order advection schemes with smaller time step are indeed more efficient.

Various interpolation schemes can be used to interpolate physical properties
(e.g., density, viscosity, heat capacity) from the Lagrangian markers to the Eulerian
nodes. The following standard first-order accurate bilinear scheme is often used to
calculate an interpolated value of a parameter B(i, j ) for the ij-th-node using values
(Bm) assigned to all markers found in the four surrounding cells (Fig. 8.8)

Bi,j =

∑
m

Bmwm(i,j )

∑
m

wm(i,j )

,

(8.18)
wm(i,j ) =

(
1 − �xm

�x

)
×
(

1 − �ym

�y

)
,

where wm(i, j ) represents a statistical weight of the m-th-marker at the ij-th-node;
�xm and �ym are the distances from the m-th-marker to the ij-th-node. It is worth
mentioning that the use of a higher-order interpolation scheme (e.g. Fornberg, 1995)
produces undesirable numerical fluctuations in scalar, vector and tensor properties
interpolated at the proximity of sharp transitions. This scenario frequently occurs
in geodynamic models, hence the first-order interpolation is preferred. A more
local interpolation from markers to nodes can again be obtained by using fewer
markers located within a limited (e.g. half grid space, see dashed boundary in
Fig. 8.8) range of the vertical and horizontal distances around an Eulerian node.
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Fig. 8.9 Stencil of a 2D grid used for the interpolation of physical properties from
nodes to markers.

Such a local interpolation of properties from markers to nodes, has in many cases,
an effect similar to increasing the Eulerian grid resolution.

Interpolation of physical parameters (e.g., velocity, pressure) from the
Eulerian nodes to Lagrangian markers and other geometrical points is also com-
monly required. One of the simplest methods is to use values of the physical
parameter B, defined at the four Eulerian nodes surrounding a given marker (or any
other geometric point). An effective value of the parameter B for the m-th-marker
can then be calculated using the first-order bilinear interpolation scheme as follows

Bm = Bi,j

(
1 − �xm

�x

)(
1 − �ym

�y

)
+ Bi,j+1

�xm

�x

(
1 − �ym

�y

)
(8.19)

+ Bi+1,j

(
1 − �xm

�x

)
�ym

�y
+ Bi+1,j+1

�xm�ym

�x�y
,

where Bm denotes the value of the parameter B for the m-th-marker. If one uses an
irregularly spaced grid, the indices of the four nodal points that surround a given
marker (Fig. 8.9) cannot be calculated directly, as in the case of a regular grid.
In this case, a bisection procedure (Fig. 8.10) can be used to define the indices of
the two nearest vertical and horizontal grid lines that bound the cell which contain
the marker (Fig. 8.9). An alternative, faster approach (which however requires
additional memory) is to store the unique cell index for each marker and update it
at every time step by checking only the nearest grid lines.

It should also be mentioned that performing interpolation between nodes and
markers does introduce numerical diffusion. This problem becomes particularly
significant when it is required to interpolate the same time-dependent physical
parameter (e.g., temperature or stress), back and forth between the markers and
nodes. Such diffusion can indeed be minimised by interpolating incremental values
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Fig. 8.10 Finding two nearest grid lines around the marker (open square) by a
bisection algorithm in the case of an irregularly spaced grid. The search starts by
having the first (line 1) and last (line 15) lines of the grid as leftmost (L = 1)
and rightmost (R = 15) limits for the bisection. At each check, the middle line
M = (L + R)/2 is defined and its horizontal position is compared with that of
the marker. Depending on the result of the comparison, line M becomes either L
(when M is to the left of the marker) or R (when M is to the right of the marker).
The check continues until the difference in the index between L and R become
one. The required number of checks (n) is given by the relation 2n = N, where N
is number of grid lines.

Interpolation of absolute values Interpolation of increments

(a)

B

x x

new B new B

old B

nodes nodes

markers markers

old B

B
(b)

Fig. 8.11 Interpolation of the absolute values of the parameter B (a) and its incre-
ments (b) from nodes to markers. Note that the interpolation of increments does
not smooth out subgrid variations of B onto the markers.
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and not absolute values of the parameter from the nodes to the markers (Figs. 8.9,
8.11).

Bt+�t
m = Bt

m +
(
Bt+�t

i,j − Bt
i,j

)(
1 − �xm

�x

)(
1 − �ym

�y

)
+
(
Bt+�t

i,j+1 − Bt
i,j+1

)

× �xm

�x

(
1 − �ym

�y

)
+
(
Bt+�t

i+1,j − Bt
i+1,j

)(
1 − �xm

�x

)
�ym

�y

+
(
Bt+�t

i+1,j+1 − Bt
i+1,j+1

) �xm�ym

�x�y
, (8.20)

where indices t and t + �t correspond to the current and next time instant,
respectively.

Programming exercises and homework

Exercise 8.1
Program and compare the simple Eulerian advection schemes (upwind, central and
downwind FD, Eqs. (8.4), (8.8), (8.9) in 1D for the case illustrated in Fig. 8.6. The
model resolution is 151 nodal points. Other parameters are the same as in Fig. 8.6.
An example is in Upwind_1D.m.

Exercise 8.2
Program and compare the FCT method and the marker-in-cell schemes in 1D for
the same model. Use 5 markers per cell (200 markers for the entire model) and
‘recycle’ markers which leave the model from one side by adding them to the other
side (periodic boundary condition). To recycle markers, update their coordinate as
follows: for markers that leave the model through the right boundary and appear at
the left boundary, set

xrecycled
m = xm − L, (8.21a)

For markers that leave the model through the left boundary and enter it at the right
boundary, set

xrecycled
m = xm + L, (8.21b)

where xm, x
recycled
m are marker coordinates before and after recycling, respectively.

Use the following formula to define the index j (smallest index is 1) of the nearest
node to the left of the marker from its coordinate

j = int
( xm

�x

)
+ 1, (8.22)

where xm is the marker coordinate, �x is the nodal (Eulerian) grid space, int()
is a function which returns the integer part of a value. Two possible MATLAB



120 The advection equation and marker-in-cell method

implementations of Eq. (8.22) are

i = double(int16(xm/dx − 0.5)) + 1;

i = double(int16(xm/dx + 0.5));

Examples are in FCT_1D.m and Markers_1D.m.

Exercise 8.3
Modify the previous marker-based code by introducing non-uniform distances
between nodal points and markers and by using a bisection algorithm (Fig. 8.10)
to define indices of the nearest nodes. Prescribe a slightly variable velocity on the
nodal points and interpolate it to markers when displacing them. An example is
given in Markers_1Dirregular.m associated with this chapter.

Exercise 8.4
Modify the 2D model with the variable viscosity (Exercise 7.2) by including the
advection of density and viscosity fields with markers. Create a grid of 200 × 300
markers with small (up to half of the marker grid distance) random displacements
(rand) relative to regular positions. Randomisation is introduced to prevent the
opening of big gaps between markers during the simulation which often occurs if
regular marker grids are used (e.g. due to pure-shear-related stretching that increases
the distances between markers). Save the horizontal and vertical coordinate for
every marker and assign it with the density and viscosity depending on the position
in either the left or the right layer. An alternative approach, which requires less
memory, is to assign every marker with a material type index depending on the
initial position (i.e. 1 and 2 for the left and right layer, respectively). Then the marker
density and viscosity (and potentially any other material-dependent property) can
be estimated based on the material type index. Interpolate the marker density and
viscosity (ηs in Fig. 7.19) to the basic nodes of the grid using Eq. (8.18) (write
a loop over the markers and add the density and viscosity of each marker to the
four surrounding nodes, Fig. 8.9). For computing i and j indices for the upper left
node next to the marker (Fig. 8.9), apply Eq. (8.22) separately for each coordinate.
Compute the viscosity for the centres of cells (ηn in Fig. 7.19) by averaging the
viscosity from the four surrounding basic nodes (an alternative way is to interpolate
this viscosity directly from markers based on Eq. 8.18). After obtaining a velocity
field, define a time step in such a manner that the marker displacements do not
exceed half the grid spacing. Interpolate the vx and vy velocity components for the
markers from the staggered nodes (Eq. 8.19) and displace them using a first-order
accurate scheme (Eq. (8.13)). Note that for staggered nodes, Eq. (8.22) is modified
since these nodes are displaced by half of the grid distance relative to the basic
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ones

i = int

(
ym − �y/2

�y

)
+ 1 (for vx nodes), (8.23a)

j = int

(
xm − �x/2

�x

)
+ 1 (for vy nodes). (8.23b)

Use a uniform velocity interpolation procedure for all markers, including those
outside of the grids of staggered vx- and vy-nodes (e.g. above the first line of
vx-nodes, within half of vertical grid step from the top of the model, Fig. 7.15).
In the latter case, the marker will be located outside the 4-node cell (Fig. 8.9)
and normalised distances �xm/�x and �ym/�y to the upper left node of the cell
in Eq. (8.19) can be either negative or larger than 1. The velocity will indeed be
interpolated properly, and will be consistent with the boundary conditions. After
displacing all the markers, go to the next time step and interpolate the density
and viscosity to the nodes using the new markers positions. An example is in
Stokes_Continuity_Markers.m.

Exercise 8.5
Update the 2D code developed above to use a fourth-order Runge–Kutta
scheme (Eqs. (8.14), (8.17)) for marker displacement. An example is in
Stokes_Continuity_Markers_Runge_Kutta.m.





9

The heat conservation equation

Theory: Fourier’s law of heat conduction. Heat conservation equa-
tion and its derivation. Radioactive, viscous and adiabatic heating and
their relative importance. Heat conservation equation for the case of a
constant thermal conductivity and its relation to the Poisson equation.
Analytical examples: steady geotherm and steady temperature profile
in case of channel flow.
Exercises: Computing shear heating and adiabatic heating distribution
for buoyancy driven flow.

9.1 Fourier’s law of heat conduction

Heat transport plays a crucial role in geodynamics and is often inherently coupled to
material deformation, as for example in mantle convection, granitic cupola growth,
subduction etc. Let us first study the equations relevant to heat transport processes.
The most basic one is Fourier’s law of heat conduction, which relates the heat flux

q, (W/m2) to the temperature gradient
∂T

∂x
(K/m) according to

q = −k
∂T

∂x
, (9.1)

where k (W/m/K) is the thermal conductivity of the material. Thermal conductivity
may depend on P, T, composition and structure of the material. The heat flux q is
the amount of heat that passes through a unit surface area, per unit time. As we all
know, heat is always transferred from a hot body to a colder one. This is reflected
by the minus sign in the right part of Equation (9.1), which implies that heat flux
is positive in the direction of decreasing temperature, i.e. in the case when the

temperature gradient
∂T

∂x
is negative. In three dimensions, the heat flux is a vector

123
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that can be decomposed into three components

�q = (qx, qy, qz).

In this case, Fourier’s law relates heat fluxes in different directions to the respective
temperature gradients

�q = −k∇T or qi = −k
∂T

∂xi

, (9.2)

where i is a coordinate index and xi is a spatial coordinate, or

qx = −k
∂T

∂x
,

qy = −k
∂T

∂y
,

qz = −k
∂T

∂z
.

9.2 Heat conservation equation

In order to predict changes in temperature due to heat transport, the heat conser-
vation equation, also called temperature equation, has to be solved. This equation
describes the balance of heat in a continuum and relates temperature changes due
to internal heat generation, as well as with advective and conductive heat transport.
The Lagrangian temperature equation has the following form

ρCP

DT

Dt
= −∂qi

∂xi

+ H, (9.3)

or spelled out in a complete 3D form

ρCP

DT

Dt
= −∂qx

∂x
− ∂qy

∂y
− ∂qz

∂z
+ H,

or by using Equation (9.2)

ρCP

DT

Dt
= ∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂z

(
k
∂T

∂z

)
+ H,

where the repeated index i, means a summation of derivatives of heat flux compo-
nents by respective coordinates (x, y, z); ρ is density (kg/m3); CP is heat capac-

ity at constant pressure (J/kg/K); H is volumetric heat productions (W/m3).
DT

Dt
is the substantive time derivative of temperature corresponding to the standard



9.2 Heat conservation equation 125

Lagrangian–Eulerian relation, which was already discussed in Chapters 1 and 5

DT

Dt
= ∂T

∂t
+ v̄ · grad(T ).

For example, in 3D

DT

Dt
= ∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z
.

Accordingly, the temperature equation in an Eulerian form can be written as
follows

ρCP

(
∂T

∂t
+ v̄ · grad(T )

)
= −∂qi

∂xi

+ H, (9.4)

or in complete 3D form as,

ρCP

(
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)
= −∂qx

∂x
− ∂qy

∂y
− ∂qz

∂z
+ H,

or by using Equation (9.2) as

ρCP

(
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)

= ∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂z

(
k
∂T

∂z

)
+ H.

The Lagrangian heat conservation equation can be derived by analysing heat
fluxes through the small moving rectangular Lagrangian (material) volume of mass
m and with dimensions �x, �y and �z (Fig. 9.1). Let us assume that the initial
temperature of this volume is T0.

Heat comes into the volume through the boundaries A, C and E and leaves the
volume through the opposed boundaries B, D and F respectively. In addition, there
is an internal heat source �Qint inside the volume. Heat fluxes affect the amount
of heat in the material volume and after a small period of time �t, the temperature
changes to T1. The amount of heat �Q required to change the temperature can be
computed from the following thermodynamic relation

�Q = mCP �T = mCP (T1 − T0). (9.4)

In accordance with the energy conservation principle, this amount of heat should
match the bulk effect of various heat sources and sinks in the volume such that

�Q = �Qint + �QA − �QB + �QC − �QD + �QE − �QF, (9.5)

where �QA–�QF represents the amounts of heat that fluxed through the respective
boundaries during the period of time �t. These can be computed according to the
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Fig. 9.1 Lagrangian elementary volume considered for derivation of the respec-
tive form of the heat conservation equation. Arrows show heat flux components
responsible for heat fluxes through respective boundaries (A, B, C, D, E and F).

definition of heat fluxes as

�QA = qxA�y�z�t,

�QB = qxB�y�z�t,

�QC = qyC�x�z�t,

�QD = qyD�x�z�t,

�QE = qzE�x�y�t,

�QF = qzF�x�y�t,

(9.6)

where qxA–qzF are the heat flux components responsible for heat fluxes through
respective boundaries (Fig. 9.1).

Equating the right-hand sides of Equations (9.4), (9.5) and dividing through by
�t and the volume V = �x�y�z, we obtain the following equation for the energy
conservation in a Lagrangian volume (verify as an exercise)

m

V
CP

�T

�t
= − (qxB − qxA)

�x
− (qyD − qyC)

�y
− (qzF − qzE)

�z
+ �Qint

V �t
, (9.7a)

or in a different notation

m

V
CP

�T

�t
= −�qxBA

�x
− �qyDC

�y
− �qzFE

�z
+ �Qint

V �t
, (9.7b)

where �qxBA, �qyDC and �qzFE are the changes in respective heat fluxes between

respective points. Taking into account the relationships ρ = m

V
, and H = 1

V

DQint

Dt
,

and further assuming that �t, �x, �y and �z all tend towards zero, the differences
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in Eq. (9.7b) can be replaced by derivatives and we obtain the Lagrangian heat
conservation equation

ρCP

DT

Dt
= −∂qx

∂x
− ∂qy

∂y
− ∂qz

∂z
+ H.

9.3 Heat generation and consumption

There are several types of heat generation/consumption processes that should be
taken into account in the temperature equation

ρCP

DT

Dt
= −∂qi

∂xi

+ Hr + Hs + Ha + HL, (9.8)

where i is a coordinate index, xi is a spatial coordinate and Hr, Hs, Ha and HL are
the radioactive, shear, adiabatic and latent heat productions (W/m3), respectively.

The radioactive heat production (Hr) is due to the decay of radioactive
elements that are present in rocks. The amount of radioactive heat production
depends strongly on the type of rocks and typical, easy-to-remember values are:
2 × 10−6 W/m3 for granites, 2 × 10−7 W/m3 for basalts and 2 × 10−8 W/m3 for
mantle rocks (Turcotte and Schubert, 2002).

The shear heat production (Hs) is related to dissipation of the mechanical energy
during irreversible non-elastic (e.g., viscous) deformation and can be calculated
via the deviatoric stresses and strain rates as follows

Hs = σ ′
ij ε̇

′
ij (9.9a)

where i and j are coordinate indices (x, y, z) and the repeated ij indices denotes
summation. In the case of 3D viscous deformation of an incompressible fluid Eq.
(9.9a) becomes

Hs = σ ′
xx ε̇xx + σ ′

yy ε̇yy + σ ′
zzε̇zz + 2(σxyε̇xy + σxzε̇xz + σyzε̇yz). (9.9b)

The adiabatic heat production/consumption (adiabatic heating/cooling) is related
to changes in pressure and can be calculated via pressure changes as follows

Ha = T α
DP

Dt
, (9.10)

where
DP

Dt
is the substantive time derivative of pressure. In contrast to shear

and radioactive heating, adiabatic effects can be either positive or negative. It is
known from thermodynamics that the temperature of a substance under conditions
of no thermal exchange increases with increasing pressure and decreases with

decreasing pressure, which thus directly reflects the sign of
DP

Dt
. The effects of
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adiabatic heating can be very significant in cases of strong changes in pressure, a
fact which has implications for mantle convection.

The latent heat production/consumption (HL) is due to the phase transformations
in rocks subjected to changes in pressure and temperature. A very common type of
latent heat is the latent heat of melting, which is negative (heat sink, HL < 0) for
melting and positive (heat production, HL > 0) for crystallisation.

9.4 Simplified temperature equations

In a complete form, the temperature equation looks quite complicated, but at least
it does not ‘hide’ three equations in one in contrast to the momentum equation.
In the case of constant thermal conductivity k = const, the temperature equation
simplifies to

ρCP

DT

Dt
= k

∂2T

∂x2
+ k

∂2T

∂y2
+ k

∂2T

∂z2
+ Hr + Hs + Ha + HL (9.11a)

or,

ρCP

DT

Dt
= k�T + Hr + Hs + Ha + HL. (9.11b)

When the internal heat production is negligible and there is no advection of
material (purely conductive heat transport), the temperature equation takes a form
which is similar to the Poisson equation

∂T

∂t
= κ�T, (9.12)

where κ = k

ρCP

is thermal diffusivity (m2/sec).

If temperature does not change with time, heat conservation is described by a
steady-state temperature equation. The steady-state, Eulerian temperature equation
∂T

∂t
= 0, corresponds to the case when temperature remains constant at immobile,

Eulerian observation points, while the temperature at Lagrangian points can change.
In this case, the temperature equation is as follows,

ρCP (v̄ · grad(T )) = −∂qi

∂xi

+ Hr + Hs + Ha + HL, (9.13)

where i is a coordinate index and xi is a spatial coordinate. This form of the
equation is frequently used for computing equilibrium temperature profiles across
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a deforming medium, for example in the case of steady magma flow in a channel.

The steady-state Lagrangian temperature equation
DT

Dt
= 0 corresponds to the

case when the temperature does not change at Lagrangian points but can vary at
Eulerian observation points according to the purely advective heat transport,

∂T

∂t
+ v̄ · grad(T ) = 0. (9.14)

In this case, the temperature equation is as follows

− ∂qi

∂xi

+ Hr + Hs + Ha + HL = 0. (9.15)

The steady-state Eulerian–Lagrangian temperature equation (
∂T

∂t
= 0 and

DT

Dt
=

0) holds for the case when no displacement of the medium occurs, pressure and
temperature are constant and therefore Hs = 0, Ha = 0 and HL = 0. This equation
has the simple form

− ∂qi

∂xi

+ Hr = 0, (9.16)

and is often used for the calculation of steady-state geotherms that characterise
changes of temperature with depth in a layered sequence of rocks with variable
radioactive heat production.

Simplified steady-state temperature equations are often used for obtaining
analytical solutions which are used for testing accuracy of numerical codes
(Chapter 16). Indeed some analytical solutions also exist for more complicated
non steady-state (transient) cases (e.g. Tikhonov and Samarsky, 1972; Shukla,
2005) which will be further discussed in Chapter 16.

9.5 Heat diffusion timescales

One important aspect that can be analysed analytically concerns the timescales of
heat diffusion processes. Heat generated within any region is spread by conduction
(i.e. diffused) on a characteristic timescale (tdiff) that depends on the width L, of
the region according to

tdiff = L2

κ
. (9.17)

Therefore, the duration of heat dissipation via conduction grows as the square of
the width (L) of the region. For instance, although the shear heat produced within a
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Fig. 9.2 Timescales for different thermal regimes calculated according to the equa-
tion tdiff = L2/κ with κ = 10−6 m2/s. Shaded areas show length and timescales
characteristic of collisional orogens (Burg and Gerya, 2005).

100 metre wide shear zone dissipates in only ∼1000 yr, the heat generated within a
1 km wide shear zone requires about 100 000 yr for the similar degree of conductive
cooling (Fig. 9.2).

Analytical exercises

Exercise 9.1
Integrate Equation (9.16) in order to calculate the steady-state temperature profile
across the continental crust with radioactive heat production Hr = 1 × 10−6 W/m3,
if the temperature at the surface is 300 K and temperature at the bottom of the crust
is 700 K. Take the thermal conductivity of the crust to be k = 2 W/(m K).

Exercise 9.2
Compute from Eq. (9.13) the steady-state Eulerian temperature profile across the
magmatic channel described in Exercise 5.1 (Fig. 5.2). Assume the temperature
at the channel walls, as well as the temperature gradient along the channel to be

constant. Use T0 = 1300 K and
∂T

∂y
= 1 K/m for the analysed horizontal section

across the channel. Take the thermal conductivity to be k = 2 W/(m K) and the
isobaric heat capacity as CP = 1000 J/(kg K).
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x

j j+1
(a)

(b)
j

vx(i , j )

σxy (i , j )

vy(i , j)ηs(i , j )

ηn(i , j )

i+1

i

i

εxy (i , j )
•

εxx (i , j )
•

σxx (i , j )′

y

Fig. 9.3 Stencils used for the discretisation of the shear (a) and normal (b) strain
rates and the deviatoric stress components. Indexing of gridlines corresponds to
the basic (density) nodal points. Indexing of different unknowns is made according
to Fig. 7.15.

Programming exercises and homework

Exercise 9.3
Use the variable viscosity model (Exercise 7.2) to compute the strain rate compo-
nents and deviatoric stress components as follows (Fig. 9.3)

ε̇xy(i,j ) = 1

2

(
vx(i,j ) − vx(i−1,j )

�y
+ vy(i,j ) − vy(i,j−1)

�x

)
, (9.18)

σxy(i,j ) = 2ηs(i,j )ε̇xy(i,j ), (9.19)

ε̇xx(i,j ) = vx(i−1,j ) − vx(i−1,j−1)

�x
, (9.20)

σ ′
xx(i,j ) = 2ηn(i,j )ε̇xx(i,j ). (9.21)

Compute the σ ′
xx ε̇xx term for the internal basic nodes (see the solid rectangle

in Fig. 9.3(a)) by averaging its values computed at the four surrounding pressure
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nodes (see open circle in Fig. 9.3(b)). Compute and visualise (pcolor) the shear
heating distribution (log values) for all internal basic nodes by using the following
equation based on Eq. (9.9)

Hs = 2σ ′
xx ε̇xx + 2σxyε̇xy. (9.22)

Eq. 9.22 is valid for an incompressible medium in 2D (ε̇′
xx = ε̇xx = −ε̇′

yy =
−ε̇yy , σ ′

xx = −σ ′
yy).

An example is in Shear_heating.m.

Exercise 9.4
Compute the adiabatic heating for the same buoyancy driven flow using the fol-
lowing approximate formula derived from Eq. (9.10) under the assumption that
DP

Dt
≈ ∂P

∂y
vy ≈ ρgyvy ,

Ha = T αvyρgy. (9.23)

Use T = 1300 K and α = 3 × 10−5 1/K and compute the adiabatic heating for the
internal basic nodes (see solid rectangle in Fig. 9.3(a)). Interpolate the vy velocity
component for these nodes from the two nearest staggered vy-nodes (see grey
circles in Fig. 9.3(a)). Compare the magnitudes of the shear and adiabatic heating.
Sum up the shear and adiabatic heating terms and visualise the results.

An example is in Shear_adiabatic_heating.m.
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Numerical solution of the heat
conservation equation

Theory: Discretisation of the heat conservation equation with finite
differences. Conservative and non-conservative discretisation schemes.
Explicit and implicit solution schemes of the heat conservation equation.
Advective terms: upwind differences, numerical diffusion. Advection
of temperature with markers. Subgrid diffusion. Thermal boundary con-
ditions: constant temperature, constant heat flux, combined boundary
conditions. Numerical implementation of thermal boundary conditions.
Exercises: Programming various thermal boundary conditions. Solving
the heat conservation equation in the case of constant and variable ther-
mal conductivity with explicit and implicit solution schemes. Advecting
temperature with Eulerian schemes and markers.

10.1 Explicit and implicit formulation of the temperature equation

We now start with the numerical formulation and solution of the temperature
equation. Discretisation of this equation with finite differences can be done in
an explicit and an implicit manner. In order to understand the differences, let us
consider an example of heat diffusion in a non-deforming medium with constant
thermal conductivity (k)

∂T

∂t
= k

ρCP

�T . (10.1)

In 2D, this discretisation is as follows.
Explicit FD (Fig. 10.1):

T n
3 − T o

3

�t
= k

ρCP

(
T o

1 − 2T o
3 + T o

5

�x2
+ T o

2 − 2T o
3 + T o

4

�y2

)
. (10.2)

133
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Fig. 10.1 Stencil of the 2D grid used for an explicit discretisation of the temperature
equation with constant thermal conductivity.

This form is called explicit because the new temperature (Tn) at the next time instant
tn can be explicitly calculated from the known temperatures (To) at the current time
instant to (tn = to + �t, where �t is time step):

T n
3 = k�t

ρCP

(
T o

1 − 2T o
3 + T o

5

�x2
+ T o

2 − 2T o
3 + T o

4

�y2

)
+ T o

3 . (10.3)

The explicit formulation does not require composing and solving of a global system
of equations and is therefore very convenient to program. However, this formulation
has a strong limitation on the time step that can be used in the calculations. The
time step must satisfy,

�t <
�x2

3κ
, (10.4)

where κ = k

ρCP

is thermal diffusivity and �x is the minimum grid spacing. This

limitation means that the number of time steps increases as the square of the
decrease in the grid spacing, which can be quite inconvenient for high-resolution
thermal models. If larger time steps are indeed employed, numerical oscillations
occur that increase with the number of time steps (Fig. 10.2, see also program
example Explicit_implicit_1D.m).

The implicit finite-difference discretisation is given by (Fig. 10.3):

T n
3 − T o

3

�t
= k

ρCP

(
T n

1 − 2T n
3 + T n

5

�x2
+ T n

2 − 2T n
3 + T n

4

�y2

)
. (10.5)

This form is called implicit because the new temperature (Tn) for the next time
instant tn cannot be explicitly calculated from the temperatures (To) known from
the current time instant. In order to obtain new temperatures, the global system of
equations written for all points of the model has to be solved:

T n
3

�t
− k

ρCP

(
T n

1 − 2T n
3 + T n

5

�x2
+ T n

2 − 2T n
3 + T n

4

�y2

)
= T o

3

�t
. (10.6)
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Fig. 10.2 Oscillations of explicit numerical solution of Equation (10.1) due to the
use of a too large time step. An example is in Explicit_implicit_1D.m.

X

y
T 1

n T 3
n T5

n

T 2
n

T3
ο

T4
n

Fig. 10.3 Stencil of the 2D grid used for implicit discretisation of the temperature
equation with constant thermal conductivity.

It is important to mention that the implicit formulation places no limitation on the
size of the time step (in the absence of internal heat sources and advective terms).
Indeed, very large implicit time steps do not necessarily guarantee an accurate
solution (since the time derivative in Eq. (10.5) is only first-order accurate in time.

10.2 Conservative finite differences

Conservative finite-difference discretisation should be used in cases when the
heat conservation equation contains a variable thermal conductivity. Such finite
differences ensure conservation of heat fluxes between nodal points, so allowing a
correct numerical solution. In a general sense, this is analogous to the formulation of
conservative finite differences for the Stokes equation with variable viscosity, which
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Fig. 10.4 1D staggered grid used for the discretisation of the temperature equation
with variable thermal conductivity. 1, 2, 3, 4 are basic nodes (squares) of the grid
where the temperature equations are formulated. A, B, C are additional nodes
(circles) of the grid where the heat fluxes are defined.

was described in Chapter 7. Below, examples of non-conservative and conservative
finite differences are compared for the 1D heat conservation equation (Fig. 10.4)

ρCP

DT

Dt
= −∂qx

∂x
,

where qx = −k
∂T

∂x
.

An erroneous non-conservative FD formulation of the heat flux terms, in either
the explicit or the implicit formulation, for the two basic nodes 2 and 3 can for
example be obtained (we can ‘arrive’ at this equation by assuming erroneously
that all we need to do is to use Eq. 10.5 and put different thermal conductivity for
different nodes):

node 2:

(
∂q

∂x

)
2

= −k2
(T3 − T2) /�x2 − (T2 − T1) /�x1

(�x1 + �x2)/2
(10.7a)

node 3:

(
∂q

∂x

)
3

= −k3
(T4 − T3) /�x3 − (T3 − T2) /�x2

(�x2 + �x3)/2
, (10.7b)

which implicitly means that the formulations of the horizontal heat flux qxB for
temperature equations at nodes 2 and 3 are different due to the different thermal
conductivities k2 and k3:

node 2: qxB = −k2
T3 − T2

�x2

node 3: qxB = −k3
T3 − T2

�x2
.

This implies that heat flux is not conserved and artificially ‘jumps’ between basic
nodes in response to the difference in the thermal conductivity at these nodes.

On the other hand, a proper conservative FD formulation of the heat flux term
in either the explicit or implicit temperature equations for the two basic nodes 2
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and 3 is given by

node 2:

(
∂q

∂x

)
2

= 2
qxB − qxA

(�x1 + �x2)
or

(
∂q

∂x

)
2

= −kB (T3 − T2) /�x2 − kA(T2 − T1)/�x1

(�x1 + �x2)/2
, (10.8a)

node 3:

(
∂q

∂x

)
3

= 2
qxC − qxB

(�x2 + �x3)
or

(
∂q

∂x

)
3

= −kC (T4 − T3) /�x3 − kB(T3 − T2)/�x2

(�x2 + �x3)/2
, (10.8b)

which imply that the expressions for heat flux qxB at nodes 2 and 3 are identical:

qxB = −kB
T3 − T2

�x2
.

Thus, a conservative FD formulation of the temperature equation (either explicit
or implicit) is based on the following three formal rules that are analogous
to the rules discussed in Chapter 7 for the Stokes equation with variable
viscosity.

(1) The temperature equation is initially discretised in term of heat fluxes at basic nodes
of the grid (cf. nodes 2, 3, Fig. 10.4),

node 2:

(
ρCP

DT

Dt

)
2

= 2
qxB − qxA

(�x1 + �x2)
,

node 3:

(
ρCP

DT

Dt

)
3

= 2
qxC − qxB

(�x2 + �x3)
.

(2) These heat fluxes are formulated for additional (heat flux) nodes of the grid (cf. nodes
A, B, C, Fig. 10.4)

node A: qxA = −kA
T2 − T1

�x1
,

node B: qxB = −kB
T3 − T2

�x2
,

node C: qxC = −kC
T4 − T3

�x3
.

Note that we have to use thermal conductivity values kA, kB and kC for the additional
nodes (A, B, C) at the locations where the heat fluxes are defined. If these values are
not known, they can be computed by e.g. arithmetic averaging of known thermal
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conductivity values from the basic nodes (1, 2, 3, 4)

kA = k1 + k2

2
,

kB = k2 + k3

2
,

kC = k4 + k3

2
.

Another possibility is to use harmonic averaging

kA = 2k1k2

k1 + k2
,

kB = 2k2k3

k2 + k3
,

kC = 2k3k4

k3 + k4
.

The harmonic average formula can be derived from the condition that the heat flux
to the left of the additional nodes must equal the flux to the right of these nodes. The
derivation for node B is done under the assumption that the thermal conductivities
between nodes 2 and B, and between B and 3 remain constant, and are equal to k2

and k3, respectively. Then the following equation can be formulated,

qxB = −2k2
TB − T2

�x2
,

qxB = −2k3
T3 − TB

�x2
,

qxB = −kB
T3 − T2

�x2
.

Solving these equations with respect to TB and kB gives (please verify as an
exercise)

TB = T2k2 + T3k3

k2 + k3
and kB = 2k2k3

k2 + k3
.

Derivations for nodes A and C can be done similarly (please verify as an exercise).

(3) Identical formulations of heat fluxes are used for the temperature equation at different
basic nodes.

It is important to mention that conservative finite differences are formulated
in terms of the thermal conductivity (k) and not in terms of the thermal diffusivity

κ = k

ρCP

, otherwise one can obtain artificial variations in heat fluxes due to spatial
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Fig. 10.5 Stencil of a 2D grid used for the implicit discretisation of the Lagrangian
temperature equation with variable thermal conductivity. The crossed square
corresponds to the node for which the temperature equation is formulated.

variations in density (ρ) and/or heat capacity (CP). Both density and heat capacity
should always be taken from the basic node on which this equation is formulated.

By applying these rules in 2D, the following conservative implicit FD formula-
tion can be derived for the Lagrangian temperature equation (Fig. 10.5)

ρ3CP3

(
DT

Dt

)
3

= −
(

∂qx

∂x

)
3

−
(

∂qy

∂y

)
3

+ H3, (10.9a)

ρ3CP3

T n
3 − T o

3

�t
= −2

qxB − qxA

�x1 + �x2
− 2

qyD − qyC

�y1 + �y2
+ H3, (10.9b)

ρ3CP3

T n
3

�t
+ 2

qxB − qxA

�x1 + �x2
+ 2

qyD − qyC

�y1 + �y2
= H3 + ρ3CP3

T o
3

�t
, (10.9c)

where

qxA = −kA

(
T n

3 − T n
1

)
�x1

,

qxB = −kB

(
T n

5 − T n
3

)
�x2

qyC = −kC

(
T n

3 − T n
2

)
�y1

,

qyD = −kD

(
T n

4 − T n
3

)
�y2

.
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Fig. 10.6 Stencil of a 2D grid used for the explicit discretisation of the advective
term for the Eulerian temperature equation.

If values of thermal conductivity for heat flux nodes (A, B, C, D) are not known,
they can be computed by averaging known thermal conductivity values from the
basic nodes (cf. black squares in Fig. 10.5). For example,

arithmetic average: kA = k1 + k3

2
, kB = k3 + k5

2
, kC = k2 + k3

2
, kD = k3 + k4

2
;

harmonic average: kA = 2k1k3

k1 + k3
, kB = 2k3k5

k3 + k5
, kC = 2k2k3

k2 + k3
, kD = 2k3k4

k3 + k4
.

Obviously, conservative 2D formulations can also be explicit (derive as an
exercise).

10.3 Advection of temperature with Eulerian methods

If the temperature equation is solved in an Eulerian form for a deforming/moving
medium, then the advective term �v · grad(T ) is present in the temperature
equation

ρCP

(
∂T

∂t
+ �v · grad(T )

)
= −∂qi

∂xi

+ H. (10.10)

where i is a coordinate index and xi is a spatial coordinate, and it should be
included in the FD formulation. When discretising this term, explicit finite dif-
ferences are typically used, based on temperature and velocity at the current time
instant. A common approach is to use asymmetric ‘upwind’ differences (Chapter 8),
i.e. to perform the differencing against the direction of material flow vector
(Fig. 10.6)

v̄3 · grad(T )3 = vx3

(
∂T

∂x

)
3

+ vy3

(
∂T

∂y

)
3

. (10.11)
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Explicit upwind differences are then as follows

v̄o
3 · grad(T )3 = vo

x3

(
∂T o

∂x

)
3

+ vo
y3

(
∂T o

∂y

)
3

, (10.11a)

(
∂T o

∂x

)
3

= T o
3 − T o

1

�x1
when vo

x3 > 0 and

(
∂T o

∂x

)
3

= T o
5 − T o

3

�x2
when vo

x3 < 0,

(10.11b)(
∂T o

∂y

)
3

= T o
3 − T o

2

�y1
when vo

y3 > 0 and

(
∂T o

∂y

)
3

= T o
4 − T o

3

�y2
when vo

y3 < 0.

(10.11c)

Such explicit advection terms are simply added to the right-hand side of the tem-
perature equation (10.9).

It should be mentioned that advective terms can also be formulated implic-
itly. Indeed, irrespective of the formulation these terms always introduce artificial
numerical diffusion of temperature on the Eulerian grid (Chapter 8). This problem
is not relevant for slow flow because real physical diffusion is typically faster than
numerical diffusion and the latter can be neglected. Numerical diffusion, however,
becomes relevant for models with rapid advection (e.g. in subduction models). This
problem can be minimised by: (i) using more complicated, higher-order Eulerian
advection FD schemes (Chapter 8) and (ii) advecting temperature with Lagrangian
points (method of characteristics, method of markers) which will be discussed
below. Including advective terms in the temperature equations imposes an addi-
tional restriction on the time step given by the Courant criteria (Eq. 8.5).

10.4 Advection of temperature with markers

In order to avoid numerical diffusion of temperature one can use the Lagrangian
form of heat conservation equation (Chapter 9) and advect temperature with the
marker-in-cell technique described in Chapter 8. The temperature equation is then
formulated in a Lagrangian form

ρCP

DT

Dt
= −∂qi

∂xi

+ H, (10.12)

and is discretised with Eq. (10.9).
After solving the Lagrangian temperature equation on the Eulerian nodes

(Fig. 10.5) the changes in the effective temperature field for the Eulerian nodes are
calculated as

�Ti,j = T t+�t
i,j − T t

i,j . (10.13)
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(a)

(b)

Fig. 10.7 Temperature structure of the markers for a zoomed-in area of the numer-
ical model of convection (Gerya and Yuen, 2003a). Different colours of markers
correspond to different values of temperature assigned to the markers. T1 and T0
are the maximal and minimal temperatures for the experiment. (a) and (b) show
the results calculated without (d = 0) and with (d = 1) subgrid diffusion (see
Eq. 10.16), respectively.

The corresponding temperature increments for the markers �Tm, are then interpo-
lated from the nodes using relation 8.20 (Fig. 8.9) in order to calculate new marker
temperatures T t+�t

m as

T t+�t
m = T t

m + �Tm. (10.14)

The interpolation of the calculated temperature changes from the Eulerian nodal
points, to the Lagrangian markers reduces numerical diffusion in an efficient man-
ner (Chapter 8). This method does not produce any smoothing of the temperature
distribution between adjacent markers (Fig. 8.11), thus resolving the thermal struc-
ture of a numerical model in much finer details.

However, a main problem with treating advection-diffusion processes using the
simple incremental update scheme of Eq. (10.14) is that small-scale variations of
the thermal structures may appear on a subgrid scale (i.e. differences in tempera-
ture between closely located markers). These variations cannot be damped out by
the grid-scale corrections of Eq. (10.14). For example, in the case of strong chaotic
mixing of markers (e.g. due to thermal convection), Eq. (10.14) may produce
numerical oscillations of thermal field assigned to the adjacent markers (Fig. 10.7a).
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These oscillations do not damp out with time based on a characteristic heat dif-
fusion timescale as would be the case if physical diffusion was active. The intro-
duction of a consistent subgrid diffusion operation is the way around this. In
order to define this operation, we decompose temperature changes computed from
Eq. 10.13 into a subgrid part �T

subgrid
i,j and a remaining part �T

remaining
i,j such

that

�Ti,j = �T
subgrid
i,j + �T

remaining
i,j . (10.15)

In order to compute the subgrid part, we apply subgrid diffusion on the markers over
a characteristic local heat diffusion timescale �tdiff (Fig. 9.2) and then interpolate
the respective temperature changes back to nodes. Subgrid temperature changes on
markers are then computed as follows

�T subgrid
m = (

T t
m(nodes) − T t

m

) [
1 − exp

(
−d

�t

�tdiff

)]
(10.16)

�tdiff = CPm
ρm

km(2/�x2 + 2/�y2)

where �tdiff is defined for the corresponding cell of the grid where the marker is
located (Fig. 8.9); d is a dimensionless numerical diffusion coefficient (one can
use empirical values in the range of 0 ≤ d ≤ 1). T t

m(nodes), CPm, ρm and km are
interpolated for a given marker, respectively, from T t

i,j , CP(i,j), ρ(i,j) and k(i,j) values
for nodes using the relation (8.19) (Fig. 8.9).

After obtaining �T
subgrid
m for all markers �T

subgrid
i,j are computed by interpolation

from markers to nodes using Eq. (8.18) (Fig. 8.8)

�T
subgrid
i,j =

∑
m

�T
subgrid
m wm(i,j )∑

m

wm(i,j )
(10.17)

where

wm(i,j ) =
(

1 − �xm

�x

)
×
(

1 − �ym

�y

)
.

Then �T
remaining
i,j is computed for the nodes from Eq. (10.15)

�T
remaining
i,j = �Ti,j − �T

subgrid
i,j . (10.18)

Finally, the new corrected marker temperatures T t+�t
m(corrected) are computed according

to the modified relation (10.14) that now takes into account Equations (10.15)–
(10.18) and thus removes the non-physical subgrid oscillations

T t+�t
m(corrected) = T t

m + �T subgrid
m + �T remaining

m (10.19)
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where �T
subgrid
m is given by Eq. (10.16) and �T

remaining
m is interpolated from

nodal values of �T
remaining
i,j to markers according to standard bilinear interpolation

(Eq. (8.19), Fig. 8.9).
Equation (10.16) requires the decay of differences between marker temperature

values T t
m and interpolated nodal temperature values T t

m(nodes) on the characteristic
timescale (�tdiff) of local heat diffusion. It is important to emphasise that the subgrid
diffusion does not change the total temperature increments �Ti,j computed on nodal
points from the heat conservation equation. Instead it splits them into two parts
�T

subgrid
i,j and �T

remaining
i,j . By introducing a subgrid diffusion operation, unrealistic

subgrid oscillations are removed (see Fig. 10.7(b)) over the characteristic local
heat diffusion timescale without affecting the accuracy of numerical solution of
the temperature equation. Realistic subgrid oscillations will, however, be preserved
by this scheme if they are related, for example, to the rapid mixing by advection
dominating flows.

It is also important to mention that subgrid diffusion is a method for correcting
small non-physical subgrid oscillations that appear on the markers due to mechani-
cal mixing processes. It is not the way to remove any arbitrary discrepancy between
the marker and nodal temperature fields. Such discrepancies can appear, for exam-
ple, due to prescribing sharp temperature fronts on a fine marker grid which cannot
be properly resolved by a coarse nodal grid. Big initial temperature discrepancies
between markers and nodes should always be eliminated by re-interpolation of the
initial nodal temperatures (with applied boundary conditions) back to markers with
the use of Eq. (8.19) before making the first time step.

10.5 Thermal boundary conditions

In order to solve the temperature equation numerically, thermal boundary con-
ditions have to be specified. These conditions depend on the type of numer-
ical problem. The following boundary conditions are frequently used in geo-
modelling:

(1) constant temperature
(2) insulating boundary (zero heat flux, symmetry condition)
(3) constant heat flux
(4) infinity-like conditions (external constant temperature)
(5) periodic boundary
(6) combined boundary conditions

Numerical examples of different boundary conditions are shown below
(Fig. 10.8).
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Fig. 10.8 Stencil of a 2D grid used for the discretisation of the thermal boundary
conditions.

(1) A constant temperature condition implies that the temperature at a boundary is assigned
a given value (which may change both along the boundary and in time)

T = const (x, y, z, t) (10.20a)

or in discretised form (Fig. 10.8)

T1 = const (x, y, z, t) (10.20b)

This condition is typically applied at the lower and upper boundaries of geodynamic
models.

(2) An insulating boundary condition (no heat flux, lateral symmetry condition) means
that heat does not flux through a boundary which implies (from Eq. (9.1)) that no
temperature gradient exists across this boundary, i.e.

qx = −k
∂T

∂x
= ∂T

∂x
= 0, (10.21a)

or in discretised form (Fig. 10.8)

T1 − T2 = 0. (10.21b)

The symmetry condition is used at the lateral boundaries for almost every 2D and 3D
Cartesian geodynamic model.

(3) A constant heat flux condition does not limit the temperature values at a boundary, but
prescribes a heat flux across the boundary (this heat flux can be time and coordinate
dependent)

qx = −k
∂T

∂x
= const(x, y, z, t), (10.22a)

or in discretised form (Fig. 10.8)

kA
T1 − T2

�x
= const(x, y, z, t). (10.22b)

(4) Infinity-like conditions either mimic the absence of a thermal boundary or imply that
this boundary is located very far away. For example, the external constant temperature
condition (Burg and Gerya, 2005; Gerya et al., 2008b) implies that condition (10.20a)
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and (10.20b) are satisfied at a parallel boundary located at the distance �L from the
actual boundary of the model, and that the temperature gradient between these two
boundaries is constant

∂T

∂x
= T − Texternal

�L
, (10.23a)

or in discretised form (Fig. 10.8)

T2 − T1

�x
= T1 − Texternal

�L
, (10.23b)

or

T1 − T2
�L

�L + �x
= �x

�L + �x
Texternal. (10.23c)

where Texternal = const (x, y, z, t) is the prescribed temperature at the parallel external
boundary.

(5) Periodic boundary conditions are typically established for paired parallel lateral bound-
aries of a model and imply that temperature fields at both sides of each boundary are
identical. The physical meaning and usage of this condition is the same as for the
respective mechanical boundary condition (Chapter 7).

(6) Combined conditions represent a mixture of several types of boundary conditions.
Thermal boundary conditions can also be applied inside the model.

Programming exercises and homework

Exercise 10.1
Write a program to solve the temperature equation in 2D, in both explicit and
implicit form (Figs. 10.1 and 10.3, respectively). Use a regular grid of 51 × 31
points. The model size is 1000 × 1500 km (i.e. 1 000 000 × 1 500 000 m). Use
constant thermal conductivity k = 3 W/m/K, density ρ = 3200 kg/m3 and heat
capacity CP = 1000 J/kg/K for the entire model. Test Eq. (10.4) for the time step
limitation in the case when explicit FD are used. The initial setup corresponds to
background temperature of 1000 K with a rectangular thermal wave (1300 K) in
the middle (‘wave’ means perturbation of the temperature field). Global indexing
of the unknowns in the implicit case is the same as for the 2D Poisson equation
(Exercise 3.2)

k = Ny × (j − 1) + i, (10.24)

where k is the index in the global matrix computed from horizontal (j) and vertical
(i) geometrical indices and Ny is the number of nodes in the vertical direction.

Try using constant temperature (1000 K, Eq. (10.20)), and insulating bound-
ary conditions (Eq. (10.21)) at all boundaries. An example is in Explicit_
Implicit2D.m.
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Exercise 10.2
Modify the previous example to take into account variable thermal conductivity
using a conservative finite-difference formulation (Eq. (10.9), Fig. 10.5) for a
uniform grid (i.e. �x1 = �x2 = �x and �y1 = �y2 = �y in Eq. (10.9))

ρ3CP 3
T n

3

�t
− (k3 + k5)

(
T n

5 − T n
3

)− (k1 + k3)
(
T n

3 − T n
1

)
2�x2

− (k3 + k4)
(
T n

4 − T n
3

)− (k2 + k3)
(
T n

3 − T n
2

)
2�y2

= H3 + ρ3CP 3
T o

3

�t
.

(10.25)
Use different physical properties for the area of the temperature wave (k =
10 W/m/K, ρ = 3300 kg/m3, CP = 1100 J/kg/K) and the surrounding medium
(k = 3 W/m/K, ρ = 3200 kg/m3, CP = 1000 J/kg/K). An example is in Variable_
conductivity.m.

Exercise 10.3
Modify the two previous examples by adding the advective terms into the tem-
perature equation (Eq. (10.11)) and by using a uniform velocity field vx = 10−9

m/s and vy = 10−9 m/s in the entire model. Test Eq. (8.5) for the time step lim-
itation in 1D and refine it for 2D. Experiment with different velocities to see
advection- and conduction-dominated regimes. Observe that the numerical dif-
fusion which is clearly visible when the chosen velocity is large (e.g. vx = 10
m/s and vy = 10 m/s). In this case, the timescale for the experiment will be far
below the characteristic thermal diffusion timescale (compute it by using a pre-
scribed size of the wave and a total time in your experiment, Eq. (9.17), Fig.
9.2) and thus the moving temperature wave should remain largely unchanged.
Examples are in Conduction_advection2D.m and Variable_conductivity_
advection2D.m.

Exercise 10.4
Modify Exercise 10.2 by adding temperature advection with a marker-in-cell
approach combined with subgrid diffusion (Eqs. (10.14)–(10.19)). Use an implicit
solution of the Lagrangian temperature equation (10.12). Use marker routines
from Exercises 8.4 and 8.5. Interpolate density, heat, capacity and temperature
from markers to nodes at every time step using Eq. (8.18). Move the markers with
the prescribed constant velocity and recycle them when they leave the model. Use
Eqs. (8.21a,b) for both the horizontal and vertical coordinates of the markers. Do
not forget to match nodal and marker temperature fields before starting calcula-
tions (e.g. interpolate the nodal temperature back to the markers after performing
interpolation of nodal temperature from markers for the first time). Also do not
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forget to apply the boundary conditions for the nodal temperatures interpolated
from the markers at every time step. Experiment with different velocities to see
advection- and conduction-dominated regimes. Compare these results with Exer-
cise 10.3 for the case when the chosen velocities are large, both without (d = 0 in
Eq. (10.16)) and with (d = 1 in Eq. (10.16)) subgrid diffusion. An example is in
Variable_conductivity_markers2D.m.
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2D thermomechanical code structure

Theory: Principal steps of a coupled thermomechanical solution with
finite-differences and marker-in-cell techniques. Organisation of a ther-
momechanical code for the case of viscous, multi-component flows.
Adding self-gravity. Handling free planetary surfaces with a weak layer
approach.
Exercises: Building a 2D thermomechanical code.

11.1 What do we expect from geodynamic codes?

Before describing possible structures for thermomechanical codes, let us discuss
what we actually expect from a state-of-the-art, numerical geodynamic modelling
tool. Today, as numerical modelling of geodynamic and planetary processes is in the
‘new millennium’ (although it is only around 40 years old, see Introduction), geo-
scientists are targeting modelling of realistic situations in lithospheric, mantle and
planetary dynamics (e.g. Gerya and Yuen, 2007; Moresi et al., 2008; Zhong et al.,
2007; Tackley, 2008). The rheology of crustal and mantle rocks depends strongly
on the temperature, strain-rate, volatile content, grain size and the fluid pressure.
Physical and dynamical circumstances imposed by the sharply varying viscosity
represent a major challenge for solving the momentum equation in geodynamics,
unlike those found in the oceanographic or atmospheric sciences. Another compli-
cation is due to the variable thermal conductivity in the heat conservation equation.
The thermal conductivity of various crustal and mantle rocks is notably differ-
ent and is also a strong function of temperature, pressure and mineralogy which
causes numerical difficulties compared to the constant thermal conductivity situ-
ation. Finally, all physical (transport) properties of rocks, including viscosity and
conductivity, vary strongly with chemical composition and/or mineralogy. In vari-
ous geodynamic situations, these result in sharp fronts involving multi-component

149
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flows (i.e. flows composed of many rock types with contrasting compositions
and physical properties). Therefore, from a general geophysical standpoint, we
should consider at least three important elements for modelling these kinds of
flows:

(1) the ability to conserve stresses under conditions that involve sharply discontinuous
viscosity distributions;

(2) the ability to conserve heat fluxes under conditions that involve sharply varying con-
ductivity and temperature gradients at the thermal or chemical layers with temperature-
dependent conductivity;

(3) the ability to conserve transport properties, such as temperature field, chemical species,
viscosity and density in flows with a strong advection character.

11.2 Thermomechanical code structure

Since we want to address all above requirements in our state-of-the-art ‘all-in-
one’ thermomechanical code, let us discuss in detail how this can be achieved by
using a marker-in-cell algorithm, combined with a conservative finite-differences
for primitive variable (pressure–velocity) formulation. The code structure should
reflect the physical relations of momentum, continuity, temperature and advection
equations. For example, the temperature equation requires values of adiabatic
and shear heating that are computed from the velocity, pressure, stress and strain
rate fields. Therefore, the temperature equation can only be solved after solving
the momentum and continuity equations. On the other hand, the momentum and
continuity equations have to be solved simultaneously to obtain values for velocity,
that are present in both equations. The advection equation requires a velocity
field and should thus also be solved after solving the momentum and continuity
equations.

The flow chart in Fig. 11.1 gives an example of a structure for a numerical,
thermomechanical viscous 2D code that uses finite-differences and the marker-
in-cell technique (FD+MIC) to solve the momentum, continuity and temperature
equations. The principal steps of the algorithm are as follows:

(1) Calculating the scalar physical properties (ηm, ρm, αm, CPm, km, etc.) for each marker
and interpolating these properties, as well as advected temperature from the mark-
ers to Eulerian nodes (Chapters 8, 10). Applying boundary conditions for the nodal
temperatures interpolated from markers.

(2) Solving the 2D momentum and continuity equations with a pressure–velocity formu-
lation on a staggered grid by composing and inverting the global matrix with a direct
method, which is used because of its stability and high accuracy (Chapter 7).

(3) Defining an optimal displacement time step �tm for markers (typically limiting maxi-
mal displacement to 0.01–1.0 of minimal grid step) based on the velocity field computed
in Step 2 (Chapter 8).
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Fig. 11.1 Flow chart that gives an example of a possible structure of a numer-
ical thermomechanical viscous 2D code which employs finite-differences and
marker-in-cell technique (FD + MIC) for solving the momentum, continuity and
temperature equations. (Gerya and Yuen, 2003a).

(4) Calculating the shear and adiabatic heating terms Hs(i, j ) and Ha(i, j ) at the Eulerian
nodes (Chapter 9).

(5) Defining an optimal time step �t for the temperature equation. We take the smallest
time step of three time step limiters: given absolute time step limit; given optimal
marker displacement time step limit (see Step 3); given absolute nodal temperature
change limit (typically 1–20 K) (Chapter 10).

(6) Solving the temperature equation in a Lagrangian formulation, with implicit time
stepping and a direct method (Chapter 10).

(7) Interpolating the calculated nodal temperature changes (see Step 7 at Fig. 11.1) from
the Eulerian nodes to the markers and calculating new marker temperatures (Tm) taking
into account physical diffusion on subgrid (marker) level (Chapter 10).

(8) Using a fourth-order explicit Runge–Kutta scheme (Chapter 8) in space to advect all
markers throughout the mesh according to the globally calculated velocity field v (see
Step 2). Returning to Step 1 to perform the next time step.

Figure 11.2 shows the geometry of an irregularly spaced, fully staggered numerical
grid corresponding to the algorithm outlined above. The irregularly spaced grid is
extremely useful in handling geodynamic situations with localisation phenomena
and multiple-scale features which will be further discussed in Chapters 16 and
17. Note that by doing the programming exercises for previous chapters we have
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Fig. 11.2 Staggered 2D, irregularly spaced numerical grid corresponding to the
algorithm presented in Fig. 11.1.

already implemented (surprise, surprise . . . ) one-by-one all steps of the above
computational algorithm and we will now discuss in full detail how to connect
these separate steps in order to create a state-of-the-art code out of our ‘embryonic’
2D codes. Additional explanations for some of the algorithmic steps are given
below.

Step 1: Interpolation of scalar properties from markers to nodes

According to our algorithmic approach, the temperature field and the rock type are
represented by values assigned for the multitude of markers initially distributed on
a fine regular marker mesh with a small (≤ 1/2 marker grid distance) random dis-
placement. Other scalar properties such as density, viscosity, thermal conductivity
etc. are computed for each marker at every time step in accordance to the rock type
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associated with each marker. This approach allows us to minimise the amount of
storage associated with markers to only 3 floating point values (two coordinates
and temperature) and one integer (rock type). The amount of different rock types in
one experiment is typically limited to few tens at most. There are several equations
(rheology, density, etc.) associated with each rock type which allow us to compute
various properties for a marker of a given type, based on the local temperature
and pressure at this marker. The effective values of all these properties at the
Eulerian nodal points are computed from the markers at each time step by using a
bilinear interpolation (Eq. (8.18)). Note that viscosity for shear (ηs) and normal (ηn)
stresses is interpolated separately (Fig. 11.2) by using a local interpolation scheme
that takes into account markers found within half a grid spacing distance from
the nodes, in both the horizontal and vertical directions (see dashed boundary in
Fig. 8.8). The statistical weights of these markers thus vary from 0.25 to 1 (one
can also renormalise these weights to vary from 0 to 1). The local interpolation
of viscosity allows for a more accurate solution of the momentum equation in the
case of a strongly variable viscosity (Gerya and Yuen, 2007; Schmeling et al.,
2008). All other properties are interpolated to the basic nodes (cf. solid squares
in Fig. 11.2) using a standard scheme that involves markers found in the four
grid cells around each node (Fig. 8.8, Eq. (8.18)). In cases when we require a
more accurate solution of the temperature equation, for example under the con-
dition of a strongly variable thermal conductivity, localised interpolation schemes
from markers should also be used for the thermal conductivity k that will be com-
puted separately for the different heat flux nodes (see solid and open circles in
Fig. 11.2). Thermal boundary conditions should be applied to the obtained nodal
values after interpolating the temperature from markers. This precludes accumulat-
ing an interpolation error which will otherwise grow along the model boundaries
as the number of time steps increases.

We use a standard, first-order-accurate bilinear interpolation procedure that
involves four nodal points (Fig. 8.9, Eq. (8.19)) for the reverse problem of inter-
polating scalar properties (including calculated temperature changes), vectors and
tensors from the corresponding Eulerian nodal points (see different types of Eule-
rian nodes in Fig. 11.2), back to the markers and other geometric points (e.g.
other nodes). Equation (8.19) is used uniformly, for interpolating velocity, stresses,
strain rates, pressure, temperature and other properties from nodal points to mark-
ers. Since our staggered grid represents, in fact, the superposition of four simple
rectangular grids corresponding to different scalar fields, vectors and tensors (see
four different symbols for grid points in Fig. 10.2), these Eulerian grids are used
individually for interpolating the respective field variables. Defining the indices
of the four nodal points that surround a given marker is done on the basis of the
bisection procedure (Fig. 8.10).
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Step 2: Solving the momentum and continuity equations

In 2D, we have two Stokes equations of slow, viscous incompressible flow in a
uniform gravity field

x-Stokes equation
∂σ ′

xx

∂x
+ ∂σxy

∂y
− ∂P

∂x
= −ρgx, (11.1)

y-Stokes equation
∂σ ′

yy

∂y
+ ∂σyx

∂x
− ∂P

∂y
= −ρgy, (11.2)

σ ′
xx = 2η ε̇xx,

σ ′
yy = 2η ε̇yy,

σxy = σyx = 2η ε̇xy,

ε̇xx = ∂vx

∂x
,

ε̇yy = ∂vy

∂y
,

ε̇xy = 1

2

(
∂vx

∂y
+ ∂vy

∂x

)
.

Since by definition σ ′
yy = −σ ′

xx and for incompressible fluid ε̇yy = −ε̇xx in 2D, we
can also avoid any nodal storage for σ ′

yy and ε̇yy and re-formulate Eq. (11.2) in a
different form

− ∂σ ′
xx

∂y
+ ∂σxy

∂x
− ∂P

∂y
= −ρgy. (11.2a)

The conservation of mass is given by the incompressible, 2D continuity equation

∂vx

∂x
+ ∂vy

∂y
= 0. (11.3)

We use the standard procedure described in Chapter 7 (Figs. 7.11, 7.12,
Eqs. 7.5, 7.6) for the formulation of FD schemes to represent the momentum
equations (11.1) and (11.2) in a conservative form.

The x-Stokes equation is formulated for the horizontal velocity node vx(i+1/2,j )(
∂σ ′

xx

∂x

)
i+1/2,j

+
(

∂σxy

∂y

)
i+1/2,j

−
(

∂P

∂x

)
i+1/2,j

= − (ρgx)i+1/2,j , (11.4)

or in FD representation

2
σ ′

xx(i+1/2,j+1/2) − σ ′
xx(i+1/2,j−1/2)

xj+1 − xj−1
+ σxy(i+1,j ) − σxy(i,j )

yi+1 − yi

− 2
P(i+1/2,j+1/2) − P(i+1/2,j−1/2)

xj+1 − xj−1
= −ρ(i,j ) + ρ(i+1,j )

2
gx
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where

σxy(i,j ) = 2ηs(i,j )

(
vx(i+1/2,j ) − vx(i−1/2,j )

yi+1 − yi−1
+ vy(i,j+1/2) − vy(i,j−1/2)

xj+1 − xj−1

)
,

σxy(i+1,j ) = 2ηs(i+1,j )

(
vx(i+3/2,j ) − vx(i+1/2,j )

yi+2 − yi

+ vy(i+1,j+1/2) − vy(i+1,j−1/2)

xj+1 − xj−1

)
,

σ ′
xx(i+1/2,j−1/2) = 2ηn(i+1/2,j−1/2)

vx(i+1/2,j ) − vx(i+1/2,j−1)

xj − xj−1
,

σ ′
xx(i+1/2,j+1/2) = 2ηn(i+1/2,j+1/2)

vx(i+1/2,j+1) − vx(i+1/2,j )

xj+1 − xj

,

where i, i + 1/2 and j, j + 1/2 indices denote, respectively, the vertical and horizon-
tal positions of the nodal points corresponding to the different physical parameters
(Fig. 11.2) within the staggered grid.

The y-Stokes equation is formulated for the vertical velocity node vy(i,j+1/2)(
∂σ ′

yy

∂y

)
i,j+1/2

+
(

∂σxy

∂x

)
i,j+1/2

−
(

∂P

∂y

)
i,j+1/2

= −(ρgy)i,j+1/2 (11.5)

or in FD representation

2
σ ′

yy(i+1/2,j+1/2) − σ ′
yy(i−1/2,j+1/2)

yi+1 − yi−1
+ σxy(i,j+1) − σxy(i,j )

xj+1 − xj

− 2
P(i+1/2,j+1/2) − P(i−1/2,j+1/2)

yi+1 − yi−1
= −ρ(i,j ) + ρ(i,j+1)

2
gy

where σxy(i,j ) is given above for Eq. (11.4)

σxy(i,j+1) = 2ηs(i,j+1)

(
vx(i+1/2,j+1) − vx(i−1/2,j+1)

yi+1 − yi−1
+ vy(i,j+3/2) − vy(i,j+1/2)

xj+2 − xj

)
,

σ ′
yy(i−1/2,j+1/2) = 2ηn(i−1/2,j+1/2)

vy(i,j+1/2) − vy(i−1,j+1/2)

yi − yi−1
,

σ ′
yy(i+1/2,j+1/2) = 2ηn(i+1/2,j+1/2)

vy(i+1,j+1/2) − vy(i,j+1/2)

yi+1 − yi

.

The continuity equation is formulated for the pressure node P(i−1/2,j−1/2)(
∂vx

∂x

)
i−1/2,j−1/2

+
(

∂vy

∂y

)
i−1/2,j−1/2

= 0, (11.6)

or in FD representation

vx(i−1/2,j ) − vx(i−1/2,j−1)

xj − xj−1
+ vy(i,j−1/2) − vy(i−1,j−1/2)

yi − yi−1
= 0.

After composing all equations, we invert (i.e. solve) the resulting global matrix
by an accurate, direct method in order to simultaneously solve the momentum
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equations (11.4) and (11.5) and the continuity equation (11.6), combined with any
boundary conditions for the velocity and pressure (Chapter 7). The momentum
equations (11.4) and (11.5) are solved for vx(i+1/2,j ) and vy(i,j+1/2), respectively,
while the continuity equation (11.6) is solved for P(i−1/2,j−1/2). The incompressible
continuity equation (11.6) does not initially contain P(i−1/2,j−1/2) and, as was
discussed in Chapter 7, the solution is guaranteed by the order of processing during
the inversion of the global matrix based on relating the staggered nodes (open
squares and open and solid circles in Fig. 11.2), to the basic nodes of the grid
formed by intersections of the horizontal and vertical grid lines (solid squares in
Fig. 11.2). This was explained in detail in Chapter 7 (see Figs. 7.15, 7.17).

Steps 4–7: Solving the temperature equation

In order to avoid numerical diffusion of temperature we use the Lagrangian form
of heat conservation equation and advect the temperature with markers with the
technique described in Chapter 10. The temperature equation is formulated in 2D
for the case of variable thermal conductivity and takes into account heat generation
H from variable sources including radioactive (Hr), adiabatic (Ha), shear (Hs) and
latent (HL) heat production:

ρCP

DT

Dt
= −∂qx

∂x
− ∂qy

∂y
+ Hr + Ha + Hs + HL, (11.7)

where

qx = −k
∂T

∂x
,

qy = −k
∂T

∂y
,

Hr = const,

Ha = T α
DP

Dt
= T α

(
∂P

∂x
vx + ∂P

∂y
vy

)
,

Hs = σ ′
xxε̇xx + σ ′

yyε̇yy + σxyε̇xy + σyxε̇yx = 2σ ′
xxε̇xx + 2σxyε̇xy.

This equation takes into account the adiabatic heating term, which is in some
contradiction with using the incompressible fluid approximation in the momentum
and continuity equations (Eqs. (11.1)–(11.3)). However, this is a common simpli-
fication (called the extended Boussinesq approximation) in numerical geodynamic
modelling. It is frequently adopted because of the very small thermal expansion
and compressibility of crustal and mantle rocks in the absence of phase transforma-
tions (Chapter 2). The calculation of Ha can be simplified by neglecting deviations

(which are relatively small in most cases) of the dynamic pressure gradients
∂P

∂x
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and
∂P

∂y
from ρgx and ρgy values

Ha ≈ T αρ(gxvx + gyvy).

We use a standard procedure (Fig. 10.5, Eq. (10.9)) for the formulation of a FD
scheme in order to represent the temperature equation (11.7) in a conservative form
as follows

ρi,jCP i,j

(
DT

Dt

)
i,j

= −
(

∂qx

∂x

)
i,j

−
(

∂qy

∂y

)
i,j

+ Ht
r(i,j )+Ht

a(i,j )+Ht
s(i,j )+Ht

L(i,j )

(11.8)
or in FD formulation

ρ(i,j )CPi,j

T t+�t
i,j − T t

i,j

�t
= −2

qx(i,j+1/2) − qx(i,j−1/2)

xj+1 − xj−1
− 2

qy(i+1/2,j ) − qy(i−1/2,j )

yi+1 − yi−1

+ Ht
r(i,j ) + Ht

a(i,j ) + Ht
s(i,j ) + Ht

L(i,j )

or, by grouping the known parameters on the right-hand side

ρi,jCP i,j

�t
T t+�t

i,j + 2
qx(i,j+1/2) − qx(i,j−1/2)

xj+1 − xj−1
+ 2

qy(i+1/2,j ) − qy(i−1/2,j )

yi+1 − yi−1

= ρi,jCP i,j

�t
T t

i,j + Ht
r(i,j ) + Ht

a(i,j ) + Ht
s(i,j ) + Ht

L(i,j )

where

qx(i,j−1/2) = −1

2
(ki,j−1 + ki,j )

T t+�t
i,j − T t+�t

i,j−1

xj − xj−1
,

qx(i,j+1/2) = −1

2
(ki,j + ki,j+1)

T t+�t
i,j+1 − T t+�t

i,j

xj+1 − xj

,

qy(i−1/2,j ) = −1

2
(ki−1,j + ki,j )

T t+�t
i,j − T t+�t

i−1,j

yi − yi−1
,

qy(i+1/2,j ) = −1

2
(ki,j + ki+1,j )

T t+�t
i+1,j − T t+�t

i,j

yi+1 − yi

,

H t
a(i,j ) = T t

i,jαi,jρi,j

(
vx(i−1/2,j ) + vx(i+1/2,j )

2
gx + vy(i,j−1/2) + vy(i,j+1/2)

2
gy

)
,

H t
s(i,j ) = 1

2
σ ′

xx(i−1/2,j−1/2)ε̇xx(i−1/2,j−1/2) + 1

2
σ ′

xx(i−1/2,j+1/2)ε̇xx(i−1/2,j+1/2)

+ 1

2
σ ′

xx(i+1/2,j−1/2)ε̇xx(i+1/2,j−1/2) + 1

2
σ ′

xx(i+1/2,j+1/2)ε̇xx(i+1/2,j+1/2)

+ 2σxy(i,j )ε̇xy(i,j ),
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where the index t + �t denotes values for the next time instant to be reached
by the time-stepping procedure and �t is the optimal time step (see Step 5 of
the algorithm); Ht

r(i,j ), Ht
a(i,j ), Ht

s(i,j ), αi,j , ρi,j , CP i,j , σ xy(i,j ), ε̇xy(i,j ), vx(i−1/2,j )

etc. are values of the corresponding parameters for various nodes of the staggered
grid ((Fig. 11.2): scalar properties are interpolated from the markers using relation
(8.18) (Fig. 8.8), vectors and tensors are taken from the corresponding surrounding
nodes.

To solve the temperature equation, we invert directly the global matrix with
a direct method. The matrix also contains the linear equations associated with
the thermal boundary conditions. The overall numbering of T t+�t

i,j for the global
temperature matrix that defines the order of processing of temperature equations
(11.8) is given in Exercise 10.1 (Eq. 10.24).

For advection of temperature, we use the same marker-in-cell technique
(Chapter 10) as is commonly used for advection of material field properties, such as
the density, viscosity, chemical composition etc. The interpolation of the calculated
temperature changes from the Eulerian nodal points to the moving markers reduces
numerical diffusion in an efficient manner (Chapter 10), which represents one of
the highlights of our computational strategy. This method does not produce any
smoothing of the temperature distribution between adjacent markers (Fig. 11.2, dia-
gram for step 7), thus resolving the thermal structure of a numerical model in much
finer details. Non-physical small-scale (subgrid) temperature oscillations appear-
ing on markers (Fig. 10.7(a)) in the case of strong chaotic mixing are removed
(Fig. 10.7(b)) by using a consistent subgrid diffusion operation (Eqs. (10.15)–
(10.19)).

11.3 Adding self-gravity and free surface

For the case when one wants to model the dynamics of self-gravitating planetary
bodies, the numerical algorithms presented so far can be easily modified to take
a variable gravity field and a free planetary surface into account. This is done by
solving the Poisson equation for gravity potential after computing the nodal density
field from markers, and before solving the momentum and continuity equations
(Fig. 11.3). A staggered grid corresponding to this new algorithm is shown in
Fig. 11.4.

In this grid, the gravitational potential � (Chapter 2) is defined at the cell centres
(i.e. at the pressure nodes) and computed according to the 2D Poisson equation

∂2�

∂x2
+ ∂2�

∂y2
= 4KπGρ, (11.16)
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Fig. 11.3 Flow chart representing the modified algorithm of the numerical thermo-
mechanical viscous 2D code allowing the modelling of self-gravitating planetary
bodies with a fully staggered Cartesian grid (Gerya and Yuen, 2007). Note the
new Step 2 compared to Fig. 11.1.

where G is the gravitational constant and K depends on the geometry of self-
gravitating body modelled in 2D (K = 1 and K = 2/3 stand for cylindrical and
spherical geometry, respectively). The factor K = 2/3 scales the 2D gravity field
inside a cylinder of constant density ρ

�(r)cylindrical = πGρr2, g(r)cylindrical = −∂�(r)cylindrical

∂r
= −2πGρr,

to a 3D gravity field inside a sphere of the same density

�(r)spherical = 2

3
πGρr2, g(r)spherical = −∂�(r)spherical

∂r
= −4

3
πGρr,

where r is the distance from the centre of the cylinder/sphere. It should be men-
tioned that this simplified scaling does not allow the exact reproduction of a spher-
ical gravity field in 2D. In particular, the gravitational acceleration is noticeably
overestimated outside the self-gravitating body since it is proportional to 1/r for a
cylindrical gravity field and to 1/r2 for a spherical one. Our scaling approach allows
us to capture changes in an internal gravity field that acts on a self-gravitating body
with a changing internal mass distribution (Lin et al., 2009). In many cases this is
sufficient for the purposes of modelling internal planetary processes.
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Fig. 11.4 Staggered 2D irregularly spaced numerical grid which corresponds to
the algorithm presented in Fig. 11.3.

Discretising Eq. (11.16) in 2D is rather simple and uses a 5-node stencil typical
for approximating the Poisson equation with finite differences(

∂2�

∂x2

)
i+1/2,j+1/2

+
(

∂2�

∂x2

)
i+1/2,j+1/2

= 4KπGρi+1/2,j+1/2, (11.17)

(
∂2�

∂x2

)
i+1/2,j+1/2

= 2
�i+1/2,j+3/2−�i+1/2,j+1/2

(xj+2 − xj )(xj+1 − xj )
− 2

�i+1/2,j+1/2−�i+1/2,j−1/2

(xj+1 − xj−1)(xj+1 − xj )
,

(
∂2�

∂y2

)
i+1/2,j+1/2

= 2
�i+3/2,j+1/2−�i+1/2,j+1/2

(yi+2 − yi) (yi+1 − yi)
− 2

�i+1/2,j+1/2−�i−1/2,j+1/2

(yi+1 − yi−1) (yi+1 − yi)
,

ρi+1/2,j+1/2 = 1

4
(ρi,j + ρi,j+1 + ρi+1,j + ρi+1,j+1),
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where the i, i + 1/2 and j, j + 1/2 indices denote, respectively, the horizontal
and vertical position of the nodal points corresponding to the different physical
parameters (Fig. 11.4) within the staggered grid. We invert the global matrix by
a direct method for solving Poisson Eqs. (11.17), combined with linear equations
for the boundary conditions. The overall numbering of unknowns for the global
gravity potential matrix is given in Exercise 3.2 (Eq. 3.22).

The gravitational acceleration vector components are then defined at respective
Eulerian nodes (see solid and open circles in Fig. 11.4) by numerical differentiation

gx (i+1/2,j ) = −2
�i+1/2,j+1/2 − �i+1/2,j−1/2

xj+1 − xj−1
, (11.18)

gy (i,j+1/2) = −2
�i+1/2,j+1/2 − �i−1/2,j+1/2

yi+1 − yi−1
. (11.19)

The new, locally defined gravity acceleration components gx(i+1/2, j) and gy(i, j+1/2)

are then included in the right-hand side of the x- and y-Stokes equations (11.4) and
(11.5) instead of the globally defined values gx and gy, respectively.

Numerical modelling of deformation of a self-gravitating planetary body
requires computing the gravity field which changes with time in response to vari-
ations in mass distribution inside the planet. Changes in shape of the planet and
the related planetary surface deformation should also be considered. In order to
tackle these requirements, one can use a ‘spherical-Cartesian’ approach (Honda
et al., 1993; Gerya and Yuen, 2007; Lin et al., 2009) that allows the computation of
self-gravitating bodies of arbitrary form on Cartesian grids including the presence
of a free surface:

(1) The body is surrounded by the weak medium (e.g. Fig. 11.5) of very low density
(≤ 1 kg/m3) and low viscosity allowing for a high (101–106) viscosity contrast at the
planetary surface.

(2) The gravity field is computed by solving the Poisson equation for the gravitational
potential (Eq. (11.17)) associated with the mass (density) distribution portrayed by the
markers at each time step.

(3) While solving the momentum equation, the components of the gravitational accel-
eration vector are computed locally by numerical differentiation of the gravitational
potential (Eqs. (11.18), (11.19)) at the corresponding nodal points.

As seen in Fig. 11.5, the spontaneously formed planetary surface is numeri-
cally stable under conditions of very strong internal deformation inside the planet.
In addition, a spontaneously forming spherical/cylindrical shape of the body is
characteristic for a stable density distribution (i.e. when density increases toward
the core of the body, see final stages of Fig. 11.5). No evidence for non-spherical
Cartesian grid dependence of this stable shape was discerned (Lin et al., 2009).
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Fig. 11.5 Numerical modelling of a self-gravitating planetary body with the use
of spherical-Cartesian method (Gerya and Yuen, 2007).

Using a weak top layer approach for modelling free surfaces is also applica-
ble for normal Cartesian simulations in a prescribed (e.g. purely vertical) gravity
field (Schmeling et al., 2008). Combined with various erosion/sedimentation func-
tions, this approach also allows modelling the topography evolution in response to
geodynamic processes with the use of the standard thermomechanical algorithm
(Fig. 11.1). This point will be argued in Chapter 17.
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Programming exercise and homework

Exercise 11.1
Program a thermomechanical code (Fig. 11.1) based on a regularly spaced staggered
grid for the case of variable viscosity and thermal conductivity. Combine the
thermal and mechanical solutions programmed for Exercise 10.4 and Exercise 8.5,
respectively. Use the same vertically layered cross-section and prescribe a different
temperature and thermal conductivity for the left (T = 1000 K, k = 1 W/m/K) and
right (T = 1300 K, k = 10 W/m/K) layer. Use insulating boundary conditions on all
boundaries. Include radiogenic (10−6 W/m3 and 10−7 W/m3 for the left and right
layer respectively), shear and adiabatic heating terms (Eq. (11.8)) in the temperature
equation (they were already programmed for Exercises 9.3 and 9.4). Restrict the
time step by limiting the maximal temperature changes to 20 K per time step.
If these changes are bigger, then reduce the time step proportionally and repeat
the solution for the second time (temperature equation solving is computationally
inexpensive compared to the momentum and continuity equations). An example is
in i2vis.m.
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Elasticity and plasticity

Theory: Elastic rheology. Maxwell visco-elastic rheology. Rotation of
stresses during advection. Plastic rheology. Plastic yielding criterion.
Plastic flow potential. Plastic flow rule.
Exercises: Stress build-up/relaxation with a visco-elastic Maxwell
rheology.

12.1 Why care about elasticity and plasticity?

As mentioned in the Introduction, rocks behave elastically on a relatively short time
scale (<104 years) and, therefore, modelling of relatively fast processes within the
Earth’s crust and mantle (e.g. magma intrusion) should take into account the elas-
tic properties of rocks. On the other hand, rocks at cold temperatures can also be
subjected to localised brittle (at low pressure) and plastic (at higher pressure) defor-
mation, which leads to shear zones and fracture zones in natural rock complexes.
Therefore, if we want to account for this broad range of geodynamic conditions
in our models, we should generally consider the visco-elasto-plastic rheology of
rocks and be able to model such a complex rheology with our thermomechanical
numerical codes. This chapter discusses elastic and plastic rheological behaviours
and compares them to the viscous rheology.

12.2 Elastic rheology

The elastic rheology assumes proportionality of stress and strain (Fig. 12.1). This
is expressed by the Hooke’s law

σ = Eγ, (12.1)

165
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Fig. 12.1 Relationship between applied stress σ and deformation �L, of an elastic
body with initial length L.

(a) (b) (c)

Fig. 12.2 Reversible deformation of initially unstressed (a) elastic slab surrounded
by a weak viscous medium (Gerya and Yuen, 2007). Deformation of the slab in (b)
is caused by a vertical gravity field. When gravity is ‘removed’, the deformed slab
recovers its original shape (c) while the surrounding medium remains deformed
since viscous deformation is irreversible.

where σ is applied stress, γ = �L

L
is elastic strain (i.e. displacement �L nor-

malised to the initial length L of the deforming body) and E is the proportionality
(elasticity) coefficient. In contrast to viscous deformation, the elastic deformation
is reversible: if the load applied on an elastic body is removed, the body instantly
recovers its original state (Fig. 12.2). This shape recovery effect is reproduced with
a spring.
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For an isotropic body in 3D, the elastic relationship is written in a tensorial form
as

σij = λδijεkk + 2µεij, (12.2)

εij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
, (12.3)

εkk = εxx + εyy + εzz, (12.4)

where xi and xj are the spatial coordinates (x, y, z), σ ij are components of stress,
ui and uj are components of material displacement vector �u = (ux, uy, uz) so

that vi = Dui

Dt
where vi is component of velocity vector �v = (vx, vy, vz), εij are

components of the strain tensor so that ε̇ij = Dεij

Dt
, where ε̇ij are components of

strain rate tensor (Chapter 4), εkk is volumetric strain (cubical dilatation) and
λ and µ are two elastic parameters termed Lamé’s constants (which depend on
pressure temperature and composition). The material displacement characterises
the absolute amount of deformation (i.e. is similar to �L in Fig. 12.1), while the
strain tensor εij reflects the relative intensity of this deformation (i.e. is similar to
�L

L
in Fig. 12.1). Formulating pressure through mean normal stress, we can obtain

the following relation

P = −σkk

3
= −σxx + σyy + σzz

3
, (12.5)

P = −3λ + 2µ

3
(εxx + εyy + εzz) = −Bεkk, (12.6)

B = λ + 2

3
µ, (12.7)

where B is the bulk modulus (see Chapter 2) also called incompressibility; it estab-
lishes the relation between mean stress (pressure) and volumetric strain. Accord-
ingly, the deviatoric stresses σ ′

ij can be formulated as

σ ′
ij = σij − σkk

3
δij = σij + Pδij, (12.8)

σ ′
ij = σij − Bεkkδij = 2µ

(
εij − 1

3
δijεkk

)
, (12.9)

σ ′
ij = 2µε′

ij, (12.10)

ε′
ij = εij − 1

3
δijεkk, (12.11)

where ε′
ij are components of the deviatoric strain tensor and µ is the shear mod-

ulus or rigidity, which is one of the Lamé’s constants. The elastic shear modulus
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Fig. 12.3 Force balance for a small triangle ABC used for computing σ xx, σ yx
(a), (b) and σ yy, σ xy (c), (d) stress components after a clockwise solid body
rotation of the triangle by an angle α around point A.

establishes the relationship between the deviatoric stress and deviatoric strain for
the elastic rheology (µ is thus somewhat similar to the shear viscosity η which
defines the relationship between the deviatoric stress and the deviatoric strain rate
for a viscous rheology, see Eq. (5.12)).

12.3 Rotation of elastic stresses

An important peculiarity of stress behaviour in a deforming elastic medium consists
in local stress orientation changes due to the rotation of material points. This rotation
is caused by a rigid body rotation which is present in the velocity field, which
changes the orientation of principal stress axes for moving Lagrangian points.
Stress rotation changes stress tensor components but not the stress invariants.

The way of computing of various elastic stress components after rotation of a
Lagrangian point by an angle α can be derived on the basis of analysing the force
balance for a small triangle ABC, as shown in Fig. 12.3. Let us take a small triangle
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with two sides parallel to the x and y axes oriented as shown in Fig. 12.3(a). The
force equilibrium condition requires that forces acting on the outside of the triangle
balance each other and that the resulting force is zero

fx = fx1 + fx2 + fx3 + fx4 = 0, (12.12)

fy = fy1 + fy2 + fy3 + fy4 = 0, (12.13)

where f are forces acting on different sides of the triangle from the outside. These
forces can be computed from shear and normal stresses as discussed in Chapter 4
(note that arrows shown on side AC correspond to the counter-force part of σ xx and
σ yx which therefore have a minus sign

|AC| = |AB| cos(α),

|BC| = |AB| sin(α),

fx1 = σx ′x ′ |AB| cos(α),

fx2 = σy ′x ′ |AB| sin(α),

fx3 = −σxx |AC| = −σxx |AB| cos(α),

fx4 = σxy |BC| = σxy |AB| sin(α),

fy1 = −σx ′x ′ |AB| sin(α),

fy2 = σy ′x ′ |AB| cos(α),

fy3 = −σyx |AC| = −σyx |AB| cos(α),

fy4 = σyy |BC| = σyy |AB| sin(α),

where |AB|, |AC| and |BC| are the lengths of the respective triangle sides. Then,
Equations (12.12) and (12.13) can be converted to yield

fx

|AB| = σx ′x ′ cos(α) + σy ′x ′ sin(α) − σxx cos(α) + σxy sin(α) = 0, (12.14)

fy

|AB| = −σx ′x ′ sin(α) + σy ′x ′ cos(α) − σyx cos(α) + σyy sin(α) = 0. (12.15)

By multiplying Eq. (12.14) by cos(α) and Eq. (12.15) by sin(α), we obtain

σx ′x ′ cos2(α) + σy ′x ′ sin(α) cos(α) − σxx cos2(α) + σxy sin(α) cos(α) = 0,

(12.16)

−σx ′x ′ sin2(α) + σy ′x ′ cos(α) sin(α) − σyx cos(α) sin(α) + σyy sin2(α) = 0.

(12.17)

By subtracting Eq. (12.17) from Eq. (12.16) we get

σx ′x ′ (cos2(α) + sin2(α)) − σxx cos2(α) + σxy sin(α) cos(α)

+ σyx cos(α) sin(α) − σyy sin2(α) = 0,
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which can be further be simplified to

σx ′x ′ = σxx cos2(α) + σyy sin2(α) − σxy sin(2α) (12.18)

by using σyx = σxy and the trigonometric relations sin2(α) + cos2(α) = 1 and
2 sin(α) cos(α) = sin(2α).

Similarly, by multiplying Eq. (12.14) by sin(α) and Eq. (12.15) by cos(α), and
adding them to each other we obtain the following expression for σy ′x ′

σy ′x ′ = 1

2
(σxx − σyy) sin(2α) + σxy cos(2α) (12.19)

using the trigonometric relation cos2(α) − sin2(α) = cos(2α) (verify as an exer-
cise).

Obviously, after the triangle has been rotated clockwise by an angle α around
point A (Fig. 12.3b), the AB side becomes parallel to the y-axis and σx ′x ′ , σy ′x ′ will
correspond to the respective stress components σxx(r), σyx(r) for the rotated system.

Similarly, by analysing Fig. (12.3c,d), the following expressions for the corrected
stress components σy ′y ′ and σx ′y ′ can be obtained (verify as an exercise))

σy ′y ′ = σxx sin2(α) + σyy cos2(α) + σxy sin(2α), (12.20)

σx ′y ′ = 1

2
(σxx − σyy) sin(2α) + σxy cos(2α). (12.21)

Equations (12.19) and (12.21) are obviously equivalent since σyx = σxy . Note that
rotation does not change the first stress invariant (mean normal stress, pressure)
and thus

σx ′x ′ + σy ′y ′ = σxx + σyy = −2P.

Equations for rotating deviatoric normal stresses are similar to (12.18) and (12.20)
since subtracting mean stress does not change the form of these expressions, hence

σ ′
x ′x ′ = σ ′

xx cos2(α) + σ ′
yy sin2(α) − σxy sin(2α), (12.22)

σ ′
y ′y ′ = σ ′

xx sin2(α) + σ ′
yy cos2(α) + σxy sin(2α). (12.23)

The condition σ ′
x ′x ′ + σ ′

y ′y ′ = 0 is also satisfied due to σ ′
xx + σ ′

yy = 0.
If α is very small and tends to 0, then cos(α) tends to 1, sin2(α) tends to 0, and

sin(α) tends to α. In this case, Equations (12.18)−(12.23) can be simplified to the
Jaumann co-rotation formulas, which are often used in numerical modelling of
elastic problems to account for effects of solid body rotation of stresses

σx ′x ′ = σxx − σxy2α, (12.24)

σy ′y ′ = σyy + σxy2α, (12.25)

σx ′y ′ = σxy + (σxx − σyy)α. (12.26)
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In a complex velocity field, the intensity of rotation is defined by the local rotation
rate ω which can be computed from the local velocity field as

ω = ∂α

∂t
= 1

2

(
∂vy

∂x
− ∂vx

∂y

)
. (12.27)

Note that the expressions for stress rotation and formulation of ω depend on

� the convention for normal stresses – if they are taken to be positive (here) or negative
(e.g. Turcotte and Schubert, 2002) under extension,

� orientation of x and y axes,
� definition whether clockwise rotation direction is taken to be positive (here) or negative

(e.g. Turcotte and Schubert, 2002).

In particular, Equation (12.27) may become invalid, if the definitions of stresses,
axes and rotation are different from those used here. In this case, Equations
(12.18)−(12.27) should not be used ‘mechanically’, but should rather be re-derived
on the basis of a similar analysis.

In 3D, the rotation rate is represented by a rotation rate tensor with components
defined as

ωij = 1

2

(
∂vi

∂xj

− ∂vj

∂xi

)
, when

(
∂vi

∂xj

− ∂vj

∂xi

)
> 0 for clockwise rotation,

(12.28)

ωij = 1

2

(
∂vj

∂xi

− ∂vi

∂xj

)
, when

(
∂vj

∂xi

− ∂vi

∂xj

)
> 0 for clockwise rotation,

(12.29)

where i and j are coordinate indices; xi and xj are spatial coordinates and the
view at the ij-plane should be taken in the direction of the third axis. In contrast
to symmetric stress and strain rate tensors (i.e. σij = σji , ε̇ij = ε̇j i), the rotation
rate tensor is anti-symmetric (i.e., ωij = −ωji) and the normal components of this
tensor are always equal to zero (i.e., ωxx = ωyy = ωzz = 0). One possible way of
computing both total and deviatoric stress rotation in 3D is to use the general form
of the Jaumann stress rate

total stress:

σ̇ij(Jaumann) = σikωkj − ωikσkj , (12.30a)

deviatoric stress

σ̇ ′
ij(Jaumann) = σ ′

ikωkj − ωikσ
′
kj , (12.30b)

where σ̇ij(Jaumann) is the rate of change for the σij stress component and the repeated
index k indicates a summation. Using Eq. (12.30) in 3D for example, the σ ′

xx
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deviatoric stress component yields

σ̇ ′
xx(Jaumann) = σ ′

xxωxx + σxyωyx + σxzωzx − ωxxσ
′
xx − ωxyσyx − ωxzσzx,

(12.31a)

σ̇ ′
xx(Jaumann) = σxyωyx + σxzωzx − ωxyσyx − ωxzσzx, (12.31b)

σ̇ ′
xx(Jaumann) = 2σxyωyx + 2σxzωzx, (12.31c)

where ωxx = 1

2

(
∂vx

∂x
− ∂vx

∂x

)
= 0, ωyx = 1

2

(
∂vx

∂y
− ∂vy

∂x

)
= −ωxy and ωzx =

1

2

(
∂vx

∂z
− ∂vz

∂x

)
= −ωxz, according to Eq. (12.29). Similar derivations can also

be done for other deviatoric stress components (verify these as an exercise)

σ̇ ′
yy(Jaumann) = 2σyxωxy + 2σyzωzy, (12.32)

σ̇zz(Jaumann) = 2σzxωxz + 2σzyωyz, (12.33)

σ̇xy(Jaumann) = σ̇yx(Jaumann) = (
σ ′

xx − σ ′
yy

)
ωxy + σxzωzy − ωxzσzy, (12.34)

σ̇xz(Jaumann) = σ̇zx(Jaumann) = (
σ ′

xx − σ ′
zz

)
ωxz + σxyωyz − ωxyσyz, (12.35)

σ̇yz(Jaumann) = σ̇zy(Jaumann) = (
σ ′

yy − σ ′
zz

)
ωyz + σyxωxz − ωyxσxz. (12.36)

It is worth mentioning that in continuum mechanics, apart from the Jaumann stress
rate, typically used in geodynamic modelling, there are a large variety of other
objective stress rate formulations such as the Truesdell rate, the Green–Naghdi
rate, the Oldroyd rate, the convective rate etc. (e.g. Shabana, 2008). However, the
other objective derivatives (beside Jaumann) do not preserve the deviatoric property
of a tensor. Hence, using them in our case is not straightforward as our formulations
assume a splitting of stress into a deviatoric and homogeneous (pressure) part.

12.4 Maxwell visco-elastic rheology

A visco-elastic rheology is obtained by combining viscous (Eq. (5.11)) and elas-
tic (Eq. (12.10)) rheological relations under certain physical assumptions (e.g.
Turcotte and Schubert, 2002, Chapter 7, Sections 7–10). In numerical geodynamic
modelling, the Maxwell visco-elastic rheology is the most commonly used; it is
based on the assumption that both viscous and elastic deformations are happen-
ing under the same applied deviatoric stress σ ′

ij such that bulk strain rate ε̇′
ij can

be represented as a sum of viscous ε̇′
ij(viscous) and elastic ε̇′

ij(elastic) strain rates (see
Fig. 12.4 for the relationship between the viscous and elastic deformations of a
Maxwell body)

ε̇′
ij = ε̇′

ij(viscous) + ε̇′
ij(elastic), (12.37)
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Fig. 12.4 Schematic representation of the Maxwell visco-elastic rheology. The
solid line shows a typical pattern of visco-elastic stress buildup under the condition
of a linearly growing deformation (dashed line). Deformation initially starts in an
elastic mode (see shortening of the spring) but with the growing stress, viscous
deformation activates and becomes dominant (see movement of the dashpot) and
stress stabilises. The length of the black arrows reflects the magnitude of the
applied stress at different moments in time.

which can then be obtained from the rheological relations (5.11) and (12.10) under
the assumption that the term δijηbulkε̇kk(viscous) in Eq. (5.11) is negligible and the
shear modulus in Eq. (12.10) is constant;

ε̇′
ij(viscous) = 1

2η
σ ′

ij, (12.38)

ε̇′
ij(elastic) = D� ε′

ij(elastic)

Dt
= D�

Dt

(
σ ′

ij

2µ

)
= 1

2µ

D� σ ′
ij

Dt
, (12.39)

ε̇′
ij = 1

2η
σ ′

ij + 1

2µ

D� σ ′
ij

Dt
, (12.40)

where
D� σ ′

ij

Dt
is the objective co-rotational time derivative of the deviatoric stress

component σ ′
ij which includes effects of stress rotation discussed above.

12.5 Plastic rheology

The plastic rheology assumes that an absolute shear stress limit σyield exists for
a body and after reaching this limit plastic yielding occurs (Fig. 12.5). Like vis-
cous deformation, plastic yielding is irreversible, but the pattern of deformation is
notably different (Fig. 12.6): plastic creep is localised and forms multiple highly
deformed shear zones separating relatively undeformed blocks.
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Fig. 12.5 Relationship between the applied stress σ and deformation �L, of an
elastic–plastic body with initial length L. Elastic deformation changes to plastic
yielding after reaching a stress limit σyield.

Fig. 12.6 Plastic deformation of sand in a numerical sandbox experiment (Buiter
et al., 2006; Gerya and Yuen, 2007). Irreversible localised plastic deformation
forms multiple, highly deformed shear zones separating relatively undeformed
blocks.

The plastic strength σyield of a rock generally depends on the mean stress of the
solid (Psolid = P) and on the pore fluid pressure (Pfluid) such that:

σyield = C + sin(ϕ)P, (12.41)

sin(ϕ) = sin(ϕdry)(1 − λ), (12.42)

λ = Pfluid

Psolid
, (12.43)
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where C is the cohesion (residual strength at P = 0), φ is the effective internal
friction angle (φdry stands for dry rocks) and λ is the pore fluid pressure factor. For
dry fractured crystalline rocks, sin(φ) is independent of composition and varies from
0.85 at P < 200 MPa to 0.60 at higher pressure (Byerlee law, Byerlee, 1978; Brace
and Kohlstedt, 1980). The plastic strength of dry rocks thus strongly increases with
pressure to a limit of several GPa. The strength is limited by the Peierls mechanism
of plastic deformation (Evans and Goetze, 1979; Kameyama et al., 1999; Karato,
2008).

The Peierls mechanism is a temperature-dependent mode of plastic deforma-
tion (also called exponential creep) which takes over from the dislocation creep
mechanism at elevated stresses (typically above 0.1 GPa). Rheological relation-
ships (flow law) for the Peierls creep are commonly represented as (Katayama and
Karato, 2008)

ε̇II = APeierlsσ
2
II exp

{
−Ea + PVa

RT

[
1 −

(
σII

σPeierls

)k
]q}

, (12.44)

where ε̇II and σII are second invariants of strain rate and stress, respectively and
σ Peierls, APeierls, Ea and Va are experimentally determined parameters (Chapter 6):
σ Peierls is the Peierls stress that limits the strength of the material and is similar to
σyield in Eq. (12.41), APeierls is a material constant for the Peierls creep (Pa−2s−1), Ea

is the activation energy (J/mol), Va is the activation volume (J/Pa/mol). The choice
of the exponents k and q in Eq. (12.44) depends on the shape and geometry of obsta-
cles that limit the dislocation motion. Microscopic models show that k and q should
have the following ranges 0 < k ≤ 1, 1 ≤ q ≤ 2 (Kocks et al., 1975). In contrast to
other types of plasticity, Peierls creep is already activated at stresses that are notably
lower than the actual strength of material given by σ Peierls. This deformation mech-
anism is very important, in particular for deformation of subducting slabs charac-
terised by lowered temperature and elevated stresses compared to the surrounding
mantle (e.g. Karato et al., 2001), or for lithospheric-scale shear localisation (Kaus
and Podladchikov, 2006).

Further information about various types of plasticity used in geosciences such
as Mohr–Coulomb, Von-Mises, Drucker–Prager and Treska models can be found
in the books of Turcotte and Schubert (2002) and Ranalli (1995).

12.6 Visco-elasto-plastic rheology

In nature, the general behaviour of rocks is altogether visco-elasto-plastic, which
can be formulated by decomposing the total deviatoric strain rate ε̇′

ij into the three
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respective components:

ε̇′
ij = ε̇′

ij (viscous) + ε̇′
ij (elastic) + ε̇′

ij (plastic), (12.45)

where

ε̇′
ij(viscous) = 1

2η
σ ′

ij (under condition of negligible δijηbulkε̇kk(viscous) in Eq. (5.11)),

(12.46)

ε̇′
ij(elastic) = 1

2µ

D� σ ′
ij

Dt
, (12.47)

ε̇′
ij(plastic) = 0 for σII < σyield, ε̇

′
ij (plastic) = χ

∂Gplastic

∂σ ′
ij

= χ
σ ′

ij

2σII
for σII = σyield,

(12.48)

Gplastic = σII, (12.49)

σII =
√

1

2
σ ′2

ij , (12.50)

where
D� σ ′

ij

Dt
is the objective co-rotational time derivative of the deviatoric stress

component σ ′
ij, equation (12.48) is the plastic flow rule, σ yield is the plastic yield

strength for a given rock, Gplastic is the plastic flow potential, which reflects the
amount of mechanical energy per unit volume that supports plastic deformation,

Pa = N

m2
= J

m3
; σ II is the second deviatoric stress invariant and χ is the plastic

multiplier, which satisfies the plastic yielding condition

σII = σyield. (12.51)

The plastic multiplier is a variable scaling coefficient which connects, in a uniform
way, components of the plastic strain rate ε̇′

ij (plastic) with the local stress distribu-
tion in places where the yielding condition (12.51) is reached. This coefficient is
unknown a priori and should be determined locally at each moment of time by
solving Equations (12.45)−(12.51), based on local values of stresses σ ′

ij, strain
rates ε̇′

ij, viscosity η and shear modulus µ.
This plastic flow rule formulation (Eq. (12.48)) includes deviatoric stress and

strain rate components only and, consequently, the plastic potential formulation
(Eq. (12.49)) is the same for both dilatant (i.e. increasing volume during plas-
tic deformation) and non-dilatant materials. For plastic deformation of dilatant
materials, this formulation is, therefore, combined with the equation describing
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volumetric changes which are of the form:

−D ln ρ

Dt
= div(v̄) = 2 sin(ψ)ε̇II(plastic), (12.52)

ε̇II(plastic) =
(

1

2
ε̇′
ij (plastic)ε̇

′
ij (plastic)

)1/2

, (12.53)

where ψ is the dilatation angle, which generally depends on total plastic strain, and
ε̇II(plastic) is the second invariant of the deviatoric plastic strain rate tensor.

Analytical exercise
Exercise 12.1
Derive the equation for visco-elastic stress build-up/relaxation with time, using the
Maxwell model (Eq. (12.40)) under conditions of constant strain rate ε̇′

ij, viscosity

η, shear modulus µ, and no stress rotation involved such that
D� σ ′

ij

Dt
= Dσ ′

ij

Dt
. Take the

initial state of stress to be given by σ ′
0ij and integrate Eq. (12.40) (now reformulated

in term of stress σ ′
ij) to obtain the analytical solution. Reformulate the resulting

equation in terms of Maxwell relaxation time

�tMaxwell = η

µ
, (12.54)

which defines the characteristic time scale for visco-elastic stress relaxation.

Programming exercises and homework
Exercise 12.2
Use the analytical formula from the previous example to compute and compare
stress–time curves for the following parameters:

(1) σ ′
0ij = 0 Pa, ε̇′

ij = 10−14 1/s, η = 1021 Pa s, µ = 1010 Pa;
(2) σ ′

0ij = 108 Pa, ε̇′
ij = 10−14 1/s, η = 1021 Pa s, µ = 1010 Pa;

(3) σ ′
0ij = 0 Pa, ε̇′

ij = 10−15 1/s, η = 1021 Pa s, µ = 1010 Pa;
(4) σ ′

0ij = 0 Pa, ε̇′
ij = 10−14 1/s, η = 1022 Pa s, µ = 1010 Pa;

(5) σ ′
0ij = 0 Pa, ε̇′

ij = 10−14 1/s, η = 1021 Pa s, µ = 1011 Pa;
(6) σ ′

0ij = 0 Pa, ε̇′
ij = 10−14 1/s, η = 1022 Pa s, µ = 1011 Pa.

Try to understand how the different parameters control the stress build-up/
relaxation. An example is in Viscoelastic_stress.m.
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Exercise 12.3
Compute the visco-elasto-plastic stress build-up and observe the changes in the
viscous, elastic and plastic strain rates with time when using the parameters from
case (4) of the previous example. Assume the condition that the visco-elastic stress
σ ′

ij must not exceed the yield stress limit of 1.5 × 108 Pa. Use Equation (12.46)
to compute the viscous strain rate. Use Equations (12.45), (12.47) and (12.48) to
compute elastic and plastic strain rates. Consider that after reaching the yielding
limit, the stress in the visco-elasto-plastic material should not change any more and

therefore
D� σ ′

ij

Dt
= Dσ ′

ij

Dt
= 0. An example is in Viscoelastoplastic_strain_rate.m.

Exercise 12.4
Modify Exercise 6.3 by adding Peierls creep for the high stress region (>108 Pa).
Compute the effective viscosity for this region by analogy to Eqs. (6.16)–(6.18) as
follows

1

ηeff
= 1

ηdiff
+ 1

ηdisl
+ 1

ηPeierls
, (12.55)

where ηPeierls is Peierls creep viscosity defined on the basis of Eqs. (12.44) and
(6.4) as

ηPeierls = 1

2APeierlsσII
exp

{
Ea + PVa

RT

[
1 −

(
σII

σPeierls

)k
]q}

. (12.56)

Use the following Peierls creep parameters (Evans and Goetze, 1979; Katayama
and Karato, 2008): dry olivine – k = 1, q = 2, APeierls = 10−4.2 Pa−2s−1, Ea =
540 000 J/mol, σ Peierls = 9.1 × 109 Pa; wet olivine – k = 1, q = 2, APeierls =
10−4.2 Pa−2s−1, σ Peierls = 2.9 × 109 Pa; Ea = 430 000 J/mol. Note that the activa-
tion energy Ea for Peierls creep is the same as for respective dislocation creep
(Table 6.1). Note that stress σ II used for computing effective viscosity with
Eq. (12.56) should always be limited by σ Peierls, which corresponds to the upper
strength limit. An example is in Peierls_creep.m.
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2D implementation of
visco-elasto-plastic rheology

Theory: Numerical implementation of visco-elasto-plastic rheology.
Organisation of a thermomechanical code in case of 2D, visco-
elasto-plastic, multi-phase flows.
Exercises: Programming a 2D thermomechanical code with a visco-
elasto-plastic rheology.

13.1 Viscous-like reformulation of visco-elasto-plasticity

One way of reformulating the visco-elasto-plastic rheological model (12.45) for
easy implementation into a viscous code (which we already have programmed)
is based on using finite differences in time. The deviatoric stress σ ′

ij is expressed
as a function of the total deviatoric strain rate ε̇′

ij from the visco-elasto-plastic
constitutive relationships (Eq. (12.45)), by using first-order finite differences in

time to represent the objective co-rotational time derivatives
D� σ ′

ij

Dt
of visco-elastic

stresses

D� σ ′
ij

Dt
= σ ′

ij − σ ′o
ij

�t
, (13.1)

σ ′
ij = 2ηvpε̇′

ijZ + σ ′o
ij (1 − Z) , (13.2)

Z = �tµ

�tµ + ηvp

, (13.3)

ηvp = η when σII < σyield, and ηvp = η
σII

η χ + σII
, for σII = σyield, (13.4)

in which �t is the computational time step, σ ′o
ij indicates the deviatoric stress

from the previous time step corrected for advection and rotation, Z is the visco-
elasticity factor and ηvp is a viscosity-like Lagrangian parameter that characterises
the intensity of the plastic deformation (ηvp = η when no plastic yielding occurs).
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Fig. 13.1 Flow chart representing an example of a possible structure for a numer-
ical thermomechanical visco-elasto-plastic 2D code which uses finite-differences
and marker-in-cell technique (FD+MIC) for solving momentum, continuity and
temperature equation. (Gerya and Yuen, 2007).

Equation (13.2) can also be applied to a visco-elastic Maxwell rheology by using
the condition that ηvp = η.

13.2 Structure of visco-elasto-plastic thermomechanical code

When using the constitutive relationship (Eq. (13.2)) between the stress and strain
rate, we can now formulate the momentum, continuity and temperature equations
for the case of visco-elasto-plastic deformation in 2D and implement these equa-
tions in a thermomechanical visco-elasto-plastic modelling algorithm (Fig. 13.1).
The algorithm is largely based on our viscous thermomechanical code structure
discussed in Chapter 11 (Fig. 11.1, 11.2).

The flow chart in Fig. 13.1 gives an example of a possible structure of a numer-
ical thermomechanical visco-elasto-plastic 2D code, which uses finite-differences
combined with a marker-in-cell technique (FD+MIC) to solve the momentum,
continuity and temperature equations. The principal steps of the algorithm are as
follows:
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1. Defining an optimal computational time step �t for the momentum and continuity
equations. One can use a minimum time step value, which satisfies the following three
conditions: a given absolute time step limit on the order of a minimal characteristic
timescale for the processes being modelled; a given relative marker displacement step
limit (typically 0.01–1.0 of minimal grid step) that corresponds to the velocity field
calculated at the previous time step (see Step 3); a given relative fraction of Lagrangian
markers reaching locally the yielding condition (Eq. (12.51)) for the first time (typically
0.0001–0.01 of the total amount of markers representing materials with defined plastic
yielding condition).

2. Calculating the physical properties (ηvp, µ, ρ, CP, k, etc.) for the markers and inter-
polating these newly calculated properties, as well as scalars and tensors defined on
the markers (T, σ ′

ij, etc.) to the Eulerian nodes (Fig. 13.2). The plastic yielding con-
dition (Eq. (12.51)) is locally controlled on markers by using Eq. (13.2) to predict
stress changes. This equation is solved in an iterative way for every marker in order to
compute ηvp based on a local viscous flow law (Eq. 6.5a) and a local plastic flow rule
(Eq. 13.4).

3. Solving the 2D Stokes and continuity equations and computing the velocity and pressure
by solving the global matrix with a direct method.

4. Defining an optimal displacement time step �tm for markers (typically limiting the
maximal displacement to 0.01–1.0 of the minimal grid step) which can be generally
smaller or equal to the computational time step �t (see Step 1).

5. Calculating the stress changes (Eq. (13.2)) on the Eulerian nodes for the displacement
step �tm (see Step 4) and interpolating these changes to the markers and calculating
new tensor values associated with the markers (see central panel in Fig. 13.1).

6. Calculating the shear and adiabatic heating terms Hs(i,j ) and Ha(i,j ) at the Eulerian
nodes from the computed velocity, pressure, strain rate and stress fields (see Step 3).

7. Defining an optimal time step �tT for the temperature equation. One can use a minimum
time step value satisfying the following conditions: a given absolute time step limit on
the order of a minimal characteristic thermal diffusion timescale for the processes
being modelled; a given optimal marker displacement time step limit (see Step 3); a
given absolute nodal temperature change limit (typically 1–20 K) (Chapter 10). The
temperature equation can be preliminary solved with the displacement time step �tm
to define possible temperature changes.

8. Solving the temperature equation implicitly in time by a direct method. The temperature
equation can be solved in several steps when �tT < �tm.

9. Interpolating the calculated nodal temperature changes (see central panel in Fig. 13.1)
from the Eulerian nodes, to the markers, and calculating new marker temperatures.

10. Advecting all markers throughout the mesh according to the globally calculated velocity
field (see Step 3). Components of the stress tensor defined on the markers are recomputed
analytically to account for any local stress rotation.

Figure 13.2 shows the geometry of an irregularly spaced, fully staggered numer-
ical grid corresponding to the algorithm. The visco-elasto-plastic code can be
developed on the basis of viscous thermomechanical code (Chapter 11). Therefore,
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Fig. 13.2 Staggered 2D irregularly spaced numerical grid corresponding to the
algorithm presented in Fig. 13.1.

we will concentrate in the following sections on the new modifications that were
made to the code described in Chapter 11.

Step 1: Defining an optimal computational time step

Note that the computational time step �t, for the momentum and continuity equa-
tions and the displacement time step �tm, for markers are generally independent
from each other and can only be related by the condition �tm ≤ �t. For an elas-
tic medium, the velocity field numerically computed from the Stokes equation
strongly depends on the value of �t. This time step influences the numerical
viscosity ηnumerical, which can be derived from Eqs. (13.2), (13.3)

ηnumerical = ηvpZ = ηvpµ�t

ηvp + µ�t
.
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If �t is much less then the Maxwell relaxation time

�tMaxwell = ηvp

µ
(13.5)

of a visco-elastic/visco-elasto-plastic medium, then this medium behaves purely
elastically, ηvp � µ�t and the numerical viscosity depends linearly on the time
step

ηnumerical = µ�t. (13.6)

In this situation, the smaller we take the time step, the smaller the computational
viscosity becomes which results in larger velocities. Clearly this causes numerical
problems, since if �t tends to zero, the velocities will tend towards infinity. Physi-
cally meaningful solutions can be obtained in two ways. The first approach is to take
an extremely small time steps (on the order of seconds or less) and introduce inertial
forces into the system by using Navier–Stokes rather than the Stokes equations.
Numerical models in this case will only be able to address the seismic modes of
deformation, within a very limited period of time (hours, days), which is obviously
objectionable if we want to model geodynamic processes that last for millions and
even billions (as e.g. mantle convection) of years. The second approach (e.g. Kaus
and Becker, 2007) is (when possible) to choose �t in such a manner that it will be
significantly shorter than the Maxwell time of the rheologically strongest materials
that are present in the numerical experiment (e.g. a high-viscosity lithosphere), but
significantly larger than the Maxwell time of any rheologically weak materials (e.g.
low-viscosity asthenosphere). In this case, the weak materials satisfy the condition
ηvp 
 µ�t and they will behave purely viscously in a broad range of �t, such that
their numerical viscosity is independent of the time step

ηnumerical = ηvp, (13.7)

which will tend to stabilise the velocity field computed inside the model. For real-
istic variations in viscosity 1016 < η < 1026 and shear modulus 1010 < µ < 1011

of solid rocks, this approach allows one to have geologically relevant computational
time steps on the order of 101–105 years.

It should also be pointed out that the actual numerical viscosity contrast in
experiments with visco-elastic materials

min (ηvp(min), �tµmin) ≤ ηnumerical ≤ min (ηvp(max), �tµmax), (13.8)

is typically reduced compared to purely viscous experiments

ηvp(min) ≤ ηnumerical ≤ ηvp(max). (13.9)

This contrast can be further reduced by decreasing the computational time step
�t . This actually makes the visco-elastic numerical experiments computationally



184 2D implementation of visco-elasto-plastic rheology

‘easier’ than the purely viscous ones. On the other hand, the visco-elastic numerical
solutions become equivalent to the viscous one if we choose very large computa-
tional time steps, which are bigger than the maximal Maxwell relaxation time (Eq.
13.5) estimated locally (e.g. on markers) within the model.

Step 2: Interpolation of scalar fields, vectors and tensor fields

According to our algorithmic approach, the temperature field as well as components
of the σ ′

ij and ε̇′
ij tensors are represented by values assigned to the markers. The

effective values of all these parameters at the Eulerian nodal points are interpolated
from the markers at each time step. As in the viscous code, we favour local
interpolation schemes (within half grid distance) for some parameters: viscosity,
shear modulus and deviatoric stress components. In order to avoid non-physical
‘rigid boundary’ effects on interfaces between high-η-low-µ and low-η-high-µ
materials, one should use a harmonic average rather than arithmetic mean for the
shear modulus (see Eq. (8.18), Fig. 8.8 for notations)

µ(i,j ) =

∑
m

wm(i,j )

∑
m

1

µm

wm(i,j )

. (13.10)

As in the viscous code, both the viscosity (η) and shear modulus (µ) are defined at
different points (cf. open and solid squares in Fig. 13.2) when used for computing
the normal and shear components of the deviatoric stress tensor. The viscosity,
shear modulus and the respective stress and strain rate components for these nodal
points are interpolated from markers found around the nodes at a distance less than
half of the local Eulerian grid step (see dashed boundary in Fig. 8.8).

Step 3: Solving the momentum and continuity equations

In the case of 2D visco-elasto-plastic compressible fluid, the solution of Stokes
equations (11.1) and (11.2) does not change. The only alteration concerns the
expressions for the deviatoric stresses and strain rates

σ ′
xx = 2ηvpε̇′

xxZ + σ ′o
xx (1 − Z) = −σ ′

yy, (13.11)

σxy = 2ηvpε̇xyZ + σo
xy (1 − Z) = σyx, (13.12)

ε̇′
xx = 1

2

(
∂vx

∂x
− ∂vy

∂y

)
= −ε̇′

yy, (13.13)

ε̇xy = 1

2

(
∂vx

∂y
+ ∂vy

∂x

)
. (13.14)
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The conservation of mass is approximated by a compressible time-dependent 2D
continuity equation

D ln ρ

Dt
+ ∂vx

∂x
+ ∂vy

∂y
= 0. (13.15)

The conservative FD representation of the momentum equations (Eqs. (11.4),
(11.5)) modified for a visco-elasto-plastic rheology with Equations (13.11)–(13.14)
is as follows (see Fig. 13.2 for the indexing of the grid points):

x-Stokes equation (11.4)[
∂

∂x

(
2η ε̇′

xxZ
)]

i+1/2,j

+
[

∂

∂y
(2η ε̇xyZ)

]
i+1/2,j

− 2
Pi+1/2,j+1/2 − Pi+1/2,j−1/2

xj+1 − xj−1

= −
[

∂

∂x

(
σ ′o

xx(1 − Z)
)]

i+1/2,j

−
[

∂

∂y

(
σo

xy(1 − Z)
)]

i+1/2,j

− ρ
i,j

+ ρ
i+1,j

2
gx,

(13.16)

[
∂

∂x

(
2η ε̇′

xxZ
)]

i+1/2,j

= 4

[
η ε̇′

xxZ
]
i+1/2,j+1/2 − [

η ε̇′
xxZ

]
i+1/2,j−1/2

xj+1 − xj−1
,

[
∂

∂x

(
σ ′o

xx (1 − Z)
)]

i+1/2,j

= 2

[
σ ′o

xx (1 − Z)
]
i+1/2,j+1/2 − [

σ ′o
xx (1 − Z)

]
i+1/2,j−1/2

xj+1 − xj−1
,

[
∂

∂y
(2η ε̇xyZ)

]
i+1/2,j

= 2
[η ε̇xyZ]i+1,j − [η ε̇xyZ]i,j

yi+1 − yi

,

[
∂

∂z

(
σo

xy (1 − Z)
)]

i+1/2,j

=
[
σo

xy (1 − Z)
]
i+1,j

− [
σo

xy (1 − Z)
]
i,j

yi+1 − yi

,

[
σ ′o

xx (1 − Z)
]
i+1/2,j+1/2 = ηn(i+1/2,j+1/2)σ

o
xx (i+1/2,j+1/2)

�tµn(i+1/2,j+1/2) + ηn(i+1/2,j+1/2)
,

[
σo

xy (1 − Z)
]

(i,j )
= ηs(i,j )σ

o
xy(i,j )

�tµs(i,j ) + ηs(i,j )
,

[
η ε̇′

xxZ
]
i+1/2,j+1/2 = �tµn(i+1/2,j+1/2)ηn(i+1/2,j+1/2)ε̇

′
xx(i+1/2,j+1/2)

�tµn(i+1/2,j+1/2) + ηn(i+1/2,j+1/2)
,

[η ε̇xyZ](i,j ) = �tµs(i,j )ηs(i,j )ε̇xy(i,j )

�tµs(i,j ) + ηs(i,j )
,

ε̇′
xx(i+1/2,j+1/2) = vx (i+1/2,j+1)−vx (i+1/2,j )

2(xj+1 − xj )
− vy (i+1,j+1/2)−vy (i,j+1/2)

2(yi+1 − yi)
,

ε̇xy(i,j ) = vx (i+1/2,j ) − vx (i−1/2,j )

yi+1 − yi−1
+ vy (i,j+1/2) − vy (i,j−1/2)

xj+1 − xj−1
,
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where σo
xy and σ ′o

xx are the deviatoric stress tensor components from the previ-
ous time step (corrected for advection and rotation), which are interpolated from
markers; �t is the computational time step. Discretisation of the y-Stokes equation
(11.5) is analogous to Eq. (13.16) (derive as an exercise).

The time-dependent compressible continuity Eq. (13.15) is discretised as fol-
lows

vx (i+1/2,j+1) − vx (i+1/2,j )

xj+1 − xj

+ vy (i+1,j+1/2) − vy (i,j+1/2)

yi+1 − yi

= −
(

D ln ρ

Dt

)
i+1/2,j+1/2

,

(13.17)

where
D ln ρ

Dt
are substantive density changes (e.g. Eq. (12.52)) interpolated from

markers.
As in the viscous code, the global matrix is solved by a highly accurate, direct

method and the numbering of unknowns in this global matrix remains the same.

Step 5: Interpolation of stress changes from nodes to markers

After defining the material displacement time step �tm, the changes in the effective
stresses and new stress fields for the Eulerian nodes are calculated at the respective
nodal points according to Eq. (13.2) as

�σ ′
xx(i+1/2,j+1/2) = (

2ηn(i+1/2,j+1/2)ε̇
′
xx(i+1/2,j+1/2) − σ ′o

xx(i+1/2,j+1/2)

)
× µn(i+1/2,j+1/2)�tm

ηn(i+1/2,j+1/2) + µn(i+1/2,j+1/2)�tm
, (13.18)

�σxy(i,j ) = (
2ηs(i,j )ε̇xy(i,j ) − σo

xy(i,j )

) µs(i,j )�tm

ηs(i,j ) + µs(i,j )�tm
, (13.19)

σ ′
xx(i+1/2,j+1/2) = σ ′o

xx(i+1/2,j+1/2) + �σ ′
xx(i+1/2,j+1/2), (13.20)

σxy(i,j ) = σo
xy(i,j ) + �σxy(i,j ). (13.21)

The corresponding stress increments for the markers are then added from the nodes
using a standard first-order interpolation scheme (Fig. 8.9, Eq. (8.19)) and the
newly updated values of stress components σ ′

xx(m) and σxy(m) are thus obtained for
markers. Other stress components are not stored on markers since they are obtained
by using the standard relations σ ′

yy = −σ ′
xx and σyx = σxy .

The interpolation of the calculated stress component changes from the Eulerian
nodal points to the Lagrangian markers is similar to the temperature interpolation
strategy described in Chapter 10 and effectively reduces the problem of numerical
diffusion and non-physical subgrid oscillations. It uses a subgrid stress relaxation
operation occurring over a characteristic Maxwell time. In order to define this
operation, stress changes computed from Eqs. (13.18), (13.19) are decomposed into



13.2 Structure of visco-elasto-plastic code 187

a subgrid part �σ ′subgrid
xx(i+1/2,j+1/2), �σ

subgrid
xy(i,j ) and a remaining part �σ

′remaining
xx(i+1/2,j+1/2),

�σ
remaining
xy(i,j ) so that

�σ ′
xx(i+1/2,j+1/2) = �σ

′ subgrid
xx(i+1/2,j+1/2) + �σ

′ remaining
xx(i+1/2,j+1/2), (13.22)

�σ ′
xy(i,j ) = �σ

′ subgrid
xy(i,j ) + �σ

′ remaining
xy(i,j ) . (13.23)

In order to compute the subgrid part, we apply a subgrid stress relaxation on the
markers by employing a characteristic, local Maxwell visco-elastic relaxation time
scale �tMaxwell(m) and then interpolating the respective stress changes back to the
nodes. Subgrid stress changes on the markers are computed as follows

�σ
′ subgrid
xx(m) = (

σ ′o
xx(nodes) − σ ′o

xx(m)

) [
1 − exp

(
−dve

�tm

�tMaxwell(m)

)]
, (13.24)

�σ
subgrid
xy(m) = (

σo
xy(nodes) − σo

xy(m)

) [
1 − exp

(
−dve

�tm

�tMaxwell(m)

)]
, (13.25)

where �tMaxwell(m) = ηm

µm

is defined for each marker; dve is a dimensionless, numer-

ical visco-elastic relaxation coefficient (one can use empirical values in the range
of 0 ≤ dve ≤ 1); σ ′o

xx(nodes) and σo
xy(nodes) are interpolated for any given marker from

σ ′o
xx(i+1/2,j+1/2) and σo

xy(i,j ) via the nodal values using relation (8.19), respectively
(Fig. 8.9).

After obtaining �σ
′subgrid
xx(m) and �σ

subgrid
xy(m) for all markers, �σ

′subgrid
xx(i+1/2,j+1/2) and

�σ
subgrid
xy(i,j ) are computed by interpolation from the markers to the nodes using

Eq. 8.18 (Fig. 8.8).
Then �σ

′remaining
xx(i+1/2,j+1/2) and �σ

remaining
xy(i,j ) are computed for the nodes from

Eqs. (13.22), (13.23)

�σ
′remaining
xx(i+1/2,j+1/2) = �σ ′

xx(i+1/2,j+1/2) − �σ
′subgrid
xx(i+1/2,j+1/2), (13.26)

�σ
remaining
xy(i,j ) = �σxy(i,j ) − �σ

subgrid
xy(i,j ) . (13.27)

Finally, new corrected marker stresses σ ′corrected
xx(m) and σ corrected

xy(m) are computed accord-
ing to the following relation

σ ′corrected
xx(m) = σ ′o

xx(m) + �σ
′subgrid
xx(m) + �σ

′remaining
xx(m) , (13.28)

σ corrected
xy(m) = σo

xy(m) + �σ
subgrid
xy(m) + �σ

remaining
xy(m) , (13.29)

where �σ
′subgrid
xx(m) and �σ

subgrid
xy(m) are given by Eqs. (13.24) and (13.25), respec-

tively, and �σ
′remaining
xx(m) and �σ

remaining
xy(m) are interpolated from nodal values of

�σ
′remaining
xx(i+1/2,j+1/2) and �σ

remaining
xy(i,j ) to the markers according to standard bilinear

interpolation (Eq. 8.19, Fig. 8.9).
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Equations (13.24) and (13.25) require the decay of differences between marker
stress values σ ′o

xx(m), σo
xy(m) and the interpolated nodal stress values σ ′o

xx(nodes) and
σo

xy(nodes) on the characteristic local, Maxwell visco-elastic relaxation timescale
�tMaxwell(m). It is important to emphasise that the subgrid relaxation does not change
the total stress increments �σ ′

xx(i+1/2,j+1/2) and �σxy(i,j ) computed on nodal points
from Eqs. (13.18) and (13.19), respectively, but instead splits them into two parts
�σ

′subgrid
xx(i+1/2,j+1/2), �σ

subgrid
xy(i,j ) and �σ

′remaining
xx(i+1/2,j+1/2) and �σ

remaining
xy(i,j ) . Introducing the

subgrid relaxation operation removes unrealistic subgrid stress oscillations over
the characteristic local Maxwell visco-elastic relaxation time without affecting
the accuracy of the numerical solution for the momentum equations. Similarly to
temperature, physically based subgrid variations will, indeed, be preserved by this
scheme.

Steps 6 and 7: Solving the temperature equation

Numerical techniques for discretising and solving the temperature equation are
identical to those used in the viscous code of Chapter 11. An important difference,
however, occurs in computing the shear heating term. Since elastic deformation is
reversible and does not contribute to mechanical energy dissipation, this deforma-
tion has to be excluded from shear heating calculation and therefore

Hs = 2σ ′
xx

(
ε̇′
xx − ε̇′

xx(elastic)

)+ 2σxy(ε̇xy − ε̇xy(elastic)). (13.30)

With Eq. (12.45), (13.1)–(13.3) this can be further transformed to (derive as an
exercise)

Hs = 2σ ′
xx

(
ε̇′
xx − 1

2µ

D� σ ′
xx

Dt

)
+ 2σxy

(
ε̇xy − 1

2µ

D� σxy

Dt

)
, (13.31)

Hs = 2σ ′
xx

(
ε̇′
xx − σ ′

xx − σ ′o
xx

2µ�t

)
+ 2σxy

(
ε̇xy − σxy − σo

xy

2µ�t

)
, (13.32)

Hs = σ ′
xx

σ ′
xx

ηvp

+ σxy

σxy

ηvp

. (13.33)

Finally, in the FD representation, the shear heating at temperature nodal points can
be computed as follows;

Hs(i,j ) =
(
σ ′

xx(i−1/2,j−1/2)

)2

4ηn(i−1/2,j−1/2)
+
(
σ ′

xx(i−1/2,j+1/2)

)2

4ηn(i−1/2,j+1/2)
+
(
σ ′

xx(i+1/2,j−1/2)

)2

4ηn(i+1/2,j−1/2)

+ (σ ′
xx(i+1/2,j+1/2))

2

4ηn(i+1/2,j+1/2)
+ (σxy(i,j ))2

ηs(i,j )
, (13.34)

where σ ′
xx(i+1/2,j+1/2) and σxy(i,j ) are defined by Eqs. (13.20) and (13.21).
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Step 10: Rotation of stresses

Another difference to the viscous algorithm consists in computing local stress
changes due to the local rotation of markers. To do this, the rotation rate ω is

defined (Eq. (12.27)) at the same grid points as ε̇xy = 1

2

(
∂vx

∂y
+ ∂vy

∂x

)
(see solid

squares in Fig. 13.2) and is similarly computed from the velocity field via finite
differences

ω(i,j ) = vy (i,j+1/2) − vy (i,j−1/2)

xj+1 − xj−1
− vx (i+1/2,j ) − vx (i−1/2,j )

yi+1 − yi−1
. (13.35)

Deviatoric stresses on markers are recomputed before advecting them according
to Equations (12.21) and (12.22), or the simplified Jaumann formulas (12.24) and
(12.26) (in case of rather small α) by using a first-order accurate scheme to compute
rotation angles for the markers αm

αm = ωm�tm, (13.36)

where ωm is interpolated from the basic nodes using a standard interpolation
formula (Eq. 8.19, Fig. 8.9).

13.3 Visco-elasto-plastic iterations

It is important to mention that computation of visco-elasto-plastic solutions may
require additional iterations in order to adjust stresses, strain rates and viscos-
ity fields between markers and nodes. These iterations can be both local (i.e.
done individually on every marker) and global (i.e. involving globally solving
the momentum and continuity equations and re-interpolating properties between
markers and nodes).

Local iterations are commonly needed when the effective viscosity of the
medium is non-Newtonian and depends on stresses (e.g. due to the dislocation
creep). Note that, in the case of visco-elastic deformation, the effective viscos-
ity should be formulated in terms of the deviatoric stresses (Eq. (6.5a)) and not
in terms of the strain rates (Eq. (6.5b)), since these strain rates are not purely
viscous and include elastic deformation. In order to avoid numerical oscillations,
Eq. (6.5a) should be formulated on markers in terms of the future visco-elastic
stresses predicted locally from Eq. (13.2) and be based on the marker’s old stresses
σ ′o

xx(m), σo
xy(m), strain rates ε̇′

xx(m), ε̇xy(m) and shear modulus µm. Since Eq. (13.2)
also contains the marker viscosity ηm, which in turn depends on the future stresses
(Eq. 6.5a), local iterations on every markers are needed to obtain consistent values
of σ ′

xx(m), σxy(m) and ηm.
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These visco-elastic iterations should be done before we check the plastic yield-
ing condition (13.4) on the marker, which requires we use the marker’s pressure
Pm and consistent values of future visco-elastic stresses σ ′

xx(m), σxy(m) and corre-
sponding σII(m). If σII(m) is larger than σyield(m) for a given marker, a new value of
the viscosity-like parameter ηvp(m), should be computed to satisfy the condition
σII(m) = σyield(m) for that marker. A simple way to do this consists of assuming that
after reaching σyield(m), the second invariant of stress should stop changing and

therefore, the
DσII

Dt
= 0 condition will be satisfied locally for each marker. Based

on that condition and using Eq. (13.2) and (13.4), we can write the following rela-
tions to be applied locally for the marker under the assumption of constant local
strain rate invariant ε̇II(m) and yield stress σyield(m)

ηvp(m) = σyield(m)

2ε̇II(m)
, (13.37)

σ
′o(corrected)
xx(m) = σ ′o

xx(m)

σyield(m)

σII(m)
, (13.38)

σ
o(corrected)
xy(m) = σo

xy(m)

σyield(m)

σII(m)
. (13.39)

In contrast to computing a non-Newtonian viscosity, Eqs. (13.37)–(13.39) appear
simple and can be explicitly applied to any marker without performing any local
iteration. However, this procedure strongly affects the marker viscosity (ηvp(m)) and
stresses (σ ′o(corrected)

xx(m) , σ
o(corrected)
xy(m) ) local to each marker. This may change the global

pressure–velocity solution, which in turn affects the local strain rates ε̇′
xx(m), ε̇xy(m)

and corresponding ε̇II(m) used in Eqs. (13.2) and (13.37), respectively. Therefore,
global iterations that involve solving the momentum and continuity equations and
re-interpolating properties between markers and nodes, are often required. One way
of performing such iterations is to repeat cycles of global solutions on the nodal
points and make local re-adjustments on the markers (without displacing them)
using Eqs. (13.37)–(13.39) until convergence is reached. This global iteration
method works well when elastic stresses in the model build up gradually, such that
they slowly approach the plastic yielding condition. If both the computational (�t)
and the displacement (�tm) time steps are small and small marker displacements
occur at each time step, global iterations may not be needed since small time
steps act as visco-elasto-plastic iterations. If in contrast, stress builds up suddenly
(or even instantaneously, which occurs for example in commonly used inelastic
visco-plastic models), much care should be taken in performing global iterations
and more sophisticated iteration procedures such as the Newton–Raphson method
(e.g., Belytschko et al., 2000; Souza de Neto et al., 2009) are commonly applied
(e.g. Popov and Sobolev, 2008).
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Another aspect of treating plasticity with finite-differences and marker-in-cell
techniques concerns numerical diffusion. This time it involves diffusion of strain
rates. The problem arises from the fact that strain rates are computed on the nodes
using the interpolated, viscosity-like parameter ηvp, which in turn depends on
strain rates. Interpolation of the mutually dependent parameters ε̇′

xx(m), ε̇xy(m) and
ηvp, back and forth between markers and nodes introduces systematic numerical
diffusion. It has the same origin as in the case discussed in Chapter 8 (Fig. 8.11),
when interpolating absolute values of parameters back and forth between markers
and nodes. The diffusion defocuses plastic deformation zones, which widen, so
deviating notably from strongly localised deformation patterns as reported in rocks.
Numerical diffusion can be restricted by using a stress-based approach in which
strain rates used in Eqs. (13.37)–(13.39) for each marker are not interpolated from
the surrounding nodes directly but are computed from interpolated nodal stresses
(σ ′

xx , σxy , Eqs. (13.20), (13.21)) and stress changes (�σ ′
xx , �σxy , Eqs. (13.18),

(13.19)) with the use of Eqs. (13.2), (13.3)

ε̇′
xx(m) = σ ′

xx

2ηvp(m)
+ �σ ′

xx

2�tmµm

, (13.40)

ε̇xy(m) = σxy

2ηvp(m)
+ �σxy

2�tmµm

, (13.41)

where ηvp(m) and µm are values computed for the same marker during the previous
iteration/time step; these values are not subjected to numerical diffusion. Other
schemes similar to (13.40), (13.41) combining nodal and marker stresses and strain
rates can also be proposed (see program example i2elvis.m associated with this
chapter). The explicit approach can be easily implemented on markers and allows
focusing of shear zones to within 1–2 grid cells. Finally, it is important to mention
that strain rates should be computed on markers before displacing them since high-
strain-rate shear zones are Lagrangian features related to specific material points
(and not to immobile Eulerian nodes) which should be advected with the material
flow.

Programming exercises and homework

Exercise 13.1
Add elasticity to the viscous thermomechanical code developed in Exercise 11.1.
Use an incompressible continuity equation. Implement contrasting shear modulus
µ= 1010 Pa and µ = 1011 Pa for the left and right layers, respectively. Program
subgrid diffusion of stresses. Note that ε̇xy , σxy and ω in the staggered grid can
be computed from the velocity solution only for internal basic nodes, but not for
the external nodes. Therefore, use the internal nodes for interpolation of these
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Fig. 13.3 Numerical setup for shortening of a visco-elasto-plastic block in the
absence of gravity.

parameters to markers. Also, do not forget that when �tT <�tm, the temperature
equation should be solved in several steps. An example is in Viscoelastic2D.m.

Exercise 13.2
Add plasticity to the code. Modify the model setup for shortening in the absence of
gravity (gx = gy = 0) of a visco-elasto-plastic block embedded in a weak medium
and containing a weak square inclusion (Fig. 13.3). The model is 1000 × 1000 km
in size with a resolution of 51 × 51 nodes and 40 000 randomly distributed markers.
Use the following material parameters: block (1000 × 600 km) – µ = 1010 Pa,
η = 1023, C = 107 Pa, sin(ϕ) = 0.6; weak medium, inclusion (100 × 100 km) –
µ = 1010 Pa, η = 1017, C = 1010 Pa, sin(ϕ) = 0. Program a constant horizontal
shortening and vertical extension rates of 5 × 10−9 m/s applied at the vertical and
horizontal boundaries respectively (Fig. 13.3, this condition is mass conservative
and corresponds to bulk shortening strain rate of 10−14 1/s). Use a small com-
putational time step of 100 years and a marker displacement step of 1% of grid
step. Make a global iteration cycle to re-adjust plastic yielding on markers (without
displacing them) using Eqs. (13.37)−(13.39). Try different number of iterations
for this cycle and see how this affects the numerical solution. Try different values
of sin(ϕ) (from 0 to 0.7) for the block and see how the orientation of the shear
bands changes. An example is in i2elvis.m.
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The multigrid method

Theory: Principles of multigrid method. Multigrid method for solving
the Poisson equation in 2D. Coupled solving of momentum and con-
tinuity equations in 2D with multigrid for the cases with constant and
variable viscosity.
Exercises: Programming of multigrid methods for solving the Poisson
equation and coupled solving of the momentum and continuity equa-
tions in 2D.

14.1 Multigrid – what is it?

The use of direct methods to solve the system of equations places a strong limitation
on the maximum possible number of nodal points within a numerical grid due
to limitations in computer memory and computational speed. This limitation is
particularly critical in 3D where, to reach the same resolution as in 2D (tens
and hundreds of grid points in each direction), the amount of linear equations
to be solved increases by at least two orders of magnitude and the number of
computational operations required to solve the same equations grows by at least
three orders of magnitude. Try to increase resolution in your visco-elasto-plastic
code (Exercise 13.2) by two to three times in each direction and you will see how
much slower it will compute . . .

Therefore, for very high resolution in 2D and for a moderate resolution in 3D,
we are forced to use iterative methods which do not have such strong memory
limitations. However, many iterative methods also have the problem that they
require an increasing number of iterations with an increasing number of grid points
(Fig. 14.1). Try to increase resolution in your code which solves the Poisson
equation iteratively via Gauss–Seidel (Exercise 3.3) by two to three times in each
direction and you will see how many more iterations will be needed with the
Gauss–Seidel iterative method to obtain an accurate solution . . .

193
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Fig. 14.1 Changes in the distribution of residuals during the iterative solution of 2D
Poisson equation for the model with density field corresponding to a circular body
(planet) embedded in a mass-less medium (space). Note that for the model with
higher resolution (right column) residuals decay much slower than for the model
with lower resolution (left column) with the same amount of Gauss–Seidel itera-
tions. The model is computed with the code Gauss_Seidel_iterations_Poisson.m
associated with this chapter.

What can we do to overcome these problems? One possible way is by using
a multigrid method. Multigrid is a relatively new type of numerical algorithm
explicitly formulated for the first time in 1964 (Fedorenko, 1964) and has been
actively developed since the 1980s (a good introduction to multigrid methods can
be found in the book of P. Wesseling, 1992). This method greatly speeds up the
convergence of iterations and makes the number of iteration cycles independent of
the amount of grid points. How does it do it? – By solving the same equations in
parallel on several grids (typically having different resolution) and by exchanging
information between these grids. This is why it is called MULTI-grid.
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Multigrid is based on the simple idea that any linear equation:

C1x1 + C2x2 + · · · + Cnxn = R, (14.1)

where C1, C2, . . . , Cn are coefficients, x1, x2, . . . , xn are unknowns and R is the
right-hand side, can be represented in additive form as

C1
(
x ′

1 + �x1
)+ C2

(
x ′

2 + �x2
) + · · · + Cn

(
x ′

n + �xn

) = R, (14.2)

x1 = x ′
1 + �x1,

x2 = x ′
2 + �x2,

xn = x ′
n + �xn,

where x ′
1, x ′

2, . . . , x ′
n are the current (known) approximations of x1, x2, . . . , xn

and �x1, �x2, . . . , �xn are unknown corrections needed to satisfy Eq. (14.1). Eq.
(14.2) can be further transformed to

C1�x1 + C2�x2 + · · · + Cn�xn = �R, (14.3)

�R = R − (
C1x

′
1 + C2x

′
2 + · · · + Cnx

′
n

)
,

where �R is the current residual of Eq. (14.1) (see Chapter 3).
When some correction approximations are known, Eq. (14.3) can also be repre-

sented in the additive form

C1
(
�x ′

1 + ��x1
)+ C2

(
�x ′

2 + ��x2
)+ · · · + Cn

(
�x ′

n + ��xn

) = �R,

(14.4)

�x1 = �x ′
1 + ��x1,

�x2 = �x ′
2 + ��x2,

�xn = �x ′
n + ��xn,

where �x ′
1, �x ′

2, . . . , �x ′
n are current (known) approximations of �x1, �x2, . . . ,

�xn and ��x1, ��x2, . . . , ��xn are unknown corrections to corrections needed
to satisfy Eqs. (14.1) and (14.3). Eq. (14.4) can be further transformed to

C1��x1 + C2��x2 + · · · + Cn��xn = ��R, (14.5)

��R = �R − (
C1�x ′

1 + C2�x ′
2 + · · · + Cn�x ′

n

)
,

where ��R is the current residual of Eq. (14.3; see Chapter 3). Obviously, the
additive representation of Eq. (14.5) can also be done, etc. any desirable amount
of times (continue as an exercise).

The multigrid method implies that we use different numerical grids to formulate
the complementary Equations (14.1), (14.3), (14.5), etc. for the same numerical
model. Please note that the coefficients C1, C2, . . . , Cn in Equations (14.1), (14.3)
and (14.5) are identical and only the right-hand side of the equations is different.
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In the case of numerical solutions, this means that the discretisation scheme for the
governing equations will always be the same, independent of whether we formulate
(i) equations for unknowns x1, x2, . . . , xn or (ii) equations for correction to these
unknowns �x1, �x2, . . . , �xn or (iii) equations for correction to these corrections
��x1, ��x2, . . . , ��xn or (iv) etc. Another important point to note is that for
such a hierarchical additive representation, residuals of approximated equations go
into the right-hand side of correcting equations (i.e. residuals of Eq. 14.1 go to
the right-hand side of Eq. 14.3, residuals of Eq. 14.3 go to the right-hand side of
Eq. 14.5 etc.)

How does multigrid help us? What is required to rapidly obtain a global accu-
rate solution for the steady equations (like Poisson, Stokes and incompressible
continuity equations) is that the ‘numerical information’ propagates quickly across
the entire model. During one iteration cycle, the information about updates of
unknowns propagates only to (or is felt by) neighbouring grid points. Therefore,
the finer the grid resolution, the shorter the physical distance over which infor-
mation propagates during one iteration step. Residuals with short wavelengths (in
terms of number of grid points) decay relatively fast (within a few iterations), while
residuals with longer wavelength decay much slower (Fig. 14.2). Therefore, any
increase in resolution produces even longer wavelengths in the residual distribution,
which will thus require more iterations to decay.

Multigrid resolves this problem by performing additional iterations on several
hierarchically arranged coarser grids (levels of resolution) which, therefore, prop-
agate the solution over larger distances and rapidly smooth out longer-wavelength
residuals. In this manner, residuals of all wavelengths decay with the same (small)
amount of iterations which results in a solution convergence that is independent
of the grid resolution. A typical way to program the multigrid method is to use
several grids whose resolution increases by a fixed factor (e.g. a factor 2, see
Fig. 14.3). The finest grid (Level 1) is the principal one, on which an accurate solu-
tion is obtained and the coarser grids are used to compute corrections for solutions
on finer grids (cf. Eq. (14.1)–(14.5)). The coarser grid that is one level above the
finest one will always compute corrections to the real solution, while the other grids
will typically compute corrections to corrections to the real solution, corrections
to corrections to corrections to the real solution, etc. (continue as an exercise).

The equations that are formulated on the various grids (including boundary
conditions) are identical with the exception of the right-hand side of the equations;
on coarser grids this is substituted by residuals that are interpolated (typically) from
the nearest finer grid (cf. Eq. (14.1)–(14.5)). Transport coefficients such as viscosity,
shear modulus etc. necessary to formulate the equations are also interpolated from
the finer grid. As a result, the solution obtained on the coarser grid (e.g. pressure and
velocity values) is in itself a correction (small addition) to the solution on the finer
grid. It can then be used to update the solution on the finer grid by interpolating
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Fig. 14.2 Changes in the distribution of residuals during the iterative solution of 2D
Poisson equation for a model with initially random distribution of the density field.
Note that long-wavelength residuals decay much slower then short-wavelength
ones. The model is computed with the code Gauss_Seidel_iterations_Poisson.m
associated with this chapter. Model resolution is 100 × 100 grid points.

the corrections. To sum up: residuals and transport coefficients are interpolated
from finer to coarser levels (restriction operation) while computed corrections are
interpolated back from coarser to finer levels (prolongation operation). During one
iteration cycle, an accurate solution should only be obtained on the coarsest (last)
grid where many iterations or a direct matrix inversion can be employed (which can
be done at low computational costs since the resolution of this grid is small). On
other grids, some limited number of iterations (typically increasing by some factor
with increasing grid level) should be performed in order to propagate information
about the solution update and to compute new residuals. This process is called a
smoothing operation (the reason for using this term is obvious from Fig. 14.2).

It should be pointed out that an increase in the resolution by an integer factor
is not a strict requirement for multigrid. Generally, grid structures on different
levels could be made in a fully independent manner (e.g. by using independent
irregularly spaced meshes) and the only requirement is that coarser grids should
efficiently smooth residuals with larger wavelengths (Fig. 14.2). In this case, special
care should be taken when organising the restriction and prolongation operations
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Fig. 14.3 Multigrid structure for a uniformly spaced, 2D rectangular non-staggered
grid with four levels of resolution. Resolution of the grid between two nearest levels
changes by the factor of 2 (see changes in the number of cells). Coarser levels
of resolution are responsible for the decay of larger residual wavelengths (see
Fig. 14.2).

between grids since the nodal points of the coarser grid do not overlap those
of the finer grid, even in the case of a regular rectangular non-staggered grid.
This situation is also very common for staggered grids (even in the case that
resolution increases by an even factor) – non-overlap of points between different
levels for a staggered grid is unavoidable and, therefore, the resolution at different
levels can be chosen quite independently. Indeed, the choice of grid resolution and
structure at various levels may notably affect the convergence of the solution. This
choice can thus be different for different numerical problems and can be optimised
empirically. Examples of programming such ‘arbitrary resolution multigrids’ for
the Poisson equation as well as for the momentum and continuity equations are
given respectively in the programs Poisson_Multigrid_planet_arbitrary.m and
Variable_viscosity_Multigrid_arbitrary.m associated with this chapter.
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Fig. 14.4 Various multigrid schedules (or cycles) shown for the case of a four-
level multigrid algorithm (Fig. 14.3). Circles denote smoothing operation, arrows –
restriction (downward) and prolongation (upward) operations.

The order in which grids are visited is called the multigrid schedule or cycle.
Several standard schedules exist (Fig. 14.4): the V-cycle, the W-cycle, the F-cycle
and the sawtooth-cycle. The V-cycle is the simplest and most commonly used
multigrid schedule (Fig. 14.4) – restriction+smoothing go uniformly from the
finest level to the coarsest level through all intermediate levels, then prolongation+
smoothing go uniformly from the coarsest level to the finest level, also through
all intermediate levels. The order of operations for W- and F-cycles is more
complicated and contains several cycles of restriction+smoothing followed by
prolongation+smoothing between coarser levels (Fig. 14.4) before returning cor-
rections to the principal (finest) Level 1. The sawtooth-cycle is, in a way, similar to
the V-cycle but the smoothing operations are omitted during interpolation of resid-
uals from finer to coarser levels. Thus, this cycle first solves all equations on the
coarsest grid and then gradually ‘refines’ the solution toward the principal level by
applying prolongation+smoothing operations. The sawtooth-cycles are typically
applied when no good initial approximation of the solution exists on the principal
level, which is a common situation for the beginning of a numerical experiment.

Interpolation of residuals and transport coefficients from finer to coarser grid
(i.e. restriction operation) can be made in the same manner as the interpolation
of various parameters from markers to nodes (Eq. (8.18), Fig. 8.8). Consequently,
the interpolation of corrections from coarser to finer grid (i.e. prolongation
operation) can be organised by analogy with interpolation from nodes to mark-
ers (Eq. 8.19, Fig. 8.9). Since interpolation between markers and nodes was
already extensively discussed in Chapter 8, programming of restriction and
prolongation operations is rather straightforward, which is exemplified by several
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examples of written MATLAB functions (e.g. Poisson_restriction_planet,
Poisson_prolongation_planet, Viscosity_restriction, Stokes_Continuity_vis-
cous_restriction, Stokes_Continuity_prolongation) used in the codes associated
with this chapter. There are also more sophisticated schemes of organising
restriction and prolongation operations which give a higher multigrid performance
in specific cases (e.g. Wesseling, 1992).

It should also be mentioned that the method described in this chapter is called
geometrical multigrid, which requires the definition of several grids for the same
model, formulation of the same differential equations separately for each grid and
storing transport coefficients, solutions and corrections for all grids. Computational
and memory costs for the geometric multigrid are relatively small since coarser
grids have much less nodal points then the principal one. For example, in case of
grid coarsening by a factor of two, all coarser grids will have in 2D and 3D less
than 50% and 25% of grid points, respectively, compared to the finest grid.

However, there is also a class of more sophisticated multigrid approaches called
algebraic multigrid (AMG) which do not require the explicit definition of the
coarser grids, but rather uses algebraic operations based on multigrid principles to
process and solve global matrix constructed for the finest (principal) grid. In an
algebraic multigrid scheme, the coarse-level equations are generated from finer-
level equations without the use of any geometry or re-discretisation on the coarse
levels. This has the advantage that no coarse-level grid has to be generated or
stored, and no flux or source term needs be calculated on the coarse levels. This
feature makes AMG particularly important for use on unstructured meshes.

How efficient is multigrid? It is extremely efficient for simple cases like solv-
ing the Poisson equation on a regular grid (Fig. 14.2) and speeding up conver-
gence by several orders of magnitude (Fig. 14.5). In more complex, thermo-
mechanical modelling cases, it is typically less efficient, particularly when physical
phenomena (such as e.g. localisation of deformation) are not properly reproduced
on the coarser levels. For many geodynamic applications, the multigrid provides
one of the best options to build efficient and robust codes and is therefore widely
used in 3D numerical modelling of mantle convection and plate tectonic processes
(e.g., Tackley, 2000; 2008).

14.2 Solving the Poisson equation with multigrid

Implementation of a multigrid solver for the Poisson equation is generally quite
simple: a standard Gauss–Seidel iteration with a relatively high relaxation para-
meter θPoisson

relaxation (up to 1.75 uniformly applied for all nodes in all grids) can be used
as an efficient smoother and the interpolation of residuals (restriction operation)
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Fig. 14.5 Changes in the distribution of residuals during the iterative solution of
a 2D Poisson equation for a model with a density field that corresponds to a cir-
cular body (planet) embedded in a mass-less medium (space). (a) Gauss–Seidel
iterations at low grid resolutions. (b), (c) Multigrid iterations at both low (b) and
high (c) grid resolution, The multigrid cycle corresponds to a V-cycle with 5 + 5
Gauss–Seidel iterations on the finest grid per cycle, four and seven levels of res-
olution are used for (b) and (c) respectively. Note that the convergence of the
numerical solution (decay of residuals) in case of multigrid is several orders of
magnitude faster (see bold numbers above vertical axes defining order of mag-
nitude for residuals) than for the same amount of simple Gauss–Seidel iterations
performed on the finest level. Also, in contrast to simple Gauss–Seidel iterations,
the convergence of the multigrid solutions is independent of grid resolution (com-
pare (b) and (c) with Fig. 14.1). The models are computed with the code Poisson_
Multigrid.m.



202 The multigrid method

Fig. 14.6 Stencil of the regular rectangular grid used for the discretisation of the
Poisson equation for the iterative Gauss–Seidel smoother used with multigrid.

and corrections (prolongation operation) is very straightforward particularly when
the resolution of a regular grid between adjacent levels increases by an integer
factor (2, 3 etc.) and grid lines of the coarser grid overlap with grid lines of the
finer grid (Fig. 14.3). A 5-point stencil in 2D for the discretisation of the Poisson
equation on such a regular grid is shown in Fig. 14.6 and the following iterative FD
representation is used for updating the solution with a Gauss–Seidel smoother

�Ri,j = Ri,j −
(

∂2�

∂x2

)
i,j

−
(

∂2�
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)
i,j

, (14.6)
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Ci,j = − 2

�x2
− 2

�y2
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where �i,j−1, �i−1,j , �i,j , �i+1,j , �i,j+1 are the current values of either gravity
potential (at finest level) or corrections for this potential (at coarser levels) in
respective nodal points, Ci,j is the coefficient at �i,j in the discretised Poisson
equation, �Ri,j is the current residual and Ri,j is the right-hand side of the Poisson
equation. On the principal level (finest grid), the right-hand side is computed from
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Fig. 14.7 Rectangular grids for two levels of resolution in case of solving Poisson
equation for 2D numerical model with an internal boundary based on multigrid.
Poisson equation is solved for internal nodes of the grids located inside the bound-
ary (solid squares). Ghost nodes (open squares) located immediately outside the
boundary are used to formulate internal boundary conditions when discretising
the Poisson equation for the nearest internal nodes.

the standard equation

Ri,j = 4KπGρi,j , (14.11)

where G is the gravitational constant and K depends on the geometry of self-
gravitating body modelled in 2D (K = 1 and K = 2/3 stand for cylindrical and
spherical geometry, respectively, Eq. (11.16)). For coarser levels, Ri,j is composed
of residuals interpolated from finer levels. Obviously, grid steps �x and �y are also
different for different levels of resolution. In a standard case, the simplest possible
boundary condition equation �i,j = 0 is used for all marginal nodes on all grids,
which also poses no difficulty for programming.

A peculiar case, occurs when an internal boundary is present within the model
on which a boundary condition to solve the Poisson equation has to be defined
(Fig. 14.7). This is, for example the case when we want to compute the gravity
potential inside and around a planet, which is a component of a spherical-Cartesian
approach for modelling self-gravitating bodies on a rectangular Cartesian grid
(Fig. 11.5). In order to force the planet to remain in the centre of the grid and obtain
a natural distribution of the gravitational acceleration vector inside the planet
(Chapter 11), a constant gravity potential boundary condition (� = �b) in 2D can
be defined on a circle located at a distance from the planetary surface (Fig. 14.7).
In this case, the Poisson equation is solved only for the nodes located in the circle
(see solid squares in Fig. 14.7), while the boundary condition �= �b is applied
for all other nodes of the grid. In order to have consistent solutions for all levels
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of resolution, the FD representation of the Poisson equation should be modified
for the nodes located immediately next to the internal boundary with the use of a
ghost node approach. In this case, the derivative of the gravity potential on the side
of a 5-point cross which crosses the internal boundary should be defined in such
a manner that it satisfies the boundary condition � = �b. This situation is shown
in Fig. 14.7 (right part), where the horizontal derivative of gravity potential to the
right of the internal ij-th-node should satisfy the boundary condition � = �b and
the following FD equation can be formulated

∂�

∂x
= �i,j+1 − �i,j

�x
= �b − �i,j

�xb

, (14.12)

where �x is the horizontal grid step, �xb is the distance from ij-th-node to the
circular boundary and �i, j+1 is the gravity potential for an imaginary (ghost) node
located at the distance �x from ij-th-node. The value of gravity potential for the
ghost node can be then computed as

�(i,j+1) = �b

�x

�xb

− �(i,j )
�x − �xb

�xb

. (14.13)

Eq. 14.8 for the second x-derivative of gravity potential in Eq. 14.6 can be refor-
mulated to the form excluding �i, j+1 (verify as an exercise)(
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A similar transformation can be done for Eq. 14.9 for the second y-derivative
of gravity potential for ij-th-node by using (i-1, j)-th-ghost-node (verify as an
exercise) (
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Consequently, the coefficient Ci,j in Eq. (14.7) will also change to

Ci,j = −�xb + �x

�x2�xb

− �yb + �y

�y2�yb

. (14.16)

Ghost nodes are thus only used for reformulating the Poisson equation in the near-
est internal nodes and values of the gravity potential in the ghost nodes are not
computed explicitly. Moreover, the ‘implied’ gravity potential value (Eq. 14.13)
in a ghost node is generally different when the same ghost node is used in dif-
ferent Poisson equations formulated for different internal nodes. This is because
the gravity potential has a ‘kink’ on the circular boundary and it is taken to be
constant (�= �b) for all nodes outside this boundary including all ghost nodes in
the final solution. However, the uniform use of Eqs. (14.14)–(14.16) to reformulate
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the Poisson equation on different resolution levels is important and ensures the
geometrical compatibility of solutions between all multigrid levels. This is because
the boundary conditions for all grids are formulated on the same internal boundary,
irrespective of the resolution and actual positions of the nodal points relative to
this boundary. Note that the value of �b should be set to zero for all levels of
resolution with the exception of the finest (principal) level since coarser levels are
used for computing corrections to the solution and these corrections should tend
to zero (and not to �b) with an increasing number of iterations. An example of
a multigrid implementation with the circular internal boundary for gravity poten-
tial is given in the program Poisson_Multigrid_planet.m associated with this
chapter.

Solving the Poisson equation on an irregularly spaced grid is not very different
from the above procedures. Modifications only concern the manner of comput-
ing second derivatives of gravity potential in Eq. 14.6, the Ci,j coefficient in
Eq. 14.7, and the way of finding a correspondence between nodal points of coarser
and finer grids when programming restriction and prolongation operations. The
necessary modifications of the Poisson equation can be made on the basis of
respective FD equations given in Chapter 11 (Fig. 11.4 Eq. (11.17)) while finding
a correspondence between nodal points is analogous to that between Lagrangian
markers (= nodes of finer grid) and Eulerian grid points (= nodes of coarser grid)
and can be based on the same bisection procedure presented in Chapter 8 (Fig.
8.8–8.10, Eqs. 8.18, 8.19).

14.3 Solving Stokes and continuity equations with multigrid

The main challenge for solving coupled momentum and continuity equations with
a multigrid method consists of programming a robust smoother that uses a prim-
itive variable (pressure–velocity) formulation. In the case of constant viscosity,
this challenge can be avoided by using a stream function formulation that requires
double solving of the Poisson equation (Chapter 5). However, we are more inter-
ested in creating a primitive variable smoother that allows explicitly computation
of pressure distribution in the model and is further applicable (with some modifica-
tions) to the variable viscosity case, which is much more relevant for geodynamic
applications. The main obstacle to building such a primitive variable smoother
comes from solving the incompressible continuity equation div(v̄) = 0 which does
not contain pressure and therefore (without modifications) cannot be converted into
a pressure solution update procedure as e.g. the Stokes equation (for velocity) or
Poisson equation (for gravity potential, see Eqs. 14.6, 14.7). This problem can be
overcome with the computational compressibility approach according to which an
iterative pressure update in a specific location is made proportional to the current
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residual of the continuity equation computed for the same location

�R
continuity
i,j = R

continuity
i,j − div(v̄)i,j , (14.17)

P new
i,j = Pi,j + �R

continuity
i,j

β
computational

i,j

θ
continuity
relaxation,

(14.18)

where R
continuity
i,j is the right-hand side of the continuity equation (it is zero on the

finest level and is made of residuals for coarser levels), β
computational
i,j is the com-

putational compressibility and θ
continuity
relaxation is the relaxation coefficient used for the

continuity equation. Despite the artificial origin of this scheme for the incompress-
ible viscous medium, a surprisingly efficient choice of β

computational
i,j can be made

for all levels of resolution on the basis of the simple relation:

β
computational
i,j = 1

ηi,j

, (14.19)

where ηi,j is the local viscosity. Equations (14.17)–(14.19) are applicable for
both variable and constant viscosity cases (in the constant viscosity case ηi,j is
obviously equal to the global viscosity η for the entire model) and give stable
convergence of solutions for coupled momentum and continuity equations if the
relaxation coefficient θ

continuity
relaxation is chosen to be 0.1–0.3. An explanation for this

surprising efficiency is that the computational compressibility provides a natural
way of coupling between pressure and velocity equations: in places where for the
current iteration step fluid converges and div(v̄) < 0 Eqs. (14.17)–(14.19) produce
an increase in pressure, thus creating an outward directed pressure gradient that
forces (through the Stokes equation) divergence of velocity and improves the
solution of the continuity equation; in places where fluid diverges and div(v̄) > 0,
the reaction is opposite.

An efficient numerical representation of the momentum and continuity equations
for the multigrid can be based on a staggered grid with external velocity points
(Fig. 14.8), as discussed in Chapter 7 (Fig. 7.17). Since the global numbering of
unknowns is not needed in the case of iterative methods, the indexing of arrays
for different parameters can be done separately and these arrays will also have
different dimensions (Fig. 7.17): Nx × Ny for ρ and ηs (viscosity used for shear
stress formulation) located in basic nodes, Nx × (Ny + 1) for vx , (Nx + 1) × Ny for
vy and (Nx − 1) × (Ny − 1) for P and ηn (the viscosity used for normal deviatoric
stress components formulation), where Nx and Ny is respectively horizontal and
vertical resolution of the basic grid at a given multigrid level (see black rectangles
in Fig. 14.8).
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Fig. 14.8 Geometry of staggered grids with external velocity points used for two
adjacent levels of multigrid in case of coupled solving of momentum and continuity
equations. Internal (working) part of the grid is shown in grey. Note that distances
from the grid boundaries to the external velocity nodes are different for different
levels of resolution.

Constant viscosity case

A simple pressure–velocity update scheme based on the Gauss–Seidel iteration
and a computational compressibility approach (Eqs. (14.17)–(14.19)) can be con-
structed on a regular grid for the case of constant viscosity (Fig. 14.9)

�Rx-Stokes
i,j = Rx-Stokes

i,j − η

(
∂2vx

∂x2

)
i,j

− η

(
∂2vx

∂y2

)
i,j

+
(

∂P

∂x

)
i,j

, (14.20)

vnew
x(i,j ) = vx(i,j ) + �Rx-Stokes

i,j

Cvx (i,j )
θStokes

relaxation, (14.21)

�R
y-Stokes
i,j = R

y-Stokes
i,j − η

(
∂2vy

∂x2

)
i,j

− η

(
∂2vy

∂y2

)
i,j

+
(

∂P

∂y

)
i,j

, (14.22)

vnew
y(i,j ) = vy(i,j ) + �R

y-Stokes
i,j

Cvy (i,j )
θStokes

relaxation, (14.23)

�R
continuity
i,j = R

continuity
i,j −

(
∂vx

∂x

)
i,j

−
(

∂vy

∂y

)
i,j

, (14.24)

P new
i,j = Pi,j + η�R

continuity
i,j θ

continuity
relaxation, (14.25)
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(b)

(a)

(c)

Fig. 14.9 Stencils used for the discretisation of the continuity (a) and Stokes (b), (c)
equations on a 2D regular staggered grid (Fig. 14.8) for the models with constant
viscosity. Indexing of grid lines corresponds to a basic (density) nodal points.
Indexing of different unknowns is made separately depending on the amount of
respective nodal points in the staggered grid (Fig. 14.8).

(
∂2vx

∂x2

)
i,j

= vx(i,j−1) − 2vx(i,j ) + vx(i,j+1)

�x2
, (Fig. 14.9(b)) (14.26)

(
∂2vx

∂y2

)
i,j

= vx(i−1,j ) − 2vx(i,j ) + vx(i+1,j )

�y2
, (Fig. 14.9(b)) (14.27)

(
∂2vy

∂x2

)
i,j

= vy(i,j−1) − 2vy(i,j ) + vy(i,j+1)

�x2
, (Fig. 14.9(c)) (14.28)

(
∂2vy

∂y2

)
i,j

= vy(i−1,j ) − 2vy(i,j ) + vy(i+1,j )

�y2
, (Fig. 14.9(c)) (14.29)
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∂P

∂x

)
i,j

= Pi−1,j − Pi−1,j−1

�x
, (Fig. 14.9(b)) (14.30)

(
∂P

∂y

)
i,j

= Pi,j−1 − Pi−1,j−1

�y
, (Fig. 14.9(c)) (14.31)

(
∂vx

∂x

)
i,j

= vx(i+1,j+1) − vx(i+1,j )

�x
, (Fig. 14.9(a)) (14.32)

(
∂vy

∂y

)
i,j

= vy(i+1,j+1) − vy(i,j+1)

�y
, (Fig. 14.9(a)) (14.33)

Cvx (i,j ) = − 2η

�x2
− 2η

�y2
, (14.34)

Cvy (i,j ) = − 2η

�x2
− 2η

�y2
, (14.35)

where θStokes
relaxation is a relaxation parameter for the Stokes equations. vx(i,j ), vy(i,j ), Pi,j

etc. are current values of either velocity components and pressure (at finest level)
or corrections for these values (at coarser levels) at respective nodal points. Cvx (i,j )

and Cvy (i,j ) are coefficients at respectively vx(i,j ) and vy(i,j ) in the discretised x- and

y-Stokes equations, respectively. �Rx-Stokes
i,j , �R

y-Stokes
i,j , �R

continuity
i,j and Rx-Stokes

i,j ,

R
y-Stokes
i,j , Rcontinuity

i,j are current residuals, and right-hand side for the momentum and
continuity equations, respectively. On the finest level of resolution, these right-hand
side contributions are computed from the standard equations

Rx-Stokes
i,j = −gx

ρi,j+ρi−1,j

2
, (Fig. 14.9(b)) (14.36)

R
y-Stokes
i,j = −gy

ρi,j−1+ρi,j

2
, (Fig. 14.9(c)) (14.37)

R
continuity
i,j = 0, (14.38)

where gx and gy are respective components of the gravitational acceleration vector.
At coarser levels, Rx-Stokes

i,j , Ry-Stokes
i,j and R

continuity
i,j are composed of respective resid-

uals interpolated from finer levels. Obviously, grid steps �x and �y are different
for each multigrid level. Standard boundary condition equations for no slip and
free slip conditions are always applied to the same external boundaries of the basic
grid (see grey areas in Fig. 14.8) and can be formulated uniformly for all levels as
follows:

upper boundary

vy(1,j ) = 0,

vx(i=1,j ) = vx(i=2,j ) for free slip, i.e.
∂vx

∂y
= 0 across the boundary,

vx(i=1,j ) = −vx(i=2,j ) for no slip, i.e. vx = 0 on the boundary;
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left boundary

vx(i,1) = 0,

vy(i,j=1) = vy(i,j=2) for free slip, i.e.
∂vy

∂x
= 0 across the boundary,

vy(i,j=1) = −vy(i,j=2) for no slip, i.e. vy = 0 on the boundary;

and conditions for lower and right boundaries are done similarly. These boundary-
condition equations can either be called directly in the Gauss–Seidel iteration cycle
or (which often gives better convergence of the solution) implemented within the x-
and y-Stokes equations (Eqs. (14.20)–(14.35)) discretised for the nearest internal
velocity nodes. For example, a free slip condition at the upper boundary can be
implemented as

(
∂2vx

∂y2

)
i=2,j

= −vx(i=2,j ) + vx(i=3,j )

�y2
, (Fig. 14.9(b) compare with Eq. (14.27)),

(14.39)

and respectively Cvx (i=2,j ) = − 2η

�x2
− η

�y2
(compare with Eq. (14.34)),

(14.40)(
∂2vy

∂y2

)
i=2,j

= −2vy(i=2,j ) + vy(i=3,j )

�y2
, (Fig. 14.9(c), compare with Eq. (14.29)),

(14.41)(
∂vy

∂y

)
i=1,j

= vy(i=2,j+1)

�y
, (Fig. 14.9(a), compare with Eq. (14.33)).

(14.42)

Velocity conditions for other boundaries can be implemented in a similar way. An
example of such boundary conditions implementation is given in the MATLAB
function Stokes_Continuity_smoother_ghost.m.

In order to be able to compute pressure fields, we also need to prescribe pressure
value in one selected cell. This can be done on the finest level at the end of each
smoothing cycle by subtracting uniformly from all pressure nodes an estimated
current difference between required and actual pressure values in the selected cell.
This operation does not change pressure gradients in Stokes equations and thus
does not affect the accuracy of the solution. During the smoothing procedure, an
iterative pressure update is done uniformly with Eq. (14.25) for all pressure nodes,
including the selected one, as such uniformity typically gives better convergence of
multigrid. Also, faster convergence is often obtained when the hydrostatic pressure
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Fig. 14.10 Decay of normalised residuals for Stokes and continuity equations
versus the number of multigrid V-cycles for a constant viscosity model. Resid-
uals stabilise at computer accuracy level. Four-level multigrid with resolu-
tion 49 × 49 points on the finest level are used with relaxation parameters
θ

continuity
relaxation = 0.3 and θStokes

relaxation = 0.9. Numerical setup: rectangular block hav-
ing higher-density sinks in lower-density fluid. Iterations start from a hydro-
static pressure field and zero velocities. Results are obtained with the program
Constant_Viscosity_Multigrid_ghost.m.

distribution is initially defined in the computational domain. This distribution can
be computed from the density field and gravity vector as follows:

� a pressure value is first defined in a first cell Pi=1, j=1 and then computed in the first row
of cells based on density and horizontal (gx) component of gravity vector

Pi=1,j = Pi=1,j−1 + gx

ρi=1,j + ρi=2,j

2
�x (Fig. 14.9b), (14.43)

� pressure in the remaining cells is computed by columns based on density and vertical
(gy) component of gravity vector

P(i,j ) = Pi−1,j + gy

ρi,j + ρi,j+1

2
�y (Fig. 14.9c). (14.44)

A multigrid solver based on the described procedures is very efficient
for the case of constant viscosity and residuals of both Stokes and continu-
ity equations decay very rapidly (up to an order of magnitude per one V-
cycle, Fig. 14.10) to computer accuracy in 15–20 cycles. Examples of the
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(b)

(d)
(c)

(a)

Fig. 14.11 Stencils used for discretisation of the continuity (a) and Stokes (b), (c)
equations and for restriction of continuity residuals (d) on a 2D regular staggered
grid (Fig. 14.8) for the models with variable viscosity. Indexing of solid grid
lines corresponds to basic (density) nodal points. Indexing of different unknowns
is done separately depending on the amount of respective nodal points in the
staggered grid (Fig. 14.8).

described multigrid implementation for the case of constant viscosity are given
in the programs Stokes_Continuity_Multigrid.m (with boundary condition
equations called directly in the Gauss–Seidel iteration cycle) and Constant_
Viscosity_Multigrid_ghost.m (with boundary condition equations implemented
to momentum and continuity equations).

Adding variable viscosity

A variable viscosity multigrid solver is based essentially on the same principles
as for constant viscosity but conservative finite differences discussed in Chapter 7
should be used to re-formulate the Stokes equations. Pressure–velocity update
schemes based on Gauss–Seidel iterations in the case of variable viscosity and
regular grids (Fig. 14.11) can be written as follows (only equations which are
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different from Eqs. (14.20)–(14.33) are shown)

�Rx-Stokes
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P new
i,j = Pi,j + ηn(i,j )�R

continuity
i,j θ

continuity
relaxation, (Fig. 14.11(a)) (14.47)
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(Fig. 14.11(c)) (14.51)

Cvx (i,j ) = −2
ηn(i−1,j ) + ηn(i−1,j−1)

�x2
− ηs(i,j ) + ηs(i−1,j )

�y2
, (14.52)

Cvy (i,j ) = −2
ηn(i,j−1) + ηn(i−1,j−1)

�y2
− ηs(i,j ) + ηs(i,j−1)

�x2
. (14.53)

Note that the viscosity is defined (Fig. 14.11) both in the cell-centres (ηn) and in the
basic nodes (ηs) which are separately used to formulate normal (σ ′

xx , σ ′
yy) and shear

(σxy = σyx) deviatoric stress components, respectively. These two types of viscos-
ity should be interpolated from finer to coarser levels (i.e. viscosity restriction)
before starting any multigrid iterations. Note that continuity equation residuals
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are multiplied to a local viscosity ηn defined in the centre of the respective cell
when computing pressure updates for this cell (Eq. (14.47)). Using a uniform
(e.g. average) viscosity to compute pressure updates, instead, typically gives worse
convergence. Moreover, in the case of a large viscosity contrast, convergence is
notably improved when continuity residuals are rescaled based on local viscosities
at both finer and coarser levels, during restriction operations. The following first
order of accuracy bilinear scheme is used to calculate the right-hand side of the
continuity equation R

continuity
i,j for the ij-th-pressure node at a coarser level based on

the continuity equation residuals �R
continuity
m computed for finer-level nodes located

within one grid step distance around the coarser-level node (Fig. 14.11d)

R
continuity
i,j =

∑
m

ηn(m)�R
continuity
m wm(i,j )

ηn(i,j )
∑
m

wm(i,j )
, (14.54)

wm(i,j ) =
(

1 − �xm

�x

)
×
(

1 − �ym

�y

)
, (14.55)

where wm(i,j ) represents a statistical weight of m-th-finer-level node at the ij-th-
coarser-level node; �xm and �ym are distances from m-th-node to ij-th-node. Like
interpolation from markers to nodes, Equation (14.55) only accounts for finer-level
nodes located within a limited (one coarser grid step) distance around the coarser-
level node. Equation (14.54) guarantees that pressure corrections computed at
coarser levels will always be proportional to the product of continuity residuals and
local viscosities at the finest (principal) level as required by Eq. (14.47). Obviously,
in the constant viscosity case, Eq. (14.54) turns into a standard bilinear interpolation
scheme (Chapter 8, Eq. (8.18), Fig. 8.8). It should also be mentioned that more
sophisticated pressure update and restriction/prolongation schemes (Tackley, 2008)
are based on computational compressibility (Eq. (14.18)) defined as local pressure
derivative of velocity divergence

β
computational
i,j =

(
∂div(v̄)

∂P

)
i,j

. (14.56)

This derivative can be computed numerically in the centre of a cell by using the
discretised Stokes equations for four surrounding velocity nodes (Fig. 14.11(a))
that contain the pressure value for this specific cell (Eqs. (14.45), (14.46)). Indeed,
Eq. (14.56) always predicts an inverse proportionality between β

computational
i,j and

local viscosity ηn(i,j ) (Tackley, 2008) which explains why the simplified update
scheme of Eq. (14.47) is sufficiently robust.

One more modification to the multigrid solution algorithm which helps to obtain
a solution at the first time step is a gradual increase in the viscosity contrast. When
we initialise a computation that has a large viscosity contrast (>103), we typically
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do not have any initial approximation of the velocity field (since we cannot use
the velocity field from the previous time step). If we start from a zero velocity
and a hydrostatic pressure field, the convergence of the solution can be very slow
and the velocity field may remain unrealistic (too slow) for many iterations. This
is particularly the case when the velocity field is defined by the weakest, rather
then by the strongest medium. This happens, for example, in case of a hard Stokes
sphere/cylinder that passes through a low-viscosity fluid (cf. Stokes cylinder test,
Popov and Sobolev, 2008; Schmeling et al., 2008) or in the case of a rigid isolated
dense slab/block sinking in a weak medium (cf. falling block test, Gerya and
Yuen, 2003a). Stokes-sphere-like setups with isolated rigid objects are in strong
contrast with Rayleigh–Taylor-like models where a strong layer is attached to
the model boundaries and the velocity field is therefore given by the rate of its
internal deformation. In the latter case, the multigrid solution converges rapidly
even for large viscosity contrasts. In the former case, a gradual increase in the
computational viscosity contrast may indeed notably improve and speed up the
solution (Fig. 14.12). Initially (in the beginning of multigrid cycles) the viscosity
field is rescaled to a low/no viscosity contrast for which accurate velocity and
pressure fields can be rapidly computed, starting from a hydrostatic pressure and
zero velocity fields (Fig. 14.10). Then, after either a limited number of iterations
or after reaching some level of accuracy, the computational viscosity contrast is
gradually increased by a certain factor (1.5 to 10) and the original viscosity field is
rescaled to this new contrast. The operations are repeated until the original viscosity
contrast of the model is recovered. Rescaling of viscosity for the model can be
made on the basis of the following formula

ηi,j = ηcomputational
min exp

[
ln
(
η

computational
max /η

computational
min

)
ln
(
η

original
max /η

original
min

) ln

(
ηi,j

η
original
min

)]
,

(14.57)

where η
original
min , η

original
max and η

computational
min , η

computational
max are respectively the original

and computational minimal and maximal viscosity for the model. An example
of using such an algorithm (Fig. 14.12) is given in the program Variable_viscosity_
Multigrid_arbitrary.m. It should however be mentioned that at large (�103) and
sharp (on one/few nodal points) viscosity contrasts, the accuracy of the multi-
grid solution is typically lowered compared to cases with lower viscosity contrast
(see decreasing depth of residual minimisation ‘spikes’ with increasing viscosity
contrast in Fig. 14.12). A reasonably high level of accuracy (10−4–10−7) for such
sharply inhomogeneous models can indeed be reached and the use of more complex
multigrid schedules such as F- and W-cycles can also improve convergence. Time
steps following the first time step, typically do not require viscosity rescaling as
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Fig. 14.12 Decay of normalised residuals for Stokes and continuity equations with
the number of multigrid V-cycles for a model with variable viscosity. Residuals
stabilise above the computer accuracy level. Four-level multigrid with resolution
49 × 49 points on the finest level is used with relaxation parameters θ

continuity
relaxation = 0.3

and θStokes
relaxation = 0.9. Numerical setup: rectangular block having higher density and

viscosity (by factor 106) sinks in lower density and viscosity fluid. Iterations
start from a hydrostatic pressure field, zero velocities and no viscosity contrast.
Spikes in the solutions are caused by an increase in viscosity contrast by the
factor of 3.333 every 15 multigrid cycles. Results are obtained with program
Variable_viscosity_Multigrid_arbitrary.m.

they have a much better initial guess for pressure and velocity. In addition, as dis-
cussed in Chapter 13, the numerical viscosity contrast can be efficiently decreased
by using visco-elastic rheological models in which the upper limit of the numerical
viscosity decreases proportionally with a decreasing computational time step (see
Eqs. (13.6)–(13.9)).

Another efficient possibility to improve convergence in case of large viscosity
contrasts is to use repetitive cycles of gradual increase in a computational viscosity
contrast. In the beginning of each cycle (the first one excepted) residuals obtained
for the finest grid level in the end of the previous cycle are assigned to the right-
hand side of respective equations at the same finest level. At the end of the cycle,
corrections computed at the finest level are added to the global solution and new
residuals are then computed at the finest level to be used in the next cycle.

This method can be defined as a ‘multi-multigrid’ approach which uses a
hierarchical representation of governing equations on the same numerical grid,
which is analogous to the derivation of Eqs. (14.1)–(14.5). In many cases, this
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approach allows us to reach computer accuracy solution within a finite amount
of iterations, even for very large viscosity contrasts (Fig. 14.13). An example
of using such algorithm (Fig.14.13) is given in the program Variable_viscosity_
MultiMultigrid_arbitrary.m.

Finally, it is also important to mention that besides large viscosity contrasts,
further convergence problems can be caused by strongly irregular grid spacing, by
significant differences in grid spacing used for different dimensions, by strong (e.g.
plastic) localisation of deformation characterising a mechanical solution at the finest
grid which is not captured on coarser levels etc. Therefore, be prepared that some
of your thermomechanical models which utilise multigrid will be ‘demanding’,
and will require special efforts in tuning and adjusting the iteration procedures.

Programming exercises and homework

Exercise 14.1
Program the multigrid solution based on a V-cycle for solving the Poisson equation
in 2D for the case of a circular planetary body embedded in a mass less-like
medium (Eqs. (14.6)–(14.16), Figs. 14.6–14.7). Use a ghost-node approach to
define the boundary conditions �= 0, along a circular boundary located at a
distance from the planet. Program a Poisson equation smoother based on Gauss–
Seidel iteration (Exercise 3.3 for Chapter 3) as an external MATLAB function and
call it for different levels of resolution. Program external functions for restriction
(Eq. (8.18), Fig. 8.8) and prolongation (Eq. (8.19), Fig. 8.9) operations to be
called for different multigrid levels. Model parameters: radius of the planet =
6000 km, density of the planet = 6000 kg/m3, model size = 18000 × 18000 km,
radius for gravity potential boundary = 8999 km, number of resolution levels =
4, resolution on the coarsest (last) grid = 7 × 7 nodal points, factor of increase in
resolution between the levels = 2, relaxation coefficient for Gauss–Seidel iterations,
θPoisson

relaxation = 1.5, number of smoothing iterations on the finest level = 5, factor of
increase in the number of iterations with the level coarsening = 2. An example is in
Poisson_Multigrid_planet.m.

Exercise 14.2
Program a multigrid solution for solving the Stokes and continuity equations in 2D
for a constant viscosity case using a pressure–velocity formulation and a ghost-
node approach (Eqs. (14.20)–(14.44), Figs. 14.8–14.9). The setup corresponds to a
dense rectangular block sinking in the lower density medium. Model parameters:
model size = 100 × 100 km, block size = 20 × 20 km (located in the middle of the
model), block density = 3100 kg/m3, medium density = 3000 kg/m3, acceleration
of gravity (vertical) = 9.81 m/s2, model viscosity = 1020 Pa s, boundary conditions
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(a)

(b)

Fig. 14.13 Decay of normalised residuals for Stokes and continuity equations with
the number of multigrid V-cycles for a model with variable viscosity in the case
of a ‘multi-multigrid’ approach, which uses repetitive cycles of gradual increase
in computational viscosity contrast. Residuals stabilise at the computer accuracy
level. Five-level multigrid with resolution 49 × 49 points on the finest level are used
with relaxation parameters θ

continuity
relaxation = 0.3 and θStokes

relaxation = 0.9. Numerical setup:
rectangular block having higher density and viscosity (by factor 106) sinks into a
lower density and viscosity fluid. Iterations start from a hydrostatic pressure field
and zero velocities. (a) Decay of local residuals computed with current corrections
and right-hand side within each cycle (steps) of gradual viscosity contrast increase
(spikes). (b) Decay of global residuals computed after each cycle of gradual
viscosity contrast increase. Spikes in (a) are caused by an increase in viscosity
contrast by the factor of 10 every 3 multigrid cycles. Results are obtained with the
program Variable_viscosity_MultiMultigrid_arbitrary.m.
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= free slip at all boundaries, number of resolution levels = 4, resolution of the basic
grid on the coarsest (last) level = 7 × 7 nodal points, factor of increase in resolution
between the levels = 2, relaxation coefficients for Gauss–Seidel iterations, θStokes

relaxation

= 1.2 and θ
continuity
relaxation = 0.3, number of smoothing iterations on the finest (basic) level

= 5, factor of increase in the number of iterations with the level coarsening = 2.
An example is in Constant_Viscosity_Multigrid_ghost.m.

Exercise 14.3
Modify the previous example to include a variable viscosity (Eqs. (14.45)–
(14.55), Fig. 14.11). Use a high viscosity for the block (1023 Pa s) in compar-
ison to the surrounding medium. Use θStokes

relaxation = 1.0 and θ
continuity
relaxation= 0.3 and

program a gradual increase in the viscosity contrast by the factor of 101/2 (Eq.
(14.57)) to reach an accurate solution (Fig. 14.12). Example is in Variable_
viscosity_Multigrid_arbitrary.m.





15

Programming of 3D problems

Theory: Formulation of thermomechanical problems in 3D and its
numerical implementation. Numerical methods for solving temperature,
Poisson, momentum and continuity equations in 3D.
Exercises: Programming of numerical methods for temperature and
Poisson equations and coupled solving of momentum and continuity
equations in 3D.

15.1 Why simply not always 3D?

We know very well that the Earth is a 3D, nearly spherical object and, therefore, all
the dynamic processes inside our planet are inherently three dimensional. There-
fore, it is very logical to assume that realistic geodynamic modelling should always
be done in 3D. Also, if you talk to geoscientists studying various natural geological
objects, you are frequently told that such objects can only be modelled in 3D. This
is a normal expectation since they are perfectly aware of the spatial 2D variability
of geological structures on the Earth’s surface and they thus know that a similar
variability also exists in depth. Therefore, 3D modelling appears to be the natural
choice for ‘observers’. What about ‘modellers’? Why don’t they always use 3D
modelling? What’s wrong with it? The ‘uncensored’ truth about 3D modelling is
the following:

� 3D thermomechanical modelling is quite easy from a methodological point of view –
it is fairly straightforward to formulate and discretise the governing equations in a
3D Cartesian geometry for both simple viscous and more realistic visco-elasto-plastic
rheologies (especially by using the same relatively simple finite-differences and marker-
in-cell techniques that we extensively discussed in this book).
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� 3D modelling is much more difficult from a technical point of view. This mainly concerns
the coupled solving of momentum and continuity equations. Highly accurate direct
solvers that are applicable in 2D are too slow and consume too much memory to yield
the same spatial resolution of numerical grids in 3D. Iterative solvers, on the other hand,
are very efficient for simple rheologies (such as constant viscosity problems) but do not
always converge well for realistic geodynamic problems, which involve large viscosity
contrasts on sharp interfaces.

It is obvious that when changing from 2D to 3D models, we do not want to
reduce the numerical resolution. This requirement, however, immediately implies
several orders of magnitude increase in the amount of grid points and markers and,
thus, in the amount of equations that have to be solved:

� A 100 × 100 2D grid with 5 × 5 markers per cell implies around 3 × 100 × 100 = 30 000
momentum and continuity equations to be solved and 5 × 5 × 100 × 100 = 250 000
markers to be followed at each time step;

� A 100 × 100 × 100 3D grid with 5 × 5 × 5 markers per cell involves about 4 × 100 ×
100 × 100 = 4 000 000 momentum and continuity equations to be solved (i.e. 130 times
more than in 2D) and 5 × 5 × 5 × 100 × 100 × 100 = 125 000 000 markers to be followed
at each time step (i.e. 500 times more than in 2D).

This is the reason why modellers prefer to apply 2D, rather then 3D approaches,
where geodynamic problems can be justifiably simplified to lower dimensions. 3D
geodynamic modelling is now developing very actively and significant progress is
already achieved in the field of mantle convection in both Cartesian and spheri-
cal geometry, in large-scale modelling of plate tectonics processes (especially in
modelling subduction) and in some other directions. Several groups are currently
working on the development of more efficient and universal all-in-one 3D numer-
ical geodynamic codes and 3D thermomechanical modelling is likely to become
a standard tool in all fields of computational geodynamics (see Kaus et al., 2008a
for an overview of the current state of the art).

This chapter gives a practical summary that allows a relatively simple implemen-
tation of 3D thermomechanical modelling, based on conservative finite-differences
and marker-in-cell techniques combined with iterative multigrid solvers similar to
those discussed in Chapter 14 for 2D problems.

15.2 3D staggered grid and discretisation of momentum, continuity,
temperature and Poisson equations

Let us first discuss the discretisation of various equations in 3D. Figure 15.1
shows an elementary volume (cell) of a 3D staggered grid that can be used for
discretisation of momentum, continuity, Poisson and temperature equations in the
case of viscous flow with variable viscosity and variable thermal conductivity. The
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Fig. 15.1 Elementary volume (cell) of 3D staggered grid used for discretisation of
momentum, continuity, Poisson and temperature equations in the case of incom-
pressible viscous flow with variable viscosity and thermal conductivity.

grid is constructed in a specific way that allows a natural representation of all
governing equations with conservative finite differences:

� pressure, deviatoric normal stresses and strain rates and gravity potential (when needed)
are located at the centre of the cell,

� components of velocity vector vx , vy and vz and variable gravitational acceleration vector
gx, gy and gz (when needed) are located in the middle of the faces orthogonal to x, y and
z axes, respectively,

� shear stresses and strain rates are located in the middle of the edges formed by the
intersection of faces containing respective velocity components, i.e. by intersection of
vx- and vy-faces in case of σxy and ε̇xy etc.,

� viscosity is defined in four different places corresponding to positions of normal (ηn, in
the centre of the cell) and shear (ηxy, ηxz, ηyz, in the middle of respective edges) stress
components,

� heat fluxes qx, qy and qz are located in the middle of edges parallel to x, y and z axes,
respectively,

� other material properties and temperature are located at the cell corners, which are the
basic nodes of the grid.

Before discretising the governing equations on a 3D staggered grid, an important step
is (although it might sound really boring . . . ) to properly understand the indexing of
different field variables located around a grid cell (Fig. 15.1):

� Indexing of variables located in the basic nodes (T, ρ, α, CP, etc.) of the grid is simple
since the respective arrays have dimension of Nx × Ny × Nz, where Nx, Ny and Nz are the
number of nodes of the basic grid in the respective directions.
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(a)

(b)

(c)

Fig. 15.2 Distribution of various velocity nodal points in 3D in the case when
external nodes (open circles) are used to formulate boundary conditions for vx (a),
vy (b) and vz (c) velocity components. The basic grid of the model (see solid lines
in Fig. 15.1) is shown in grey.

� Arrays for the variables located in cell centres (P, σ ′
xx, ηn, �, etc.) will be (Nx − 1) ×

(Ny − 1) × (Nz − 1).
� Arrays for various shear stresses, strain rates and respective viscosity values located on

cell edges will be Nx × Ny × (Nz − 1) for σxy , ε̇xy and ηxy, Nx × (Ny − 1) × Nz for σxz, ε̇xz

and ηxz, (Nx − 1) × Ny × Nz for σyz, ε̇yz and ηyz.
� Finally, the indexing of the velocity nodes should take into account nodes located outside

the basic grid, which are used for formulating boundary conditions and interpolation
of velocity components to markers (similarly to ones that we discussed in Chapter 14
for 2D grids, Fig. 14.8). Consequently, velocity arrays will be larger in two direc-
tions compared to the basic grid resolution (Fig. 15.2): Nx × (Ny + 1) × (Nz + 1) for vx ,
(Nx + 1) × Ny × (Nz + 1) for vy and (Nx + 1) × (Ny + 1) × Nz for vz.

Based on these considerations, we can now understand the logic of indexing for
various grid points (Fig. 15.3) which will be then used to construct conservative 3D
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Fig. 15.3 Indexing of different variables for a 3D staggered grid (Fig. 15.1) with
external velocity nodes (Fig. 15.2).

finite-difference schemes for the momentum, continuity, Poisson and temperature
equations.

After extensive discussions on composing conservative FD schemes in 1D and
2D, the discretisation of various equations on a 3D staggered grid shown in
Figs. 15.1–15.3 is quite straightforward and therefore we only discuss it
briefly.

The representation of the incompressible 3D continuity equation on a stencil
with six velocity nodes around a cell (Fig. 15.4) is

vx(i+1,j+1,l+1) − vx(i+1,j,l+1)

�xj+1/2
+ vy(i+1,j+1,l+1) − vy(i,j+1,l+1)

�yi+1/2

+ vz(i+1,j+1,l+1) − vz(i+1,j+1,l)

�zl+1/2
= 0, (15.1)

where i, j and l are indices in respectively y, x and z directions.
Discretisation of the Stokes equation for an incompressible fluid with variable

viscosity uses a stencil containing 15 velocity nodes and 2 pressure nodes. An
example of this stencil is shown in Fig. 15.5 for the case of the x-Stokes equation

∂σ ′
xx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
− 2

Pi−1,j,l−1 − Pi−1,j−1,l−1

�xj−1/2 + �xj+1/2

= 1

4
(ρi−1,j,l−1 + ρi,j,l−1 + ρi−1,j,l + ρi,j,l)gx, (15.2)
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Fig. 15.4 Stencil of a 3D staggered grid used for the discretisation of the continuity
equation for iterative solution. The small open cube in the centre corresponds to the
pressure node at which the continuity equation is formulated. Notation of different
nodal points is as in Fig. 15.1. Indexing of different variables corresponds to 3D
staggered grid with external velocity nodes (Fig. 15.3).

∂σ ′
xx

∂x
= 4ηn(i−1,j,l−1)

vx(i,j+1,l) − vx(i,j,l)

�xj+1/2(�xj−1/2 + �xj+1/2)

− 4ηn(i−1,j−1,l−1)
vx(i,j,l) − vx(i,j−1,l)

�xj−1/2(�xj−1/2 + �xj+1/2)
, (15.3)

∂σxy

∂y
= 2ηxy(i,j,l−1)

(
vx(i+1,j,l) − vx(i,j,l)

�yi−1/2(�yi−1/2 + �yi+1/2)
+ vy(i,j+1,l) − vy(i,j,l)

�yi−1/2(�xj−1/2 + �xj+1/2)

)

− 2ηxy(i−1,j,l−1)

(
vx(i,j,l) − vx(i−1,j,l)

�yi−1/2(�yi−3/2+�yi−1/2)
+ vy(i−1,j+1,l) − vy(i−1,j,l)

�yi−1/2(�xj−1/2+�xj+1/2)

)
,

(15.4)
∂σxz

∂z
= 2ηxz(i−1,j,l)

(
vx(i,j,l+1) − vx(i,j,l)

�zl−1/2(�zl−1/2 + �zl+1/2)
+ vz(i,j+1,l) − vz(i,j,l)

�zl−1/2(�xj−1/2 + �xj+1/2)

)

− 2ηxz(i−1,j,l−1)

(
vx(i,j,l) − vx(i,j,l−1)

�zl−1/2(�zl−3/2 + �zl−1/2)
+ vz(i,j+1,l−1) − vz(i,j,l−1)

�zl−1/2(�xj−1/2 + �xj+1/2)

)
.

(15.5)

Discretisation of the y-Stokes and z-Stokes is rather obvious and the respective
conservative FD schemes can be constructed and indexed by analogy to Fig. 15.5
and Eqns. (15.2)–(15.5) (derive as an exercise).
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Fig. 15.5 Stencil of a 3D staggered grid used for the discretisation of the x-Stokes
equations with variable viscosity. The white circle in the centre corresponds
to a horizontal velocity node for which the x-Stokes equation is formulated.
The notation of different nodal points is as in Fig. 15.1. Indexing of different
variables corresponds to a 3D staggered grid with external velocity nodes
(Fig. 15.3).

Given that temperature advection is solved with markers (see Chapter 10),
discretisation of the 3D temperature equation with a variable thermal conductivity
can be done in a simple Lagrangian form, which does not include advective terms
and uses a stencil with 7 temperature nodes (7-point cross, Fig. 15.6). In implicit
form, the conservative FD can be written as follows

ρi,j,lCPi,j,l

Ti,j,l − T o
i,j,l

�t
+ ∂qx

∂x
+ ∂qy

∂y
+ ∂qz

∂z
= Hi,j,l, (15.6)

∂qx

∂x
= (ki,j−1,l + ki,j,l)(Ti,j,l − T(i,j−1,l))

�xj−1/2(�xj−1/2 + �xj+1/2)
− (ki,j,l + ki,j+1,l)(Ti,j+1,l − Ti,j,l)

�xj+1/2(�xj−1/2 + �xj+1/2)
,

(15.7)
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Fig. 15.6 Stencil of a 3D staggered grid used for discretisation of the temperature
equation with variable thermal conductivity. The temperature equation is formu-
lated for the central node Ti, j, l which is one of the basic nodes of the 3D staggered
grid (Fig. 15.1). The notation of different nodal points is the same as in Fig. 15.1.
Indexing of different variables corresponds to a 3D staggered grid with external
velocity nodes (Fig. 15.3).

∂qy

∂y
= (ki−1,j,l + ki,j,l)(Ti,j,l − Ti−1,j,l)

�yi−1/2(�yi−1/2 + �yi+1/2)
− (ki,j,l + ki+1,j,l)(Ti+1,j,l − Ti,j,l)

�yi+1/2(�yi−1/2 + �yi+1/2)
,

(15.8)

∂qz

∂z
= (ki,j,l−1 + ki,j,l)(Ti,j,l − Ti,j,l−1)

�zl−1/2(�zl−1/2 + �zl+1/2)
− (ki,j,l + ki,j,l+1)(Ti,j,l+1 − Ti,j,l)

�zl+1/2(�zl−1/2 + �zl+1/2)
.

(15.9)

where T o
i,j,l is temperature for the current moment of time in the central ijl-th

node of the cross and Ti,j,l−1, Ti,j,l+1, etc. are temperatures in 7 nodal points
for the next moment of time, ki,j,l−1, ki,j,l+1, etc. stand for thermal conductivity
that can be different at different nodes, ρi,j,l, CP i,j,l, and Hi,j,l is density, iso-
baric heat capacity and heat production values for the central node of the cross,
respectively.
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Fig. 15.7 Stencil of a 3D staggered grid used for the discretisation of the Poisson
equation. The Poisson equation is formulated for the central node �i,j,l located
in one of the cell centres (pressure nodes) of the 3D staggered grid (Fig. 15.1).
The notation of different nodal points is the same as in Fig. 15.1. Indexing of
different variables corresponds to 3D staggered grid with external velocity nodes
(Fig. 15.3).

Like for the temperature equation, the discretisation of the Poisson equation in
3D is also based on a 7-point cross (Fig. 15.7)

∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= πG(ρi,j,l + ρi+1,j,l + ρi,j+1,l + ρi+1,j+1,l + ρi,j,l+1

+ ρi+1,j,l+1 + ρi,j+1,l+1 + ρi+1,j+1,l+1)/2, (15.10)

∂2�

∂x2
= 2

�i,j+1,l − �i,j,l

�xj+1(�xj + �xj+1)
− 2

�i,j,l − �i,j−1,l

�xj (�xj + �xj+1)
, (15.11)

∂2�

∂y2
= 2

�i+1,j,l) − �i,j,l

�yi+1 (�yi + �yi+1)
− 2

�i,j,l − �i−1,j,l

�yi (�yi + �yi+1)
, (15.12)

∂2�

∂z2
= 2

�i,j,l+1 − �i,j,l

�zl+1 (�zl + �zl+1)
− 2

�i,j,l − �i,j,l−1

�zl (�zl + �zl+1)
. (15.13)

The density at the central node of the cross in Eq. (15.10) is computed as an
arithmetic average from 8 surrounding basic nodes. Alternatively, additional density
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Fig. 15.8 Stencil of a 3D grid (8-nodes cell) used for the interpolation between
marker (grey cube) and nodes (black cubes).

points can be defined in the same gravity potential nodes (i.e. in the centre of cells,
Fig. 15.1) and respective density values can be separately interpolated from markers
when deformation of self-gravitating body is modelled in 3D.

Finally, interpolation between markers and nodes in 3D is also based on the
same principles as those discussed for 2D interpolation in Chapter 8. It can be done
with the following standard first-order of accuracy trilinear interpolation schemes
(Fig. 15.8): interpolation to ijl-th node from markers found in 8 cells surrounding
this node

B(i,j,l) =
∑
m

Bmwm(i,j,l)∑
m

wm(i,j,l)
, (15.14)

interpolation to a marker in a cell from 8 nodes surrounding the cell

Bm = Bi,j,lwm(i,j,l) + Bi−1,j,lwm(i−1,j,l) + Bi,j−1,lwm(i,j−1,l)

+ Bi−1,j−1,lwm(i−1,j−1,l) + Bi,j,l−1wmi,j,l−1 + Bi−1,j,l−1wmi−1,j,l−1

+ Bi,j−1,l−1wmi,j−1,l−1 + Bi−1,j−1,l−1wmi−1,j−1,l−1, (15.15)

where the statistical weight of m-th-marker for ijl-th-node depends on �xm, �ym,
�zm distances to this nodes as

wm(i,j,l) =
(

1 − �xm

�xj−1/2

)
×
(

1 − �ym

�yi−1/2

)
×
(

1 − �zm

�zl−1/2

)
. (15.16)
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15.3 Solving discretised 3D equations

After discussing discretisation of variable equations required for thermomechanical
geodynamic modelling in 3D, let us consider methods for solving these equations.
All approaches considered are iterative.

Temperature equation. Efficient solving of the non-steady 3D temperature equa-
tion (15.6) does not require a multigrid since, in contrast to steady Stokes and Pois-
son equations, the time-dependent solutions for temperature are controlled locally
by local heat fluxes rather than globally and can be implemented on the basis of a
Gauss–Seidel iteration with a relatively high relaxation parameter θ

temperature
relaxation that

ranges from 0.5 to 1.5. The respective iterative temperature update scheme for a
regularly spaced grid based on Eqs. (15.6)−(15.9) is as follows

T new
i,j,l = Ti,j,l + �R

temperature
i,j,l

CT (i,j,l)
θ

temperature
relaxation , (15.17)

�R
temperature
i,j,l = Hi,j,l − ρi,j,lCP i,j,l

Ti,j,l − T o
i,j,l

�t
− ∂qx

∂x
− ∂qy

∂y
− ∂qz

∂z
,

(15.18)
∂qx

∂x
= (ki,j,l + ki,j−1,l)(Ti,j,l − Ti,j−1,l) − (ki,j+1,l + ki,j,l)(Ti,j+1,l − Ti,j,l)

2�x2
,

(15.19)
∂qy

∂y
= (ki,j,l + ki−1,j,l)(Ti,j,l − Ti−1,j,l) − (ki+1,j,l + ki,j,l)(Ti+1,j,l − Ti,j,l)

2�y2
,

(15.20)
∂qz

∂z
= (ki,j,l + ki,j,l−1)(Ti,j,l − Ti,j,l−1) − (ki,j,l+1 + ki,j,l)(Ti,j,l+1 − Ti,j,l)

2�z2
,

(15.21)

CT (i,j,l) = ρi,j,lCPi,j,l

�t
+ ki,j−1,l + 2ki,j,l + ki,j+1,l

2�x2

+ ki−1,j,l + 2ki,j,l + ki+1,j,l

2�y2
+ ki,j,l−1 + 2ki,j,l + ki,j,l+1

2�z2
, (15.22)

where �x, �y, and �z are regular grid steps in respective directions, T o
i,j,l is the

temperature at the ijl-th node for the current moment of time, Ti,j,l and T new
i,j,l are

old and new (updated) values of temperature at the ijl-th node for the next moment
of time. To satisfy the boundary condition equations, these equations are called for
marginal temperature nodes in the same Gauss–Seidel iteration cycle

upper boundary (i = 1)

no vertical heat flux Ti=1,j,l = Ti=2,j,l

constant temperature Ti=1,j,l = Ttop
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left boundary (j = 1)

no horizontal heat flux Ti,j=1,l = Ti,j=2,l

constant temperature Ti,j=1,l = Tleft

front boundary (l = 1)

no lateral heat flux Ti,j,l=1 = Ti,j,l=2

constant temperature Ti,j,l=1 = Tfront

etc. for other boundaries. An example implementation of above algorithm is given
in the program Temperature3D_Gauss_Seidel.m. As can be seen from Fig. 15.9,
Gauss–Seidel iterations allow us to obtain high-accuracy solutions with 10–20
iterations per time step while the computer accuracy solution is obtained with a
few tens of iterations.

Poisson equation. Like in 2D (Chapter 14), the efficient solving of the 3D Pois-
son equation (15.10) can be based on a multigrid approach, that can again be
implemented on the basis of Gauss–Seidel iterations with a relatively high relax-
ation parameter θPoisson

relaxation ranging from 0.5 to 1.5. The respective iterative gravity
potential update scheme for regularly spaced grid based on Eqs. (15.10)−(15.13)
is as follows

�new
i,j,l = �i,j,l + �Ri,j,l

C�(i,j,l)
θPoisson

relaxation, (15.23)

�RPoisson
i,j,l = RPoisson

i,j,l − ∂2�

∂x2
− ∂2�

∂y2
− ∂2�

∂z2
, (15.24)

∂2�

∂x2
= �i,j−1,l − 2�i,j,l + �i,j+1,l

�x2
, (15.25)

∂2�

∂y2
= �i−1,j,l − 2�i,j,l + �i+1,j,l

�y2
, (15.26)

∂2�

∂z2
= �i,j,l−1 − 2�i,j,l + �i,j,l+1

�z2
. (15.27)

C�(i,j,l) = − 2

�x2
− 2

�y2
− 2

�z2
, (15.28)

�i,j−1,l, �i−1,j,l , etc. are current values of either gravity potential (at finest level) or
corrections for this potential (at coarser levels) at respective nodal points, C�(i,j,l)

is the coefficient at �i,j,l in the discretised Poisson equation, �Ri,j,l is the current
residual and Ri,j,l is the right-hand side of the Poisson equation. On the finest
principal level of resolution, the right-hand side is computed from the standard
equation

Ri,j,l = 4πGρi,j,l, (15.29)
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(a)

(b)

Fig. 15.9 Decay of normalised residuals for the temperature equations with the
number of Gauss–Seidel cycles for a 3D model with variable thermal conductivity.
Residuals in (a) stabilise at computer accuracy level (10−16) after around 50
iterations (per time step). Iterations in (b) are terminated after reaching given level
of tolerance (10−9) that takes around 25 iterations per time step. Model resolution is
51 × 51 × 51 points with regularly spaced grid. Relaxation parameter θ

temperature
relaxation =

1.25 is used (in Eq. 15.17). Numerical setup: rectangular block having higher
temperature is placed in lower temperature surrounding. Results are obtained with
program Temperature3D_Gauss_Seidel.m.

where G is the gravitational constant and ρi,j,l the density defined at the same
location as �i,j,l (alternatively use Eq. (15.10) when the gravity potential and
density are defined at different points). For coarser levels, Ri,j,l is composed of
residuals interpolated from finer levels. Obviously, grid steps �x, �y and �z are
different at different levels of resolution. Various boundary conditions are defined
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Fig. 15.10 Decay of normalised residuals for the 3D Poisson equation at various
resolutions versus number of multigrid V-cycles for a model with a spherical planet
embedded in a mass less medium (space). Residuals stabilise at computer accuracy
level. 5- and 6-level multigrid with resolutions respectively 49 × 49 × 49 (open
diamonds) and 97 × 97 × 97 (solid squares) nodes on the finest level are used
with a relaxation parameter θPoisson

relaxation = 1.5. Results are obtained with program
Poisson3D_Multigrid_planet_arbitrary.m.

as in 2D (see Fig. 14.7, Eqs. (14.12)–(14.16)). An example implementation of
the above algorithm, for the case of a self-gravitating planet and gravity potential
boundary condition defined on the internal spherical surface inside the grid is given
in the program Poisson3D_Multigrid_planet_arbitrary.m. As can be seen from
Fig. 15.10, multigrid allows us to obtain computer accuracy within around 10
V-cycles independent of the model resolution.

Momentum and continuity equations. As in 2D (Chapter 14), the efficient solu-
tion of the 3D Stokes and continuity equations (15.1)−(15.5) can be based on a
multigrid approach that can be implemented on the basis of Gauss–Seidel iterations
with pressure updates computed from local divergence scaled to local viscosity. The
respective iterative pressure and velocity update schemes for a regularly spaced
grid can be derived on the basis of Eqs. (15.1)–(15.5)

P new
i,j,l = Pi,j,l + ηn(i,j,l)�R

continuity
i,j,l θ

continuity
relaxation, (15.30)

�R
continuity
i,j,l = R

continuity
i,j,l − ∂vx

∂x
− ∂vy

∂y
− ∂vz

∂z
, (15.31)

vnew
x(i,j,l) = vx(i,j,l) + �Rx-Stokes

i,j,l

Cvx (i,j,l)
θStokes

relaxation, (15.32)
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vnew
y(i,j,l) = vy(i,j,l) + �R

y-Stokes
i,j,l

Cvy (i,j,l)
θStokes

relaxation, (15.33)

vnew
z(i,j,l) = vz(i,j,l) + �Rz-Stokes

i,j,l

Cvz(i,j,l)
θStokes

relaxation. (15.34)

For models with constant viscosity η, the respective residuals and coefficients in
Eqs. (15.30)−(15.34) become

�Rx-Stokes
i,j,l = Rx-Stokes

i,j,l − η

(
∂2vx

∂x2
+ ∂2vx

∂y2
+ ∂2vx

∂z2

)
+ ∂P

∂x
, (15.35)

�R
y-Stokes
i,j,l = R

y-Stokes
i,j,l − η

(
∂2vy

∂x2
+ ∂2vy

∂y2
+ ∂2vy

∂z2

)
+ ∂P

∂y
, (15.36)

�Rz-Stokes
i,j,l = Rz-Stokes

i,j,l − η

(
∂2vz

∂x2
+ ∂2vz

∂y2
+ ∂2vz

∂z2

)
+ ∂P

∂z
, (15.37)

ηn(i,j,l) = η, (15.38)

∂2vx

∂x2
= vx(i,j−1,l) − 2vx(i,j,l) + vx(i,j+1,l)

�x2
, (Fig. 15.5) (15.39)

∂2vx

∂y2
= vx(i−1,j,l) − 2vx(i,j,l) + vx(i+1,j,l)

�y2
, (Fig. 15.5) (15.40)

∂2vx

∂z2
= vx(i,j,l−1) − 2vx(i,j,l) + vx(i,j,l+1)

�z2
, (Fig. 15.5) (15.41)

∂P

∂x
= Pi−1,j,l−1 − Pi−1,j−1,l−1

�x
, (Fig. 15.5) (15.42)

Cvx (i,j,l) = − 2η

�x2
− 2η

�y2
− 2η

�z2
, (15.43)

and other terms can be derived in a similar manner (derive as an exercise).
For models with variable viscosity, the respective residuals and coefficients in

Eqs. (15.32)–(15.34) become

�Rx-Stokes
i,j,l = Rx-Stokes

i,j,l − ∂σ ′
xx

∂x
− ∂σxy

∂y
− ∂σxz

∂z
+ ∂P

∂x
, (15.44)

�R
y-Stokes
i,j,l = R

y-Stokes
i,j,l − ∂σ ′

yy

∂y
− ∂σyx

∂x
− ∂σyz

∂z
+ ∂P

∂y
, (15.45)

�Rz-Stokes
i,j,l = Rz-Stokes

i,j,l − ∂σ ′
zz

∂z
− ∂σzx

∂x
− ∂σzy

∂y
+ ∂P

∂z
, (15.46)

∂σ ′
xx

∂x
= 2ηn(i−1,j,l−1)

vx(i,j+1,l) − vx(i,j,l)

�x2

− 2ηn(i−1,j−1,l−1)
vx(i,j,l) − vx(i,j−1,l)

�x2
, (Fig. 15.5) (15.47)
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∂σxy

∂y
= ηxy(i,j,l−1)

(
vx(i+1,j,l) − vx(i,j,l)

�y2
+ vy(i,j+1,l) − vy(i,j,l)

�y�x

)

− ηxy(i−1,j,l−1)

(
vx(i,j,l) − vx(i−1,j,l)

�y2
+ vy(i−1,j+1,l) − vy(i−1,j,l)

�y�x

)
,

(Fig. 15.5) (15.48)

∂σxz

∂z
= ηxz(i−1,j,l)

(
vx(i,j,l+1) − vx(i,j,l)

�z2
+ vz(i,j+1,l) − vz(i,j,l)

�z�x

)

− ηxz(i−1,j,l−1)

(
vx(i,j,l) − vx(i,j,l−1)

�z2
+ vz(i,j+1,l−1) − vz(i,j,l−1)

�z�x

)
,

(Fig. 15.5) (15.49)

Cvx (i,j,l) = −2
ηn(i−1,j,l−1) + ηn(i−1,j−1,l−1)

�x2
− ηxy(i,j,l−1) + ηxy(i−1,j,l−1)

�y2

− ηxz(i−1,j,l) + ηxz(i−1,j,l−1)

�z2
, (15.50)

and other terms can be derived similarly (derive as an exercise).
The methodology of using a multigrid approach for 3D models is the same

as in 2D cases, with the single difference that trilinear (Eqs. (15.14)–(15.16))
and not bilinear interpolation schemes should be used to construct the restriction
and prolongation operations. Example implementations of the above algorithm
for the case of constant and variable viscosity are given respectively in the programs,
Stokes_Continuity3D_Multigrid.m, Variable_viscosity3D_Multigrid.m and
Variable_viscosity3D_MultiMultigrid.m associated with this chapter. As can
be seen from Figs. 15.11, 15.12, multigrid allows us to obtain high-accuracy 3D
mechanical solutions at various viscosity contrasts. In the case of large viscos-
ity contrasts, a computer accuracy solution can often be obtained with a ‘multi-
multigrid’ approach (Fig. 15.12) using repetitive cycles of gradual increase in a
computational viscosity contrast, as described in Chapter 14.

Elastic stress rotation. 3D numerical models including elasticity should take
into account the elastic stress rotation (Chapter 12). One possible way is to use the
general form of Jaumann stress rate (see Eqs. (12.29)–(12.36)), which allows us
to compute the rate of change caused by rotation for various stress components

σ̇ ′
ij(Jaumann) = σ ′

ikωkj − ωikσ
′
kj , (15.51)

where σ̇ij(Jaumann) is rate of change for the σ ′
ij deviatoric stress components, repeated

index k indicates summation and ωkj , ωik are components of the anti-symmetric
rotation rate tensor (Eq. (12.29)). Using Eq. (15.51) in 3D for e.g. σ ′

xx , the deviatoric
stress component gives (see Eq. (12.31))

σ̇ ′
xx(Jaumann) = 2σxyωyx + 2σxzωzx. (15.52)
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(a)

(b)

Fig. 15.11 Decay of normalised residuals for the Stokes and continuity equa-
tions versus number of multigrid V-cycles for 3D models with constant (a)
and variable (b) viscosity. A 5-level multigrid with resolution 49 × 49 × 49
nodes on the finest level is used with relaxation parameters θ

continuity
relaxation = 0.3 and

θStokes
relaxation = 0.9. Numerical setup: rectangular block having higher density (and

viscosity in (b) by factor 105) sinks in lower density fluid. Iterations start from
a hydrostatic pressure field, zero velocities and no viscosity contrast. Resid-
uals in (a) stabilise at computer accuracy. Spikes in the solutions in (b) are
caused by an increase in viscosity contrast by the factor of 3.333 after reaching
given level of tolerance (10−6) for the sum of residuals. Results are obtained
with the programs Stokes_Continuity3D_Multigrid.m (a) and Variable_
viscosity3D_Multigrid.m (b).
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(a)

(b)

Fig. 15.12 Decay of normalised residuals for the Stokes and continuity equations
with the number of multigrid V-cycles for a 3D model with variable viscosity
in the case of a ‘multi-multigrid’ approach using repetitive cycles of gradual
increase in computational viscosity contrast. Residuals stabilise at computer accu-
racy level. 5-level multigrid with resolution 49 × 49 × 49 points on the finest level
is used with relaxation parameters θ

continuity
relaxation = 0.75 and θStokes

relaxation = 1.25. Numer-
ical setup: rectangular block having higher density and viscosity (by factor 106)
which sinks in fluid with lower density and viscosity. Iterations start from a hydro-
static pressure field and zero velocities. (a) Decay of local residuals computed
with current corrections and right-hand side within each cycle (steps) of gradual
viscosity contrast increase (spikes). (b) Decay of global residuals computed after
each cycle of gradual viscosity contrast increase. Spikes in (a) are caused by an
increase in viscosity contrast by the factor of 10 every 3 multigrid cycles. Results
are obtained with the program Variable_viscosity3D_MultiMultigrid.m.



Programming exercises and homework 239

Similar derivations can be made for other stress components (see Eqs. (12.32)–
(12.36)). Like in 2D models (Chapter 13, Eqs. (13.35)–(13.36)), the numerical
implementation of stress rotation is done by re-computing elastic stress components
stored at markers according to the first-order accurate scheme

σ ′
ij(rotated) = σ ′

ij(m) + �tm × σ̇ ′
ij(Jaumann) = σ ′

ij(m) + �tm(σ ′
ikωkj − ωikσ

′
kj ), (15.53)

where σ ′
ij(m) is the deviatoric stress component for a given marker, �tm is the

marker displacement time step (Chapter 13) and ωkj the rotation rate components
that are defined at the same nodal points and computed with similar FD schemes

as respective ε̇kj = 1

2

(
∂vk

∂xj

+ ∂vj

∂xk

)
strain rate components (see Figs. 15.1, 15.3)

and then interpolated to markers using standard interpolation formula (Eq. (15.15),
Fig. 15.8).

Numerical algorithms. Numerical algorithms for the thermomechanical codes
in 3D, do not differ from algorithms described in Chapters 11, 13 for 2D codes with
the exception that direct solvers for various equations should rather be substituted
by the iterative ones described above.

Programming exercises and homework

Exercise 15.1
Program solving the 3D temperature equation on a regular 51 × 51 × 51 grid based
on Gauss–Seidel iteration (Eqs. (15.17)–(15.22)). The model setup corresponds
to hot rectangular block (20 × 20 × 20 km, T = 1500 K, ρ = 3100 kg/m3, CP =
1500 J/K/kg, k = 1 W/m/K) which is located in a colder medium (T = 1000 K, ρ =
3000 kg/m3, CP = 1000 J/K/kg, k = 3 W/m/K). The block is located in the
middle of the model, which is 100 × 100 × 100 km in size. Boundary conditions
are insulating at all boundaries. Use the relaxation parameter θ

temperature
relaxation = 1.25 in

Eq. (15.17). An example is in Temperature3D_Gauss_Seidel.m.

Exercise 15.2
Generalise Exercise 14.1 to 3D. Solve the Poisson equation for the case of a
spherical planetary body embedded in a mass less-like medium (Eqs. (15.23)–
(15.29), Fig. 14.7). The number of resolution levels = 4, the resolution on the
coarsest (last) grid = 7 × 7 × 7 nodal points, and the factor of increase in resolution
between the levels = 2. All other model parameters and material properties are
the same as in the 2D exercise. Use a ghost node approach along the spherical
boundary surface for the gravity potential in the same way as in 2D (Fig. 14.7,
Eqs. (14.13)–(14.16)), i.e. independently in x, y and z directions. An example is in
Poisson3D_Multigrid_planet_arbitrary.m.
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Exercise 15.3
Generalise Exercises 14.2 and 14.3 to 3D. Solve the Stokes and continuity equations
for both constant and variable viscosity cases using a pressure–velocity formulation
and ghost node approach (Eqs. (15.30)–(15.50), Figs. 15.1–15.5). Model parame-
ters: model size = 100 × 100 × 100 km, block size = 20 × 20 × 20 km. Material
properties are the same as in 2D cases. Boundary conditions = free slip at all bound-
aries, number of resolution levels = 4, resolution of the basic grid on the coarsest
(last) level = 4 × 4 × 4 nodal points, factor of increase in resolution between the
levels = 2, relaxation coefficients for Gauss–Seidel iterations θStokes

relaxation = 0.9 and
θ

continuity
relaxation = 0.3, number of smoothing iterations on the finest (basic) level = 5,

factor of increase in the number of iterations with the level coarsening = 2. For
the variable viscosity case, use a gradual increase in the viscosity contrast by a
factor 101/2 (Eq. (14.57)), to reach an accurate solution (Fig. 15.11). Examples are
in Stokes_Continuity3D_Multigrid.m and Variable_viscosity3D_Multigrid.m.
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Numerical benchmarks

Theory: Numerical benchmarks: testing of numerical codes for various
problems. Examples of thermomechanical benchmarks.
Exercises: Programming of models for various numerical benchmarks.

16.1 Code benchmarking: why should we spend time on it?

Benchmarking of a numerical code means comparing the numerical solution
obtained with solving the system of linear equations with (i) analytical solutions
(ii) results of physical (analogue) experiments (iii) numerical results from other
(well-established) codes and (iv) general physical considerations. Benchmarking
of newly created numerical tools is sometimes very tedious, but an absolutely nec-
essary stage of code development as its purpose is to test the code’s robustness
in a broad range of situations relevant to geodynamic modelling applications. For
instance, if you plan to model with your code shear heating processes in deforming
rocks – make sure that your code provides the correct temperature changes related to
mechanical energy dissipation; if you model subduction – make sure that your code
handles correctly large viscosity contrasts and has no notable numerical diffusion
of the temperature field and composition; if you intend to model self-gravitating
planetary bodies – make sure that your code computes correct gravity field etc. We
should not be lazy and limit ourselves to one or two common benchmarks, such as
the Rayleigh–Taylor instability and convection with constant viscosity hoping that
everything else will work automatically. No, it will not! Therefore, test your code
on a broad range of challenging cases (several of which are discussed below), to
explore its limitations and be creative in inventing and calibrating new numerical
benchmarks. Then, in the end, you will be really proud of your ‘numerical child’.
Many of the analytical solutions that can be used for testing of thermomechanical
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codes for geodynamically relevant situations can be taken from the textbook of
Turcotte and Schubert (2002), which we will also use for constraining some of our
numerical benchmarks.

Below we discuss details of several important benchmarks which test various
aspects of thermomechanical codes. These calibrating tests aim to verify the efficacy
of numerical solutions for a variety of circumstances relevant to geodynamics.
These will include:

(a) sharply discontinuous viscosity distribution (test 1 and 2);
(b) strain rate dependent viscosity (test 3);
(c) non-steady development of temperature field (test 4);
(d) shear heating for temperature dependent viscosity (test 5);
(e) advection of a sharp temperature front (test 6);
(f) heat conduction for temperature-dependent thermal conductivity (test 7);
(g) thermal convection with constant and variable viscosity (tests 8);
(h) elastic stress build-up and advection (test 9 and 10);
(i) localisation of visco-elasto-plastic deformation (test 11).

Of course this list is incomplete and many additional benchmarks exist, or can
be invented. Yet, performing the discussed benchmarks, we will at least get some
confidence that we created a state-of-the-art numerical geodynamic modelling tool
which correctly reproduces a number of challenging geodynamic models.

16.2 Test 1. Rayleigh–Taylor instability benchmark

This is a typical analytical solution based benchmark. To test correctness of the
numerical velocity solution for gravity driven flows, in the case of sharply het-
erogeneous density and viscosity fields, one can use a two-layer Rayleigh–Taylor
instability model (e.g. Ramberg, 1968) with a no-slip condition on the top and at the
bottom and symmetry conditions along the vertical walls (Fig. 16.1(a)). An initial
sinusoidal disturbance of the boundary between the upper (η1, ρ1) and the lower
(η2, ρ2) layers of thicknesses h1 and h2, respectively, has a small initial amplitude
(�A) and a wavelength (λ). Under this condition, the velocity of the diapiric growth
(vy) is given by the relation (Ramberg, 1968)

vy

�A
= −K

ρ1 − ρ2

2η2
h2g,

K = −d12

c11j22 − d12i21
,

(16.1)

c11 = η12φ2
1

η2
(
cosh 2φ1 − 1 − 2φ2

1

) − 2φ2
2

cosh 2φ2 − 1 − 2φ2
2

d12 = η1 (sinh 2φ1 − 2φ1)

η2
(
cosh 2φ1 − 1 − 2φ2

1

) + sinh 2φ2 − 2φ2

cosh 2φ2 − 1 − 2φ2
2

,
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(a)

(b)

Fig. 16.1 Rayleigh–Taylor instability benchmark. (a) Initial setup. (b) Compari-
son of numerical (symbols) and analytical (lines, Eq. (16.1)) solutions for the case
of two layers with equal thicknesses (h1 = h2). Arbitrary scaling coefficients b1 and
b2 are used in (b) for plotting results computed at variable viscosity contrasts on
the same diagram. Growth factor K for numerical cases is computed from velocity
field based on Eq. (16.1). Numerical results are calculated at resolution 51 × 51
nodes and 250 × 250 markers with the code Variable_viscosity_Ramberg.m.
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i21 = η1φ2 (sinh 2φ1 + 2φ1)

η2
(
cosh 2φ1 − 1 − 2φ2

1

) + φ2 (sinh 2φ2 + 2φ2)

cosh 2φ2 − 1 − 2φ2
2

,

j22 = η12φ2
1φ2

η2
(
cosh 2φ1 − 1 − 2φ2

1

) − 2φ3
2

cosh 2φ2 − 1 − 2φ2
2

,

φ1 = 2πh1

λ
,

φ2 = 2πh2

λ
,

where K is a dimensionless growth factor.
With a marker-in-cell method, a small layer boundary perturbation (less than

one grid step) can easily be prescribed on a sub-grid scale by small sinusoidal
(vertical) displacements of markers that are initially distributed regularly inside the
numerical grid

�Am = cos

(
2π

xm − 0.5L

λ

)
�A, (16.2)

where xm and �Am are horizontal coordinate and vertical displacement for a given
marker m and L is the horizontal width of the numerical model. For proper con-
straining the numerical models, the relationship L = 2λ can be used together with
free slip (i.e. horizontal symmetry) conditions on two vertical boundaries.

Figure (16.1(b)) compares numerical and analytical solutions for the growth
rate of the instability estimated for two layers of equal thickness of (i.e. h1 = h2)
at different values of �A, λ and η1/η2. Good accuracy at large variations of the
disturbance wavelength and layer viscosity contrasts (η1/η2 = 10−6–5 × 102) sug-
gests that the tested numerical code is capable of correctly modelling the velocity
fields for gravity driven flows across a boundary with sharp changes in density
and viscosity. Even very small perturbations of the horizontal boundary are prop-
erly captured by variations in relative position of markers via a bilinear density
interpolation procedure from markers to nodes. An example of the numerical setup
for conducting the Rayleigh–Taylor instability benchmark is given by the code
Variable_viscosity_Ramberg.m.

16.3 Test 2. Falling block benchmark

This is a typical example of a benchmark which is based on general physical
considerations. I personally like it very much, since it is simple to implement
but creates challenging conditions to be handled numerically. In the case of an
isolated rigid object, sinking in a low viscosity surrounding, the velocity of the
object mainly depends on the viscosity of its surrounding (weakest medium). As
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Fig. 16.2 Initial conditions (top left) and results of the numerical experiments for
the falling block benchmark performed by Gerya and Yuen (2003a). Boundary
conditions: free slip at all boundaries. Black and white dots represent positions of
markers for the block and the medium, respectively. Grid resolution of the model
is 51 × 51 nodes, 22 500 markers.

was discussed in Chapter 14, this situation differs from modelling the Rayleigh–
Taylor instability where the strong layer is attached to the model boundaries and
the velocity field is defined by the strongest medium. According to our physical
intuition, (i) deformation of the block should vanish with increasing viscosity
contrast (Fig. 16.2) and (ii) the sinking velocity at high viscosity contrasts should
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Fig. 16.3 Velocity of the rectangular block sinking in a viscous medium as a
function of viscosity contrast between the block and the background medium.
The model setup corresponds to Fig. 16.2. (top left). Numerical results are cal-
culated at a resolution of 51 × 51 nodes and 250 × 250 markers with the code
Variable_viscosity_block.m.

be independent of the absolute value of the viscosity of the block but should
solely depend on that of the surrounding medium (Fig. 16.3). In the case of using
finite differences for solving the momentum equations, they should be formulated
in a stress-conserving way (see Chapter 7). This test also proves the accurate
conservation properties of a numerical procedure in terms of preserving the block
edges geometry (Fig. 16.2) at large deformation and high (102–106) viscosity
contrast between the stiffer block and the weak surroundings. An example of the
numerical setup for conducting the falling block benchmark is given by the code
Variable_viscosity_block.m.

16.4 Test 3. Channel flow with a non-Newtonian rheology

This test can be conducted to check the numerical solution of the momentum and
continuity equations for flows with a strongly strain-rate/stress-dependent rheology,
which is characteristic of dislocation creep (Ranalli, 1995). The computation is
carried out for vertical flow of a non-Newtonian (with a power-law index n) viscous
medium in a section of an infinite vertical channel (Fig. 5.2) of width L in the
absence of gravity. Boundary conditions are taken as follows: a given constant
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vertical pressure gradient,
∂P

∂y
along the channel and no-slip conditions at the walls.

The viscosity of the non-Newtonian flow is defined by the following rheological
equation formulated in term of second stress and strain rate invariants

2ε̇II = C1 (σII)
n , (16.3)

where C1 is a material constant in Pa−n · s−1. Equation (16.3) can be reformulated
in terms of effective viscosity as a function of second strain rate invariant

ηeff = σII

2εII
= C

−1/n

1 (2εII)
1/n−1 . (16.4)

Analytical solutions for the velocity and viscosity profiles across the channel are
given by (Turcotte and Schubert, 2002; Gerya and Yuen, 2003a)

vy = C1

n + 1

(
−∂P

∂y

)n
[(

L

2

)n+1

−
(

x − L

2

)n+1
]

, (16.5)

ηeff = σII

2ε̇II
= σyx

2ε̇yx

= 1

C1

(
−∂P

∂y

)1−n (
x − L

2

)1−n

, (16.6)

∂P

∂y
= Pend − Pbeg

H
, (16.7)

where Pbeg and Pend are pressures at the beginning (y = 0) and at the end (y = H) of
the channel section of height H, respectively. Figure 16.4 compares analytical and
numerical (2D) solutions based on conservative finite differences with marker-in-
cell techniques obtained with the code Variable_viscosity_channel.m. Numerical
and analytical solutions overlap, implying high accuracy of the numerical method
for modelling flows with strong lateral variations in viscosity caused by the non-
Newtonian rheology. Open channel boundary conditions at the top and at the
bottom imply an infinite vertical channel with constant vertical pressure gradients.
These boundary conditions are programmed by defining Pbeg and Pend in the first

and the last row of pressure nodes, respectively, and prescribing
∂vx

∂y
= 0,

∂vy

∂y
= 0

at the upper and lower boundary of the model. Note that the vertical length of the
channel section H used in Eq. (16.7) for computing pressure gradient corresponds
to the distance between the first and the last row of pressure nodes and not to the
vertical length of the 2D model.

16.5 Test 4. Non-steady temperature distribution in a Newtonian channel

Here we describe another channel flow based benchmark. This one can be per-
formed to test the numerical accuracy of solving the time-dependent (non-steady)
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Fig. 16.4 Comparison of the analytical and numerical solutions for the velocity
and viscosity profiles across a channel with non-Newtonian flow rheology given
by Eq. (16.3). Numerical results are calculated at the resolution of 51 × 21 nodes
and 250 × 100 markers with the code Variable_viscosity_channel.m associated
with this chapter. Model parameters: L = 10 km, H = 9.5 km, n = 3, C1 = 10−37

Pa−3· s−1, Pbeg = 109 Pa, Pend = 0.

temperature equations in cases when heat advection is coupled with heat diffu-
sion. The model corresponds to the vertical flow of a heat-conductive medium of
constant viscosity η in a channel, in the absence of gravity. Boundary conditions

are: a given constant vertical pressure gradient,
∂P

∂y
along the channel, non-slip

conditions and T = const = To(y) and
∂T

∂y
= const = ∂To(y)

∂y
at the walls (Exer-

cise 9.2). The initial conditions for the temperature distribution inside the model

are T = To(y),
∂T

∂y
= ∂To(y)

∂y
and

∂T

∂x
= 0. The horizontal steady-state profile for

vertical velocities, vy , is defined by the equation which can be derived either from

Eq. (16.5) with n = 1 and C1 = 1

η
or from Eq. (5.30) with gy = 0

vy = − 1

2η

(
∂P

∂y

)
(Lx − x2). (16.8)



16.5 Test 4. Temperature evolution in a channel 249

Fig. 16.5 Comparison of the analytical and numerical solutions for tempera-
ture profiles across the channel with constant viscosity. Numerical results are
calculated at resolution 51 × 11 nodes and 250 × 50 markers with the code
Constant_viscosity_channel_T.m. Model parameters: L = 30 km, H = 11.25 km,
η = 1019 Pa · s, Pbeg = 105 Pa, Pend = 0, ∂T /∂y = 40 K/km, T(y = 0) = 1000 K.

The corresponding temperature changes in the channel with time are then given
by the following series expansion (Gerya and Yuen, 2003a)

�T (x, t) =
∞∑

m=1

FmEmt sin
[
π (2m − 1)

x

L

]
,

Fm = −8ξ
L2

[π (2m − 1)]3 ,

Emt = L2
1 − exp

{
− κt

L2
[π (2m − 1)]2

}
κ [π (2m − 1)]2 , (16.9)

κ = k

ρCP

,

ξ = − 1

2η

(
∂P

∂y

)(
∂To(y)

∂y

)
,

where �T(x, t) is the temperature change as a function of the horizontal coordinate
x and time t; κ is a constant thermal diffusivity in m2/s. Equation (16.9) does
not account for shear heating: in this numerical test it is considered as negligible.
Figure 16.5 compares the analytical solution from Eq. (16.9) with the numerical one
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obtained with the 2D thermomechanical code Constant_viscosity_channel_T.m.
Mechanical boundary conditions for the infinite vertical channel are the same as
for the previous benchmark. A constant temperature gradient is used as a boundary
condition for temperature nodes located at the upper and lower thermal boundaries
implying infinity of the thermal profile in the vertical direction. Figure 16.5 shows
that numerical and analytical results coincide well for calculations performed both
with (d = 1) and without (d = 0) numerical subgrid diffusion (Eqs. (10.15)–(10.19))
implying robustness of the coupled thermomechanical solution for the case of non-
steady heat conduction associated with heat advection.

16.6 Test 5. Couette flow with viscous heating

This benchmark is designed to verify the numerical solution of the coupled momen-
tum and temperature equations for flows with temperature-dependent rheology in
the situation of strong shear heating (viscous dissipation). The analytical model
setup corresponds to a vertical Couette flow (simple shear deformation in a laterally
limited planar zone of width L) in the absence of gravity. Boundary conditions are

taken as follows: zero vertical pressure gradient,
∂P

∂y
= 0 along the flow, vy = 0,

T = T0 and σ yx = const = σ yx1,
∂T

∂x
= 0 at the left and right walls, respectively.

Viscosity of the flow is given by the following rheological equation (Turcotte and
Schubert, 2002)

η = A exp

[
Ea

RT0

(
1 − T − T0

T0

)]
where Ea is the activation energy, R is gas constant and A is pre-exponential
rheological constant, which depends on the material. The analytical solution for
steady temperature distribution T(x) inside the flow is given by the relation (Turcotte
and Schubert, 2002)

x = L

B
ln

[
(D + B) (C − B)

(D − B) (C + B)

]
, (16.10)

B = ln




1 +
(

1 − 2Br

B2

)2

1 −
(

1 − 2Br

B2

)2


 , (16.11)

C = {2 [φ1 − φ(x)] Br}1/2 , (16.12)

D = [2 (φ1 − 1) Br]1/2 , (16.13)
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φ(x) = exp [θ (x)], (16.14)

θ (x) = Ea [T (x) − T0]

RT 2
0

, (16.15)

φ1 = B2

2Br
, (16.16)

φ1 = exp (θ1), (16.17)

θ1 = Ea (T1 − T0)

RT 2
0

, (16.18)

Br = (σyx1L)2Ea

kART2
0

exp

(
− Ea

RT0

)
, (16.19)

where Br is the non-dimensional Brinkman number, θ the non-dimensional tem-
perature change, σ yx1 the shear stress that remains constant within the flow, k the
thermal conductivity of the flow medium, T1 the temperature at the right wall of the
flow (i.e. maximal temperature). Solving the non-linear Equations (16.10)–(16.11)
analytically for given values of k, L, A, Ea, T0 and σ yx1 is non-trivial and the solution
for T1 is not unique at a given value of σ yx1. Rather than defining σ yx1, non-negative
values of B can be chosen and then the Brinkman number and shear stress in the
channel can be computed from Eq. (16.11) and Eq. (16.19), respectively, as

Br = B2

2

[
1 −

(
exp B − 1

exp B + 1

)2
]

, (16.20)

σyx1 =
[
Br

kART 2
0

L2Ea

exp

(
Ea

RT0

)]1/2

. (16.21)

Other unknown parameters can be computed from B and Br by using Equations
(16.10)–(16.18). Based on such calculations, the dependence of maximal non-
dimensional temperature change in the channel θ1 from the Brinkman number Br
can be computed (Fig. 16.6(a)).

To test the Couette flow solution numerically, the constant vertical velocity
boundary condition vy = vy1 should be applied at the right boundary instead of
σ yx = σ yx1 used in the analytical model. The upper and lower boundary conditions

are the same as in the Tests 3 and 4 taken that Pbeg = Pend = 0 and
∂T

∂y
= 0. This

modification will ensure uniqueness of the numerical thermomechanical solution
which becomes steady-state in a finite number of time steps. The value of the param-
eter B should be computed iteratively with Equations (16.16)–(16.18) and (16.20)
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(a)

(b)

Fig. 16.6 Comparison of analytical and numerical results for a case of steady-
state Couette flow with temperature-dependent viscosity of the medium and shear
heating. (a) Maximal temperature change within the flow θ1 (Eq. 16.18) versus
Brinkman number Br (Eq. 16.19), (b) Distribution of temperature changes θ (Eq.
16.15) across the flow at different Brinkman number. Numerical results are cal-
culated at a resolution of 51 × 11 nodes and 250 × 50 markers with the code
Variable_viscosity_Couette_T.m associated with this chapter. Model parame-
ters: L = 30 km, H = 11.25 km, A = 1015 Pa · s, Ea = 150 kJ/mol, k = 2 W/m/K,
T0 = 1000 K.
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from the steady-state temperature (T1) at the right boundary (see this type of com-
putation in the end of the program example Variable_viscosity_Couette_T.m).
Other parameters can again be computed with B from Equations (16.10)–(16.21).
Figure 16.6 shows that numerical and analytical results coincide well, implying
that the numerical solution holds for thermomechanical effects of shear heating in
case of strongly variable temperature-dependent viscosity.

16.7 Test 6. Advection of sharp temperature fronts

The verification of the ability to advect sharp temperature fronts is fundamental
in numerical tests of various advection algorithms. The geodynamic relevance of
this test is obvious when modelling rapidly moving subducting and detached slabs
is envisaged. Numerical solutions for this type of benchmark (see e.g. Chapter 8)
are typically calculated in 2D for the solid body rotation of a two-dimensional
temperature wave of an arbitrary shape. One can, for example, perform such a
test for a square wave with width L and thermal amplitude �To = 500 K. The
results of the test obtained with our finite-difference and marker-in-cell tech-
niques are shown in Fig. 16.7 for a regularly spaced grid of moderate reso-
lution (51 × 51 nodes, 250 × 250 markers). If heat conduction is insignificant,
(Fig. 16.7(a)) the adopted marker-in-cell advection scheme is obviously not numer-
ically diffusive, even for many revolutions, as long as after each complete revolution
the initial positions of markers (with the corresponding values of initially pre-
scribed temperature field which is negligibly affected by the heat diffusion)
are reproduced well with the fourth-order Runge–Kutta integration scheme (see
code Solid_Body_Rotation_T.m). In the case of significant heat conduction
(Fig. 16.7(b)), the final temperature distribution does not depend noticeably on
the number of revolutions. This point suggests good conservation properties of the
adopted numerical scheme when advecting diffusing temperature fronts. Introduc-
ing numerical subgrid diffusion (Chapter 10) only negligibly affects the temperature
when heat conduction is significant (Fig. 16.7(b)). Obviously, this numerical diffu-
sion, which gives a small addition to the physical diffusion, exerts little influence in
the case of negligible heat conduction (Fig. 16.7(a)). Generally, the tested method
of solving the temperature equation using markers works very well in the two
distinct regimes of advection for both non-diffusive (Fig. 16.7(a)) and diffusive
(Fig. 16.7(b)) sharp temperature fronts.

16.8 Test 7. Channel flow with variable thermal conductivity

This analytical benchmark can be conducted to verify the accuracy of a ther-
momechanical code in the case of strong variations in temperature-dependent
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(a)

(b)

Fig. 16.7 The results of test of numerical solution for the solid body rotation
of square temperature wave. The figure shows the horizontal profiles across the
wave at different time t after given number of revolutions. (a) and (b) Results
of numerical experiments at different characteristic thermal diffusion timescale
t0 = ρCP L2/k, where L = 10 km is the initial length of the temperature wave and
d is numerical subgrid diffusion parameter (see Eq. 10.16 in Chapter 10). Numer-
ical results are calculated at resolution 51 × 51 nodes and 250 × 250 markers
with the code Solid_Body_Rotation_T.m. Model parameters: size = 50 × 50 km,
CP = 1000 J/kg/K, ρ = 3000 kg/m3, k = 2 × 10−6 and 0.02 W/m/K for (a) and (b),
respectively, Tmedium = 1000 K, Twave = 1500 K. Small temperature perturbation at
the left boundary in (b) is a boundary effect (i.e. a trace of the rotating wave inter-
acting with the model thermal boundary; run program Solid_Body_Rotation_T.m
in order to see this trace in 2D).
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thermal conductivity which are relevant to many geodynamic situations that involve
large variations in temperature (mantle convection, lithospheric processes, etc.).
For this purpose, we can again use vertical Newtonian channel flow (as in Test 4
but without temperature gradients along the channel) with a velocity distribution
defined by Equation (16.8) and shear heating, which provides a strong heat-source
term in the temperature equation (Chapter 9). The thermal conductivity is taken
to be decreasing with temperature, which is very characteristic (e.g. Hoffmeister,
1999) for lattice conductivity defined by phonons in crystal lattice

k = k0

1 + b (T − T0) /T0
, (16.22)

where T0 is a constant temperature applied at the walls of the channel; k0 is thermal
conductivity at T0; b is a dimensionless coefficient.

The steady temperature profiles across the channel T(x) are then defined by
equation (Gerya and Yuen, 2003a)

T (x) = T0
C(x) + b − 1

b
,

(16.23)

C(x) = exp

{
L4b

192k0T0η

(
∂P

∂y

)2 [
1 −

(
2

x

L
− 1

)4
]}

,

where L is the channel width, η is a constant viscosity of the medium and
∂P

∂y
is

the pressure gradient along the channel (Eq. 16.7).
Figure 16.8 compares the analytical solution for both temperature and thermal

conductivity profiles with the numerical solutions obtained with the 2D thermome-
chanical code, Variable_conductivity_channel.m. This figure demonstrates the
high accuracy of the numerical solution, suggesting that the adopted conservative
FD scheme correctly computes heat transport in the case of strong variations in
thermal conductivity (factor of 4 variation across the channel for the given case,
Fig. 16.8).

16.9 Test 8. Thermal convection with constant and variable viscosity

This benchmark can be conducted to test the ability of the code to model mantle
convection. Blankenbach et al. (1989) tested several 2D mantle convection models
with a broad variety of numerical techniques and reported steady-state values for
a number of model parameters to which the numerical solution should converge
with increasing grid resolution.
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Fig. 16.8 Comparison of the analytical (Eq. (16.23)) and numerical solutions
for the steady temperature and thermal conductivity profiles across a channel
with constant viscosity and strong shear heating. Numerical results are calcu-
lated at resolution 51 × 11 nodes and 250 × 50 markers with the code Variable_
conductivity_channel.m. Model parameters: L = 30 km, H = 11.25 km, η = 1019

Pa·s, Pbeg = 3 × 107 Pa, Pend = 0, T0 = 298 K, k0 = 8 W/m/K, b = 1.

Table 16.1 represents the physical parameters for five steady-state convection
models with both constant (models 1a, 1b, 1c) and variable (models 2a, 2b)
temperature- and depth-dependent viscosity. Convection is studied in a rectan-
gular box of height H and width L (H = L = 1000 km for all models with except of
model 2b). The boundary conditions are free-slip along all boundaries, a specified
temperature on the top (Ttop) and at the bottom (Tbottom) and thermal insulation
(∂T/∂x = 0) along the left and right walls. The difference between Ttop and Tbottom

in all experiments is 1000 K. The following formulation for temperature- and
depth-dependent viscosity of the mantle is used

η = η0 exp

(
−b

T − Ttop

Tbottom − Ttop
+ c

y

H

)
, (16.24)

where η0 is viscosity at the top of the model (i.e. at T = Ttop and y = 0); b and c
are coefficients establishing dependencies of viscosity with temperature and depth,
respectively (b = 0 and c = 0 in constant viscosity tests 1a, 1b and 1c). Density in
all models depends linearly on temperature

ρ = ρ0 [1 − α (T − Ttop)],
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(a)

(c)

(b)

(d)

Fig. 16.9 Irregularly (10–30 km) spaced grid (a) and steady-state temperature
structures (b)–(d) for the three mantle convection benchmarks from Table 16.1.
Numerical results are computed at a resolution of 51 × 51 nodes and
200 × 200 randomly distributed markers with the code Variable_viscosity_
convection_irregular_grid.m. Solid lines in (b)–(d) represent isotherms between
Ttop and Tbottom with an interval of 50 K.

where ρ0 = 4000 kg/m3 is the standard density and α = 2.5 × 10−5 1/K is thermal
expansion coefficient.

Despite this relatively simple setup, obtaining an accurate steady-state solution
for mantle convection models is quite challenging. This is mainly due to (i) many
(typically several thousands) time steps required to obtain a steady-state solution
and (ii) a strong localisation of thermal upwellings and downwellings along the
walls (e.g. Fig. 16.9(c)) in models with low mantle viscosity (or more precisely

with high Rayleigh number Ra = ρ0α (Tbottom − Ttop) gH 3CP

ηk
, where g is the
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(a)

(c) (d)

(b)

T

Fig. 16.10 Vertical steady-state temperature profiles in the centre of the model
(a) and near-steady-state variations of root mean square (rms) velocity and Nus-
selt number (b)–(d) for the three mantle convection benchmarks from Table 16.1.
Dashed lines in (b)–(d) show the benchmark values for respective parameters
from Table 16.1. Solid lines show the numerical results calculated at resolu-
tion 51 × 51 nodes and 200 × 200 randomly distributed markers with the code
Variable viscosity convection irregular grid.m.

gravitational acceleration, CP the heat capacity and k is thermal conductivity). The
problem of localisation can be overcome by either using high resolution of the entire
model or (more efficiently), by using an irregularly spaced grid which is denser at
the model walls (Fig. 16.9(a)). The steady-state thermal structures computed for
some of the models of Table 16.1 are shown in Figure 16.9(b)(c)(d). Figure 16.10
presents the results of the mantle convection benchmark for these models obtained
with the program Variable_viscosity_convection_irregular_grid.m associated
with this chapter. As can be seen at the same model resolution of 51 × 51 nodes
and 40 000 markers, models with irregularly spaced grid show results that are much
closer to the benchmark values. Therefore the use of irregularly spaced grids, can
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Fig. 16.11 Comparison of numerical (symbols) and analytical (solid line) solutions
for the case of visco-elastic stress build-up due to pure shear (x-y direction)
with constant normal strain rate and in the absence of gravity. Numerical and
analytical (Eq. (16.25)) solutions are compared for ε̇xx = 10−14 s−1, η = 1021

Pa s and µ = 1010 Pa. Panel with numerical setup is shown in the right part of
the diagram. Numerical results are calculated at resolution 51 × 51 nodes and
200 × 200 markers with the code Stress_buildup.m.

in many cases significantly increase the accuracy of a numerical solution without
a notable increase in computational costs.

16.10 Test 9. Stress build-up in a visco-elastic Maxwell body

This test can be performed to verify the 2D numerical solutions for the case
of a deforming visco-elastic Maxwell body (Exercise 12.1). In case of uniform
pure shear, deformation of an initially un-stressed, incompressible visco-elastic
medium with a constant strain rate ε̇xx elastic deviatoric stress σ ′

xx grows with time
t according to the equation

σ ′
xx = 2ε̇xxη [1 − exp(−tµ/η)], (16.25)

where t is the time from the beginning of deformation and η and µ are the constant
viscosity and shear modulus of the medium, respectively. Based on Eq. (16.25),
one can perform a numerical test of stress build-up shown in Fig. 16.11. The
numerical experiment is designed on a rectangular model (cf. panel in Fig. 16.11)
by prescribing constant outward directed velocity vx along the vertical boundaries
and inward directed velocity vy for the horizontal boundaries of the model computed
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as

vx = 1

2
ε̇Lx,

vy = 1

2
ε̇Ly,

where ε̇ is prescribed deviatoric strain rate, and Lx and Ly correspond to horizontal
and vertical dimensions of the model, respectively. At each time step, all deviatoric
stress components are interpolated from markers (either regularly or randomly
distributed) to nodes and stress increments are then interpolated back to markers
(Fig. 13.1 in Chapter 13) after numerically solving the momentum and continuity
equations for the entire model domain. Figure 16.11 is computed with the code
Stress_buildup.m and demonstrates the high accuracy of the numerical solution,
which overlaps with the analytical one, hence properly describing the transition
from the dominant elastic regime to the prevailing viscous deformation.

16.11 Test 10. Recovery of the original shape of an elastic slab

This benchmark can be performed to test the 2D visco-elastic numerical solutions
in terms of proper advection and conservation of elastic stresses. Figure 16.12
shows the results of a numerical experiment for the recovery of the original shape
of an elastic slab surrounded by a low-density, much lower viscosity and much
higher shear modulus medium.

The initially un-stressed slab is attached to the left wall of the box and is spon-
taneously deformed within 20 Kyr under a purely vertical gravity field (gy =
10 m/s2, gx = 0). The slab deformation is purely elastic due to the large Maxwell
time (3 170 000 Kyr) of slab material compared to the total deformation time
(20 000 Kyr). In contrast, the low-viscosity medium is subjected to irreversible,
purely viscous deformation since its Maxwell time (3.17 × 10−10 Kyr) is negligi-
ble compared to the deformation time. The degree of elastic deformation in the slab
is large (Fig. 16.12(b)) and the stresses stored on markers are, therefore, subjected
to significant advection and rotation under both simple shear and pure shear defor-
mation. After gravity is ‘switched off’ (i.e. after gx = gy = 0 condition is set), the
slab starts to unbend and finally fully recovers its original shape (Fig. 16.12(c)).
In contrast, the low-density medium does not recover its original configuration
since the viscous deformation is irreversible (see perturbations of the checkerboard
pattern in the weak medium around the slab corners).

For the model shown in Fig. 16.12, the deformation rate is time-step independent
and is fully determined by the viscosity of the low-density medium which acts as
a stronger material (note upbending of the lower-right edge of the slab in response
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(a)

(b)

(c)
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to the flow of the low-density medium around the slab). This relationship is caused
by the low shear modulus of the slab (10 × 1010 Pa) compared to that of the low-
density medium (10 × 1020 Pa). In contrast, in Figure 12.2 from Chapter 12, another
situation is shown (Gerya and Yuen, 2007) where shear moduli of both materials
are the same and the low-density medium acts as a weak material. The character
of slab deformation changes correspondingly (dominant simple shear deformation
and no significant upbending). In this case, however, the deformation rate is time-
step dependent which does not preclude, indeed, testing the slab shape recovery
(Fig. 12.2).

16.12 Test 11. Numerical sandbox benchmark

Finally, let us consider the comparison of numerical results with physical (ana-
logue) sandbox experiments. Numerical modelling of sandbox experiments poses
significant computational challenges because the numerical code must be able
to (1) calculate large strains along spontaneously forming narrow shear zones,
(2) represent complex boundary conditions, including frictional boundaries and
free surfaces and (3) include a complex rheology involving both viscous and
frictional/plastic materials. These challenges reflect directly, the state-of-the-art
requirements for numerical modelling of large-scale tectonic processes. A numer-
ical sandbox benchmark was described by Buiter et al. (2006) in which the results
of analogue and numerical experiments for both shortening (Fig. 16.13) and exten-
sion settings were compared. The shortening experiments were conducted with the
use of a mobile wall moving leftward at a velocity of 2.5 cm/hour (Fig. 16.13(a)).
The original cross-section is composed of sand (density ρ = 1560 kg/m3, cohesion
C = 10 Pa, an initial internal friction angle of ϕinitial = 36◦ which linearly changes
to the stable value of ϕstable = 31◦ with strain increasing from 0 to 1) and includes a

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 16.12 Results of a numerical experiment for the recovery of the original
shape of a visco-elastic slab (black, dark grey, ρ = 4000 kg/m3, η = 1027 Pa s
and µ = 1010 Pa) embedded in a weak visco-elastic medium (light grey, white,
ρ = 1 kg/m3, η = 1021 Pa s and µ = 1020 Pa). (a) Initial configuration, (b) config-
uration after 20 Kyr of deformation under constant vertical gravity field (gx = 0,
gy = 10 m/s2, (c) configuration achieved within 9980 Kyr of spontaneous defor-
mation after switching off gravity (i.e. after gx = gz = 0 condition is applied at
20 Kyr). Boundary conditions: no slip at the left boundary and free slip at all other
boundaries. Numerical results are calculated at a resolution 51 × 51 nodes and
200 × 200 markers with the code Slab_deformation.m associated with this chap-
ter. Note the irreversible viscous deformation of the weak surrounding medium,
which is visible in its perturbed checkerboard structure close to slab corners
in (c).
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(a)

(b) (c)

Fig. 16.13 Setup of a shortening experiment (a) and comparison of numerical (b)
and analogue (c) models (at ∼2 cm of shortening) performed by Buiter et al.
(2006). (a) Horizontal layers of ‘sand’ (which have the same properties and differ
in colour only) with an embedded layer of weaker ‘microbeads’ are shortened
through a mobile wall on the right-hand side which is pushed leftwards. (b),(c)
Names of participating numerical codes (b) and analogue labs (c) are given in
respective model boxes.
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0.5 cm thick weak layer of microbeads (ρ = 1480 kg/m3, C = 10 Pa, ϕinitial = 22◦,
ϕstable = 20◦). In the right part, the model includes a 10 cm wide surface wedge
composed of sand. Boundary friction on all sandbox walls is lowered (C = 0,
ϕinitial = 19◦, ϕstable = 19◦). Boundary conditions corresponding to the mobile wall
can be implemented in a number of ways. One option is to include a rigid (highly vis-
cous) mobile wall and prescribe constant velocity conditions (vx = −2.5 cm/hour,
vy = 0) on Eulerian nodes located inside this wall (Fig. 16.14(a)). This can be
done in combination with a weak layer included in the model, which simulates air
and shifts behind the wall as it moves. In order to ensure that the wall does not
leave nodes with prescribed velocity, it can be thickened from behind, by accreting
displaced air markers (Fig. 16.14(b)). It should be pointed out that the implemen-
tation of the mobile wall condition may notably affect the results of numerical
experiments: for example a backthrust that forms in most of analogue experiments
is absent in many numerical models where a mobile wall condition was imple-
mented by prescribing a shortening velocity directly on the right model boundary
(cf. Fig. 16.13(b) and 16.13(c)). The numerical and analogue models share many
similarities (Buiter et al., 2006):

(1) Shortening is accommodated by an in-sequence forward propagation of thrusts
(Fig. 16.14(c) also see Fig. 12.6 in Chapter 12).

(2) The first-formed thrust roots at the base of the mobile wall (Fig. 16.14(c)).
(3) By 2 cm of displacement an active thrust has formed in all models (Figs. 16.13(b)(c),

16.14(c)).
(4) The location where the first-formed forward thrust reaches the surface is influenced by

the surface wedge in almost all of the experiments (Figs. 16.13(b)(c), 16.14(c)).

It should be pointed out, however, that details of shear zone patterns formed in
individual analogue and numerical models are strongly variable. Such variations
are an inherent feature of plastic deformation and reproducing the exact pattern of
shear zones should not be considered as the benchmarking goal. More importantly,
with this benchmark a numerical code should rather demonstrate its ability to hold
for large deformation, for strong strain localisation along spontaneously forming
narrow (1–2 grid cell wide) shear zones and for reproducing the general struc-
tural pattern of both forward and backward faults formed in analogue experiments.
Figure 16.14 show the results of the numerical sandbox experiments obtained with
the code Sandbox_shortening_ratio.m. The difference between the numerical and
analogue models occurred on the same order as the differences between analogue
models from different laboratories (cf. Figs. 16.13(b)(c), 16.14(b)(c)). The imple-
mented numerical approach of plasticity treatment (Chapters 12 and 13) allows for
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(a)

(b)

(c)

Fig. 16.14 Initial setup (a) and results (b),(c) of the numerical experiment for
the shortening benchmark (Fig. 16.13(a)). The numerical model employs a visco-
elasto-plastic rheology with the following material properties: sand (light grey,
grey) – ρ = 1560 kg/m3, C = 10 Pa, ϕinitial = 36◦, ϕstable = 31◦, η = 109 Pa s,
µ = 106 Pa; microbeads (dark grey) – ρ = 1480 kg/m3, C = 10 Pa, ϕinitial = 22◦,
ϕstable = 20◦, η = 109 Pa s, µ = 106 Pa; weak layer (‘sticky air’, white) – ρ = 1
kg/m3, η = 102 Pa s, µ= 106 Pa; mobile wall (black) – ρ = 1520 kg/m3, η = 1012 Pa
s, µ = 1016 Pa. Boundary conditions: no slip at the left and bottom boundaries and
free slip on all other boundaries. Boundary friction is implemented by prescribing
ϕinitial = ϕstable = 19◦ for sand and microbeads located within 2 mm near the lower
and left boundaries and near the mobile wall. Shortening condition (vx = −2.5
cm/hour, vy = 0) is prescribed on the Eulerian nodes located inside the mobile
wall. Note that the mobile wall is separated from the bottom by 2 mm thick layer
of sand and is thickening from the right by converting markers of the displaced
‘sticky air’. Numerical results are calculated at resolution of 191 × 61 nodes
with 182 400 randomly distributed markers by using the code Sandbox_
shortening_ratio.m.
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spontaneous onset of narrow shear zones, which forms a sequence of forward and
backward faults like in analogue experiments.

16.13 Possible further benchmarks

Obviously, the potential number of benchmarks for testing numerical codes is
infinite and not all of them are described in the present chapter. A few additional
references for further numerical benchmarking problems are listed below:

� 2D analytical solutions for mantle thermal convection (Hager and O’Connell, 1981;
Revenaugh and Parsons, 1987);

� 2D thermochemical convection (van Keken et al., 1997);
� 2D buoyancy driven flows for strongly varying viscosity in the horizontal and vertical

directions (Zhong, 1996; Moresi et al., 1996);
� 2D flow around deformable elliptic inclusions (Schmid and Podladchikov, 2003; Deubel-

beiss and Kaus, 2008);
� 2D visco-elastic Rayleigh–Taylor instability. (Kaus and Becker, 2007);
� 2D thermomechanical corner flows in subduction zones (van Keken et al., 2008);
� 2D spontaneous subduction with a free surface (Schmeling et al., 2008);
� 3D mantle convection in Cartesian geometry (Busse et al., 1994);
� 3D mantle convection in spherical geometry (Zhong et al., 2008);
� 3D infinitesimal and finite amplitude folding instability (Kaus and Schmalholz,

2006).

Programming exercises and homework

Exercise 16.1
Program an external MATLAB function for the 2D pressure–velocity Stokes +
continuity variable viscosity solver for a regular staggered grid with external veloc-
ity nodes (Figs. 7.17, 14.8) based on the ghost node approach (Eqs. (14.39)–(14.42))
and respective global indexing of unknowns as discussed in Chapter 7 (Fig. 7.17).
Implement this solver into your viscous thermomechanical code (programming
exercise for Chapter 11). The advantage of using external velocity nodes is better
resolving flows near the model boundaries. Modify the marker–node interpolation
routines for the new grid. Particularly, shear stress σ xy(i, j) and strain rate ε̇xy(i,j ) will
now be defined in all (and not only internal) basic nodes. With this new viscous
code, perform falling block benchmark and compare results with Figs. 16.2 and
16.3. Model setup corresponds to Fig. 16.2. An example is in Variable_viscosity_
block.m.
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Exercise 16.2
Implement the ghost node based solver from the previous example into your visco-
elastic thermomechanical code (Exercise 13.1). You will only have to modify
viscosity and right-hand-side arrays given to this solver and it will solve the visco-
elastic problems as well. Do not forget to modify marker–node interpolation rou-
tines for the new grid. With this new code perform visco-elastic slab bending bench-
mark and compare results with (Fig. 16.12). The model setup corresponds to Fig.
16.12. An example is in Slab_deformation.m. By the way, Slab_deformation.m
can also employ irregularly spaced grid based on bisection algorithm (Fig. 8.10,
Exercise 8.3) – think about how to implement these features in your code as
well.
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Design of 2D numerical geodynamic models

Theory: Warning message! What is numerical modelling all about?
Rock properties for numerical geodynamic models. Design of numer-
ical models for different geodynamic processes: visco-elasto-plastic
slab bending, retreating subduction, lithospheric extension, collision,
slab detachment, intrusion emplacement, mantle convection with phase
changes, core formation.
Exercises: Designing numerical models for studying extension of the
continental lithosphere.

17.1 Warning message!

Several robust visco-elasto-plastic thermomechanical codes are provided with this
chapter and one can ‘play’ with them by changing the model geometry and resolu-
tion, as well as the material properties and boundary conditions. There is nothing
wrong with that and everyone is welcome to do it. Just be aware that numerical geo-
dynamic modelling is not ‘pressing the button and automatically obtaining results’
but knowing in depth what you and your code are doing. So, don’t play a lottery
by starting your numerical career by immediately using these codes as research
tools. Before doing this, study carefully this rather short book and make sure to
correctly complete all the exercises to learn about the advantages and limitations of
the numerical modelling techniques used in the provided codes. Otherwise, there
is a big risk that your ‘automatically obtained results’ appearing after ‘pressing the
button’ will be EXTREMELY WRONG . . .

17.2 What is numerical modelling all about?

Having continuously studied programming and numerical modelling techniques,
we might get the impression that writing a good thermomechanical code is the

269
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main thing that guarantees success in numerical geodynamic modelling. Thinking
that is a big mistake! Writing an extremely reliable code DOES NOT automatically
imply that you will become a successful modeller . . . We have to learn how to use
our codes in the most efficient way, how to construct robust numerical models
of various geodynamic and planetary processes, how to visualise and investigate
these models and how to compare them to nature. In short: designing thoughtful and
realistic numerical models is at least as important as writing efficient numerical
codes. In order to help us with this issue, several examples of numerical models
of various geodynamic and planetary processes are presented with the design and
technical details of the numerical experiments. The choice of these examples is, of
course, subjective and mainly based on my scientific and aesthetical preferences,
but this is what we have to live with.

What is numerical modelling about? Is it concerned with reproducing geolog-
ical reality or investigating virtual ones? None of the two and both! We are not
(either unfortunately or fortunately . . . ) working in experimental physics where
the conditions of experiments are ‘relatively well’ defined and known. Geological
objects and systems are too complicated and their physical conditions are, in many
cases, too poorly known to build fully deterministic numerical models. On the other
hand, numerical modelling allows one to obtain some physical knowledge about
such complex systems by studying systematically, simpler end-member cases. And
this is normal! Like in experimental petrology, rather simple systems like MgO-
Al2O3-SiO2 (MAS) or CaO-FeO-MgO-Al2O3-SiO2 (CFMAS) are often studied
instead of natural rocks that are composed of at least 10–13 major oxides (Na2O-
K2O-TiO2-CaO-FeO-Fe2O3-MgO-MnO-Al2O3-SiO2-H2O-P2O5-CO2). However,
this simplification does not preclude the broad applicability of experimental
results to natural rocks. Likewise, numerical modelling is not a tool for fitting
models to nature, but instead a research instrument to understand how nature
works.

17.3 Material properties

The choice of material properties in numerical models is very important. How
models are set up and which prediction they allow, crucially depends on this
choice. Indeed, there is a large uncertainty in material properties that are strongly
variable in nature. In addition, many physical properties of natural rocks (e.g. gross-
scale rheology) are poorly constrained. Therefore, some subjectivity is always
present in defining model parameters. Tables 17.1 and 17.2 summarise the material
properties that are used in the following examples. The choice of properties is based
on widely accepted geodynamic literature (such as Turcotte and Schubert, 2002;
Ranalli, 1995) and (unavoidably) on the author’s personal experience of building
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Table 17.1 Rheological flow laws∗ used in numerical
experiments (from compilation by Ranalli, 1995)

Material
AD

MPa−n s−1 n
Ea

kJ mol−1

olivine (dry) 2.5 × 104 3.5 532
olivine (wet) 2.0 × 103 4.0 471
rock salt 6.3 5.3 102
quartz 1.0 × 10−3 2 167
plagioclase An75 3.3 × 10−4 3.2 238
orthopyroxene 3.2 × 10−1 2.4 293
clinopyroxene 15.7 2.6 335
granite 1.8 × 10−9 3.2 123
granite (wet) 2.0 × 10−4 1.9 137
quartzite 6.7 × 10−6 2.4 156
quartzite (wet) 3.2 × 10−4 2.3 154
quartz diorite 1.3 × 10−3 2.4 219
diabase 2.0 × 10−4 3.4 260
anorthosite 3.2 × 10−4 3.2 238
felsic granulite 8.0 × 10−3 3.1 243
mafic granulite 1.4 × 104 4.2 445

∗ ε̇II = AD (σII)n exp

(
− Ea

RT

)

‘realistic geodynamic models’ (to be honest this is a highly ambiguous term and
the judgment between ‘realistic’ and ‘non-realistic’ is often affected by aesthetic
preferences which are, in turn, strongly defined by cartoons provided in textbooks
and geological literature . . . ).

17.4 Visco-elasto-plastic slab bending

Modelling of slab bending is very important in geodynamics since this process
is always associated with subduction and is related to the structural and seismic
features in the trench area (e.g. Ranero et al., 2003, 2005). Of special interest is
bending-related faulting of the incoming plate, which creates a pervasive tectonic
fabric that cuts across the crust, penetrating deep into the mantle (Ranero et al.,
2003, 2005). Faulting is active across the entire oceanic trench slope, thereby
promoting hydration of the cold crust and upper mantle surrounding these deep
active faults, which may in turn cause seismic anisotropy of subducting slabs
(Faccenda et al., 2008a). The along-strike length and depth of penetration of
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(a) (d)

(b) (e)

(c) (f)

Fig. 17.1 Numerical grid (a) initial conditions (b) and results (c)–(f) of numerical
experiment for visco-elasto-plastic slab bending during spontaneously retreating
subduction. Model resolution is 251 × 51 nodal points with 100 000 randomly
distributed markers. Grid resolution (a) is non-uniform in the vertical direction
(each second grid line is shown). Cooling ages of the left and right plates in (b)
are 1 Myr and 70 Myr respectively. (d), (e) and (f) shows numerical results for
the zoomed area outlined in (c). Note that plastic deformation along faults in (d)
is deactivated in the subducted portion of the slab. White crosses in (f) show the
orientation of the principal stress axes; long and short branches of the crosses show
extension and shortening directions, respectively. Lithospheric and asthenospheric
mantle in (b) and (c) do not differ in properties (dry mantle, Table 17.2), different
colours for them are used for better visualisation of slab bending. Results are
computed with the code Subducting_slab_bending.m.

these faults are similar to the dimensions of the rupture area of intermediate-depth
earthquakes.

The numerical setup for bending of a subducting slab is rather simple
(Fig. 17.1(a)(b)), but requires relatively high resolution (at least 2 × 2 km in the slab
bending area to adequately resolve the bending-related normal faults) and realis-
tic pressure-, temperature- and stress-dependent visco-elasto-plastic rheology. One
way to investigate spontaneous slab subduction and bending consists of using an
initial setup for subduction initiation across a pre-existing transform fault (Hall
et al., 2003). The experiment begins with two plates of different ages, juxtaposed
along a transform fault (cf. light grey weak zone in Fig. 17.1(b)) with low plastic
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strength (sin(ϕ) = 0), which creates favourable conditions for spontaneous initi-
ation of subduction and concurrent slab bending. The vertical thermal structure
of the plates is computed according to the cooling of a semi-infinite half-space
(Turcotte and Schubert, 2002)

T (d) = T1 + (T0 − T1)

(
1 − erf

(
d

2
√

κτ

))
, (17.1)

where T0 = 273 K is the temperature at the surface for both plates, T1 = 1700 K
is the temperature at the bottom of the model, d is the depth in meters below the
surface, κ is thermal diffusivity (10−6 m2/s) and τ is the age in seconds of the
plates.

Bending is driven by strong negative buoyancy of the older plate while the
weak fault allows initial displacement, which results in the spontaneous retreating
subduction. To ensure self-sustaining, one-sided subduction, the weak, hydrated
upper oceanic crust (basalts, sediments) is present atop the slab providing stable
lubrication against the moving and cooling overriding plate (e.g., Sobolev and
Babeyko, 2005; Gerya et al., 2008a). On the other hand, a weak upper layer
present above the crust (‘sticky water’, η = 1018 Pa s, ρ = 1000 kg/m3) provides a
free-surface-like condition which is essential for a natural slab bending to occur.
The validity of the weak layer approach to approximate the free surface has recently
been tested and proven (Schmeling et al., 2008) with the use of a large variety of
numerical techniques (including our methodology based on conservative finite-
differences and marker-in-cell techniques) and comparison with analogue models.
The thickness of the weak layer should be at least 4–5 grid cells and its viscosity
should be at least 100 times less than that of the underlying lithosphere. For regional
models like the one presented here, optimal parameters for the weak layer are 10–
15 km and 1018–1019 Pa s (larger thickness and lower viscosity of this layer may
require shorter time steps to avoid oscillations of numerical solution for velocity
and pressure fields in the weak layer).

Figure 17.1 shows the results of a numerical experiment for spontaneous
bending of a retreating subducting plate obtained with the code Subducting_
slab_bending.m. The deformation pattern in the bending slab is distinct
(Fig. 17.1(d)): the top of the slab is subjected to intense plastic deformation with
localised faults while the bottom of the slab deforms in a ductile way (i.e. by the
temperature- and stress-activated dislocation creep, cf. Table 17.1) with enhance-
ment of the deformation (see dark zone in the lower part of Fig. 17.1(d)) due to
high stresses (see, light zones in Fig. 17.1(f)) in the bending area. The plastic fault-
ing and ductile deformation fields are characterised by extension and compression
in a horizontal direction, respectively (see orientation of stress principal axes in
Fig. 17.1(f)). These two fields are clearly separated by the narrow, non-deforming
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middle plane of the slab (see light zone inside the slab in Fig. 17.1(e)) which is char-
acterised by small deviatoric stresses (see dark zone inside the slab in Fig. 17.1(f)).
The penetration depth of faults (10–50 km) (Fig. 17.1(e)) is in agreement with the
observational constraints (Ranero et al., 2003, 2005). Results of the experiment
show that a slab with a free upper surface can easily be bent by its own weight,
thereby triggering spontaneous retreating subduction. Bending is facilitated by (i)
lowered pressure in the extension region, which favours deep penetration of faults
and (ii) by large stresses in the compression region, which produces a local lowering
of the slab viscosity due to the power-law nature of ductile creep.

17.5 Retreating oceanic subduction

This model is comparable to the previous one, but the model size is much larger to
allow a longer slab retreat and deeper penetration. To avoid a significant increase
in a number of grid points, one can employ a non-uniformly spaced grid with
a high-resolution area that moves together with the trench (Gerya et al., 2008a;
Nikolaeva et al., 2008). The grid spacing increases gradually away from the area of
high resolution by a constant factor F at every nodal point (cf. vertical resolution
in the lower part of Fig. 17.1(a)). In order to compute this incremental factor, the
following formula is solved iteratively

F =
(

1 + D

b

(
1 − 1

F

))1/N

, (17.2)

where D is the distance that should be covered by N non-uniform grid steps and
b is the grid spacing in the high resolution area (i.e. grid spacing from which the
incremental increase should start). In order to avoid sharp changes in the numerical
solution, the grid modification can be done at every time step. Re-meshing has
no major effect on the algorithm since in our marker-in-cell approach, relative
positions of markers and nodes change at every time step anyway. Also, nodal
values of physical parameters (including temperature changes) are only used for
updating properties at the moving markers. Therefore, an Eulerian node has no
‘memory’ and can be shifted between two time steps. In addition, since the model
is much deeper than the previous one and pressure varies significantly from the
top to the bottom, we should take into account the activation volume of dislocation
creep.

The activation volume Va for olivine creep (this creep is assumed to represent
the mantle rheology, Tables 17.1, 17.2) varies from 0 (wet olivine) to 17 cm3 (dry
olivine) (e.g. Ranalli, 1995). Intermediate values of Va are possible as water content
in the mantle varies. Subduction model development can be notably affected by
this parameter (e.g. Mishin et al., 2008) and, therefore, investigating some range
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of activation volume variations is required to understand how the model works.
The same applies to the asthenospheric mantle temperature, the plastic strength of
the upper oceanic crust (lubricating layer), plate ages, initial weak zone thickness
etc. This generally means that investigating the model parameter space (to some
degree, of course, since the parameter space of a model with 10 variable parameters
has at least 210 permutations and consequently at least 1024 numerical experiments
have to be run to investigate it in a systematic manner . . . ) is a necessary component
of any numerical geodynamic study. Robust conclusions should only be based on
the observations obtained from several/many models.

Figure 17.2 shows the evolving numerical grid and the results of a subduction
experiment. The subducting slab spontaneously retreats toward the right side of the
box and the high-resolution area of the grid follows the trench area (cf. change in
position of solid triangle in Fig. 17.2(a) and (b)). The slab steepens and the intensity
of visco-elasto-plastic bending (Fig. 17.1) increases with time. The rate of trench
retreat is very fast during the first 1.5 Myr (around 30 cm/year, Fig. 17.3) but it
drops to a few cm/year as soon as the lower tip of the slab moves toward the lower
boundary of the model box, and penetrates into the deeper mantle that has a larger
effective viscosity (influence of the chosen Va = 10 cm3). Generally, in models
like this one, trench retreat is mainly controlled by the density contrast between
the slab and the asthenosphere and by the viscous resistance of the asthenospheric
mantle, which in turn depends on its rheology and temperature. For example,
the rate of trench retreat decreases if a higher activation volume and/or a lower
temperature for the asthenosphere are used (try to experiment using the program
Subduction.m).

The overall model behaviour is realistic and captures several important features
of retreating intra-oceanic subduction zones. Slab bending is spontaneous and slab
deep angle naturally increases with depth (Fig. 17.2(b)). An accretion prism and
wedge-like subduction channel form spontaneously at the plate interface (cf. zoom-
in in Fig. 17.2(a)(b)). The upper (weak) part of the subducted oceanic crust partly
detaches from the slab and circulates in the subduction channel, which provides a
pathway for the exhumation of high-pressure tectonic melanges to the surface (e.g.
Cloos, 1982; Gerya et al., 2002, Gorczyk et al., 2007a). The overriding plate grows
in length due to the trench retreat, and cools with time (cf. isotherms in Figs. 17.2
and 17.3). The plate growth process is accommodated by the spontaneous backarc
spreading where the hot mantle approaches the surface (cf. diamonds in Fig. 17.3).
The model topography also behaves in a realistic manner and shows a pronounced
minimum in the trench area as well as a visible maximum above the spreading
centre (Fig. 17.3). Obviously, no topography maximum is formed in the middle
of the overriding plate (i.e. in the area where a natural magmatic arc would grow)
since our model does not account for magmatism and crustal growth. This aspect



(a)

(b)

Fig. 17.2 An evolving irregularly spaced numerical grid (each second grid line
is shown) and results (lithological field, see Fig. 17.1b for shade code) of the
numerical experiment for spontaneous retreating subduction. The model resolution
is 251 × 61 nodal points with 750 000 randomly distributed markers. Activation
volume of mantle used in this experiment is 10 cm3. The asthenospheric mantle
temperature at the bottom of the model is 1850 K and decreases upward according
to an adiabatic gradient of 0.5 K/km. The high-resolution area of the grid moves
together with the retreating trench (solid triangles). Inserts show a zoom-in of
the moving trench area with a spontaneously evolving accretion prism and deep
subduction channel in which the subducted oceanic crust is circulating. Black
labelled lines on the inserts are isotherms in ◦C. Results are computed with the
code Subduction.m.
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Fig. 17.3 Time evolution of the trench (triangle) and backarc spreading centre
(diamond) associated with the growth and cooling of the overriding plate during
a retreating subduction experiment (Fig. 17.2).

however, can be improved by using more sophisticated and realistic models, which
involve mantle wedge hydration and melting, and related melt extraction and crustal
growth (e.g. Nikolaeva et al., 2008).

17.6 Lithospheric extension

Lithospheric extension is an important geodynamic process, for example at mid-
ocean ridges, backarc (Fig. 17.3) and intra-arc extension zones, passive and active
rifting, continental break-up, formation of sedimentary basins, etc. (e.g. Turcotte
and Schubert, 2002). Realistic modelling of such settings poses computational
challenges (e.g. Burov and Poliakov, 2001) since extension of the lithosphere and
the underlying mantle is associated with intense and simultaneous viscous and
brittle/plastic (faulting) deformations, as well as with notable changes in topog-
raphy. Modelling requires sufficiently high (at least 2 × 2 km) resolution in the
extension area where strongly localised deformation along faults takes place. One
way to address these challenges consists in using an evolving non-uniformly spaced
numerical grid (as we used for modelling retreating subduction, Fig. 17.2) com-
bined with a variable model size which evolves with time in response to imposed
bulk extension. This approach suggests re-meshing at every time step, which can
be easily done with our marker-in-cell algorithm.
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(a)

Fig. 17.4 Evolving irregularly spaced numerical grid (each second grid line is
shown), lithological field (see Fig. 17.1(b) for colour code) and finite strain for
two stages of an oceanic lithosphere extension experiment. Model resolution
is 161 × 61 nodal points with 120 000 randomly distributed markers. Activation
volume of the mantle used in this experiment is 10 cm3. No strain weakening is used
for plastic deformation. Initial asthenospheric mantle temperature at the bottom
of the model is 1750 K and decreases upward according to an adiabatic gradient
of 0.5 K/km. Non-compositional layering of the mantle lithosphere is shown for
visualising deformation. Black labelled lines are isotherms in ◦C. Results are
computed with the code Extension.m.

Figure 17.4 presents the results of modelling extension of a 70 Myr old oceanic
lithosphere under an imposed constant extension rate (vextension = 2 cm/year). The
initial model is 400 × 300 km in size and includes both lithospheric and astheno-
spheric domains as well as a weak top layer (sticky water) that allows a natural
thermomechanical evolution of both upper and lower boundaries of the lithosphere.
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(b)

−

Fig. 17.4 (cont.)

As in previous examples, the lower lithosphere boundary is not prescribed and
forms spontaneously as a rheological boundary between colder and stronger parts
of the mantle and underlying hotter and weaker (asthenospheric) region. Exten-
sion is prescribed symmetrically as constant horizontal outward velocity boundary
conditions at two sides of the model

voutward = 1

2
vextension. (17.3)

In order to ensure mass conservation in the computational model, a vertical inward
velocity which changes at every time step, is prescribed along the lower model
boundary

vinward(t) = H(t)

L(t)
vextension, (17.4)

where L(t) and H(t) are width and height of the model, respectively. The model
width and height change with time as

L(t) = L0 + t × vextension (17.5)
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and

H(t) = L0 × H0/L(t), (17.6)

where L0 = 400 km is initial model width, t is time from the beginning of the
experiment and H0 = 300 km is the initial model height. The resolution of the
numerical grid contains 161 × 61 nodal points, with 120 000 randomly distributed
markers. The dense 2 × 2 km part of the grid covers the central 200 × 80 km area
of the model where the extension is localised (not necessarily exactly in the middle,
of course). Resolution in the remaining grid changes (Eq. (17.2)) at every time step
in response to the model stretching.

Figure 17.4 presents results of the numerical experiment for the oceanic litho-
sphere extension computed with the code Extension.m. Two stages are clearly
seen: (1) normal faulting and visco-plastic necking of the old oceanic lithosphere
(Fig. 17.4(a)) and (2) growth of new oceanic lithosphere associated with the for-
mation of a spreading centre. Extensional deformation associated with normal
faulting (Fig. 17.4(a)) initially starts in a 200–300 km wide area of the lithosphere.
It is followed by a spontaneous and gradual (within 1.5–2.5 Myr) focusing of the
deformation in the necking area where a new spreading centre forms and the hot
asthenospheric mantle comes close to the surface (see distribution of isotherms in
Fig. 17.4(b)). The topography development is characteristic: the topographic low
develops in the spreading centre and two elevated regions form on the rift flanks
(e.g. Burov and Cloetingh, 1997; Burov and Poliakov, 2001). However, our model
topography is assumed to be submarine and contains no erosion or sedimentation
processes which may notably affect lithospheric extension (e.g. Burov and Cloet-
ingh, 1997; Burov and Poliakov, 2001) if taken into account. Like in the retreating
subduction model, this experiment does not take into account decompression melt-
ing of the mantle or the formation of new oceanic crust in the spreading centre,
which again points toward the need for developing more sophisticated and realistic
models.

17.7 Continental collision

Continental collision is another very ‘popular’ geodynamic setting that has been
widely addressed by numerical modelling. In that case, much care should be
taken to address erosion and sedimentation processes which play major roles
in orogeny associated with colliding continents (e.g. Willett, 1999; Beaumont
et al., 2001). According to numerical studies, variations in erosion/sedimentation
rates during subduction and collision may significantly affect crustal mass flux
and consequently alter crustal deformation and the behaviour of the crust–mantle
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interface (e.g. Willett, 1999; Beaumont et al., 2001; Pysklywec, 2006; Gerya
et al., 2008b). One possibility to model these processes is to use an internal
evolving erosion/sedimentation surface (Gerya and Yuen, 2003b) that separates the
top boundary of the lithosphere from the overlaying sticky water/air layer with ver-
tically stratified density (either ‘air’, 1 kg/m3, for y < ywater or ‘water’, 1000 kg/m3,
for y > ywater, where ywater is the water level adopted in the model). This surface
evolves according to the transport equation solved at the Eulerian coordinates at
each time step (Gerya and Yuen, 2003b):

∂yes

∂t
= vy − vx

∂yes

∂x
+ ve − vs, (17.7)

where yes is the vertical position of the surface as a function of the horizontal dis-
tance x; vy and vx are the vertical and horizontal components of the material velocity
vector at the surface; vs and ve are sedimentation and erosion rates, respectively.

Erosion and sedimentation rates in Eq. (17.7) can be computed in various ways.
The simplest is to use both slope and elevation independent large-scale erosion
and sedimentation rates (e.g. Vance et al., 2003; Gerya and Yuen, 2003b; Gerya
et al., 2008b) which correspond to the relation:

vs = 0 mm/a, ve = ve0 when y < ywater,

vs = vs0 mm/a, ve = 0 when y > ywater,

where ve0 and vs0 are imposed as constant erosion and sedimentation rates. Another
possibility is to use more sophisticated models of surface processes that combine
downhill diffusion erosion and fluvial erosion (Kooi and Beaumont, 1994; Burov
and Cloetingh, 1997; Braun and Sambridge, 1997; Beaumont et al., 2001; Burov
et al., 2001). In the case of short-distance, downhill diffusion erosion (e.g., Kooi
and Beaumont, 1994; Burov and Cloetingh, 1997), Eq. (17.7) can be modified to

∂yes

∂t
= vy − vx

∂yes

∂x
+ ∂

∂x

(
Ks

∂yes

∂x

)
, (17.8)

where Ks is the effective ‘topography diffusion’ coefficient, which is highly variable
(0–105 m2/year, e.g. Kooi and Beaumont, 1994; Burov and Cloetingh, 1997). One
possibility to solve the transport equations (17.7) and (17.8) consists in using a
1D Eulerian advection methods such as upwind differences or the FCT method
discussed in Chapter 8.

The oceanic lithosphere initially present between the two continental plates
is another important component of continental collision models. Prescribing this
lithosphere (e.g. Faccenda et al., 2008b; Gerya et al., 2008b; Warren et al., 2008)
allows a more natural beginning and more faithfully captures the initial stages of the
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collision process. During these stages, the model behaviour changes very rapidly
due to the arrival of the positively buoyant continental crust in the subduction zone.
Obviously, experiments of post-subduction collision should allow deep subduction
of the oceanic slab and spontaneous bending of plates, which require using a
sufficiently wide (>500 km) and deep (>200 km) model (e.g. Burov et al., 2001;
Faccenda et al., 2008b; Gerya et al., 2008b; Warren et al., 2008). One possibility
to fit these requirements consists of using models with a variable size domain
(e.g. Burov et al., 2001), like the one we explored for lithospheric extension.
Another option is to use setups with a constant model size and a permeable lower
boundary (Burg and Gerya, 2005; Faccenda et al., 2008b; Gerya et al., 2008b)
where infinity-like thermal and mechanical boundary conditions (Chapters 7 and
10) are prescribed.

Figure 17.5 shows the initial setup and results of a post-subduction collision
experiment conducted with the code Collision.m. The 1000 × 300 km model
(Fig. 17.5(a)) uses a non-uniform 201 × 61 rectangular grid with a constant high
resolution of 2 × 2 km in the 300 × 60 km area of the subduction/collision zone.
Coarser resolution around this zone changes at every time step in response to the
model shortening (leftward) and thickening (downward), which accommodate the
convergence whose velocity is prescribed at the right model boundary. Boundary
conditions are similar to the lithospheric extension example (Eq. (17.3)–(17.6))
but the model is shortening rather then extending and the left boundary does not
change position with time. In order to compensate for the thickening of the sticky
air/water layer on the top of the model, the water level changes at every time step
as

ywater(t) = ywater0L0/L(t), (17.9)

where ywater0 = 7.5 km is the initial water level.
The initial material setup (Figure 17.5a) implies early oceanic–continental sub-

duction with two continental sections (each 400 km wide) and a relatively short
(200 km) intermediate oceanic plate, which is 40 Myr old. The continental crust is
35 km thick, with the upper and lower crustal layers (Table 17.2) of equal thickness.
The nucleated subduction zone at the left ocean/continent boundary is prescribed
as a 4–15 km wide weak zone cutting across the entire mantle lithosphere and
reaching a depth of 90 km. The weak zone is prescribed as a wet brittle/plastic fault
within mantle rocks, characterised by wet olivine rheological parameters and a low
plastic strength of 1 MPa (i.e. assuming a high pore fluid pressure and sin(ϕ) = 0).
During subduction, the pre-defined weak zone is spontaneously replaced by weak
subducted crustal rocks, thereby preserving the decoupling along the interface.
Obviously, the subduction zone is prescribed in a rather arbitrary way but this is
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(a)

(b)

Fig. 17.5 Lithological field and evolving irregularly spaced numerical grid (each
second grid line is shown) for the initial model setup (a) and culminate stage (b)
of the continental collision experiment. Model resolution is 201 × 61 nodal points
with 300 000 randomly distributed markers. Activation volume of the mantle used
in this experiment is 10 cm3. The initial asthenospheric mantle temperature at the
bottom of the model is 1750 K and decreases upward according to an adiabatic
gradient of 0.5 K/km. Convergence of 3 cm/yr is prescribed from the right. Black
labelled lines are isotherms in ◦C. Black square shows position of a representative
marker from the deeply subducting sedimentary rock unit for which P–T-time
path is shown in Fig. 17.8. Results are computed with the code Collision.m.

what we have to live with since the issue of subduction initiation is very controver-
sial and over 10(!) conceptual models of subduction initiation have already been
suggested in the literature (discussion by Ueda et al., 2008).

The initial thermal structure of the continental lithosphere is laterally uni-
form and corresponds roughly to the usual continental geotherms (e.g., Turcotte
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and Schubert, 2002): 0 ◦C at the surface linearly increasing to 1380 ◦C at
100 km depth. The temperature structure of the oceanic plate corresponds to its age
(Eq. (17.1)). A gradual linear transition from the oceanic to the continental geotherm
is prescribed within a 50 km wide area at the two ocean/continent boundaries. The
initial temperature gradient in the asthenospheric mantle is 0.5 ◦C/km. Due to thick-
ening in response to shortening of the model with time, the temperature imposed for
the lower boundary condition should increase with time according to the adiabatic
gradient.

In this numerical model, the mechanisms driving subduction are a combined
‘plate push’ (prescribed constant convergence velocity at the right boundary) and
‘slab pull’ (temperature induced density contrast between the subducted lithosphere
and surrounding mantle, see above retreating subduction model example). This
type of boundary condition is widely applied in numerical models of subduction
and collision (e.g., Burov et al., 2001; Burg and Gerya, 2005; Faccenda et al.,
2008b; Warren et al., 2008), assuming that in the globally confined system of
plates, the ‘external push’ imposed on a plate (coming from a different slab) can
be significant. A spontaneously increasing slab pull mainly regulates slab bending
dynamics and delamination of the slab from the overriding plate (e.g., Gerya et al.,
2008b). Indeed, similar (and in relation) to the subduction initiation problem, the
issue of choosing proper convergence conditions is not fully resolved yet and the
external push at the initial stages of convergence may be exaggerated compared to
nature.

Figure 17.5(b) shows the final stage of an experiment for continental collision
with a 200 km wide intermediate oceanic plate (30 Myr cooling age) moving
leftward at a constant velocity of 3 cm/yr due to the model shortening imposed
from the right boundary. Results are computed with the code Collision.m. The
development of the continental collision zone is associated with deep (>100 km)
subduction of the continental crust underneath the orogen (Fig. 17.5(b)). This
feature appears in many numerical models of continental collision (e.g. Burov
et al., 2001; Gerya et al., 2008b; Warren et al., 2008) including those driven by slab
pull rather than by a prescribed convergence velocity (e.g. Faccenda et al., 2008b;
Baumann et al., 2009). This fits findings of ultrahigh-pressure (UHP) rocks (e.g.
Chopin, 2003; Liou et al., 2004) that contain metamorphic diamonds (e.g., Rosen
et al., 1972; Sobolev and Shatsky, 1990; Dobrzhinetskaya et al., 1995; Massonne,
1999) and coesite (e.g., Chopin, 1984; Smith, 1984) in Phanerozoic collision belts.
The topography development predicted with our simplified model (Fig. 17.6) also
appears realistic and demonstrates the growth of a positive topography (up to
2500 m above the water level, Eq. (17.9)) after the beginning of collision at around
5–7 Myr. Growth of the elevated region is associated with erosion and deposition
of sediments on both sides of the ‘orogen’ (see black material in Fig. 17.5(b)).
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Fig. 17.6 Development of topography with time (relative to the water level,
Eq. (17.9)) for the model shown in Fig. 17.5. Ks = 0.00003 m2/s (1000 m2/year)
is used in Eq. (17.8) which corresponds to approximately 1 mm/year gross-scale
erosion/sedimentation rates. Results are computed with the code Collision.m.

17.8 Slab breakoff

Slab breakoff (also called slab detachment) is an interesting ‘hidden’ process hap-
pening at depth within the mantle (ideal process for modellers indeed . . . ). It was
initially hypothesised on the basis of gaps in hypocentre distribution and tomo-
graphic images of subducted slabs (Isacks and Molnar, 1969; Barazangi et al.,
1973; Pascal et al., 1973; Chung and Kanamori, 1976; Fuchs et al., 1979) and is
supported by both theoretical considerations (Sacks and Secor, 1990; von Blanck-
enburg and Davies, 1995; Davies and von Blanckenburg, 1995) and detailed seismic
tomography (Spakman et al., 1988; Wortel and Spakman, 1992, 2000; Xu et al.,
2000; Levin et al., 2002). Slab detachment is often attributed to a decrease in sub-
duction rate subsequent to continental collision (e.g., Davies and von Blanckenburg,
1995; Wong A Ton and Wortel, 1997), an effect caused by the buoyancy of the con-
tinental lithosphere introduced into the subduction zone (Fig. 17.5(b)). In addition
to multiple geophysical, geological and geochemical investigations (see Andrews
and Billen, 2009 and references therein), analytical models, laboratory and numer-
ical experiments have been undertaken to characterise the breakoff processes (e.g.,
Davies and von Blanckenburg, 1995; Yoshioka and Wortel, 1995; Wong A Ton and
Wortel, 1997; Yoshioka et al., 1995; Buiter et al., 2002; Chemenda et al., 2000;
Faccenna et al., 2006; Gerya et al., 2004a; Andrews and Billen, 2009; Faccenda
et al., 2008b; Zlotnik et al., 2008; Baumann et al., 2009).
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Recent thermomechanical models indicate two detachment modes (Andrews
and Billen, 2009): (1) deep viscous breakoff, which is characteristic of strong slabs
and is controlled by thermal relaxation (heating) of the slab and subsequent ther-
momechanical necking in dislocation creep regime (Gerya et al., 2004a; Faccenda
et al., 2008b; Zlotnik et al., 2008; Baumann et al., 2009), and (2) relatively fast,
shallow plastic breakoff which is characteristic of weaker slabs and is controlled by
plastic necking of the slab (Andrews and Billen, 2009; Mishin et al., 2008; Ueda
et al., 2008). It was demonstrated that the time before the onset of viscous (but not
plastic) detachment increases with the slab age, indicating that detachment time is
controlled by the thickness and integrated stiffness of the thermally relaxing slabs
(Gerya et al., 2004a; Andrews and Billen, 2009).

Breakoff can be modelled in a sufficiently self-consistent way starting, for
example, from the configuration obtained in the continental collision experiment
(Fig. 17.5(b)). We can essentially use the same code and stop convergence (either
sharply or gradually) after the continental crust of the incoming plate reaches
asthenospheric depths, assuming that the crustal buoyancy can potentially block
further subduction. Even more consistent breakoff models use a spontaneous con-
vergence of plates (driven by the slab pull) allowed after some period of forced
convergence creating sufficient slab pull but before the actual beginning of colli-
sion (Faccenda et al., 2008b; Baumann et al., 2009). In this case, plates should be
detached from the model walls to permit horizontal movements.

Figure 17.7 shows results of a breakoff experiment performed with the code
Collision and breakoff.m. It uses the first approach and sharply stops model
shortening (and obviously its thickening as well, otherwise mass conservation con-
dition in the model will be violated which would be really bad . . . ) at 12.7 Myr (Fig.
17.5(b)). The model is then free to evolve spontaneously. In the beginning, domin-
ating processes are downward bending (steepening) and thermal relaxation of the
slab, as well as the buoyant escape of previously subducted continental crust toward
shallower depths (see the movement of a black square in Fig. 17.7(a)(b)(c) and the
respective P–T-time path in Fig. 17.8). This stage lasts over 15 Myr (from 12.7 Myr
to 27.8 Myr, cf. Figs. 17.5(b) and 17.7(b)). After the strength of the slab interior
is lowered by the temperature increase, a self-accelerating (due to feedbacks from
stress concentration and shear heating, Gerya et al., 2004a), thermomechanical
necking is activated and leads to rapid (within <1 Myr) detachment of the slab
(Fig. 17.7(b)(c)). This necking is driven by thermally activated, stress-sensitive
dislocation creep. The depth of breakoff is relatively shallow (around 140 km), but
this model feature is sensitive to many model parameters and results may widely
vary, ranging from 50 to 500 km (Gerya et al., 2004a; Faccenda et al., 2008b;
Mishin et al., 2008; Ueda et al., 2008; Andrews and Billen, 2009; Baumann et al.,
2009). Finally, the detached slab rapidly sinks and rotates in a coherent manner (as
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(a) (b)

(c) (d)

Fig. 17.7 Development of a viscous slab breakoff process. Initial conditions as
well as model parameters correspond to Fig. 17.5(b). Boundary conditions are
free slip on all model boundaries. Black labelled lines are isotherms in ◦C. Four
stages of breakoff are shown: (a) downward bending (steepening) and thermal
relaxation of the slab, (b) beginning of the thermomechanical necking process, (c)
slab detachment from the upper part of the plate, (d) rapid sinking and coherent
rotation of the slab. Black square shows position of a representative marker from
deeply subducted sedimentary rock unit for which P–T-time path is shown in
Fig. 17.8. Time in figures is shown from the beginning of the collision experiment
(Fig. 17.5). Results are computed with the code Collision_and_breakoff.m.

a rigid body), interacting with the lower model boundary which is an artifact of the
impermeable lower boundary condition. Rigid slab rotation is a realistic process
resulting from slab interaction with the underlying and surrounding mantle (par-
ticularly near the 670 km deep spinel-to-perovskite transition), which is confirmed
by numerical experiments with larger and deeper models that employ mantle phase
transitions (Mishin et al., 2008; Baumann et al., 2009).

Figure 17.8 show a P–T-time path of a marker representing a sedimentary
rock unit deeply subducted during collision and exhumed toward the surface
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(a)

(b)

Fig. 17.8 Representative P–T-time path for the sedimentary rock unit deeply sub-
ducted during the continental collision (see small black square in Fig. 17.5). This
unit exhumes toward the surface during thermal relaxation and detachment of the
slab (see small black square in Fig. 17.7). Numbers along the P–T path in (a) show
time in Myr from the beginning of the collision experiment (Fig. 17.5).

during thermal relaxation and detachment of the slab (see small black square in
Figs. 17.5, 17.7). The possibility of computing P–T-time trajectories of various
rock units represent another very useful feature of the marker-in-cell approach.
The synthetic P–T-time paths can be further compared to P–T paths of natural rock
complexes derived from petrological data. The comparison of P–T paths poses
strong constraints for testing numerical models on the basis of natural data which
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is now broadly used in numerical modelling of various geodynamic processes (e.g.
Gerya et al., 2000, 2002, 2008b; Jamieson et al., 2002; Gerya and Maresch, 2004;
Stoeckhert and Gerya, 2005; Gerya and Stoeckhert, 2006; Gorczyk et al., 2007b;
Faccenda et al., 2008b; Warren et al., 2008).

17.9 Intrusion emplacement into the crust

James Hutton conceived the idea of plutonism already in the late eighteenth century
(e.g. Ellenberger, 1994) but the formation of large magma bodies in the crust, the
plutons, still eludes full understanding. Research on the topic has, however, been
much focused on the emplacement of granitic magma (e.g. Pitcher, 1979; Ramberg,
1981; Petford et al., 2000). Thermomechanical modelling of magma intrusion is
not yet very ‘popular’ (e.g. Burov et al., 2003; Gerya and Burg, 2007; Burg
et al., 2009) and is numerically challenging because it involves simultaneous and
intense deformation of materials with very contrasting rheological properties. To
see the contrast, consider that typical crustal rocks are visco-elasto-plastic whilst
the intruding magma is a low viscosity, complex fluid/crystal mixture. Indeed, the
finite-differences+marker-in-cell (FDM+MIC) numerical methodology discussed
in this book is appropriate for such type of experiments and has already been
used for thermomechanical modelling of mafic-ultramafic intrusion emplacement
(Gerya and Burg, 2007; Burg et al., 2009).

In the case of trans-lithospheric emplacement (i.e. intrusion of a magmatic body
from sub-lithospheric depths into the crust) which is the process assumed for many
mafic-ultramafic bodies found in cratons and within magmatic arcs (e.g. Burg et al.,
2009), the following model design can be used (Fig. 17.9(a)(b) 0 Kyr). The model
domain should obviously include both lithospheric and asthenospheric regions. The
envisaged intrusion emplacement area has to be well resolved (grid spacing should
be several times smaller than the modelled intrusion size which typically implies a
resolution of 0.5–1 km or better, Gerya and Burg, 2007). Non-uniform grids similar
to those we used for the slab bending model (Fig. 17.1(a)) and for the lithospheric
extension/collision models (Figs. 17.4, 17.5) are appropriate. The initial thermal
structure of the lithosphere, with a 25 km thick crust corresponding to a magmatic
arc, is represented by a relatively hot sectioned geotherm (0 ◦C on the top of the
crust, 627 ◦C at the Moho and 1317 ◦C at 93 km depth). An adiabatic gradient
of 0.5 K/km is used in the asthenospheric mantle. Dense layering in the crust is
used to better visualise the deformation. Boundary conditions are free slip on all
boundaries. No far field shortening/extension is introduced to affect the intrusion
process.

In this model, we assume that magma is coming from a sub-lithospheric mag-
matic source region (SMSR) (Gerya and Burg, 2007). The SMSR and the magmatic
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(a)

(b)

Fig. 17.9 Dynamics of intrusion emplacement into the crust in the case of (a) hot
magma with lowered (1014 Pa s) viscosity and (b) colder magma with higher (1016

Pa s) viscosity. Model resolution is 201 × 61 nodal points with 192 000 randomly
distributed markers. The grid is similar to Fig. 17.1(a) and has a non-uniform ver-
tical resolution of 1.0–6.4 km and uniform horizontal spacing of 0.5 km. Astheno-
spheric mantle temperature at the bottom of the model is 1600 K and decreases
upward according to adiabatic gradient of 0.5 K/km. Moho temperature is 900 K
for both models. Results are computed with the code Intrusion_emplacement.m.

channel across the lithospheric mantle are then prescribed initially. The SMSR
and the median channel enriched in mafic melt have an initially uniform mag-
matic temperature, which can be varied within reasonable limits (e.g. between
1200 and 1500 ◦C). This is the presumed temperature range at the head of a par-
tially molten, hydrous thermal-chemical mantle plumes which can represent the
SMSR (e.g. Gerya and Yuen, 2003b; Gerya et al., 2004b; Castro and Gerya, 2008).
We emphasise that the modelled SMSR is only a thermally and chemically dis-
tinct region of the hydrated, partially molten mantle rocks and not a chamber of
fully molten magma. Partially molten material has a much lower viscosity than
the surrounding dry mantle (e.g. Pinkerton and Stevenson, 1992) and can move
through the magmatic channel as a melt/crystal mixture. In that sense, the SMSR
is equivalent to a magma reservoir. According to the melting model described
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below, this hydrated region initially has 10–30% melt fraction (depending on
the assumed initial temperature) which varies with depth. Though the bulk com-
position of the SMSR in the model is ultramafic, the melt composition within
the SMSR depends on the degree of melting and thus varies between mafic and
ultramafic.

By implementing a pre-existing hot and thus weak (with plastic strength of
1 MPa) magmatic channel, we implicitly accept the general assumption that magma
rises from the source area as a result of any lithospheric perturbation. Natural hot
channels may originate at an early magmatic stage due to the rapid and localised
upward percolation of hot mobile fluids/melts, which are differentiation products
at the top of the SMSR. Respectively, enrichment (up to 25%) by mafic melt is
prescribed for the channel. Mechanisms of localised upward fluid/melt transport
include hydrofracture (e.g., Clemens and Mawer, 1992), diffusion (e.g., Scambel-
luri and Philippot, 2001), porous flow (e.g., Scott and Stevenson, 1986; Connolly
and Podladchikov, 1998; Vasilyev et al., 1998; Ricard et al., 2001) and reactive flow
(e.g. Spiegelman and Kelemen, 2003). An important point is that fluid percolation
diminishes the plastic strength of rocks through an increase in pore fluid pressure,
which in turn allows massive amounts of partially molten rocks to ascend through
the lithosphere. Propagation of magmatic rocks from the channel into the crust
develops in a spontaneous manner and is mainly controlled by the crustal rheology
and density.

According to geological observations, fault tectonics, and hence plastic defor-
mation of the crust, play a significant role during plutonic emplacement result-
ing from fluid/melt percolation along forming fracture zones (e.g. Clemens and
Mawer, 1992). The plastic yield strength of rocks under fluid-present conditions,
strongly depends on the ratio between the solid (Psolid) and fluid (Pfluid) pressure
Eqs. (12.41)–(12.43) (Chapter 12). During intrusion, the most intensive percola-
tion of magmatic fluids is expected to follow the pattern of fractured rocks along
spontaneously propagating fault zones. Fluid supply will then increase the pore
fluid pressure along the fault zones, thus lowering the plastic yield strength of the
fractured rocks. This will in turn further localise deformation along the weakening
fault zones. Under such circumstances, the plastic strength of fractured rocks will
be inversely correlated with the amount of continuous plastic deformation expe-
rienced by the rocks. In order to model this process in a simplified way, the fluid
pressure factor λ for a given model rock increases with plastic strain experienced
by the rock

λ = 1 − (1 − λ0)

(
1 − γplastic

γcr

)
when γplastic < γcr and λ = 1 when γplastic ≥γcr,

(17.11a)
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or in terms of the effective friction angle ϕ (as in the sandbox benchmark of
Chapter 16),

sin(ϕ) = sin(ϕ0)

(
1− γplastic

γcr

)
when γplastic <γcr and sin(ϕ)=0 when γplastic ≥γcr

(17.11b)

sin(ϕ0) = sin(ϕdry)(1 − λ0), (17.12)

sin(ϕ) = sin(ϕdry)(1 − λ), (17.13)

γplastic =
∫
t

(
1

2
ε̇ij(plastic)ε̇ij(plastic)

)1/2

dt, (17.14)

where λ0 and ϕ0 are the initial (before plastic yielding) pore fluid pressure factor
and effective friction coefficient characteristic for the rock, respectively; γcr is the
critical plastic strain required for weakening the rock by percolating fluid (i.e. the
strain necessary for reaching condition Pfluid = Psolid, λ = 1). In our example, we
used γcr = 0.1 and sin(ϕ0) equal to 0.2 and 0.6 for the crustal and mantle rocks,
respectively.

For simplicity, the effective viscosity η of partially molten rocks (M > 0.1) is
assigned by a low constant value of 1016 Pa s. In real melt-crystal aggregates,
this viscosity is strongly and non-linearly dependent on the melt fraction and can
be calculated, for example, by using the formula (Bittner and Schmeling, 1995;
Pinkerton and Stevenson, 1992):

η = ηo exp

[
2.5 + (1 − M)

(
1 − M

M

)0.48
]

, (17.15)

where ηo is an empirical parameter depending on rock composition. According
to Bittner and Schmeling (1995), ηo = 1013 Pa s can be taken for partially
molten mafic rocks (i.e., 1 × 1014 ≤ η ≤ 2 × 1015 Pa s for 0.1 ≤ M ≤ 1) and
ηo = 5 × 1014 Pa s (i.e., 6 × 1015 ≤ η ≤ 8 × 1016 Pa s for 0.1 ≤ M ≤ 1) can be
adopted for felsic rocks. Also, an empirical equation has been calibrated by Caricchi
et al., (2008) which describe the non-Newtonian strain-rate-dependent rheology of
partially molten felsic rocks.

Compared to previous numerical examples, the new feature that we have to
introduce is a treatment of the melting/crystallisation processes. Crystallisation
of the intruding magma and, to some extent, partial melting of host rocks are
two important and coeval processes during plutonism (e.g. Marsh, 1982; Best
and Christiansen, 2001) because they affect the density and the rheology of both
intruding and intruded rocks, respectively. The numerical models presented allow
the gradual crystallisation of magma and partial melting of the crust (e.g. Bittner
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and Schmeling, 1995) in the pressure–temperature domain between the wet solidus
and dry liquidus of corresponding rocks (Table 17.2). As a first approximation, the
volumetric fraction of melt M at constant pressure is assumed to increase linearly
with temperature according to the relations (Gerya and Yuen, 2003b; Burg and
Gerya, 2005):

M = 0 at T ≤ Tsolidus, (17.16a)

M = (T − Tsolidus)

(Tliquidus − Tsolidus)
at Tsolidus < T < Tliquidus, (17.16b)

M = 1 at T ≥ Tliquidus, (17.16c)

where Tsolidus and Tliquidus are the solidus and liquidus temperatures of the considered
rock, respectively (Table 17.2).

The effective density, ρeff , of partially molten rocks is then calculated from:

ρeff = ρsolid

(
1 − M + M

ρ0molten

ρ0solid

)
, (17.17)

where ρ0solid and ρ0molten are the standard densities of solid and molten rock,
respectively (Table 17.2) and ρsolid is the density of solid rocks at given P and T
computed according to Eq. (2.4b) (Chapter 2) based on the thermal expansion and
compressibility coefficients (Table 17.2).

The effect of latent heating due to equilibrium melting/crystallisation is included
implicitly by increasing the effective heat capacity (CP eff) and the thermal expan-
sion (αeff) of the partially crystallised/molten rocks (0 < M < 1), calculated as
(Burg and Gerya, 2005):

CP eff = CP + QL

(
∂M

∂T

)
P=const

, (17.18a)

αeff = α + ρ
QL

T

(
∂M

∂P

)
T=const

, (17.18b)

where CP is the heat capacity of the solid rock and QL is the latent heat of
melting of the rock (Table 17.2). Pressure and temperature derivatives of the
melt fraction M can be obtained numerically by calling an external melt fraction
computation routine (see MATLAB function Melt_fraction.m used by the code
Intrusion_emplacement.m).

Figure 17.9 displays results of an intrusion experiment performed with the
code Intrusion_emplacement.m. Two emplacement regimes are compared:
rapid emplacement of hot, low viscosity magma with higher degree of melting
(Fig. 17.9(a)) and slower emplacement of colder, higher viscosity magma with
lower degree of melting (Fig. 17.9(b)). In the first case, emplacement is mainly
controlled by the plastic deformation (faulting) of the crust. Magma rises rapidly
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toward the surface (Fig. 17.9(a), 3.6 Kyr), despite the fact that its density is notably
higher (by 150–300 kg/m3) than that of the crustal host rocks (though it is lower
than the density of the non-molten lithospheric mantle). Extrusion of hot, partially
molten rocks through the magmatic channel is primarily driven by the density
contrast between these partially molten rocks and the mantle lithosphere. To min-
imise gravitational energy, intrusive rocks of intermediate density should tend to
pool along the crust/mantle boundary (i.e. at the neutral buoyancy level). How-
ever, this tendency is only realised if the magma viscosity is relatively high and
its emplacement, therefore, is relatively slow such that viscous deformation of the
lower crust can accommodate the intrusion emplacement along the Moho (Fig.
17.9(b)). In the first model, however, (Fig.17.9(a)) the magma viscosity is low
and its emplacement is, therefore, fast and can only be accommodated by plastic
deformation. Since plastic strength of the crust rapidly decreases with decreasing
depth (more precisely with decreasing dynamic pressure), the intrusion propagates
upwards to the upper crust where emplacement requires less mechanical work.
The restraining gravitational energy produced by the arrival of a dense intrusion
in the less dense crust is compensated and overcome by the positive buoyancy
of partially molten rocks in the magmatic channel. This phenomenon is compa-
rable to the penetration of a diapir head into lower density rocks (e.g., Ramberg,
1981). This respective intrusion mechanism is also called trans-lithospheric mantle
diapirism (Burg et al., 2009). It is worth emphasising that the gravitational balance
controls the height of the column of molten rock, but not the volume of magmatic
rock below and above the Moho. This is expressed in the mechanical equilibrium
relation:

hChannel(ρMantle − ρMagma) = hIntrusion(ρMagma − ρCrust), (17.19)

where hChannel is the height of the column of magmatic rock in the channel below
the Moho, hIntrusion is the height of magmatic rock above the Moho, ρMantle, ρMagma

and ρCrust are the density of the mantle lithosphere, the intruding magma and the
crust, respectively. Since the width of the channel below the Moho is limited by
the rigidity of the cold mantle lithosphere, the volume of magma intruding into
the crust can be much larger than the volume of rock remaining in the channel
(Fig. 17.9(a), 3.6 Kyr).

17.10 Mantle convection with phase changes

As we discussed in the introduction, thermomechanical modelling of mantle con-
vection has a rich history dating back to the early 1970s (e.g. Richter, 1978;
Schubert, 1992; Bercovici, 2007). Not surprisingly, it is one of the most advanced
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fields of geodynamic modelling in terms of both technical and conceptual pro-
gresses (e.g., Yuen et al., 2000). Realistic modelling of terrestrial and planetary
convection is a challenging topic (e.g., Hansen and Yuen, 1988; Larsen et al.,
1995; Yuen et al., 2000; Zhong et al., 2007; Tackley, 2008) and requires the appli-
cation of sophisticated 3D numerical codes working with spherical geometries at
high grid resolution which can almost exclusively only be preformed by parallel
computing on ‘big machines’. Indeed, one important aspect of modelling mantle
convection, which is of interest for this chapter, is the incorporation of solid-state
phase transitions into such numerical models.

Solid-state phase transitions are crucial phenomena in the Earth’s mantle. Major
phase transitions include olivine–spinel at 410 km depth and spinel–perovskite
at 670 km depth. These transitions are associated with significant changes in
mantle density and seismic wave speeds (Turcotte and Schubert, 2002). It was
also suggested recently, that the so-called D′′ (D-double-prime) discontinuity near
the core–mantle boundary is related to perovskite–post-perovskite phase transition
(Oganov and Ono, 2004; Murakami et al., 2004). Phase transitions affect the
dynamics of mantle convection due to (1) density changes and (2) latent heating
(Richter, 1973; Schubert et al., 1975; Christensen and Yuen, 1985; Tackley, 1993;
Zhong and Gurnis, 1994).

Phase changes are traditionally included in mantle convection models (e.g.,
Richter, 1973; Schubert et al., 1975; Christensen and Yuen, 1985; Tackley, 1993;
Zhong and Gurnis, 1994) by programming each transition individually (i.e. sim-
ilarly to what we did with melting reactions in the previous example). However,
for realistic mantle compositions, the amount of various phase transitions is larger
than only three (Fig. 17.10) and these phase transitions involve several minerals
of variable composition (so called solid solutions, Table 17.3) which makes the
traditional approach quite inconvenient. An alternative method has been developed
recently based on Gibbs free energy minimisation (Chapter 2). This method was
initially applied for crustal- and lithospheric-scale thermal (Petrini et al., 2001;
Gerya et al., 2001; Kaus et al., 2005) and thermomechanical (Gerya et al., 2004c,
2006; Yamato et al., 2008) models and then expanded to mantle convection models
(Tackley, 2008).

The idea of this petrological-thermomechanical method is relatively simple
(Gerya et al., 2004c; 2006): (i) phase diagrams (P–T pseudosections) and related
density (ρ) and enthalpy (H) maps (see programming exercise 2.3; Chapter 2) are
first computed for the necessary rock compositions in a relevant range of P–T
conditions and (ii) these maps are then used in thermomechanical experiments for
computing density (ρ), effective heat capacity incorporating latent heat (CPeff ) and
energetic effects (both adiabatic and latent heating) for isothermal (de)compression
(HP) for material points (markers) based on standard thermodynamic formulas and
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Fig. 17.10 Phase relations for the CaO-FeO-MgO-Al2O3-SiO2 pyrolite model
(see Table 17.3 for notations of minerals) computed (Mishin et al., 2008) with the
Gibbs free energy minimisation program Perple_X (Connolly, 2005). To permit
the resolution of phase relations the diagram is split to exclude the large depth
interval between the transition zone and core–mantle boundary in which the model
does not predict phase transformations. Composition for the pyrolite model is
3.87 wt% CaO, 8.11 wt% FeO, 3.61 wt% Al2O3, 38.59 wt% MgO and 45.82 wt%
SiO2.

numerical differentiation in P–T space (Fig. 17.11)

ρ = ρi,j
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, (17.20)

Cpeff =
(
∂H

∂T

)
P=const

= Hi,j+1 − Hi,j

�T
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�P
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(
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�P

)
,

(17.21)
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Table 17.3 Phase notation and formulae of minerals for the
CaO-FeO-MgO-Al2O3-SiO2 pyrolite model (Fig. 17.9)

Symbol Phase Formula∗

aki akimotoite MgxFe1–x–yAl2ySi1–yO3, x + y ≤ 1
c2c pyroxene [MgxFe1–x]4Si4O12

cpv Ca–perovskite CaSiO3

cpx clinopyroxene Ca2yMg4–2x–2yFe2xSi4O12

gt garnet Fe3xCa3yMg3(1–x+y+z/3)Al2–2zSi3+zO12, x + y ≤ 1
o olivine [MgxFe1–x]2SiO4

opx orthopyroxene [MgxFe1–x]4–2yAl4(1–y)Si4O12

ppv post–perovskite MgxFe1–x–yAl2ySi1–yO3, x + y ≤ 1
pv perovskite MgxFe1–x–yAl2ySi1–yO3, x + y ≤ 1
rng ringwoodite [MgxFe1–x]2SiO4

sp spinel MgxFe1–xAl2O3

wad waddsleyite [MgxFe1–x]2SiO4

wus magnesiowuestite MgxFe1–xO

∗ Unless otherwise noted, the compositional variables w, x, y, and z may
vary between zero and unity and are determined as a function of pressure
and temperature by free-energy minimisation with Perple X program (Connolly,
2005).

Fig. 17.11 Stencil associated with the P–T grid used for the interpolation
of physical properties from enthalpy and density look-up tables, to the
markers.
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. (17.22)

The temperature equation (9.8) is respectively modified as

ρCPeff
DT

Dt
= −∂qi

∂xi

+ Hr + Hs + HP . (17.23)

The stable mineralogy and physical properties for the mantle used in our example
are computed (Mishin et al., 2008) with Perple_X (Connolly, 2005) by a free
energy minimisation approach. For this purpose the Mie-Grueneisen formulation
of Stixrude and Bukowinski (1990) was adopted with the parameterisation of
Stixrude and Lithgow-Bertelloni (2005) augmented for lower mantle phases as
described by Khan et al. (2006). This parameterisation limits the chemical model
to the CaO-FeO-MgO-Al2O3-SiO2 (Table 17.3). The mantle rheology is based
on the dry olivine flow law (Table 17.1) with an activation volume of 5 cm3,
which allows us to mimic 1.5–3 order of magnitude increase in viscosity for the
lower mantle. This range is often used in mantle convection models (e.g. Tackley,
2000). Olivine is obviously not stable in the deep mantle below the olivine–spinel
transition and, therefore, our rheological choice is rather arbitrary. This is related
to the limited availability of experimentally calibrated flow laws applicable to the
deep mantle such that simplified temperature- and depth-dependent rheological
models are traditionally used in numerical mantle convection studies (e.g., Richter,
1973; Schubert et al., 1975; Christensen and Yuen, 1985; Zhong and Gurnis, 1994;
Tackley, 1993, 2000, 2008).

Figure 17.12 shows several stages of a mantle convection modelled with the code
Mantle_convection.m. The model design is simple: a square 3000 × 3000 km box
with free slip boundaries, constant temperature conditions applied at the top and
in the bottom and no heat flux condition across the vertical walls. In this model
we do not intend to model self-consistent plate generation (e.g. Tackley, 2000)
and therefore use uniform, relatively coarse grid resolution. Mantle convection is
characterised by a semi-layered structure with a strongly convecting upper part
(above 670 km depth) and a much more slowly deforming lower mantle with
several plumes penetrating from the core–mantle boundary (Figs. 17.12, 17.13(b)).
Density changes (Fig. 17.13(d)) and thermal effects (Fig. 17.13(c)) of various
phase transitions (Fig. 17.10) are captured with our petrological-thermomechanical
numerical approach without programming them individually. This approach makes
coding simpler and easily allows changes to be made in the case of testing different
models for mantle composition.
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(a) (b) (c)

(d) (e) (f)

Fig. 17.12 Development of mantle convection processes with phase changes
(Fig. 17.10) computed with the petrological-thermomecanical code Mantle_
convection.m associated with this chapter. Model resolution is 51 × 51 nodal
points with 40 000 randomly distributed markers. Grid resolution is uniform in
both directions. The model is shown from an arbitrary stage of 868 Myr when
non-compositional layering is superimposed for visualising deformation onto a
pre-computed non-steady thermal structure. Note, moderate deformation of the
lower mantle by localised upwellings and downwellings (thermal plumes) which
contrasts with the intense chaotic mixing of the upper mantle.

17.11 Deformation of self-gravitating planetary body

Lastly, let us discuss some planetary-scale applications of numerical geodynamic
modelling which are becoming more and more widespread in relation to the
problem of planetary accretion and core formation processes (e.g. Stevenson,
1981). One important group of such applications concerns the internal deformation
of an inhomogeneous, self-gravitating body. Numerical modelling of deformation
of such a body was already discussed in Chapter 11 with the use of a ‘spherical-
Cartesian’ approach (Honda et al., 1993; Gerya and Yuen, 2007; Lin et al., 2009).
This approach is relatively simple and does not require major rewriting of the
Cartesian code used for the previous examples. All that is required is to add the
numerical solution of the Poisson equation before solving the momentum and
continuity equations (Fig. 11.3). Gravitational acceleration components are then
computed from the gravity potential locally and are used in the right-hand side
of the momentum equation (Eqs. (11.18), (11.19)). As a boundary condition for
gravity potential, one can use constant gravitational potential value (e.g. � = 0)
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(a) (c)

(d)(b)

Fig. 17.13 Viscosity (a) and strain (b) maps and horizontally averaged temperature
(c) and density (d) profiles for the computed mantle convection model at 954 Myr
(Fig. 17.12(f)). Note, 1–2 order of magnitude viscosity contrast between the upper
and lower mantle obtained with our simplified rheological model based on dry
olivine flow law with activation volume of 5 cm3. Mantle deformation in (b) is
semi-layered and is strongly affected by the spinel–perovskite transition at around
670 km depth due to its negative Clapeyron slope (Fig. 17.10) which creates
difficulties for both upwellings and downwellings for penetrating this boundary.
Cold lithosphere at the top of the model remains undeformed (stagnant lid regime,
e.g. Tackley, 2000) due to the prescribed high plastic strength (sin(ϕ) = 0.6) which
corresponds to a dry mantle. Plate bending processes (Fig. 17.1) in this lithosphere
are not modelled due to the imposed free slip upper boundary condition without a
weak layer (in contrast to free-surface condition formed by sticky air/water used in
all previous examples) as well as due to the very coarse grid resolution employed
here (60 × 60 km in contrast to 2 × 2 km needed for properly resolving slab
bending processes).

applied at a circular surface located at a distance from the planet (Fig. 14.7,
Eq. (14.12)). The chosen value of the potential along the surface is arbitrary since
it does not affect the resulting gravitational acceleration field (given by derivatives
of the potential). The use of such a boundary condition is based on the fact that with
growing distance from the planet, both the gravitational acceleration and gravity
potential tend to become solely a function of the planetary mass (mp) and the
distance to its centre (d)

g = G
mp

d2
, (17.24)

� = const − G
mp

d
. (17.25)
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However, it should be mentioned that forcing the potential to be uniform outside
the planet at a certain distance from the planetary centre also affects the gravitational
field inside the planet (especially its tangential component). Therefore, the gravity
potential boundary should preferably be located at a significant distance from the
planetary surface which should be comparable to the planetary radius (Lin et al.,
2009).

The initial setup for the numerical experiment on gravitational redistribution
of metal and silicate in a Mars-sized body (3000 km in radius) is shown in
Figure 17.14 (0.03 Myr). This setup is based on the numerical study of Golabek
et al. (2008a) who investigated rheological controls on the terrestrial core forma-
tion mechanism. The initial temperature is 273 K at the surface and 1200 K at
100 km depth and then rises linearly to 1500 K in the centre of the planet. This
initial profile is rather arbitrary and mimics to some degree the effects of various
planetary heating processes: (i) decay of short-lived radioactive isotopes (MacPher-
son et al., 1995) such as 26Al (half-life time is 0.73 Ma) and 60Fe (half-life time is
1.5 Ma), (ii) impact heating by accreted planetesimals (Davies, 1985; Melosh,
1990), (iii) impact associated gravitational unloading (Asphaug et al., 2006) and
(iv) adiabatic heating caused by growing pressure in the planetary interior. The
planet is heterogeneous and composed of a silicate matrix and randomly dis-
tributed iron diapirs with radii varying from 50 to 100 km. Using a variable-sized
diapir is related to the fact that the size distribution of the planetesimals and plane-
tary embryos after runaway growth and the formation of Mars-sized bodies should
be heterogeneous (Melosh, 1990; Tonks and Melosh, 1992; Stevenson, 2008). As
in the previous example, we also apply a coupled petrological-thermomechanical
approach for modelling density and thermal properties of the silicate matrix, which
is assumed to have pyrolitic composition (Fig. 17.10). The rheology of silicate
corresponds to dry olivine (Table 17.1) with an activation volume of 10 cm3. Con-
stant density (10000 kg/m3) and lowered viscosity (1020 Pa s) are used for the
metal.

Viscosity of the weak mass less-like medium (1 kg/m3) surrounding the planet
is also taken to be 1020 Pa s, which is 2–5 order of magnitude lower than that
of silicate at the planetary surface. This is sufficient to provide free surface like
condition (Schmeling et al., 2008; Lin et al., 2009). Lower viscosity will require
shorter time steps which is inconvenient. Feedback from shear heating caused
by gravitational energy release is also taken into account since this process may
strongly affect temperature distribution inside the differentiating planet (Gerya and
Yuen, 2007; Golabek et al., 2008a).

Figure 17.14 shows several stages of the core formation computed with the code
Core_formation.m associated with this chapter. Model development corresponds
to so called ‘decomposition mode’ (Golabek et al., 2008a) which is defined by



Fig. 17.14 Development of the compositional (left column) and temperature (right
column) fields in the numerical experiment on core formation computed with
the code Core_formation.m associated with this chapter. Model resolution is
101 × 101 nodal points with 160 000 randomly distributed markers.
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choosing a relatively large activation volume (10 cm3) and plastic strength (no
Peierls plasticity limit is imposed) of the silicate matrix that effectively makes the
pressurised planetary interior rheologically stronger than the outer shell. Therefore,
in this model, the iron diapirs near the surface are activated foremost (Fig. 17.14,
0.03 Myr). Even the slightest asymmetries in the initial iron distribution lead to
an earlier initiation of diapir sinking in some distinct regions where significantly
larger temperatures develop due to shear heating processes. The diapir sinking
releases large amounts of energy. This leads to the activation of neighbouring
diapirs and finally to the formation of large iron ponds. The underlying material
of the planetary interior is too strong to be deformed by stresses arising from the
available iron agglomerations. Therefore, all iron diapirs in the outer region of
the planet will be finally activated. This leads to a global temperature rise in the
upper layers of the planet (Fig. 17.14, 1.4 Myr). Consequently, a low-viscosity
shell, basically analogous to a magma ocean, is formed around the remaining
highly viscous central region. The iron ponds on top of this high-viscosity sphere
finally coalescence and form an iron-rich ring around the central region (Fig.
17.14, 1.4 Myr), as was suggested by Stevenson (1981) and Ida et al. (1987).
Temperature and density dis-equilibrium around the ring leads to the degree-one
instability (e.g. Ida et al., 1987) resulting in the formation of advective streams
of the iron-rich material around the central region. Asymmetry of these flows
causes and sustains the rotation of the central sphere and the resulting shear heat-
ing aids in further decomposition (Fig. 17.14, 2.9 Myr). Iron accumulating on
the one side of the planet pushes the stiff, non-differentiated planetary interior
(including the passive iron diapirs) out of the central region creating a noticeable
asymmetry in the planet (Fig. 17.14, 2.9 Myr). A similar scenario was proposed
by Elsasser (1963) and modelled numerically in a simplified way (Honda et al.,
1993; Lin et al., 2009), but under the assumption of a cold central region. This
translation favours the decompression-related decomposition of the ‘exhuming’
interiors when the material approaches shallower depths. Decompression causes
(via activation volume) a viscosity reduction in the regions of the translated cen-
tral sphere closer to the planet’s surface. The silicates released at the leading
side, rise due to their low density as Rayleigh–Taylor instabilities upwards into
the high-temperature zone (Fig. 17.14, 2.9 Myr). This causes further iron release
and makes the process of interior ‘decomposition’ self-sustaining, which finally
results in the formation of an iron core (Fig. 17.14, 15.3 Myr). Obviously, this
scenario is non-unique and several others core formation modes may develop
instead, depending on variations in planetary size, temperature structure and
material properties, and particularly the effective silicate rheology (Golabek et al.,
2008a).
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Programming exercise and homework

Exercise 17.1
Program a model for extension of a continental lithosphere based on the provided
oceanic lithosphere extension model (Fig. 17.4). Take the initial compositional and
thermal structure of the continental lithosphere to be the same as in the continental
collision example (Fig. 17.5(a)). Use the codes Extension.m and Collision.m
associated with this chapter. Alternatively, you may also want to program a similar
model using a uniform grid resolution by using your own visco-elasto-plastic codes
created during exercises for Chapter 13.
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Theory: Where are we now? Where to go further? Current and future
directions of numerical geodynamic modelling development: 3D, MPI,
OpenMP, PETSc, AMR, FEM, FVM, GPU/Cell-based computing,
interactive computing, realistic physics, visualisation challenges etc.
Exercises: No more exercises and no more homework!

Where are we now?

Where are we after reading 17 chapters + Introduction and performing (all?)
analytical and programming exercises and homework? We are still only at the very
beginning of the wonderful, rapidly developing, world of numerical geodynamic
modelling. The method we learned is based on a finite-difference method and
marker-in-cell techniques (FDM+MIC). Although this holds for many geodynamic
situations (‘all in one’ tool, Gerya and Yuen, 2007), its universality is not absolute
and other approaches may be better suited for some numerical problems. The
examples provided in this book are written in a very explicit way, with the purpose
of facilitating learning and understanding, rather than to produce massive and fast
numerical results. The resolution of the numerical examples is also moderate so
that corresponding experiments can be completed in a reasonable amount of time
(several seconds to several days) on an ordinary laptop which is, by the way, not
exactly the main tool of geodynamic modellers (apart from, sometimes, for code
developments and testing, for looking at results computed on big machines and for
writing papers and books like this one . . . ). Once again, we are at the beginning
and if we want to go further, it is worth reading the following.

Where to go further?

Not only modellers ask this question. Recently, ten research questions shap-
ing twenty-first-century Earth Science were identified by the US National

307
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Research Council of the National Academy of Sciences (DePaolo et al., 2008,
www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=12161).

They are cited below

(1) ‘How did Earth and other planets form? While scientists generally agree that this
solar system’s sun and planets came from the same nebular cloud, they do not know
enough about how Earth obtained its chemical composition to understand its evo-
lution or why the other planets are different from each other. Although credible
models of planet formation now exist, further measurements of solar system bodies
and extrasolar objects could offer insight in the origin of the Earth and the solar
system.’

(2) ‘What happened during Earth’s “dark age” (the first 500 million years)? Scientists
believe that another planet collided with Earth during the late stages of its formation,
creating debris that became the moon and causing Earth to melt down to its core.
This period is critical to understanding planetary evolution, especially how the Earth
developed its atmosphere and oceans, but scientists have little information because
few rocks from this age are preserved.’

(3) ‘How did life begin? The origin of life is one of the most intriguing, difficult, and
enduring questions in science. The only remaining evidence of where, when, and in
what form life first appeared springs from geological investigations of rocks and
minerals. To help answer the question, scientists are also turning toward Mars, where
the sedimentary record of early planetary history predates the oldest Earth rocks, and
other star systems with planets.’

(4) ‘How does Earth’s interior work, and how does it affect the surface? Scientists
know that the mantle and core are in constant convective motion. Core convection
produces the Earth’s magnetic field, which may influence surface conditions, and
mantle convection causes volcanism, seafloor generation, and mountain building.
However, scientists can neither precisely describe these motions, nor calculate how
they were different in the past, hindering scientific understanding of the past and
prediction of Earth’s future surface environment.’

(5) ‘Why does Earth have plate tectonics and continents? Although plate tectonics theory
is well established, scientists wonder why Earth has plate tectonics and how closely it
is related to other aspects of Earth, such as the abundance of water and the existence of
the continents, oceans, and life. Moreover, scientists still do not know when continents
first formed, how they remained preserved for billions of years, or how they are likely
to evolve in the future. These are especially important questions as weathering of the
continental crust plays a role in regulating Earth’s climate.’

(6) ‘How are Earth processes controlled by material properties? Scientists now recognise
that macroscale behaviors, such as plate tectonics and mantle convection, arise from
microscale properties of Earth materials, including the smallest details of their atomic
structures. Understanding materials at the microscale is essential to comprehend the
Earth’s history and making reasonable predictions about how planetary processes
may change in the future.’
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(7) ‘What causes climate to change – and how much can it change? Earth’s surface
temperature has remained within a relatively narrow range for most of the last
4 billion years, but how does it stay well-regulated in the long run, even though
it can change so abruptly? Study of Earth’s climate extremes through history – when
climate was extremely cold or hot or changed quickly – may lead to improved climate
models that could enable scientists to predict the magnitude and consequences of
climate change.’

(8) ‘How has life shaped Earth – and how has Earth shaped life? The exact ways in which
geology and biology influence each other are still elusive. Scientists are interested in
life’s role in oxygenating the atmosphere and reshaping the surface through weath-
ering and erosion. They also seek to understand how geological events caused mass
extinctions and influenced the course of evolution.’

(9) ‘Can earthquakes, volcanic eruptions, and their consequences be predicted? Progress
has been made in estimating the probability of future earthquakes, but scientists
may never be able to predict the exact time and place an earthquake will strike.
Nevertheless, they continue to decipher how fault ruptures start and stop and how much
shaking can be expected near large earthquakes. For volcanic eruptions, geologists
are moving toward predictive capabilities, but face the challenge of developing a clear
picture of the movement of magma, from its sources in the upper mantle, through
Earth’s crust, to the surface where it erupts.’

(10) ‘How do fluid flow and transport affect the human environment? Good management
of natural resources and the environment requires knowledge of the behavior of
fluids, both below ground and at the surface, and scientists ultimately want to produce
mathematical models that can predict the performance of these natural systems. Yet, it
remains difficult to determine how subsurface fluids are distributed in heterogeneous
rock and soil formations, how fast they flow, how effectively they transport dissolved
and suspended materials, and how they are affected by chemical and thermal exchange
with the host formations.’

A remarkable fact is that seven (!) of these questions (1, 2, 4, 5, 6, 9 and 10) are
directly related to the topics addressed by numerical geodynamic modelling and
finding answers to those questions is likely to depend on the future efforts of mod-
ellers. This will keep us all busy for a while! The general ideas for future technical
and conceptual advances in numerical geodynamic modelling are therefore quite
clear: (i) fast computing of high-resolution 3D numerical problems with complex
and realistic physics applicable to nature, and (ii) obtaining a rigorous under-
standing of geodynamic and planetary processes and the key physical parameters
controlling them. This means that modellers have to concentrate on both (i) develop-
ing efficient, fast, realistic, high-resolution thermomechanical numerical 3D codes
that will become routine tools for geodynamicists and (ii) integrating results of
numerical models with natural observations and producing comprehensive testable
predictions in related fields.
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Fig. Outlook.1 High-resolution, multiple-scale visualisation of mechanical stir-
ring structures related to development of a partially molten mantle wedge plume
(Gorczyk et al., 2006; 2007b) which spreads underneath the cold and stiff mantle
lithosphere of the overriding plate (see Fig. 17.3 for evolving thermal structure of
such plate). 40 billion elements (pixels) data set with spatial resolution of around
2 m is based on compressed output from the 2D numerical experiment with 10 bil-
lion markers. Each pixel of the original size figure (top left frame) can be resolved
as a full-size picture (bottom right frame). The experiment was computed with
the use of an OpenMP-based parallelisation on the shared memory supercomputer
COBALT at NCSA-Illinois.

How big are ‘big numerical problems’? At the moment, close to a billion nodal
points (e.g. Cohen et al., 2005; Tackley, 2008; Krotkiewski et al., 2008) i.e. close
to 10003 = 1000 × 1000 × 1000 nodal points which is 8500 times larger com-
pared to the 493 = 49 × 49 × 49 that we solved with multigrid in 3D in Chapter
15 (Figs. 15.11, 15.12). Also, tens of billions of markers are explored (Gorczyk
et al., 2007b) in some models (Fig. Outlook.1) which is also several thousand
times bigger than the 750 thousand markers explored in our largest experiment,
the retreating subduction in Chapter 17 (Figs. 17.2, 17.3). Handling huge models
is not a trivial task. Difficulties, as usual, do not come from the hardware side,
i.e. from limited availability of corresponding ‘big machines’ with terabytes (i.e.
thousands of gigabytes) of memory – they exist and getting access to them is suf-
ficiently uncomplicated. In addition, recent hardware development trends involve
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using highly efficient, low-cost GPU/Cell-based multiprocessor units, which will
greatly expand computational capabilities in the future. The key difficulties are
(i) to efficiently parallelise computations (i.e. use in parallel many processors
for the same numerical experiment) and (ii) to program efficient procedures for
compressed data storage.

For example, the highest-resolution FDM+MIC simulations to date use 10 to
40 billion markers (Fig. Outlook.1). This output from these extremely high res-
olution simulations result in an uncompressed output file sizes of up to 840 GB
(or more) for each time step. Similar amounts of memory are required during the
runs as well, but a number of supercomputers such as BRUTUS at ETH-Zurich or
COBALT at NCSA-Illinois have ample memory for these large runs. Multiplied to
hundreds of time steps, which are typically needed to be stored for each experiment,
and to tens of experiments typically needed for every studied numerical problem,
implies that enormous storage capabilities are required. If we do not care about data
compression, then supercomputers will spend 99% of their time for IO operations
(i.e. for writing results of our experiment on hard disks)! This is not exactly what
they are made for . . . The problem only appears from a certain resolution size and
we would perhaps even not guess about it before. Data compression should also be
sufficiently fast so that it does not take more then 10% of CPU time. Efficient and
fast data compression algorithms based, for example, on wavelets (e.g. Vasiliev
et al., 2004) allow the reduction of storage size by a factor of 100 to 1000 (e.g.
Gorczyk et al., 2007b) which brings us back to efficient computing and results
production.

Another data handling option is to perform fully interactive computing associ-
ated with no/little data storage (e.g. Damon et al., 2008). The idea behind it is
the following: multiprocessor hardware is currently so efficient that one can, in
principle, repeat almost any kind of numerical experiment within minutes or few
hours. If one spent this time looking on a screen showing progressing results of an
ongoing numerical experiment, and saving limited amount of characteristic frames
as image files, then the regular data storage is no longer needed. If you want to
learn something more about the same experiment you simply repeat it. Of course,
these two strategies of data handling may also be complementary.

Let us now go briefly through a list of things that, from a general perspective,
would be useful to read, think of, learn and implement in the future. This list is
obviously fragmentary, subjective and non exhaustive, but will provide some useful
hints triggering further thinking.

State-of-the-art overview

A good cross-section covering the current state of the art in numerical geodynamic
modelling (who is now doing what and with which numerical technique) can be
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retrieved from two recent special volumes of the Physics of the Earth and Planetary
Interiors attributed to computational Earth Sciences:
� Volume 163: Computational challenges in the Earth sciences, edited by David A. Yuen

and Huai Zhang in 2007.
� Volume 171: Recent advances in computational geodynamics: theory, numerics and

applications, edited by Boris J.P. Kaus, myself and Daniel W. Schmid in 2008.

Several comprehensive overviews on mantle convection modelling can be found in
� Treatise on Geophysics, Editor-in-Chief: Gerald Schubert, Volume 7: Mantle Dynamics,

edited by David Bercovici in 2007, Elsevier.
Information, about existing and forthcoming computational needs for solid Earth

sciences in general and for mantle convection in particular can be retrieved from the
report

� High-performance Computing Requirements for the Computational Solid Earth Sci-
ences, edited by Cohen and co-workers in 2005 (www.geo-prose.com/computational_
SES.html).

Efficient direct solvers

Implementation of efficient direct solvers (developed by mathematicians) to numer-
ical codes and tuning them for geodynamic modelling problems can significantly
(sometimes up to 100 times) speed up calculation in 2D and can even allow address-
ing 3D problems at sufficiently high resolution (e.g. Braun et al., 2008). Three such
direct solvers are currently used in geosciences:

1. WSMP (Watson Sparse Matrix Package, Gupta, 2000, www-users.cs.umn.edu/∼agupta/
wsmp.html).

2. MUMPS (MUltifrontal Massively Parallel sparse direct Solver, Amestoy et al., 2001,
http://graal.ens-lyon.fr/MUMPS/).

3. PARDISO (Schenk and Gärtner, 2004, 2006, www.pardiso-project.org/).

The PARDISO solver is, for example, currently implemented in the thermomechan-
ical 2D codes originally developed by Gerya and Yuen (2003a, 2007) and resulted
in a speedup of 30 times compared to a standard Gaussian solver (Chapter 3),
thereby allowing us to perform numerical experiments at high resolution of up
to 800 × 800 grid points on a single processor (which is 50 times more grid points
compared to our 101 × 101 grid in the core formation experiment of Fig. 17.13).
Similar performances can also be reached with the MATLAB-based finite element
code MILAMIN (Dabrowski, et al., 2008, http://milamin.org/): MILAMIN means
Million-A-Minute, i.e. one million equations are solved within one minute. This
corresponds to a resolution of approximately 600 × 600 nodal points in case of 2D
mechanical code.
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Parallelisation of numerical codes

Efficient, high-resolution 2D and 3D modelling require the parallelisation of
numerical codes. This allows them to use many processors at the same time,
which proportionally speeds up numerical calculations (as long as parallelisation
is efficiently implemented, see e.g. Tackley, 2008). Individual processors need to
exchange information during the calculations and their activity is not fully indepen-
dent and should be thoroughly correlated. This makes parallelisation a non-trivial
programming task. There are several ways for code parallelisation using open
source libraries such as MPI, OpenMP and PETSc (for example).

MPI – the Message Passing Interface standard (e.g. www-unix.mcs.anl.gov/
mpi/, Karniadakis and Kirby, 2003). MPI is a library specification for message
passing which defines and enables a mechanism of data exchange between different
processors that are simultaneously used for the same numerical experiment. MPI
was designed for high performance on both massively parallel machines and on
workstation clusters. MPI works with both distributed memory (different parts of
memory can be accessed by different processors) and shared memory (the entire
memory can be directly accessed by each processor). Programming MPI requires
a significant effort to begin but the resulting codes are very efficient.

OpenMP – Open Multi-Processing (e.g., http://openmp.org/wp/, Chapman et al.,
2007). The OpenMP Application Program Interface (API) supports multi-platform
shared-memory parallel programming in C/C++ and Fortran on all architectures,
including Unix platforms and Windows NT platforms. OpenMP is easy to learn and
implement in numerical codes (typically one only has to add few lines to parallelise
loops already present in their code) but its application is limited to shared memory
machines.

PETSc – Portable, Extensible Toolkit for Scientific Computation (e.g.
www.mcs.anl.gov/petsc/petsc-as/ and www.lifev.org/lifev/documentation/linsol/
PETScManual.pdf/). PETSc, pronounced PET-see (the S is silent), – is a suite
of data structures and routines for the scalable (parallel) solution of scientific appli-
cations modelled by partial differential equations. It employs the MPI standard for
all message-passing communication and is quite convenient to learn and to use for
programming parallel numerical codes (it is a bit similar to MATLAB, actually).

By the way, many available direct solvers already contain parallelisation which
makes them even more attractive to employ in our codes.

Mesh refinement algorithms

Mesh refinement is a very suitable option when various processes should be mod-
elled on different scales in the same numerical model (e.g. Fig. Outlook.1). In this
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case, the numerical grid should be preferably able to follow the regions where
high numerical resolution is needed. We already discussed simplified methods of
grid refinement (e.g. in the retreating subduction experiment), where we forced the
high-resolution part of our grid to follow the trench area (Fig. 17.2). Indeed, the
refinement ability of relatively simple meshes discussed in this book, made by inter-
sections of horizontal and vertical lines, is limited. Therefore, more sophisticated
approaches based on Adaptive Mesh Refinement (AMR) algorithms will be more
appropriate for resolving many areas of complicated geometry present in the same
model (e.g. Albers et al., 2000; Braun et al., 2008). These methods can be based on
either finite differences (e.g. Albers et al., 2000) or on finite elements (e.g. Braun
et al., 2008) and require significant work to properly derive a discrete formulation
of the governing equations which is conservative, especially in the areas where res-
olution changes. The finite element methods (FEM) (e.g., Zienkiewicz et al., 2005)
possess many advantages in this respect (e.g. Moresi et al., 2003, 2007), as they are
well suited to dealing with complex, irregular rectangular and triangular meshes
and give more accurate results in cases when sharp curved material interfaces need
to be followed in numerical models (e.g., Deubelbeiss and Kaus, 2008; Popov and
Sobolev, 2008).

An additional method of choice for unstructured meshes is the finite-volume
method (FVM) (Toro, 1999; LeVeque, 2002). Like the finite-difference method,
FVM values are calculated at discrete nodes. ‘Finite volume’ refers to the small
volume surrounding each node (e.g. to a cell surrounding central pressure node in
the staggered grid (e.g., Fig. 15.1). In FVM, volume integrals in a partial differential
equation that contain a divergence term are converted to surface integrals, using the
divergence theorem. These terms are then evaluated as fluxes at the surfaces of each
finite volume. Since the flux entering a given volume is identical to that leaving
the adjacent volume, these methods are conservative. In fact, the conservative
finite differences discussed in Chapters 7 and 10 are equivalent to applying a finite
volume method on the relatively simple rectangular grids used in this book.

In the case of various marker-in-cell approaches, which are very common in
geodynamic modelling, refinement may (or even should) also be applied to the
unstructured grid of markers by using marker splitting and merging procedures
(Moresi et al., 2003).

Including complex realistic physics in numerical geodynamic models

In terms of involving more realistic and complicated physics in modelling, the
current and future trends are quite obvious from the ‘top ten’ questions listed
above:
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(1) Using more realistic physical properties of rocks. Complicated visco-elasto-plastic
rheologies including both diffusion and dislocation creep as well as Mohr–Coulomb,
Drucker–Prager and Peierls plasticity (Ranalli, 1995; Katayama and Karato, 2008;
Karato, 2008). Incorporating realistic rheology for partially molten rocks (see recent
review by Caricci et al., 2007). Use of compressible time-dependent forms of the
continuity equation (Tackley, 2008; Gerya and Yuen, 2007)

(2) Accounting for phase transformations (including melting). Incorporating both volu-
metric and thermal effects of various phase transitions in numerical models (Gerya
et al., 2004c, 2006; Tackley, 2008). Adding kinetics of phase transitions.

(3) Address fluid and melt migration in deforming rocks. Programming coupled approaches
for modelling fluid/melts generation and transport in actively deforming systems asso-
ciated with many geodynamic processes in the crust and mantle (e.g. Connolly and
Podladchikov, 1998; Schmeling, 2000; Katz, 2008).

(4) Accounting for geochemical processes in geodynamic models. Including modelling
of geochemical processes (e.g. Sobolev et al., 2005) in thermomechanical exper-
iments (e.g. Xie and Tackley, 2004a,b). Using realistic models including fluid
and melt related transport of trace elements in various geodynamic and planetary
environments.

(5) Coupling of modelling of deep geodynamic processes with the Earth’s surface devel-
opment simulations (e.g., Kooi and Beaumont, 1994; Willett, 1999; Cloetingh et al.,
2007; Braun et al., 2008; Kaus et al., 2008b).

(6) Realistic numerical modelling of magmatic processes. Coupling of modelling of
magma conduit physics and volcanic processes (e.g. Melnik and Sparks, 1999;
Melnik, 2000; Papale, 1999, 2001) with magma generation and ascent (e.g. Schmelling,
2000; Katz, 2008), intrusion emplacement (e.g. Burov et al., 2003, Gerya and Burg
2007; Burg et al., 2009; also see Fig. 17.9), magma chamber dynamics (e.g. Old-
enburg et al., 1990; Bagdassarov and Fradkov, 1993; Spera et al., 1995; Simakin
and Botcharnikov; 2001; Bergantz, 2000; Longo et al., 2006; Ruprecht et al., 2008)
and related hydrothermal processes (e.g., Driesner et al., 2006; Driesner and Geiger,
2007).

(7) Coupling of long-term and short-term poro-visco-elasto-plastic deformation processes.
Developing numerical approaches for relating long-term geodynamic processes with
faulting dynamics, fluid flows, rapture processes and seismicity (e.g., Miller et al., 2004;
Faccenda et al., 2008a; Frehner et al., 2008; Pergler and Matyska, 2008; Regenauer-
Lieb and Yuen, 2008; Ben-Zion, 2008).

(8) Realistic modelling of the Earth formation processes: accretion, core formation, magma
ocean development, onset of mantle convection. One of the numerical challenges
is in coupling of planetary accretion (typically addressed with N-body simulations,
e.g. Chambers and Wetherill, 1998; Chambers, 2001), giant impacts (modelled with
hydrodynamic codes, e.g. Benz et al., 1986; Canup and Asphaug, 2001; Canup, 2004;
Wada et al., 2006; Melosh, 2008, and analytical models, e.g. Senshu et al., 2002) and
core formation processes (addressed with continuum mechanics approaches, Honda
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Fig. Outlook.2 Results of a preliminary numerical experiment (Gerya and Yuen,
2007) of a planetary accretion process associated with large impacts of meteorites
(planetesimals) moving at relatively small speeds. The experiment is performed
for a self-gravitating Mars-sized body with the use of a newly developed version
of the visco-elasto-plastic code I2ELVIS (similar to the one we explored for
core formation modelling in Chapter 17) which also takes inertial terms in the
momentum equations into account (Chapter 5). The accretion process lasts for
about one hour and is associated with large amount of ejects, large elastic waves
propagating along the planetary surface and elasto-plastic deformation of the
interior. Non compositional layering in the outer shell of the planet is used for
visualising deformation. The grid resolution of the model is 161 × 161 nodes,
640 000 randomly distributed markers. The experiment was computed on the
shared-distributed memory supercomputer BRUTUS at ETH-Zurich.
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Fig. Outlook.3 Different 3D projections of thermal-chemical plumes
(Fig. Outlook 1) growing atop of the subducting slab. The numerical
model corresponds to a spontaneous retreating oceanic subduction (Fig. 17.2,
17.3) and explores the effects of mantle wedge hydration and melting in 3D
(Zhu et al., 2009). The temperature iso-surface of 1350 K is shown. Note that
rising plumes are colder than the mantle wedge and move upward due to their
compositional buoyancy (Gerya and Yuen, 2003b). Numerical experiments are
performed with the code I3ELVIS (Gerya and Yuen, 2007) based on multigrid
method (Chapters 14, 15) at the resolution 405 × 101 × 101 nodes with 50 million
markers. The experiment was computed on the shared-distributed memory
supercomputer BRUTUS at ETH-Zurich.

et al., 1994; Golabek et al., 2008a, b; Samuel and Tackley, 2008; Lin et al., 2009; Ricard
et al., 2009; also see Fig. 17.14). A possible numerical solution of this challenging
problem may be based on a combination of various types of codes into one accretion-
impact-differentiation tool (Fig. Outlook.2).

3D visualisation challenges

As discussed in the introduction, modellers spend much, or even most of their
time on visualising and understanding numerical models. Since these models
are likely to become bigger and more complex in the future, the role of effi-
cient visualisation technologies will be growing. Visualisation of large numerical
models is a non-trivial task in 2D already (Rudolf et al., 2004; Gorczyk et al.,
2006) since the amount of graphical information exceeds the resolutions of even
the most powerful graphic screens by a factor of thousands (e.g. snapshots from
40 gigapixel database shown in Fig. Outlook.1). It is even more complicated with
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3D models (e.g. Damon et al., 2008; Kadlec et al., 2008; Chen et al., 2008)
because the structure even for a single field cannot be seen at once, and requires
processing of many views for proper understanding (Fig. Outlook.3, also see films
Cold_Plumes_1.mpeg and Cold_Plumes_2.mpeg associated with this chapter).
Future challenges in this respect are again quite obvious: geology-friendliness,
ultrahigh resolution, multiple-scales, multiple-fields, interactive visualisation etc.

Conceptual warning

Discussion on the forthcoming technical advances above may give the impression
that the only thing that we have to do is to write larger, more complex 3D codes
which run on parallel supercomputers and have efficient ways of visualising results
and compress the data. Obviously, this is only part of what needs to be done. More
important is that we obtain an in-depth physical understanding of the dynamics of
geological and planetary processes. This understanding should not only be based
on the ‘powerful numerics’, but also on using scaling laws based on simplified
theories and on comparison of predictions of such theories with the much more
complex numerical simulations and with nature. If we find consistency, we have
likely learned something essential, and we did not have to perform 235 simulations
to understand how nature works.

Conclusion

In conclusion: The future of numerical geodynamic modelling looks bright and
there is a lot of exciting work and challenging research to do. Just go on!

It was fun to write all this. Thank you for reading.
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MATLAB program examples
The following resources can be found here:

www.cambridge.org/gerya

Introduction

Program 1: Visualisation_is_important.m (Exercise Introduction.2) – visualisation of
‘sin’ and ‘cos’ functions with ‘plot’, ‘pcolor’, ‘contour’ and ‘surf’.

Chapter 1

Program 2: Divergence.m (Exercise 1.2) – computation and visualisation of velocity,
divergence of velocity and time derivatives of density with ‘pcolor’ and ‘quiver’.

Chapter 2

Program 3: Periclase_EOS.m (Exercise 2.2) – computation and visualisation of density,
thermal expansion and compressibility for periclase (MgO) using external Gibbs free
energy function G_periclase.m.

Program 4: Density_map.m (Exercise 2.3) – loading from data files (m895_ro, morn_ro)
and visualising density maps for pyrolite (m895_ro) and MORB (morn_ro) and
density difference between pyrolite and MORB.

Chapter 3

Program 5: Poisson1D.m (Exercise 3.1) – solution of 1D Poisson equation with finite
differences on a regular grid using direct solver ‘\’.

Program 6: Poisson2D_direct.m (Exercise 3.2) – solution of 2D Poisson equation with
finite differences on a regular grid using direct solver ‘\’.

Program 7: Poisson2D_Gauss_Seidel.m (Exercise 3.3) – solution of 2D Poisson equation
with finite differences on a regular grid using Gauss–Seidel iteration.

Program 8: Poisson2D_Jacobi.m (Exercise 3.4) – solution of 2D Poisson equation with
finite differences on a regular grid using Jacobi iteration.

Chapter 4

Program 9: Strain_rate.m (Exercise 4.2) – computation and visualisation of velocity
field, strain rate, deviatoric strain rate, and second strain rate invariant.

319



320 Appendix

Chapter 5

Program 10: Streamfunction2D.m (Exercise 5.2) – solution of 2D Stokes and continuity
equations with finite differences on a regular grid using stream function – vorticity
formulation for a medium with constant viscosity.

Chapter 6

Program 11: Viscosity_profile.m (Exercise 6.1) – computation and visualisation of
viscosity profile across the lithosphere.

Program 12: Viscosity_map.m (Exercise 6.2) – computation and visualisation of
viscosity map in temperature – log stress coordinates.

Program 13: Viscosity_comparison.m (Exercise 6.3) – computation and visualisation of
viscosity maps in temperature – log stress coordinates for a combination of
dislocation and diffusion creep; comparison of wet and dry olivine rheology.

Chapter 7

Program 14: Stokes_continuity_constant_viscosity.m (Exercise 7.1) – solution of 2D
Stokes and continuity equations with finite differences on a regular grid using
pressure–velocity formulation for a medium with constant viscosity.

Program 15: Stokes_continuity_variable_viscosity.m (Exercise 7.2) – solution of 2D
Stokes and continuity equations with finite differences on a regular grid using
pressure–velocity formulation for a medium with variable viscosity.

Chapter 8

Program 16: Upwind_1D.m (Exercise 8.1) – comparison of upwind, downwind and
central differences for 1D advection of a square density wave in a constant velocity
field.

Program 17: FCT_1D.m (Exercise 8.2) – using FCT algorithm for 1D advection of a
square density wave in a constant velocity field.

Program 18: Markers_1D.m (Exercise 8.2) – using marker-in-cell algorithm with regular
Eulerian grid for 1D advection of a square density wave in a constant velocity field.

Program 19: Markers_1Dirregular.m (Exercise 8.3) – using marker-in-cell algorithm
with irregular Eulerian grid for 1D advection of a square density wave in a variable
velocity field; using bisection algorithm.

Program 20: Stokes_Continuity_Markers.m (Exercise 8.4) – solution of 2D Stokes
continuity and advection equations with finite-differences and marker-in-cell
technique on a regular grid using pressure–velocity formulation for a medium with
variable viscosity; use of the first-order accurate in space and time marker advection
scheme.

Program 21: Stokes_Continuity_Markers_Runge_Kutta.m (Exercise 8.5) – solution of
2D Stokes continuity and advection equations with finite-differences and
marker-in-cell technique on a regular grid using pressure–velocity formulation for a
medium with variable viscosity; using of the fourth-order accurate in space
first-order accurate in time Runge–Kutta marker advection scheme.
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Chapter 9

Program 22: Shear_heating.m (Exercise 9.3) – solution of 2D Stokes and continuity
equations with finite differences on a regular grid using pressure–velocity
formulation for a medium with variable viscosity; computation and visualisation of
shear heating distribution.

Program 23: Shear_adiabatic_heating.m (Exercise 9.4) – solution of 2D Stokes and
continuity equations with finite differences on a regular grid using pressure–velocity
formulation for a medium with variable viscosity; computation and visualisation of
shear and adiabatic heating distribution.

Chapter 10

Program 24: Explicit_implicit_1D.m (Fig. 10.2) – solution of 1D temperature equation
on a regular grid for a non-moving medium with constant conductivity; comparison
of implicit and explicit method.

Program 25: Explicit_Implicit2D.m (Exercise 10.1) – solution of 2D temperature
equation on a regular grid for a non-moving medium with constant conductivity;
comparison of implicit and explicit method.

Program 26: Variable_conductivity.m (Exercise 10.2) – solution of 2D temperature
equation on a regular grid for a non-moving medium with variable conductivity;
comparison of implicit and explicit method.

Program 27: Conduction_advection2D.m (Exercise 10.3) – solution of 2D Eulerian
temperature equation with advective terms on a regular grid for a moving medium
with constant conductivity; use of upwind differences for advection of temperature;
comparison of implicit and explicit method.

Program 28: Variable_conductivity_advection2D.m (Exercise 10.3) – solution of 2D
Eulerian temperature equation with advective terms on a regular grid for a moving
medium with variable conductivity; use of upwind differences for advection of
temperature; comparison of implicit and explicit method.

Program 29: Variable_conductivity_markers2D.m (Exercise 10.4) – solution of 2D
Lagrangian temperature equation on a regular grid with implicit finite differences for
a moving medium with variable conductivity; use of marker-in-cell approach for
advection of temperature.

Chapter 11

Program 30: i2vis.m (Exercise 11.1) – 2D thermomechanical viscous code; solution of
2D Stokes, continuity, temperature and advection equations with finite-differences
and marker-in-cell technique on a regular grid using pressure–velocity formulation
for a deforming incompressible medium with variable viscosity and thermal
conductivity; taking into account radiogenic, shear and adiabatic heating.

Chapter 12

Program 31: Viscoelastic_stress.m (Exercise 12.2) – computation of visco-elastic stress
build-up/relaxation with time.

Program 32: Viscoelastoplastic_strain_rate.m (Exercise 12.3) – computation of
visco-elasto-plastic stress build-up and associated viscous, elastic and plastic strain
rate evolution with time.
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Program 33: Peierls_creep.m (Exercise 12.4) – computation and visualisation of
viscosity maps in temperature – log stress coordinates for a combination of
dislocation, diffusion and Peierls creep; comparison of wet and dry olivine rheology.

Chapter 13

Program 34: Viscoelastic2D.m (Exercise 13.1) – 2D thermomechanical visco-elastic
code; solution of 2D Stokes, continuity, temperature and advection equations with
finite-differences and marker-in-cell technique on a regular grid using
pressure–velocity formulation for a deforming incompressible medium with variable
viscosity, shear modulus and thermal conductivity; taking into account radiogenic,
shear and adiabatic heating.

Program 35: i2elvis.m (Exercise 13.2) – 2D thermomechanical visco-elasto-plastic code;
solution of 2D Stokes, continuity, temperature and advection equations with
finite-differences and marker-in-cell technique on a regular grid using
pressure–velocity formulation for a deforming incompressible medium with variable
viscosity, shear modulus, plastic strength and thermal conductivity; taking into
account radiogenic, shear and adiabatic heating.

Chapter 14

Program 36: Gauss_Seidel_iterations_Poisson.m (Figs. 14.1, 14.2) – solution of 2D
Poisson equation with Gauss–Seidel iteration.

Program 37: Poisson_Multigrid.m (Fig. 14.5) – solution of 2D Poisson equation with
multigrid based on V-cycle and external functions Poisson_smoother.m,
Poisson_restriction.m, Poisson_prolongation.m; resolution between multigrid levels
changes by factor of two.

Program 38: Poisson_Multigrid_planet_arbitrary.m – solution of 2D Poisson equation
for the case of a circular planetary body embedded in a mass-less like medium with
multigrid based on V-cycle and external functions Poisson_smoother_planet.m,
Poisson_restriction_planet.m, Poisson_prolongation_planet.m; resolution between
multigrid levels changes in an arbitrary way.

Program 39: Stokes_Continuity_Multigrid.m – solution of 2D Stokes and continuity
equations for a constant viscosity medium with multigrid based on V-cycle and
external functions Stokes_Continuity_smoother.m, Stokes_Continuity_
restriction.m, Stokes_Continuity_prolongation.m; resolution between multigrid
levels changes by factor of two.

Program 40: Variable_viscosity_MultiMultigrid_arbitrary.m (Fig. 14.13) – solution
of 2D Stokes and continuity equations for a variable viscosity medium with
multi-multigrid based on V-cycle and external functions Viscosity_restriction.m,
Stokes_Continuity_viscous_smoother.m.

Program 41: Poisson_Multigrid_planet.m (Exercise 14.1) – solution of 2D Poisson
equation for the case of a circular planetary body embedded in a mass less-like
medium with multigrid based on V-cycle and external functions Poisson_smoother_
planet.m, Poisson_restriction_planet.m, Poisson_prolongation_planet.m;
resolution between multigrid levels changes by factor of two.
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Program 42: Constant_Viscosity_Multigrid_ghost.m (Exercise 14.2, Fig. 14.10) –
solution of 2D Stokes and continuity equations for a constant viscosity medium with
multigrid based on V-cycle, ghost-node-based smoother Stokes_Continuity_
smoother_ghost.m and external functions Stokes_Continuity_restriction.m,
Stokes_Continuity_prolongation.m; resolution between multigrid levels changes by
factor of two.

Program 43: Variable_viscosity_Multigrid_arbitrary.m (Exercise 14.3, Fig 14.12) –
solution of 2D Stokes and continuity equations for a variable viscosity medium with
multigrid based on V-cycle and external functions Viscosity_restriction.m,
Stokes_Continuity_viscous_smoother.m, Stokes_Continuity_viscous_restriction.m,
Stokes_Continuity_prolongation.m; resolution between multigrid levels changes in
an arbitrary way.

Chapter 15

Program 44: Temperature3D_Gauss_Seidel.m (Exercise 15.1, Fig. 15.9) – solution of
3D temperature equation on a regular grid for a non-moving medium with variable
conductivity; the solution is based on Gauss–Seidel iteration with the use of external
function Temperature3D_smoother.m.

Program 45: Poisson3D_Multigrid_planet_arbitrary.m (Exercise 15.2, Fig. 15.10) –
solution of 3D Poisson equation for the case of a spherical planetary body
embedded in a mass-less like medium with multigrid based on V-cycle and external
functions Poisson3D_smoother_planet.m, Poisson3D_restriction_planet.m,
Poisson3D_prolongation_planet.m; resolution between multigrid levels changes in
an arbitrary way.

Program 46: Stokes_Continuity3D_Multigrid.m (Exercise 15.3, Fig. 15.11a) – solution
of 3D Stokes and continuity equations for a constant viscosity medium with multigrid
based on V-cycle and external functions Stokes_Continuity3D_smoother.m,
Stokes_Continuity3D_restriction.m, Stokes_Continuity3D_prolongation.m;
resolution between multigrid levels changes by factor of two.

Program 47: Variable_viscosity3D_Multigrid.m (Exercise 15.3, Fig. 15.11b) –
solution of 3D Stokes and continuity equations for a variable viscosity medium with
multigrid based on V-cycle and external functions Viscosity_restriction3D.m,
Stokes_Continuity3D_viscous_smoother.m, Stokes_Continuity3D_viscous_
restriction.m, Stokes_Continuity3D_prolongation.m; resolution between multigrid
levels changes by factor of two.

Program 48: Variable_viscosity3D_MultiMultigrid.m (Fig. 15.12) – solution of
3D Stokes and continuity equations for a variable viscosity medium with
multi-multigrid based on V-cycle and external functions Viscosity_restriction3D.m,
Stokes_Continuity3D_viscous_smoother.m, Stokes_Continuity3D_viscous_
restriction.m, Stokes_Continuity3D_prolongation.m; resolution between multigrid
levels changes by factor of two.

Chapter 16

Program 49: Variable_viscosity_Ramberg.m (Fig. 16.1) – mechanical benchmark for a
two-layer Rayleigh–Taylor problem; solution of 2D Stokes, continuity and advection
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equations with finite-differences and marker-in-cell technique using external
function Stokes_Continuity_solver_ghost.m.

Program 50: Variable_viscosity_block.m (Fig. 16.3, Exercise 16.1) – mechanical
benchmark for a falling square block; solution of 2D Stokes, continuity and
advection equations with finite-differences and marker-in-cell technique using
external function Stokes_Continuity_solver_ghost.m.

Program 51: Variable_viscosity_channel.m (Fig. 16.4) – mechanical benchmark for a
channel flow with a non-Newtonian rheology; solution of 2D Stokes, continuity and
advection equations with finite-differences and marker-in-cell technique using
external function Stokes_Continuity_solver_channel.m.

Program 52: Constant_viscosity_channel_T.m (Fig. 16.5) – thermomechanical
benchmark for a non-steady temperature distribution in a Newtonian channel;
solution of 2D Stokes, continuity, temperature and advection equations with
finite-differences and marker-in-cell technique using external functions
Stokes_Continuity_solver_channel.m, Temperature_solver.m.

Program 53: Variable_viscosity_Couette_T.m (Fig. 16.6) – thermomechanical
benchmark for a steady Couette flow with viscous heating and
temperature-dependent viscosity; solution of 2D Stokes, continuity, temperature and
advection equations with finite-differences and marker-in-cell technique using
external functions Stokes_Continuity_solver_Couette.m, Temperature_solver.m.

Program 54: Solid_Body_Rotation_T.m (Fig. 16.7) – thermal benchmark for advection
and diffusion of sharp temperature fronts in a prescribed rigid-body rotation velocity
field; solution of 2D temperature and advection equations with finite-differences and
marker-in-cell technique using external function Temperature_solver.m.

Program 55: Variable_conductivity_channel.m (Fig. 16.8) – thermomechanical
benchmark for a steady Newtonian channel flow with variable thermal conductivity;
solution of 2D Stokes, continuity, temperature and advection equations with
finite-differences and marker-in-cell technique using external functions
Stokes_Continuity_solver_Couette.m, Temperature_solver.m.

Program 56: Variable_viscosity_convection_irregular_grid.m (Figs. 16.9, 16.10) –
thermomechanical benchmark for thermal convection with constant and temperature-
and depth-dependent viscosity; solution of 2D Stokes, continuity, temperature and
advection equations with finite-differences and marker-in-cell technique on
regular/irregular grid using external functions Stokes_Continuity_solver_grid.m,
Temperature_solver_grid.m; nearly steady-state temperature distribution for 1a, 1c
and 2a cases can be loaded from data files data_1a_regular.txt, data_1c_regular.txt,
data_2a_regular.txt, data_1a_irregular.txt, data_1c_irregular.txt, data_
2a_irregular.txt.

Program 57: Stress_buildup.m (Fig. 16.11) – mechanical benchmark for stress build-up
in a visco-elastic incompressible Maxwell body; solution of 2D Stokes, continuity
and advection equations with finite-differences and marker-in-cell technique using
external function Stokes_Continuity_solver_grid.m.

Program 58: Slab_deformation.m (Fig. 16.12, Exercise 16.2) – mechanical benchmark
for recovery of the original shape of an elastic slab; solution of 2D Stokes, continuity
and advection equations with finite-differences and marker-in-cell technique using
external function Stokes_Continuity_solver_grid.m.

Program 59: Sandbox_shortening_ratio.m (Fig. 16.14) – mechanical
visco-elasto-plastic benchmark for numerical sandbox shortening experiment;
solution of 2D Stokes, continuity and advection equations with finite-differences and
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marker-in-cell technique using external function Stokes_Continuity_solver_
sandbox.m.

Chapter 17

Program 60: Subducting_slab_bending.m (Fig. 17.1) – thermomechanical
visco-elasto-plastic numerical model for spontaneous bending of subducting oceanic
slab; the model uses external functions Stokes_Continuity_solver_sandbox.m,
Temperature_solver_grid.m.

Program 61: Subduction.m (Figs. 17.2, 17.3) – thermomechanical visco-elasto-plastic
numerical model for spontaneous retreating oceanic subduction; the model uses
external functions Stokes_Continuity_solver_sandbox.m, Temperature_
solver_grid.m.

Program 62: Extension.m (Fig. 17.4) – thermomechanical visco-elasto-plastic numerical
model for oceanic lithosphere extension; the model uses external functions
Stokes_Continuity_solver_sandbox.m, Temperature_solver_grid.m.

Program 63: Collision.m (Figs. 17.5, 17.6) – thermomechanical visco-elasto-plastic
numerical model for post-subduction continental collision; the model accounts for
erosion/sedimentation processes and uses external functions
Stokes_Continuity_solver_sandbox.m, Temperature_solver_grid.m.

Program 64: Collision_and_breakoff.m (Fig. 17.7) – thermomechanical
visco-elasto-plastic numerical model for slab breakoff during continental collision;
the model accounts for erosion/sedimentation processes and uses external functions
Stokes_Continuity_solver_sandbox.m, Temperature_solver_grid.m.

Program 65: Intrusion_emplacement.m (Fig. 17.9) – thermomechanical
visco-elasto-plastic numerical model for trans-lithospheric mafic-ultramafic intrusion
emplacement into the crust; equilibrium melt fraction for different rocks is computed
with external function Melt_fraction.m; the model also accounts for
erosion/sedimentation processes and uses external functions
Stokes_Continuity_solver_sandbox.m, Temperature_solver_grid.m.

Program 66: Mantle_convection.m (Fig. 17.12, 17.13) – thermomechanical
visco-elasto-plastic numerical model for mantle convection with phase changes; the
phase changes are treated based on Gibbs free energy minimisation approach with
pre-computed density and enthalpy maps in P–T space; these maps are loaded with
external function loading_database.m from data files m895_ro, m895_hh, morn_ro,
morn_hh; pre-computed non-steady temperature distribution can be loaded from
data file convection.txt; the model also uses external functions
Stokes_Continuity_solver_sandbox.m, Temperature_solver_grid.m.

Program 67: Core_formation.m (Fig. 17.14) – thermomechanical visco-elasto-plastic
numerical model for the deformation of a self-gravitating iron–silicate planetary
body; gravity field is computed with external function Poisson_solver_
planet_grid.m; phase changes in the silicate component are treated based on Gibbs
free energy minimization approach with pre-computed density and enthalpy maps in
P–T space; these maps are loaded with external function loading_database.m from
data files m895_ro, m895_hh, morn_ro, morn_hh; the model also uses external
functions Stokes_Continuity_solver_sandbox.m, Temperature_solver_grid.m.
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pour l’étude des déformations lithosphériques (exemple: la collision Himalayenne),
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retreating subduction 275
rheology 73

rheological parameters 74
rift flanks 282
rifting 279
rigid body rotation 58, 59, 60, 168, 289
rotation rate 171, 189
rotation rate tensor 171
Runge–Kutta advection scheme (Runge–Kutta

integration scheme) 114, 121, 151, 253
rupture processes 315

sandbox experiments 263
sawtooth-cycle 199
second strain rate invariant 59, 74
second stress invariant 56, 74, 176
sedimentary basin 279
sedimentation 282
sedimentation rate 282, 283
seismic tomography 287
seismicity 315
self-gravitating body 158–61, 203, 230, 301

shear 53
shear bands (shear zones) 192
shear heating (shear heat production) 127, 132, 156,

188, 250, 303
shear heating term 151
shear modulus (rigidity) 167
shear strain 56
shear strain component 57
shear strain rate component 59
shear stress 55
shear stress component 53
shear viscosity 65
shear zones (shear bands) 191, 263

simple shear 77
slab 271

slab bending 271, 277, 286
slab breakoff (slab detachment) 287
slab pull 286, 288

smoother 200
smoothing operation 197
solid solutions 297
solid-state creep 73
solidus 295
sparse matrix 43
spectral methods 37
spherical-Cartesian approach 161, 203, 301
spinel–perovskite transition 297
spreading centre 282
staggered grid 83, 85, 151, 153, 206
steady-state 128

steady-state convection 258
steady-state temperature distribution 250, 255
steady-state temperature equation 128–9
steady-state temperature profile 130

stencil 87
sticky water/air layer 283
Stokes equation 66, 205
strain 56

strain rate 58
strain rate tensor 58
strain tensor 56

stream function 70, 71
stress 51

stress convention 52
stress exponent 74
stress rotation 168–70, 173, 189, 236
stress tensor 53

subduction 6, 267, 274
subducting slab 271
subduction channel 277
subduction initiation 285
subduction zone 284

subgrid 143
subgrid diffusion 148, 253
subgrid diffusion operation 143, 158
subgrid oscillations 144, 158, 186
subgrid stress relaxation operation 186–8

supercomputers 311

tectonic mélange 277
temperature 3, 123



Index 345

temperature front 253
temperature wave 253
temperature-dependent rheology

(temperature-dependent viscosity) 250, 253, 256,
300

temperature-dependent thermal conductivity 253
tensor 51
thermal 4, 5

thermal boundary conditions 144–6, 153
thermal conductivity 123, 138
thermal convection 255, 267
thermal diffusivity 128, 138
thermal expansion 26, 27, 257
thermal relaxation of the slab 288

thermal-chemical plumes 292, 317
thermochemical convection 267
thermodynamic database 28, 29
thermodynamic equilibrium 29
thermomechanical 4, 149

thermomechanical code 149, 150–2, 163, 180
thermomechanical necking 288

time increment 16
topography 277, 279, 282, 286

topography diffusion coefficient 283
trace elements 315
tracers 113
trans-lithospheric diapirism 296
transport 21

transport coefficients 196
transport equation 283
transport properties 149, 150

trench 271, 277
Treska plasticity 175
triangular grid 83
trilinear interpolation scheme 230

ultrahigh-pressure rocks 286
unstructured grid (unstructured mesh) 200
upwind differences 106, 119, 140

variable viscosity multigrid solver 212
V-cycle 199, 217
velocity vector 58
visco-elastic 172

visco-elastic iterations 190
visco-elastic medium 260
visco-elastic stress build-up/relaxation 177, 178,

260
visco-elasticity factor 179

visco-elasto-plastic 175
visco-elasto-plastic constitutive relationship 179
visco-elasto-plastic iterations 189–91
visco-elasto-plastic rheology 165, 175–7, 274, 315
visco-elasto-plastic slab 271

visco-plastic 190
visco-plastic model 190
visco-plastic necking 282

viscosity 64
viscosity contrast 183
viscosity map 80
viscosity-like parameter 179

viscous 6, 73
viscous breakoff 288
viscous constitutive relationship 65
viscous deformation 296
viscous heating (viscous dissipation) 250
viscous strain rate 172, 176, 178

visualisation 317–18
volcanic eruptions 309
volcanic processes 315
volume flux 15
volumetric strain (cubical dilatation) 167
Von-Mises plasticity 175
vorticity 71
vorticity formulation 71

W-cycle 199
weak layer approach 162, 265, 275
Winkler’s basement condition 93
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