
The Gopher Times
________________________________________________________________________

Opus 6 - Gopher news and more - Oct. 2022

________________________________________________________________________

tgtimesSentient Regex
________________________________________________________________________

Can there be a sed one-liner that im-

plements Artificial Intelligence? De-

pending on how you define Artificial

Intelligence, it may!

sed -r ’s/Is ([^y]*)?/Absolutely, (1)./
s/Is (.*y.*)?/I do not think that (1)./’

How does it work for you? How

more accurate than this is machine

learning going to become to answer

our existential questions?

katolazfold, fmt, par: get your text in order
________________________________________________________________________

If you happen to read plain text files

(e.g., phlog posts), you have probably

noticed that, especially on gopher, the

lines of a text file tend to be wrapped

all to a similar length. Some authors

are very strict on the matter, and like

all the lines to be "justified" (i.e., all

adjusted to have exactly the same

length, by inserting a few spaces to

get the count right). Some other au-

thors (including myself) just do not

allow any line to be longer than a cer-

tain amount of characters (in this

case, as you might have noticed, the

magic number is 72). But how to they

manage to do that?

Most common editors have a com-

mand to format a paragraph (’M-q’ in

Emacs, ’gwip’ or ’{gq}’ in vim nor-

mal mode, etc.). But obviously, there

are several Unix tools that can help

you getting the right formatting for

your files. We are talking of fold(1),

fmt(1), and par(1), so keep reading if

you want to know more.

The oldest one is probably fold(1)

(and it is also the only one to be de-

fined in the POSIX standard...). It

will just break each line to make it fit

a given length in characters (by de-

fault, 72, which is indeed a magic

number). Let’s see how to wrap the

lines of this post at 54 characters:



________________________________________________________________________

$ fold -w 54 20190213_fold.txt | head -10
fold, fmt, par: get your text in order

============================================
If you happen to read plain text files (e.g., phlog po
sts), you have
probably noticed that, especially on gopher, the lines
of a text file
tend to be wrapped all to a similar length. Some autho
rs are very strict
on the matter, and like all the lines to be "justified
$

________________________________________________________________________

Notice that fold(1) did not really

think twice before breaking "posts" or

"authors" across two lines. This is

pretty inconvenient, to say the least.

You can actually force fold(1) to

break stuff at blank spaces, using the

’-s’ option:

________________________________________________________________________

$ fold -w 54 -s 20190213_fold.txt |head -10
fold, fmt, par: get your text in order

============================================

If you happen to read plain text files (e.g., phlog
posts), you have
probably noticed that, especially on gopher, the
lines of a text file
tend to be wrapped all to a similar length. Some
authors are very strict
on the matter, and like all the lines to be
$

________________________________________________________________________

Nevertheless, the output of fold(1) is

still quite off: it breaks lines at

spaces, but it does not "join" broken

lines to have a more consistent for-

matting. This is where fmt(1) jumps

in:

________________________________________________________________________

$ fmt -w 54 20190213_fold.txt |head -10
fold, fmt, par: get your text in order

============================================

If you happen to read plain text files (e.g., phlog
posts), you have probably noticed that, especially on
gopher, the lines of a text file tend to be wrapped
all to a similar length. Some authors are very strict
on the matter, and like all the lines to be
"justified" (i.e., all adjusted to have exactly the
same length, by inserting a few spaces to get the
$

________________________________________________________________________

Now we are talking: fmt(1) seems to

be able to to "the right thing" without

much effort, and it has a few other in-

teresting options as well. Just have a

look at the manpage. Simple and

clear.

Last but not least, par(1) can do what-

ever fmt(1) and fold(1) can do, plus

much, much more. For instance:



________________________________________________________________________

$ par 54 < 20190213_fold.txt | head -10
fold, fmt, par: get your text in order

============================================

If you happen to read plain text files (e.g., phlog
posts), you have probably noticed that, especially on
gopher, the lines of a text file tend to be wrapped
all to a similar length. Some authors are very
strict on the matter, and like all the lines to be
"justified" (i.e., all adjusted to have exactly the
same length, by inserting a few spaces to get the
$

________________________________________________________________________

will give more or less the same output as fmt(1). But:

________________________________________________________________________

$ par 54j < 20190213_fold.txt | head -10
fold, fmt, par: get your text in order

============================================

If you happen to read plain text files (e.g., phlog
posts), you have probably noticed that, especially on
gopher, the lines of a text file tend to be wrapped
all to a similar length. Some authors are very
strict on the matter, and like all the lines to be
"justified" (i.e., all adjusted to have exactly the
same length, by inserting a few spaces to get the
$

________________________________________________________________________

will additionally "justify" your lines to the prescribed width, while: something

like:

________________________________________________________________________

$ head file.h
*
* include/linux/memory.h - generic memory definition
*
* This is mainly for topological representation. We define the
* basic "struct memory_block" here, which can be embedded in per-arch
* definitions or NUMA information.
*
* Basic handling of the devices is done in drivers/base/memory.c
* and system devices are handled in drivers/base/sys.c.
*
$

________________________________________________________________________

can be easily transformed into:

________________________________________________________________________

$ par 40j < file.h
*
* include/linux/memory.h - generic
*memory definition
*
* This is mainly for topological
* representation. We define the basic
* "struct memory_block" here, which can
* be embedded in per-arch definitions
* or NUMA information.
*



* Basic handling of the devices is
* done in drivers/base/memory.c and
* system devices are handled in
* drivers/base/sys.c.
*
* Memory block are exported via
* sysfs in the class/memory/devices/
* directory.
*
*
$

________________________________________________________________________

Pretty neat, right?

To be honest, par is not the typical

example of a unix tool that "does ex-

actly one thing", but it certainly "does

it very well" all the things it does.

The author of par(1) felt the need to

apologise in the manpage about the

style of his code and documentation,

but I still think par(1) is an awesome

tool nevertheless.

fold(1) appeared in BSD1 (1978-

1979)

fmt(1) appeared in BSD1 (1978-

1979)

par(1) was developed by Adam Cos-

tello in 1993, as a replacement for

fmt(1).

tgtimesGNU tar(1) extraction is quadratic
________________________________________________________________________

When implementing something from

the ground, it gets possible to build-

up a simple home-baked file format

or protocol looking perfect without

any cruft and legacy. Easy to imple-

ment, fast to adopt, supporting every-

thing you need from it, and not much

more... Likely an alternative to a

huge elephant in the room: the current

standard in place used by everyone,

huge, with many extensions with

many use-cases...

Why bother, then, with implementing

the huge and difficult file format or

protocol? Maybe because it would be

used by many software, and writing

data in this slightly more bloated for-

mat would help making it compatible

with all the software that already sup-

port it.

In this compromise, a limit can be

drawn, across which the big and

bloated format or protocol is dropped

in favor of a simpler, more reason-

able, less time-wasting alternative,

eventually home-brewed.

The result is a new tar implementa-

tion written for the single special-case

of a 1.1 TiB file! [1]

1 https://mort.coffee/home/tar/



tgtimesBYTE Magazine Covers
________________________________________________________________________

The BYTE magazine lives among the

legends of computer magazines.

Being a paper glossy magazine, it had

fancy covers. Our usual data ar-

chivist heroes, Archive.org, have a

large collections of covers for these

things. [1]

On another level of effort, someone

with passion and patience, actually

went through recreatinhg the scene

coming from these covers, that never

really existed... Until they did! [2]

>> In the 1970s and 1980s, Byte

magazine featured covers with beau-

tiful, surreal paintings by Robert F.

Tinney. What if the scenes that Mr.

Tinney imagined actually existed in

real life? And what if, as Mr. Tin-

ney was painting them, there was a

photographer standing next to him,

capturing the scene on film?

>> That’s the idea behind this site. I

created and photographed real-world

objects and composited the images

together in order to show what Mr.

Tinney’s images might look like in

real life.

1 https://archive.org/details/byte-magazine

2 https://bytecovers.com/

seirdyAn experiment to test GitHub Copilot’s legality
________________________________________________________________________

>> This article was posted on

2022-07-01 by Rohan Kumar [1]

and is now republished on this

newspaper, with permission (CC-

BY-SA 4.0).

Preface

I am not a lawyer. This post is satiri-

cal commentary on:

• The absurdity of Microsoft and

OpenAI’s legal justification for

GitHub Copilot.

• The oversimplifications people use

to argue against GitHub Copilot (I

don’t like it when people agree

with me for the wrong reasons).

• The relationship between capital

and legal outcomes.

• How civil cases seem like sporting

events where people �win� or

�lose�, rather than opportunities to

improve our understanding of law.

In the process, I intentionally misrep-

resent how the judicial system works:

I portray the system the way people

like to imagine it works. Please don’t

make any important legal decisions

based on anything I say.

The only section you should take seri-

ously is �Context: the relevant tech-

nologies�.



Introduction

GitHub is enabling copyleft violation

at scale with Copilot. GitHub Copi-

lot encourages people to make deriva-

tive works of source code without

complying with the original code’s li-

cense. This facilitates the creation of

permissively-licensed or proprietary

derivatives of copyleft code.

Unfortunately, challenging Microsoft

(GitHub’s parent company) in court

is a bad idea: their legal budget prob-

ably ensures their victory, and they

likely already have a comprehensive

defense planned. How can we deter-

mine Copilot’s legality on a level

playing field? We can create legal

precedent that they haven’t had a

chance to study yet!

A chat with Matt Campbell about a

speech synthesizer gave me a horrible

idea. I think I know a way to find out

if GitHub Copilot is legal: we could

use its legal justification against an-

other software project with a smaller

legal budget. Specifically, against a

speech synthesizer. The outcome of

our actions could set a legal precedent

to determine the legality of Copilot.

Context: the relevant technologies

Let’s cover the technologies and ac-

tors at play before I start my evil

monologue.

Exhibit A: GitHub Copilot

GitHub Copilot is a predictive auto-

completion service for writing soft-

ware. It’s powered by OpenAI

Codex, [2] a language model based

on GPT-3. [3] It was trained using

the source code of public repositories

hosted on GitHub, regardless of their

licensing. In response to a Request

for Comments from the US Patent

and Trademark Office, OpenAI

claimed that �Artificial Intelligence

Innovation�, such as code written by

GitHub Copilot, should be considered

�fair use�. [4]

Many of the code snippets it suggests

are exact copies of source code from

various GitHub repositories. For an

example, see this tweet: I don’t want

to say anything but that’s not the right

license Mr Copilot. [5] by Armin

Ronacher [6] It contains a screen

recording of Copilot suggesting this

Quake code. [7] When prompted to

do so, it obediently fills in a permis-

sive license. That permissive license

violates the Quake code’s GPL-2.0 li-

cense. Copilot provides no indication

that a license violation is taking

place.

GitHub performed its own research

into the matter. [8] You can read

about it on their blog: GitHub Copilot

research recitation, [9] by Albert

Ziegler. [10] I’m not convinced that

it accounts for the fact that suggested

code might have mechanical alter-

ations to match surrounding text,

while still remaining close enough to

trained data to be a license violation.

Exhibit B: The Eloquence speech

synthesizer

I recently had a chat with Matt on

IRC about screen readers and differ-

ent types of speech synthesizers. I

mentioned that while I do like some

variety, I always find myself return-

ing to the underrated robotic voice of

eSpeak NG. [11] He shared some of

my fondness, and also shared his

preference for a similar speech syn-



thesizer called Eloquence.

Downloads of Eloquence are easy to

find (it’s even included with the

JAWS screen reader), but I struggle

to find any �official�pages about the

original Eloquence. Nuance acquired

Eloquent Technology, the developer

of Eloquence. Microsoft later ac-

quired Nuance.

Eloquence sample audio

Matt recorded this sample audio clip

of Eloquence reading some text. [12]

The text is from the introduction of

Best practices for inclusive textual

websites. [13]

>> My primary focus is inclusive de-

sign. Specifically, I focus on sup-

porting underrepresented ways to

read a page. Not all users load a

page in a common web-browser and

navigate effortlessly with their eyes

and hands. Authors often neglect

people who read through accessibil-

ity tools, tiny viewports, machine

translators, �reading mode� imple-

mentations, the Tor network, print-

outs, hostile networks, and uncom-

mon browsers, to name a few. I list

more niches in the conclusion.

Compatibility with so many niches

sounds far more daunting than it re-

ally is: if you only selectively over-

ride browser defaults and use plain-

old, semantic HTML (POSH),

you’ve done half of the work al-

ready.

I like the Eloquence speech synthe-

sizer. It sounds similar to the robotic

yet predictable voice of my beloved

eSpeak NG, but with improved over-

all quality. Unfortunately, Eloquence

is proprietary.

Exhibit C: Deep learning speech

synthesis

Deep learning speech synthesis [14]

is a recent approach to speech synthe-

sizer creation. It involves training a

deep neural network on voice sam-

ples, and using the trained model to

generate speech similar to a real hu-

man voice. One synthesizer using

deep learning speech synthesis is

Mozilla’s TTS. [15]

Zero-shot approaches could allow a

pre-trained model to generate multi-

ple different voices. YourTTS [16] is

one such example. This could allow

us to synthetically re-create a

person’s voice more easily.

My horrible plan

My horrible plan revolves around go-

ing through two different lawsuits to

set some judicial precedents; these

precedents could improve the odds of

succeeding in a lawsuit against Mi-

crosoft for Copilot’s licensing viola-

tions.

If this succeeds, we have new legal

justification that GitHub Copilot is il-

legal; if it fails, we have still gained a

means to legally re-create proprietary

software. It’s a win-win situation.

Part One: set a precedent

1. Train a modern text-to-speech

(TTS) engine using the voice a pro-

prietary one made by a company

with a small legal budget. Keep

the model’s internals hidden.

2. Then release the final TTS under a

permissive license. Remember,

we’re still keeping the machine-

learning model hidden!



3. Wait for that company to file suit.

[17]

4. Win or lose the case.

Part Two: use that precedent

against Microsoft’s Nuance

Our goal here is to get the same legal

outcome as the low-stakes �trial run�
of Part One.

Microsoft owns Nuance. Nuance pre-

viously bought Eloquent Technology,

the developers of the Eloquence

speech synthesizer.

1. Repeat Part One against Nuance

speech synthesizers, including Elo-

quence. Go to court.

2. Have the ruling from Part One cit-

ed as legal precedent.

3. Achieve the same outcome as Part

One, demonstrating that we have

indeed set precedent that works

against Microsoft’s legal depart-

ment.

Implications of the outcomes

If we win both cases: Microsoft has

the legal high ground. Making a

derivative of a copyrighted work us-

ing a machine-learning algorithm al-

lows us to bypass copyright licenses.

If we lose both cases: Microsoft does

not have the legal high ground. We

have good judicial precedent against

Microsoft to use when filing suit for

Copilot’s behavior.

Either way, it’s an absolute win for

free software. Taking down Copilot

protects copyleft from enabling pro-

prietary derivatives (and by exten-

sion, protects software freedom). But

if we accidentally win these two

low-stakes �test� cases, we still gain

something else: we can liberate huge

swaths of proprietary software, start-

ing with speech synthesizers.

Update: on satire

This post isn’t �satire through-and-

through� like something from The

Onion. Rather, my intent was to

make some clear points, but extrapo-

late them to absurdity to highlight

other problems. I don’t think I was

clear enough when doing this. I’m

sorry.

Copilot has been found to suggest

significant amounts of code that is

dangerously similar to existing

works. It does this without disclosing

obligations that come with those

works’ licenses. Training a model on

copyrighted works may not be wrong

in and of itself; however, using that

model to generate new works that are

not sufficiently distinct from original

works is where things get problem-

atic. Copilot’s users could apply pro-

prietary licenses to the generated

works, defeating the point of copy-

left.

When a tool almost exclusively en-

courages problematic behavior, the

makers of that tool should have put

thought into its implications. GitHub

and OpenAI have not demonstrated a

sufficiently careful approach.

I don’t think that �going after� a

smaller player just to manipulate our

legal system is a good thing to do.

The fact that this idea seems plausible

to some of my readers shows how

warped our perception of the judicial

system is. Even if it’s accurate (I

doubt it’s accurate, but I’m not cer-



tain), it’s sad. Judicial systems incen-

tivise too much predatory behavior.

Corrections It’s come to my atten-

tion that Eloquence may or may

not still belong to Nuance. Further

research is needed. Eloquent Tech-

nology was acquired by Speech-

Works in 2000.

1 https://seirdy.one/posts/2022/07/01/experiment-copilot-legality/
gemini://seirdy.one/posts/2022/07/01/experiment-copilot-legality/index.gmi

2 https://openai.com/blog/openai-codex/

3 https://en.wikipedia.org/wiki/GPT-3

4 See Comment Regarding Request for Comments on Intellectual Property Protection
for Artificial Intelligence Innovation submitted by OpenAI to the USPTO.
https://www.uspto.gov/sites/default/files/documents/OpenAI_RFC-84-FR-58141.pdf

5 https://nitter.net/mitsuhiko/status/1410886329924194309
https://twitter.com/mitsuhiko/status/1410886329924194309

6 https://lucumr.pocoo.org/about/

7 https://github.com/id-Software/Quake-III-Arena/blob/master/code/game/q_math.c
At line 552

8 I doubt anybody worth their salt would count on a company to hold itself
accountable, but at least they tried.

9 https://github.blog/2021-06-30-github-copilot-research-recitation/

10 https://github.com/wunderalbert

11 https://github.com/espeak-ng/espeak-ng/

12 https://seirdy.one/a/eloquence.mp3

13 https://seirdy.one/posts/2020/11/23/website-best-practices/

14 https://en.wikipedia.org/wiki/Deep_learning_speech_synthesis

15 https://github.com/mozilla/TTS

16 https://doi.org/10.48550/arXiv.2112.02418

17 If the stars align, you could file an anticipatory suit against the company.
It’s common for declaratory judgement regarding intellectual property rights.
https://en.wikipedia.org/wiki/Declaratory_judgment

sirjofriGlenda adventure
________________________________________________________________________

>> Glenda found herself in a dark

forest.

Do operating systems dream of elec-

tric bunnies? Nothing is certain

about that, but it does not prevent you

to try to imagine.

Sir Jofri offers us a piece of fiction

built out of the reality of the plan 9

operating system. [1]

Where should this go next?

A story first published on the 9front

Mailing List.

1 http://sirjofri.de/oat/tmp/glenda_adventure.txt



tgtimesSpace Weather Woman
________________________________________________________________________

As she names herself, Tamitha Skov

[1] is the Space Weather Woman.

You read it right! She have been do-

ing, since now close to ten years,

forecasts about how is space weather

is going.

Just a nerd fantasy? Only a sci-fi ar-

tist on a periodic one woman show?

Not at all! Knowing what the sun is

blasting toward Earth can reveal more

useful than it looks. This includes:

• personnal safety for some plane

flights at high lattitude.

• GPS communication, something

happening in the pocket of many

individuals, some of them even un-

aware of the involvement of satel-

lites in the process.

• Long distance radio communica-

tion, which include Amateur Radio

operators, but also emergency ser-

vices and militaries.

• Something that Starlink did not in-

vent [2] is satellite-relayed com-

munication, including satellite in-

ternet and voice phone transmis-

sion. Actually a lot of wind tur-

bines are being given satellite in-

ternet, and see how a little disrup-

tion [3] in satellite internet access

can disrupt their operation.

And all of these fancy things are ben-

efiting from Tamitha Skov’s efforts

as a researcher, but also by informing

in layman’s terms what is going on

outter space.

>> Weather phenomena like coronal

mass ejections, solar flares, and so-

lar particle events. [4]

Science is elegant.

1 https://www.spaceweatherwoman.com/
https://yewtu.be/c/TamithaSkov

2 WildBlue, Viasat, NordNet...
First amateur stellite launched in 1961.

3 https://hackaday.com/2022/06/02/the-great-euro-sat-hack-should-be-a-warning-to-us-all/

4 https://en.wikipedia.org/wiki/Tamitha_Skov

tgtimesA C64 4chan Browser
________________________________________________________________________

The sewers of Internet in a C64? The

link appeared on various IRC chan-

nels such as #electronics or #osdev,

and not one more word. The investi-

gation is open. [1]

1 <No_File> https://imgur.com/H36LTRV BACK 2 ROOTS!



ig0rI Hate Modern Technology
________________________________________________________________________

>> The "advance of technology" is a

source of excitement as well as frus-

tration. ig0r gives us a crystallised

view of human stupidity offered dai-

ly by technology.

Modern technology sucks. This

might be me behaving like a pathetic

little angsty hipster or trying to LARP

thinking I’m somehow cool, but I

think it’s a genuine problem.

Planned Obsolesence

Technology is being designed to fail.

Apple purposefully makes batteries

fail on their devices and solders them

in such that replacing the battery on

an older device makes no sense, forc-

ing the customer to buy a new device.

Lenovo’s quality has gone down the

shitter. Thinkpads used to be thick,

bulky, and rugged such that a cave-

man could use it in place of a club.

New models bend and creak, the

hinges breaking after several years of

use while older models still run like

new.

The reality is companies want people

to consume technology, not use it.

They care about making a profit rath-

er than giving users a good experi-

ence, hence poor quality of manufac-

turing to speed up distribution, con-

sumption, and the filling of landfills.

Modern Software

Modern software is just bad. Here’s a

few reasons why...

• It’s idiot proof, in that I have little

control over settings and configura-

tion

• Software has become synonymous

with adware (see Microsoft putting

ads into explorer)

• I have to pay money for it (fuck

you, if I could copy-paste a car I

would)

Smartphones

Smartphones are the most annoying

little shits, and for some reason

they’ve become ubiquitous.

Restaurants are starting to ditch regu-

lar menus in favor of QR codes to be

scanned with smartphones. Why?

Paper is more reliable. This is a step

backwards in my opinion. What if I

don’t have a data plan? What if I

don’t carry a smartphone?

Also why does everything have to be

an app? Why does my passport have

to be an app? I’m perfectly happy

carrying around paper ID (paper ID

doesn’t spy on my).

People are idiots

Most companies justify making tech-

nology suck more by saying it’s ’eas-

ier’ and more ’convenient’ for normal

people.

Stop making easy and more conve-

nient. Nobody asked for that. We

were happy when technology was

hard.



ircnowBetter recording of the IRC Now events
________________________________________________________________________

Here is a link with a better recording

than the one in the previous tgtimes

opus [1]

As a teaser, here are some random

contents from it:

• Independence from Silicon Valley

• Self-Governance with Free Soft-

ware and Right to Code

• Live demo of OpenBSD system

administration from the ground up.

1 https://media.libreplanet.org/u/libreplanet/m/ircnow-of-the-users-by-the-users-for-the-users/

tgtimesMNT Pocket Reform OS support
________________________________________________________________________

All these laptop and portable devices

come with either Windows, Apple

iOS or OSX, Android, sometimes

Chrome OS, and even more rarely

Ubuntu installed upon.

But the open hardware commnity is

rising, and calls for a change. The

MNT Pocket Reform lists more ex-

otic operating systems as officially

supported, [1] or at least acknoledged

and listed in the front page:

• Debian GNU/Linux

• Support for other distributions:

Arch, Ubuntu, Void

• Plan 9 (9front)

• Genode

• OpenBSD (in development)

Are we seeing a year of the open

hardware laptop coming?

1 https://mntre.com/media/reform_md/2022-06-20-introducing-mnt-pocket-reform.html

tgtimesDarknet Diaries
________________________________________________________________________

The mysterious Dark Net. While not

an official institution, this hypotetical

place built its very own identity

through popular culture and medias.

Famous and infamous, the depths of

the limbos are explored in the Dark-

net Diaries podcast, covering and re-

porting the day-to-day events of that

suspicious eden of shadow. [1]

1 https://darknetdiaries.com/
https://en.wikipedia.org/wiki/Darknet_Diaries



tgtimesThe Modern Mechanical Turk
________________________________________________________________________

In 1770, long before the exploitation

of electricity, a machine was built in

the pretention of being able to play

Chess. This machine named Mechan-

ical Turk was nothing more than a

moving puppet actuated by a small

human, such as a child. A child who

is good at chess, that is!

Actuating levers, the operator would

make the puppet move, fooling the

audience that technical advances oc-

casionally make use of black magic.

Amazon called a software platform

Amazon Mechanical Turk. [1] It of-

fers management for harvesting food

for machine learning: human descrip-

tion of images, videos, products, and

other kind of canned thoughts that

machine learning can make use of to

build models.

Uber for Cyber. Human translators

shouting at machines the language

they got whispered through their life.

Ghostworker. Noun. 1. Worker per-

forming activity that will only be

appreciated as data feeding an al-

gorhithm. 2. Worker with no ac-

cess to who it provide work to,

both employer and client are invisi-

ble to him. [2]

given the very large scale at which

these data-harvesting structures are

deployed, it means that you, web

user, have experienced the Google

and Cloudflare "captcha" block win-

dow. That window preventing you to

submit a form unless you click on all

buses, tracktors, crosswalks, traffic

lights... to verify that you are indeed a

human and not a bot trying to access

the website. Instead of prooving its

belonging to the mankind, at the op-

posite, the user is explaining to ma-

chines what is a bus, a tracktor, a

crosswalk, or a traffic light.

Here is your Great Technological

Singularity for the greatest common

entertainment: Nothing more than a

moving puppet, actuated by humans,

barely even paid for it, if paid at all...

[3]

1 https://en.wikipedia.org/wiki/Amazon_Mechanical_Turk

2 https://www.ghostwork.org/

3 https://en.wikipedia.org/wiki/Mechanical_Turk



youPublishing in The Gopher Times
________________________________________________________________________

Want your article published? Want to

announce something to the Gopher

world?

Directly related to Gopher or not,

reach us on IRC with an article in any

format, we will handle the rest.

ircs://irc.bitreich.org/#bitreich-en
gopher://bitreich.org/1/tgtimes/
git://bitreich.org/tgtimes/

Did you notice the new layout? We

now can jump between single and

double column as it is more fit: Some

large code chunks will not fit in a

two-column layout, but text is more

pleasant to read on two columns.


