
A Beginner's Book ofTEX

Raymond Seroul
Silvio Levy

A Beginner's Book of TEX

Foreword by Dominique Foata

Springer Science+Business Media, LLC

Raymond Seroul
Universite Louis Pasteur
Laboratoire de Typographie Informatique
7, rue Rene-Descartes
67084 Strasbourg, France

Silvio Levy
Geometry Center
1300 South Second Street
Suite 500
Minneapolis, MN 55454

Cover mathematics adapted from A.G. Alings, Superficierum curvatura (dissertation), Groningen (1849).

Translated and adapted by Silvio Levy from the original French Le petit livre de TEX, by Raymond Seroul,
© 1989, InterEditions, Paris.

Quotation on pages 1O-11 from The Hobbit, by 1.R.R. Tolkien, ©1979, Allen and Unwin, pp. 16-17
(paperback edition, 1979).

Library of Congress Cataloging-in-Publication Data
Serou!, Raymond.

A beginner's book of TeX / Raymond Seroul, Silvio Levy.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-387-97562-7 ISBN 978-1-4419-8654-2 (eBook)
DOI 10.1 007/978-1-4419-8654-2
1. TeX (Computer systems) 2. Computerized typesetting.

3. Mathematics printing. I. Levy, Silvio Vieira Ferreira.
II. Title.
Z253.4.T47S47 1991
686.2'2544--dc20 91-19278

Printed on acid-free paper.

©1991 by Springer Science+Business Media New York
Originally published by Springer-Verlag New York Inc. in 1991
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the
publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with
reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not
especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise
Act, may accordingly be used freely by anyone.

Photocomposed copy prepared from author's TEX file.

9 8 7 6 5 4 3 (Corrected third printing, 1995)

Foreword

The last two decades have witnessed a revolution in the realm of typography, with
the virtual disappearance of hot-lead typesetting in favor of the so-called digital
typesetting. The principle behind the new technology is simple: imagine a very fine
mesh superimposed on a sheet of paper. Digital typesetting consists in darkening
the appropriate pixels (tiny squares) of this mesh, in patterns corresponding to each
character and symbol of the text being set. The actual darkening is done by some
printing device, say a laser printer or phototypesetter, which must be told exactly
where the ink should go.

Since the mesh is very fine-the dashes surrounding this sentence are some six
pixels thick, and more than 200 pixels long-the printer can only be controlled by
a computer program, which takes a "high-level" description of the page in terms
of text, fonts, and formatting commands, and digests all of that into "low-level"
commands for the printer. TEX is such a program, created by Donald E. Knuth, a
computer scientist at Stanford University.

Knuth distilled into his program generations of typesetting wisdom, and as a con
sequence it is easy to produce in TEX documents having a highly professional ap
pearance. Authors in the scientific and technical world quickly learned to use 'lEX
for their preprints and reports, only to see them entirely reset before publication,
often with inferior results. Indeed, the printing establishment had become comput
erized, but the software used was a long way from producing results of the quality
that seasoned professionals could achieve with the old technology.

Lately, publishers and printers have overcome their skepticism that an author or
technical typist, aided by a public-domain program born in academia, might gen
erate beautiful documents worthy of the most venerable typographical tradition.
Many publishers now accept diskettes and tapes with TEX files, and send them to
the printer after making only minimal changes, to ensure conformity of style and
correct treatment of complex material such as displays and tables. Other publishers
have trained in-house staff to rekey manuscripts in TEX. The technological revolu
tion is complete!

vi A Beginner's Book of T £X

Authors and typists are faced then with the same task: learning TEX. Some will be
content with picking up the basics, and apply them to get output that already looks
surprisingly good. Others will go on to assimilate advanced techniques, and per
form typographical tours de force. Either way, one must start with the fundamen
tals. Knuth's manual and system description, The TEX book, is a superbly written
reference, but is hard for a beginner to absorb. There is still a lack of introductory
books to help potential users get started on their own and quickly.

The present book tries to answer this need. It contains a careful explanation of all
fundamental concepts and commands, but also a wealth of commented examples
and "tricks," based on the authors' long experience with TEX. The attentive reader
will quickly be able to create a table, or customize the appearance of the page, or
code even the most complicated formula. The last third of the book is devoted to a
Dictionary-Index, summarizing all the material in the text and going into greater
depth in many areas.

Dominique Foata
Director, Laboratoire de Typographie Informatique
Universite Louis Pasteur, Strasbourg, France

Contents

Foreword v

Introduction Xl

Chapter 1: What is TP(?

1.1 The birth of T}3X 1
1.2 How T}3X works 2
1.3 The good news and bad news about T}3X 4
1.4 T}3X: who and what for? 7
1.5 T}3X processing: an overview 8
1.6 Looking ahead 10
1.7 Creating a master file 13
1.8 Error messages 14

Chapter 2: The characters of TP(17

2.1 Characters that are special to T}3X 17
2.2 Quotes 18
2.3 Ligatures and special characters 19
2.4 Accents 20
2.5 Two exercises 21

Chapter 3: Groups and modes 22

3.1 Groups 22
3.2 Modes 24
3.3 For the aspiring wizard 26

viii A Beginner's Book of TEl<

Chapter 4: The fonts Tpc uses 27

4.l TEX's fonts 27
4.2 Preloaded fonts 27
4.3 Loading other fonts 28
4.4 A cornucopia of fonts 29
4.5 Scaling of fonts 30
4.6 Global scaling 31
4.7 For the aspiring wizard 32
4.8 Exercise 37

Chapter 5: Spacing, glue and springs 38

5.1 Horizontal spacing 38
5.2 Vertical spacing 40
5.3 Glue, or, spaces that stretch and shrink 40
5.4 Springs 42
5.5 Spacing and breaks 44
5.6 Summary of basic spacing commands 45
5.7 Spacing between paragraphs 45
5.8 More springlike creatures 46
5.9 Leaders in their full glory 47
5.l0 For the experienced user 47
5.11 Examples 49

Chapter 6: Paragraphs 52

6.1 Beginning and ending a paragraph 52
6.2 What's in a paragraph? 53
6.3 Automatic indentation 53
6.4 Obeying lines 53
6.5 Left and right margins 54
6.6 Ragged margins 55
6.7 Quotations 57
6.8 Centering text 57
6.9 Series of items 58
6.10 More on hanging indentation 60
6.11 Paragraphs with fancy shapes 60
6.l2 Footnotes 61
6.l3 Two new macros for the aspiring wizard 62

Chapter 7: Page layout 64

7.1 Page layout in plain TEX 64
7.2 A more elaborate layout 65
7.3 The title page 68
7.4 Starting a fresh page and leaving a blank page
7.5 Placing a title 69

69

7.6 Choosing line and page breaks by hand 70
7.7 Floats 70
7.8 A complete example 71
7.9 Penalties: or, the carrot and the stick 75

Chapter 8: Boxes 78

8.1 What is a box? 78
8.2 Putting boxes together 79
8.3 What goes in a box? 80
8.4 Creating a box: summary 83
8.5 Storing a box 84
8.6 The baseline 86
8.7 The dimensions of a box 88
8.8 Some practical situations 89
8.9 Spacing between boxes 93
8.10 Rules 94
8.11 More practical examples 97
8.12 For the aspiring wizard 98

Chapter 9: Alignments 102

9.1 The preamble, a.k.a. recipe 103
9.2 Simple alignments 103
9.3 Some practical suggestions 105
9.4 Treating special cases 106
9.5 Excessively wide entries 108
9.6 Inserting material between rows
9.7 Combining columns 110
9.8 Aligning digits III
9.9 Horizontal rules and spacing 112
9.10 Vertical rules 114
9.11 Braces and tables 116
9.12 Fixing the width of an alignment
9.13 Vertical alignments 119

Chapter 10: Tabbing 122

10.1 Setting tabs 122
10.2 Centering 123
10.3 Choosing column widths 124
10.4 Equally spaced tabs 124
10.5 Clearing tabs 124
10.6 Tabs and rules 125
10.7 Tabs and springs 127
10.8 Typesetting code 128

108

117

10.9 Tabs and alignments: a comparison 129

Contents Ix

x A Beginner's Book of T e<

Chapter 11: Typesetting mathematics 130

11.1 Generalities 130
11.2 Math symbols 131
11.3 Fonts in math mode 135
11.4 Subscripts and superscripts 136
11.5 Accents 137
11.6 Spacing in math mode 138
11.7 The four styles 138
11.8 Function names 140
11.9 Fractions 140
11.10 Large operators and limits 142
11.11 Radicals 144
11.12 Horizontally extensible symbols 145
11.13 Vertically extensible symbols 146
11.14 Stacking up symbols 148
11.15 Combining relations 149
11.16 More custom-made symbols: limits
11.17 Phantoms 151
11.18 Displaying several formulas 152
11.19 Aligning several formulas 154
11.20 Labeling formulas 155
11.21 Matrices 157
11.22 Adjusting the spacing 159
11.23 Ellipses 160
11.24 Diagrams 161

Chapter 12: T}3X Programming 164

12.1 Generalities 164
12.2 Abbreviations and clones 166
12.3 Macros with arguments 167
12.4 Fine points of macro syntax 169
12.5 Category codes 172
12.6 Active characters 173

150

12.7 How TIYC reads and stores your text 176
12.8 Registers 178
12.9 Conditionals 183
12.10 For the aspiring wizard 186

Chapter 13: Dictionary and Index 191

Introduction

This book was born from the first author's desire to supply the French-speaking
community with a readily accessible introduction to T}3X, at a time when there was
no such thing even in English, and no T}3X manual in French at all. The success
enjoyed by Le Petit Livre de rEX caused Springer to commission its translation into
English. This turned out to be no straightforward task; many sections were adapted
and revised by the translator-turned-coauthor, and new material added, especially
to Chapters 12 and 13.

This work is addressed primarily to beginner and intermediate users. Everywhere
we have tried to put ourselves in the beginner's shoes and ask, What would have
made this topic clearer when we first learned it? At the same time, we have tried to
keep in mind the diversity of backgrounds that characterizes T}3X users: technical
typists, authors in the sciences, in math, in engineering. T}3X is also making inroads
in the humanities, thanks to its capable handling of footnotes, bibliographies, in
dexes, accents ...

If you are a beginner, read each chapter selectively, skipping whatever appears
too technical. Concentrate on Chapters 1-7, and also on Chapter 11 if you have
to type mathematics. (This chapter is long but mostly very easy.) Don't worry
about understanding everything. The best way to learn T}3X is by example, and
this book is full of them. Copy these examples and modify them, experimenting
with everything that looks like it can be changed. You will be learning by osmosis,
without pain. There's no substitute for experimentation!

Very soon you will find yourself no longer a beginner. You'll be wanting to tinker
with the page layout, put boxes together, use a variety of fonts, make tables, define
new commands. Then it is time to read the relevant chapters more systematically.

After you have assimilated the material in Chapters 1-12, you can consider yourself
an experienced user-a T}3X "master." But we hope this book will remain useful:
that's why we have wrapped it up with an extensive Dictionary and Index of T}3X
commands and concepts. In addition to repeating much of the information from

xii A Beginner's Book of TEX

Chapters 1-12, for ease of reference, the Dictionary treats many concepts in greater
depth, and includes some commands that are not mentioned elsewhere, but are
likely to be useful to an aspiring "wizard." Beyond that, you will have to refer to
The TEXbook, which remains the definitive reference for TEX.

We encourage you to join the TEX Users Group, which entitles you to a subscription
to TUGboat, a journal containing news, tutorials, program listings, conference
announcements, advertisements, etc. The TUG office itself is a primary source
of information on TEX problems; when the staff does not know the answer to a
question, it can generally put you in touch with someone who does. The address
is P.O. Box 9506, Providence, RI 02940.

We would like to thank all those who helped us in our learning of TEX, and also
those who have come to us with TEX questions. This unending stream of questions
has increased our experience tenfold.

We are very thankful to Nelson Beebe, Barbara Beeton and Viktor Eijkhout, who
pointed out many typos and some mistakes in the first printing. Suggestions and
reports of remaining errors will continue to be welcome.

Raymond Seroul
Silvio Levy

1
What is lEX?

1.1 The birth of TEX
TEX was created by Donald E. Knuth, a professor at Stanford University who has
achieved international renown as a mathematician and computer scientist. Knuth
also has an aesthetic sense uncommon in his field, and his work output is truly
phenomenal. 1

TEX is a happy byproduct of Knuth's mammoth enterprise, The Art of Computer
Programming. This series of reference books, designed to cover the whole gamut
of programming concepts and techniques, is a sine qua non for all computer
scientists; three volumes were published in the seventies, and, after a long hiatus
during which Knuth devoted himself to computer typesetting, a fourth is about to
follow suit. Here is, in Knuth's own words, the story ofTEX's birth:2

Why did I start working on TEX in 1977? The whole thing actually began
long before, in connection with my books The Art of Computer Program
ming. I had prepared a second edition of volume 2, but when I received
galley proofs they looked awful-because printing technology had changed
drastically since the first edition had been published. The books were now

These comments are not exaggerated. We know his books well, have studied some of his theoretical
articles, and have used TEX for quite a while now. He is simply amazing!

The Tf}(book, published by Addison-Wesley, was written and typeset-in lEX, needless to say-by
Knuth himself. One can't imagine a better introduction to this man's multifaceted talent.

2 Excerpted from "Remarks to celebrate the publication of Computers and Typesetting." address
delivered at the Computer Museum in Boston on May 21, 1986. The full text can be found in
TUGboat, 7 (1986), 95-98. (TUGboat is the TEX Users Group newsletter; for more infonnation, see
page xii.)

2 A Beginner's Book of T EX

done with phototypesetting, instead of hot lead Monotype machines; and
(alas!) they were being done with the help of computers instead of by hand.
The result was poor spacing, especially in the math, and the fonts of type
were terrible by comparison with the original. I was quite discouraged by
this, and didn't know what to do. Addison-Wesley offered to reset every
thing by the old Monotype method, but I knew that the old way was dying
out fast; surely by the time I had finished volume 4 the same problem would
arise again, and I didn't want to write a book that would come out looking
like the recent galleys I had seen.

Then ... we received galley proofs of [Pat Winston's Artificiallntelli
gence, which] had been made on a new machine in Southern California, all
based on a discrete high-resolution raster. .. The digital type looked a lot
better than what I had been getting in my own galley proof . .. Within a
week after seeing the galley of Winston's book, I decided to drop everything
else and work on digital typography ...

Ever since these beginnings in 1977, the Tpc research project that I
embarked on was driven by two major goals. The first goal was quality:
we wanted to produce documents that were not just nice, but actually
the best . .. By 1977 there were several systems that could produce very
attractive documents. My goal was to take the last step and go all the way,
to the finest quality that had ever been achieved in printed documents.

It turned out that it was not hard to achieve this level of quality with
respect to the formatting of text, after about two years of work. For example,
we did experiments with Time magazine to prove that Time would look
much better if it had been done with 'lEX. But it turned out that the design of
typefaces was much more difficult that I had anticipated; seven years went
by before I was able to generate letterforms that I began to like.

The second major goal was to be archival: to create systems that would
be independent of changes in printing technology as much as possible.
When the next generations of printing devices came along, I wanted to be
able to retain the same quality already achieved, instead of having to solve
all the problems anew. I wanted to design something that would still be
usable in 100 years. In other words, my goal was to arrange things so that,
if book specifications are saved now, our descendants should be able to
produce an equivalent book in the year 2086 ...

1.2 How TeX works
Roughly speaking, text processors fall into two categories:

• WYSIWYG systems: what you see is what you get.3 You see on the screen at all
times what the printed document will look like, and what you type has immediate
effect on the appearance of the document.

3 This slogan is 100% true only if screen and printer use the same resolution and page description
language.

What is T fX? 3

• markup systems, where you type your text interspersed with formatting instruc
tions, but don't see their effect right away. You must run a program to examine the
resulting image, whether on paper or on the screen. In computer science jargon,
markup systems must compile the source file you type.

WYSIWYG systems have the obvious advantage of immediate feedback, but they
are not very precise: what is acceptable at a resolution of 300 dots per inch, for an
ephemeral publication such as a newsletter or flier, is no longer so for a book that
will be phototypeset at high resolution. The human eye is extraordinarily sensitive:
you can be bothered by the appearance of a text without being able to pinpoint why,
just as you can tell when someone plays the wrong note in an orchestra, without
being able to identify the CUlprit. One quickly leams in typesetting that the beauty,
legibility and comfortable reading of a text depend on minute details: each element
must be placed exactly right, within thousandths of an inch. For this type of work,
the advantage of immediate feedback vanishes: fine details of spacing, alignment,
and so on are much too small to be discernible at the screen's relatively low reso
lution, and even if it such were not the case, it would still be a monumental chore
to find the right place for everything by hand.

For this reason it is not surprising that in the world of professional typesetting
markup systems are preferred. They automate the task of finding the right place
for each character with great precision. Naturally, this approach is less attractive for
beginners, since one can't see the results as one types, and must develop a feeling
for what the system will do. But nowadays, you can have the best of both worlds
by using a markup system with a WYSIWYG front end; we'll talk about such front
ends for TEX later on.

TEX was developed in the late seventies and early eighties, before WYSIWYG sys
tems were widespread. But were it to be redesigned now, it would still be a markup
language. To give you an idea of the precision with which TEX operates: the in
ternal unit it uses for its calculations is about a hundred times smaller than the
wavelength of visible light! (That's right, a hundred times.) In other words, any
round-off error introduced in the calculations is invisible to the naked eye.

The result of TEX's lucubrations is not the complete image of a printed page, but
rather an abstract description of it. This description is independent of the machine
where you ran TEX, and of the printer that will create the hard copy-in other
words, it is completely portable. Here is the decoded version of a tiny portion of a
page, containing the TEX logo:

level 1: (h=0,v=655360,w=0,x=0,y=0,z=0,hh=0,vv=42)
109: fntdefl 0: cmrl0---loaded at size 655360 DVI units
130: fntnumO current font is cmrl0
[T]
level 2: (h=1784036,v=655360,w=0,x=0,y=0,z=0,hh=113,vv=42)
137: down3 141084 v:=655360+141084=796444, vv:=51
[E]
level 2: (h=1784036,v=655360,w=0,x=0,y=0,z=0,hh=113,vv=42)
[X]

4 A Beginner's Book of T EX

1.3 The good news and bad news about T EX
The good news
First of all, TEX produces documents of unusually high quality, especially in the
case of math. As we've mentioned, Knuth is an aesthete, and he made a point of
incorporating in his program all the wisdom of generations of typographers. Here
are some examples of the extraordinary care with which TEX treats your text:

• It handles ligatures automatically, in the best typesetting tradition. It also does
automatic kerning, that is, it sets characters whose shapes "match" closer together,
so the spacing between characters looks uniform.

• It has an intricate mechanism for justifying lines, resorting when necessary to
hyphenation. The hyphenation rules themselves can be reconfigured, so as to adapt
TEX to different languages.

• The spacing between the various components of a mathematical formula is de
termined by TEX according to traditional rules used by the best math typesetting
houses. It is very rare that a formula comes out looking "wrong". And typing a
mathematical formula in TEX is so easy, natural and logical that one finds oneself
doing it just for the heck of it. ..

A well-written TEX document is formatted by means of macros, that indicate how
each component should be typeset. A macro is a short program that saves you from
having to give explicit formatting instructions. For instance, \footnote lets you
include a footnote without worrying about moving the text to the bottom of the page
or typing little numbers above the line. Macros are written in terms of primitives,
like \indent or \par (for paragraph), which form the basic vocabulary of TEX.

Macros make TEX immensely versatile. To modify the appearance of a document,
it is enough to change the definition of certain macros, without touching the text.
There are efforts underway to define standards for the coding of the structure of
on-line documents. TEX will fit right in with these standards, since it can be used
as a high-level document description language.

TEX is portable. A document written in TEX, containing your texts and macros for
formatting, can be coded entirely using characters from the printable ASCII set, in
the range 32-126 (plus the carriage return), even if it prints characters in foreign
alphabets that have higher codes. If this is Greek to you, here's what it means
in practice: to share a text with a friend anywhere in the world, tum on your mo
dem, send your file, and presto! No need for special encodings, conversions or
anything.4 With computer networks spanning the whole globe, the possibility of
sending formatted texts through them is an obvious advantage. And even the most
complicated scientific text can be written in TEX, using only ASCII characters.

To give just one example, the database maintained by the American Mathematical
Society, or AMS, is based on TEX. It contains abstracts of all mathematical articles

4 Ideally, that is. In practice, some characters can get mangled when they go through certain net
works: the backslash is especially susceptible. A good trick is to list all the ASCII characters at the top
of your file. in order, so the recipient can at least tell what's going on. At any rate, the problem seems
to be increasingly rarer nowadays.

What is T EX? 5

published in the world. By accessing the database you can obtain the abstract of
any article that interests you, and read it either in TEX source form, or formatted,
after running it through TEX.

TEX is also portable across computers, because it doesn't depend on the peculiar
ities of each computer's character set, and because its calculations are done in a
completely machine-independent way. A text written in TEX looks the same (dis
regarding variations in printer quality) whether run on a Macintosh, a PC clone, a
UNIX workstation, an IBM mainframe or even a Cray. We've tried it out: an arti
cle, written on a PC clone at the University of Strasbourg, was sent to the United
States to be phototypeset at the AMS. It came out without any problems, and looked
just the same as our proofs run on a humble dot-matrix printer.

TEX doesn't create an image, just a page description. To print your document, you
take TEX's output and give it to a driver program, capable of transforming this
description into commands that the printer can understand. In this way, TEX is
also independent of the technology of printers; when the technology changes, it's
enough to write a new driver, a relatively simple program.

TEX is much more than a text processor-it's a programming language! It is easily
adaptable to your needs. You can create new commands or modify TEX's behav
ior by changing its variables. With more experience, you can define new styles
and write sophisticated macros for special purposes-or you can copy them from
someone else. Because TEX is portable and widespread, most things you're likely
to want to do have already been done by someone else, and it's a matter of finding
it. This is not always easy, of course, but a good place to start is TUGboat, the TEX
Users Group newsletter.

TEX is also extensible-as we've seen, Knuth had an eye on the future when he cre
ated TEX. For this reason he structured it in layers, like an onion: at the center are
TEX's 300 or so primitives, the building blocks of TEX. Primitives, as their name
implies, are very "primitive"-you wouldn't want to use them all the time. Next
come higher-level commands, or macros, defined in a/ormat file. The most com
mon format file is called plain. tex , and it defines about 600 commands. (No
need to panic! You'll need to know less than a hundred to format even fairly com
plicated documents, and they mostly have very natural names.) The combination
of primitives and commands defined in plain. tex is generally called plain TEX.
On top of that you can use one of several packages; they provide even higher-level
commands, such as \chapter or \ theorem, leaving all the formatting to the
system.5 And finally, you can add your own commands. Once you become inti
mately familiar with TEX, you might even write your own formats, to complement
or replace plain TEX.

TEX is very well-debugged. Of course, like any program, it will never be bug-free;
but since Knuth offers a prize for each new bug reported, there is an army of bug
hunters out there that has sifted through every line of the code. Any remaining

5 Packages are generally combined with the underlying format, giving rise to different "avatars" of
TPC: J.t\T]3X. A;VtS-TPC, and so on. J.t\T]3X is probably the best-known and the most complete.

6 A Beginner's Book of T E!<

bugs must be extremely recondite and unlikely to occur spontaneously. If you find
one, you'll earn your prize and a place in the official listing ofTEX's (former) bugs,
periodically published in TUGboat.

TEX is in the public domain: Knuth shared it freely with the world. You can
copy the source of TEX from anyone. When you buy TEX, you're paying solely
for its implementation on a particular machine, and for a support environment,
typically consisting of a driver, previewer, text editor, and so on. Proprietary
systems comparable with TEX sell for ten or twenty times as much.

The TEX logo and the copyright of The TFJ(book belong to the AMS, which is in
charge of maintaining the TEX standard. For a new implementation to have the
right to be called TEX it must pass a so-called "torture test," designed by Knuth
himself and perfected every year.

The Pascal source of TEX, with full explanations, has been published as volume B
of Computers and Typesetting (there are five volumes; volume A is The TFJ(book).
This in itself is remarkable: not many program sources are made into books! If you
have a chance, take a look at TFJ(: The Program. You'll see how Knuth, once again,
innovated: instead of presenting a dry listing, he weaves code and commentary in
a beautifully typeset document.

The bad news
We now come to the shortcomings of TEX. As you will see, most of them can
be and have been circumvented, usually by means of extensions or supporting
programs. These are implementation-dependent and not really part of TEX, yet it
is due to TEX's robustness of design that it is even possible to extend it in so many
directions.

TEX programming is subtle and takes time to master. Don't worry: this is not a
problem for the ordinary user. Using a macro, or even defining a simple macro,
is no harder than tuning a radio. But writing a complicated macro, or designing a
package, is more like putting the radio together: not a task for beginners.

TEX has a limited amount of memory, fixed for each implementation-it doesn't
grow dynamically. On computers with at least four megabytes of memory you can
run a version of TEX, written in C, whose memory limits are generous enough to
be considered irrelevant; but on anything smaller you can run into trouble if you
don't take certain precautions.

TEX uses its own fonts, which must be kept around. This is not really a design
limitation, because in fact TEX can use any font whose metric information is known
(see section 1.5); but until recently this information was difficult to obtain for non
TEX fonts. Nowadays many installations of TEX, both on PC's and on bigger
systems, can handle PostScript fonts. With the ever-increasing diffusion of TEX,
especially on small computers, it is likely that the number of available fonts will
grow very quickly.

TEX can't handle slanted lines or any other graphics. There are macro packages that
define simple graphics commands, but they tend to use large amounts of memory.
A more promising approach is based on an escape hatch that Knuth built into

What is T £X? 7

TEX, foreseeing exactly this kind of situation: the \special command. This
command lets you sneak into TEX's output anything that is of no use to TEX, but
can be meaningful to the driver: for example, the name of a file containing a figure,
or even raw PostScript commands. Needless to say, anything like that is highly
implementation-dependent.

TEX is not interactive. This is probably the one most common criticism of TEX.
As we mentioned in the previous section, there are reasons for that; there are also
ways to get around it. Many user-friendly front ends for TEX are now available;
on the Macintosh, for example, a program called TEXtures offers a very attractive
interface. From within the same program you have access to:

• a multi-window text editor;
• TEX proper;
• a previewer, that shows on the screen what the output will look like;
• a printer driver.

And you can even insert into your text PostScript images generated by other
programs.

On PC clones, you can only run one program at a time: you must first edit a file,
then run it through TEX, then use a previewer to look at your output on the screen.
You must then make a note of all the mistakes, quit the previewer and edit your
file again to correct them. And so on, until the process converges. Oh, for a mouse
and window interface!

As microcomputers become more powerful, the last three shortcomings we've dis
cussed will tend to disappear. Eventually we'll have, even on microcomputers, very
user-friendly systems of the type that is already available on workstations. Such
systems use a TEX "engine," but they work essentially as if they were WYSIWYG:

you can build or change a math formula with the mouse, without having to edit the
TEX source, and without having to know much about TEX at all!

1.4 lEX: who and what for?

TEX is not a text processor. It was designed with a precise goal in mind: wntmg
scientific texts. Scientific texts are, from a typographic point of view, paradoxical:
they can contain unbelievably hairy formulas, but in terms of page layout they are
generally very simple, just a series of rectangles-the paragraphs-stacked one
atop another. For this reason, TEX is unbeatable for typesetting math, or scientific
copy in general; but it sputters and chokes if you give it, say, a newsletter or a
complicated page layout.

TEX was designed for scientists by a scientist (and aesthete). But certain of its
features will also interest those in the humanities: accents in foreign languages,
footnotes, indexing, adaptable hyphenation, programming capabilities. Knuth
himself has proposed an extension of TEX (not to be called TEX, to maintain
standardization) which can typeset copy containing both left-to-right text, as in
English, and right-to-Ieft, as in Arabic or Hebrew.

8 A Beginner's Book of T p<

To sum up, Knuth made good his word. The scientific community now possesses
a professional typesetting tool of very high level, at a price within anyone's reach.
As technology evolves, we expect to see continual evolution in interfaces for TEX,
while the TEX kernel will stay the same, since it is machine- and implementation
independent. The excruciating precision of TEX's internal calculations guarantees
that a book done in TEX today will be printable in a hundred years without modifi
cation.

TEX is the highest-quality scientific typesetting program currently available on mi
crocomputers. Of course, it is also available on workstations and bigger machines.

A last "argument" in favor of TEX: experience has shown that writing a scientific
typesetting program is a monumental task. Since the market for such systems is
not huge, it will be some time before someone succeeds in supplanting Knuth's
work. 6

1.5 TEX processing: an overview
Exactly what you commands you type or what buttons you click in order to process
a TEX document depends on what system you're working on, but there are always
three steps involved. This section explains what the steps mean, but you'll have to
refer to the documentation that came with your TEX implementation for the details,
or else ask around.

Step 1: preparing the source

Suppose you want to use TEX to typeset a letter, or an article, or a book. The
first step is to type the text into a file on your computer disk, using a text editor.
Together with the text you will probably want to include TEX formatting commands,
or control sequences:

text + file
text editor

control I on

sequences disk

You should be sure to understand the difference between a text editor and a text
processor. A text processor is a text editor together with formatting software that
allows you to switch fonts, do double columns, indent, and so on. A text editor
puts your text in a file on disk, and displays a portion of it on the screen. It doesn't
format your text at all.

We insist on the difference because those accustomed to WYSIWYG systems are
often not aware of it: they only know text processors. Where can you find a text
editor? Just about everywhere. Every text processor includes a text editor which
you can use. But if you use your text processor as a text editor, be sure to save your
file using a "save ASCII" or "save text only" option, so that the text processor's own
formatting commands are stripped off. If you give TEX a file created without this
precaution, you'll get garbage, because TEX cannot digest your text processor's
commands.

6 From this point of view, there is an interesting parallel between T]3X and Fortran ...

What is T[:X? 9

Step 2: Running lEX proper
TEX's actions can be schematically represented like this:

source file output page
TEX

(text +) description

control sequences) r (dvi file)

font metrics

(tfm files)

When TEX sets your text, its first task is to replace the characters in the text by
their dimensions. A character has three associated dimensions: height, depth and
width. Of course, these dimensions depend on the font you're using: an 'a' has
different widths depending on whether it comes from a roman or a boldface font.
The dimensions of characters are contained in special files, called tfm files, for
rEX font metrics. The same files contain other tidbits of information, concerning
ligatures (automatically managed by TEX) and italic corrections (a tiny bit of space
that you can leave after an italicized word so it will look better).

After it's read a whole paragraph and converted it into these integer dimensions,
TEX adds, subtracts, multiplies and divides these numbers at full throttle, and comes
up with an abstract description of what the paragraph will look like on the page.
This description is written into a file called the dvi file (for device independent).

Step 3: Getting output

TEX only works with dimensions: it completely ignores the shapes of the charac
ters. When the dvi file is completed, another program must take over to actually
produce a page: a driver, which sends the page to a printer, or a previewer, which
displays it on your computer screen.

Here's what happens then:

output page output page
driver or previewer

description (on the screen

(dvi file) or on paper)

pixel

files

The driver (or previewer) looks for the shape of the characters in another type of
font files, called pixel files. With this information it proceeds to create the right
pattern of pixels on your screen or on a sheet of paper.

This overview of the way TEX works explains why you can't just use any font with
Tpc: you must have the metric information in a tfm file. More and more fonts
nowadays come with tfm files. There are also programs that create tfm files for
PostScript fonts, starting with the metric files (afm files) provided with such fonts.

10 A Beginner's Book of T g<

1.6 Looking ahead
We have just discussed in detail the qualities and shortcomings of TEX. It is now
time for you to try your hand at it. To do this, you should input one or both of the
two short texts below on your computer. (Skip the second if you're not interested
in typesetting math.)

To begin with, compare the source with the page output. Try to guess the result
of each control sequence (word starting with a backslash). Then use your favorite
text editor to type the first text into a file hobbit. tex , and the second into a file
math.tex.

TEX differs from most WYSIWYG systems in its treatment of the two "invisible"
characters, the space and the carriage return, which we will generally write SP

and CR. (The carriage return is what you type to start a new line on the screen.)
Normally, when you use TEX, you can start a new line whenever you want: you
can even type a single word per line, and the result will be the same, because TEX
justifies output lines, making them all the same length. For TEX, a CR has the same
effect as an SP. Several SP in a row also have the same effect as a single one. But
for these two texts, it's best if you try to input the lines exactly as shown, so it'll
be easier to compare your file with the model if you type something wrong.

There is an exception to the rule that a CR is the same as an SP: when TEX sees two
CR in a row-which is to say, when it sees an empty line-it starts a new paragraph.
So you should also respect empty lines when typing in these texts.

Once you've typed in one or both files, you should run TEX on them and send the
output to the printer. In almost all implementations, the command to run TEX on
a file called hobbit. tex is tex hobbit. The command to print the resulting
dvi file, which contains the page description, is completely system-dependent,
and you'll have to consult the documentation or ask someone around to find out
what to do.

While you're running TEX you may run into error messages, indicating that you
made typos when inputting the files. Respond to each error message with a CR,

then edit the source file again to make sure it follows exactly the model on the
following pages. Eventually TEX will run without any error messages, and you
will be able to send the dvi file to the printer and look at the output.

First text
\hsize=115mm

"Good morning!" he said at last. "We don't want any
adventures here, thank you! You might try over The Hill
or across The Water." By this he meant that the
conversation was at an end.

"What a lot of things you do use {\it Good morning\/}
for!" said Gandalf. "Now you mean that you want to get
rid of me, and that it won't be good till I move off."

What is T£X? 11

"Not at all, not at all, my dear sir! Let me see,
I don't think I know your name?"

"Yes, yes, my dear sir!---and I do know your name,
Mr.-Bilbo Baggins. And you do know my name, though you
don't remember that I belong to it. I am Gandalf, and
Gandalf means me! To think that I should have lived
to be good-morninged by Beladonna Took's son, as if I was
selling buttons at the door!"

"Gandalf, Gandalf! Good gracious me! Not the wandering
wizard that gave Old Took a pair of magic diamond studs
that fastened themselves and never came undone till ordered?
Not the fellow who used to tell such wonderful tales at
parties, about dragons and goblins and giants and the
rescue of princesses and the unexpected luck of widows'
sons? \dots\ Bless me, life used to be quite inter---l mean,
you used to upset things badly in these parts once upon
a time. I beg your pardon, but I had no idea you were
still in business. "\footnote*{J. R. R. Tolkien,
{\it The Hobbit.}}

\bye

"Good morning!" he said at last. "We don't want any adventures here,
thank you! You might try over The Hill or across The Water." By this he
meant that the conversation was at an end.

"What a lot of things you do use Good morning for!" said Gandalf.
"Now you mean that you want to get rid of me, and that it won't be good
till I move off."

"Not at all, not at all, my dear sir! Let me see, I don't think I know
your name?"

"Yes, yes, my dear sir!-and I do know your name, Mr. Bilbo Baggins.
And you do know my name, though you don't remember that I belong to
it. I am Gandalf, and Gandalf means me! To think that I should have lived
to be good-morninged by Beladonna Took's son, as if I was selling buttons
at the door!"

"Gandalf, Gandalf! Good gracious me! Not the wandering wizard that
gave Old Took a pair of magic diamond studs that fastened themselves
and never came undone till ordered? Not the fellow who used to tell such
wonderful tales at parties, about dragons and goblins and giants and the
rescue of princesses and the unexpected luck of widows' sons? ... Bless me,
life used to be quite inter-I mean, you used to upset things badly in these
parts once upon a time. I beg your pardon, but I had no idea you were still
in business." *

* J. R. R. Tolkien, The Hobbit.

12 A Beginner's Book of T p<

Second text
\hsize=115mm

\centerline{\bf 3. Endomorphisms of an A-module
of finite type}

\medskip
\noindent Theorem 3.1.
{\it If M is an A-module of finite type and
$u:M\rightarrow M$ is an endomorphism of M, the following
equivalence holds:
$$
u \hbox{ is surjective }\iff u \hbox{ is bijective.}
$$}% end of italics

The direction \Leftarrow is obvious. We show
the opposite direction \Rightarrow. Let
(x_l,x_2,\ldots,x_n) be generators for M.
Since u is surjective, there exist $y_i\in M$ such
that $x_i=u(y_i)$. Since the x_i generate M,
there exist $a_{ij}\in A$ ($l\le i\le n$) such that
$y_i=\sum_{j=l}-n a_{ij}x_j$, whence
$$
x_i=\sum_{j=l}-n a_{ij}u(x_j)\qquad\hbox{for $l\le i\le n$}.
\leqno(3. 1. 1)
$$
Giving M the $A[T]$-module structure defined by u,
this implies that
$$
x_i=\sum_{j=l}-n (a_{ij}T)x_j\qquad\hbox{in M}.
\leqno(3.1.2)
$$

Now give the $A[T]$-module $M-n$ the Mat$_n(A[T])$-module
structure described in (2.2.4). It is easy to see that
(3.1.2) implies that, in $M-n$,
$$
\pmatrix{
l-Ta_{ll} & -a_{12} & \ldots& -a_{ln} \cr
-a_{21} & l-Ta_{22}& \ldots& -a_{2n} \cr
\vdots & \vdots & \ddots& \vdots \cr
-a_{nl} & -a_{n2} & \ldots& l-Ta_{nn}\cr
}

\pmatrix{x_l \cr x_2 \cr \vdots \cr x_n \cr} O.
\leqno\rm (3.1.3)
$$

\bye

What is T E!<? 13

3. Endomorphisms of an A-module of finite type

Theorem 3.1. If M is an A-module of finite type and u : M ---; M is an
endomorphism of M, the following equivalence holds:

u is surjective ~ u is bijective.

The direction {::: is obvious. We show the opposite direction =>. Let
(Xl, X2, ... , xn) be generators for M. Since u is surjective, there exist Yi E
M such that Xi = U(Yi). Since the Xi generate M, there exist aij E A
(1::; i ::; n) such that Yi = Ej=l aijXj, whence

(3.1.1)
n

Xi = LaijU(Xj)
j=l

for 1 ::; i ::; n.

Giving M the A[Tl-module structure defined by u, this implies that

(3.1.2)
n

Xi = L(aijT)xj
j=l

in M.

Now give the A[Tl-module Mn the Matn(A[T])-module structure de
scribed in (2.2.4). It is easy to see that (3.1.2) implies that, in Mn,

(3.1.3) =~~:) (~~) =0.

1- ~ann X:n

Some variations
After you've run one or both files without errors, try the following variations:

• Replace \hsize=115mm at the top of the files with \hsize=3in. This resets
the width of the page, that is, the length of the lines.

• Add \ vsize=2in at the top of the files. This sets the height of the page to be
only two inches, so you get page breaks.

• Add \parindent=lin, or (another time) \parindent=-lin atthe top. This
sets the paragraph indentation.

• Add \baselineskip=15pt at the top to set the distance between the bottoms
of consecutive lines. (A point, abbreviated pt, is a very commonly used unit in
typography; there are about 72 pt in an inch.)

• Add \parskip=5pt at the top, to change the spacing between paragraphs.

1.7 Creating a master file

If you have a long document to typeset, it's best not to have all of the text in one
file, because it is cumbersome to manipulate big files. A good rule of thumb is that

14 A Beginner's Book of T p<

your TJY(files should not exceed 500 lines. So you should have one chapter, or
perhaps one section, per file.

Suppose your document is split among four files, called, for example, doc1. tex ,
... , doc4. tex.
It is not necessary to merge the individual files and the macro file to run them
together. Instead, it's much better to create a small master file, called, for example,
master. tex. It will say simply this:

\input doc!. tex
\input doc2.tex

\input doc3.tex
\input doc4.tex
\bye

Now when you type tex master (or whatever it is that you type to run TJY(on
your system), TJY(will read the files doc1. tex , ... , doc4. tex in sequence, and
behave as if the four were one big file.

Suppose also that you want to set several options as you did at the end of the pre
ceding section, for example, the \hsize, the \vsize, and the \parindent.
You could start the files doc!. tex, ... , doc4. tex with the corresponding com
mands; but since these commands really should affect the whole document, it's
best not to encumber the individual files with them-there is no reason they should
be read four times. Instead, you can put them all in a macro file (or options file, or
style file), called, say, doc .mac. The file will look something like this:

\hsize=4.5in
\vsize=6in
\parindent=!in

And now you add \input doc. mac at the top of the master file, so it is read just
before doc!. tex.

1.8 Error messages
It's rare to get a source file entirely right the first time, especially if you are a
beginner. When TJY(runs into a place where the file is messed up, it sends you
an error message. It also sends the error messages to a log file, so you don't have
to make a note of them: you can look in the log file after the run is over.

Often there isn't much you can do to fix an error at run time, and the best course
is to tell TJY(to forge ahead in spite of apparent nonsense. You do this by typing
carriage returns as TJY(prints question marks on your screen. On the other hand,
sometimes the messages can save a lot of time-as you learn, little by little, what
causes them and what they mean.

Here is an error message that you will often encounter in the beginning:

! Undefined control sequence
1.27 xxxxxx \hvill

yyyyyy
?

What is T£X? 15

Here xxxxxx and yyyyyy represent the text immediately before and after the
error. TEX is saying that it's just read, on line 27, a control sequence \hvill
whose meaning it doesn't know. It will ignore it, but it stops to give you a chance
to fix things somewhat.

The question mark means that TEX is waiting for a response. Here are five possible
responses:

• Typing H or h (followed by CR). TEX offers help, in the form of a somewhat
longer explanation of the problem. This option is often useful to beginners.

• Typing CR by itself. This means you have nothing to tell TEX and that it should
continue as best it can. Unless the error has subtle ramifications, TEX generally
recovers pretty well and subsequent paragraphs are unaffected by the error. But
some errors are harder to recover from, and you may find yourself typing CR several
times in a row. In this case you can save yourself some trouble by typing Q or q
(for "quiet"), which is the same as typing CR to all errors till the end of the run.

• Inserting some text just before yyyyy. You do this by typing I or i , followed
by whatever you want to insert, then CR. In the example above, \hvill was a typo
for \hfill, so you can achieve your original intent by typing i \hfill. Watch
out: what you type interactively to TEX does not go into your source file! You
won't find the corrections there when you edit your text. But the log file does get
a copy of everything you type to TEX, so a long definition can be spliced into the
source using your editor.

• The next possibility is to type X or x (for "exit"). TEX quits the game, but all
pages completed so far are already safely recorded in the dvi file, and can be sent
to the printer or the screen.

• In extreme cases you may have to use your operating system's Interrupt or Reset
key to abort the run, and try to guess by looking at the source what went so terribly
awry. Fortunately this situation is rare ...

As the \hvill example above shows, an error causes TEX to display the line of the
file where it occurs--or rather, a pair of lines, since the line is broken at the point
where the error is detected. Errors can be detected not only while new material is
being read from a file, but also while TEX is doing something to commands already
read (such as "expanding macros"). In this case, several such pairs of lines are
shown; only the last one represents what's currently being read from the file. If you
get annoyed with unintelligible context lines filling up your screen every time you
hit an error, start your file with \errorcontextlines=O. This will inhibit the
printing of all context lines but the first (where the proximate cause ofthe problem
lies) and the last (which is the actual line in your file where TEX stumbled). (Note:
versions of TEX prior to 3.0 don't know about \errorcontextlines.)

Other common error messages are:

! Overfull \hbox (followed by a dimension)

This is not very serious: the program doesn't even stop running. TEX is about to
write on into the margin because it can't fit things into a regular line. If the excess

16 A Beginner's Book of T EX

is very big (of the order of 100 pt or more), you may want to investigate if you're
using \line or \centerline in the middle of a paragraph. It may also be that
TEX got confused some time before and got into math mode by mistake.

! Underfull \hbox (or Underfull \vbox)

TEX likes neither overfull boxes (the preceding case) nor underfull ones. You can
ignore these messages, too: don't worry about the page layout until later.

! Runaway argument?

You gave more than one paragraph to a macro (such as \centerline) that can
only handle one paragraph or part of a paragraph at a time.

! Missing $ inserted.

TEX has just entered into math mode on its own, because it's seen something that
it should only see in math mode: an exponent, or a Greek letter, for example. So
it pretends that the offending object was preceded by a dollar sign. But beware:
TEX may know it has to get into math mode, but it won't know when to leave,
until it reaches the end of the paragraph! So you'll generally get one or more
Overfull \hbox messages, because TEX is typesetting text in math mode, and
ignoring spaces as it goes. Don't worry, you'll fix it easily in the source, by just
adding dollar signs at the right places.

One hint: when TEX finds an overfull box, it marks it with a thick vertical bar on
the right margin. The width of this bar is controlled by \overfullrule, so you
can make it invisible by typing \overfullrule=Opt at the top of the file. You
can also control how strict TEX is in signaling overfull boxes in the first place: if
your text is invading the margin by a negligible amount, say 1 pt, you should set
\hfuzz=lpt at the top of the file or, even better, in the macros file, as discussed
in section 1.7.

If the file that you're running doesn't end with \end or \bye, TEX will process
it and offer you a chance to add more material by prompting you with a * on the
screen. If you have nothing to say, type \bye. A CR at this point will make TEX
quite frustrated, and generate the message

(Please type a command or say '\end')

If typing \bye or \end won't end the run, it's because the input file left TEX
in some strange mode. How to stop in that case depends on your machine: most
operating systems have an end-of-file character that you can type to signal that
there really is no more input. Consult the documentation that came with TEX, or
your local system administrator.

2
The characters of TEX

Here is the list of characters that you can use when typing TEX:

A B .. . Z a b ... z

0 1 9 ; : ! ?
, ,

" ... ,

+ - * / I < > () [] (Q

$ # % &: \ { } - --

These are mostly characters you're accustomed to using: lowercase and uppercase
letters, digits, punctuation, accents, and certain mathematical symbols. Of course,
you can use the space SP and the carriage return CR.

2.1 Characters that are special to TEX
Look carefully at the last line of the table: it lists the characters that have special
meaning to TEX. These characters don't print as themselves, but are instead used
to communicate with TEX in special ways.

The first four of them sometimes occur in text, and you can get them by preced
ing them with a backslash: type \$ to get $, \% for %, \&: for & and \# for
#. The others normally occur only in special situations, for example, braces in
mathematics. We will discuss them in later chapters.

The character $ declares that the texts following it should be treated in a special
mode, called math mode. To get out of this mode, type $ again. It is essential to
tell TEX when you're about to type mathematics, because a different set of rules and
conventions takes effect then (for instance, spaces are treated quite differently).

18 A Beginner's Book of T g<

Be extra careful with the symbol %! When TEX finds a % not preceded by a
backslash, it skips everything remaining on the line, starting with the %. In this
way, you can include comments in a TP<: file that won't show in the output-a
reminder to yourself, an explanation for future reference, or a remark not meant
for public eyes. For example, if you type

Annual Report % Judy,
of the Board of Directors % can you believe
of Graham, Grimm \& Groome % that Steve
% stood me up again last night?

TP<: "sees" only the following:

Annual Report
of the Board of Directors
of Graham, Grimm \& Groome

and proceeds to typeset the Annual Report of the Board of Directors of Gra
ham, Grimm & Groome, completely ignoring your justifiable indignation.

Notice the use of \& above in order to get a &. The character &, together with
, is reserved for use in alignments and tables.

Braces, too, deserve special attention. A pair of braces like this:

... { ... a group ... }

defines a group. See chapter 3 for more details.

The characters ~ and _ are used in typing mathematical formulas.

Finally, the character - creates a tie, or unbreakable space. TEX will not break
lines at a tie. For example, you should type p. -314 rather than p. 314 in order
to prevent an unsightly break. The tie serves another important function: it tells
TP<: not to leave extra space after the abbreviation, as it generally does following
a period. You'll find examples in the first text of section 1.6 and in section 2.5; see
also section 5.9.

2.2 Quotes
You should distinguish carefully between opening and closing quotes, ' and ';
they are on different keys, ' and ' . The position of the closing single quote,
or apostrophe, is pretty much standard, but the other depends on what keyboard
you're using, and is sometimes hard to find. To get double quotes (of either type)
type the corresponding single quotes twice.

So to get

"I've no idea what 'holonomy' means", he said sheepishly.

you should type "I've no idea what 'holonomy' means", and so on.

The double-quote character " has the same effect as two closing single quotes "

The characters of T e< 19

2.3 Ligatures and special characters
TEX treats the sequence of characters " in a special way, and prints a combined
character, or ligature, in its place. Here is a complete list of TEX's ligatures:

ff ~ ff ffi ~ ffi ' , ~ " ! ' ~

fi ~ fi ifl ~ ffi ' , ~ " ?' ~ i

fl ~ fl ~ - ~

There are four types of dashes in TEX. They are:

• The hyphen, used in compound words, is obtained by typing a single -. TEX
inserts a hyphen automatically when it breaks a word between lines.

• The en-dash is a bit longer: -. You get it by typing --, and it is used to indi
cate ranges of numbers; for example, to get pages 13-47 you should type pages
13--47.
• The em-dash is even longer-it's used as punctuation, as in this sentence, and

you get it by typing ---.
• The minus sign appears spontaneously in math mode: $-$ gives -.

Whenever you want to typeset plus or minus signs, you should do it in math mode,
that is, inside a pair of $... $. The result looks much better:

1 +2-3 1+2-3
$1+2-3$ 1 + 2 - 3

Several other special characters are obtained by typing control sequences:

\oe, \OE

\aa, \AA

\1, \L

~ ee, CE

~ a, A
~ I, L

\ae, \AE

\0, \0

\ss

~ re, lE

~ 91,0

~ B

To get les eeuvres d 'lEsope, you should type les \oe uvres d'\AE sope.
Why are there spaces after the \oe and the \AE? To tell TEX where the name of
the control sequence ends. Any number of spaces, and up to one carriage return,
are discarded after a control sequence made up of letters. Here are some more
examples:

Stra \ss burg -t StraBburg Bergstr\o m -t Bergstr9lm

Wroc\l aw -t Wrodaw \AA rhus -t Arhus

If the space in the middle of a word bothers you, you can delimit the control se
quence in another way: Stra{\ss}burg, Bergstr{\o}m, and so on. Here the
} also tells TEX that the control sequence has ended.

Suppose you're a physicist, and want to typeset

Light with a wavelength of 3000 A is invisible.

20 A Beginner's Book of T EX

If you type ... \AA is invisible, you get ... Ais invisible: not at all what
you want! For the space not to be discarded, you must make sure it doesn't come
right after the control sequence name. You can choose according to taste:

{\AA} is invisible or \AA\ is invisible.

2.4 Accents

To get an accent above a letter, type the appropriate control sequence before the
letter: for example, e is obtained by typing \' e . Any letter or symbol can follow
an accent. Here is a list of the available accents, and how they look on the letter
'0':

\'0 0 grave accent \'0 6 acute accent

\-0 6 circumflex accent \"0 0 dieresis or umlaut

\-0 6 tilde \u 0 0 breve

\=0 6 macron or bar \.0 6 dot accent

\b 0 Q bar-under accent \d 0 9 dot-under accent

\t 0 60 tie-after accent \v 0 0 hacek or check

\H 0 0 Hungarian umlaut \c 0 Q cedilla

Notice the difference in syntax between \' 0 and \.0, on the one hand (no space
after the accent), and \b 0, \v 0 on the other (space required). Here are some
examples:

l\'ese-majest\'e

\v Cekoslovensko

---+ lese-majeste

---+ Cekoslovensko

Fr\" aulein ---+ Fraulein

na\"\i ve ---+ naIve

na \ "{\i}ve ---+ naIve

When an 'i' gets an accent, it should first be deprived of its dot. That's why we use
the control sequence \i in the last two lines above. As usual, we have to leave a
space after it or enclose it in braces. The same remarks apply to 'j', whose dotless
version is obtained by typing \j .

If you need to use certain accents a lot-if you're writing a text in French, say
it's possible to arrange things so that fewer keystrokes are needed for each accent.
For instance, you can redefine " so that it stands for the dieresis, rather than for
quotation marks. You can even make TEX look ahead and replace an accented 'i'
by '1', so you would just type na"ive to get naIve. We'll come back to this point
in section 12.6.

The characters of T EX 21

2.5 Two exercises
Test yourself by trying to typeset this bibliographical reference in Rumanian,
without looking at the solution below:

GEORGESCU, V. A., Bizantul §i institutiile romane§ti pina la mijlocul
secolului al XVIII-lea (Byzanz und die rumanischen Institutionen bis zur
Mitte des 18. Jahrhunderts). Bucure§ti, Ed. Academiei RSR, 1980. Re
viewed by C. R. Zach, in Siidost-Forschungen, 40, 1981, pp. 434-435.

GEORGESCU, V. A., Bizan\c tul \c si institu\c tiile
rom\-ane\c sti p\-\i n\u a la mijlocul
secolului al XVIII-lea (Byzanz und die rum\" anischen
Institutionen bis zur Mitte des 18.-Jahrhunderts).
Bucure\c sti, Ed.-Academiei RSR, 1980.
Reviewed by C.-R.-Zach, in S\"udost-Forschungen,
40, 1981, pp.-434--435.

And here is a short text in Berber, a North African language. To get "(and E you
can use the abbreviations \g and \e, after having defined them in the following
way: \def\e{ε} \def\g{γ}.

Yenna-yas: J:tul). ~~u lejnan. Ma d ayefki, yenna-yas: rul). a"(tixsi tamezgult,
zlu-t, tazuQ-t, twenEeQ-t irkweli, tawiQ-t "(er uqemmuc l-l"(ar t-tizemt.

Yenna-yas: \d Ru\d h \d z\d zu lejnan. Ma d ayefki,
yenna-yas: \d ru\d h a\g tixsi tamezgult, zlu-\c t,
tazu\d d-\c t, twen\e e\d d-\c t irkweli, tawi\d d-\c t
\g er uqemmuc l-l\g a\d r t-tizemt.

3
Groups and modes

3.1 Groups

What is a group?

You create a group when you put text within braces:

... {AAA ... {BBB ... bbb}} ... {eee ... eee}

Remember that the braces don't show on the output. They simply mark the begin
ning and the end of the group. In the example above there are three groups. The first
starts with {AAA ... , the second is {BBB ... bbb} , and the third {eee ... eee} .
The group {AAA ... } contains the group {BBB ... bbb} .

You also create a group whenever you use one of the box commands \hbox{ ... } ,
\ vbox{ ... }, \ vtop{ ... } and \ veenter{ ... } , as well as many others like
\halign{ ... } and \matrix{ ... }. The general rule is that whenever you see
braces, there is a group there. Pairs of single dollar signs $... $ and double dollar
signs $$... $$, used to delimit math mode, also define groups.

Groups must be correctly nested: each open brace must be balanced by a close
brace, and a group cannot encroach on another. It two groups overlap, one must be
entirely inside the other. In this example:

{AAA ... {BBB ... {eee ... bbb} ... eee} ... aaa}

we've tried to interweave the groups {BBB ... bbb} and {eee ... eee}, but the
result is a group {AAA ... aaa} containing a group {BBB ... eee} containing a
group {eee ... bbb} . And this example

{AAA ... {BBB ... $eee ... bbb} ... eee$... aaa}

Groups and modes 23

gives an error message, because we're trying to close the group {BBB ... bbb}
before closing the group $CCC ... ccc$ that began inside it.

One can also define groups using certain control sequences:

\bgroup ... \egroup or \begingroup ... \endgroup

The usefulness of these constructions will become clear later on.

What are groups for?
T]3X keeps track of a great number of variables: fonts, margins, interline spacing,
and many others. Consider, for example, the variable \parindent, which says
by how much the first line of each paragraph should be indented. (It is also used
by such macros as \i tem and \narrower.) The value of this variable when you
start plain T]3X is 20 pt, or about .27 inches; suppose you want to temporarily make
it zero so as to get a few unindented paragraphs. You can write \parindent=Opt
and, after you're done, cancel the change by writing \parindent=20pt. But this
is inconvenient for two reasons: you must know the original value of the variable,
and you mustn't forget to change it back. A more reliable method is to use a group:

{\parindent=Opt ... }

Inside the group, the \parindent is 0 pt. After the group is finished, the value
of \parindent is automatically reset to what it was before; in general, values
assigned to variables within a group are automatically forgotten when T[jX steps
out of the group. Such variables then revert to the values they had before the group
was entered; we say that their values were local to the group. Variables that don't
receive a new value inside the group, of course, have the same value throughout.
(Those familiar with the computer science jargon will realize that grouping is han
dled by a stack mechanism.)

This is an important point, and it affects not only variables but all aspects of T]3X:
macros, fonts, etc. Here is a little example to make it sink in. The big rectangle
represents the page, and the small rectangle the group:

\def\toto{Hello, world!}
\parindent=20pt
\parskip=Opt

{\font\eightrm=cmr8
\def\toto{Good bye!}
\parindent=Opt
... }

Before and after the group, the macro \ toto stands for Hello, world!, the
\parindent is 20 pt and the \parskip is 0 pt. Inside the group, \toto stands

24 A Beginner's Book of T e<

for Good bye! ,the \parindent is 0 pt and the \parskip is still 0 pt. The font
command \eightrm (explained in the next chapter) works inside the group, but
is undefined outside.

As usual, there is a way to tell T]jX to act differently. To make \parindent
retain its value after the end of the group, you can say {\global \parindent
=2cm ... } . Similarly, if you want the new definition of \ toto to remain after the
group, entirely overriding the old one, you can say

{\global\def\toto{Good bye!} ... }.

Now, as promised, a few words about the commands \bgroup ... \egroup and
\begingroup ... \endgroup. The pair \bgroup and \egroup are just new
names for braces. This means you can replace an open brace by a \bgroup and
a close brace by an \egroup, if you feel like it. This in itself is not very useful,
until you find yourself trying to define a macro that has unbalanced braces inside.
(See section 12.2 for an example.)

The other pair, \begingroup and \endgroup, is not synonymous with braces: a
group starting with \begingroup must end with \endgroup. Why this distinc
tion? Because it allows one to build mechanisms to check for errors much more
thoroughly than can be done in plain T]jX. (Needless to say, creating such mech
anisms is not a task for beginners.) For example, U\T£X uses \begingroup and
\endgroup to define environments that begin and end with paired commands. If
your file has something like \begin{document} ... \begin{theorem} ...
\end{document}, you probably left something out inadvertently, and an error
message is generated saying that the \begin{ theorem} doesn't have a matching
\end{ theorem}. In plain TEf(this sort of error is much harder to detect.

3.2 Modes

The three modes of TEX
In chapter 8, you will see that T]jX is mostly concerned with boxes. Roughly speak
ing T]jX places these boxes on the page in one of three ways:

• side by side, like a typesetter setting a literary text or someone stringing beads
(horizontal mode);

• on top of one another, like a storekeeper stacking up boxes of merchandise
(vertical mode);

• according to special rules, like a typesetter setting a mathematics text (math
mode).

When T]jX is in horizontal mode, it places characters, or boxes, side by side. Hor
izontal mode has two submodes:

• ordinary horizontal mode. T]jX is in this mode when it is setting a paragraph.
It puts all the characters and boxes side-by-side into a long horizontal list. Later,
when it hits the end of the paragraph, it breaks up the list into lines and stacks
them up.

Groups and modes 25

• restricted horizontal mode. TEX is in this mode when it's setting text inside an
\hbox or \halign. The behavior is almost the same as in ordinary horizontal
mode, but the horizontal list that TEX creates is not broken into lines-it turns into
a box as wide as the sum of its components.

When TEX is in vertical mode, it stacks boxes on top of one another. Vertical mode,
too, has two submodes:

• ordinary vertical mode. TEX is stacking up boxes (for example, lines of text)
at the "outer level," to build up a page. When the boxes pile up to the height of a
page, TEX ships them out and begins a new page.

• internal vertical mode. TEX is stacking up boxes to make another box, rather
than a page. The difference here, like the difference between the two horizontal
modes, is that in internal vertical mode TEX will keep stacking boxes up to matter
how tall the pile gets.

Math mode, too, has (you guessed it) two submodes:

• text math mode, which begins and ends with single dollar signs $... $. In this
mode TEX builds up a math formula to be included inside a line of text.

• display math mode, delimited by double dollar signs $$... $$. In this mode
TEX builds up a math formula to be displayed, that is, centered on a line by itself.

Changing modes

When it starts, TEX is in ordinary vertical mode. Any character, or any of several
commands that indicate that a paragraph is about to start, makes TEX go into
horizontal mode. Dollar signs make it go into math mode. The end of a paragraph,
signaled by a blank line or by \par, makes it go back to vertical mode, as does
any intrinsically vertical command.

Why talk about modes?

Normally, you won't have to worry about what mode TEX is in. But the same
character or command can cause different reactions when encountered in different
modes, and this sometimes causes unexpected behavior or error messages. For
example, if you type {\obeyspaces a} in the middle of a paragraph,
you get several spaces before the 'a', but if you do it right after a blank line you
get none! The reason is that after a blank line you're in vertical mode, a paragraph
having just ended; spaces have no effect in vertical mode or math mode.

Some commands simply don't make sense in some modes. In restricted horizontal
mode TEX is meant to create a single line, so naturally it doesn't expect to encounter
\ vski p , a command to add vertical spacing, and complains if it does. For a similar
reason, TEX ignores (although it doesn't consider it an error) a blank line inside an
\hbox.

Here is a practical example: as it finishes processing your file, TEX reads the final
\bye command and produces the message:

! You can't use '\end' in internal vertical mode.

26 A Beginner's Book of T EX

What's happening? When it read \bye (which includes \end in its definition),
TEX was in internal vertical mode-inside a \vbox or some such thing. It hadn't
finished the box yet, probably because a right brace was missing somewhere. So
the solution is to add the right brace and repeat the \bye command, by typing

i}\bye.

3.3 For the aspiring wizard
If you want to see TEX change modes, start TEX interactively (without a file name)
and type the lines below one by one (left column, then right column). You'll see a
message on the screen every time the mode changes.

\tracingcommands=1
\tracingonline=l
\hbox{
a
x

\vbox{
b\par
c}
}

\bye

4
The fonts TEX uses

4.1 lEX's fonts

Plain TEX allows you to use several types of text fonts: roman, italic, boldface,
slanted and typewriter. (Slanted and italic are altogether different things: you'll
see samples soon.) All these fonts belong to a big family, called Computer Modem,
especially designed by Knuth for use with TEX. Most systems that run TEX offer
all the Computer Modem fonts, which in addition to the styles above include more
esoteric ones such as sans-serif, unextended bold and unslanted italic.

Nowadays many installations of TEX, both on PC's and on bigger systems, allow
access to PostScript fonts: Times, Helvetica, and whatever else your printer has.
You can also get fonts for foreign alphabets, special characters, and so on.

The fonts that you can use in TEX fall into two categories: those already known
when TEX starts-they're called preloaded-and those that you have to tell TEX
about. Let's look at them in tum.

4.2 Preloaded fonts

When you start plain TEX, unless you say something to the contrary, you
get Computer Modern Roman at 10 point. This paragraph is set using this
font: it looks somewhat like the Times Roman font used for the rest of this
book, but the face is more open, more rounded and less tall.

TEX knows this font under the name \tenrm, and the same roman font in 7 and 5
point size is known as \sevenrm and \fi verm. That's pretty self-explanatory!

28 A Beginner's Book of T EX

To use 7-point roman, it 's enough to type \sevenrm: from then on, that's the font
you get. Let's have a bit of fun:

He had a great big head
on an average body,

and s ho rt, s pindly legs.

He had a great big head\par
\sevenrm on an average body,\par
\fiverm and short, spindly legs.

(Notice the use of \par to start a new line.)

Now say you have just a bit of text to set in 7 point:

She tiptoed quietly into the room.

You could type She tiptoed \sevenrm quietly \tenrm into the room.
But it's annoying to have to revert to \ tenrm explicitly. There is a better alterna
tive: place the 7-point word and the font-change command inside a group, that is,
within braces. When TEX leaves the group, it restores automatically the previous
font.

She tiptoed {\sevenrm quietly} into the room.

Here is the complete list of non-math fonts preloaded in plain TEX; see the next
section for an explanation of the file name column.

font file name font-change command description

cmrl0 \tenrm lO-point roman
cmr7 \sevenrm 7-point roman
cmr5 \fiverm 5-point roman

cmbxl0 \tenbf lO-point bold
cmbx7 \sevenbf 7-point bold
cmbx5 \fivebf 5-point bold

cmtilO \tenit 10-point italic

cms110 \tensl lO-point slanted

cmttl0 \tentt lO-point typewriter

In addition to the font-change commands above, plain TEX offers abbreviations
\rm, \bf, \it , \sl and \tt which give the corresponding lO-point fonts.
They also work correctly in math mode, which is not the case for \ tenrm , etc. (see
section 4.7 if you must know why). These abbreviations, then, are the preferred
way to change fonts, unless you need a size change.

4.3 Loading other fonts

Suppose you want to use 8-point roman, a font that is not preloaded in plain TEX.
You must define a name to refer to that font-"register" it with TEX, so to speak
and also tell TEX where to find information about it. Information about each font is

The fonts T c>< uses 29

kept in a special file somewhere on your computer system; for Computer Modem
Roman at 8 point, this file is called emr8. The registration command in this case is

\font\eightrm=emr8

(No backslash before the file name!) Once the registration formalities are over,
T£X will treat the newly defined \eightrm just like the predefined names of the
previous section:

He had a great big head He had a great big head\par
on an average body, \eightrm on an average body, \par
and short, spindly legs. \sevenrm and short, spindly legs.

There is nothing sacred about the name \eightrm: you could have called this font
\romaneight, or \romanVIII (sorry, no digits allowed), or \romainhuit if
you're more fluent in French. The notary that works inside T£X will register the
most outlandish names without batting an eyelash.

A common mistake among beginners: registering a new font, that is, saying \f ont
\ toto= ... , doesn't mean that T£X switches to that font right away. It just learns
its name. You must still type \toto to switch to the new font.

PostScript fonts
Assuming that your installation of T£X supports PostScript fonts, you must load
them into T£X just the same as any other font that is not preloaded. The only thing
to watch out for is that, unlike Computer Modem fonts, PostScript fonts may have
different names and design sizes on different systems. To get Times Roman at
10 pt, the main text font in this book, you might have to say

\font\timesX=PS-Times-Roman

on one system, while on another the right incantation might be

\font\timesX=Times at 10pt

because the "design size" is arbitrarily set at 1 pt. You shouldn't use \ times as
the name of a font, because this control sequence already means the symbol x.

4.4 A cornucopia of fonts

emrl0

embxl0

emesel0

Here are some samples of Computer Modem fonts. First the roman (emr) with
two simple variations: boldface (embx , for bold extended, a reference to its width)
and caps-small caps (emese):

MURPHY'S LAW: If anything can go wrong, it will.

MURPHY'S LAW: If anything can go wrong, it will.

MURPHY'S LAW: IF ANYTHING CAN GO WRONG, IT WILL.

Then come the italic fonts, available in regular (emti , for text italic) and bold
(embxti):

emtil0 MURPHY'S LAW: If anything can go wrong, it will.

embxtilO MURPHY'S LA W: If anything can go wrong, it will.

30 A Beginner's Book of T EX

Tilting an upright font, without any other modifications, gives you a slanted one.
Notice how slanted differs from italic.

cms110 MURPHY'S LAW: If anything can go wrong, it will.

cmbxs110 MURPHY'S LAW: If anything can go wrong, it will.

The basic typewriter font (cmtt) has several variations: italic (cmi tt), slanted
(cmsl tt) and caps-small caps (cmtcsc):

cmttl0 MURPHY'S LAW: If anything can go wrong, it will.

cmittl0 MURPHY'S LAW: If anything can go wrong. it will.

cmslttl0 MURPHY'S LAW: If anything can go wrong, it will.

cmtesel0 MURPHY'S LAW: IF ANYTHING CAN GO WRONG, IT WILL.

Here are several sans-serif fonts (de stands for demibold condensed):

cmssl0 MURPHY'S LAW: If anything can go wrong, it will.

emssbxl0 MURPHY'S LAW: If anything can go wrong, it will.

emssdcl0 MURPHY'S LAW: If anything can go wrong, it will.

cmssil0 MURPHY'S LAW: If anything can go wrong, it will.

Most of the fonts above are available in a range of sizes, although we chose to stick
to 10 point for these samples. There are still other Computer Modem fonts, like
emdunh (for Dunhill) and emff (for ... funny), as well as fonts with mathematical
symbols:

cmdunhl0 MURPHY'S LAW: If anything can go wrong, it will.
emfflO MUR.PHY'S LAW: If \tnythlng Q\tn go wrong, It will.

Stepping out of Computer Modem we have Euler Fraktur, distributed by the Amer
ican Mathematical Society

eufml0 !.mll9ls.JJSj~'6 .c~!ID: flf anlJt~ing can go rorong, it roitl.

and many fonts for foreign alphabets: Cyrillic, Greek, Hebrew .. . We've barely
scratched the surface.

4.5 Scaling of fonts

Assume you need a 12-point roman font, but your TEX installation only has the
lO-point font cmrl0 . You can scale up the existing font by saying

\font\twelverm=emrl0 at 12pt

This tells TEX to mUltiply all the dimensions offont emrl0 by a factor of 12/10 =
1.2, resulting, in effect, in a 12-point font. (TEX knows that the original size, or
design size, of cmrtO is 10 pt because this information is written in the tfm file;
the name of the file is irrelevant.)

The following construction gives exactly the same result:

\font\twelverm=emrl0 scaled 1200

The fonts TEX uses 31

(notice there is no backs lash before scaled or at). The keyword scaled works
like this: scaled 1000 means a scaling factor of I (that is, no change), scaled
1200 a factor of 1.2 (that is, a 20% increase in size), scaled 500 a factor of .5
(that is, a reduction by 50%), and so on.

To avoid useless calculations, plain Tpc has several control sequences that you can
use after scaled: \magstepl stands for 1000 x 1.2 = 1200, \magstep2 for
1000 x 1.2 x 1.2 = 1440, and so on up to \magstep5. Using these conventions,
the definition above could also be written

\font\twelverm=cmrl0 scaled \magstepl

There is also \magstephalf, which means a magnification factor of Jf.2 =
1.09545.

You can blow fonts up or down at will as far as Tpc is concerned, since Tpc doesn't
know or care anything about fonts except for their dimensions. But you'll run into
trouble if the driver program that sends the characters to the printer can't find
information about them at the requested magnifications. In other words, if your
system doesn't have a file containing the bitmaps for cmrl0 at 12 point, which
are different from those at 10 point, Tpc won't complain about the definition of
\ twel verm, but the printer driver will either ignore all characters from that font,
or try to replace them by some approximation based on the cmrl0 bitmaps that it
does have. The result varies from printer to printer, but it's always less than ideal.
This is not a problem for PostScript fonts, which are outline fonts, and can be
magnified or reduced without worries about the driver. Here are some more
examples of PostScript font registering:

\font\tenpalatino=Palatino at 10pt
\font\bighelvetica=Helvetica at 30pt

One last thing: each scaled version of a font must be registered separately. For
example, saying \font\twelvebf=cmrl0 at 12pt does not entitle you to use
cmrl0 at the design size of 10 pt. In other words, a font registration command
associates with a control sequence a pair (file name, scaling factor), and that pair
only.

4.6 Global scaling

The next command isn't, properly speaking, a font command: it allows you to
magnify or shrink a whole document. By typing

\magnification=1200

at the beginning of your document, you'll magnify it by 20%. There is an important
restriction: you can only set the global magnification once, at the beginning of the
run. It is illegal to change it along the way, though you can still scale individual
fonts.

The effects of \magnification are combined with those of the individual scaled
font definitions. For example, if you use the \ twel verm font defined above with

32 A Beginner's Book of T t:><

\magstepl in a document that starts with \magnification=\magstepl, the
result will be a font scaled up by a factor of 1.2 x 1.2, or 44%. This, by the
way, is why the \magstep series is multiplicative: the cumulative effect of two
\magstepl is a \magstep2, and so on.

The \magnification command is very useful in proofreading a manuscript. For
example, this book is set in 10 point, but all proofs were printed bigger by the use
of the command \magnification=\magstepl. At the typesetter, this command
was removed and the final copy came out as you see it.

The truth of the matter

Suppose you want to set your document in 12 point. Many systems don't have fonts
like cmr12, etc., because big fonts take up a lot of space; but they probably do
have cmrl0 at 12 point. So you have two choices: you can either scale each font
individually, or, much more conveniently, start your document with the command
\magnification=\magstepl.

The problem then is that all dimensions are increased by 20%. If you want to leave
1 inch between lines, you have to divide 1 inch by 1.2 and type \ vski p . 833in .
Not at all fun!

Fortunately, there is a better solution:

\hskip ltruein

The prefix true can be written before any ofTEX's units (in, cm, pt, pc, etc.;
more about them later). When TEX encounters a true, it divides the dimension by
the current global magnification before using it. It performs the calculation you'd
have to do otherwise.

4.7 For the aspiring wizard

Fonts in math mode

TEX has a sophisticated mechanism for handling fonts in math mode. It automat
ically chooses a smaller size for a character that is subscripted or superscripted
to another character, and an even smaller size for the subscript or superscript of
another SUbscript or superscript:

$2A-2$, nA_n 2A2 , nAn

$R+B-{2-S}$, $S-B-{R_S}$ R + B 2S , S - BRs

$R+B32-S}$, $S-B_ {R_S}$ R + B2s, S - B Rs

The upshot of this intricate mechanism is that, while in normal text there is the
notion of a single current font, in math mode we have instead a current family of
similar-looking fonts in three different sizes, for example, 10, 7 and 5 point. A
family of math fonts is referred to by the control sequence \fam, followed by
a number, like \famO. The three members of \famO are called \textfontO,
\scriptfontO and \scriptscriptfontO.

The fonts T g< uses 33

On page 351 of The TEXbook you will find the following code:

\textfontO=\tenrm \scriptfontO=\sevenrm
\scriptscriptfontO=\fiverm
\def\rm{\famO\tenrm}

The commands on the first two lines populate the family \f amO. The last line
says that, when TEX encounters \rm, the current text font becomes \ tenrm and
the current math family becomes \f amO. Outside math mode, then, TEX will
use the font \ tenrm, while inside math mode it will use the fonts of \f amO :
namely, \ tenrm for "normal" stuff, \sevenrm for sUbscripts and superscripts,
and \f i verm for second-order subscripts and superscripts:

$\rm S-B_ {R_S}$.. S - BRs

It is important to understand that a name registered with the \font construction
has no effect whatsoever within math mode. The only way to change fonts in math
mode is to go through a \f am construction, or using an \hbox, which temporarily
puts you in horizontal mode:

A, $\eightrm A$, {\eightrm A, \hbox{A}} A, A, A, A

Back to plain TEX's definitions. Here is the family \faml, which describes the
special italic fonts used in mathematical formulas:

\textfontl=\teni \scriptfontl=\seveni
\scriptscriptfontl=\fivei
\def\mit{\faml} \def\oldstyle{\faml\teni}

The command \mi t does nothing outside math mode, because it changes the math
family but not the current text font. On the other hand, \oldstyle works both
inside and outside math mode. The reason for two commands is that math italic
letters are not meant to be used outside math mode, but the digits in the same font,
0123456789, can be so used. So a user typing \oldstyle need not be aware that
TEX is switching to the math italic font.

Families \f am2 and \f am3 describe the mathematical symbols and extensible
symbols that TEX uses. We won't go into the details of them.

Let's tum now to the definition of the \i t macro:

\newfam\itfam \textfont\itfam=tenit
\def\it{\fam\itfam\tenit}

Families 0 through 3 have a special meaning to TEX and are generally referred
to by number. But after that, remembering the numbers of families becomes a
chore-what was that \fam4 again?-so TEX provides a symbolic way to refer to
them. The command \newf am \ i tf am announces that from now on there is a new
family, whose number is \ i tf am. Behind the scenes, TEX assigns the value 4 to
\i tf am, but we don't have to worry about that-we just type \f am \i tf am, which
is much more expressive than \fam4. (Nor is the fam in \itfam obligatory;
\newfam\toto and \fam\toto would do just as well.)

34 A Beginner's Book of T g<

The definition of the \it macro is such that $\it A$ works (the 'A' is set in
lO-point text italic), but $\it A_k$ doesn't, because the subscript 'k' has no
associated font. It causes the error message

! \scriptfont 4 is undefined (character k) .

(Unfortunately here TJY(does not use the symbolic name for the family ...)

To make sure you got everything, let's look at the definition of the \bf macro:

\newfam\bffam \textfont\bffam=\tenbf
\scriptfont\bffam=\sevenbf
\scriptscriptfont\bffam=\fivebf
\def\bf{\fam\bffam\tenbf}

Here all three members of the family are defined: you can use \bf anywhere in a
mathematical formula.

Defining new font families
We now know enough to create our own font-change macros, parallel to \rm,
\bf , and so on. For example, assuming that PostScript Times Roman is available
in the file Times (cf. the end of section 4.3), we can create a macro \tm that
switches to Times in math mode as well as in text:

\font\tentm=Times at 10pt \font\seventm=Times at 7pt
\font\fivetm=Times at 5pt \newfam\tmfam
\textfont\tmfam=\tentm \scriptfont\tmfam=\seventm
\scriptscriptfont\tmfam=\fivetm
\def\tm{\fam\tmfam\tentm}

The American Mathematical Society, or AMS, distributes a set offonts containing,
among other things, Fraktur or "gothic" fonts (eufm) and the "blackboard bold"
some mathematicians are fond of: A, Jffi, ... , Z (msbm fonts; see the Dictionary
under \bb). Here is, for the sake of completeness, the definition of a macro \frak
that switches to Fraktur fonts both in math mode and in text:

\font\tenfrak=eufml0 \font\sevenfrak=eufm7
\font\fivefrak=eufm5 \newfam\frakfam
\textfont\frakfam=\tenfrak \scriptfont\frakfam=\sevenfrak
\scriptscriptfont\frakfam=\fivefrak
\def\frak{\fam\frakfam\tenfrak}

If you want to limit Fraktur fonts to math use, the last line should read

\def\frak{\fam\frakfam}

Size-change commands
Plain TJY(basically works with only one font size: 10 point. The 7-point and 5-
point fonts it defines are for use in subscripts and superscripts of lO-point math
formulas.

One of the commonest needs of even a novice user of TJY(is for a command that
changes the size of all fonts in a coherent manner-for instance, to make footnotes

The fonts T EX uses 35

smaller than the text. Such a command should set things up so that, conceptually,
\bf, \it, etc., as well as all math constructions, work exactly as before, but the
fonts used are appropriately smaller.

We start by collecting together all of plain TEX's definitions that have to do with
font changes, and put them into a macro that we call \ tenpoint . (Actually, we'd
want \tenpoint to take care of other things as well, like interline spacing. We
won't go into this now; see the Dictionary for a complete listing.)

\def\tenpoint{%
\textfontO=\tenrm \scriptfontO=\sevenrm
\scriptscriptfontO=\fiverm \def\rm{\famO\tenrm}%
\textfont1=\teni \scriptfont1=\seveni
\scriptscriptfont1=\fivei \def\oldstyle{\fam1\teni}%
\textfont2=\tensy \scriptfont2=\sevensy
\scriptscriptfont2=\fivesy
\textfont\itfam=\tenit \def\it{\fam\itfam\tenit}%
\textfont\slfam=\tensl \def\sl{\fam\slfam\tensl}%
\textfont\ttfam=\tentt \def\tt{\fam\ttfam\tentt}%
\textfont\bffam=\tenbf \scriptfont\bffam=\sevenbf
\scriptscriptfont\bffam=\fivebf \def\bf{\fam\bffam\tenbf}%
\rm}

There are several things to observe here:

• The % at the end of certain lines is necessary in order to prevent the CR from
creeping into the definition; otherwise they would appear as spurious spaces when
\ tenpoint is called in horizontal mode. Only following a control sequence made
up of letters are CR and SP harmless.

• The members of family \f am3 are not redefined: extensible symbols figure out
their own size from the context.

• Font names like \tenrm and family names like \itfam are defined by plain
TP(once and for all, and should not be redefined inside \ tenpoint .

• The last line of the definition is a call to \rm, so when you type \ tenpoint ,
you get to-point roman by default. Naturally, you can choose a different default
by changing this line.

• You can include in the definition of \tenpoint your own font-change com
mands such as \tm and \frak. Again, commands such as \newfam\tmfam and
\font\tentm=Times at 10 pt should not go inside \tenpoint, but before,
so they're seen only once.

We're now ready to switch over to 8 point, by defining a macro \eightpoint in
every way analogous to \ tenpoint :

\def\eightpoint{%
\textfontO=\eightrm \scriptfontO=\sixrm
\scriptscriptfontO=\fiverm \def\rm{\famO\eightrm}%
\textfont1=\eighti \scriptfont1=\sixi

36 A Beginner's Book of T e<

\scriptscriptfont1=\fivei \def\oldstyle{\fam1\eighti}%
\textfont2=\eightsy \scriptfont2=\sixsy
\scriptscriptfont2=\fivesy
\textfont\itfam=\eightit \def\it{\fam\itfam\eightit}%
\textfont\slfam=\eightsl \def\sl{\fam\slfam\eightsl}%
\textfont\ttfam=\eighttt \def\tt{\fam\ttfam\eighttt}%
\textfont\bffam=\eightbf \scriptfont\bffam=\sixbf
\scriptscriptfont\bffam=\fivebf \def\bf{\fam\bffam\eightbf}%
\rm}

We also need, somewhere outside the definition of \eightpoint , some incanta
tions to help TEX to place accents correctly in math mode:

\skewchar\eighti='177 \skewchar\sixi='177
\skewchar\eightsy='60 \skewchar\sixsy='60

Let's see how we dethroned the omnipresent Computer Modem text fonts in favor
of PostScript Times in this book. All we had to do was redefine the change com
mands \i t and \bf to call their corresponding Times counterparts, and define a
new command \ tm , as explained above, that calls Times roman.

\font\tentm=Times at 10pt \def\tm{\famO\tentm}
\font\tentmit=TimesI at 10pt \def\it{\fam\itfam\tentmit}
\font\tentmbf=TimesB at lOpt \def\bf{\fam\bffam\tentmbf}

We kept the old \rm, to make it easier to give examples of TEX output. We also
kept the Computer Modem math fonts, by not redefining the families \famO,
\itfam and \bffam. The reason is that PostScript fonts do a poor job in math
mode: the spacing is wrong and some characters are simply not available.

Naming a character
Page 427 of The TEXbook shows a table of the 128 characters offont cmr10. The
position of character B is 25, also expressed as octal 31 (3 x 8 + 1 = 25) or hex
adecimal 19 (1 x 16 + 9 = 25). The low-level command to access this character is
{\tenrm\char25} or {\tenrm\char'31} or {\tenrm\char"19} ,depending
on what base you prefer to work with. (Note that the hex number is preceded by a
double quote" ,not two single quotes ".)

A higher-level command to print the character in position 25 of the current font
could be defined as

\def\ss{\char25} or \def\ss{\char' 31} or \def\ss{\char" 19} .

But there is an alternative, more efficient, command:

\chardef\ss=25 or \chardef\ss=' 31 or \chardef\ss=" 19.

The analogous commands for characters to be used in math mode are \mathchar
and \mathchardef. Their use is somewhat complicated by the need to specify
what family a character belongs to and what purpose it will serve (i.e., whether it's
an ordinary character or an operator or punctuation), because the amount of space
placed around it depends on this. For details, see section 11.2 and the Dictionary.

The fonts T e< uses 37

4.8 Exercise
A judicious choice of fonts can make bibliographical references such as the one in
section 2.5 much more readable. Using the font-change commands of this chapter,
format that Rumanian reference according to one style often used in bibliographies:

GEORGESCU, V. A., Bizantul §i institutiile romane§ti pina la mijlocul seco
lului al XVIII-lea (Byzanz und die rumiinischen Institutionen bis zur Mitte
des 18. Jahrhunderts). Bucure§ti, Ed. Academiei RSR, 1980. Reviewed by
C. R. Zach, in Siidost-Forschungen, 40, 1981, pp. 434-435.

Here's one possible solution:

\font\sc=cmcsc10
{\sc Georgescu, V. A.}, {\it Bizan\c tul \c si institu\c tiile
rom\~ane\c sti p\~\i n\u a la mijlocul
secolului al XVIII-lea\!} (Byzanz und die rum\"anischen
Institutionen bis zur Mitte des 18.-Jahrhunderts).
Bucure\c sti, Ed.-Academiei RSR, 1980.
Reviewed by C. R. Zach, in {\it S\"udost-Forschungen},
{\bf 40}, 1981, pp.-434--435.

One control sequence in this code hasn't been discussed before: \!. If you have
an italicized word before one in an upright font, the two often appear too close
together, because of the first word's slant. The previous sentence, for instance, was
typed with .,. {\i t word} before ... If we had said instead

... {\it word\/} before ...

the result would have been better: word before. Generally, then, this italic cor
rection should be used whenever there's a switch from a slanted to an upright
font.

5
Spacing, glue and springs

What sets apart a truly beautiful typesetting job is the treatment of white space!
For this reason TfY(has a rich set of commands devoted to the control of spacing.

5.1 Horizontal spacing
The space bar and the carriage return key
We saw in section 1.6 that TfY(gives special treatment to spaces and carriage returns
(represented by SP and CR) in the sense that they don't always appear in the printed
output. Here are the rules again:

• Several consecutive spaces in the input file produce only one space in the printed
document.

• A single carriage return is equivalent to a space and produces one space in the
printed document-in particular, it absorbs spaces at the end of the preceding line
and at the beginning of the following one.

• Two or more carriage returns in a row, that is, one or more blank lines, start a
new paragraph.

• One or more spaces or a single carriage return after a control sequence made
up of letters don't produce any spaces in the output. They merely indicate the end
of the control sequence name. For example: \DE dipus and \ TeX book give
CEdipus and 'lEXbook.

This last rule was discussed briefly in section 2.3, and we saw there that to print
'lEX makes nice formulas we must type

{\TeX} makes nice formulas or \TeX\ makes nice formulas.

The \ control sequence-a backslash followed by one or more spaces-forces
TfY(to produce a space; it works both in horizontal mode and in math mode. So

Spacing, glue and springs 39

in order to have two spaces between XXX and YYY, you can type XXX\ \ yyy
or xxx \ YYY. But this isn't really the best way to do it; the command \hskip,
explained below, is preferable.

Unbreakable spaces
As we saw in section 2.1, the tilde ~ has a special meaning to T}3X: it represents
a tie, that is, a space where no line break is allowed. For example, you should
type D. ~Knuth, and pp. ~ 10--27. Later on we'll see how to make unbreakable
spaces of any length.
The ~ has another important function: also says that this space should behave like
a "normal" space, rather than a space after punctuation. T}3X normally makes the
space after a comma somewhat wider than a normal space, and the space after a
period wider yet, following the traditional rules of typography.

Arbitrary horizontal spacing
To get a horizontal space (that is, a space between two words) as big as you want,
type \hskip followed by a dimension:

3\hskip 3pe 2\hskip 2pe 1 \hskip lpe 0 3 2 1 0

The most common units for dimensions are inches (in), points (pt; there are
around 72 points in an inch), and picas (pc; a pica is worth twelve points). And,
for those who prefer to go metric, there are centimeters (em) and millimeters (mm).
Notice that there is no backslash before these units.

There is also a unit of horizontal space, the em, that depends on the current font.
Traditionally, this was the width of an 'm', but in fact the two can be quite different:
for example, for the font used here one em equals 10 pt, while an 'm' measures
slightly less than 8 pt. This unit is useful if you want your spacing to be proportional
to the size of the current font-in particular, when you're defining a command that
should work with a variety of fonts.

Plain T}3X has three predefined control sequences that generate this sort of propor
tional spacing:

• \quad corresponds to \hskip lem;
• \qquad (a double quad) corresponds to \quad\quad;
• \enskip corresponds to half a quad.

If you use \hski p with a negative dimension, you get "negative spacing," that is,
T}3X backtracks and brings things closer together:

AB, A\hskip -2pt B ... AB, AB

We saw in section 4.6 that if you've specified a \magnifieation, all dimensions
are multiplied by the magnification factor, except those whose units are preceded
by the keyword true. For example, if you say \hski p 1 truein , T}3X will leave
one inch of space in the output, no matter what the magnification.

40 A Beginner's Book of T EX

5.2 Vertical spacing
Most of what we've said about horizontal spacing applies equally well to vertical
spacing, that is, spacing between paragraphs. You get vertical spacing by typing
\vskip followed by a dimension:

\vskip 5pt, \vskip 3mm, \vskip 4pc, \vskip -2pt.

The vertical counterpart of the em is the ex. An ex also depends on the current
font; it is roughly the height of the letter 'x' (about 4.5 pt for this font).

Plain TEX has three predefined vertical skips:

• \smallskip skips 3 pt with an elasticity of plus or minus 1 pt (elasticities are
explained below);

• \medskip skips 6 pt with an elasticity of plus or minus 2 pt;
• \bigskip skips 12 pt with an elasticity of plus or minus 4 pt.

5.3 Glue, or, Spaces that stretch and shrink

In practice, \hski p and \ vski p are not sufficiently versatile to satisfy the re
quirements of page layout. To justify a paragraph, for instance-that is, to make
all its lines the same length-it's necessary to stretch or shrink a bit the spacing
between words, since only by the most unlikely of coincidences would the word
widths add up exactly to the right amount. Pages, too, are often required to be of
uniform height, and since each page can have many different elements, such as
figures and equations, it would be hard to achieve uniformity if the spacing had to
be exactly the same throughout.

TEX lets you add elastic spacing, informally known as glue, to your document. Glue
stretches and shrinks (within predefined boundaries) as needed. To obtain glue,
you use one of the normal spacing commands \hski p and \ vski p , followed by
three dimensions: the "ideal" amount of space you want to leave, the amount by
which this ideal can be stretched, and the amount by which it can be shrunk. The
stretchability and shrinkability are preceded by the keywords plus and minus
(without a backslash). For example, if you say

\hskip 10pt plus 2pt minus 3pt

TEX will leave anywhere between 7 pt and 12 pt of space, depending on the con
straints of the layout, and it will try its best to leave as close to 10 pt as it can. This
ideal dimension is called the natural component of the glue. Either the plus or the
minus part may be absent, but if both are present plus should precede minus:

\vskip 2in plus .5in, \hskip .2em minus .05em.

Much of the glue on a page is put there automatically, without your having to think
about it. For example, the spacing between words on this page is glue! In this
font, it corresponds to \hskip 2. 5pt plus 1.25pt minus O. 83pt . Imagine
typing this expression by hand every time .. , Another common way to get glue is
by using macros like \smallskip and its sisters (section 5.2).

Spacing, glue and springs 41

How does TEX decide by how much each blob of glue must be stretched or shrunk?
To understand this, we must know a bit about the way in which paragraphs and
pages are built up. Let's look at paragraphs first. Roughly speaking, a paragraph
is created in three stages:

• First, TEX sets the whole paragraph in a single line, as long as necessary. As it
does this, only the natural component of the glue is considered, so \hskip 10pt
plus 2pt minus 3pt counts as 10 pt.

• Then TEX breaks up this long line into several lines of length approximately
\hsize, the page width. It generally tries several possibilities to find the best
possible solution.

• If a line is too short, TEX stretches each blob of glue on it in proportion to
its stretchability, till the line reaches the desired size. Thus, if you write \hskip
6pt plus 2pt and \hskip Opt plus 4pt on the same line, the second blob of
glue will stretch twice as fast as the first, even though its natural dimension is zero.
Similarly, if a line is too long, TEX shrinks the spaces that occur in it in proportion
to their declared shrink ability. In particular, a space that is declared without plus
or minus never changes size, because it has no elasticity.

We said above that \hskip 10pt plus 2pt minus 3pt will produce between
7 pt and 12 pt of space, but that's not quite true. If a line is too short even after its
stretchability has been added, TEX will overstretch it, and write a message like

! Underfull \hbox (badness 10000) detected at line 210

on your screen. (A line is a special case of an \hbox .) The badness of a line is a
measure of how much it had to stretch or shrink to satisfy the constraints imposed
on it. It is a relative measure: a line with more elasticity can stretch and shrink more
than one with less elasticity, and yet get the same badness rating. If the badness is
10000 (the maximum), the glue has been overstretched.

On the other hand, if a line is too long even after its shrinkability has been taken
into account, TEX won't overshrink it; it just makes it as short as the shrinkability
allows, and sends you an Overfull \hbox message. It also prints a black stroke,
of width \overfullrule, to the right of the line, like this:

This line is too long because T:EX doesn't know how to hyphenate "manuscript.".

The elasticity of vertical glue is likewise used by TEX to make pages conform to a
preset size. The process is very similar to the one for lines: TEX fills up more than
a page's worth of text, then tries to find a suitable breakpoint. Once it finds it, it
stretches or shrinks the vertical glue on the page in proportion to its elasticity.

Lines and pages are particular cases of horizontal and vertical boxes, as we'll see
in chapter 8. When TEX builds up a box whose size is fixed beforehand, it uses
the elasticity of the glue inside to meet the size requirement, just as it does when
it justifies lines. In other words, if the natural width (for a horizontal box) or the
natural height (for a vertical box) of the material inside the box is less than the
box's target width or height, TEX stretches the glue inside the box to try to meet
the target; and similarly if the width or height is insufficient.

42 A Beginner's Book of T g<

An example

Plain TEX's \line command takes its argument-the material that follows in
braces-and makes with it a line of length exactly \hsize, stretching all the
way between the left and right margins. You can imagine it as a groove inside
which the characters slide. If we say \line{A\hskip 60pt B\hskip 100pt
C\hskip 40pt D}, we get

ABC D

and a complaint about an underfull box, because the length of the material in this
line, 200 pt plus the widths of the letters, is only about 228 pt, versus the desired
327 pt of \hsize. There is a deficit of 99 pt. If instead we say

\line{A\hskip 60pt plus 100pt B\hskip 100pt
C\hskip 40pt plus 50pt D}

we've got more than enough stretchability to cover the deficit, so lEX no longer
complains the line is underfull. The result is

A B C D

The middle space didn't stretch, because we gave it no elasticity. The first space
had twice as much stretchability as the last, so it stretched twice as much-since
the deficit was 99 pt, the increments were 2/3 x 99 = 66 pt and 33 pt, respectively.
(If this arithmetic makes you dizzy, don't worry-the important thing is that the
stretching is proportional to the plus component of the glue, and the shrinking is
proportional to the minus component.)

5.4 Springs

Glue is meant to stretch or shrink only to a certain point. TEX also has springs,
which can stretch indefinitely. Springs don't create new spacing, they just fill up
space created by other commands. You can imagine that they are made of very
thin wire; have you ever seen thin wire pierce through concrete?

TEX has two predefined types of horizontal springs, to fill up horizontal space,
and two types of vertical springs, to fill up vertical space. They're called \hfil,
\hfill, \vfil and \vfill.

If we say {\hfill XXX yyY} or {XXX\hfill YYY} or {XXX YYY \hfill},
nothing happens: it's as if the \hfill weren't there. The group doesn't create
any empty space, so the spring doesn't stretch. Now let's make up some empty
space by forcing the group to fill up 1.2 inches:

\hbox to
\hbox to
\hbox to
\hbox to

1. 2in{$/ $\hfill XXX YYY$/ $} I
1. 2in{$/ $XXX\hfill YYY$/ $} IXXX

XXXYYYI
YYYI

I
I

1.2in{$/$XXX YYY\hfill$/$} IXXX YYY
1. 2in{$/ $XXX\hfill YYY\hfill$/ $} IXXX YYY

The spring stretches to fill up all the available space.

Spacing, glue and springs 43

Here's the same experiment with a \vfill inside a \vbox whose size we set in
advance, to make up empty space:

XXXXXXXXXX
yyyyyyyyyy

\vbox to 15mm{
\vfill
XXXXXXXXXX\par
YYYYYYYYYY

}

XXXXXXXXXX

yyyyyyyyyy

\vbox to 15mm{
XXXXXXXXXX
\vfill
YYYYYYYYYY

}

XXXXXXXXXX
yyyyyyyyyy

\vbox to 15mm{
XXXXXXXXXX\par
YYYYYYYYYY
\vfill

}

Springs not only stretch indefinitely, but their stretching power is infinitely greater
than that of normal glue. The result of

\line{A\hskip Opt plus 1000pt B\hfil C\hskip Opt plus 20pt D}

is that the glue between the first two letters and between the last two doesn't stretch
at all, because the spring preempts their expansion:

AB CD

Something similar happens if we mix the two types of horizontal springs:

\hbox to 25mm{$1 $\hfil XXX\hfill YYY\hfil$1 $} ... IXXX YYYI
It's as if the \hfil didn't exist! A similar experiment with \vfil and \vfill
inside the same \ vbox would lead to the same conclusion. In other words, a spring
with two 'l's (\hfill or \vfill) is infinitely stronger than its sibling with one
'1' (\hfil or \vfil). A stronger spring preempts any action on the part of a
weak one.

On the other hand, if two or more \hf il or \ vfil have to compete for the same
space, they expand by the same amount. In section 7.5 you'll see this property
in action, when we use vertical strings to automatically place a title. An even
commoner example is centering: if you say \line{\hfiltext\hfil}, you get
the text exactly centered between the left and right margins.

Weak springs are consistently used inside macros: for example, \matrix and
\over use weak springs to center their arguments. This gives you the chance of
overriding their action with a strong spring; for example, the three fractions

a a a
Xl + ... +xn ' Xl + ... +xn' Xl + ... + Xn

come from typing ${a\over x_l+\cdots+x_n}$, ${\hfill a\over ... }$
and ${a \hfill \over ... }$, respectively.

So the thing to do is to use strong springs in the text and weak springs when writing
a macro.

44 A Beginner's Book of TEX

5.5 Spacing and breaks
Suppose you've typed ... XXX\quad YYY. .. and TBC decides to start a new line
between XXX and YYY. What will it do with the \quad? Should it leave it at
the end of the line, or start the new line with it? Either way, the result would look
strange. Instead, TBC simply removes the space. More generally,

• TBC loves spaces between words, as well as explicit \hskip commands,
because they indicate allowable line breaks in a paragraph.

• When TBC breaks lines at a space or \hski p , the space disappears.

But there are times when a break at an \hskip would be undesirable. For example,
if you type W\hski p -1 pt A inside a word, to achieve what typographers call
better kerning, it would be disastrous to break the line between the two letters!

You can get a horizontal space at which TBC will never break the line by typing
\kern followed by a dimension:

\kern 1em, \kern 3mm, \kern -.lpt

In the example above, then, we could write W\kern -lpt A. Plain TBC offers
three predefined kerns:

• \enspace gives half an em;
• \thinspace gives one-sixth of an em (about 1.5 pt for this font);
• \negthinspace gives minus one-sixth of an em, that is, it pulls the surrounding

letters together.

Warning: kerns have no elasticity! If you type \kern 1em plus .2em you get
in the output a quad of space followed by the text plus .2em.

Now it can still happen that TBC breaks a line right before a \kern, if there is an
\hskip there. In this case TBC will discard the kern as well as the \hskip. How
then can you get a horizontal space that is guaranteed never to disappear, no matter
what happens? Plain TBC has a macro \hglue that you can use in this case:

\hglue 2mm, \hglue 5pt plus 2pt minus 2pt.

All this stuff about horizontal spacing has a vertical counterpart. As we've seen,
TBC always typesets ahead a little bit, filling more than one page and then looking
for a suitable place for a page break. Here again, a \ vski p is a good target for a
break; if the break happens there, the \ vski p is eliminated, so it doesn't appear
at the bottom of the page or at the top of the next.

To avoid having a page break at a vertical space, use \kern instead of \vskip.
But if the \kern is next to a \ vskip at the bottom or at the top of a page, it will
disappear too.

To obtain a vertical space that TBC can never throw out, use \ vgl ue , or \ topgl ue
at the top of a page. For instance, to start your first page two inches from the top
margin, say \topglue 2in at the top of your document; chapter 7 has more
applications. You can use plus and minus with \vglue and \topglue.

The \kern command is ambiguous: its effect depends on the current mode. In
horizontal or math mode, \kern creates horizontal space, while in vertical mode,

Spacing, glue and springs 45

it creates vertical space. So if you conclude a paragraph with '" the end. \kern
. 5in, nothing special will happen, since the kern will just be placed at the end
of the last line, where there is room, or it will disappear at the break after the last
line. But if you finish off the paragraph with '" the end. \par\kern . 5in,
T}3X will put in half an inch of leading after the last line.

Similarly, if you type \kern 5mm Start. .. to get a 5 mm indentation at the
beginning of a paragraph, you're in for a surprise: when TEX encounters the
\kern , it is in vertical mode, so it leaves 5 mm of leading above the paragraph.
TEX will only start horizontal mode when it reads the first character. In order to
indent a paragraph by 5 mm, type instead \hskip 5mm Start ...

5.6 Summary of basic spacing commands
There are three basic commands to get horizontal spacing of a desired width:

• \hski p (possibly followed by plus and/or minus). This is the most common
type of horizontal spacing, or glue. TEX can break the line there, in which case the
glue disappears. When TEX is in horizontal mode, a space in your input (or more
than one, as we saw in section 5.1) is turned into an \hskip of the appropriate
size. The springs \hf il and \hfill are special cases of \hski p: their natural
width and shrinkability are zero, and their stretchability is infinite.

• \kern (in horizontal mode; no plus or minus allowed). TEX will not break
lines at a kern; but if it breaks just before or after it (at an \hskip, for example),
the kern disappears. A - in the input is essentially equivalent to a \kern.

• \hglue (possibly followed by plus and/or minus). This cannot be dis
carded. In practice, this command is utilized seldom.

There are also three basic commands to get a desired amount of vertical spacing:

• \vskip (possibly followed by plus and/or minus). This is the most common
type of vertical spacing, being used directly and through the macros \higskip,
\medskip and \smallskip. TEX can break the page at a \vskip, in which
case the \vskip disappears. The springs \vfil and \vfill are special cases
of \vskip.

• \kern (in vertical mode; no plus or minus allowed). TEX will not break
pages at a vertical kern; but if it breaks just before or after it (at a \vskip, for
example), the kern disappears. Vertical kerns are rarely used.

• \vglue and \topglue (possibly followed by plus and/or minus). This
cannot be discarded. This command is used mostly to leave space for figures and
the like.

5.7 Spacing between paragraphs
The amount of vertical spacing between paragraphs is controlled by the variable
\parskip. Plain TEX sets it as follows: \parskip=Opt plus lpt. You can
increase it if you like, keeping it elastic to help the page layout:

\parskip=4pt plus 2pt minus 2pt

46 A Beginner's Book of T £X

5.8 More spring like creatures
A spring can leave a trail as it stretches, filling the available space with copies of
some material. A trail of dots, as in a table of contents, for example, is known as
leaders; in TJY(this name is generalized to any visible spring.

Predefined leaders
There are several predefined leaders, all horizontal:

• \hrulefill draws a horizontal line, or rule;
• \dotfill prints a sequence of dots (the original leaders);
• \rightarrowfill makes an arrow pointing right;
• \leftarrowfill makes an arrow pointing left;
• \downbracefill makes horizontal braces opening down;
• \upbracefill: makes horizontal braces opening up.

The first four are used exactly like \hfill (with two 'l's), and have the same
power as \hfill. So in the construction

\line{\leftarrowfill\ AAA \hrulefill\ BBB \dotfill\ MMM
\dotfill\ YYY\hrulefill\ ZZZ \rightarrowfill}

the available space is evenly distributed among all five "leaders:"

<----- AAA __ BBB MMM yyy __ ZZZ ----t

The remaining two predefined leaders, \downbracefill and \upbracefill,
are slightly trickier to use because their height depends on the context. They are
discussed again in chapter 9 and in the Dictionary; here we just show them by
themselves:
\hbox to 2in{\downbracefill} , ... ______ __

\hbox to 2in{\upbracefill} ' ______ .. .,.--___ -'

.............................. To get the first line of this paragraph to end here
we put a \break after the here; to get it to start with dots from the left margin,
we preceded it with \dotfill. But when we ran TJY(we got the message

! Leaders not followed by proper glue.

What happened? It turns out that horizontal leaders can only be used in horizontal
mode, and we said \dotfill while TJY(was in vertical mode. To fix this, we
used \leavevmode:

\leavevmode\dotfill To get the ... here\break

The \leavevmode can be replaced by \indent, \noindent, or any other com
mand that pushes TJY(into horizontal mode (section 6.1). Ending a paragraph with
dots to the right margin involves a different problem: if you add \dotfill \par
to the last line, no dots will appear, because springs are discarded at the end of a
paragraph. The solution is to fool TEX into thinking there is some stuff after the
leaders. We do this using \null, which makes an empty box:

... an empty box:\dotfill\null\par

Spacing, glue and springs 47

5.9 Leaders in their full glory
All of the commands in the previous section are based on the \leaders control
sequence. This command is so versatile that it is worthwhile taking a closer look
at it. For example, in a table of contents, \dotfill looks too crowded; you can
get better results as follows:

\def\widedotfill{\leaders\hbox to 15pt{\hfil.\hfil}\hfill}
\parindent=Opt
Chapter 1. House plants \widedotfill 3 \par
Section 1.1. Harmless plants \widedotfill 15 \par
Section 1.2. Poisonous plants: what you should do in case

of poisoning and what you absolutely must not do
\widedotfill 37\par

Chapter 1. House plants 3
Section 1.1. Harmless plants 15
Section 1.2. Poisonous plants: what you should do in case of poisoning and
what you absolutely must not do . 37

These leaders are spaced by an amount that you can specify-here 15 pt-and
aligned vertically, which would not be the case with \dotfill. Notice the \par
commands, used to start a new line. (In practice you'd use blank lines, but here it
saves space.) The space created in this way is then filled with the leaders.!

You don't have to know in detail how \leaders works. All you need to know is
that you can replace the contents of the \hbox in the definition of \ widedotf ill
above by anything you want. Try the following constructions:

\hbox to .1in{\hfil$*$\hfil}
\hbox to 10mm{$\hfil\circ\hfil$}
\hbox{ \TeX\ }

We will come back to the TEX example at the end of the next section.

5.10 For the experienced user
The amount of glue inserted by TEX when it reads a space in horizontal mode
is a function of the current font, and is known from the corresponding tfm file.
However, you can change it by setting the variables \spaceskip (for normal
spacing) and \xspaceskip (for extra spacing after punctuation). For instance,
\spaceskip=.3em \xspaceskip=. 5em makes the spacing between words from
there on completely inelastic (cf. the \raggedright macro of section 6.6), while

\spaceskip=.2em plus .2em minus .1em
\xspaceskip=.4em plus 1em minus 1em

! Actually, things are a bit more complicated. At the end of a paragraph TEX adds an amount of
white space given by the quantity \parfillskip, which plain TEX sets to a weak spring (in spite of
the two 'l's). This spring gets crushed to nothing when the same line contains the infinitely stronger
\widedotfill. See section 6.6 for details.

48 A Beginner's Book of TP<

gives it a certain elasticity. These values will last only until the end of the current
group, or until they're overridden by another assignment.

Negative springs
Once you have the notion of a spring firmly in mind, it is not hard to extend
it to "negative springs," which have more shrinkability than their natural length.
You can imagine them as being made of antimatter: instead of stretching, they
contract and their length becomes negative! Consider, for example, the following
definition:

\def\negspring{\hskip Opt minus lfil}

(As you may surmise, fil is the "unit" of weak springiness, and fill is its
strong counterpart. \hfil is essentially the same as \hskip Opt plus lfil.)

You may be wondering what the use for \negspring is. But it's amazing what
you can do with the beast, once you get the idea of how it works:
\vrule\hbox to lpt{\negspring AAA ZZZ}\vrule AAA ZZ2I1
\vrule\hbox to lpt{AAA ZZZ\negspring}\vrule Ii'\AA ZZZ

The box in these constructions is delimited by vertical bars on either side for
visibility, and its length is preset to almost zero. TJjX cancels the length of the text
AAA ZZZ with the shrinkability of the \negspring, with the result that the text
comes out of the box on the side of the spring.

Plain TJjX's \rlap and \llap macros use this idea. Saying \rlap{ ... } is
like typesetting the stuff in braces and then backtracking as if you hadn't typeset
anything; \llap is similar, but it backtracks first. As an application, we take
another look at the table of contents from the previous section. Notice that the
text there runs too close to the page numbers, impairing legibility. Here's an
improvement:

\def\widedotfill{\leaders\hbox to 15pt{\hfil.\hfil}\hfill}
\def\page#l{\widedotfill\rlap{\hbox to 25pt{\hfill#1}}\par}
\rightskip=25pt
Chapter 1. House plants\page{3}
Section 1.1. Harmless plans\page{15}
Section 1.2. Poisonous plants: what you should do in case

of poisoning and what you absolutely must not do\page{37}

Chapter 1. House plants 3
Section 1.1. Harmless plans 15
Section 1.2. Poisonous plants: what you should do in case of poisoning
and what you absolutely must not do . 37

The trick here is to reduce the line length by 25 pt on the right, using \rightskip
(section 6.5), and putting the page numbers past the end of the shortened lines
using \rlap, which fools TJjX into thinking the page number has width zero.
Also, we have included the page number and the \par in the definition of the
\page control sequence-you don't need to have read chapter 12 to figure out
what's going on.

Spacing, glue and springs 49

TfY(also has a horizontal spring \hss and a vertical spring \ vss , whose length
can vary between -00 and +00. Like \hiil and its friends, \hss and \vss are
primitives; but, if they weren't, we could define them like this:

\def\hss{\hskip Opt plus 1fil minus 1fil}
\def\vss{\vskip Opt plus 1fil minus 1fil}

The \centerline macro is equivalent to \line{\hss ... \hss} . If the length
of the text is no greater than \hsize, the spring \hss behaves like an ordinary
spring and centers the text. On the other hand, if the text is too long for the page
width, \hss contracts and allows the text to overflow by an equal amount on either
side, without making TfY(complain.

In section 9.5 we will meet another spring of negative length: \hidewidth.

5.11 Examples

Typesetting this chapter

Here are the various types of spaces used in this chapter. First of all, we suppressed
the indentation at the beginning of paragraphs, and registered the fonts used for
headings, once and for all:

\parindent=Opt
\font\chapnumfont= HelveticaB at 35pt
\font\chaptitlefont= HelveticaB at 22pt
\font\sectitlefont= HelveticaB at 12pt
\font\subsectitlefont=HelveticaB at 10pt

(See more on indentation in the next chapter.) To get the chapter heading we typed

\hfill{\chapnumfont 5}
\medskip
\hfill{\chaptitlefont Spacing, glue and springs}
\vskip 14pc

Grouping limits the effect of the fonts to the title. Section headings come next. The
previous section started with

\vskip 20pt plus 8pt minus 8t
\hskip-4.75pc
{\sectitlefont 5.9 For the experienced user}
\medskip
The amount of space ...

The \hskip-4. 75pc makes the heading start about two centimeters, or .8 inches,
to the left of the margin. Subsection headings are very similar:

\medbreak
{\subsectitlefont Negative springs}
\smallskip
Once you have ...

50 A Beginner's Book of T EX

Every time we want a bit of space between two lines, we use a \smallskip.
Finally, when we want to center a display, we type

\smallskip\centerline{ ... }\medskip

So here are all the nuts and bolts of this chapter's first page:

\input book.mac
\hfill{\chapnumfont 5}
\medskip
\hfill{\chaptitlefont Spacing, glue and springs}
\vskip 14pc

What sets apart a truly beautiful typesetting job
is the treatment of white space! For this reason
\TeX\ has a rich set of commands devoted to the
control of spacing.

\vskip 20pt plus 8pt minus 8t
\hskip-4.75pc
{\sectitlefont 5.1 Horizontal spacing}
\medskip

{\subsectitlefont
The space bar and the carriage return key}
\smallskip

We saw in chapter 1 that \TeX\ gives special
treatment to spaces and carriage returns (represented by
{\eightrm SP} and {\eightrm CR}) in the sense that they
don't always appear in the printed output.
Here are the rules again:

{\parindent=3em\smallskip
\meti{\bullet}
Several consecutive ... printed document.

\meti{\bullet}
One or more spaces ... {\rm \TeX book}.
\smallskip}

This last rule ...

The \input command, as explained in section 1.7, reads in a file containing style
commands and macro definitions for this book. In addition, there are two com
mands that we haven't talked about before:

• The \meti command places its argument (here a bullet) in the paragraph in
dentation .

• The font command \eighttm brings in eight-point Times PostScript. You
should be able to figure out its definition.

Spacing, glue and springs 51

We will see in section 12.3 how a sequence of commands such as the ones used to
open each chapter, can be encapsulated into a macro. In practice, we start a chapter
with \chapter{5}{Spacing, glue and springs}, instead of explicitly typ
ing four lines of spacing and font change commands. The two groups following
\chapter are the macro's arguments; TEX plugs them in place of #1 and #2 in
the macro definition:

\def\chapter#1#2{\vfil\eject
\hfill{\chapnumfont #1}
\medskip
\hfill{\chaptitlefont #2}
\vskip 14pc}

For other macros used for formatting this book, see \section and \subsection
in the Dictionary. The use of macros has many advantages: it saves typing, ensures
consistency from one chapter to the next, and makes the source file easier to un
derstand.

TheTE>' logo
You may be curious about the definition of the TEX logo:

\def\TeX{T\kern-. 1667em\lower.5ex\hbox{E}\kern-. 125em X}

To lower the 'E', we use the \lower command, discussed in section 8.6. Notice
how shifts are expressed in terms of em and ex, so they work correctly no matter
what the current font is.

To obtain the pattern

we typed

\def\multitex{\leaders\hbox{\TeX\kern lpt}\hfill}
\hskip 3cm\multitex\hskip 3cm\null\par
\hskip 3cm\multitex\hskip 3cm\null\par
\hskip 3cm\multitex\hskip 3cm\null\par

The \null prevents the \hskip from disappearing at the end of the line; see sec
tion 5.8. A vertically repeated pattern like this can also be obtained using vertical
leaders; see the Dictionary under \leaders.

6
Paragraphs

6.1 Beginning and ending a paragraph

At the beginning of a job, TEX is in vertical mode. When a paragraph starts, TEX
passes to horizontal mode. The end of a paragraph corresponds to a return to ver
tical mode. (These are the ordinary horizontal and vertical modes. There are also
horizontal and vertical modes inside boxes, but we'll ignore them for now.)

If TEX is in vertical mode, it passes to horizontal mode when it encounters:

• a character;
• one of the control sequences \indent, \noindent, \leavevmode;
• a math formula, delimited by dollar signs $ (between the dollar signs TEX is in

math mode, but after that it goes into horizontal mode);
• any command that makes sense only in horizontal mode, such as \hskip,

\ vrule , or one of the paragraph formatting commands to be discussed later.

While in horizontal mode, TEX switches to vertical mode, completing the current
paragraph, when it encounters:

• vertical spacing commands such as \vskip, \smallskip, \medskip and
\bigskip, or their variants \smallbreak, \medbreak and \bigbreak;
• the \par command or its alias, a blank line (that is, two or more consecutive

CR characters);
• any command that makes sense only in vertical mode, such as \hrule.

Paragraphs 53

6.2 What's in a paragraph?
A paragraph generally contains text, that is, characters one after another. But you
can also put inside a paragraph a box or a rule (which must be called a \vrule).

Recall from section 5.3 that TEX reads a whole paragraph before trying to typeset it.
Then it creates a very long line, without worrying about the width of the page. Next
it tries to find line breaks: first between words, or, if that doesn't work, between
syllables. Once the breakpoints are determined, TEX stretches or shrinks the glue in
each line so that they come out with the same length \hsize. It there's no way to
do this, it sends the user an error message, such as Overfull \hbox, and draws
a vertical stroke on the margin, next to the offending line. Finally, it stacks up the
lines.

6.3 Automatic indentation
The first line of a paragraph is generally indented. For this book, this feature

was turned off, but we turned it back on at the beginning of this paragraph. The
amount of indentation is given by \parindent, and indentation is turned off by
setting this to zero. Plain TEX defines \parindent as follows:

parindent=20pt

You can change this value. But watch out: if your document file starts by inputting a
style file, like the example in section 5.11, which started with \input book. mac,
any changes to the \parindent should come after the \input. This is because
the style file most likely resets the \parindent.

Indentation can also be negative, meaning that the first line starts to the left of the mar
gin. This is what happened in this paragraph: we typed \parindent=-. 5in just
before it. You'll find another example of negative indentation at the end of sec
tion 6.5.

If you want only one paragraph to start without indentation, you can precede it
by \noindent. This control sequence switches TEX from vertical to horizontal
mode.

6.4 Obeying lines
As you know, TEX generally ignores carriage returns, or rather, treats them as
spaces. But there are cases when it is desirable to have TEX respect the line breaks
of the input file. To achieve this, you should start your text with the command
\obeylines, which makes CR equivalent to \par:

\obeylines
Old pond
The sound of a frog %

jumping in the water
Is heard.
\smallskip
Matsuo Basho

Old pond
The sound of a frog jumping in the water
Is heard.

Matsuo Basho

54 A Beginner's Book of T EX

This example shows that a long input line can be broken, with a % at the end of the
first half to hide the CR. It also shows that to get any sort of vertical spacing you
still need explicit commands: several CRs in a row, with blank lines in between,
have exactly the same effect as one.

As there is no simple command to counteract the effect of \obeylines, you
should enclose in braces the region where it should have effect. Here's a common
example, which you can imitate when writing a letter:

{\obeylines
\hfill November 9, 1989
\medskip
Raymond Seroul
UER de Math\'ematiques et d'Informatique
7, rue Ren\'e Descartes
67000 Strasbourg, France}

The result is:

Raymond Seroul
UER de Mathematiques et d'Informatique
7, rue Rene Descartes
67000 Strasbourg, France

6.5 Left and right margins

November 9, 1989

{\leftskip= .5in The variables \leftskip and \rightskip con
trol the relative position of the left and right margins. This paragraph was
preceded by \leftskip=. 5in, so its left margin was moved in (to the
right) by .5 in. Had it been \rightskip=. 5in, the right margin would
have been moved in (to the left) by the same amount. Had the dimension
been negative, the change would have been in the opposite direction.

To contain the effect of the change in \leftskip to a portion of the text,
we used braces to start a new group. As soon as TJY(reads the matching
braces at the end of the next paragraph, \leftskip will revert to its old
value of zero.

So why is this paragraph not pushed in like the previous two? Because it's not quite
finished when TJY(reads the braces and restores the \leftskip! The values of
\rightskip and \leftskip applied to a paragraph are those in effect when the
paragraph ends.}

In order for the last paragraph in a group to be affected by a change in \right skip
or \leftskip that is local to the group, it is necessary to have \par (or a blank
line, or some such) before the right brace:

{\leftskip=.5in
The variables ...
. .. when the paragraph ends.
\par}

Paragraphs 55

Of course, the same precaution must be taken when \rightskip and \leftskip
are changed by the action of some command, as is the case with many macros
introduced in this chapter.

Here's another little trap related to the one we've just discussed:

first paragraph
\leftskip=lcm

second paragraph

first paragraph

\leftskip=lcm
second paragraph

In the example on the left, both paragraphs are pushed in by 1 cm; in the example on
the right, only the second paragraph is so indented. A similar situation is discussed
at the end of 6.11.

Hanging indentation
One can combine indentation with \leftskip to get hanging indentation, the

effect displayed in this paragraph. Here we typed {\parindent=-lcm and
\leftskip=lcm ... \par}; in section 6.9 we'll discuss special commands
that can be used to achieve the same effect.

6.6 Ragged margins
Justification is fine and good, but every now and then one wants ragged margins,
especially when setting text in a narrow column. How can T}3X be stopped from
justifying lines? To understand the solution to this problem, let's take another look
at the variables \leftskip and \rightskip which govern the left and right
margin offsets. The truth is, they don't change the margins at all! When you type
\leftskip=lcm, T}3X inserts 1 cm of white space at the beginning of each line;
this gives the impression that the left margin is pushed in.

The usefulness of this behavior lies in that \rightskip and \leftskip don't
have to be fixed amounts. For example, by giving \rightskip a bit of stretch
ability, we tell T}3X that it can leave some white space at the end of each line:

The first of these was to accept nothing as true which I did not clearly
recognize to be so: that is to say, carefully to avoid precipitation and prej
udice in judgements, and to accept in them nothing more than what was
presented to my mind so clearly and distinctly that I could have no occa
sion to doubt it. 1

To format this paragraph, we used plain T}3X's \raggedright macro, like this:
{\raggedright The first ... doubt it. \par} Here is the definition of
\raggedright:

\def\raggedright{\rightskip=Opt plus 2em
\spaceskip=.3333em \xspaceskip=.5em}

1 This and the next three quotations fonn Descartes's four principles (Discours de la methode, part II,
translated by Haldane and Ross).

56 A Beginner's Book of T EX

The idea is to give stretchability to \rightskip, while at the same time taking
away the elasticity from interword spacing (where it is no longer necessary). As
explained above, when you using a group to limit the scope of \raggedright,
you must type \par before the end of the group; otherwise, the last paragraph
won't be affected.

Plain TJY(doesn't provide a \raggedleft macro: let's design one ourselves.
We can imitate the definition of \raggedright , this time giving stretchability to
\leftskip:

\def\raggedleft{\leftskip=Opt plus 2em
\spaceskip=. 3333em\xspaceskip=. 5em}

But when we try {\raggedleft The second ... \par} , something doesn't
come out quite right:

The second was to divide up each of the difficulties which I examined into
as many parts as possible, and as seemed requisite in order that it might

be resolved in the best manner possible.

What happened to the last line? Remember from section 5.3 that TJY(places the
lines of a paragraph in horizontal boxes (lines) of length \hsize -except for the
last, which is generally shorter. TJY(handles the special case of the last line by
a trick of sorts: it automatically adds at the end of the paragraph a weak spring,
essentially equivalent to \hf il. In this way the last line is treated just like the
others-it gets stretched to length \hsize, but all the slack is taken up by this
sneaky spring.

This worked well for justified and ragged right text, but it's not what we want here.
Fortunately, this end-of-paragraph glue is not written in stone: it's just one more
ofTJY('s variables, called \parfillskip. Plain TJY(sets it to Opt plus lfil;
if we make it zero, the last line will end at the right margin like the others. So we
add \parfillskip=Opt to the definition of \raggedleft , and try again:

The second was to divide up each of the difficulties which I examined into
as many parts as possible, and as seemed requisite in order that it might

be resolved in the best manner possible.

This still leaves something to be desired: the last line is much shorter than the
others, and in fact TJY(declares it underfull, since the only stretchability in it comes
from the \leftskip. To balance out the lines \leftskip must be given a lot
more stretchability-in fact it must be allowed to stretch across the whole page
(think of a paragraph containing a single word):

\def\raggedleft{\leftskip=Opt plus \hsize
\parfillskip=Opt\spaceskip=. 3333em\xspaceskip=. 5em}

The second was to divide up each of the difficulties which I
examined into as many parts as possible, and as seemed requisite

in order that it might be resolved in the best manner possible.

Paragraphs 57

6.7 Quotations

The \narrower command increases both \leftskip and \rightskip by an
amount equal to \parindent. In other words, the left and right margins both
move in. This is often useful for quotations:

The third was to carryon my reflections in due
order, commencing with objects that were the most simple
and easy to understand, in order to rise little by little, or
by degrees, to knowledge of the most complex, assuming
an order, even if a fictitious one, among those which to not
follow a natural sequence relatively to one another.

The code here was {\parindent=. 5in \narrower The third ... \par}.
As you probably have figured out, if you use \narrower within a group you must
end the last paragraph before closing the group.

The first line of a paragraph to which \narrower applies normally receives a
double indentation-the normal first-indentation, plus the \leftskip. If you
don't want that, start the paragraph with \noindent.

If you type a second \narrower while the first is still active, their effects accu
mulate, because the change in \rightskip and \leftskip is relative. By con
trast, \raggedright causes an absolute change in \rightskip. It follows that
\raggedright\narrower works nicely, but \narrower\raggedright doesn't
do what you might expect (try it out).

6.8 Centering text

To center text, you have two options. You can give \leftskip and \rightskip
the same stretchability, and suppress the end-of-paragraph glue automatically added
byTIYC:

\leftskip=Opt plus .5in \rightskip=Opt plus .5in
\parfillskip=Opt

This leaves to TIYC the task of figuring out where to break lines. The second solution
lets you control where the line breaks go, using \obeylines. In this case it's best
to make \leftskip and \rightskip into springs, that is, give them infinite
stretchability:

{\leftskip=Opt plus lfil
\rightskip=Opt plus lfil
\parfillskip=Opt
\obeylines
The last was in all cases

omitted nothing.\par}

The last was in all cases
to make enumerations so complete

and reviews so general
that I should be certain

of having omitted nothing.

58 A Beginner's Book of T g<

6.9 Series of items
An important use of hanging indentation is in formatting series of items, or enu
merations. The \ item command of plain TEX provides an easy way to do this.

1978 Classic-Some say it's the best red Bordeaux ofthis vintage. Others,
that it is Margaux's finest wine since its 1961. It sells these days from
$30 to $60.

1979 Near-Classic-Some critics have said that this is the best red Bor
deaux of this vintage. It's big and rich, sells for around $60.

1980 ****-Selling for around $32.2

{\parindent=lcm
\item{1978} {\bf Classic}--- ... \$60.
\item{1979} {\bf Near-Classic}--- ... \$60.
\item{1980} ****---Selling for around \$32.
\par}

As you can see, \i tem starts a new paragraph and affects only that paragraph.
It temporarily increases \leftskip by an amount equal to \parindent, thus
moving in the left margin. It also places its argument-the contents of the braces
following it--on the new margin. When the paragraph ends, the previous value of
\leftskip is restored.

Since \i tem expects an argument, you should follow it with a group even if you
have nothing to write on the margin: \i tem{} ... If you don't do this, TEX, fol
lowing its general rules for macro arguments (chapter 12), will look for the first
character of the paragraph and use that as an argument. Give it a try, it won't hurt.

Although its effect is local anyway, \i tem is often used inside a group, as in the
example above, so the amount of hanging indentation can be controlled by a local
change in \parindent. In this case, as usual, the group must end with \par,
otherwise the last paragraph is not handled correctly. (There is no need for \par
between the items, because \i tem itself starts a new paragraph.)

The \i temi tem macro is used exactly the same way as \i tem , and has the same
effect, except that the left margin is pushed in by 2 \parindent :

1. To accept nothing as true which I did not clearly recognize to be so:
that is to say,

a. carefully to avoid precipitation and prejudice in judgements;
h. to accept in them nothing more than what was presented to my

mind so clearly and distinctly that I could have no occasion to
doubt it.

{\parindent=20pt
\item{{\bf 1.}} To accept nothing as true which ...
{\itemitem{\bf a.} carefully to avoid precipitation
{\itemitem{\bf b.} to accept in them nothing more ...
\par}

2 E. Frank Henriques, The Signet Encyclopedia o/Wine (1984).

Paragraphs 59

Plain TEX doesn't have an \itemitemitem macro. If you really need such a
thing, you'11 find it at the end of the chapter. Another possible macro for series of
items is also defined there.

One often wants a page layout like this:

lEX software Maria Code, DP Services
1371 Sydney Drive
Sunnyvale, CA 94087

lEX support 'lEX USERS GROUP
P. O. Box 9506
Providence, RI 02940

The trick here is to get \i tem to set its tag flush left, rather than in its normal
position, which is within .5 em of the indented left margin. To do this we defined
a new macro, \lefti tem, whose argument is the tag:

\def\leftitem#1{\item{\hbox to\parindent{\enspace#1\hfill}}}

This macro passes to \i tem a box of width \parindent. The tag starts .5 em to
the right of the left edge of the box (why?); but the right edge of the box is placed
by \i tem .5 em to the left of the paragraph margin, so everything cancels out and
the tag is set flush against the outer margin! Here's how \lefti tem was used:

\parindent=1in
\leftitem{\boldhelvetica \TeX\ software}
Maria Code, DP Services\hfill\break
1371 Sydney Drive\hfill\break
Sunnyvale, CA 94087

Notice the use of \hfill \break to terminate the lines; \obeylines wouldn't
have worked, because it effectively makes a carriage return equivalent to a \par,
and here we need to keep everything in the same paragraph.

The code above assumes that the tag is no longer than \parindent minus.5 em.
If you have a very long tag, you may want to break it into lines, and set it in a
\ vtop , a type of vertical box:

lEX
support

'lEX USERS GROUP
P. O. Box 9506
Providence, RI 02940

\parindent=.7in
\leftitem{\boldhelvetica

\smash{\vtop{
\hbox{\TeX}
\hbox{support}}}}

\TeX USERS GROUP ...

The \cornerbox macro of section 8.8, gives another way to achieve a similar
effect.

60 A Beginner's Book of T EX

6.10 More on hanging indentation
The two commands \hangindent and \hangafter work in conjunction. The
first of them is followed by a positive or negative dimension, and the second by a
positive or negative integer. This example illustrates better than any explanation
the action of \hangindent and \hangafter in the various cases:

VAUX-LE-VICOMTE, 46 km south
east of Paris, is one of the great classical
chateaux. Louis XIV's finance superin-

tendent, Nicholas Fouquet, had
it built at colossal expense using
the top designers of the day
the royal architect Le Vau, the
painter Le Brun and Le Notre,
the landscape gardener. 3

\hangindent=27pt
\hangafter=3

VAUX-LE-VICOMTE, 46 km
south-east of Paris, is one of the
great classical chateaux. Louis

XIV's finance superintendent, Nicholas
Fouquet, had it built at colossal expense
using the top designers of the day-the
royal architect Le Vau, the painter Le
Brun and Le Notre, the landscape gar
dener.

\hangindent=27pt
\hangafter=-3

VAUX-LE-VICOMTE, 46 km south
east of Paris, is one of the great classical
chateaux. Louis XIV's finance superin
tendent, Nicholas Fouquet, had
it built at colossal expense using
the top designers of the day-
the royal architect Le Vau, the
painter Le Brun and Le Notre,
the landscape gardener.

\hangindent=-27pt
\hangafter=3

VAUX-LE-VICOMTE, 46 km
south-east of Paris, is one of the
great classical chateaux. Louis
XIV's finance superintendent, Nicholas
Fouquet, had it built at colossal expense
using the top designers of the day-the
royal architect Le Vau, the painter Le
Brun and Le Notre, the landscape gar
dener.

\hangindent=-27pt
\hangafter=-3

Normally, \hangindent and \hangafter are placed at the beginning of the
paragraph to which they apply, but they have the same effect if placed anywhere
before the paragraph ends. As usual, the value used is the one in effect at the end
of the paragraph. If \hangafter is not set, TF,X assumes it to be 1.

6.11 Paragraphs with fancy shapes
The Count of Charolais had left the King a magnificent defensive position. The ridge

of Montlhery, running roughly west-east, rose steeply from the Paris road, came
to a peak where stood the castle, and then declined eastward into the

plain. A little to the west of the castle, on the northern versant,
huddled the village of Montlhery. Pierre de Breze had

marshaled his Norman gentry and squadrons of
lances, all mounted, behind "a great ditch
and hedge" at the bottom of the slope,
facing the much superior numbers of the
Count of St. Pol.4

3 Kate Baillie and Tim Salmon, The Rough Guide to Paris.

4 Paul Murray Kendall, Louis XI (1971).

This funnel-shaped paragraph started with

\eightpoint

Paragraphs 61

\parshape=7 Ocm 11.5cm .5cm 10.5cm lcm 9.5cm 1.5cm 8.5cm
2cm 7.5cm 2.5cm 6.5cm 3cm 5.5cm\noindent The Count

The command \parshape=7 says that the first seven lines of this paragraph should
be treated specially. The first line is to be indented by 0 cm and its length should
be 11.5 cm, the second line should be indented by 0.5 cm and its length should
be 10.5 cm, and so on. Finally, the seventh line should be indented by 3 cm and
be 5.5 cm long. If, as is the case here, the paragraph has more than the specified
number of lines, TIYC keeps repeating the specifications for the last one.

On page 101 of The Tjj(book you will find some even more spectacular exam
ples, such as two paragraphs that fit inside each other, one being in the shape of a
circle and the other having a half-circle cut away. They are both formatted with
\parshape and stored in boxes, then placed side by side with a negative \hskip
to bring them together (cf. section 8.10).

An unpleasant surprise

The \parshape command acts on the paragraph in which it occurs and on that
paragraph alone. It can be placed anywhere in the paragraph, even at the end, just
like \hangindent and \hangafter. You're familiar with the reason by now.
(The only shape control commands that are different are \i tem and \i temi tem ,
because they start new paragraphs.)

The unpleasant surprise comes when you mistakenly exchange two lines. Imagine
you want to format the second of two paragraphs using \parshape, as in the
example on the left:

first paragraph

\parshape ...
second paragraph

first paragraph
\parshape ...

second paragraph

If you accidentally exchange the \parshape line with the empty line in your text
editor, you end up with the code on the right. The result is that it's the first paragraph
that is formatted, rather than the second! (Even though we're on guard against this
sort of thing, this has happened to us several times.)

6.12 Footnotes

Plain TIYC's \footnote macro takes two arguments: the number or symbol used
to mark the note, and the text of the note. To get

Si Dieu nous a fait it son image, nous Ie lui avons bien rendu. *
Voltaire

* If God made us in his image, we have certainly returned the compliment.

62 A Beginner's Book of T E?<

we typed

Si Dieu nous a fait ... bien rendu.
\footnote{*}{If God made us ... the compliment.}
\smallskip \hskip 2in Voltaire

If you want your footnotes numbered sequentially, you can do it automatically with
the following macro, which calls \footnote with the appropriate first argument:

\newcount\notenumber \notenumber=1
\def\myfootnote#1{\unskip\footnote{$-{\the\notenumber}$}{#1}%

\global\advance\notenumber by 1}

Now you only need one argument, the text: \myfootnote{ ... }. The \unskip
primitive does what its name says: it removes the last bit of glue in the current
paragraph. Here it counteracts any spurious spaces that you may have inadvertently
typed before the \footnote, and which would appear before the raised note
number. 5

You can also have \myfootnote use a different font for the note (by default,
\footnote uses the same font for note and text, as in the example above): just
precede the second occurrence of #1 in the code above by the appropriate font
command. For an even more sophisticated version of \myfootnote, see the
Dictionary.

6.13 Two new macros for the aspiring wizard

A triple item macro
Let's try to write an \i temi temitem macro to allow the creation of third-level
lists. We can base ourselves on \i tem and \i temi tem, whose definitions are
given on page 355 of The TEXbook:
\def\item{\par \hangindent=\parindent \textindent}
\def\itemitem{\par\indent \hangindent=2\parindent \textindent}

According to section 6.9, \hangindent=\parindent causes all lines in the cur
rent paragraph, starting with the second (because \hangafter=1), to be indented
by \parindent. The command \hangindent=2\parindent works the same
way. What \textindent does is not so clear, but we don't really need to know
it-we can just extrapolate by adding one more \indent and replacing the 2
by 3:

\def\itemitemitem{\par\indent\indent
\hangindent=3\parindent \textindent}

This turns out to work perfectly. Here are all three item macros in action: the
first paragraph (in bold) starts with \noindent, the second with \i tem{A.} , the
third with \i temi tem{ 1 .} and the last two with \i temi temi tem{ ... }. The
\parindent is plain T8('s default (20 pt).

5 Like this.

Paragraphs 63

South and Southeast Asia: the Late Colonial Period and the
Emergence of New Nations Since 1920

A. India, Pakistan, Bangladesh, Ceylon, Tibet, and Nepal since 1920
1. India since c. 1920: nationalism and the decline of the raj

a. Dyarchy and the conflict between British policy and the aims
of Indian nationalism: the Congress and Gandhi's technique
of active, nonviolent revolution; Round Table Conferences

b. The Government of India Act (1935), the political and eco
nomic effects of World War II, partition and independence
(1947), Hindu-Muslim polarization6

An alternative for \ item
The \i tem and \i temi tem macros are very nice, but they have a problem:
they're wasteful of space. Here is an alternative, which is after a fashion the oppo
site of \i tem. It indents the first line only, and puts its argument in the indentation.
You can adjust the \parindent depending on how wide the label is.

\def\meti#l{\par\indent\llap{#l\enspace}\ignorespaces}

Each of the following paragraphs starts with \met i {\ bf ... }; the \parindent
is .5 in. We also opened things up a bit by inserting a \smaHskip before each
\meti.

(i) If a sequence of random variables converges almost surely it con
verges in probability. The converse is generally not true.

(ii) A necessary and sufficient condition for convergence in probability
of a sequence of random variables is that, for any E > 0 and 8 > 0, there
exists no = n(E,8) such that for n,n' > no we have P{I~nl - ~nl > E} < 8.

(iii) If a sequence of random variables converges in probability to ~ and
also to 1], we have ~ = 1] (mod P).

It's easy to figure out how \meti works: the first line is indented by \parindent ,
then \Hap writes to the left of the current point the stuff in braces, without moving
the current point. As for \ignorespaces, it's something of a converse for the
\ unski p control sequence used in section 6.12: it makes Tpc ignore any spaces or
carriage returns that follow the macro, so that \met i { ... } XXX and \met i { ... }
XXX have the same effect.

6 Encyclopedia Britannica (1988): Propaedia.

7
Page layout

7.1 Page layout in plain TEX
Plain Tpc fonnats the output page like this :

\headline 1 22.5pt

page I \.,izo

\footline 1 22.5pt

\hsize

It sets the running headline and the footline as follows:
\headline={\hfil}
\footline={\hfil\tenrm\folio\hfil}

Notice the syntax: \headline and \footline are not macros, but variables;
they're set with an equals sign = followed by a group in braces, rather than with
\def. (The equals sign is optional.) The \folio command prints the page num
ber. According to the code above, then, the running headline is blank:, while the
footline contains the page number, centered, in 10 point roman.

If you want no page numbers at all, start your document with \nopagenumbers;
this is an abbreviation for \footline={\hfil}. To get the page number at the
top instead of at the bottom, switch the contents of \headline and \footline:

\headline={\hfil\tenrm\folio\hfil}
\footline={\hfil}

Page layout 65

Printing the page number
The page number is stored in the variable \pageno, and increases automatically.
Unless you say otherwise, the first page is numbered 1. In order for the first page
to be 12, say, start your file with \pageno=12.

By convention, \folio prints a negative \pageno in roman numerals. If you
want the page number in roman numerals, then set the \pageno to the correspond
ing negative number: \pageno=-12. (You may be wondering what the next page
number will be. Don't worry, \pageno increases in absolute value.)

You can change \folio, if you wish, to use a different convention. See the
Dictionary for a version that prints uppercase roman numerals.

7.2 A more elaborate layout
The layout provided by plain TEX is very stark. It does not distinguish between
right and left pages, nor between the first page (which generally shouldn't carry
a folio number) and the others. For this reason we list here the code for a more
elaborate page layout, which you should put into a file fancy. tex for later use;
the flexibility gained will be worth the effort.

\newif\iftitlepage \titlepagetrue
\newtoks\titlepagehead \titlepagehead={\hfil}
\newtoks\titlepagefoot \titlepagefoot={\hfil}

\newtoks\runningauthor \runningauthor={\hfil}
\newtoks\runningtitle \runningtitle={\hfil}

\newtoks\evenpagehead \newtoks\oddpagehead
\evenpagehead={\hfil\the\runningauthor\hfil}
\oddpagehead={\hfil\the\runningtitle\hfil}

\newtoks\evenpagefoot \evenpagefoot={\hfil\tenrm\folio\hfil}
\newtoks\oddpagefoot \oddpagefoot={\hfil\tenrm\folio\hfil}

\headline={\iftitlepage\the\titlepagehead
\else\ifodd\pageno\the\oddpagehead
\else\the\evenpagehead\fi\fi}

\footline={\iftitlepage\the\titlepagefoot
\global\titlepagefalse
\else\ifodd\pageno\the\oddpagefoot
\else\the\evenpagefoot\fi\fi}

\def\nopagenumbers{\def\folio{\hfil}}

None of this is too hard to understand; see section 12.8 for details. Perhaps the only
non-obvious command is \ the: it corresponds roughly to write in Pascal or
print in Basic, effectively passing to the output stream the contents of a variable.

Throughout this chapter we'll assume that every document starts with the command

\input fancy

66 A Beginner's Book of TEl<

which tells TEX to read and keep the definitions in the file you just typed in. We
will call the aggregate of definitions in this file the fancy format.

\titlepagehead

\titlepagefoot

\evenpagehead

\evenpagefoot

Default settings

The diagram on the left represents the
title page provided by the fancy for
mat. The diagram below shows typical
left and right pages. The control sequen
ces shown in the diagrams are variables
that govern the headlines and footlines
of the various pages. You can fill them
in with whatever you want; let's look at
their default settings.

\oddpagehead

\oddpagefoot

Unless you say otherwise, the fancy format leaves the top and bottom of the title
page blank. Other pages get a running headline with \runningauthor (if even)
and \runningti tle (if odd), in the center; you can set these variables to the
author and title of the document, or to title of book and chapter, and so on. The
page number goes at the bottom, centered, in 10 point roman. If you put at-the top
of your file (right after \input fancy) the commands

\runningauthor={\eightbf Raymond Chandler}
\runningtitle={\eightbf Playback}

the pages following the title page will look like this:

Raymond Chandler Playback

2 3

It is always necessary to specify a font inside the various headline font in head
lineand footline variables, either directly or, as in this example, by including the
choice in the definition of \runningauthor and \runningti tle. The reason
is that there is no way to tell what TEX will be in the middle of when it stops to
break a page and typeset its headline and footline. If you don't set a font explicitly,
TEX will use the current one, with results that can range from the humorous to the
positively disastrous.

Page/ayout 67

Other choices
If you don't want the first page to be a title page, perhaps because you're print
ing only one chapter of a book, just say \titlepagefalse right after \input
fancy.

If you want a headline on the title page as well, you must set \titlepagehead.
Here's one possibility:

R. Chandler: Playback
\t itlepagehead={\hf ill
\eightbf R. Chandler:
Playback\hfill}

A common choice for the running head of regular pages is this:

156 R. Chandler Playback 157

in which case the footline is empty. You get this with

\evenpagehead={\tenbf\folio\hfill\eightrm\the\runningauthor}
\oddpagehead={\tenrm\the\runningtitle\hfill\tenbf\folio}
\evenpagefoot={\hfil} \oddpagefoot={\hfil}
\runningauthor={R. Chandler}
\runningtitle={Playback}

The next setup places page numbers on the margin, as in The T[ij(book, creating an
extended headline:

\evenpagehead={\llap{\tenbf\folio\quad}\eightit
\the\runningauthor\hfill}

\oddpagehead={\hfill\eightit\the\runningtitle
\rlap{\quad\tenbf\folio}}

And this runs a rule underneath the headline:
\evenpagehead={\vbox{\line{\tenbf\folio

\hfill\eightrm\the\runningauthor}\smallskip\hrule}}
\oddpagehead={\vbox{\line{\eightrm\the\runningtitle

\hfill\tenbf\folio}\smallskip\hrule}}

The footline, too, lends itself to many variations. Here is one, with the page number
centered at the bottom, and a rule on each side:

\evenpagefoot={\hrulefill\quad\tenrm\folio\quad\hrulefiII}
\oddpagefoot=\evenpagefoot

68 A Beginner's Book of TEl<

7.3 The title page

U niversite Louis Pasteur
Laboratoire de Typographie
Informatique

Strasbourg, August 7, 1988

A new laser printer driver

Setting up a head like this is similar to the problem of beginning a letter: the idea
is to stack lines that are "paragraphs" by themselves. Here is an alternative to the
approach given in section 6.4; it uses the \line command, which, as we saw in
section 5.3, creates a horizontal box spanning the page. Using \line and springs,
it is easy to get the layout above:

\line{Universit\'e Louis Pasteur\hfill Strasbourg, \today}
\line{Laboratoire de Typographie\hfill}
\line{Informatique\hfill}
\vskip 8pe plus lpe minus lpe
\line{\hfill\helvetieabf A new laser printer driver\hfill}

These constructions are so common that plain TfY(offers abbreviations for them:

• \eenterline{ ... } stands for \line{\hfil ... \hfil} (actually, it has
\hss instead of \hfil , but the difference is not important here);
• \rightline{ ... } stands for \line{\hfil ... };
• \leftline{ ... } stands for \line{ ... \hfil}.

Here is the counterpart of the code at the end of section 6.4 using \rightline
and \leftline:

\rightline{November 9, 1989}
\leftline{Raymond Seroul}
\leftline{UER de Math\'ematiques et d'Informatique}
\leftline{7, rue Ren\'e Descartes}
\leftline{67000 Strasbourg, France}

Starting in midpage
Suppose you want to start your first page with a title two inches below the top
margin. If you naIvely type

\vskip 2in\centerline{EXOTIC BUTTERFLIES}

you're in for a surprise: TfY(completely ignores the \vskip! This apparently
obnoxious behavior follows from the rules discussed in sections 5.3 and 5.4, and is
in fact entirely justified: TfY(is programmed to discard vertical spacing "between
pages," just as it discards interword spaces at line boundaries. In order for a
\ vskip at the top of a page to be effective, it must be preceded by something else.

Page/ayout 69

One often uses an empty box \hbox{} for this purpose; this trick is so common
that the empty box has a name, \null. So you can start with

\null\vskip 2in\centerline{EXOTIC BUTTERFLIES}

and it will all work out. Another possibility is to replace \vskip by \topglue
which, as explained in section 5.3, is guaranteed to leave glue that does not
disappear. (It turns out that \topglue itself is a plain T£X macro based on the
trick of using an invisible box, so the two solutions are actually one and the same.)

7.4 Starting a fresh page and leaving a blank page
Here's a variation on the same ideas: suppose you've filled half a page and you
want to leave the other half blank. The command \ej ect tells T£X that it should
start a fresh page. But if you just say \ej ect , you don't get the bottom half of
the page blank! Instead the glue between lines and paragraphs in the top half get
stretched so the text occupies the whole page. To change that behavior, you must
put before the \e j ect a vertical spring \ vf ill to take up the slack.

Now suppose you want to leave a page blank, to insert a figure, for example.
The naive solution, ... \vfill \eject\vfill \eject, won't work: the reason
is again disappearing glue. When the second \vfill \eject comes along, T£X
is already at the top of a page, so it ignores the \vfill and the \eject has
no effect (\eject effectively means "this is an obligatory break," so it has no
effect at a point where there is a break already). The correct solution again uses an
empty box:

... \vfill\eject\null\vfill\eject

7.5 Placing a title
Since springs of the same power share evenly the available space, you can place a
title, say, two-thirds of the way between the top margin of the page (or the document
head) and the beginning of the text:

FAIRY TALES

Once upon a time ...

\null
\vfill\vfill
\centerline

{\bf FAIRY TALES}
\vfill
Once upon a time ...
\eject

The \e j ect is necessary to indicate where the page must end; if it isn't there T£X
will fit as much text on the page as there is room for, and there will no space for
the springs to stretch into.

70 A Beginner's Book of T EX

7.6 Choosing line and page breaks by hand

7.7 Floats

When TIYC is in horizontal mode (inside a paragraph) and encounters a \break, it
starts a new line. But it doesn't start a new paragraph: the next line is not indented,
and the line just ended doesn't get the end-of-paragraph glue \parfillskip. As
a result, the text must end at the right margin, and the glue generally gets over
stretched. For this reason it is usually better to say \hfill \break instead of just
\break.

Another thing to watch out for is that ... xyz\break and ... xyz \break don't
have the same effect. In the second case, the blank following xyz will appear on
the page, at the end of the line.

When TIYC is in vertical mode (between paragraphs) and sees \break, it starts a
new page, same as if it had seen \eject. (But there is an important difference
between the two: \eject will end the paragraph and break the page even if en
countered in horizontal mode.) In this case, too, you should use \vfill \break
rather than just \break if the spacing between paragraphs gets stretched unduly.

Suppose you want to save two inches of vertical spacing for a figure. If you type

\vskip 2in\centerline{Figure 5}

and there happens to be only one inch left at the bottom of the page, you'll find
that the Figure 5 appears at the top of the next page, without any spacing before
it (why?); also, the layout of the current page will look awful, since the spacing
between paragraphs has to stretch to fill up the last inch of the page. If you use
\vglue instead of \vskip, the required two inches will be saved at the top of the
next page, but again the layout of the current page will be wrong.

Here's the right solution:

\midinsert\vglue 5cm\centerline{Figure 5}\endinsert

When TIYC encounters the pair \midinsert ... \endinsert , it typesets the ma
terial between the two commands and stashes it away in a box. If there is room
for this material on the current page, that is, if the height of the box is less than the
amount of space left on the page, TIYC unboxes the material right there and moves
on. But if there isn't enough room, TIYC saves the material for the top of the next
page, and continues on the current page with the text that follows \endinsert.
The migrating material constitutes a float.

Notice that even in a float you must use \vglue or \null \vskip, rather than
\vskip, to leave space at the top; otherwise the \vskip would find itself at the
top of the next page, and would consequently be discarded.

There is a variant for \midinsert : the pair \ topinsert ... \endinsert makes
the intervening text migrate to the top of either the current page or the next page,
depending on whether or not there is room on the current page.

Page layout 71

7.8 A complete example
Here is the complete source of some lecture notes used for a math course at the
University of Strasbourg, together with the corresponding TEX output. You will
recognize many of the layout hints mentioned in this chapter. All the commands
used here are documented in the Dictionary.

\global\evenpagehead={\line{{\tenbf\folio}\quad
\tenrm the\runningauthor\hfill}}

\global\oddpagehead={\line{\hfill\tenrm
\the\runningtitle\quad\tenbf\folio}}

\runningauthor={N. Ikabruob}
\runningtitle={Linear algebra over \Z}

\def\eps{\varepsilon}
\def\Z{{\bf Z}} \def\R{{\bf R}} \def\Q{{\bf Q}}
\def\qed{\vbox{\hrule\hbox{\vrule\kern3pt

\vbox{\kern6pt}\kern3pt\vrule}\hrule}}

{\parindent=Opt\obeylines
Universit\'e Louis Pasteur \hfill March 28, 1989
UFR de Math\'ematiques et d'Informatique
7, rue Ren\'e Descartes
67000 Strasbourg, France}

\vfill % center title in available space
\centerline{\bf Linear Algebra over \Z}
\smallskip
\centerline{N. Ikabruob}
\vfill\eject

Universite Louis Pasteur March 28, 1989
UFR de MatMmatiques et d'Informatique
7, rue Rene Descartes
67000 Strasbourg, France

Linear Algebra over Z

N.lkabruob

72 A Beginner's Book of T p<

\noindent
{\bf 1. Introduction}

\smallskip\noindent
In classical linear algebra, one proves the following results:

\smallskip
\item{(a)} every vector subspace of
$\R~n$ has a finite number of generators;

\item{(b)} every subspace of $\R~n$ has a basis, and two
bases have the same number of elements (its
{\it dimension\/});

\item{(c)} if $\{e_1,\ldots,e_k\}$ is a set of generators
for a subspace M, there is a subset of $\{e_1,\ldots,e_k\}$
that forms a basis for M;

\item{(d)} every set of linearly independent vectors
can be completed into a basis of $\R~n$;

\item{(e)} one can pass from any of the following
representations of a subspace to any other:

\smallskip
\itemitem{---} representation by generators (or by a basis),
\itemitem{---} representation by a system of equations,
\itemitem{---} parametric representation.

2 N. Ikabruob

1. Introduction

In classical linear algebra, one proves the following results:

(a) every vector subspace of Rn has a finite number of generators;
(b) every subspace of R n has a basis, and two bases have the same number

of elements (its dimension);
(c) if {el' ... , ek} is a set of generators for a subspace M, there is a subset

of {ell ... ,ed that forms a basis for M;
(d) every set of linearly independent vectors can be completed into a basis

ofRn;
(e) one can pass from any of the following representations of a subspace to

any other:

- representation by generators (or by a basis),
- representation by a system of equations,
- parametric representation.

Page/ayout 73

\smallskip
We will now examine the following problem: what happens
to these results when $\R~n$ is replaced by $\Z~n$?

\medskip\noindent
{\bf 2. Generalities}

\smallskip\noindent
Before we can answer this question in more detail, we
should familiarize ourselves with it and introduce certain
notions that will be useful later.

{\it Generators:\/} we say that the set $\{x_l,\ldots,x_r\}$
generates the subgroup M of $\Z~n$ if every element of
M is a linear combination of x_l,\ldots,x_r, with
integer coefficients (positive or negative).

{\it Linear independence over \Z:\/} we say that the vectors
x_l,\ldots,x_r are linearly independent over \Z if the
equality $a_lx_l+\cdots+a_kx_k=O$, with $a_i\in\Z$, forces
$a_l=\cdots=a_k=O$.

We notice right away that a set of vectors is linearly
independent over \Z if and only if it is over \Q.
(Clear denominators!) This lets us talk about linear
independence without specifying over what ring.

{\it Bases:\/} we say that $\{\eps_l,\ldots,\eps_r\}$ is a

Linear algebra over Z 3

We will now examine the following problem: what happens to these
results when Rn is replaced by zn?
2. Generalities

Before we can answer this question in more detail, we should familiarize
ourselves with it and introduce certain notions that will be useful later.

Generators: we say that the set {Xl, ... , X r } generates the subgroup
M of zn if every element of M is a linear combination of Xl, ... , X r , with
integer coefficients (positive or negative).

Linear independence over Z: we say that the vectors Xl, ... , Xr are
linearly independent over Z if the equality a1x1 + ... + akXk = 0, with
ai E Z, forces a1 = ... = ak = O.

We notice right away that a set of vectors is linearly independent over
Z if and only if it is over Q. (Clear denominators!) This lets us talk about
linear independence without specifying over what ring.

Bases: we say that {c1,"" cr} is a basis for a subgroup M of zn if
it generates M and C1, ... , Cr are linearly independent. For example, the
canonical basis is a basis for zn.

74 A Beginner's Book of Tf?(

basis for a subgroup M of $\Z-n$ if it generates M and
\eps_1,\ldots,\eps_r are linearly independent. For
example, the canonical basis is a basis for $\Z-n$.

{\it Remark:\/} If $\{\eps_1,\ldots,\eps_r\}$ is a basis for
a subgroup M of $\Z-n$, it is also a basis for the vector
subspace of $\Q-n$ generated by M. Thus two bases over
\Z have the same number of elements. We'll have a notion
of dimension as soon as we establish the existence of one
basis\dots

{\it A counterexample:\/} Items (c) and (d) in section 1 are
no longer true. For consider the subgroup M of $\Z-2$
generated by the vectors
$$
\eps_1=(2,O),\quad\eps_2=(1,3),\quad\eps_3=(O,9).
$$
These vectors are not linearly independent. Any two of
the three are linearly independent, but then they don't
generate M! Notice also that $M\neq\Z-2$.

{\it Unimodular matrices:\/} A unimodular matrix is an
invertible matrix $A\in M(n,\Z)$ whose inverse also has
integer coefficients.

\proclaim Theorem. If A is an invertible
square matrix with integer coefficients, $A-{-1}$ has
integer coefficients if and only if $\det A=\pm 1$.

4 N. Ikabruob

Remark: If {c1' ... , lOr} is a basis for a subgroup M of zn, it is also a
basis for the vector subspace of Qn generated by M. Thus two bases over
Z have the same number of elements. We'll have a notion of dimension as
soon as we establish the existence of one basis ...

A counterexample: Items (c) and (d) in section 1 are no longer true.
For consider the subgroup M of Z2 generated by the vectors

101 = (2,0), [2 = (1,3), [3 = (0,9).

These vectors are not linearly independent. Any two of the three are linearly
independent, but then they don't generate M! Notice also that M -:I Z2.

Unimodular matrices: A unimodular matrix is an invertible matrix
A E M(n, Z) whose inverse also has integer coefficients.

Theorem. If A is an invertible square matrix with integer coefficients, A -1

has integer coefficients if and only if det A = ±l.

Page layout 75

\smallskip\noindent
{\it Proof:\/} we have $\det A \det A~{-l}=l$. If A and
$A~{-l}$ have integer coefficients, their determinant is
also an integer. Thus $\det A=\pm 1$. Conversely, if
$\det A=\pm 1$, we deduce that $A~{-l}$ also has integer
coefficients, because it can be expressed as an integer
multiple of the matrix of cofactors of A.%
\enspace\qed

\smallskip
Because of the preceding theorem, unimodular matrices
form a {\it group\/} under matrix multiplication. We denote
this group by ${\rm GL}(n,\Z)$.

\bye

Linear algebra over Z 5

Proof: we have det A det A-I = 1. If A and A-I have integer coefficients,
their determinant is also an integer. Thus det A = ±1. Conversely, if
det A = ±1, we deduce that A-I also has integer coefficients, because it can
be expressed as an integer multiple of the matrix of cofactors of A. D

Because of the preceding theorem, unimodular matrices form a group
under matrix multiplication. We denote this group by GL(n, Z).

7.9 Penalties: or, the carrot and the stick

This section is a bit more technical (but not hard to understand). Skip it the first
time around, and consult it when you have problems with page layout and page
breaks.

TEX decides on lines and pages breaks after considering many different possibil
ities. It chooses among them on the basis of the accumulated demerits for the
various elements of each configuration. Demerits are a measure of the ugliness of
a configuration, and they can come from many sources: lines that are stretched or
compressed too much, excessive hyphenation, club or widow lines (first and last
lines of a paragraph stranded on a page by themselves), and so on. You can influ
ence the computation of demerits, and consequently the outcome of the line- and
page-breaking process, by using the \penal ty command.

A penalty is a number between -10000 and 10000 that you place at any spot where
you want to encourage or discourage a break. In computing the demerits for any
configuration that includes a break at that point, TEX will take the penalty into
account, increasing the demerits if the penalty is positive and decreasing it if the

76 A Beginner's Book of T g<

penalty is negative. The rules for how the penalty is taken into consideration are
complex, but here's what you have to know to get going:

• Basically, TEX will consider line or page breaks only at glue (between words,
between paragraphs, or caused by \hski p, \ vski p and the like), or at a penalty.

• A penalty is incorporated to the demerits of a break that/allows it. Penalties
don't apply retroactively: you must place them before any glue if they are to work.

• A penalty of 10000 is so high that it prevents a break altogether; a penalty of
-10000 is so highly negative-that is, it indicates such a good breakpoint-that
TEX will always break there.

To discourage a break at some space or glue, you can say \penalty 100 or
\penal ty 200 just before it; this will make that break that much less attractive
in TEX's eyes. If instead you say \penal ty -100, you encourage a break at that
spot. As an example, the definition of an unbreakable space - says \penal ty
10000\ . If TEX tries to break at such a space, it has to take into account the
penalty of 10000, which is just too high.

Here are the main commands that plain TEX provides to help with page layout.
Many of them are simply shorthands for some penalty or another, and so can
be used both in horizontal mode (for line breaks) and in vertical mode (for page
breaks):

• \allowbreak stands for \penal ty O. It normally has no effect next to glue,
since a break is allowed there anyway; but it can be very useful at places where TEX
would not consider a break otherwise: for example, within certain math formulas.

• \nobreak stands for \penal ty 10000. It completely forbids a line or page
break.

• \break stands for \penalty -10000. It forces a line or page break.

Because the action of these commands depends on the mode, they sometimes have
unexpected consequences. A common mistake is to say

... in vertical mode (for page breaks):
\nobreak
\smallskip
\meti{\bullet}

in order to guarantee that the list starts on the same page as the preceding paragraph.
This doesn't work because the \no break is read in horizontal mode, so it prevents
a line break, not a page break! (What's the solution?)

Other commands first put TEX in vertical mode, then insert the penalty:

• \eject stands for \par\penalty -10000. It finishes off the current para
graph and forces a line or page break.

• \supereject stands for \par\penalty -20000, a value not used other
wise. It not only breaks the page, but also forces any floats, footnotes, etc. that
may be in memory to be printed before TEX goes any further. Useful at the end of a
chapter. Plain TEX incorporates \vfill \supereject into the \bye macro, the
recommended way to finish a run.

Page layout 77

• \goodbreak stands for \par\penalty -500. It finishes the current para
graph and hints that this is a good place for a page break (but only if the page is
pretty much complete already).

Finally, there are some commands that combine (negative) penalties with vertical
spacing. They are very useful in practice:

• \filbreak stands for \par\vfil \penalty -200\vfilneg. It says this is
a good place for a page break, even if the page is not complete. The spring \ vf il
will fill up the rest of the page if the break is chosen. If not, it will be canceled by
the \vfilneg, and the \filbreak will have no effect. (This macro should be
used carefully. If you use it after each paragraph, TEX won't break paragraphs; it
will instead leave white space at the bottom of each page where it can't fit a whole
paragraph.)

• \bigbreak combines a \penalty -200 and a conditional \vskip 12pt
plus 4pt minus 4pt. That is, the skip is not put in ifthe \bigbreak command
was immediately preceded by a skip of 12 pt or more. Also, if the \bigbreak
was preceded by a skip of less than 12 pt, that skip is canceled. In particular, two
consecutive \bigbreak s have the same effect as one.

• \medbreak and \smallbreak work just like \bigbreak, but the penalties
and skip amounts are halved and quartered, respectively.

Naturally, you can use \penal ty directly, with any value you feel like. But using
carrots and sticks is a subtle art that one learns gradually, and you may be mystified
at first by the results of your experiments. Here are some hints:

• Remember that a penalty has no effect on glue (either horizontal or vertical)
that comes before it. In particular, a \nobreak won't help if it is preceded by
glue. (Sometimes you can't figure out where the glue comes from: it may have
been put there by some macro. Try to change TEX's mind by inserting a negative
penalty a little above or below.)

• Don't be heavy-handed. Penalties enter into the computation of demerits after
being squared, so a \penal ty 500 goes a long way. Using very high penalties
all over the place will just lead to unpredictable results, because it will upset the
"balance of power" set up by plain TEX.

8
Boxes

8.1 What is a box?
To TEX, everything is a box! TEX has no idea what an 'A' or an integral sign looks
like. It thinks of them simply as boxes with certain dimensions. When characters
are put together to form a line, the line itself becomes a box, and these boxes as
semble in even bigger boxes, and so on. We could say that TEX's job consists of
two things: creating boxes and putting them together.

Boxes can be implicit or explicit. Implicit boxes are the most common-every
character and every line of text is one. Explicit boxes are created by the commands
\hbox, \vbox, \vtop and \vcenter, which we will study in this chapter.

Once TEX has created a box, it is no longer interested in its contents, at least tem
porarily. The box becomes an outline, an imaginary rectangle whose dimensions
are its only concern. Here is what TEX sees in a box:

The dotted line inside each box is called its baseline; its importance is that boxes
arranged side by side are aligned according to their baselines, as in the figure. You
can think of the baseline as the hole through a bead, and of the several boxes shown
as a string of beads with a thread going through all of them. The reference point of
a box is the left endpoint of its baseline; the reference point of the leftmost box in
the picture is indicated by an arrow.

Boxes 79

The dimensions of a box are its width, its height (the elevation above the baseline)
and its depth (below the baseline). The leftmost box in the previous figure has a
width of .8 in, a height of .2 in and a depth of .6 in. Each dimension of a box is
normally positive, but it can be zero or even negative: for instance, the macros
\rlap and \Hap (section 5.10) put their argument into a box of width zero.

8.2 Putting boxes together
We saw in chapter 3 that the fundamental difference between vertical and horizontal
mode is how boxes are put together: on top of one another, like a stack of pancakes,
or side by side, like a string of beads. We now investigate this difference further.

Stacking boxes up

I········· ·1

D
D
~D

When Tpc reads \vbox, \vtop or \vcenter, followed by a
left brace, it switches to internal vertical mode: it starts stacking
one above the other the boxes encountered or created from then
on, aligning their reference points vertically. It continues to do
this until it reads the matching right brace. The result is again a
box, called a vertical box. For example,

\vbox{\boxl\box2\box3\box4}

gives the big box on the left, where \boxl, \box2, \box3 and
\box4 refer to the small boxes inside; \boxl is at the top.

The width of the outer box is the maximum width of the com
ponent boxes (for clarity, we drew the outer box slightly larger
than it really is). TPC automatically puts in a bit of glue between
component boxes; we'll discuss this in more detail later.

Tpc can also be in vertical mode without a surrounding box: in fact, that's the
state it starts in. In this so-called ordinary vertical mode TPC is building up the
current page, as if it were a big vertical box; but, unlike a vertical box, a page has a
predetermined height, and when that height is reached, Tpc ships out the page and
starts a new one. In internal vertical mode, by contrast, material just keeps piling
up, until the vertical box is finished.

Why are there three commands to make vertical boxes? They behave identically,
except at the very end. The baseline of a box obtained with \ vbox coincides with
the baseline of the last, or lowermost, component box. The baseline of a \ vtop ,
on the other hand, coincides with the baseline of the top box in the stack. Finally,
with a \ vcenter -which is allowed in math mode only-the resulting box has
its bead hole right in the middle. A figure will help make the difference clearer:

............ ,
--t •..........••.• ·1

\vbox

--t ·1
............... ·1

\vcenter

--t •.••.•••.••..••.•..

........... . ,
............... ·1

\vtop

80 A Beginner's Book of T g<

Stringing boxes together
When TEX encounters \hbox, it switches to restricted horizontal mode. This
means it strings together side by side the material that follows within braces; the
result is a horizontal box, exactly big enough to fit all the material. The component
boxes in an \hbox are aligned by their baselines:

~ IIH H H H H H H HIH H H HIH H H H H H H H HIH H H H H I
\hbox{boxl\box2\box3\box4}

(Here again, the resulting box is shown slightly bigger than it actually is.) The
width of the big box is the sum of the widths of the constituent boxes, because,
unlike the vertical case, no glue is put between them. The height and depth of the
big box are the maximum height and depth of the boxes inside.

When TEX is composing a paragraph, it is likewise in horizontal mode, called
ordinary. The difference between ordinary and restricted horizonal mode is that
in the former TEX will break up the resulting box into chunks of length \hsize
lines spanning the width of the page-and will always create at least one such
chunk. In an \hbox, on the other hand, exactly one line is created, and it can be
of any length, depending on the material inside.

8.3 What goes in a box?

In a word, everything. Anything that goes on the page is put into a box at some
point. But different types of material obey different rules, so we must consider
them separately. The basic types are five:

Characters
Characters are boxes in the sense that they have width, height and depth, but they
are peculiar in some respects. For one thing, they can only occur in horizontal
mode: if TEX is in vertical mode when it sees a character, it immediately goes into
ordinary horizontal mode and starts a paragraph, which is later cut up into lines
of width \hsize (see chapter 6 and the end of the previous section). Remember,
then: when you are in vertical mode, a single character triggers the creation of a
whole line!

Whether in ordinary or in restricted horizontal mode (caused by an \hbox), char
acters are strung together side by side, aligned according to their baselines:

Boxes 81

In this figure, each character is shown surrounded by the box it defines; the ligature
'fi' counts as one character. (As usual, boxes are shown slightly bigger than they
actually are.) What TEX actually sees is something like this:

IDlo DThJ~1 ~I hJ-----
Another way in which characters are special is that they are sometimes separated or
brought closer together by automatic kerns. This was ignored in the figure above.

Glue
Glue is either horizontal or vertical. Horizontal glue is for horizontal and math
modes only; if TEX is in vertical mode and sees \hskip it switches to ordinary
horizontal mode, same as if it sees a character. Vertical glue is for vertical mode
only; if TEX sees \ vski p while in ordinary horizontal mode it finishes the current
paragraph, whereas in restricted horizontal mode it gives an error message and tries
to finish the surrounding \hbox.

On the other hand, \kern doesn't change the mode; it simply is interpreted dif
ferently, as a horizontal or vertical kern, according with the mode.

Unlike the other types of material, glue has only one dimension: horizontal glue
has width, and vertical glue has height. This means that glue inside a horizontal
box doesn't affect the box's height or depth, and glue inside a vertical box doesn't
affect the box's width.

Rules
Rules are horizontal or vertical straight lines; we'll discuss them in more detail
in section 8.10. There are horizontal and vertical rules, to be used in vertical and
horizonal mode, respectively. Thus, TEX goes into vertical mode, if it is not there
already, when it sees \hrule; any following boxes will stack up. Conversely, a
\ vrule puts TEX in horizontal mode, and boxes following it are strung together
horizontally.

An \hrule is placed immediately next to the preceding and following boxes,
without any vertical glue being added.

Explicit boxes
Although there are also vertical and horizontal boxes, they are much more liberal
in their associations than either glue or rules: either type can occur in either mode.
Inside the box, of course, the mode changes accordingly, but once the box is fin
ished, the mode reverts to what it was just before the box was read (see also section
3.3). So boxes, of either type, get piled up when they occur inside a \vbox, but
placed side by side when they occur inside an \hbox.

Mathematical formulas
Math formulas are built in a special way from material that is surrounded by dollar
signs $. They are like characters in that they should only occur in horizontal mode;

82 A Beginner's Book of T e<

TP(will start a new paragraph if it sees a $ while in vertical mode. Material
surrounded by double dollar signs $$ is even more special: since it is meant to be
displayed on a line by itself, interrupting the current paragraph, it can't exist inside
an \hbox , but only in ordinary horizontal mode. TP(will basically ignore a $$
inside an \hbox.

Some examples
Here are some experiments to flesh out this theory a little. We start with a \ vtop :

I· ·· ······· ········ ······ ·1 '1
.. '1

\vtop{\box1
\box2\box3}

........ ·····1

........ \

\vtop{\box1\hrule
\box2\hrule\box3}

In the box on the left there are three stacked boxes. In the box on the right, we
put in an \hrule between each pair of boxes; this doesn't perturb the vertical
mode, so everything is still stacked up. Notice, by the way, that the interbox space
disappeared when we put in the rules. The width of the resulting box is always the
maximum of the widths of the components.

Let's throw in some text now:

II HHHHHHHHI

\vtop{\box1 Once upon a time \box2\box3}

It's all messed up! To understand what's going on, let's follow TP('s reasoning
step by step. When it starts the \vtop, it is in vertical mode. It sees \box1,
gets it from its memory, and places it as the topmost box in the stack that it's
building. Next it sees the character '0' . This makes it go into horizontal mode! So
a paragraph starts, which has no reason to end until TP(sees the right brace. Then
the paragraph must end, because the enclosing \ vtop ends. So the paragraph has
three words and two boxes, \box2 and \box3, which all fit on one line:

Once upon a time [. ·[1·········· ·· ··· '1

(notice the indentation at the beginning of the line). This one-line paragraph is
now placed underneath \box1, aligned on the left.

To check your understanding, try to explain the outcome of the next two experi
ments. To help you out, the box caused by the text is drawn in both cases. On the

Boxes 83

left this box would occupy the whole width of the page, so we made the width of
the "page" (the \hsize) small. Notice that the text is indented in the first case,
but not in the second: there is no indentation inside an \hbox.

II························ ·1
I Once upon a time
.................. J
............... '1

\vtop{\hsize=2in\boxl
Once upon a time\par
\box2\box3}

IOnce upon a timel

I·················· '1
............... '1

\vtop{\boxl
\hbox{Once upon a time}
\box2\box3}

So far, we would have gotten the same result by saying \vbox or \vcenter
instead of \ vtop. The only difference between the three types of vertical boxes
is the placement of the baseline, not the internal organization.

We conclude with a roller coaster of \hbox es:

I·········· ·1 A Droll" D waste, I·········· ·1

We typed \ \boxl \ A \box2\ roller \box3\ coaster \box4 to get this;
notice that we had to go into horizontal mode "by hand" with a \

8.4 Creating a box: summary

To summarize, you create an explicit box when you type \hbox, \ vbox, \ vtop
or \ vcenter, followed by material in braces. The material can be anything
compatible with the mode of the box. As usual, the braces delimit a group, so if
you say \hbox{\bf ... } the font change will only apply inside the box.

In the beginning, you may be perplexed with so many types of boxes. But choosing
among them will soon become second nature to you. What you have too keep in
mind is that:

• An \hbox always contains exactly one line. The line can grow to any length,
according to what's inside, but there is no point in making it any longer than the
page width \hsize. One often uses an \hbox to keep a few words from breaking
across lines (see the next section), or to arrange several boxes side by side .

• A vertical box can contain anything. If it contains any horizontal mode ma
terial (characters, horizontal glue, \ vrule s, math) that is not "protected" inside
an \hbox, this material forms whole paragraphs, so the vertical box has width
\hsize. If you want to typeset text inside a vertical box, then, you should each

84 A Beginner's Book of T EX

break the text into lines that go in individual \hbox es, or set the \hsize inside
the vertical to box to the desired box width .

• Generally speaking, the baseline of a \ vbox is near the bottom, so the box
"sticks up" when placed next to others. The baseline of a \ vtop is near the top,
and that of a \ vcenter is right at the middle. A \ vcenter can only be used in
math mode.

8.5 Storing a box

The description of a box can be very complicated, and it can be confusing to try to
build it in the middle of the text where it is to appear. It's much better to build it
and store it for later use:

\setboxl=\hbox{ ... }
\setbox17=\vbox{ ... }
\setbox48=\vtop{ ... }

There are 256 slots in TJY('s memory for boxes, and they're called \boxO, \boxl,
... , \box255. The command \setbox2 tells TJY(to store the box that follows in
slot 2. When that box is created, then, it doesn't appear on the output; it only gets
used when you say \box2. A \setbox assignment, like any other, has effect only
until the end of the group in which it is made, unless it is preceded by \global.
The = in the assignment is optional.

Some of the box slots are appropriated for certain uses, and you shouldn't mess
with them: for example, box 255 contains the output page. In fact, you should
probably not use box numbers at all. Plain TJY(lets you "reserve" and give a name
to a box that is otherwise unused:

\newbox\toto
\setbox\toto=\hbox{ ... }

\box\toto

The first command, \newbox\toto, needs to be given only once; from then on
you can use the name \ toto as if it were a number, to refer to this particular box,
as many times as you want (compare with \newfam in section 4.7).

Boxes I through 9 are saved for scratch use, so it's OK to say \setboxl= ... for
very short-term storage. Between the time you set the box and the time you use it
there should be no intervening commands that might reset the box.

The only way to store a centered box (\vcenter) is to make a math formula out
of it, and put the expression in an \hbox, like this:

\setbox\toto=\hbox{$\vcenter{ ... }$}

Don't forget the dollar signs. Also, don't try to put the $\ vcenter ... $ directly
into a \ vbox; since math formulas are only legal inside a paragraph, TJY(will
make a paragraph out of it, and the resulting box will have width \hsize.

Boxes 85

Using a box
You now know how to store a box and how to use it with the \box command. But
there are other commands for using the contents of a box:

\box, \copy, \unhbox, \unvbox, \unhcopy, \unvcopy.

When you say \box3, TEX puts the contents of box 3 at the current point in the
text. But it also erases box 3 altogether, and its contents are lost. If you want to use
the contents of box 3 without erasing it, you must say \copy3. The same is true
if you're dealing with a box by name: say \copy\toto, rather than \box\toto.

The reason \box behaves in this way is economy of space: since boxes generally
contain a lot of stuff, and most often are used only once, TEX tries to free up
memory by making the read-once behavior the default.

TEX won't split the contents of a box. If you say

\setbox\Max=\hbox{"I'LL EAT VOU UP!"}
\parindent=Opt

The night that Max wore his wolf suit and made
mischief of one kind and another his mother called
him "WILD THING!" and Max said \box\Max 1

you get an overfull line, because TEX won't go inside box \Max to break between
words there:

The night that Max wore his wolf suit and made mischief of one kind and an-
other his mother called him "WILD THING!" and Max said "I'LL EAT YOU UP!".

Compare with what happens when you use the box by saying instead ... and Max
said \unhbox\Max:

The night that Max wore his wolf suit and made mischief of one kind and
another his mother called him "WILD THING!" and Max said "I'LL EAT
YOU UP!"

Here TEX effectively unboxed the contents of the box before inserting them into
the paragraph. The result is that a break can be made between the two words, as if
they had never been boxed in the first place. TEX even lets the glue between the
elements of an unboxed box stretch and shrink, which is not the case inside a box
that has already been wrapped up.

But you shouldn't expect to be able to modify the unboxed contents in any way:
once they've been set, TEX won't go back! For example, suppose the definition of
the box \Max is preceded by a change of font:

\bf\setbox\Max=\hbox{"I'LL EAT VOU UP!"}\rm

When you \unhbox the box, here's what you get:

The night that Max wore his wolf suit and made mischief of one kind and
another his mother called him "WILD THING!" and Max said "I'LL EAT
YOU UP!"

1 Maurice Sendak, Where the Wild Things Are

86 A Beginner's Book of T EX

This behavior at first appears contradictory: why does the spacing adjust itself as
if "I'LL EAT YOU UP" were a part of the paragraph, but the font is different?
It's because TEX is splicing in the contents of the box, not reading its definition
again. Things would be different if you had said \def\Max{" I'LL ... } ; then
whenever you used the macro \Max the phrase would appear in the current font.

The command \unvbox works just like \unhbox, but is used for vertical boxes,
those created with \vbox or \vtop. Like \box itself, \unhbox and \unvbox
erase the contents of a box when they unbox them. The peculiarly named commands
\unhcopy and \unvcopy unbox a box without erasing its contents.

To make a long story short, use \box when you need to keep the contents together,
and will use them only once. Use \unhbox and \unvbox when you need more
flexibility. And use \copy, \unhcopy or \unvcopy when the contents are
needed more than once.

8.6 The baseline
The baseline of a box is determined by its contents. We have seen that:

• the baseline of a \ vtop coincides with the baseline of its first component;
• the baseline of a \ vbox coincides with that of its last component;
• the baseline of a \ vcenter goes through the middle; and
• the baseline of an \hbox is the common baseline of all its sub-boxes.

But a box can contain things other than boxes. How is the baseline determined
then? Characters and rules are no problem: they have baselines too, and behave
just like boxes for the purpose of building up other boxes (section 8.3). Glue affects
the positioning of the baseline as follows: a \vbox that ends with glue has its
baseline all the way at the bottom; a \ vtop that begins with glue has its baseline
all the way at the top. For the other two types the rule doesn't change.

Changing the baseline: a drastic remedy
Suppose you're given a box made with \vbox, say box 1, and need to move its
baseline to the top, as if it were a \vtop. Saying \vtop{\box1} won't work,
because the \ vtop , having only one box inside, must inherit its baseline. This is
shown on the left:

Paris was under siege,
starving and at her last
gasp. The sparrows were
disappearing from the
roofs, and the city's sew
ers were being depopu
lated. People were eating

-+ anything they could find .

\setbox1=\vbox{ ... }
\ vtop{\box1}

-+ One bright morning in
January Monsieur Moris
sot, a watchmaker by
trade but an idler by
necessity, was walking
sadly along the outer
boulevard with an empty
stomach ...

-+ ... and his hands in the
pockets of his uniform
trousers when he came
face to face with a comer
ade in arms whom he rec
ognized as an old friend.
It was Monsieur Savage,
a riverside acquaintance. 2

\setbox1=\vbox{ ... }
\vtop{\kernOpt\box1}

\setbox1=\vbox{ ... }
\vtop{\unvbox1}

2 Guy de Maupassant, Two Friends, translated by Roger Colet.

Boxes 87

One solution, based on the rules stated before, is to tack some glue onto the box
before wrapping it inside \vtop. Naturally, the glue shouldn't take up any space:

\vtop{\kern Opt\boxl}

This gives the middle part of the triptych. But notice that the baseline is now all
the way at the top, rather than coinciding with the baseline of the first line inside,
as would have been the case if the paragraph had been set in a \ vtop in the first
place. The individual lines are still not available to the outer box.

There is a better solution, at least as long as the paragraph isn't packed too deeply
inside other boxes. The idea is to first unbox the contents of the \ vbox , freeing
up the individual lines; TEX will then be able to use the baseline of the first line as
the baseline of the outer box. This is shown on the right.

Similary, to move the baseline of a \ vtop to the bottom, you can put it in a \ vbox
followed by glue, or you can unbox its contents inside the \ vbox. Moving the
baseline to the center is easier: you always say \hbox{$\vcenter{\boxl}$},
no matter how box 1 was created.

Changing the baseline: fine-tuning

In spite of all precautions, it can happen that boxes aligned by their baselines
don't look quite right, and one wants to move them up or down individually. The
commands \raise and \lower let you do that; they only work in horizontal
mode, that is, while TEX is laying boxes side by side. For example, when you say

\raise 5pt\boxl

TEX raises \boxl by 5 pt before adding it to the paragraph or \hbox that it is
setting. It's as if the baseline of \boxl had been lowered by 5 pt with respect
to the contents of the box; and in fact if you say \setboxl=\hbox{\raise
5pt\boxl}, the net result is that the baseline of \boxl is now 5 pt lower. The
height of \boxl increases by 5 pt, and its depth decreases by the same amount.

The \raise command must be followed by a dimension and then a box of any
type, made on the spot or retrieved from one of the slots. Nothing else will work!
For example, \raise 5pt{\vbox{ ... }} gives an error; the braces around the
\ vbox are wrong.

In the figure below, boxes 1,2 and 3 have height 7,5 and 9 mm, respectively. We
raise each one so that its top is 10 mm above the baseline of the enclosing box,
which is marked by an arrow (as usual, the enclosing box is shown slightly bigger
than it is in actuality):

\hbox{\raise 3mm\boxl\raise 5mm\box2\raise lmm\box3}

88 A Beginner's Book of T E!<

Naturally, \lower is the opposite of \raise. It is used, for example, in the
definition of the TEX logo in section 5.11. You can get by without it, if you want,
because \raise - .1in\box5 has the same effect as \lower .1in\box5.

Moving a box horizontally
As we have seen, \raise and \lower work only in horizontal mode. They have
a vertical mode couterpart: you can shift a box to the left or to the right using
\moveleft and \moveright, followed by a dimension and a box: \moveleft
. 2in \box2. (You might be tempted to achieve the same thing with \hskip
-. 2in \box2; but this will start a paragraph, while \moveleft leaves you in
vertical mode.)

8.7 The dimensions of a box
Examining the dimensions of a box
You can refer to the dimensions of a box stored in one of the memory slots by saying
\ht, \dp and \wd, followed by the box number or name. To get the height of
box 1 to appear on your screen, put the command \showthe\htl in your file;
TEX will stop at that point, display the number you want, and wait for a carriage
return to proceed.

If your box has not been stored there is no way to refer to its dimensions; you must
assign it a slot first.

How the dimensions are determined
By default, the dimensions of a box are fixed by its contents, as we saw in the
preceding sections. To recap:

• For a horizontal box, the height and depth are the maximum height and depth
of the boxes inside. The width is the sum of the widths of the boxes inside, plus
glue, if any .

• For a vertical box, the width is the maximum width of the boxes inside. The
total vertical dimension (sum of height and depth) is the sum of the vertical dimen
sions of the boxes inside, plus glue, if any. This vertical dimension is split evenly
between height and depth for a \ vcenter ; it goes mostly toward the height for a
\ vbox ; and goes mostly toward the depth if the box is a \ vtop .

Once again, if there is even a single character "out in the open" in a vertical box,
TEX will start a paragraph, with lines of length \hsize. This means the box will
have width at least \hsize. When you put text directly in a vertical box, then,
don't forget to fix the \hsize accordingly:

\vbox{\hsize=2.5in ... }

Dimensions fixed from the outside
Depending on the type of box, you can constrain one or another dimension to have
a fixed value. If you say \ vbox to 2in{ ... } or \hbox to 4cm{ ... } you
will get, respectively, a \ vbox of height 2 in and an \hbox of width 4 cm. (You

Boxes 89

can also say \ vtop to. .. and \ vcenter to ... , but these constructions are
best avoided, since they don't do what you expect. If you really want to know
what they do, see pages 81, 290 and 443 of The T£Xbook.)

To satisfy the constraint, T£X will stretch or shrink any glue that might be present
in the box. If doing that requires going beyond the available elasticity, you get an
overfull or underfull box, accompanied by an error message. For this reason, it's
generally a good idea to use springs, which have infinite stretchability. After you've
had some experience you may want to try the springs with infinity shrinkability,
\vss and \hss, for special effects (cf. the definition of \centerline).

As a special case, \vbox to 10mm{} creates an empty box 10 mm tall, and hav
ing height and width zero. No springs are necessary!

To use the contents of a stored box inside a box whose dimension is predetermined,
\unvbox and \unhbox often come in handy:

\setbox1=\hbox{Once upon a time}
$1 $\copy1$1 $ IOnce upon a timel
$1 $\hbox to 1. 2in{\copy1}$1 $ IOnce upon a time I
$1 $\hbox to 1. 2in{\unhbox1}$1 $ IOnce upon a timel

Using the to construction, you can make boxes with different contents conform to
the same dimensions. For instance, to create a box with the same height as \box5,
to place the two side by side in a display, say \setbox6=\ vbox to \ht5{ ... }.

There is another command to set the dimension of a box from the outside:
\setbox1=\hbox{Gone with the wind}
$1 $\copy1$1 $ IGone with the windl
$1 $\hbox spread 3pc{\copy1}$1 $ IGone with the wind I
$1 $\hbox spread 3pc{\unhbox1}$1 $ IGone with the windl

You've probably caught on already: \hbox spread 3pc adds 3 pc to the natural
width that the box would have otherwise. (Notice that spread, like to, doesn't
have a backslash.) Here again you should think of using \unhcopy or a spring,
or T£X may complain that the box if overfull or underfull.

Naturally, you can also use spread with vertical boxes (of all types).

8.8 Some practical situations

We start with a macro to build a blank box with specified height, depth and width,
represented in the definition by #1, #2, #3. It works "from the inside out"
first \ vbox to #1 {\ vf il} makes a "box" of the right height and zero width and
depth, then \ vtop spread #2{ ... \ vf il} stretches it down, and finally \hbox
spread #3{\hfil. .. } stretches it sideways. The result of each command is
passed to the next, surrounding, command:

\def\emptybox#1#2#3{\hbox spread #3{\hfil
\vtop spread #2{

\vbox spread #l{\vfil}
\vfi!}}}

90 A Beginner's Book of T EX

Here is one of the most common horizontal arrangements of boxes placing boxes
side by side(notice the alignment at the top):

'------_II '-------
It is obtained like this:

\setboxl=\vtop{ ... } \setbox2=\vtop{ ... }
\centerline{\boxl\quad\vrule\quad\box2}

The material is stored into vertical boxes of the \vtop variety, which are then
placed side by side in a horizontal box. To adjust the spacing we use horizontal
springs. Notice how simple it is to place a vertical rule between the boxes.

If \boxl and \box2 are made up of other boxes, their tops may not coincide
when the baselines align. This is sometimes what you want-when the first thing
in the boxes is a line of text, the baselines should coincide, not the top of the lines.
But if you really want the tops aligned, start each \ vtop with a box of zero height,
called \null. This will move the baseline of the big boxes to the top.

Many of the figures in this book are made up of two boxes set side by side. Most
often they are aligned at the center:

'------_11'--------------'
The solution is similar: the boxes (of any type) being already built, we say

$$\line{$\hfill\vcenter{\boxl}\quad \vcenter{\box2}\hfill$}$$

To place braces next to a box, center the box, then build the braces by surrounding
it with $\left \ { ... \right . $ (see section 11.13). The period after \right is
part of the construction.

some wonlli { 1'------_
\centerline{some words $\left\{\ \vcenter{ ... }\right.$}

Next, we place a legend underneath a memory box, say box 1.

Legend

\vbox{\hsize=\wdl
\boxl

}

\medskip
\centerline{Legend}

Boxes 91

Changing the dimensions of a box

It is possible, and often useful, to change the dimensions of a
memory box without changing its contents. In the figure on
the left, the thin outline represents a memory box, say \box1,
whose height, depth and width are 16,20 and 10 mm. By saying

\ht1=5mm \dp1=8mm \wd1=10mm

all the dimensions are halved, and we get the smaller box indi
cated with a heavy outline. All the changes are with respect to
the reference point.

This idea is useful if you have several memory boxes with legends, as we discussed
above, and they must be placed side by side. Unless the boxes have the same depth,
their legends won't align. You can make their depths the same if you know, for
example, that box 1 is deeper than box 2:

\dp2=\dp1
\setbox1=\vtop{\hsize=\wd1

\box1
\medskip
\centerline{Legend 1}}

\setbox2=\vtop{\hsize=\wd2
\box2
\medskip
\centerline{Legend 2}}

\centerline{\box1\qquad\box2} Legend 1 Legend 2

Another very useful application is in plain TEX's \smash macro. If you say
\smash{ ... }, TEX will typeset the material in braces, but pretend that it has
no height or depth! The baseline of the resulting box is the same as that of the
material inside. The definition is basically very simple: it puts the material in a
box, changes the height and depth of the box to zero, and writes it out:

\def\smash#1{\setboxO=\hbox{#1} \htO=Opt \dpO=Opt \boxO}

You will find all sorts of applications for this macro. For instance, a superscript
can sometimes create a bit of extra space between lines, if it is too big. The result
is often unsightly: look at the end ofthe boxed example on page 99. To avoid this,
you must prevent TEX from seeing the height of the superscript when it stacks up
the line; the following code will do that:

... don't. %
\footnote{\smash{$~4$}}{Bill Walton ... }

Here's another case in which \smash comes in handy:

R(1)(a,u,v) = L cp(TPD)(Sp-No - SpI-No)(a)
IP-Pll::;N x cp(TPl D)R2(U, v)

92 A Beginner's Book of T £X

To build up this fonnula, we stored each line in a box, then wrote
$$\displaylines{\qquad\smash{\box2}\hfill\cr

\kern 65mm\box3\hfill\cr}$$

Without this precaution, the lines would be set too far apart, because of the depth
of the summation sign.

Corner letters, or dropped caps

MAN is but a reed, the most feeble thing in nature; but he is a thinking
reed. The entire universe need not arm itself to crush him. A vapor,
a drop of water suffices to kill him. But, if the universe were to crush

him, man would still be more noble than that which killed him, because he
knows that he dies and the advantage which the universe has over him; the
universe knows nothing of this. 3

This elegant effect was achieved with the \cornerbox macro, which employs
many of the ideas we've discussed so far. This macro carves out the upper left
comer of a paragraph, using \hangindent and \hangafter, and places there
some other material. Here is its definition:

\def\cornerbox#1#2#3{\setboxl=\hbox{#1} \dpl=Opt
\par\hangindent\wdl \hangafter-#2 \noindent
\hskip-\wd1 \raise#3 \box1 \ignorespaces}

The material that should go in the comer is the first argument to the macro,
represented by #1. It is put inside box 1, whose depth is then declared to be zero,
to prevent it from creating extra space between the first and second lines. Then
\hangindent\wd1 and \hangafter-#2 carve out a comer with same width
as \box1 and a depth corresponding to #2 lines; this value must be detennined
by hand. The paragraph proper starts with \noindent. Then \hskip-\wd1
backtracks to the left margin, and we place the contents of \box1 there, raised
by an amount #3 which can be fine-tuned. Finally, \ignorespaces eliminates
unwanted blanks that may creep in right after the macro is called. Here's how
\cornerbox was called to do the paragraph above:

\font\huge=cmr12 at 36pt
\cornerbox{\vtop{\kern Opt\hbox{\huge M\kern 2pt}}}{3}{6pt}
AN is but a reed ...

Here we used \cornerbox. This time we stored the label in a memory box,
again \setboxl=\vtop{\bigbf\hbox{Here}\hbox{again\quad}};no-

tice the use of \quad at the end of the longest line inside the box, to
ensure a reasonable amount of space between the label and the text. Then we
continued exactly as above, saying \cornerbox{\box1}{3}{6pt} to start the
paragraph. The font \bigbf is cmbx12 at 12 pt.

As usual, if \cornerbox is used inside a group, the paragraph must end before
the group. Use \par or a blank line, if necessary.

3 Pascal. Pensee 347. translated by W. F. Trotter.

Boxes 93

8.9 Spacing between boxes

As we've seen several times, TEX adds some glue between boxes when it piles
them up. Three variables control this behavior: \baselineskip, \lineskip
and \lineskiplimit.

TEX first tries to arrange consecutive boxes so that their baselines are separated
by \baselineskip; this variable is set by plain TEX to 12 pt, and in general its
value should be slightly more than the size of the current font, so lines of text are
harmoniously spaced.

If the box above is too deep, or the box below is too high, this rule would make the
two boxes get too close to one another. In this case TEX instead separates the two
boxes by the value of \lineskip, which is 1 pt in plain TEX. What is considered
too close? The threshold is \lineskiplimit, which plain TEX sets to 0 pt.

Two examples will illustrate these rules:

I·· ···· ·· ···· · · ······ ···· ·1
I· ······················· ·1

I· ············ ··········· ·1
\baselineskip=5mm
\lineskiplimit=Omm
\lineskip=3mm

I··················· ··· ·· ·1
I···················· · ··· ·1

I························ ·1
\baselineskip=Omm
\lineskiplimit=Omm
\lineskip=2mm

The heights of these boxes are 2, 2 and 4 mm, and their depths are all 2 mm. In
the example on the left, the two first boxes are separated by 1 = 5 - (2 + 2) mm
of spacing. This is acceptable, since it is no less than the \lineski plimi t .
Between the second and third boxes the \baselineskip rule would give a skip
of 5 mm - depth - height = -1 mm. This is less than the \lineskiplimi t
of 0 mm; since TEX cannot respect the \lineskiplimit, it places instead the
\lineskip of 3 mm between the boxes.

On the right, on the other hand, \baselineskip is zero, so it's never possible
to respect the \lineskiplimit. (Well, almost never-boxes can have zero or
negative height and depth.) TEX then places the \lineskip between all boxes.

To typeset a simple double-spaced document, start by doubling the spacing be
tween baselines with the command \baselineskip=2\baselineskip. (You
can replace the 2 by other numbers, such as 1.5.) If the document contains certain
commands that automatically change the line spacing, the \baselineskip may
revert to its original value at unexpected places; see \spacemag in the Dictionary
for a solution.

The \baselineskip and the \lineskip can be made elastic, but this is usually
not done because even a minute difference in spacing between lines is easily picked
up by the eye. For typesetting straight text, then, you should stick to rigid line
spacing, and save the glue for special applications, like a table that should fill a
whole page.

94 A Beginner's Book of T p<

Sometimes you want to eliminate the spacing between two boxes in vertical mode;
you can do this by placing \nointerlineskip between the two. To tum off
interline spacing altogether, use \offinterlineskip.

In this figure, the settings of the variables are the same as in the first part of the
previous one:

1 1 1 1 1 · ·1 I I

I I

8.10 Rules

..................... .

\vbox{
\boxl
\nointerlineskip
\box2
\box3}

\vbox{
\boxl
\box2
\nointerlineskip
\box3}

\vbox{
\offinterlineskip
\boxl
\box2
\box3}

Rules are boxes filled with black. Here's how you get them:

\hrule height 2pt depth lpt width 20in
\vrule height 20pt depth Spt width lpt

There is no backslash before height, depth and width. Any of these attributes
may be absent, and they can come in any order.

There are two types of rules: \hrule and \vrule. The 'h' and 'v' stand for
horizontal and vertical, as usual, but as we'll see an \hrule can draw a vertical
line, and vice versa. The real distinction is that you can only use \hrule in
vertical mode, and \ vrule only in horizontal mode.

Horizontal rules
You can use \hrule between paragraphs, or inside a vertical box. But if you try
to use it inside a paragraph, TEX will end the paragraph and enter vertical mode. If
you're in restricted horizontal mode, say inside an \hbox, you will simply get an
error.

Here's a graphic illustration of this: we're going to bluntly say \hrule height
lpt derth l~t width lin
10 the middle 0 this sentence. Before the rule, lEX was in horizontal mode, setting
a paragraph. After finding the rule, it changed to vertical mode, and had to finish
the paragraph. Then it created the rule, which went under the previous sentence
(since TEX is in vertical mode). Finally it started another paragraph when it saw
the letter 'i' after the rule. (Notice that the \parindent is set to zero.)

The rules before and after this paragraph were obtained with \medskip\hrule
\medskip. We had to add skips by hand because, as we've discussed, no spaces
are placed before or after rules, unlike the situation with boxes.

Boxes 95

This example also illustrates what happens when you leave out the attributes of
an \hrule. If you leave out the width, the rule grows to be as wide as the
immediately enclosing box. If there is no enclosing box, it grows as wide as the
page (\hsize). So much for a missing width. The other attributes are simpler:
if height or depth are missing from an \hrule, TFC gives them the default
values .4 pt and 0 pt.

The box shown on the left has one rule, the first, whose width was
not specified:

\vbox to 1.5in{\vfil
\hrule \vfil
\hrule width 16mm \vfil
\hrule width 15mm \vfil ... }

This rule comes out spanning the whole box. The width of the box,
in tum, is determined by the lengths of the other rules, because there
is no horizontal mode material (characters, etc.) in it. If there were,
the width of the box would be \hsize.

Vertical rules
You can use \vrule any time you're in horizontal mode:
\hbox{\vrule height 15pt depth 5pt width 3pt} 1
\hbox{\vrule height .4pt depth Opt width 2cm}

If you try to use \ vrule in vertical mode, TFC will switch to horizontal mode
and, as you know by now, give you a whole paragraph of width \hsize.

If width is missing for a \ vrule , TFC uses the value .4 pt. If height or depth
are missing, TFC uses the height and depth of the immediately enclosing horizontal
box. For example,

\hbox{\vrule height 10pt depth Opt\quad
\vrule height Opt depth 5pt\quad
\vrule width 3pt}

makes the last rule as tall as the first and as deep as the second: I I I.
Two exercises
1. Look carefully at the following code, and explain the results:

\vbox{\hsize=lin\parindent=Opt
1 {\vrule height 15pt depth 2pt
2 \vrule\ xyz\hfil\break
3 \vrule\ xyz
4 \hrule\ uvw
5 \vrule\ uvw}

width 3pt} xyz

1 ~yz 2ixyz
31xyz 4
uvw 51uvw

When Tpc reads the first \ vrule , it is in horizontal mode, since it's just read the
'I'. Thus the rule is added to the line of text, right after the 'I'. Rule 2 has no
dimensions specified, so TFC uses the height and depth of the line it's in. It turns

96 A Beginner's Book of T EX

out that the tallest and deepest thing on the line is rule 1, so rule 2 inherits its height
and depth (the braces around the rule are irrelevant!). The width of rule 2 is not
inherited from rule 1; it takes on the default value .4 pt.

The first line is ended by the \hfil \break, but the paragraph continues. The
next line has the height of the' 3' and depth of the 'y', and those are the dimensions
imparted to rule 3. This line is separated from the previous one by the normal
interline glue.

Rule 4 is an \hrule, and puts TP(in vertical mode. The width not having been
set, it defaults to the width of the enclosing vertical box, which is the current value
of \hsize (since there are paragraphs in the box). The height and depth are the
default .4 pt and 0 pt.

After rule 4, TP(goes into horizontal mode again as soon as it sees the' u'. This line
has again the height of a digit; but it has depth zero, since there are no descenders.
This explains the height and depth of rule 5. Rules 3 and 5 touch rule 4 because
no vertical spacing is added above or below a horizontal rule.

2. Produce the two patterns below. The rules range in length from 2 mm to 20 mm,
in increments of 2 mm; and they're separated by 2 mm of vertical spacing.

TEX

Let's see how the pattern on the left is obtained. It's made up of three boxes strung
together horizontally, and pushed together as necessary; on the right, the same
three boxes are not pushed together so much.

\hbox to 40mm{$\vcenter{\boxl}\hss\vcenter{\box2}
\hss\vcenter{\box3}$}

By now you know how to make the first box:

\setboxl=\vtop{\hrule width 20mm\kern 2mm
\hrule width 18mm\kern 2mm ... }

Box number 2 contains the TP(logo in 30 point Times Roman:

\setbox2=\hbox{\font\times=Times at 30pt\times\TeX}

Box number 3 is a little bit harder-how to make a rule of length 18 mm sit on
the right side of the box, rather than on the left? We must put horizontal glue
to the left of the rule somehow, which means we must go into horizontal mode.
Setting the \hsize to 20 mm and saying \hfill \hrule width 18mm\par

Boxes 97

almost works, but not quite: \hrule is not allowed in horizontal mode. We must
wrap the \hrule in a \ vbox , so it is read in vertical mode. Also, we must say
\offinterlineskip because now we're stacking boxes, rather than rules, and
we don't want the interline glue to disturb the spacing.

\setbox1=\vtop{\offinterlineskip\hsize 2cm
\hfill\vbox{\hrule width 20mm}\kern 2mm
\hfill\vbox{\hrule width 18mm}\kern 2mm ... }

There are many other possibilities. Here are two:

• Replacing \ vbox{\hrule width 18mm} by \ vrule height .4pt depth
Opt width 18mm, we effectively create a horizontal rule with I .

• Replacing \hfill by \moveright 2mm (for the 18 mm rule) we avoid the
need to go into horizontal mode and to set \hsize.

8.11 More practical examples
Framing a box
Many figures in this chapter show the contents of a box surrounded by a frame.
They're created with, e.g., \boxi t{2ptH ... } ; this surrounds the stuff indicated
by ... with 2 pt of white space on all sides, followed by a frame of thickness
equal to .4 pt.

\def\boxit#1#2{\hbox{\vrule
\vtop{%

\vbox{\hrule\kern#l%
\hbox{\kern#1#2\kern#1}}%

\kern#l\hrule}%
\vrule}}

To figure out how \boxi t works, we look at its commands from the inside out,
in the order in which they are executed. First, \hbox{\kern#1#2\kern#1} puts
the desired amount of spacing, represented by #1, to the left and to the right of the
material represented by #2. In the next step, \vbox{\hrule\kern#l ... } adds
spacing above the resulting box, and also the top of the frame. The same is done
at the top by \vtop{ ... \kern#l \hrule}; finally, \hbox{\vrule ... \vrule}
draws the sides of the frame.

(Notice the % at the end of the lines; they are there to avoid the carriage returns
being interpreted as blanks, while we are in horizontal mode. Take them away and
check what happens.)

Compare this with the code for \emptybox in section 8.8. Why is the baseline
preserved through the steps above? What happens if we add the horizontal kerns
together with the \ vrule s in the outermost step, rather than in the innermost?

To get a double frame, it is enough to use \boxi t twice:
\boxit{2pt}{\boxit{2pt}{ ... }}.

98 A Beginner's Book of T £X

Drawing box outlines
To draw just the outline of a box, you can use the \emptybox macro of section
8.8 as the second argument to \boxi t. But throughout this chapter we've used
a somewhat more complicated macro, called \drawbox, which shows not only
the outline but also the baseline. Its definition illustrates most of the fundamental
concepts we've been discussing.

\def\dq.wbox#1#2#3{%
\setboxl=\vbox{\hrule\hbox to#3{\vrule height#l\hfil\vrule}}%
\setbox2=\hbox to#3{\vrule \dotfill\vrule}%
\setbox3=\vtop{\hbox to#3{\vrule depth#2\hfil\vrule}\hrule}%
\vbox{\offinterlineskip\boxl\box2\box3}}

~I······················ .. I ---> .•••••••••••••••••••••••••.

---> 1-1 ______ ----'

As you can see in the figure, our prototype box is obtained by stacking three pieces.
The upper piece, a \ vbox , is built in two steps. We first draw two vertical rules
separated by the width of the desired box:

\hbox to #3mm{\vrule height#lmm\hfil\vrule}

We then add a horizonal rule at the top: \setbox2=\vbox{\hrule ... }. Since
the vertical rules have no depth, the baseline of the \ vbox is all the way at the
bottom.

The bottom piece is built along the same lines; to put the baseline at the top, we set
the height of the vertical rules to zero and put them in a \ vtop. The middle piece
is just the dots. The three pieces must be put together without any spacing; hence
the \offinterlineskip.

To conclude, here's another definition:

\def\refpoint{\11ap{\lower2.5pt\hbox{\longrightarrow}\ }}

To show the reference point of a box, we just say

8.12 For the aspiring wizard
Splitting a box

\hbox{\refpoint\boxl0}

How can you typeset in two columns? We won't give the solution here, but the
command \ vspli t is a step in this direction. Suppose you have a vertical box,
say box 2, which is tall and narrow. The command

\setboxl=\vsplit2 to lin

Boxes 99

splits off the first inch of \box2 and puts it into \boxl. For the example below,
we filled box 2 with

\setbox2=\vbox{\hsize 48mm\parindent=Opt
\raggedright\eightrm\baselineskip=10pt
The ...

}

and split its top half into box 1 with

\setboxl=\vsplit2 to .5\ht2

Here's the result; we've put frames 3 pt outside the box boundaries, so you can
visualize the boxes more easily. The actual command we wrote was \centerline
{\boxit{3pt}{\boxl}\hfil\boxit{3pt}{\box2}}:

The derailleur is operated by levers
and cables and springs somewhat
like those of caliper brakes. It chan
ges gears by lifting the chain from
cog to cog (rear) or chainring to
chainring (front). It is an ancient
system, obscurely conceived in the

19th century, championed by Ve
locio, endlessly refined, and full of
compromises. The chain-line is im
perfect, and owing to this, certain
gears are best avoided. And compo
nents that should apparently work
together frequently don't.4

Something isn't quite right: there is extra space at the bottom of box 1 and at
the top of box 2, and TEX complains about an underfull \ vbox. The first prob
lem is that the height of box 1 was prescribed exactly; TEX filled it with as many
lines as would fit, but there was a bit of space left over, and no stretchability to
make it up. This leftover space at the end of box 1 can be eliminated if we say
\setboxl=\vbox{\unvbox\vsplit2 to . 5\ht2}; to avoid the underfull box
report the only solution is to temporarily set \ vbadness=10000 .

The space at the top of box 2 is trickier. It comes from a variable \spli ttopskip,
set by plain TEX to 12 pt. In fact, this variable is there to help the alignment-the
idea is that the first baseline in the beheaded box should be at a known distance
from the top, regardless of how high the first line happens to be. TEX arranges
for this distance to be \spli ttopskip by inserting glue to make up for the dif
ference between that and the height of the first line. If the height is greater than
\splittopskip, no glue is inserted. In our case, the height of the line was 5.56 pt,
so the glue inserted in consequence of the \spli ttopskip was 4.44 pt.
The problem is that at the top of the original box no such glue is added. One would
be tempted to set the \spli ttopskip to zero, so both first lines would be right at
the top of the respective boxes; and indeed this would work nicely here, where both
lines happen to have the same height. But ifthey didn't, their baselines would be at
different distances from the top, and it would be hard to align the two chunks of text
side by side. A better solution is to use a strut, or invisible box, when setting the
original box, so the height of its first line is exactly equal to the \spli ttopskip .

4 Bill Walton and Bjame Rostaing, Total Book of Bicycling, Bantam, 1985.

100 A Beginner's Book of T eX

It is also a good idea to make the \spli ttopskip equal to the \baselineskip,
as plain Tpc does:

\setbox2=\vbox{\hsize 48mm\parindent=Opt
\raggedright\eightrm\baselineskip=10pt
\splittopskip=\baselineskip
\leavevmode\vbox to\splittopskip{}%
The ... }

\setboxl=\vbox{\unvbox\vsplit2 to .5\ht2}

Now the result is impeccable:

The deraiJIeur is operated by levers
and cables and springs somewhat
like those of caliper brakes. It chan
ges gears by lifting the chain from
cog to cog (rear) or chainring to
chainring (front). It is an ancient
system, obscurely conceived in the

The truth about \ vcenter

19th century, championed by Ve
locio, endlessly refined, and full of
compromises. The chain-line is im
perfect, and owing to this, certain
gears are best avoided. And compo
nents that should apparently work
together frequently don't.

In this chapter we glossed over an important difference between \ vcenter, on
the one hand, and \ vbox and \ vtop, on the other. We know that \ vcenter
makes a centered box, but what does that mean?

It turns out that when Tpc adds such a box to the current math formula (recall that
\vcenter can only be used in math mode), it shifts it so that the box's centerline
coincides with the axis. The axis is an imaginary horizontal line that is defined in
math mode only: it is where the minus sign -, for example, is placed. Many other
symbols, like parentheses, are placed symmetrically about the axis: (-).

The height of the axis-the distance to the baseline-depends on the current math
symbol font. For plain TPC's ten-point fonts, it equals 2.5 pt. It follows that in
the construction \hbox{$\ vcenter{ ... }$}, which we used several times this
chapter, the baseline of the resulting box is not in the middle, but 2.5 pt below it.
In the arrangement

some wmd, {! '-----_
(the third diagram in section 8.8) this was exactly what we wanted: the picture
would look wrong if the baseline bisected the box in the middle, because it runs
along the bottom of the line of text.

When you align several \ vcenter s side by side you don't have to worry about
this shift, because relative to one another they're all at the same level. This, too,
was exploited in section 8.8 (second diagram).

Boxes 101

Nonetheless, there may be cases when you do want to place a \vcenter in such
a way that its centerline matches the baseline of adjacent boxes. In such a case you
can use the \lower command:

The center of this 0 is on the baseline.

\centerline{The center of this
\lower2.5pt\hbox{$\vcenter{\hbox{$\diamondsuit$}}$}

is on the baseline.}

(This is essentially what we did in the definition of \refpoint, at the end of
section 8.11; a \longrightarrow doesn't have to be placed in a \vcenter,
because it's already centered about the axis.)

One more thing: instead of explicitly typing 2. 5pt , you can say

\fontdimen22\textfont2

This will give the right axis height no matter what, whereas an explicit dimension
won't work if you switch to a larger font, for example.

9
Alignments

Alignments, or tables, are one of the least pleasant parts of TEX. This is because
there is an enormous amount of variation among tables, and TEX must be flexible
enough to handle the whole spectrum. This flexibility comes at a price: you must
tell TEX quite explicitly what you want your table to look like.! This doesn't mean
that making tables is hard, just that there are lots of little things that can go wrong,
and you may have to give it a couple of shots before your tables come out the way
you want. So don't get discouraged-if you are familiar with the basic concepts
that we've discussed so far, this chapter may well promote you to the rank of TEX
Masters.

The first step in typesetting a table is to "explode" it in your mind into components.
Most often the table is made of rows, each with a certain number of entries: cor
responding entries in each row align vertically in columns, and are closely related,
both logically and typographically. Here is a fairly run-of-the-mill table, together
with its "exploded view:"

name type value

x integer 1987
y real 3.14159
z boolean false

name

x

y

z

type

integer

real

boolean

value

1987

3.14159

false

! In plain TEX, that is. Jt\TEX, or any of several existing table-making macro packages, will give you
"higher-level" commands that are adequate for most purposes. See also plain '\EX's tabbing facility,
described in chapter 10.

Alignments 103

9.1 The preamble, a.k.a. recipe
After this mental decomposition, you're ready to give TJY(the information it needs:
How should the rows be typeset, and What with? You do this with the \halign
command, based on this skeleton:

\halign{

}

.. # .. & .. # .. & .. # .. & .. # .. & .. # .. \cr

..... & & & & \cr

. & & & & \cr

The material in braces after the \halign control sequence is divided into rows,
each terminated by \cr; entries within each row are separated by ampersands &.
For the most part, these rows correspond to the rows of the table, but the first "row"
of the \halign is special: it is called the preamble, and it's there that you answer
the first question above: How should each row be set?

Notice that the preamble contains sharp signs #, alternating with ampersands.
Everything around a # and between the flanking ampersands is material common
to all the entries in a given column. The # itself represents something that will be
plugged in from the other rows.

The rest of the \halign answers the second question, What should the rows
be filled with? As it reads each row, TJY(chops it into individual entries at the
ampersands. It then splices each entry into the corresponding entry of the preamble,
or template, in place of the #. The result of the splicing is what TJY(typesets as
the table entry.

9.2 Simple alignments
By a simple alignment we mean one with no exceptional cases and no rules sepa
rating rows and columns. Our first alignment will have simplest possible preamble:

\halign{

}

& # & # \cr
name&type &value \cr
x &integer&1987 \cr
y &real &3. 14159\cr
z &boolean&false \cr

name type value
x integer 1987
y real 3.14159
z boolean false

The three templates here consist of nothing but a #. To build the first row of the
output, TJY(replaces the first # in the preamble by name, the second by type,
and the third by value. It proceeds similarly for the other three rows.

This does the job, but it's ugly! There isn't enough space between the columns.
TJY(makes each column exactly as wide as its widest entry, and goes on to place the
columns side by side, without any glue between them. So in fact, there would have
been no space at all separating name and type but for the fact that the templates

104 A Beginner's Book of T e<

contain spaces. It turns out that spaces at the beginning of a template or row entry
are discarded, so what TEX is really typesetting is name SP, type SP, and so on.
(Remember that several consecutive spaces are collapsed to one.)

To improve the situation, we put some \quad s in the preamble, and italicize the
second column. Also, from now on, we place our ampersands right after the pre
vious entry, so no spurious blanks will creep in. (Of course, we don't have to align
the columns at all, but doing so helps make the source file more intelligible by
highlighting the structure of the table.)

\halign{
#& \quad\it#&
name& type&
x& integer&
y& real&

\quad #\cr
value\cr
1987\cr
3. 14159\cr

z& boolean& false\cr
}

name
x
y
z

type
integer
real

value
1987
3.14159

boolean false

Now each entry in the second column is effectively preceded by \quad\i t , and
each entry in the third column by \quad! That's why templates are so useful.
They let you "factor out" the commonalities of each column, making it possible to
change the appearance of the whole table without modifying its entries.

Notice that the \i t # in the second template is not surrounded by braces. It
doesn't have to be: alignment entries constitute groups in themselves, so font
changes and assignments made inside them are local by default. By the same token,
groups can't straddle entries:

Wrong: $... & {\bf... & ... }... & ... $
Right: $. .. $ & ${\bf ... }$ & ${\bf ... } ... $ & $... $

(But what counts is the whole alignment entry, after the value of # has been
plugged in, so a left brace in the preamble can be matched by a right brace in
the body of the table.)

We've seen that TEX makes each column as wide as its widest entry. What then of
the other entries? Basically, any glue that might be present in them is stretched so
the width of the entry matches the column width. In the latest version of our table,
the entries had no stretchability at all, so they appeared flush left in underfull boxes.
This is harmless; TEX doesn't complain of underfull boxes inside alignments.

This process makes it very easy to specify right-aligned or centered columns: it's
enough to place appropriate springs in the preamble.

\halign{
\hfil#\hfil&\quad\it#\hfil&

}

\bf name&
x&
y&
z&

\hfil \quad#\cr
\bf type& \bf value\cr
integer& 1987\cr
real& 3. 14159\cr
boolean& false\cr

name
x
y
z

type
integer
real
boolean

value
1987

3.14159
false

Alignments 105

(If a row of your \halign is too long to fit in a single line, it's best to break it
right after an ampersand, for the same reason that you can leave spaces after, but
not before, an ampersand.)

The combination \hfil \ quad occurs so frequently that we put an abbreviation
for it in the macros file read in at the beginning of every run (cf. section 1.7):
\def\hfq{\hfil \quad}. You should do the same with any construction that
you find yourself using very often: it saves time and decreases the probability of
error.

9.3 Some practical suggestions
The \halign command can only be used in vertical mode, since it creates a
stack of horizontal boxes (the rows). As usual when stacking up boxes, TEX adds
interline glue between them, which is why in the table of section 9.2 the rows came
out nicely spaced as if they were lines in a paragraph. Also as usual, TEX feels free
to break the stack between pages if it's working in ordinary vertical mode (that is,
not inside any boxes). To avoid this, or to set a table in horizontal mode, you can
wrap it in a vertical box: \ vbox{\halign{ ... }} .

There is one exception to the vertical mode rule: An \halign can be used all by
itself in display math mode, that is, between double dollar signs $$. However, this
places the alignment flush left on the page, which is almost never what you want
to do, so this construction is rare. Much more common is to say

$$\vbox{\halign{ ... }}$$

which centers the table horizontally. This is perhaps the most convenient way to
center tables, but there are many others, including one that avoids the need for a
\ vbox and the consequent impossibility of breaking the table across pages. For
details, see \tabskip in section 9.12.

Whatever you do with the \halign, it's best to start coding it from the outside,
typing in a skeleton first:

$$\vbox{\halign{

}}$$

Only then should you fill in the rows. In our experience, when you don't do this
you have a better than even chance of forgetting one or both of the closing braces.
The result is that everything from there on is seen by TEX as part of the alignment,
and you get an error like

! You can't use '\end' in internal vertical mode.

Another common error consists in forgetting the \cr at the end of the last line.
Certain macros, like \matrix, let you get away with it, because they use a magic
control sequence \crcr that compensates for the omission (section 12.10); but
\halign is unforgiving.

106 A Beginner's Book of T p<

9.4 Treating special cases
A shortcut for the preamble

Values of x: 0 1 2 3 4 5 6 7 8 9
Values of x 2 : 0 1 4 9 16 25 36 49 64 81

This table has eleven columns; apart from the first, they all conform to the model
\hfil#\quad. To avoid repeating this template ten times, we can use a shortcut:

\halign{
#\hfil\quad&&\hfil#\quad\cr
Values of x: & 0& 1& 2& 3& 4& 5& 6& 7& 8& 9\cr
Values of $x-2$: & 0& 1& 4& 9& 16& 25& 36& 49& 64& 81\cr

}

Generally, # and & must alternate in the preamble, with a # preceding the first & .
The shortcut is to put in an extra & just before one of the templates; this causes the
portion of the preamble following of the irregularity to be repeated as many times
as necessary to account for all the columns in the table. A preamble of the form

A && B \cr,

where # and & alternate inside A and B, is equivalent to

A & B & B & B... \cr

for as long as necessary, and similarly for a preamble of the form & B \ cr .

Here is a common application-it is used, for example, in the \matrix macro
(section 11.25). We want to make a table all of whose columns are separated by
\quad and, say, left-justified. If we make the preamble &#\hfil \quad\cr, we
get an extra \quad after the last column, and if we make it &\quad#\hf il \cr ,
it's the first column that gets a spurious \quad. Either way the extra spacing
shows when the table is surrounded by a frame or by parentheses (as matrices often
are). The right solution is #\hfil&&\quad#\hfil \cr: the first column has no
spacing, and each subsequent one is separated from the preceding one by a \quad.

Empty entries
TEX won't raise an eyebrow if a row has fewer entries than the preamble-it just
skips the missing entries just before \cr. But watch out: toto&&&&&&\cr is not
the same as tot 0 \ cr. In the first case the corresponding templates are still used,
with # replaced by nothing; in the second, the templates are skipped.

\halign{

}

$#$&&\hfil\quad$#$\cr
l\cr
l&l\cr
1&2&1\cr
1&3&3&1\cr
1&4&6&4&1\cr
1&5&10&10&5&1\cr

1
1 1
1 2 1
1 3 3 1
14641
1 5 10 10 5 1

Alignments 107

Skipping templates
In the example table of section 9.2, all but one entry in the first column are in math
mode. It would be nice to further simplify the code by writing \hfil$#$\hfil
for the corresponding template, taking the dollar signs out of the individual entries.

As usual, there is a way to deal with the recalcitrant exception: if a table entry says
\omi t at the very beginning, TP(ignores the corresponding template, this time
only:

\halign{
\hfil$#$\hfil&\quad\it#\hfil&

\hfil\quad#\er
\omit\bf name&\bf type& \bf value\er
x&
y&
z&

}

integer& 1987\er
real& 3. 14159\er
boolean& false\er

name
x
y
z

type
integer
real
boolean

value
1987

3.14159
false

You may be wondering if the change was worth the effort-we didn't save any
keystrokes. But by isolating a common feature of all or most entries in a column,
we make it easier to change that feature later, if necessary. We also make the table
structure clearer.

Exercise

Typeset this frieze as a three-column alignment with body entries as short as pos
sible. For example, the middle row should read 8&8&8\er if the 'fEX's at the
middle of each V are separated by 8 pt. (They're separated by 35 pt at the mouth,
and the Vs themselves are separated by two quads.) Don't read any further until
you've tried it!

Here's one way to do the preamble, with repeated templates that split the inter
column spacing equally between left and right (remember that \hfq stands for
\hfil \quad):

&\hfq\TeX\hskip#pt\TeX\hfq\er

These templates are fine except for the tips of the Vs. The first row will read
... &35& ... \er and the third 35& .. . &35\er. For the tip, we use \omit to
avoid the template and put in a single centered 'fEX:

\halign{
&\hfq\TeX\hskip#pt\TeX\hfq\er
\omit\hfq\TeX\hfq& 35&

8& 8&
35& \omit\hfq\TeX\hfq&

}

\omit\hfq\TeX\hfq\er
8\er
35\er

108 A Beginner's Book of T £X

It is very important that \omi t be right at the beginning of the entry (after blanks,
which are ignored): TIYC is on the lookout for it then and only then. If anything
else is found, it will be plugged into the template.

9.5 Excessively wide entries

Work

Montesquieu's Considerations
Voltaire's Essai sur les Mreurs
Hume's History of England
Gibbon's Decline and Fall

Year of Publication

1734
1745
1754
1776

In the table above, with preamble #\hfil \qquad&\hfil#\cr, the top entry of the
right-hand column is much wider than the others, so TIYC's default behavior-letting
this entry control the width of the whole column-makes the spacing excessive.
To balance the table better, we'd like to make the long entry "spill over" into the
neighboring column.

The idea is to fool TIYC into thinking that the entry is not the widest, by giving it a
negative width. Any negative width will do, since any negative number is less than
a positive one. To be on the safe side, we add -1000 pt of spacing to the left of
the entry; remember that there is an \hf il there already, as part of the template,
so the excess negative glue will be canceled out:

\bf Work& \hskip -1000pt \bf Year of Publication\cr

Work Year of Publication

Montesquieu's Considerations 1734
Voltaire's Essai sur les Mreurs 1745
Hume's History of England 1754
Gibbon's Decline and Fall 1776

Plain TIYC's \hidewidth macro officializes this idea: it combines the \hskip
-1000pt with an \hfill, so you can use it whether or not the preamble contains
a spring. Consequently, if you put \hidewidth at the beginning of an entry, that
entry is allowed to spill over into the column to its left, and if you put it at the end,
the entry spills over to the right.

9.6 Inserting material between rows
The construction '" \cr\noalign{ ... }, where the material in braces is any
thing that is allowed in vertical mode, inserts that material between the rows of
an alignment. You can have several \noalign s one after the other, but they all
must come immediately after the \cr that terminates the previous row (or the
preamble): they don't make sense anywhere else.

As an example, let's improve our favorite table some more by using horizontal
rules to separate the row of titles from the rest of the table.

\halign{
\hfil$#$\hfil&\quad\it#\hfil&

Alignments 109

\hfil \quad#\cr
\noalign{\hrule\smallskip}
\omit\bf name&\bf type& \bf value\cr
\noalign{\smallskip\hrule\smallskip}

name type value

x integer 1987

x& integer& 1987\cr y real 3.14159

y& real& 3. 14159\cr z boolean false

z& boolean& false\cr
\noalign{\smallskip\hrule}

}

The \smallskip s are necessary because T£X doesn't add interline glue above
and below a rule. The \hrule s are exactly long enough to span the alignment,
because we didn't specify their length. It's as if the alignment were a containing
\ vbox. But other types of material, that have an intrinsic width, will not conform
to the alignment; they simply stack up with the rows, aligned on the left.
To understand that, consider the following attempt to create a centered alignment:

$$\vbox{\halign{
#\hfil&&\quad#\hfil\cr
auk& bobolink& cassowary& dodo&
asparagus& broccoli& celery& daikon*&
\noalign{\smallskip\hrule\smallskip}
\noalign{*Japanese radish.}

}}$$

It fails rather miserably:

auk bobolink
asparagus broccoli

* Japanese radish.

cassowary
celery

dodo
daikon*

egret
eggplant

egret\cr
eggplant\cr

What happened? Let's retrace T£X's steps. In vertical mode, T£X encountered
the alignment and set two lines of it; it then came to the \noalign s, which it set
independently of the alignment. The vertical glue and horizontal rule are vertical
mode material that doesn't affect the width; but when it came to the note, T£X
had to start a paragraph, indentation and all! As you know, the resulting lines are
of width \hsize, so that T£X is effectively stacking up, aligned on the left, a
relatively narrow table and a line of full width. No wonder the result appears not
to be centered-there is no space left over to center it!

The right way to fix this situation is always to wrap your text in a horizontal box:
\noalign{\hbox{ *Japanese radish.}} The width of the enclosing vertical
box will then be the width of the alignment or the width of the \hbox inserted
with \noalign, whichever is greater.

We will make repeated use of \noalign in the following sections. The Dictionary
also contains other applications.

110 A Beginner's Book of T EX

9.7 Combining columns
The construction \mul tispan n { ... } makes the material in braces span the n
next columns of an \halign. The templates for those columns are ignored, as if
all the individual entries had started with \omit. (In fact they do: \multispan
is a macro that puts \omi t s in the right places.) In the table

STRASBOURG MARKET

Item Origin Price per kg Weight

Artichokes St. Pol de Leon 9.40F lOOkg
Apricots
Kiwis

.............. expected soon
New Zealand 14.00F 30kg

we combined all four entries of the first row into one (the title), and also the last
three entries of the fourth row. Here's the code we used:

\halign{

}

#\hfil& \quad #\hfil& \hfil\quad#& \hfil\quad#\cr
\multispan4\hfil\bf STRASBOURG MARKET\hfil\cr
\noalign{\medskip}
\bf Item& \bf Origin& {\bf Price per kg}& \bf Weight\cr
\noalign{\smallskip}
Artichokes&St.-Pol de L\'eon& 9.40F& 100kg\cr
Apricots&\multispan3\quad\it\dotfill expected soon\dotfill\cr
Kiwis& New Zealand& 14.00F& 30kg\cr

The \multispan4 command appears at the beginning of the first row of the
\halign 's body, so it replaces entries 1 through 4. All the corresponding templates
were discarded, but they were no good anyway, since we wanted the title centered.
Notice that the text after \multispan4 need not be in braces.

The \mul tispan3 is analogous. It appears right after the first & of the fourth
row, that is, in lieu of entries 2 through 4. Again the templates were skipped, but the
\quad at the beginning at the second template is essential to keep the alignment,
so we had to copy it over into the entry. Notice also the use of \dotfill, instead
of \hi il , on both sides of the text.

Here are some things to keep in mind:

• When you write \multispan3, you're merging three entries, so you'll be
skipping only two ampersands.

• \multispan, just like \omit, must come at the beginning of an entry
otherwise TJY(gets the order to skip the template after having started to use it, and
goes into a tail spin.

• If you leave a space after \mul tispan3, it will go through to the output, and
will be noticeable if your entry is left-justified or starts with \dotfill and the
like. Write \multispan3\dotfill instead.

Alignments 111

• If you're spanning more than nine columns, the number should go in brackets:
\multispan{14}. Here too, a space after the braces will appear on the output.

• \multispan1 is synonymous with \omit.

9.8 Aligning digits

Item Price (F jkg) Weight (kg) Total (F)

Artichokes 9.40 100 940.00
Apricots 7.30 12 87.60
Kiwis 14.00 30 420.00

Grand Total 1467.60 F

Notice carefully the alignment of digits in this table. As a group, each column of
figures is centered with respect to the column title; but individually, the figures are
right-justified, so their decimal points align. You may enjoy trying to puzzle out
how to achieve this.

In the event we used a trick: we fooled TP(into thinking that all figures in the same
column have the same width by padding them with an "invisible digit" defined like
this:

\catcode'*=\active \def*{\hphantom{O}}

The first of these makes * into a macro (see section 12.6), and the second gives
it a meaning, making it stand in for a digit (section 11.17). These changes are
confined by the \ vbox that encloses the alignment. Here's the rest of the code:

\halign{#\hfil&&\hfil\quad #\hfil\cr
\bf Item& {\bf Price} (F/kg)&

}

{\bf Weight} (kg)& {\bf Total} (F)\cr
\noalign{\smallskip}
Artichokes& *9.40& 100& *940.00\cr
Apricots& *7.30& *12& **87.60\cr
Kiwis& 14.00& *30& *420.00\cr
\noalign{\smallskip}
\multispan3{\bf Grand Total}\quad\dotfill&

1467.60\rlap{ F}\cr

We couldn't resist the temptation of showing off another trick: the use of \rlap
to place a space and an 'F' to the right of the grand total, without disturbing the
alignment of the decimal points. The width of \rlap 's argument is neutralized
by a negative spring, so it doesn't count toward the width of the entry-it's as if
TP(weren't aware that it had written the stuff at all!

The * trick is also useful when the entries have different numbers
of decimal places and must be aligned by their decimal points, as is
conventional. The little table on the right was obtained by typing

\halign{#\cr *44.1*\cr 172.**\cr **0.12\cr}

44.1
172.

0.12

112 A Beginner's Book of T£:X

9.9 Horizontal rules and spacing
The sections from here till the end of the chapter are a bit more difficult than what
we've seen so far. You may want to just skim through them the first time around,
just to see what's possible to do. Later you can refer back to them as needed.

In section 9.6 we used \noalign to separate rows of an alignment with hori
zontal rules. We ran into the need to add spacing above and below the rule, be
cause TEX doesn't do so automatically. The solution we used there, interspersing
\smallskip s, leaves something to be desired, fixing as it does the distance be
tween the bottom of a line and the following rule, and between the rule and the top
of the next line. It is generally desirable instead to have a uniform distance between
baselines and rules. In our example table, the distance between baseline and rule
in the first row is greater than in the last row, because the first row has letters with
descenders, like 'y', while the last one doesn't.

A general approach to solve this problem is based on the important idea of a strut,
which we mentioned briefly in section 8.12. A strut is something invisible, but
fairly tall and deep, so it "sets the pace" for the line that it's on. If every line
contained a strut, no interline glue at all would be needed to separate them, because
the height and depth the lines inherit from the strut would make their baselines be
separated by a fixed amount of space. (This is true only if the struts are the tallest
and deepest components on their lines, as is normally the case. But if you have
complicated formulas with fractions or big subscripts, this condition may no longer
hold, and things get more complicated.)

Plain TEX defines the \strut macro as (basically) a rule of width zero, height
8.5 pt and depth 3.5 pt. This means that if two consecutive rows of an alignment
have struts and there is no interline glue, their baselines are 12 pt apart: which is
exactly the normal value of \baselineskip.
\vbox{\offinterlineskip\halign{

}}

\strut#&\hfil$#$\hfil&
\quad\it#\hfil&\hfil\quad#\cr

\noalign{\hrule}
&\omit\bf name&\bf type&\bf value\cr
\noalign{\hrule}
&x& integer& 1987\cr
&y& real& 3.14159\cr
&z& boolean& false\cr
\noalign{\hrule}

name
x
y
z

type
integer
real
boolean

value
1987

3.14159
false

Here \offinterlineskip was used to turn off the interline glue within the
\ vbox , and a \strut was placed in the preamble, so as to be replicated in every
row of the alignment. Now the distance from the baseline of the first row to the
following rule is now exactly the same as for the last row. The strut would have
worked in any column, but we put it in a column by itself so it's independent of
the other entries: if it were in the name column, for instance, it would have to be
copied over into the entry that starts with \omi t .

Alignments 113

For most tastes, the amount of spacing between baseline and rules in this table is
insufficient. To increase it, we could redefine \strut to be taller and deeper:

\vbox{\offinterlineskip

}}

\def\strut{\vrule height 10.5pt
depth 5.5pt width Opt}

\halign{
. .. no changes here

name

x

y

z

type value

integer 1987

real 3.14159

boolean false

(Notice that the new definition of \strut , like the use of \offinterlineskip,
is local to the \ vbox , so it will go away after its job is done.) This works rather
well when all the rows are separated by rules, but in this case it leads to the opposite
problem: the rows not separated by rules are too far apart. The best solution seems
to be a hybrid one:

\vbox{\offinterlineskip\halign{

}}

\strut#&\hfil$#$\hfil&\quad\it#\hfil&
\hfil\quad#\cr

\noalign{\hrule\vskip 2pt}
\omit\bf name& \bf type& \bf value\cr
\noalign{\vskip 2pt\hrule\vskip 2pt}
x& integer& 1987\cr
y& real& 3. 14159\cr
z& boolean& false\cr
\noalign{\vskip 2pt\hrule}

name

x
y
z

type

integer
real
boolean

value

1987
3.14159

false

In a different vein, plain TEX offers an \openup macro to increase the spacing
between rows of an alignment for which interline spacing has not been turned
off. This is most useful in display math mode, with the \eqalign macro and its
relatives. By saying

{\openup 3pt\halign{ ... }}

you effectively increase the \baselineskip by 3 pt. To have effect, \openup
should be outside the alignment: \halign{\openup 3pt ... } won't do any
good. On the other hand, it should be confined by some group-perhaps the \ vbox
containing the alignment-or it will interfere with interline spacing in normal text.

To summarize, then, there are several ways to open up a table:

• \noalign{\vskip ... } lets you controlthe spacing between individual rows,
and acts just the same whether or not interline spacing has been turned off using
\offinterlineskip.
• \strut in the preamble, together with \offinterlineskip before the table,

makes uniform the height and depth of all rows, and the spacing between baselines.
This combination is especially useful when there are rules between rows.

• \openup before the table changes the spacing between baselines for all rows.
It normally makes sense only if you're not using \offinterlineskip (but see
also section 9.11).

114 A Beginner's Book of T g<

Rules across columns
We now know how to use \noalign to place rules across a whole alignment.
How about rules that span some columns only? The idea is to treat the rule as
part of an entry, like the leaders in the table of section 9.8. For one column,
\omit\hrulefill works. For three, say, you can repeat \omit\hrulefill
three times, or use the shorthand \multispan3\hrulefill.

Keep in mind that these short rules, being part of regular rows, are put in boxes
before being stacked up. This means that to get any sort of sensible spacing you
mustturn off the automatic interline spacing by saying \offinterlineskip, and
then use struts to manage the spacing yourself. Here's a typical example that you
should study closely:

\vbox{\offinterlineskip\def\hfn{\hfil\enspace}

}}

\def\strut{\vrule height9pt depth3pt widthOpt}
\halign{

\hfn#\hfn&\strut\hfn#\hfn&\hfn#\hfn\cr
&\omit\hrulefill& \cr
& T& \cr

\multispan3\hrulefill\cr
T& E& X\cr
\multispan3\hrulefill\cr
& X& \cr
&\omit\hrulefill& \cr

T
T E X

X

To make sure you understand, explain what goes wrong when each of the following
changes is made:

T

T E X

X

\offinterlineskip
and \strut removed

9.10 Vertical rules

1"Ix

\strut removed

T
T E X

X

\strut moved
to first column

The easiest way to make vertical rules in an \halign is to build them up from
short pieces, each manufactured within a row. The "exploded view" on the first
page of the chapter gives the idea.

This at first may sound like a cumbersome solution, but in fact it turns out to be
very simple, as we already have all the ingredients in place. Any table created with
\offinterlineskip, that is, one that relies on struts to support its structure, is

Alignments 115

ready to receive vertical rules. The trick is to place \vrule at appropriate places
in the preamble. Since a \ vrule whose vertical dimensions are not given expands
to the height and depth of the enclosing box, this gives chunks of vertical rules that
connect together seamlessly.

Here is the first table of section 9.9, with vertical rules added:

\vbox{\offinterlineskip\halign{

}}

\strut#&\vrule#\quad&
\hfil$#$\hfil&
\quad\vrule#\quad&
\it#\hfil&\quad\vrule#\quad&
\hfil#&\quad\vrule#\cr

\noalign{\hrule}
&&\omit\bf name&&

\bf type&&\bf value&\cr
\noalign{\hrule}
&&x&& integer&& 1987& \cr
&&y&& real&& 3.14159& \cr
&&z&& boolean&& false& \cr
\noalign{\hrule}

name type
x integer
y real
z boolean

value
1987

3.14159
false

The entries are unchanged! The changes are all localized in the preamble: one
template was introduced for each \ vrule , with the surrounding spacing. The cor
responding entries in the body are all empty, so we just add ampersands as needed.
Making individual columns for the \vrule s is not indispensable, especially if
there are no \omi t s, but is good practice because it keeps things independent.

And now, for the grand finale: The Perfect Table with which we opened this
chapter. We need to add a bit of spacing above and below the horizontal rules,
as we did in section 9.9. But we can't write \noalign{\vskip 2pt} anymore,
for that would interrupt the vertical rules. Instead, we will insert little "rows" 2 pt
tall, containing only pieces of vertical rules! The height of these mini-rules can be
conveniently specified by an entry that says just height 2pt: since the \vrule
in the template is immediately followed by #, what TEX sees is \ vrule height
2pt . Furthermore, this has to be done only once per row-the other rules borrow
the height of the tallest one. All that remains to do is to tum off the strut, et voila:

\vbox{\offinterlineskip
\def\mr{\omit&height 2pt&&&&&&}
\halign{

name type value

\noalign{\hrule} \mr x integer 1987
y real 3.14159

\mr \noalign{\hrule} \mr z boolean false

\mr \noalign{\hrule}
}}

116 A Beginner's Book of T g<

This preamble came out unusually complicated because each column is treated dif
ferently, from the typographic point of view. Often you can just use an abbreviated
preamble as explained in section 9.4.

Exercise
Typeset the arrangement shown here. The small squares have
sides 18 pt (not counting the thickness of the walls) and the letters
sit 6 pt above the floor of their squares.

9.11 Braces and tables
Horizontal braces
The \downbracefill and \upbracefill macros, which make springy braces
(section 5.8), work well in alignments:

A

a ... g

b ... d d ... f -------------BCD E F G

a ... c
"---v---"

e ... g

Here is the specification for this example:

\vbox{\offinterlineskip\openup 6pt

}}

\halign{&\quad#\quad\cr
\multispan7\hfil a \dots\ g\hfil\cr
\multispan7\quad \downbracefill \quad\cr
&\multispan5\quad\hfil b \dots\ d\hfil

\thinspace\hfil d \dots\ f\hfil\quad\cr
&\mult ispan5\quad\downbracef ill

\thinspace\downbracefill\quad\cr
A&B&C&D&E&F&G\cr
\multispan3\quad\upbracefill\quad&

&\multispan3\quad\upbracefill\quad\cr
\multispan3\hfil a \dots c\hfil&

&\multispan3\hfil e \dots\ g\hfil\cr

There are several interesting points to notice:

• By saying \offinterlineskip\openup6pt, we've effectively made the in
terrow spacing always 6 pt. This is the same as making \lineskip=6pt and the
\lineskiplimi t so absurdly big that it can never be satisfied: see the discussion
in 8.9 .

• By having \quad s on both sides of the braces, we get them to embrace the
letters for the columns they span, and no more. Without the \quad s they would

Alignments 117

stretch all the way to the (invisible) column boundary. The two middle braces have
to be typeset as part of the same \multispan, since they share the 'D' .

• A similar scheme centers the labels with respect to their braces. Study the
third row carefully: in order to center b ... d, we rely on the fact that \hfil b
\dots\ d\hfil has the same width as the corresponding braces.

Plain TEX defines \upbracefill and \downbracefill in terms of \vrule s
of unspecified height and depth-that's right, \ vrule s-despite the fact that they
stretch horizontally. For this reason, disaster ensues if you put them in the same
\hbox , line, or alignment entry with anything that has height or depth:

\hbox to lin{\upbracefill\strut} ~
\hbox to lin{j \downbracefill} i

If you absolutely must, you can use \smash to hide the height of everything else.

See section 11.19 for an example of use of vertical braces with an alignment.

9.12 Fixing the width of an alignment

Just as \hbox to ... lets you fix from the outside the width of a horizontal box,
so too you can fix the width of a table beforehand. Again, TEX will try to satisfy
your request by stretching or shrinking the available glue. But what glue? The
glue inside individual entries has already been used to make them conform to the
column width-it has already been "set," so to speak.

However, TEX also makes provision for glue between the columns. This glue,
governed by the \tabskip variable, has remained on the sidelines so far, but it
turns out to be a tool of great versatility.

We start with a simple alignment, with only two rows and three columns. The
widest thing in each column is \showcol, which is defined as

\hbox to lin{\leftarrowfill\hskip -lem\rightarrowfill}

and also serves to show where the column boundaries are.
\vbox{\offinterlineskip

}}

\halign{
#&#&#\cr
\noalign{\hrule\vskip 2pt}
\strut\hfil center\hfil&left\hfil&\hfil right\cr
\showcol&\showcol&\showcol\cr

center left right
) () (

What happens when we replace \halign with \halign to \hsize? Nothing
much, except that TEX complains about an underfull \hbox. The \hrule at

118 A Beginner's Book of T EX

the top stretches to length \hsize, but as we know it is not really part of the
alignment. Nothing else budges, as there is no glue to stretch.

center left right
)(l(

\halign to \hsize{ ... }

Next we give a non-zero value to \ tabskip, but let the alignment have its natural
width:

center left right

\tabskip=.2in \halign{ ... }

You can see by looking at the rule at the top, which spans the whole alignment,
that TEX puts spacing not just between the columns, but also before the first and
after the last column.

So far, so good; but we still haven't been able to make the alignment the width of
the page. To do that we must give the \tabskip some stretchability:

center left right

\tabskip=.2in plus .5in \halign to \hsize{ ... }

Now we're getting somewhere! How do we get rid of the spacing before the first
column and after the last? It turns out that \tabskip can be changed on the fly,
and the intercolumn glue responds accordingly:

• the value \tabskip happens to have when the ampersand between two tem
plates is read is used to separate the respective columns;

• the value at the beginning of the preamble is used before the first column; and
• the value at the end of the preamble is used after the last column.

Here then is an alignment with glue between columns, but not before or after:

center left right

\tabskip=Opt\halign to \hsize{
\tabskip=.2in plus .5in #&#&#\tabskip=Opt\cr ... }

Using intercolumn glue means you don't have to clutter your preambles with lots
of \quad s and the like. This is especially the case if your table has vertical rules,
and is another reason why vertical rules should be kept in column by themselves.
Let's simplify the unwieldy preamble of the table in section 9.10:

\tabskip=Opt\halign{
\strut#& \vrule#\tabskip=lem& \hfil$#$\hfil& \vrule#&
\it#\hfil&\vrule#& \hfil#& \vrule#\tabskip=Opt\cr ... }

Alignments 119

(Remember that \quad is an abbreviation for \hskip lem.) With a minimal
amount of change you can now make the same table conform to a desired width:

\halign to .6\hsize{\tabskip=Opt
\strut#& \vrule#\tabskip=lem plus lin& ... }

gives

name type value

x integer 1987
y real 3.14159
z boolean false

9.13 Vertical alignments
Not all tables are best seen as made up of rows; some are better described as a
juxtaposition of columns:

abel
agnes
amanda
anatole
arnold

basil cecilia desdemona
bernard christopher diane
bertrand cuthbert
brigitte

Admittedly, this table could be typeset with \halign. But imagine the hassle
it would be to add acton between the first two entries of the first column! In
any case, if you think of the A-words together, you should be able to code them
together.

There is a way, of course. It probably comes as no surprise, given the 'h' in its
name, that \halign has a vertical counterpart \ valign. The two commands
are in every way dual, so in a way you already know all there is to know about
\ valign ; but since some of the consequences of this duality are far from obvious,
let's look at some examples.

The code for the table above was
\valign{&\hbox{\strut\quad#}\cr

abel&agnes&amanda&anatole&arnold\cr
basil&bernard&bertrand&brigitte\cr
cecilia&christopher&cuthbert\cr .
desdemona&diane\cr}

Just as the natural environment for an \halign, at least from T&,'s point of view,
is vertical mode, so a \ valign should be used in horizontal mode. Thus, we used
\centerline to center the alignment. Double dollar signs $$ will do too, with
the precaution of wrapping the \ valign in an \hbox.

Naturally, & separates entries in the same column, and \cr separates columns.
The preamble works in the same way as the preamble of an \halign; in this case
we used the shortcut of section 9.4 to avoid repeating the same template several
times.

120 A Beginner's Book of T £X

Some essential facts about \ valign

• Each entry must be enclosed in a box. Indeed, entries are typeset in vertical
mode (that's right, vertical and horizontal are interchanged!), and characters float
ing around in vertical mode create boxes of width \hsize. Here we wrapped the
template's # in an \hbox, so this takes care of all entries.

• Entries in the same column come out aligned on the left. The counterpart of this
fact for \halign is that entries on the same row are aligned by their baselines,
something so natural that we've taken it for granted. But here the consequence is
that you can only right -align or center columns if you know their width beforehand.
In that case you can say, for instance

\valign{&\hbox to . 25\hsize{\strut\hfil#}\cr ... }

But \hbox{\strut\hfil#}, as you know, has no effect. And placing the spring
outside the box would be disastrous: it would be read in vertical mode, and there
you have a box of width \hsize.

• Struts must be used to regularize the distance between rows, because no default
glue from \baselineskip is added between the boxes in a column. If you find
the spacing obtained with a regular strut insufficient, you can use an extra-tall strut,
or use \tabskip glue, which is now added between rows:

Getting fancier

{\tabskip=2pt
\valign{&\hbox{\strut\quad#}\cr

}}

Vertical rules between columns are easy to obtain, like horizontal rules between
rows in an \halign. Just insert \noalign{\ vrule} after each \cr, and make
sure there's enough space on both sides of the # in the template:

\valign{&\hbox{\strut\quad#\quad}\cr\noalign{\vrule}
abel&agnes&amanda&anatole&arnold\cr\noalign{\vrule}
... \noalign{\vrule}}

abel basil cecilia desdemona
agnes bernard christopher diane
amanda bertrand cuthbert
anatole brigitte
arnold

You may prefer to set rules between individual entries, so they don't extend all the
way down between short columns. The solution for the analogous problem in an
\halign involved \omit\hrulefill. There is no \vrulefill in plain TEX,
but we can easily remedy that by cribbing the definition of \hrulefill from
page 357 of The TEXbook:

\def\vrulefill{\leaders\vrule\vfill}

Alignments 121

The short rules connecttogether withoutthe need for \ of f int er line ski p , since
there is no interline glue anyway.

\valign{&\hbox{\strut\quad#\quad}\cr
\multispan5\vrulefill\cr
abel&agnes&amanda&anatole&arnold\cr
\multispan5\vrulefill\cr

desdemona&diane\cr
\multispan2\vrulefill\cr}

abel
agnes
amanda
anatole
arnold

basil
bernard
bertrand
brigitte

cecilia
christopher
cuthbert

desdemona
diane

Horizontal rules, too, can be added by analogy. As in the preamble of an \halign,
we alternate rows of entries with "rows" of rules, with a rule to open the procession;
and we increase the number of ampersands and the arguments to \vrulefill, to
account for the new rows.

\def\strut{\vrule height 10.5pt depth 5.5pt width Opt}
\valign{\hrule#&&\hbox{\strut\quad#\quad}&\hrule#\cr

\multispan{ll}\vrulefill\cr
&abel&&agnes&&amanda&&anatole&&arnold&\cr
\multispan{ll}\vrulefill\cr

&desdemona&&diane&\cr
\multispan5\vrulefill\cr}

abel basil

agnes bernard

amanda bertrand

anatole brigitte

arnold

cecilia desdemona

christopher diane

cuthbert

10
Tabbing

The previous chapter discussed the very general \halign command for making
tables. There is another facility in plain TEX that is easier to use in some appli
cations: it is inspired on the idea of setting tabs on a typewriter. The tabs mark
certain horizontal positions on the page, and writing texts starting at those positions
is very easy.

In TEX, a line that should obey tabs starts with the \ + command, and the tabs
themselves are represented by ampersands &. The end of the line is marked by
\cr:

10.1 Setting tabs

Room
C8
C9
ClO

\+ ... & .,. & .. , & ... \cr

8 to lOam lOam to noon
Foata Desarmenien
Schiffmann Martinet
Colloquium: Prof. Victor Ostromoukhov

To get the alignment above, we typed

\+ \kern .8in & \kern 1.2in & \cr
\+ Room & 8 to lOam &10am to noon \cr
\+ C8 &Foata &D\'esarm\'enien \cr
\+ C9 & Schiffmann &Martinet \cr
\+ Cl0 & Colloquium: Prof.-Victor Ostromoukhov\cr

When TEX sees a \ + , it starts typesetting a horizontal box. As it encounters a tab,
say the third from the \ +, it checks to see if it knows how far the third column

Tabbing 123

should be from the left margin. If it does, it skips to that position. If not, it sets
the tab for the position that it's currently in, based on all the material since the \+.
The first line in the code above places two tabs: the first .8 in from the left margin,
and the second 1.2 in from the preceding one. The remaining lines then use the
positions that were set on the first.

TEX ignores spaces after the \ + and after the &, so Foata and Schiffmann are
aligned on the output, even though they're not in the listing above. But the spaces
after an entry and before the next & are not ignored, although here they make no
difference.

A tab entry can spill over to the next column, as on the last line of the table
shown. On a typewriter, this would cause the tab that marks the next column to be
subsequently skipped. But TEX backtracks to the beginning of the current column
before advancing to the next: if we had ... Ostromoukhov & Reception, TEX
would still align Reception with Martinet, overlapping with the previous entry.

Tabs don't have to be set all at once: whenever TEX finds a & to the right of all
existing tabs, it sets a new one. For this Pascal triangle, we set tabs as needed,
one per line. Notice the \quad after each entry that fixes the next tab's position:
without it, there would be no spacing between the columns.

$$\vbox{
\+ l\cr 1
\+ l\quad &1 \cr 1 1
\+ 1 &2\quad &1 \cr 1 2 1
\+ 1 &3 &3\quad &1 \cr 1 3 3 1
\+ 1 &4 &6 &4\quad &l\cr 1 4 6 4 1
}$$

10.2 Centering

The fact that tabbed lines are composed in individual \hbox es makes it very easy
to stack them together and center the whole assemblage:

$$\vbox{
\+ \cr

\+ \cr
}$$

As with \halign (section 9.3), it's worth following a discipline when typing this
type of code. Start with the outside layers-the dollar signs and the \ vbox -then
fill them in with the tabbed lines. This way you're less likely to forget to close the
braces and the $$.

Tabs provide an alternative solution to the common problem of setting several short
lines of text in a box, in such a way that the box comes out only as wide as the
longest line inside (remember that if you say \vbox{line 1 \par line 2}, you

124 A Beginner's Book of T g<

get a box of width \hsize). We've already seen how \hbox can be used in this
case; \ + gives an equivalent construction:

\vbox{
\hbox{line 1}
\hbox{line 2}

}

10.3 Choosing column widths

\vbox{

}

\+ line 1 \cr
\+ line 2\cr

It's not always clear how to choose the widths of the columns when setting tabs.
How do you know, except by trial and error, how many inches you should leave
for the text in the first column?

If you know in advance what the widest entry in each column will be, there is an
easy solution. Make a sample line containing the widest entries, but precede it
with the \settabs command. This will set the tabs as a normal \+ line would,
but the sample line will not appear on the output. Don't forget to include some
spacing in the sample line entries, so the columns won't touch each other:

\settabs
\+ Room\qquad & Schiffmann\qquad &D\'esarm\'enien\cr
\+ Room & 8 to lOam &lOam to noon\cr

10.4 Equally spaced tabs
The \columns command works with \settabs as an abbreviation for a common
case: dividing up a page into columns of the same width. For concreteness,
assume that the \hsize is 5 in; then \settabs 5\columns has the effect of
\settabs\kern lin&\kern lin&\kern lin&\kern lin&\cr.

\settabs 5\columns
\+ Room & 8 to lOam &lOam to noon\cr

The syntax is somewhat inconsistent: \columns doesn't take \+ or \cr, unlike
the sample line construction of the previous section.

10.5 Clearing tabs
Once you have set a tab, it will ordinarily remain in effect until the next \settabs
command. This means that you can have your tables obey the same alignment,
even if there is normal text between them, or they are on different pages.

But that's not always what you want; it may be better to have different tables align
differently. One solution is to wrap each table in braces: tabs defined inside a
group disappear at the end of the group, and the ones in effect before the group

Tabbing 125

was entered, if any, are restored. There's no way around that; it's an error to say
\global\settabs.

There's also a \cleartabs command, which does what its name says. If you
don't want to risk getting confused with previously set tabs, you should systemati
cally start your tables with either \cleartabs or \settabs. If no tabs were set,
no harm done-better safe than sorry.

You can also use \cleartabs inside a line oftheform \+ ... \cr, in which case
it clears only the tabs to the right of the column it's in. Any ampersands past that
column will then set new tabs.

\cleartabs
\+ \quad& aaa\quad& bbb\quad& \cr
\+ & & & ccc\quad& ddd\quad\cr
\+ & AAA & BBB & eee & DDD \cr
\+ & xxxxxxx\quad\cleartabs& yyyyy\quad & zzzzz\cr
\+ & XXX & yyy & ZZZ \cr

In the code above, the first \cleartabs cleans the slate, and three tabs are set
after the first \ +. On the next line one tab is set, and on the next none: the same
ones are used. On the next line, \cleartabs leaves alone the first tab and clears
the others; but two new tabs are immediately reset:

aaa bbb
ccc ddd

AAA BBB CCC DDD
~ yyyyy zzzzz
XXX yyy ZZZ

Often, \cleartabs is immediately followed by an ampersand to set a new tab.
If your table doesn't contain the character &, we suggest you redefine locally the
control sequence \&, by saying

\def\&{\cleartabs &}

Put this definition inside the \ vbox that contains your table (if you're centering
it), or start a group just for this purpose. This way you won't forget it later on. See
an example of use in section 10.8.

10.6 Tabs and rules
Horizontal rules
To obtain horizontal rules, we use \hrule between the end of a row (\cr) and
the beginning of the next (\ +):

Room 8 to lOam lOam to noon

C8 Foata Desarmenien

C9 Schiffmann Martinet

CIO Colloquium: Prof. Victor Ostromoukhov

126 A Beginner's Book of T EX

$$\vbox{\def\strut{\vrule height llpt depth 5pt width Opt}
\settabs
\+ Room\qquad & Schiffmann\qquad &D\'esarm\'enien\cr
\+ \strut Room &8 to lOam &10am to noon\cr
\hrule
\+ \strut C8 &Foata &D\'esarm\'enien\cr
\hrule
\+ \strut C9 &Schiffmann &Martinet\cr
\hrule
\+ \strut Cl0 &Colloquium: Prof.-Victor Ostromoukhov\cr

}$$

The \strut s are used to keep the rules from sticking to the text. They're defined
in plain TEX to have height 8.5 pt and depth 3.5 pt, but we increase that here for
better visual effect. (See also section 9.9.)

When you use rules, it is essential to wrap everything in a box. Just for fun, let's
see what happens if we eliminate the surrounding \ vbox and the \strut s:

Room 8 to lOam lOam to noon

C8 Foata Desarmenien

C9 Schiffmann Martinet

ClO Colloquium: Prof. Victor Ostromoukhov

Not a very pleasant result! The rules are much longer than the table; the reason is
that they don't have a surrounding box, so they extend to the width of the page.

To obtain a horizontal rule across one column only, you can use, according to taste:

• \hrulefill, if the column width is already set (since a spring cannot make
room for itself); or

• \ vrule height .4pt width ... (remember that you can't use \hrule in
horizontal mode). With this solution you kill two birds with one stone: you define
the column width and set a new tab.

Here we use the second solution, setting tabs as we go along:

$$\vbox{\offinterlineskip\cleartabs
\def\hr{\vrule height .4pt width 2em}
\def\vr{\vrule height12pt depth 5pt}
\def\cc#l{\hfill#l\hfill}
\+ \hr&\cr
\+ \vr\cc{l}&\vr\cr
\+ \hr&\hr&\cr
\+ \vr\cc{l}&\vr\cc{l}&\vr\cr
\+ \hr&\hr&\hr&\cr

\hrule
}$$

-
1

1

1

1

1

1

2 1

3 3 1

4 6 4 1 I

Tabbing 127

Vertical rules
The vertical rules \ vr in the previous example, while part of each row, piece
together to form an unbroken rule. To achieve this effect it is essential to eliminate
the automatic interline spacing, using \offinterlineskip, as we did in chapter
9. But in contrast with the situation there (section 9.10), all the vertical rules must
be give an explicit height and depth, because they are set in separate boxes.

Room 8 to lOam lOam to noon

C8

C9

Foata

Schiffmann

Desarmenien

Martinet

C10 Colloquium: Prof. Victor Ostromoukhov

Here the sample line after \settabs sets three tabs, rather than two, because the
last \ vr must be in a column by itself. Unfortunately, the width of the last column
has to be set manually to 1.8 inches, because it depends on the long Colloquium
entry, which starts in the previous column.
$$\vbox{\offinterlineskip
\def\vr{\vrule height l2pt depth 5pt} \def\vrq{\vr\quad}
\settabs
\+\vr\quad Room\quad&\vr\quad Schiffmann\quad&\kern 1.8in&\cr
\+\strut\quad Room&\quad 8 to lOam &\quad lOam to noon\cr
\+\vrq C8 &\vrq Foata &\vrq D\'esarm\'enien &\vr\cr
\+\vrq C9 &\vrq Schiffmann &\vrq Martinet &\vr\cr
\+\vrq Cl0&\vrq Colloquium: Prof.-Victor Ostromoukhov&&\vr\cr

}$$

Adding \hrule s between the lines of this table, after each \cr, we get

Room 8 to 10am lOam to noon

C8 Foata Desarmenien

C9 Schiffmann Martinet

CIO Colloquium: Prof. Victor Ostromoukhov

10.7 Tabs and springs
You can move around the material in a column by using springs \hfill. They
must be strong springs: \hi il won't do, because plain Tpc already puts an \hi il
in each box to take up the slack.

Let's redefine \vrq in the previous example to mean \vr\hfill:

Room 8 to lOam lOam to noon

C8 Foata Desarmenien

C9 Schiffmann Martinet

C10 Colloquium: Prof. Victor Ostromoukhov

128 A Beginner's Book of T EX

The result isn't too pleasant, but it has the virtue of showing that spaces at the end
of an entry are not ignored: compare the C9 and ClO boxes.

It also seems that \hfill didn't work with the entry that spans two columns. This
is a much more subtle problem: since the \ + command, unlike \halign, sets one
entry at a time, there is no way TJY(can place the second entry flush right in the
third column. To right-justify the long entry we must move it to the third column,
and use \hidewidth to let it spill into the previous column (cf. section 9.5):

\+\tvq Cl0&\tv&\hidewidth Colloquium ... Ostromoukhov&\tv\cr

Also, \hfill won't work in the rightmost entry of any column: there must be a
& to fix the right boundary of the box.

10.8 Typesetting code
Typesetting a program in a structured language is an interesting application of tabs,
because of the use of indentation in displaying the program structure. The amount
of indentation changes as we go along the program:

var x: array[O .. 10] of integer;
i: integer;

i:= 1;
while xli] <> 0 and i < 9 do begin

xli] := xli - 1]; i := i + 1;
if sum = 0 then sum := sum + 1
else begin

end

sum := sum - delta;
xli] := sum;
end

Here's how this program was typeset:
$$\vbox{\def\&{\cleartabs &}

\def\<#l>{\hbox{\bf#l}} \def\[#l]{\hbox{\it#l\/}}

\+\<var> \&x: \<array> [0 .. 10] \<of> \<integer>; \cr
\+ &i: \<integer>; \cr
\+$i:=l$; \cr
\+\<while> \&$x[i]<>O$ \<and> $i<9$ \<do> \<begin>\cr
\+ &$x[i] :=x[i-l]$; $i:=i+l$;\cr
\+ &\<if> $\[sum]=O$ \<then> $\ [sum] :=\[sum]+l$\cr
\+ &\<else> &\<begin>\cr
\+ & &$\ [sum] :=\ [sum]-\[delta] $; \cr
\+ & &$x[i] :=\[sum]$; \cr
\+ & &\<end>\cr
\+ &\<end>\cr

}$$

Tabbing 129

As explained in section 10.5, we use the abbreviation \& to clear tabs and imme
diately set another one. Notice the unusual definition of the control sequences \ [
and \ < , which typeset their arguments in italics and boldface, as is conventional
for variable names and reserved words, respectively. Their arguments are not sur
rounded by braces, but rather by the control sequence itself and a delimiter,] or
> . For more details, see section 12.4.

10.9 Tabs and alignments: a comparison
The two ways to typeset tables-using \halign or tabs-have much in common.
But there are also substantial differences: in general, \halign is more powerful
and can handle a greater variety of tasks, while tabbing is quicker to get started
with. Experienced users tend to use \halign about 90% of the time, reserving
\ + for special situations, like tables extending over several pages and program
code.

Here's a summary of the features of both facilities:

Feature

Is the same alignment saved from one table to another?

Can column positions be redefined?

Can arbitrarily long alignments be handled? (\halign
memorizes the whole alignment before setting it.)

Can tables be broken across pages?

Can columns be centered or right-aligned? (With tab
bing, springs must be added to all entries.)

Can entries span several columns? (With tabbing, this
interferes with springs.)

Can horizontal and vertical rules be set? (With tabbing,
rule specifications must be repeated.)

Are column widths computed automatically?

How easy is it to handle exceptions?

Can common features be "factored out?"

Can columns be separated automatically?

Can the alignment width be predetermined?

Tabbing \halign

Yes No

Yes No

Yes No

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Sometimes Yes

Hard Easy

No Yes

No Yes

No Yes

11
Typesetting mathematics

11.1 Generalities
To typeset mathematical symbols in the middle of text, surround them with single
dollar signs: $... $. To obtain

for every real x, we have sin(2x} = 2sinxcosx

we went into math mode and out again twice:

for every real x, we have $\sin(2x)=2\sin x \cos x$.

If you want to display a formula, whether for emphasis or because the formula is
too long or too tall to fit comfortably on a line, use two dollar signs. The splendid
spectral sequence

was typeset with

$$
E_2-{p,q}=H-p\bigl(H-q(X;{\cal A}-*(X;L)\otimes
{\cal B})\bigr)\ \Longrightarrow\ H-{p+q}(X;{\cal B})
$$

As you can see, a displayed formula is centered and surrounded with a bit of spacing
above and below. This spacing is given by the variables \abovedisplayskip
and \belowdisplayskip, which you can adjust to your taste; plain TEX sets
them as follows:

\abovedisplayskip=12pt plus 3pt minus 9pt
\belowdisplayskip=12pt plus 3pt minus 9pt

Typesetting mathematics 131

There are also \abovedisplayshortskip and \belowdisplayshortskip,
used when the line preceding the formula is so short that the regular skips would
leave a visual "hole." Their values in plain TEX are

\abovedisplayshortskip=Opt plus 3pt
\belowdisplayshortskip=7pt plus 3pt minus 4pt

It is by no means necessary to have the $$ on a line by itself in your source file,
though it does help see what's going on. But don't leave a blank line before the first
$$ or after the second, unless you really want to start a new paragraph (in which
case you'll get more spacing, and the next line will be indented). And don't even
think of leaving a blank line inside the formula: TEX cannot start a new paragraph
in math mode, so it assumes that something went wrong and ends the formula.

Pairs of single dollar signs $... $ and pairs of double dollar signs $$... $$ de
limit groups. TEX doesn't allow you to nest these groups directly: if you're in math
mode and type a $, you get out of it. This is sometimes unfortunate, but can be
circumvented: see the use of \ifmmode in section 12.9.

The correct use of spacing in mathematical formulas is a hallmark of a good ty
pographer or typesetting system, and is governed by fairly complex traditional
rules. TEX avoids burdening the user with this question by managing itself all
the spacing. As a consequence, it also ignores all spaces and carriage returns in
math mode: $\inCa ~bf (x) dx$ and $\int _ a ~ b f (x) d x$ have
exactly the same effect. (Of course, a space inside \int would not be allowed.)
The only uses of spaces in a formula are to mark the end of control sequences and
to make the source file more intelligible. In particular, you should make liberal use
of carriage returns.

Although sophisticated, TEX's spacing mechanism is not perfect. There will be
times when you'll want to change the amount of space TEX puts between the various
elements of a formula. We'll soon see commands that make it easy to do so.

11.2 Math symbols
TEX divides the symbols and characters accessible in math mode into eight classes
(see The TEXbook, page 154):

O. ordinary characters 4. opening delimiters

1. large operators 5. closing delimiters

2. binary operators 6. punctuation

3. relational operators 7. variable-family characters

This classification is what enables TEX to manage spacing in the sophisticated way
we've mentioned (The TFJ(book, page 170). Class 7 contains all digits and all
lowercase and uppercase letters; they're called variable-family characters because
they change font according to the current \f am. Class 6 contains the comma, the
semicolon, and a special colon obtain by typing \colon. We won't discuss those
two classes any further.

132 A Beginner's Book of T EX

Ordinary characters
Ordinary characters comprise the decimal point, Greek letters, calligraphic capitals
(discussed in section 11.3) and certain math symbols:

a \ alpha I- \iota f2 \varrho

f3 \beta /'i, \kappa (j \sigma

'Y \ gamma A \ lambda <; \varsigma
{) \delta J.L \mu T \tau

f \epsilon v \nu v \upsilon

c \varepsilon e \xi 11 \phi

(\zeta 0 0 <p \varphi

TJ \eta 7r \pi X \chi
() \theta 'W \varpi 'ljJ \psi
{} \vartheta p \rho w \omega

Lowercase Greek letters

There are only eleven uppercase Greek letters that don't look like some letter from
the Latin alphabet:

r \ Gamma ~ \Xi <I> \Phi

~ \Delta n \Pi w \Psi

e \Theta E \Sigma n \ Omega

A \Lambda Y \Upsilon

Uppercase Greek letters

The other assorted mathematical symbols are:

N \aleph \prime V \forall

1i \hbar 0 \emptyset :l \exists
\imath V \nabla --, \neg or \lnot

J \jmath J \surd b \flat

f \ell T \top q \natural

p \wp 1- \bot ~ \ sharp

~ \Re II \ I or \Vert .. \clubsuit

~ \lm L \ angle tv \diamondsuit

a \partial 6. \triangle c:; \heartsuit

00 \infty \ \backslash • \spadesuit

Other ordinary characters

You can make any math expression or symbol into an ordinary symbol, for the pur
poses of spacing, by surrounding it with braces: $a+b$ gives a + b, but $a{ + }b$
gives a+b.

Typesetting mathematics 133

Large operators
Large operators come in two sizes: very large, for display math, and not-so-Iarge,
for regular math. (The distinction is actually according to the style: see sec
tion 11.7.)

2:L: \sum n n \bigcap 00 \bigodot

TIIT \prod U U \bigcup ®Q9 \bigotimes

uU \coprod U U \bigsqcup €BEe \bigoplus

f J \int V V \bigvee l-tll±J \biguplus

f f \oint 1\ 1\ \bigwedge

Large operators

Binary operators
Several binary operators have large counterparts, like U and U. Mathematicians
will have no trouble making the distinction, but if you're a non-mathematician and
run across one of these the following rule of thumb may be helpful: the binary
form is used between two letters or expressions (A U B), while the large form is
used when there is only one expression, generally with subscripts, following the
operator (U Ai).

Another possible source of confusion is \setminus, denoting set difference. It
gives the same symbol as \backslash, but surrounds it with more spacing, as is
usual with binary operators. See the Dictionary for examples.

To eliminate the spacing around a binary operator you can use the trick explained
on the previous page: $u{\circ}v$ gives uov, which some prefer over u 0 v.

+ + \div
± \pm n \cap V \vee or \lor

=f \mp U \ cup 1\ \wedge or \land

\ \setminus I±I \uplus EEl \oplus
\cdot n \sqcap e \ominus

X \times U \sqcup ® \otimes

* \ast or * <l \triangleleft 0 \oslash

* \star t> \triangleright 8 \odot

<> \diamond I \wr t \dagger
0 \circ 0 \bigcirc + \ddagger

• \bullet 6. \bigtriangleup II \amalg

'V \bigtriangledown

Binary operators

134 A Beginner's Book of T p<

Relational operators
There are lots of them! The only thing to remark is that \mid and \parallel
give the same symbols as I and \ I , but put more space around them. See examples
in the Dictionary.

< < > >

< \leq or \le > \geq or \ge \equiv

-< \prec)- \succ \sim

-< \preceq)- \succeq \simeq

« \11 » \gg ~ \asymp

C \ subset :::J \supset ~ \approx
C \subseteq :::J \supseteq ~ \cong
C \sqsubseteq :=J \sqsupseteq t><J \bowtie

E \in :;) \ni ex \propto

f- \vdash -1 \dashv 1= \models

\smile I \mid ..:... \doteq
,.-... \frown II \parallel .1 \perp

Relational operators

Most of these relations can be negated by preceding their control sequences with
\not. The resulting symbols are obtained by overstriking the original operator
with a slash; since the width of the operators vary, some of them don't look ex
actly right. In particular, \not\in has a variant, written \notin, which looks
somewhat better: the former gives ~, the latter rj..

/. \not< 'j- \not> -I \not=, \neq, \ne

1:- \not\leq "i \not\geq :!- \not\equiv

-I< \not\prec 'I \not\succ f \not\sim

~ \not\preceq :t \not\succeq f- \not\simeq

ct \not\subset 1; \not\supset ';ft \not\approx

r; \not\subseteq ~ \not\supseteq F \not\cong
g \not\sqsubseteq ;?l \not\sqsupseteq rj. \notin

Negations

Arrows are a special type of relations. Most horizontal arrows come in two sizes,
the longer of which starts with long. Vertical arrows also grow, but with differ
ent prefixes: see section 11.13. In this respect they work like delimiters (see the
next subsection).

The \iff command gives the same symbol as \Longleftrightarrow, but
places extra space on both sides.

Typesetting mathematics 135

+- \leftarrow, \gets ~ \long1eftarrow i \uparrow
---+ \rightarrow, \to ----+ \longrightarrow 1 \downarrow
~ \leftrightarrow +----+ \long1eftrightarrow 1 \updownarrow

<= \Leftarrow ~ \Long1eftarrow 1'l' \Uparrow

=> \Rightarrow ==> \Longrightarrow .\.l- \Downarrow
{:} \Leftrightarrow <==> \Long1eftrightarrow ~ \Updownarrow
f--+ \mapsto f--+ \longmapsto / \nearrow
+--' \hook1eftarrow '---+ \hookrightarrow '\. \searrow

\leftharpoonup \rightharpoonup ,/ \swarrow
\leftharpoondown \rightharpoondown '\ \nwarrow

-" \right1eftharpoons ..-

Arrows

Left and right delimiters
Parentheses, brackets, and other symbols that come in pairs are collectively known
as delimiters, and TEX makes it easy to get them in different sizes (section 11.13).
Here are the basic control sequences to obtain them. Brackets [1 and braces { } have
alternative names, since unfortunately they are not available on some keyboards.

([[or \lbrack l \lfloor

1] or \rbrack J \rfloor
\lang1e { \{or \lbrace r \lceil
\lang1e } \}or \rbrace 1 \rceil

Left and right delimiters

11.3 Fonts in math mode
Generally, letters in mathematical formulas are typeset in italics, to stand out better
from the surrounding text. TEX's main font for math is called math italic, or cmmi,
with slightly wider characters than text italic (compare a and a).

As we discussed in section 4.7, the font change commands \rm, \bf, \it, \sl
and \tt work in math mode, but with the last three you can't use subscripts or
superscripts.

$Pqr+{\rm Xyz}+{\bf Uvw}+{\it Xyz}$ Pqr + Xyz + Uvw + Xyz

But if you say \hbox{ ... } in math mode, you're in horizontal mode inside the
braces, and you revert to the font situation before the dollar signs:

AAA {\bf BBB $(xy+\hbox{xy})$} AAA BBB (xy + xy)
eee $(uvw+\hbox{uvw})$ CCC (uvw + uvw)

Here are some other miscellaneous font commands. As usual, they affect all letters
till the end of the group in which they are issued; so it's best to confine their action
using groups, or you'll get weird results (see the Dictionary under \ca1).

136 A Beginner's Book of T e<

• \mi t can be used for italic Greek capitals (see section 11.2 for the letter names):
${\mit\Gamma}$ gives r, to be compared with the usual f. On digits it has the
same effect as \oldstyle below.

• \cal is used for calligraphic letters: ${\cal ABC}$ gives ABC. Only
capitals are available.

• \oldstyle produces old-fashioned digits: {\oldstyle 1234567890} will
give 1234567890. You can use this command outside math mode: it is handy for
bibliographies (see section 4.8).

Section 4.7 discusses in detail what you must do to define new fonts in math mode.

11.4 Subscripts and superscripts

Subscripts are obtained with the underscore character: x_k gives Xk. Ordinar
ily, only the character following the _ is made into a subscript; if you want the
subscript to consist of several characters you must group them:

$a_i +b_ {i, j}$... ai + bi,j

Another case where braces are indispensable is in resolving an ambiguous double
subscript: what does x_k_i mean? You must choose either ${x_k} _i$,
which gives Xki, or $x_ {k_i}$, which gives Xki' (But the former almost never
occurs.)

Superscripts are very much like subscripts, and you get them with a caret, also
known as hat: $e-x$ gives eX. Here, too, watch out for ambiguous expressions
like x-k-2: you must use braces around x-k (rare) or around k-2.

Subscripts and superscripts can be combined, in either order. In general, mathe
maticians think of the subscript as more closely related to the main letter, so they
type it first. But TEX will print exactly the same thing if you type the superscript
first:

$x_{r,s}-{p+q}+y-{p+q+l}_{m-2}$

The empty group

It is possible to adorn the empty group with subscripts and superscripts. This has
several uses, such as

• placing subscripts and superscripts before a letter: the isotope 2~~U can be
coded ${Y{238} _ {\hphantom{O}92}{\rm U}$ (for \hphantom, see 9.8);

• staggering subscripts and superscripts: if you're fond of relativity theory and
its tensors, write $\Gamma3i, j}{Yr{Lk$ for fi,jr k:

• aligning subscripts and superscripts: if you dislike the fact that TEX normally
shifts superscripts slightly (Hi), to account for the slant of italic letters, place an
empty group after the letter, as in $Hn _2-2$, which gives H~.

Typesetting mathematics 137

Primes

To conclude, there is what is probably the most common superscript in mathematics,
the so-called prime. It is so common that it has a shorthand form ' :

$(u\cdot v) '=u'\cdot v +u\cdot v'$ (u· v)' = u'· v + u· v'

The full form would be $u-\prime$, and so on. Plain T}3X also arranges things
so that ' can be repeated, or combined with other superscripts, without the need
for grouping: $x" $ gives x", and $x' -2$ gives x'2, without further ado.

11.5 Accents

Accents and math don't go well together: T}3X will complain if you give it the
commands of section 2.4 while in math mode. To typeset H;tale(X; F), then,
$H_ {\rm\' etaleV* (X; {\cal F}) $ won't work. The solution is to typeset the
word that requires the accent in an \hbox (this unfortunately requires explicitly
choosing a smaller font for the subscript):

$H_{\hbox{\sevenrm\'etale}V*(X;{\cal F})$ H;tale(X;F)

Nonetheless, several of the accents in section 2.4 can be obtained in math mode,
after all; they just have to be referred to by different names:

a \hat a a \check a ii \tilde a

a \grave a a \acute a a \vec a

a \dot a a \ddot a Ii \breve a

a \bar a

This table also includes other "accents" which are not available outside math mode,
such as the very common \ vec x, and the double dot:

$\ddot x+x+ax-3=f(t)$ x + x + ax3 = f(t)

All those new accents work in math mode only. They are meant for single letters;
but sometimes you need an accent to cover more than one letter. With \bar
and \ vec there is no problem: they have counterparts that grow to match the
expression underneath, which will be introduced in section 11.12.

There are also wide counterparts for \hat and \tilde, but they only grow to
about three characters wide:

\widehat{xy}, \widetilde{xy} Xy, xy
\widehat{xyzw}, \widetilde{xyzw} xYZ-w, xyzw

138 A Beginner's Book of T e<

11.6 Spacing in math mode
We've seen that spaces in the input are ignored in math mode. How then can you
create extra spacing in a formula? We'll discuss only the most common ways:

• \quad, \qquad and \ (backslash-space) work exactly as in horizontal mode
(see section 5.1);

• \, is the math mode counterpart of \ thinspace (section 5.5), and gives a
thin space, which is about 1.5 pt wide in ten-point size;
• \! is the counterpart of \negthinspace and gives a negative space, that is,

it brings things together by 1.5 pt.

These commands should be used judiciously: most of the time T]3X knows what it's
doing, and you won't have to add space by hand at all. But this expression shows
two cases where the automatic spacing can be improved on:

$$\int\int_{\cal D}f(u,v)dudv$$ l1J(u,v)dudv

$$\int\!\!\!\int3\cal D}f(u,v)\,du\,dv$$ 11 f(u,v)dudv

A very common example of the use of \quad and \qquad is in separating expla
nations, conditions, etc., that accompany a displayed formula. The display

eix = cosx+isinx for every x

was obtained with

$$e~{ix}=\cos x+i\sin x \qquad\hbox{for every x}$$

Notice the interplay between modes here: The easiest way to get straight text in a
display is by using an \hbox, and inside the box you can start a new level of math
mode if necessary. Saying ... \hbox{for every} x$$ also works, but seems
less clear.

Apart from the commands discussed above, you can use \hskip and \kern at
will in math mode, as well as the special commands \mski p and \mkern that
we will discuss in the next section. Use all these commands sparingly: few things
make the appearance of a document more unprofessional than an arbitrary sprin
kling of inconsistent spaces.

11.7 The four styles
We have seen that all letters automatically come out smaller when they're used in
subscripts, and also that some operators come out smaller in displayed equations
than in the middle of a paragraph. The size of all characters is a function of the
current style, which is a way of saying what part of an expression the character
appears in. There are four styles, as follows:

When T]3X goes into display math mode (between double dollar signs), it typesets
things in display style. In this style all characters have their full size, which, except
for large operators like \int, is essentially the size of the surrounding text.

Typesetting mathematics 139

But when TIYC sees a subscript or superscript, it switches to script style to typeset
it, and back again when it's done. In script style characters are somewhat smaller,
like this: x.

And if, while already in script style, TIYC is required to set a subscript or superscript,
it does it in scriptscript style, which is even smaller, like this: x. (But if TIYC sees
a subscript while it's already in scriptscript style, it doesn't make it any smaller:
there is no scriptscriptscript style.)

So in the expression

2
which comes from $$\int e-{ -x-2}\ ,dx,$$ the is in scriptscript style, the-x

in script style, and all the rest is in display style.

This takes care of three styles. How about the fourth? It is called text style, and it's
the one that TIYC starts in when it enters normal math mode (between single dollar
signs). In text style, too, letters come out the same size as the surrounding text, but
large operators don't come out quite as large as in display style. If the integral of
the previous paragraph had been set in normal math mode, it would look like this:
J e- x2 dx.

For those who have read section 4.7: This explains why math fonts are kept in
families. When the current family is \faml, say, TIYC will fetch an 'a' from
\textfontl if the current style is display or text; from \scriptfontl if the
style is script, and from \scriptscriptfontl if the style is scriptscript. This
explains why the size changes with the style: \scriptfontl is a smaller font
than \textfontl, and so on.

The size of large operators is not the only difference between display and text
styles. In text style, TIYC takes great pains to limit the height and depth of formulas,
so they will not interfere with the spacing between lines; for this reason, whenever
it has to stack things vertically, as in a fraction, it chooses to switch to script style.
Consider the difference between the next two lines:

$x+{y\over 1 +x-2}$.. x + ~

$$x+{y\over 1 +x-2}$$ x + 1 : x 2

In the first case, TIYC starts in text style, goes into script style for the numerator
and denominator of the fraction, and into scriptscript style for the exponent '2'.
In the second case, it starts in display style, goes into text style for the fraction's
components, and into script style for the exponent.

You can change styles at any point in any formula, by saying \displaystyle,
\textstyle, \scriptstyle or \scriptscriptstyle. The change will stay
in effect until the end of the current group, with consequent changes in the style of
fractions, subscripts, and so on.

For example, $e-{x\over n}$ gives e~: the exponent's style is script, so the
style of the numerator x and denominator n is scriptscript. This seems to be one of

140 A Beginner's Book of T £X

the few cases where TIYC's decisions are unfortunate, because the result is too small
and the spacing wrong. The solution is to magnify both numerator and denominator
a notch by setting them in script style:

$e-{\scriptstyle x\over \scriptstyle n}$ e¥i:

You could also try $e-{\textstyle{x\over n}}$, doing the whole fraction in
text style, instead of numerator and denominator individually in script style. The
letters would come out the same size, but the spacing would be different. For
another example, see section 11.9.

(If you haven't read section 4.7, read it now or skip to the next section.) TIYC has a
unit of length that depends on the current math font, much like an em depends on
the current font. It's called a mu (for mathematical unit), and it's exactly 18 times
smaller than the current math font's em, for obscure historical reasons. Spaces
measured in mus are obtained with the \mskip and \mkern commands, which
are like \hski p and \kern but demand this particular unit. For example, \, is
equivalent to \mkern 3mu (notice that mu doesn't have a backslash, unlike the
greek letter J-l). The current math font is a function of the current \fam and of
the current style, so glue and kerns specified in mus scale correctly when the style
changes. This is especially advantageous inside macros.

11.8 Function names
To improve readability, certain multi-letter abbreviations for function names are
traditionally set in roman, and surrounded with a little bit of space: sin x versus
sinx. TJY(will do that automatically if you remember to precede the abbreviation
with a backslash:

$\sin-2 x+\cos-2 x=l$ sin2 x + cos2 X = 1

Here is a list of such control sequences provided by plain TIYC:

\arccos \cos \csc \exp \ker \limsup \min \sinh
\arcsin \cosh \deg \gcd \lg \In \Pr \sup
\arctan \cot \det \hom \lim \log \sec \tan
\arg \coth \dim \inf \liminf \max \sin \tanh

See also section 11.10, and the Dictionary under \ bmod and \pmod.

11.9 Fractions

Fractions are made with the \over command: we've seen it a few times already.
The action of \over extends over the smallest containing group, which may be
the whole formula or something delimited with braces: $$a+b\over a-b$$ and
$$a+{b\over a}-b$$ give

a+b
a-b

b
and a + - - b.

a

Typesetting mathematics 141

We've seen that if TEX sees a fraction while in display style, it sets its components
in text style; if it sees it in text style the components come out in script style; and if
it sees it in script style the components come out in scriptscript style. Beyond that
there is no change.

If you prefer to have a ~ b rather than aa:.b in a paragraph, change the style ex

plicitly: $\displaystyle {ab \over a+b}$. (The braces are essential: if you

write $\displaystyle ab\over a+b$, you get a~b' because \over effec
tively makes each component of the fraction into a group.)

TEX automatically chooses the right length for the fraction bar, and centers the
numerator and denominator with weak springs \hfil. Section 5.4 shows how
you can set the shorter component flush right or flush left using \hfill.

Needless to say, a fraction in "slashed" form, like alb, is coded a/b. The slash
often offers a better alternative to complicated fractions in text: a/(b + 1) seems

preferable to either b~l or b: l' (Non-mathematicians take note: to preserve the

meaning when setting a fraction in slashed form, you must wrap the numerator and
denominator in parentheses, unless they consist of a single symbol!)

Continued fractions
These typographically fiendish fractions provide a good real-life example of the
use of \displaystyle.

1
x = Xo + I

Xl + x + 1
2 x3

The straightforward specification

1
X = Xo + -----:1,.--

Xl + ----:1,-
X2+

X3

$$x=x_O+{l\over x_l+{l\over x_2+{1\over x_3}}}$$

gives the hideous mess on the left. The size keeps decreasing: denominators are
set, successively, in text style, script style and scriptscript style. The version on
the right corrects that problem:

$$x=x_O+{l\over\displaystyle x_l+
{l\over\displaystyle x_2+{1\over\displaystyle x_3}}}$$

but the result is still not entirely satisfactory, because the 1 's are too close to the
bar. To "push up the ceiling," we resort to struts, invisible rules of predetermined
height and depth. Plain TEX defines a strut especially for use in math formulas; it's
called \mathstrut, and it is exactly the height and depth of parentheses in the
usual math font (). For more about struts, see sections 11.17 and 9.9.

$$x=x_O+{l\over\displaystyle x_l+
{\mathstrut l\over\displaystyle x_2+
{\mathstrut l\over\displaystyle x_3}

}}$$

1
X = Xo + -----:1--

Xl + ----:1-
X2+

X3

If this seems hopelessly complicated, don't worry: Rome wasn't made in a day!

142 A Beginner's Book of T eX

Stacking other things
The \atop command works just like \over, but it doesn't draw the horizontal
bar! This may seem pointless, until you hit something like

The code here was

L XiYj

i,jEI
if.j

$$\sum_{\textstyle {i,j\in I \atop i\ne j}}x_iy_j$$

Notice the request for the subscript to \sum to be set in text style. If it were set in
script style, the default, its two lines would be in scriptscript style, and would look
too small.

The \atop and \over commands are part of a larger family, which includes
\above, \abovewithdelims, \atopwithdelims and \overwithdelims.
These commands let you control the thickness of the fraction bar and automati
cally place parentheses or brackets around the fraction. Their use is rare, so we
leave the details to the Dictionary. But we can mention here the macros \choose,
\brack and \brace, which are made from \atopwithdelims and are used
often enough (especially the first):

$2n \choose n$, $x \brack y$, $a \brace b$ C:), [:J, {~}
11.10 Large operators and limits

The observant reader will have noticed in the previous section that the construction
\sum_ { ... } sets the sUbscript under the summation sign, rather than in the usual
place for subscripts. This happens in display style only: compare 2:::=1 n-2 with

00

L n-2 , both of which come from typing \sum_ {n=lV\infty n~{ -2} after
n=l
the appropriate style command.

Most of the large operators listed in section 11.2 behave in the same way; some,
like \int, have their subscripts and superscripts always in their usual place. You
can override this behavior with the \limi ts and \nolimi ts commands (the
name comes from the fact that the expressions placed above and below, say, E
indicate the limits of summation). With \limi ts , subscripts and superscripts are
placed above and below the operator, no matter what the style. With \nolimi ts
they are always placed in their normal positions.

$$\sum\nolimits_ {n=1}~\infty n~{ -2}$$ ",00 n-2
L.."n=l

7r

$$\int\limits_{-\pi}~{\pi}\cos~2x\,dx$$ J cos2 xdx

-7r

The second construction helps save space if your formula is too long, while the
first is useful with a tall formula.

Typesetting mathematics 143

Section 11.8 pointed out that many traditional abbreviations are predefined control
sequences. Plain TJY(defines these commands to work just like large operators;
depending on their meaning, some take limits, others normal subscripts and super
scripts. Normally you don't have to worry about which does which: they do what
they're supposed to.

$$\max_ {i \in I}x_i$$.. max Xi
iEI

$$\sin-2 x+\cos-2 x=l$$ sin2 X + cos2 X = 1

The mechanism by which these new "operators" are defined is the \mathop
command. If you say

\def\limproj{\mathop{\rm lim\,proj}}

typing $$\limpro j 3j \in J} X_j $$ will give

limproj Xj
jEJ

By default, a new \mathop is like \sum: it has limits above and below in display
style, and on the right otherwise. You can also define a \mathop with \nolimi ts
or \limits:

\def\trace{\mathop{\rm trace}\nolimits}

Now $$\trace-2 A$$ will produce trace2 A. And, if you're modifying an
existing operator that has been defined with \limits or \nolimits, you can
make it revert to the default behavior by tacking on \displaylimi ts .

You can even make up your own large operators: after the definition

\font\cmrXVII=cmr17 \def\mysum{\mathop{\hbox{\cmrXVII S}}}
i=n

typing \mysum_ {i=OV{i=n}a_i results in S ai in display style, and s::~ ai

in text style. ,=0

Notice how we got S: the font change command \cmrXVII was issued inside an
\hbox , that is, outside math mode. Otherwise it would have no effect, because it
doesn't go through the \fam mechanism (section 4.7).

There is one problem with this definition: the S will come out the same size
whether or not it is displayed, and even if it belongs to a subscript. As usual, there
is a way to fix this: see the Dictionary under \mathchoice.

Large operators and the baseline
The \mathop command has an additional subtlety. Consider the following output,
where \rule is defined as \hbox to . 2in{\hrulefill} :

1
$S\rule\mathop{S}\limits_l-l$ B_B

1

The'S' inside \mathop is sunk a bit below the baseline, and its upper and lower
limits don't align exactly. The same experiment with an abbreviation shows neither
phenomenon:

1
$\rule\mathop{\rm sin}$ _sm

1

144 A Beginner's Book of T EX

It turns out that if the argument to \mathop is a single character, the character is
vertically centered about the "axis" (see the end of chapter 8), and its limits are
staggered to account for the slant, if any. Anything else is left alone:

1
$\rule \mathop{\hbox{S} } \limi ts_l -1$ _ S

1

Exercise

Typeset the following Christmas tree ornament, first in a display and then in a
paragraph:

One solution for the display is

$${\scriptstyle6}{}_7-5\mathop{M}_8-4{}_1-3 {\scriptstyle2}$$

To get the same result in a paragraph, start with \displaystyle or do the middle
part with \mathop{M}\limits.

11.11 Radicals

To get the square root sign over an expression, type \sqrt{ ... }. The sign
extends both horizontally and vertically as needed:

$$\pi=2\times{2\over\sqrt{2}}

gives

\times{2\over\sqrt{2+\sqrt{2}}}
\times{2\over\sqrt{2+\sqrt{2+\sqrt{2}}}}\times\cdots$$

2 2 2
7r=2x-x x x···

V2 V2+V2 V2+V2+V2

But there are subtle distinctions in spacing between display style (left) and text
style (right):

Normally, the square root sign extends up and down only far enough to enclose the
material inside, so different letters get signs that don't necessarily align:

$\sqrt a +\sqrt b+\sqrt{1+x_i-2}$ va+Jb+VI+x;

If you don't like that, make all the expressions the same height and depth by using
a \mathstrut:

$\sqrt{\mathstrut a} + ... $ Va + Vb + VI + x;
Otherradicals are made with the \root command. Its syntax is somewhat unusual:
$\root 3\of{1+x-2}$ gives the cube root .vI + x 2. The '3' is in scriptscript

Typesetting mathematics 145

style; if that's too small for you, it's easy to change it (\root ... \of delimits a
group):

$\root\seriptstyle 3\0i{1+x-2}$ 0'1 + X2

$$\root\seriptstyle 3\of{1+x-2}$$ ~1+x2

11.12 Horizontally extensible symbols
The square root sign is not the only symbol that grows to accomodate its argument.
TIYC has other extensible symbols: bars and arrows above and below an expression
extend horizontally, and all sorts of delimiters like parentheses and brackets extend
vertically.

To place a bar above an expression, use \overline{ ... }. Notice the difference
between that and the \bar command of section 11.4, which doesn't grow:

$\overline{z+z'}=\bar z+\bar z'$ z + z, = Z + z'
You can also \underline an expression:

$\underline{a+b+\cdots+y+z}$ a + b + ... + y + z

Arrows are obtained with \overrightarrow and \overleftarrow. Again,
there is a great difference between these and \ vee, which is meant for a single
letter:

-----+ ~

$\overrightarrow{AB}+\vec{BC}$ AB + Be

Unlike \bar and \vec, these extensible bars and arrows don't take into account
the slant of italic letters. For better results, you can introduce a manual correction
with a definition like

\def\ora#1{\overrightarrow{\mkern-2mu#1\mkern 2mu}}
-----+ -----+

\overrightarrow{AB}, \ora{AB} AB, AB

To place braces above a formula, there is \overbraee, which takes a label as a
superscript: n times

~
\overbraee{x+\edots+xY{n\ \rm times}$ nx = X + ... + X

If you place braces above two groups of different heights, you should uniformize
their heights with \mathstrut (compare section 11.11 and the continued fraction
example in 11.9): R2 Rn

R R ~ ~
22 ... n n = 2 x ... x 2 x··· x n x··· x n

$$
2-{\ell_2}\ldots n-{\ell_n}=
\overbraee{\mathstrut 2\times\edots\times 2}-{\ell_2}
\times\edots\times
\overbraee{\mathstrut n\times\cdots\times n}-{\ell_n}
$$

146 A Beginner's Book of T E'<

There is also \underbrace, the opposite of \overbrace:

(1)2 3
x2 + X + 1 = x + "2 + 4 > 0

------->0

$$x~2+x+l=\underbrace{(x+{1\over 2})~2}_{>O}+{3\over 4}>O$$

All these symbols are made of elementary pieces combined together in predefined
ways. You can also combine the same and other pieces in custom-made patterns:
see \j oinrel in section 11.15 and \relbar, \Relbar and \rhook in the Dic
tionary.

11.13 Vertically extensible symbols

All the delimiters listed in section 11.2, all vertical arrows and bars (which can also
be used as delimiters), and some other characters like the slash /, can be made to
grow. Up to a certain point, the growth is accomplished by a choice of existing
characters; after they run out, TEX can piece together special parts to make indefi
nitely large composites. There are two ways to pick a large delimiter: using \big
and its friends you make the choice yourself, while using \left and \right you
leave the choice to TEX, on the basis of the contents. We start with \big.

To get a set of parentheses that is slightly bigger than usual, but still fits comfortably
on a normal line of text, you type \bigl (... \bigr) . This is often employed to
improve the intelligibility of formulas with a nested structure:

$f(x+g(y)) $, $f\bigl(x+g(y)\bigr)$ f(x+g(y)), f(x+g(y))

The '1' in \bigl and the 'r' in \bigr are responsible for inserting a bit of space
next to the delimiter, on the appropriate side. This is especially important in the
case of openers and closers that look the same:

$\biglllxl+lyl\bigrl$ Ilxl + Iyll
But if you want a vertical bar that is not part of an open-close pair-generally such
a bar represents a relation-you should use \ bigm ; the 'm' stands for middle, and
causes TEX to put spacing on both sides:

$\bigl\{x+y\bigmlx\in X, y\in Y\bigr\}$... {x+y I x E X,y E Y}

The same formula without \bigm, {x + ylx E X, y E y}, would definitely look
wrong to a mathematician.

Finally, \big by itself is used mostly with the slash which, although mathemati
cally a binary operator, traditionally doesn't get any spacing around it:

$\bigl(f(t)+l\bigr)\big/\bigl(tg(t)\bigr)$ (J(t) + l)/(tg(t))

Typesetting mathematics 147

Instead of \big, you can also say \Big, \bigg and \Bigg, all of which have
left, right and middle variants and yield increasingly larger characters:

((((()))))
\Biggl(\biggl(\Bigl(\bigl(() \bigr)\Bigr)\biggr)\Biggr)

It's perfectly legal to have a \bigl delimiter without a matching \bigr. In
contrast, \left and \right work in pairs: if you say \left (... \right) ,
T8X treats as a group the expression represented by ... , and after typesetting it,
it flanks it with the smallest set of parentheses that is big enough to enclose the
whole expression:

$$\left({d~2\over dx~2}+a\right)f=O$$ (d~2 + a) f = 0

$$\left I {a\over x~2-y~2}\right 1$$ 1 2 a 21
x -y

Unlike the \big series, \left and \right are capable of constructing arbi
trarily large delimiters, such as the parentheses that go around large matrices (see
section 11.21). Angle brackets and slashes are exceptions: they can't be made
from separate pieces, so if you ask for something too big you'll be disappointed.

Since \left and \right work as a group, things like \left (... at . •. \right)
and \left (... { ... \right) ... } are illegal. Also, if you have several \left s
and \right s in the same formula, they must be properly nested, like all groups.
But the corresponding delimiters don't have to match; it's OK to have \left (
pair up with \right] . You can even pair something up with \right. , where the
period stands for an "invisible delimiter," needed just to keep T8X's matchmaker
happy. For instance, the formula

came from

for x < 1

for x 21

$$f(x)= \left\{x \hfill\hbox{for $x<l$}
\atop 2-x \quad \hbox{for $x\ge l$}\right.$$

This particular setup is so common that plain T8X provides a macro to deal with it
more easily: we would have gotten the same result by typing

f(x)=\cases{x at for $x<l$ \cr
2-x at for $x\gel$\cr}

This macro, in effect, sets up an alignment, which can have any number of rows
terminated by \cr. On each row, everything to the left of the at is read in math
mode, and set flush left against the left braces; but everything to the right of the at
is read in horizontal mode, since it normally involves some text.

It would be nice not to have to worry about a multiplicity of \big s, and always use
\left and \right. But T8X's recipe for choosing delimiter sizes isn't perfect,

148 A Beginner's Book of T £X

and in some cases it has to be overridden. One fairly common situation is when
the expression contains a large operator with limits: a human typesetter would let
the limits hang out a bit, so as to use slightly less huge delimiters, but T}3X doesn't
know that. Compare:

(~:,) (~:2)
\left (... \right) \biggl(... \biggr)

Another case was shown above: Ilxl + Iyll. If you type \left ... \right instead
of \bigl ... \bigr here, you get Ilxl + IYII, which is awfully confusing.

Occasionally, too, you must adjust the spacing because of unfortunate coincidences
in shape:

II 11k = L zn / II (1 - qk)
k~O (- q z) n~O 19::;n

\prod_{k\ge O}{l\over (l-qAkz)}=\sum_{n\ge O}ZAn
\biggm/\!\!\prod_{l\le k\le n}(l-qAk)

All the extensible symbols discussed in this section are vertically centered about an
imaginary axis that runs some 2.5 pt above the baseline (see the end of chapter 8).
This means that they always grow up and down by equal amounts, so if you have a
formula that is very tall but not deep, there will be a lot of white space underneath
it, and the delimiters will be too big. Fortunately, iliis doesn't happen very often,
because large operators, fractions, and the like also tend to be distributed roughly
symmetrically wiili respect to the axis. But if you try to make a vertical arrow half
an inch long, say, by writing someiliing like

\left\uparrow\vbox to .5in{}\right.

you may be surprised: the arrow will extend almost as far down as it does up, and
its total length will be almost one inch (more exactly, one inch minus twice the axis
height). You must instead use a centered box of height plus depth equal to half an
inch, which you can obtain by using \ vcenter :

\left\uparrow\vcenter to .5in{}\right.

11.14 Stacking up symbols
Mathematicians are fond of creating new symbols, and one time-honored way of
doing so is by adding bells and whistles to old ones. Plain T}3X caters to that tra
dition in several ways, and we devote this section and the next two to some of
them.

The \buildrel macro adorns relations and arrows-and just about anyiliing
else-by writing a label above it:

$$f(x)\buildrel\hbox{\sevenrm def}\over= {l\over 1+xA2}$$

Typesetting mathematics 149

gives

f(x) ~f _I_
I +x2

Notice the curious syntax: \buildrel ... \over{ ... }. If the \over is fol
lowed by a single character or control sequence, you don't need braces, but all hell
will break loose if you write something like \buildrel ... \over\hbox{ ... }.

Sometimes it's useful to write underneath a symbol, instead of, or in addition to,
above it:

weak
Xn ------+ 0 P~Q

dd

Let's borrow the definition of \buildrel (page 361 of The TIff(book) and adapt
it to do that. It goes like this:

\def\buildrel#1\over#2{\mathrel{
\mathop{\kern Opt#2}\limits~{#1}}}

We recognize the use of \mathop, with the trick of adding something invisible so
a single character won't be shifted vertically: see the end of 11.10. We also know
that \limi ts makes the superscripted text go above the operator, no matter what
the style. The \mathrel command transforms the whole thing into a relation, so
it'll be spaced right. It's easy enough to rewrite the definition so it takes a subscript
as well as a superscript, at the same time making the syntax cleaner:

\def\bbuildrel#1_#2~#3{\mathrel{

\mathop{\kern Opt#1}\limits_{#2}~{#3}}}

Now the two expressions above can be easily coded:
X_n\bbuildrel\hbox to .4in{\rightarrowfill}

_{n\rightarrow\infty}~{\hbox{\sevenrm weak}} 0

{\cal P}\bbuildrel\Longrightarrow_{\hbox{\sevenrm dd}}
~*{\cal Q}

When using \bbuildrel you must have both the _ and ~ present, and in
this order, since they serve to delimit the arguments. If you don't want a label
underneath, you must say \bbuildrel. .. _ {}~ ... (or simply use \buildrel);
if you don't want a label above, say \bbuildrel. .. _ ... ~{}.

11.15 Combining relations
Suppose you need a symbol for a new relation, and decide to make it by combining
a plus, a circle and an arrow: X -+o--t Y. Here's how you can define a control
sequence, say \ toto, for your brainchild:

\def\relplus{\mathrel+} \def\relcirc{\mathrel\circ}
\def\totosymb{\relplus\joinrel\relcirc\joinrel\rightarrow}
\def\toto{\mathrel{\totosymb}}

You start by transforming the symbols into relations (\rightarrow is already
one): this way TEX puts no space between them when writing them one after

150 A Beginner's Book of T EX

the other. Here's how they would come out otherwise: +0 ->. Then you use
\j oinrel to bring them together a bit: this is for good measure, since the charac
ters may not extend as far right and left as their box boundaries. Finally, you again
make the whole into a relation.

As long as we're at it, let's build a longer version +---o------t for display math (see
\mathchoice in the Dictionary to find out how to make TEX choose between the
two versions automatically):

\def\relminus{\mathrel-}
\def\Totosymb{\relplus\joinrel\relminus

\joinrel\relcirc\joinrel\longrightarrow}
\def\Toto{\mathrel{\Totosymb}}

To place stuff above and below the new symbol, you can use the macros from the
previous section:

$X \toto_ {n\to\infty} Y$ X ~n-->oo Y

$$X \bbuildrel \Toto_ {n\to\inftyY{} Y$$ X +---o------t Y
n-->oo

11.16 More custom-made symbols: limits
The mathematical operation of passing to the limit is represented by the abbrevia
tion lim:

$\lim_ {x\rightarrow 0-+ }x\ln x=O$ limx-->o+ x In x = 0

$$\lim_ {x\rightarrow 0-+ }x\ln x=O$$ lim x lnx = 0
x-->o+

Plain TEX also offers the control sequences \limsup and \liminf, which print
as lim sup and lim inf. Some people prefer instead the alternate abbreviations lim
and lim, and it's easy enough to humor them:

\def\limsup{\mathop{\overline{\rm lim}}}
\def\liminf{\mathop{\underline{\rm lim}}}

The \mathop is essential to make the new operator behave like the old \lim:

$$\liminf_{x\rightarrow O}f(x)$$ lim f(x)
x-->o

There are also inductive and projective limits, represented by the abbreviations
lim ind and lim proj or !im and ~, according to taste. None of these is predefined
in plain TEX. The first pair is easy enough:

\def\limind{\mathop{\rm lim\,ind}}
\def\limproj{\mathop{\rm lim\,proj}}

The second pair is somewhat trickier, because there are no \underrightarrow
and \underleftarrow macros to place extensible arrows under an expression.
But we can use \longrightarrow and \longleftarrow, which are more or
less the right length-a bit too long, so we'll pad the lim with \hfil s. In order to
place the arrow as close as possible to the lim, we borrow a macro that plain TEX

Typesetting mathematics 151

uses for this sort of thing. It's called \oalign, and it's basically \halign with
a trivial one-column template #\cr and interline spacing set to a minute amount.

\def\limind{\mathop{\oalign{\hfil$\rm lim$\hfil\cr
\longrightarrow\cr}}}

\def\limproj{\mathop{\oalign{\hfil$\rm lim$\hfil\cr
\longleftarrow\cr}}}

$U=\limind_ {\, \alpha\in A}U_ \alpha$ U = lim Ua
--+aEA

$$U=\limind_ {\, \alpha\in A}U_ \alpha$$ U = ~ Ua

aEA

$T=\limproj3\, \omega\in Z}T_ \omega$ T = li!!!wEZ Tw

$$T=\limproj3\, \omega\in Z}T_ \omega$$ T = li!!! Tw
wEZ

11.17 Phantoms

What is a phantom? It's something invisible that has the same dimensions as a
given formula. Phantoms are like struts, but more flexible.

Recall that struts are invisible rules of width zero but non-zero height and/or depth.
We've already met several uses for them, mostly in ensuring consistent spacing
and positioning in alignments, under radicals and fraction bars, and so on. There
are two predefined struts in plain T£X: \strut is 8.5 pt tall and 3.5 pt deep, so it
supports a whole line; while \mathstrut is exactly as tall and as deep as a set of
parentheses. Here they are made visible by lending their dimensions to a \ vrule :

(\hbox{\mathstrut\vrule}) \hbox{\strut\vrule} (I) I
The \ vphantom macro makes a strut with same height and depth as the macro's
argument: for instance, the definition of \mathstrut is \ vphantom{ (}. The
argument can be anything, not just a single character. It doesn't even have to be a
math formula: \ vphantom can be used in any mode.

Similarly, \hphantom makes an invisible horizontal rule, without height or depth,
and having the same width as its argument. In section 9.8 we used \hphantom{O}
to stand in for a digit. And there's also \phantom, which makes a whole box, all
of whose dimensions match the dimensions of the argument. Both of them can be
used outside math mode.

Remark: all these macros are in a way complementary to \smash, which prints
its argument but takes away its height and depth. In contrast, \phantom keeps
the dimensions of its argument but makes it invisible.

As an exercise, typeset the following motto ("Let no one ignorant of geometry
enter here") for Plato's Academy. Hint: The whole ensemble was set in a \vbox
of height 14 pt, with interline spacing turned off. The rules in the middle were
obtained with \line{\hrulefill \hphantom{\motto}\hrulefill}, after a
suitable definition for \motto.

== ArEnMETPHTO~ or ~EI~ EI~ITn ==

152 A Beginner's Book of T e><

11.18 Displaying several formulas
We've seen that to get a centered formula you should surrounded it with double
dollar signs $$. But if you have several formulas in a row, and wrap each one in
$$, the spacing between them becomes excessive. It is better to stack up all the
formulas within one set of $$. You can do that with plain TEX's \displaylines
command, which essentially makes a centered alignment with a single column (so
no ampersands are needed). The display

00 (l)n /,00
f(z) = L - + e-ttz - 1 dt

n=O n! (n + z + 1) 1

was obtained with

f(z) = 100 e-tt z - 1 dt

f(z + 1) = zf(z)

$$\openup2pt \displaylines{
\Gamma(z) ... dt \cr
\Gamma(z) ... dt \cr
\Gamma(z+l)=z\Gamma(z) \cr

}$$

Here are a few things to watch out for:

• As in any alignment, each line to be centered should end with \cr. Actually,
\displaylines will supply the \cr at the end of the last line if it is missing, but
there isn't much point in making use of this feature.

• Any punctuation should come before each \cr. A period right after a \cr
will be set at the beginning of the next line. A period after the last \cr has even
more amusing consequences: TEX naturally assumes that it should be put on a
line by itself, so it creates a rather piddling extra "formula." No error message is
generated, because a \cr is quietly supplied for the spurious last line.

• Another common mistake is to forget the braces that close \displaylines.
This causes a Runaway argument? error message and fouls things up to such
a degree that you may need to type several carriage returns before TEX finds its
bearings again. As usual, the best way to avoid these headaches is to do things
from the outside in: start with a skeleton

$$\displaylines{

}$$

and only then fill the interior of the \displaylines. By getting the formatting
out of the way first and then concentrating on the formula itself, you'll be much
less likely to make errors.

• If the formulas contain large operators or fractions, you may need to increase the
spacing between lines for better visual effect. That's why the example above started
with \openup 2pt. The \openup must come before the \displaylines;

Typesetting mathematics 153

it'll have no effect inside. See section 11.22 for more details. You can also use
\noalign to insert spacing or text between the equations in a \displaylines.

Long formulas
You can also use \displaylines for a displayed formula that doesn't fit on one
line, because TIYC won't break it for you. You must find a good breakpoint yourself,
and work as if there were two formulas. (Displayed formulas are generally broken
just before an operator, like + or -. If at all possible, choose an operator at the
"top level," that is, not inside parenthesis or other subformulas.)

The idea is that \displaylines centers lines using weak springs \hfil, which
you neutralize with strong springs \hfill:

$$\displaylines{
\qquad U_n=a_Ob_n+a_lb_{n-l}+\cdots

+a_{n-l}b_l+a_Ob_n\hfill\cr
\hfill {}+c_Od_n+\cdots+c_Od_n+

\smash{\int_O~\infty{R_n(t)\over 1+t~2}dt}\qquad\cr

}$$

There are several typographical niceties in this display, all of them worth preserving
in similar situations:

• The \qquad at the beginning of the first half and at the end of the second
prevents the two halves of the formula from touching the margins. If the formula
is really long you can reduce it to one \quad, or, as a last resort, do without it
altogether.

• The large integral sign in the second half is not directly below the first half, but it
makes the line it's on taller than usual anyway. If we had taken no precautions, there
would seem to be extra spacing between the lines. Here a well-placed \smash
make TIYC ignore the extra height. (Section 8.8 showed another example of the
same problem.)

• The code for the second half starts with {}+c_Od_n+ ... (not counting the
\hfill). What is the empty group {} doing there? It turns out that when TIYC
sees a binary operator at the beginning of a formula, it assumes that it's a unary
operator instead, and doesn't put any spacing around it:

$+x$, ${}+x$ +x, + x

This is because + and - can serve both functions, and the only way TIYC has to
know the difference is to see if there are expressions on both sides. Here, in spite
of appearances, + is binary, and we made that clear by starting the line with the
dummy. You should do likewise whenever you split a formula at any binary oper
ator, such as x or * .

154 A Beginner's Book of T g<

11.19 Aligning several formulas
Rather than centering each formula in a multi-line display, it is often preferable to
align them by their = signs or some other convenient character. This is done with
the \eqalign macro:

00 (l)n 100

r(z) = L - + e-ttZ-1dt
n=on!(n+z+1) 1

r(z) = 100
e-ttz - 1 dt

r(z + 1) = zr(z)

$$\openup2pt\eqalign{
\Gamma(z)& =\sum ... dt \cr
\Gamma(z)& =\int ... dt \cr
\Gamma(z+l)& =z\Gamma(z) \cr

}$$

An ampersand & separates the left and right parts of each line, and a \ cr terminates
each line. In other words, the contents of an \eqalign{ ... } are like the rows of
an \halign with two columns. The = signs, or any other characters, following
the ampersands are aligned vertically.

Most of the comments and warnings we made about \displaylines apply here
too, but there is one difference: \eqalign is unresponsive to springs. Writing
A \hfill&B\cr or A&\hfill B\cr as a row of an \eqalign is the same as
writing A&B\cr. The reason is given in section 12.10, together with alternatives.

The left side of one or more formulas of an \eqalign can be empty:

(x + 1)3 - (x - 1)3 = x 3 + 3x2 + 3x + 1 - (x3 - 3x2 + 3x - 1)

=2(x2+1)

$$\eqalign{
(x+l)~3-(x-l)~3&=x~3+3x~2+3x+l-(x~3-3x~2+3x-l)\cr

&=2(x~2+1)\cr}

$$

If all the rows have nothing before the &, the formulas will be left-aligned. Right
aligning formulas is equally easy. This might seem obvious, but it's surprising
how many beginners find themselves at a loss to align formulas on one side!

There are other unexpected ways to use \eqalign. The arrangement on the next
page shows how naturally TEX's math facilities can be harnessed for apparently
unrelated uses. To obtain it, we first put the quotations and author names in boxes:
\setboxl=\vbox{\hsize 3.5in Farewell, eyes that I loved! ... }
\setbox2=\vbox{\hbox{Antoine de}\hbox{Saint-Exup\'ery}}
\setbox3=\vbox{\hsize 3.5in Now this, monks ... }
\setbox4=\hbox{Buddha}

Typesetting mathematics 155

Then it was easy enough to put everything together in math mode:

$$\openup 6pt\eqalign{
&\left.\vcenter{\boxl}\right\}\vcenter{\box2}\cr
&\left.\vcenter{\box3}\right\}\vcenter{\box4}\cr

}$$

Farewell, eyes that I loved! Do not blame me if the human
body cannot go three days without water. I would never
have thought myself so truly a prisoner of springs. I had no
notion that my self-sufficiency was so circumscribed. We
take it for granted that a man is able to stride straight out
into the world. We believe that man is free. We never see
the cord that binds him to the well, that umbilical cord by

Antoine de
Saint-Exupery

which he is tied to the womb of the world. Let man take
but one step too many. .. and the cord snaps. 1

the thirst that tends to rebirth, combined with pleasure dh
Now this, monks, is the noble truth of the cause of pain:}

and lust, finding pleasure here and there; the thrist for pas- Bud a
sion, the thrist for existence, the thirst for non-existence. 2

You can have other material together with \eqalign in a display. To separate
lines, you can use \openup, as shown above, or \noalign. But \noalign
won't help in inserting text between the formulas in an \eqalign; see the Dic
tionary under \eqalignno for a better idea.

11.20 Labeling formulas
To label a single formula, like this,

place \eqno and the label after it:
$$
{eA{ux} ... {uAn \over n!} \eqno (1)
$$

(1)

Everything after the \eqno turns into the label. To place a label against the left
margin, use \leqno instead of \eqno; the position of \leqno stays the same:

$$
{eA{ux} ... {uAn \over n!} \leqno (1)

$$

1 From Terre des Hommes, based on the translation of Lewis Galantiere titled Wind, Sands and Stars.

2 From the Sermon at Benares, based on E. A. Burtt in The Teachings of the Compassionate Buddha.

156 A Beginner's Book of T £X

To label several fonnulas you might try to combine \eqalign with \eqno. This
works fine if you want the fonnulas labeled as a group: the label is placed halfway
down the alignment, and, if necessary, you can indicate explicitly that it refers to
all of the fonnulas by using braces:

00 (l)n 100 r(z) = L - + e-te-1dt
n! (n + z + 1) 1

n=O

r(z) = 100
e-ttz - 1 dt

r(z + 1) = zr(z)

$$\openup 2pt\left.\eqalign{
\Gamma(z)& =\sum ... dt \cr
\Gamma(z)& =\int ... dt \cr
\Gamma(z+1)& =z\Gamma(z) \cr

}\right\}
\eqno (17)$$

(17)

But if you need to label one or more equations individually, this won't do. You must
instead use the variants \eqalignno and \leqalignno. Here are the Newton
Girard fonnulas, individually numbered:

Sl+a1=O (1)

S2+S1a1+2a2=O (2)

$$\eqalignno{
S_1+a_1=O&& (1) \cr
S_2+S_1a_1+2a_2=O&& (2) \cr
\hbox to 2in{\dotfill}& \cr
S_n+S_{n-1}a_1+S_{n-2}a_2+\cdots+S_1a_{n-1}+na_n=O&& (n) \cr

}$$

As you see, each row now has two ampersands: one to detennine where the for
mulas align, and one to delimit the labels. If there is no label, you don't need the
corresponding &.

By moving the first ampersand on each line to the beginning and by replacing
\eqalignno with \leqaligno, we get the mirror image arrangement:

(1) S1 + a1 = 0

(2) S2+S1a1+2a2=O

Typesetting mathematics 157

Plain TEX doesn't offer a macro to number the formulas of a \displaylines. If
you try doing it with \eqno, it chokes. In section 12.10 we'll plug this gap with
the \displaylinesno and \ldisplaylinesno macros.

11.21 Matrices

Not surprisingly, \matrix is the macro that makes matrices, those arrays of
numbers, letters and formulas that mathematicians are so fond of:

$$\matrix{
\alpha &\beta&\gamma\cr Q f3 'Y
\cal A &8 &C \cr A B C
x_1+\cdots+x_\ell &y &z \cr Xl + ... + Xl Y Z

}$$

This syntax is by now familiar: ampersands & separate the entries in each row,
while \cr terminates each row, including the last. If the rows have different
numbers of ampersands, the matrix will have as many columns as the longest
row, and the shorter ones will be filled with empty entries, as if they ended with
... &&&\cr (cf. paragraph 9.4).

Matrices are a particular case of alignments, so much of what we said in chapter 9
is relevant here. First, each entry forms a group; for example, the \cal command
in row 2, column 1 of the matrix above has no effect on other entries. Second,
you can't have a group straddling several entries, since groups must nest properly.
Third, you can add rules and spacing between rows by using \noalign. (But
\openup and \offinterlineskip won't work, because \matrix returns the
interline spacing to its default value; see section 11.22.) Finally, the entry templates
are basically \hfil$#$\hfil, so each entry is read in math mode and set in text
style, centered in its column.

As usual, mistakes will likely be fewer if you type your matrices from the outside
in, starting with the braces and only then filling in the entries. It is also good to
keep columns aligned in the source file, if possible; since entries are read in math
mode, there is no danger of spurious spaces showing on the output.

Matrices and springs
Since the centering of entries is achieved with weak springs, you can use \hfill
to left-align or right-align columns:

$$\matrix{
\hfill x &y\hfill &z \cr X y z
\hfill x' &y'\hfill &z' \cr x' y' z'
\hfill x"&y"\hfill &z' , \cr x" y" z"

}$$

Matrices in parentheses
While \matrix creates a naked matrix, \pmatrix dresses its results in parenthe
ses. In this example, two of the entries of the big matrix are themselves matrices:

158 A Beginner's Book of T EX

J=
((~ n 0 1
l 0 (H D

$$J=\pmatrix{
\pmatrix{\lambda&1\er

o &\lambda\er} &\bf O\er
\bf 0&\pmatrix{\mu&1 &0 \er

o &\mu &1< \er
o &0 &\mu\er} \er

}$$

TEX automatically centers the small matrices vertically, with respect to the 0 on the
same row. It also centers the big matrix with respect to the J = .

Determinants
The determinant of a matrix is represented by clothing the matrix with vertical bars,
instead of parentheses. This is easy to do with the \left I ... \right I construc
tion of section 11.13:

an - A a12 a13

det(A - AI) = a21 a22 - A a23

a31 a32 a33 - A

$$\det(A-\lambda I)=\leftl\matrix{
a_{11}-\lambda&a_{12}\hfill&a_{13}\hfill\er
a_{21}\hfill&a_{22}-\lambda&a_{23}\hfill\er
a_{31}\hfill&a_{32}\hfill&a_{33}-\lambda\er

}\rightl$$

Here it seemed better to align entries by their common letter, rather than center
them, so we used \hfill to left-justify.

Systems of equations
Systems of equations provide another possible use for \matrix:

{
2x + 3y -

-12x - 41y +
6y +

$$\left\{\matrix{

45z = b1

z = b2

9z b3

\hfill 2x &+&\hfill 3y &-& 45z &=& b_1\er
-12x &-& 41y &+& \hfill z &=& b_2\er

& & \hfill 6y &+& \hfill 9z &=& b_3\er
}\right. \leqno (\Sigma)$$

Typesetting mathematics 159

Since there is no delimiter to match the left brace, we use the dummy \right.
(with a period after the \right): see section 11.13. Here we choose to right
justify the entries, so the variables x, y and z are aligned. The label of an equation,
as you see, doesn't have to be a number. Tpc reads the material following \eqno
and \leqno in math mode, so we don't need $... $ around the \Sigma.

We will write in section 12.10 a \system macro that automates the coding of
systems of equations somewhat, and does a better job with the spacing.

11.22 Adjusting the spacing
Sometimes it is desirable to change the spacing between lines in a display, most
often to open it up. The situation varies depending on the macro used to form the
lines, and on whether all lines should be separated or just two.

In sections 11.18 and 11.19 we saw how \openup can be used to separate all the
lines of a \displaylines or \eqalign. The same works with \eqalignno
and \leqalignno. The important thing to remember is that \openup must be
used before the macro that creates the alignment, not inside it:

\openup 4pt\displaylines{ ... }

The effects of \openup accumulate: \openup 2mm followed by \openup 3mm
gives the same result as \openup 5mm. You can also use a negative dimension to
bring lines closer together.

With \matrix, \pmatrix, \cases and some other macros, \openup won't
work: the first thing these macros do is reset the interline spacing to its default
values. Plain TPC stores those values in the variables \normalbaselineskip,
\normallineskip and \normallineskiplimi t . To control the interline spac
ing in a matrix, those are the variables we must change, rather than changing
\baselineskip, \lineskip and \lineskiplimi t directly.

It's best to make any changes to the default values inside a group-otherwise,
they'll affect the whole document. In the next few sections, then, when we want
Tpc to try to keep baselines separated by 15 pt, we'll say

{\normalbaselineskip=15pt\matrix{ ... }}

Separating two lines
All these maneuvers are designed to open up an alignment by separating all their
lines. But in practice one also wants to separate two consecutive lines, leaving
the others alone. The solution in this case is the same for all types of alignment:
inserting \noalign {\ vski p ... } between two rows, that is, right after a \ cr :

$$\eqalign{
... & ... \cr
\noalign{\medskip}
.•. & .,. \cr
}$$

This will separate lines by an extra 6 pt. To pull lines together, use a negative
dimension: \noalign{\vskip -3pt}.

160 A Beginner's Book of T e<

11.23 Ellipses
If you type three dots to indicate an ellipsis, T}3X prints them too close: ... As a
discriminating user you will prefer to use the \dots command, which gives

In mathematics there are other arrangements for the three dots, and consequently
other control sequences. Here's the list:

• \ldots gives low dots, like \dots (the difference isn't worth fretting about).
This version is used between commas and other punctuation:

$x=(x_l, \ldots ,x_n) $ x = (x 1, ... , X n)

• \cdots gives dots at the level of a +, so this version looks best between oper
ators like + and x:

$S=x_l+\cdots+x_n$ s = Xl + ... + Xn

• \ vdots and \ddots give dots arranged vertically and diagonally, respec
tively; they're mostly used with matrices and other alignments:

$$H=\pmatrix{
a_{11}&a_{12}&\cdots&a_{ln}\cr
a_{21}&a_{22}&\cdots&a_{2n}\cr
\vdots&\vdots&\ddots&\vdots\cr
a_{nl}&a_{n2}&\cdots&a_{nn}\cr

}$$

H = (:~~ :~~
a~l a~2

... a In)

.. , a2n

. . . .
ann

On top of all this, sometimes you need diagonal dots .. ' running in the opposite
direction, which plain T}3X doesn't offer. No problem; we just crib the definition of
\ddots from page 359 of The TEXbook, and define our very own \adots macro
by switching around the endpoints (the 'a' is for ascending):

\def\adots{\mathinner{\mkern2mu\raiselpt\hbox{.}\mkern2mu
\raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkernlmu}}

$\adots \ddots \ldots \adots \ddots$

Here's a more serious application:

all aI2 al,n-1 1

a2I a22 1 0

M= 0 0

an-I,I 1 0 0 0

1 0 0 0 0

The only noteworthy things here are the \adots on the third row, and the use
of \normalbaselineskip to open up the matrix, as explained in the previous
section (no extra level of grouping is needed here, because the $$ already group):

$$\normalbaselineskip=15pt
M=\pmatrix{ ...

\vdots & \vdots & \adots & 0 & 0 \cr
... }$$

Typesetting mathematics 161

11.24 Diagrams

A diagram makes a mathematician's day, especially if it is commutative! But it
takes some experience to get TfY(to arrange all those horizontal and vertical arrows
in their right places, as well as formulas above, below and next to the arrows. If
you feel ready, take a long breath, and here it goes:

G0R
v01R

H0R
w01R

E0R

'G0' 1 'HOi 1 'EO'l

G0L
v01L

H0L
w01L

E0L

'GO, j 'HO, 1
G0F

v01F
H0F

To make this diagram, we started with an abbreviation, \def\ot{\otimes}. We
also used three macros to simplify the coding, whose definitions are given later in
this section, as they're not part of plain TfY(:

• \diagram is a variant of \matrix, and is used exactly the same way.

• \harr makes an arrow pointing right, half an inch in length. It takes two
arguments in braces, and places the first above the arrow and the second below,
both in script style. In this case we had use for only one label per arrow, but
we had to use two sets of braces anyway: hardv\otl_FH}. Otherwise TfY(
would commandeer the next thing in line to be an argument, and chaos would be
guaranteed to ensue.

• \ varr is very similar: it draws an arrow pointing down, also half an inch long.
Again, we had to supply two arguments in braces, one of them empty in this case.
The first argument is placed to the left, and the second to the right of the arrow,
both in script style.

With these macros, coding the diagram is straightforward, if not exactly a fasci
nating task:

$$\diagram{
G\ot R&\harr{v\otl_R}{}&H\ot R&\harr{w\otl_R}{}&E\ot R\cr
\varr{l_G\ot i}{}&&\varr{l_H\ot i}{}&&\varr{l_E\ot i}{}\cr
G\ot L&\harr{v\otl_L}{}&H\ot L&\harr{w\otl_L}{}&E\ot L\cr
\varr{l_G\ot p}{}&&\varr{l_H\ot p}{}\cr
G\ot F&\harr{v\otl_F}{}&H\ot F\cr

}$$

162 A Beginner's Book of T g<

Here's another diagram which, although simpler, has some interesting subtleties:

A B

A' B'

The arrow at the top is obtained with \lhook\j oinrel \mathrel {\harr{}{} } .
Notice also the use of \displaystyle to set the labels in 10 point, and the use
of \kern-2pt to get the \wr closer to the arrows:

$$\diagram{
A & \lhook\joinrel\mathrel{\harr{}{}} & B \cr
\varr{\displaystyle u}{\kern-2pt\displaystyle\wr} &&
\varr{\displaystyle\wr\kern-2pt}{\displaystylev} \cr
A'& \harr{}{} & B' \cr

}$$

Let's tum now to the three macros used above: \harr, \ varr and \diagram.
The horizontal arrow is easy to define:

\def\harr#1#2{\smash{\mathop{\hbox to .5in{\rightarrowfill}}
\limits~{\scriptstyle#1}_{\scriptstyle#2}}}

Notice the use of \smash so the height and depth of the labels will not interfere
with the spacing between rows in the diagram. The vertical arrow is almost as
easy:

\def\varr#1#2{\11ap{$\scriptstyle #l$}\left\downarrow
\vcenter to .5in{}\right.\rlap{$\scriptstyle #2$}}

At end of 11.13 we saw why \left\downarrow\vcenter to .5in{}\right.
produces a vertical arrow exactly half an inch long. The labels for the arrow is then
written with \llap and \rlap so TEX won't see their width; this way they won't
disturb the alignment.

We could almost do without \diagram, since \matrix is close to being perfect
for the task: it reads each entry (including the vertical arrows) in math mode, and
centers it in its column. It has one defect, however-it starts by restoring plain
TEX's default interline spacing. This is insufficient to separate the vertical arrows
from the letters: the arrows are tall and deep, and according to the rules of section
8.9, this means that TEX will use the \lineskip of 1 pt to separate rows.

Our goal, then, is to set the \lineskip to a more reasonable value, like 8 pt,
and also to make the \baselineskip zero so as to ensure that the \lineskip
will always be used. As we discussed in section 11.22, we must do that indirectly,
assigning the desired value to \normallineskip, rather than to \lineskip;

Typesetting mathematics 163

and we must do it in inside a group, so the change is reversible. With that in mind,
the definition of \diagram is a cinch:

\def\diagram#1{{\normallineskip=8pt
\normalbaselineskip=Opt \matrix{#l}}}

You should have no trouble adapting these definitions to force a different amount
of interline spacing, or to generate arrows of different sizes, or pointing the other
way. Unfortunately, plain TJY(can't draw diagonal arrows of variable length, so
you can't use them in diagrams.3

3 Jb.T# has a wider, but still limited, selection of arrows. Other macro packages, like Pic1EX, define
more general graphics commands, but it's still far from trivial to draw a complicated diagram using
them.

12
TEX Programming

In the first eleven chapters of this book we encountered numerous macros, and
even created some, always more or less informally. It is now time to be a bit more
systematic, and cover the basics of TEX programming. Our study will by no means
be exhaustive-a whole separate book could be written on the subject-but we
hope by the end of the chapter you'll have a solid understanding of what a macro
is and of what happens when TEX stores a macro and when it uses it.

12.1 Generalities

Control sequences
When TEX reads a backs lash \, it knows that the following word is not to be
printed, but treated as a command. A word starting with a backs lash is called a
control sequence. What follows the backslash can be either an arbitrary number of
letters (lowercase or uppercase), or a single non-letter. A control sequence made
of letters ends just before the first non-letter.

There are four control sequences in the string \%\ toto (5) \ tata xxx\ ti ti21 .
The first is \%; it's an example of a control sequence containing a single non-letter.
The second is \ toto, which ends just before the left parenthesis. The third is
\tata, which ends with a space; this is the commonest way to mark the end of a
control sequence. Finally, there is \titi, whose end is announced by a digit.

It follows that the name of a control sequence can't contain both letters and digits.
Sometimes one wishes this weren't so, but one can always use roman numerals:
\LouisXVI . Notice also that TEX distinguishes between upper- and lowercase
letters, so \toto and \Toto are distinct control sequences.

After reading a control sequence made of letters TEX will ignore all spaces and up
to one carriage return until it finds something else.

T eX Programming 165

Defining a macro
Control sequences are basically of two types: primitives and macros. Primitives
are the building blocks of TEX, direct commands for TEX's engine. They have a
meaning when TEX starts up, even before it's read the plain. tex file that defines
the plain TEX format. A macro, on the other hand, has no predefined meaning. Its
meaning is assigned by a definition, which is introduced by the \def primitive:

\def\toto{\quad{\it TOTO\/}}

When TEX sees \def\toto, it stores \toto in a dictionary, together with its
replacement text, which is everything that follows in braces. TEX doesn't try to
execute or understand the replacement text while it's memorizing it; in fact it barely
notices what it contains, except that it keeps an eye out for braces, so it knows
where to stop. A replacement text must have balanced braces, so in the example
above TEX doesn't stop till it reaches the second }; if it stopped at the first, the
replacement text would be \quad{\i t TOTO\/, which is unbalanced.

Expanding a macro
When TEX encounters a control sequence that's in the macro dictionary, it proceeds
to expand it. This means that it replaces the control sequence by its replacement
text, and starts reading the text obtained in this way. In our example, \ toto would
be replaced by \quad{\i t TOTO\!} , and TEX would start reading again from
\quad. Now \quad is itself a macro, defined in plain. tex, so TEX would
replace \quad with its definition:

\hskip lem\relax{\it TOTO\/}

No further expansion takes place now, because \hskip is a primitive; TEX reads
its complement lem, and executes the command. It continues with \relax, also
a primitive (see the Dictionary), and with the {, which makes it start a new group.
Next it sees \i t , which is again a macro; it replaces it by its definition, and so on.

There are other, less common, types of control sequences: font names (section 4.3),
clones (section 12.2), register names (section 12.8), and others. For our current
purposes we can think of them as primitives, because they are executed, rather
than expanded: a font name, for instance, is a command to change the current font.
(But a clone of a macro will be expanded.)

You can define a new macro using \def anywhere. If you do it inside a group, the
definition will disappear at the end of the group, unless you precede \def with
\global. The primitive \gdef is an abbreviation for \global \def .

A macro can be defined many times over; each definition erases the previous one.
Since TEX won't warn you that you're about to clobber an existing definiton, you
can get into trouble if you're not careful. But later on we'll see a way to protect a
macro so it cannot be clobbered.

Don't abuse the right to define macros anywhere. If you do it all over the place,
your file will become impenetrable. It's much better to group all your definitions
(except perhaps those that you only need very briefly, inside a group) in a separate
file, as explained in section 1.7.

166 A Beginner's Book of T g<

12.2 Abbreviations and clones

Macros like \toto and \quad in the previous paragraph are essentially abbre
viations: they always expand to the same thing. Abbreviations are easy to define,
and you'll probably find yourself using them quite a bit. If "two-dimensional" and
"WYSIWYG" appear several times per page in your document, you'll save time and
avoid errors by setting

\def\twod{two-dimen\-sional} \def\wysiwyg{{\eightrm WYSIWYG}}

and typing \twod and \wysiwyg after that.

We chose these definitions because they make important points. The \ - in the first
is called a discretionary hyphen, and it tells TljX that it can hyphenate the word at
that point. If you don't specify discretionary hyphens, TljX sticks to the old-fash
ioned rule, which we just broke, that compound words should not be further hy
phenated.

In the second definition, notice the two sets of braces. The outer one merely de
limits the replacement text; it does not become part of it. Without the inner braces,
TljX will see \eightrm WYSIWYG when you use the abbreviation-and every
thing from there on will be set in eight point!

One drawback of using an abbreviation in the middle of text is that you have to
write \ after it in order to leave a space: \twod graphics gives two-dimen
sionalgraphics. You might try instead to put the space inside the replacement text:
\def\twod{two-dimen\-sional }. But then it would crop up in unwanted
places, like before punctuation.

You can solve the problem at the cost of one extra keystroke. If you say

\def\twod/{two-dimen\-sional}

TljX will expect to always see / after \ twod, and it replaces \ twod/ by the
replacement text. So you can think of \ twod/ as a slightly longer abbreviation.
Spaces are treated normally after / , so the problem of deciding when to add an
explicit space goes away. And if you forget the / , TljX will give an error message,
rather than silently gobbling up the space as before. (Such typos have a way of not
being detected till your paper has been distributed widely ...)

So much for abbrevations of words. Naturally, you can also abbreviate commands
or sequences of commands. Even an abbreviation for a single control sequence,
like \def\ot{\otimes} in section 11.24, can be useful if the control sequence
name is long or used several times. Think of \Longleftrightarrow!

There is an alternative for one-control-sequence abbreviations, involving TljX's
\let primitive. If you say \let\ot=\otimes (the = is optional), you assign
to \ot the meaning of \otimes ,effectively cloning \otimes. The two control
sequences become synonymous.

There is, however, an important difference between the two constructions: with
\let\ot\otimes, you're assigning to \ot the current meaning of \otimes, so
if at a later time the meaning of \otimes changes, that has no effect on \ot.

T EX Programming 167

But with \def\ot{\otimes}, you're saying that \ot should be replaced by
\otimes whenever it occurs, so the meaning of \otimes at the time of the re
placement matters.

You can even clone a character! For example, plain TEX says \let \bgroup{
and \let \egroup} ,so \bgroup and \egroup are just like braces everywhere.
Well, almost everywhere: inside a macro definition they're different, because when
TEX is storing a definition in its dictionary, it only uses real braces, not cloned
braces, to figure out where the definition ends. Thus \bgroup and \egroup pro
vide a way to have unbalanced "braces" inside a definition. The need for that is
easy to see:

Say you want \narrow to have the effect of {\leftskip=lem\rightskip=lem
and \endnarrow to have the effect of \par} , so paragraphs placed between
\narrow and \endnarrow are indented on both sides. (Compare plain TEX's
\narrower command.) If you try

\def\narrow{{\leftskip=lem\rightskip=lem}
\def\endnarrow{\par}}

TEX matches the first left brace with the last right brace, and the upshot is that
\narrow is defined to mean

{\leftskip=lem\rightskip=lem} \def\endnarrow{\par}

Not at all what you wanted! But everything works out nicely if you say instead

\def\narrow{\bgroup\leftskip=lem\rightskip=lem}
\def\endnarrow{\par\egroup}

12.3 Macros with arguments
Even more useful than abbreviations are macros whose replacement text contains
variables, or arguments. If a paper contains dozens of fonnulas like (Xl' ... ' Xn)
or (YI, ... , Yn), we'll start it with the definition

\def\nuple#l{(#l_l,\ldots,#l_n)}

and say $\nuple x$ to get (Xl, ... ,xn). The idea is simple: every time we say
\nuple , TEX consults its dictionary and finds that the macro expects an argument.
The argument is whatever follows \nuple, and it gets plugged into the replace
ment text in place of every #1 . So \nuple x expands into (x_l, \ldots, x_n) ,
while \nuple y expands into (y_l,\ldots,y_n) ,andsoon.

The argument doesn't have to be a single character, but it is unless you say oth
erwise. To say otherwise, put it in braces: $\nuple{\overline{AB}}$ gives
(AB I , ... , ABn). More precisely, ifthe first character after the macro (not count
ing spaces and carriage returns) is neither { nor \, it becomes the argument. If
the first character is {, the argument is the text between this { and the matching
} . If the character is \, the argument is a control sequence.

It's important to realize that the braces themselves are not part of the argument,
just as the braces that delimit the replacement text in a definition are not part of it.

168 A Beginner's Book of T g<

Forget this, and you'll be in for trouble: $\nuple{\bf x}+\nuple y$, for ex
ample, will give (Xl, ... ,xn) + (Yl, ... ,Yn): the replacement text after argument
substitution is

$(\bf x_1,\ldots,\bf x_n)+(y_1,\ldots,y_n)$

so the effects of the first \bf last till the end of formula! To get (Xl, . .. ,Xn) +
(YI, ... , Yn), you must type $\nuple{ {\bf x} }+\nuple y$.

Now suppose that our paper has not only things like (Xl, ... ,xn) and (Yb ... ,Yn),
but also (Xl' ... ' Xp) (with a different last index), (Yb . . . , Yq) or (Zl, ... , Zr+s).
We certainly don't want to have to define a plethora of macros \puple, \quple,
\rsuple ! Instead we say

\def\uple#1#2{(#1_1,\ldots,#1_{#2})}

This new macro expects two arguments. Argument 1 is the first character or control
sequence or group after the macro, and it gets plugged into the replacement text
wherever there is a #1 . Argument 2 is the first character or control sequence or
group after the end of argument 1, and it replaces every occurrence of #2 . In order
to get (Xl, ... , Xp), then, it's enough to type $\uple xp$: argument 1 is x and
argument 2 is p. To get (Zl, ... , zr+s), type $\uple z{r+s}$: argument 1 is
z and argument 2 is r+s, since what comes after argument 1 is a group. When in
doubt, you can use braces: \uple{xHp} and \uple{zHr+s} will work just as
well as \uple xp and \uple z{r+s}. It's better to err on the side of caution.

Notice the braces around #2 in the replacement text of \uple. They're needed
in order for \uple z{r+s} to work right; if they weren't there the expansion of
\uple z{r+s} would be (z_l, \ldots ,z_r+s) , which gives (Zl' ... , Zr + s).
On the other hand, \uple z{ {r+s}} would work fine. This is exactly the same
problem we encountered above with \nuple{\bf x}. In fact, we could have
made the definition of \uple

\def\uple#1#2{({#1}_l,\ldots,{#1}_{#2})}

and then \uple{\bf xHr+s} would work right. Placing braces inside the re
placement text is generally a good idea if you don't want to rely on the arguments
being watertight; but it isn't always possible, or desirable, to transfer the burden of
grouping in this way.

A macro can have up to nine arguments, referred to by #1, ... , #9. To define a
macro with three arguments, you must say \def\ toto#1#2#3{ . . . } ; no flights
of fancy like \toto#2#1#3 or \toto#1#4#5. In using a macro, it's crucial to
give it all the arguments it expects, and in the right order. If one of the arguments
should be replaced by nothing, you must use the empty group {} to indicate that
fact. We've seen the need for that before: for example, the \i tem macro of section
6.9 expects one argument. If you have nothing to write on the margin, you must say
\i tem{} ... ; otherwise TEX will take the next character or group for an argument.

Another thing to watch out for is spurious spaces. If the definition of a macro is
more than one line long, it's best to end each line with %, unless the last thing on it
is a control sequence. Otherwise the carriage return-turned into a space-remains

T EX Programming 169

in the replacement text, and can affect the output if TEX is in horizontal mode at
the time it sees it. The macros in sections 4.7 and 8.11 take this precaution.

Before the replacement text, too, spaces can spell trouble. Of the four definitions
\def\toto#1#2{ ... } \def\toto #1#2{ ... }
\def\toto#1#2 { ... } \def\toto#1 #2{ ... }

the top two have exactly the same effect (since a space is ignored after a control
sequence), but the second two are very different from the first two and from
one another. In them, the space serves to delimit the preceding argument, by a
mechanism that we'll discuss in detail in the next section.

12.4 Fine points of macro syntax
in replacement texts
Since a # in macro definition indicates a slot for an argument, what do you do if you
want a literal # in the replacement text? You say ##. The most common situation
is when the macro is supposed to expand to an alignment command, preamble and
all. Many of plain TEX's alignment macros, like \eqalign, \eases, etc., are
coded in this way (see section 12.10). Here's a simple example:

\def\toto#1{\halign{\bf##&&\quad\hfil##\hfil\er#1}}

If TEX sees \toto{A&B\er a&b\er}, it proceeds as usual, plugging A&B\er
a&b\er in place of #1 in the definition. The replacement text after substitution is

\halign{\bf#&&\quad\hfil#\hfil\er A&B\er a&b\er}

which is a complete alignment. The users of \toto don't have to know about
preambles, ##, or anything of the sort-all of that is tucked away inside the macro
definition. They just use \ toto as they might use \eqalign:

\toto{

}

\it funetion&\it eontinuous&
\it periodie\er

sine& yes& 2π\er
tangent& yes& π\er
polynomial&yes& no\er

function
sine
tangent
polynomial

continuous periodic
yes 27r
yes 7r
yes no

Another situation when a ## is necessary is when the replacement text contains
another macro definition:

\def\TOTO#1#2{ ... \def\toto##1##2##3{ ... } ... }

You must use ## for the arguments of the inner macro even if the outer one doesn't
have arguments.

Delimited arguments
Suppose you want to typeset a bibliography with names in caps and small caps
(KNUTH), but don't have the appropriate font. Not to worry! You can make do
with the ersatz macro

\def\ese#1#2!{{\tenrm #1\sevenrm #2}}

170 A Beginner's Book of TEl<

which you use like this: \csc KNUTH! for KNUTH. The definition of \csc shows
a new twist: a delimited argument. The arguments of \csc are determined as
follows:

• The first, #1, is undelimited, since it's immediately followed by #2 in the
definition. An undelimited argument is determined by the rule of the previous
section: it's the first character, control sequence or group. In this case it's just
the K.

• The second argument, #2, is delimited by !, that is, it is followed in the defi
nition by ! . This means that it will consist of everything from the end of the first
argument up to, but not including, the first !. The delimiter does not become part
of the argument, nor is it part of the replacement text; that's why no exclamation
mark appears on the output. In this case the second argument is NUTH.

It follows, then, that the replacement text of \csc KNUTH! after substitution is
{\tenrm K\sevenrm NUTH}.

When TEX sees a macro with delimited arguments it expects to find the delimiters
somewhere. Delimiters inside braces don't count, so you can get KNUTH! by saying
\csc KNUTH{!}! . Further, if a delimiter comes immediately after the previous
argument (or the macro), the argument it delimits is empty; in this case there is no
need to use {} as in section 12.3.

Delimiters can serve to make the invocation of certain macros more intelligible.
For example, the definition of \buildrel in plain TEX starts with

\buildrel#1\over#2{ ... }

The \over merely indicates the end of the first argument: it is not expanded as
a macro, so it won't produce a fraction bar. The second argument is undelimited.
Likewise, the definition of \bbuildrel in section 11.14 said

\def\bbuildrel#1_#2 A #3{ ... }

Here again A and _ are mere delimiters: they are not directly responsible for
writing arguments 1 and 2 above and below argument 3. It's the A and _ inside
the replacement text that do that.

You can also have a "delimiter" before the first argument in a definition, or before
the { if the macro has no arguments. The trick explained in section 12.2 is an
example of this: after

\def\twod/{two-dimen\-sional}

TEX always expects to find the delimiter / immediately after the macro \ twod .
It's almost as if the macro name were \twod/, but there are two important differ
ences:

• \ twod can only have one meaning at a time, so the definition above erases
any previous one. Even if you had previously said \def\twod{2D}, you're not
allowed to use \ twod by itself after the new definition:

! Use of \twod doesn't match its definition.

T EX Programming 171

• \twod / works just the same as \twod/, because a space after a macro is
ignored.

Here's another trap to be on guard against:

\def\a$z{alpha and omega}
\a $z=x+y$ Humpty Dumpty sat on a wall ...

This will give the error message Mif'sing $ inserted. and the output

alpha and omega=x-:-yHumptyDumptysatonawall ...

What went wrong? Remember, the delimiter $z is not part of the replacement
text. TEX effectively replaces all of \a$z by alpha and omega, so the first $
never has a chance to do its stuff. It's only after the second $ that TEX goes into
math mode.

For all these reasons, you should probably stay clear of delimiters without argu
ments, except in the simple case of abbreviations, or, occasionally, for a special
need. Sure, you can define \1/2 so that it writes ~ in your document. But isn't it
just as simple to call your macro \half?

Two error-recovery mechanisms
If you leave out by mistake the closing braces of a macro's argument (or its delim
iter, if it's a delimited argument), TEX won't be able to figure out where it should
end. Conceivably, it might read all the way to the end of your file still thinking it's
inside the argument: that would most likely bust its memory and ruin the whole run.

To avoid this situation, TEX works on the assumption that arguments should never
contain the \par control sequence, or its alias, a blank line. If TEX sees some
thing like \toto{ ... \par, it assumes a mistake somewhere, issues a Runaway
argument? meassage, and cuts its losses by stopping the expansion of \toto.

Of course, TEX gives you a way out. Define your macro with the construction

\long\def\toto#l{ ... }

and its arguments will be under no restriction whatsoever. You should use this
workaround carefully, since you're effectively giving TEX carte blanche to swallow
hundreds of pages in one gulp ...

Even with the \par -catching mechanism, mismatched braces are potentially catas
trophic-imagine what happens if you have one left brace too many in a macro def
inition. As an additional strategy for error detection, lEX lets you declare a macro
to be \outer, in the following sense: after a definition like

\outer\def\toto{ ... }

\ toto is treated even more strictly than \par in terms of where it can occur. Not
only is it forbidden inside an argument-even the argument of a \long macro
but also inside definitions, alignment templates, and a few other places. The end of
a file is subject to the same restrictions. A macro can be both \long and \outer.

172 A Beginner's Book of T e<

12.5 Category codes
You've known for a long time that some of TpX's characters are special, like $, %,
and so on. What makes them special? It turns out that the "meanings" of characters
are not written in stone: if necessary, you can very well change them around.

Each of the 128 (or 256) characters that you can produce on your keyboard has a
category in TpX, and it's the character's category that gives it its meaning. Here
are the categories of all characters in plain TpX:

Category Meaning Characters

0 escape character \
1 begin group {

2 end group }

3 begin/end math $
4 alignment separator &
5 end of line CR

6 argument #
7 superscript ~ ,sup
8 subscript _,SUB

9 ignored NULL

10 space SP, TAB

11 letter A ... Z, a ... z
12 ordinary all others
13 active character
14 comment %
15 invalid DEL

Here SUP, SUB, NULL and DEL stand for the (non-printable) characters with ASCII

code 11, 1,0 and 127-don't worry about them. TAB is the character you get by
pressing the tab key on your keyboard; its ASCII code is 9, and it normally produces
one or more spaces on your screen. (This is different from the "tab" character &
of chapter 10.)

You don't have to memorize this table-you can always refer back to it when neces
sary. The important thing is that each special meaning is associated with a different
category. (But it's good to know that letters have code 11 and other ordinary char
acters, like (0, have code 12.) The only special meanings we haven't seen before
are associated with categories 9 (ignored) and 15 (invalid). An ignored character
is simply skipped over; an invalid character causes an error message.

You can change the category of a character at any time by saying

\catcode' \X =n

where X stands for the character, and n for the new category code. The curious
'\ construction gives the numerical value of the following character; its use is
essential, becuse TpX must have some way to know that the character is to be taken
literally, and its special meaning (if any) disregarded.

T EX Programming 173

As an application, suppose you have a financial report that has $'s allover. Rather
than typing \$ every time, you can start your file with

\catcode'\$=12

From there on, $ is no longer the harbinger of mathematics: it has become an
ordinary character and prints a '$'! (So to make $1,000,000 you just have to type
$1 ,000,000 -isn't that great?)

A \catcode assignment made inside a group is undone at the end of the group,
so you can easily limit its reach. In the financial report, for instance, you might
need the regular meaning of $ (begin/end math) to typeset some formulas. Easy
enough: surround the formulas with

{\catcode'\$=3 $... $}

and after the group is closed, $ is again an ordinary character. But this isn't a very
good solution if the formulas are interspersed with dollar amounts, since you'd
have to switch back and forth several times. A better alternative is to start the file
with \let\math$, before you first change the category of $. Then the original
meaning of $ is preserved in the \math control sequence, and the formulas can be
coded with \math ... \math, which admittedly looks funny, but is easy to type.

12.6 Active characters
A character of category 13, called an active character, is really a macro in disguise.
So not all macros are control sequences, after all! Any character can be made
active. In plain TEX only one character is active, namely - ; as you know, it creates
a unbreakable space. The commands that set things up that way are

\catcode'\-=\active \def-{\penalty10000 \ }

Here \active is a control sequence that expands to 13, so you don't have
to remember the code explicitly. Notice that changing the \catcode is just a
preliminary, that makes - into a macro; after that you still have to define the
macro using \def .

You don't type a \ before an active character, either when defining it or when
using it-if you do, you get a one-character control sequence, which is not at all
the same. For example, \ - and - are quite different macros (see section 2.4).

A space is not discarded after an active character: if you type Dr. - Jekyll and
Mr. - Hyde you'll get two spaces before each name, one from the - and one
explicit.

To deactivate a character, you can reassign its category code explicitly, presumably
to whatever it was before the character was made active; for example, for - you'd
say \catcode' \ -=12. But if you mean the activation to be temporary to begin
with, you should perform it inside a group: then it will go away when the group
ends.

In section 9.8 we made * active to use it as an invisible digit. Here are some more
situations where characters can profitably be made active:

174 A Beginner's Book of TEX

• If you're typing Gennan, you may prefer to generate an umlaut with a single
keystroke, rather than using plain TIYC's \ 11 macro. No problem: just say

\catcode'\"=\active \def"{\"}

and a 11 before a vowel will be enough to place an umlaut above it.

• The vertical bar I is made active in the book. mac file containing the macros for
this book. Any material between vertical bars is printed verbatim, that is, exactly
as it appears in the input file; backslashes, braces and so on are not interpreted
as special characters. This is very useful when giving examples of TIYC code. In
addition, verbatim mode switches to a typewriter face. Here is, in essence, the
relevant part of book. mac:

\def\makeordinary{\catcode'\&=12 \catcode'\{=12
\catcode'\}=12 \catcode'\#=12 \catcode'\\=12 \catcode'\$=12
\catcode'_=12 \catcode'\~=12 \catcode'\%=12 \catcode'\-=12}

\catcode'\I=\active
\defl{\bgroup\makeordinary\obeylines\obeyspaces\tt%

\defl{\egroup}}

When TIYC sees a-I , it starts by opening a group and making several special char
acters ordinary. It continues with \obeylines and \obeyspaces, so carriage
returns and spaces are not combined (see below). Next it redefines I! The next
time that a I is seen it indicates the end of verbatim mode, which is accomplished
simply by closing the group. Everything, including the definition of I, reverts to
its original state.

• In French typography it is conventional to leave some space before, as well as
after, a colon or semicolon. But if you leave a space before a colon in your TIYC
file, you may get a line break there, and the colon at the beginning of a line, which
is definitely wrong. In any case, beginning typists often have a hard time getting
the spacing straight. So in a macro file for French typesetting, it's good to make
the colon an active character and write a definition for it that takes care of all these
details. Here's one possibility:

\catcode'\:=\active
\def:{\unskip-\string:\ \ignorespaces}

With this definition, a "wrong" input like a: b or a : b or a: b gives the same
result as the right one, a -: b. In effect, TIYC replaces the spaces that might precede
or follow the colon with its own spaces. See sections 6.12 and 6.13 for \unskip
and \ignorespaces.

In the definition of : you see the \string control sequence, which tells TIYC to
treat the following character as ordinary (unless the character is a space character:
see the next paragraph). If \string weren't there we'd be in trouble when we
got to a colon: TIYC would first replace the : by its expansion; after executing
\unskip- , it would again see a : and replace it by its expansion; and again, and
again, until it ran out of memory. By temporarily making : into an ordinary char
acter, we avoid this infinite recursion, the computer equivalent of perpetual motion.

T Ef< Programming 175

\string can also be followed by a control sequence, in which case it generates
the control sequence name, written in ordinary characters. Thus \string\toto
prints "toto, regardless of whether \ toto is defined, and of what its meaning
might be. (See \char in the Dictionary to find out why a backslash prints as ".)

• Another important use of active characters is in the \obeylines macro (section
6.4). The basic idea is very simple: the carriage return is made active, and given
the definition \par:

{\catcode'\--M=\active \def--M{\par}
. .. % lines are obeyed here

} % return to normal

TE,X reads the three-character combination - -M as if it were a carriage return. This
trigraph is used instead of an actual carriage return whenever the focus is on the
character itself, since a CR is invisible: it just causes a new line on your screen.

So far, so good; between the moment you make - -M active and the end of the
group, TE,X is obeying lines. Now let's try to define \obeylines to do the job of
the first line above:

\def\obeylines{\catcode'\--M=\active \def--M{\par}}
{\obeylines ...

Something really odd happens: TE,X reads your whole file without doing a thing, and
complains of a Runaway definition? at the end! What happened? Remember,
with \def, TE,X is learning the definition of a macro, not executing it. So when
\catcode' \ - -M=\acti ve is read, no change takes place. TE,X goes on to read
\def , and arrives at the - -M . It's here that disaster strikes: - -M is still an end
of-line character, so TE,X skips right on to the next line! The --M never makes it
into the definition, and the rest of the line is not even seen.

Even if we manage to put the - -M inside the definition, there's trouble later.
Consider this new attempt:

{\catcode'\--M=12%
\gdef\obeylines{\catcode'\--M=\active \def--M{\par}}}

{\obeylines ...

The definition is made global because it occurs inside a group. The % at the
end of the first line prevents the - -M , which is now an ordinary character, from
being typeset. This time the definition is correctly read, but when it comes time to
execute \obeylines, TE,X turns up its nose:

! Missing control sequence inserted.
<inserted text>

\inaccessible
<to be read again>

--M
\obeylines ->\catcode '\--M=\active \def --M

{\par }

The - -M is still not recognized as an active character! The reason is that the
category used for a character in the replacement text of a macro is the one it

176 A Beginner's Book of T E?<

had when the macro's definition was read, no matter how many times it has been
changed since. Here, then, ~ ~M is of category 12 when \obeylines is expanded,
and so cannot be used after \def .

The solution, then, is to make ~ ~M active before the definition of \obeylines is
read. And so we get essentially to the definition actually used by plain TfY(:

{\catcode'\~~M=\active%

\gdef\obeylines{\catcode'\~~M=\active \def~~M{\par}}}

(In fact, plain TfY(says \let~~M=\par instead of \der~M{\par}, but the
difference isn't worth fussing about. If you really must know, see the Dictionary
under \let.)

• The \obeyspaces macro, which is like \obeylines but changes the category
of SP, is similar. The only difference is that it doesn't redefine SP every time
it's called; rather, a meaning is assigned to the character once and for all, the
meaning being the same as that of the macro \space, previously defined with
\def\space{ }:

\def\obeyspaces{\catcode'\ =\active}
{\obeyspaces\global\let =\space}

While on the subject of \obeyspaces, even experienced users of TfY(are often
confused and dismayed by the fact that spaces at the beginning of a line don't seem
to be obeyed. Remember, spaces have no effect in vertical mode! In order for
spaces to be strictly obeyed, then, it is necessary to change the definition above
to say

{\obeyspaces\gdef {\leavevmode\space}}

12.7 How lEX reads and stores your text

When you read a text, your first task is to group the letters together into words,
which is pretty easy, since there are spaces separating them. (It wasn't always
so-look at any Greek papyrus ...)

In the same way, TfY('s first job when reading your input is to chop it up into
"words," in a process called lexical analysis, which Knuth likens to chewing.
Naturally, TfY('s words aren't the same as ours-in fact, most of them consist of
a single character. It's only when TfY(sees the escape character \ and reads the
subsequent control sequence name that it makes a word from more than one input
character. Thus, the short text

\kern 3pt α{\it code}\t~t~

is analyzed as follows: \kern, 3, p, t, SP, $, \alpha, $, {, \it, c, 0, d, e, },
\t,~, t,~. Spaces after a control sequence made of letters don't form words, nor
do they become part of the control sequence name: they're simply discarded, as
we've seen before.

The way in which a line is chopped into words is affected by the categories of the
characters on it. For example, when % is of category 14, as usual, characters after

T e< Programming 177

it on the same line are not even seen by TJ:YC, and certainly not made into words.
But if you make % an ordinary character, that's of course no longer the case.

What characters are escape characters is another critical factor in this mastication
process. In section 12.1 we said that a control sequence is made of a \ followed
by one or more letters or one non-letter. Now the truth is revealed: any escape
character (one whose category code is 0) can introduce a control sequence, and the
body is made up of one of more "generalized letters" (characters of category 11)
or one generalized non-letter.

What this means is that if you set \eateode' \@=O , the input \ tototDtotoO will
be interpreted as containing two control sequences and the character 0, rather than
one control sequence and the characters @, t, 0, t, 0, 0, as it normally would.
In fact, it's better to say that the input contains the same control sequence twice:
after reading a control sequence, TEX doesn't remember what control character
introduced it, only what characters form its name.

If you instead set \eateode' \tD=11 , you make @ a "letter" from TEX's point of
view, so it can be part of control sequence names. In this case, \toto@totoO is
analyzed into one control sequence \tototDtoto and one character. We'll come
back to this point later on.

Tokens

As we learned from our experiments with \obeylines in the preceding section,
a character that is stored in a definition somehow carries with itself the category
it had at the time of reading. To reflect this we will from now on speak of TEX's
words as tokens. A token is either a character together with its category (which
once assigned at reading time is never changed), or a control sequence. In terms
of tokens, the input

\kern 3pt α{\it eode}\ttDt@

comes out as Ikernl, 312, Pn, tn, SPlO, $3, lalphal, $3, {b [!!], en, On, dn,
en, }Z, ~, tD12, tn, @12. Here we're writing character tokens with the category
code as a subscript, and control sequence tokens inside a box. We do this to stress
the indivisible character of tokens: once a control sequence has been read in, it's
no longer thought of by TEX as made up of several characters.

Once read in, then, your input is entirely handled at the token level, no matter
how many times it's shuffled around from macro to macro. The replacement text
of a macro is made up of tokens, and it never goes through the process of lexical
analysis in TEX'S "mouth" again. (In other words, TEX is not a ruminant. ..)

This has an important application, the creation of protected macros. These are
macros whose names include some character, say tD, that is normally of cate
gory 12; of course, they must be defined at a time when tD is a "letter," that is,
has category 11. Once tD is again of category 12, the macro can no longer be re
defined, or even used directly-it is protected. But it will be encountered by TEX,
and perform its function, if it occurs in the replacement text of other macros, which
were also defined while @ was a letter.

178 A Beginner's Book of T EX

Here's an example. Normally, saying \ t(Dt(D gives @t@, because the input \ t(Dt<D
is divided into the tokens [], <D12, tn, (D12 (for the meaning of \ t , see section 2.4).
For the same reason, \def\Ut(D{TOTO} would redefine \t as a macro with
delimiters (section 12.4), rather than defining a new control sequence \t(Dt<D. But
if you say

\catcode'\(D=l1
\def\t<Dt(D{TOTO} \def\toto{\t(Dt(D}
\catcode'\(D=12

you are actually defining \ t(Dt(D, and you are furthermore defining \ toto to
expand to the single token I t<Dt(D I-not to the string of characters \ t(Dt<D. So
when you now type \toto you get the output TOTO, even after <D is no longer
a "letter!" But you can't call \ Ut<D directly anymore, and you certainly can't
clobber its definition by mistake. For a real-life example, see \afterassignment
in the Dictionary.

12.8 Registers

In section 8.5 we saw that TEX has 256 slots in its memory to store boxes; they are
called box registers. There are register classes for several other types of objects,
each with registers numbered from 0 to 255:

Register Type of Sample Direct Indirect
Class Contents Assignment Usage Usage

\ count integer \count3=17 \count3 \the\count3
\dimen dimension \dimenO=.3in \dimenO \the\dimenO
\skip glue \skip5=2pt minus lpt \skip5 \the\skip5
\muskip math glue \muskip4=5mu plus2mu \muskip4 \the\muskip4
\toks token list \toks3={toto\hfil} \toks3 \the\toks3
\box box \setbox9=\hbox ... see below not available

Some comments about the second column:

• Integer registers are straightforward; all you might (or might not) want to know
is that the largest integer they'll hold is 2147483647, or 231 - I, and the smallest
one is -2147483647.

• Dimension registers hold dimensions whose absolute value is less than 16384 pt.
or 18.892 feet, or 5.7583 meters. Dimensions are converted to a minute unit, called
the scaled point (sp), and rounded to the nearest unit. There are 216 = 65536 scaled
points in a point.

• A \skip register holds glue specification, which consists of three dimen
sion components: the natural component. the stretchability, and the shrinkability
(section 5.3). The last two can be infinite, as in the case of springs.

• A \muskip register holds math glue, which is glue specified in math units (see
the end of section 11.7).

T eX Programming 179

• A \ toks register holds a list of tokens, which is somewhat like a macro without
arguments, but more efficient for certain operations. We saw such lists in action in
section 7.2 .

• Finally, a \box register holds, surprisingly enough, a box. The storage and
retrieval of boxes were presented in section 8.5, which you're urged to reread at
this point; they differ from the corresponding operations for other registers. In
particular, the left-hand side of a box assignment says \setbox9, rather than
\box9 . The latter command uses the box and empties the register. The other com
mands to use a box are \copy, \unhbox, \unvbox, \unhcopy, \unvcopy
and \vsplit. All were covered in section 8.5, except for the last, which was
explained in section 8.12.

Storing something in a register
In all other cases except boxes, the command that does the storing, or assignment,
is the same: the register name, followed by an = sign (optional), followed by an
object of the appropriate type. The object can be specified from scratch, as in the
table, or make reference to other registers. We'll discuss this second possibility in
detail below. A token list specified from scratch must come within braces; macros
are not expanded while the list is being read and stored.

All assignments should be preceded by \global if their effect is to last beyond
the end of the current group.

Our discussion of registers should also include all of T:EJ('s special variables like
\parindent, \baselineskip, and so on. Such a variable is essentially a regis
ter of one of the first five types above, having a special name and a special effect on
T:EJ('s actions. The variable can be used wherever a register of the same type can.

Naming a register
For all the reasons mentioned in section 8.5, it's not a good idea to used regis
ter numbers explicitly, except for those that plain TEX specifically designates as
scratch registers, and even those only briefly. For any other use, you should re
quest a named register, using one of the commands \newcount, \newdimen,
\newskip, \newmuskip, \newtoks and \newbox.

The way you use these allocation commands is very simple. After you say, for
instance,

\newcount\mycount

the control sequence \mycount becomes synonymous with \count n, for some
n that's not associated with any other counter so defined. So if everyone abides by
this discipline, you can be sure that \mycount won't be overwritten by somebody
else's macro. But \count n is still a valid way to access the same register, so if
you, or anybody else, start using register numbers at random, \mycount will be
at risk. For the allocation system to work everyone has to cooperate.

The \newbox command, as we've seen, is slightly different: \newbox\mybox
makes \mybox equal to a number, not a box. To refer to the box you write \mybox
after \box, \setbox, \copy, and so on.

180 A Beginner's Book of T t:><

The registers that are safe for temporary use are:
\count255
\dimenO, ... , \dimen9, \dimen255
\skipO, ... , \skip9, \skip255
\muskipO, ... , \muskip9, \muskip255
\toksO, ... , \toks9, \toks255
\boxO, ... , \box9

Never use other registers by number, unless you know exactly what you're doing.
And if you do know what you're doing, you won't use other registers by number.

You break this convention at your own risk. You'll find yourself wondering why
the macros that were working yesterday aren't working today.

Inspecting a register
You can inspect at any time the contents of a register by writing \showthe fol
lowed by the register name. When lEX encounters that instruction, it stops and
shows the information on your screen; in order to get it started again you must type
CR. The information is also saved in the log file.

You can't use \showthe with boxes, but you can instead say \showbox, followed
by the box number. This will write the contents of the box (in symbolic form) into
the log file; to get them on the screen as well you must set \ tracingonline=l
(compare section 3.3).

Using a register
Registers other than boxes can be used in two ways, indicated in the two rightmost
columns of the table. The difference is subtle, yet fundamental.

Suppose you've set, say, \mycount=1990, where \mycount was defined with
\newcount. (Remember that \mycount is the same as \count n, for some n
that should remain unknown.) If, at some later time, TEX encounters \mycount
by itself, it assumes that you're about to assign another value to the register, unless
it has reason to expect an integer quantity at this point. If it is expecting an integer,
its expectations are satisfied: the integer is 1990. TEX has used the contents of
\mycount directly.

But if TEX encounters \ the \mycount , it replaces \ the \mycount by 1990, and
carries on: these four tokens will be processed as if you'd typed them at that point.
Perhaps TEX was expecting an integer here too: in that case it will consider 1990
as the integer's first four digits, and read on to see if there are more. The important
point is that \ the generates a string of tokens which blend with the preceding and
following tokens; but \mycount by itself generates no tokens, rather the register's
contents are treated as an abstract object of a certain type (here an integer) for which
there is a pressing need.

To make these ideas a bit firmer, here's another example. After the \vskip prim
itive, TEX expects to see the specification of some glue. The specification might
be 2pt plus 1pt, for example. Or it might be \skip5; if this register had
been previously set with \skip5=2pt plus 1pt, the effect would be the same.

T EX Programming 181

Or the specification might be \the\skip5; TIYC would replace \the\skip5
with 2pt plus 1pt, and the effect again would be the same. Wait-not quite:
\vskip\the\skip5 minus 1pt causes a skip of 2pt plus 1pt minus 1pt,
but \vskip\skip5 minus 1pt causes a skip of 2pt plus 1pt, and a new
paragraph starting with minus Ipt!

To summarize, naming a register by itself can mean either that you're about to
assign a new value to it, or that you're using its value directly. The latter only makes
sense if TIYC is expecting to see an object of the corresponding type. The important
question, then, is: At what times is TIYC expecting an integer (or a dimension, or a
box, etc.)?

Uses of integers
Here are some of the most common situations where an integer is expected:

• After \ count , \dimen, and other register class names; after \box, \copy
and friends; and after \ht, \dp, \wd. So you can say \dimen \mycount=10pt ;
if \mycount had been given the value 188, this sets \dimen188 to 10 pt.

• In an assignment to a \count register, or to any of TIYC's integer variables,
which are legion (pages 272-273 of The TJj(book). Thus you can say \count255=
\mycount, or \hangafter=\count255, or \pageno=\hangafter (\pageno
is the current page, and happens to be the same as \countO).

• After \number and \romannumeral, which return the decimal representation
and the roman numeral representation of the integer.

• After the tests \ifodd and \ifeven (see section 12.9). After \ifnum two
integers are expected, separated by <, = or >.

When TIYC is expecting an integer it will accept the contents of a dimension regis
ter (used directly). In that case it expresses the register contents in scaled points,
the units in which the dimension is stored. Thus, \dimen1=1pt followed by
\mycount=\dimen1 gives \mycount the value 65536. But \the\dimen1 ex
pands to 1. Opt, so \mycount=\ the \dimen1 gives \mycount the value 1, and
prints .Opt.

Uses of dimensions
The most common times when a dimension is expected are:

• In an assignment to a \dimen register, or to any of the dimensions of a box
register, or to any of TIYC's dimension variables, like \parindent, \hsize and
\vsize (page 274 of The T[;}(book). Examples: \dimen1=6pt, \ht1=\dimen1,
\wd1=\hsize.

• After \kern, \raise, \lower, \moveleft, and \moveright.

• In place of the ellipses in the constructions \hbox to ... and its relatives,
\vrule height ... and its relatives, and so on.

• Whenever a glue specification is expected (see below). That is, the glue can
be specified by means of its components: \skip1=\dimenO plus \htO minus
\parindent.

182 A Beginner's Book of T £X

• After the \ifdim test (section 12.9) two dimensions are expected, separated
by <, = or >.
Whenever a dimension is expected, T]3X will also accept the contents of a \skip
register (used directly), and discard its stretch and shrink components. For exam
ple, plain T]3X sets \medskipamount to be 6pt plus 2pt minus 2pt; saying
\kern\medskipamount is the same as saying \kern 6pt.

An integer preceding a unit also gives a dimension: \dimenl=\mycount pt. An
other important way to specify a dimension is by multiplying an existing dimension
by a factor: \kern -. 5\dimen7 . This type of specification is not available for
integers, although a minus sign is allowed: \mycount=-\pageno. It's not avail
able for glue either: if you say \skip3=-. 5\skipO, T]3X will throw out the
stretch and shrink components of \skipO before performing the multiplication.

Uses of glue
And here are the most common times when a glue specification is expected:

• In an assignment to a \skip register, or to any of the dimensions of a box
register, or to any of T]3X's glue variables, like \parskip and \baselineskip
(page 274 of The TEJ(book). For example, \skipl=6pt plus 2pt minus 2pt,
\parskip=\skipl.

• After \hskip and \vskip.

Uses of math glue
And the only times when a math glue specification is called for are:

• In an assignment to a \muskip register, or to one of the math glue variables
\thinmuskip, \medmuskip and \thickmuskip (page 274 of The TEJ(book).

• After \mskip and \mkern (in the second case a math dimension is all that's
needed).

In both cases nothing else will do: T]3X won't convert from normal glue to math
glue, or vice versa.

Uses of token lists
T]3X expects to see a token list in an assignment to a \ toks register, or to one of its
token list variables (page 275 of The TEJ(book). When a token list is first read in, the
macros in it are not expanded, and braces must surround the list: \ toksO={ ... } .
The macros will be expanded when the list is used, by preceding the register name
with \the . Token lists are almost always used indirectly, that is, together with
\ the: the only use for \ toksO by itself is on either side of an assignment.

Arithmetic on registers
You must be wondering if you can do arithmetic operations on the numbers and
dimensions you store in registers. You can; but it's not a pretty sight. T]3X is
not a general-purpose programming language, and the need to make it absolutely
device-independent restricts the arithmetic to what can be done relatively easily
with integers.

T £X Programming 183

To add to or subtract from a \count, \dimen, \skip or \muskip register, you
use the \advance command:

\advance\pageno by 1
\advance\dimenl by -3pt

\advance\skipO by Opt plus lfil
\advance\muskip5 by-.5\thinmuskip

The keyword by can be followed by anything that you can have on the right
hand side of an assignment to the same class of registers. Notice that there is no
backslash before by.

Multiplication and division are also allowed, by only by integers:

\divide\mycount by 3 \multiply\parindent by 2
\multiply\dimenl by -6 \divide\muskip5 by\count255

What would be written in Pascal as \count2: =3+0. 5*\countl comes out as

\count2=\countl \divide\countl by 2\advance\countl by 3

It's a good thing there isn't a whole lot of arithmetic to do!

Variables like \parindent, \thinmuskip and \hangafter can also be modi
fied with \advance, \mul tiply and \di vide. But some other things that you
can assign values to, such as the dimensions of a box, are somehow left out: to
decrease the height of \boxl by 10 pt, you must say

\dimenO=\htl \advance\dimenO by -10pt \htl=\dimenO

However, \htl=. 5\htl works fine, since it's an assignment.

12.9 Conditionals
Like all programming languages, T}3X possesses conditionals, constructions that
choose one or another course of action depending on the current value of certain
variables. Using conditionals it is possible to build up other control structures,
such as loops to iterate one or more commands automatically. This section won't
cover general control structures, or even all the uses of conditionals; after all, this
book is supposed to be an introduction to T}3X only.

In the fancy. tex file of section 7.2 a part of the \headline token list says

\ifodd\pageno\the\oddpagehead\else\the\evenpagehead\fi

When T}3X reads \ifodd, it looks for an integer after that, as explained in the
previous section. Here the integer is supplied directly from a register, but it could
also be written explicitly, or come from the expansion of a \the, or whatever.
If the number is odd, T}3X continues reading and doing its stuff till it reaches
\else; it then skips everything till the next \fi. Here the result would be to
read \ the \oddpagehead , so the \oddpagehead token list would be used at this
point. If the number is even, contrariwise, T}3X skips the text till the \else, but
reads what follows till the \fi, so it's \evenpagehead that would be used.

Some warnings
All of this probably seems obvious to you, which is why we used this code un
apologetically in section 7.2. But there are some aspects of T}3X's conditionals that

184 A Beginner's Book of T E'<

may seem counterintuitive, especially if you're accustomed to other programming
languages, so it's good to go over them briefly.

• A TPC conditional chooses between two texts, which don't have to be actions
or commands. Thus you can say

\parindent=\ifodd\pageno 20 \else 10 \fi pt

rather than \ifodd\pageno\parindent=20pt\else\parindent=10pt\fi as
in some other programming languages.

• Each of the two texts can have unbalanced braces; the important thing is that
the overall text after a choice is made be balanced. If you say

\ifodd\pageno \toto{\toto \else \otot{\otot \fi }

TPC will see \toto{\toto} if the page number is odd, and \otot{\otot} if
it's even, so things come out right either way. Remember, Tpc doesn't pay any
attention to the part of a conditional that it's skipping over.

• Once TPC starts evaluating a condition, it's committed to it. So you'd better
make sure this doesn't happen while something else is underway. The following
code has stumped countless aspiring wizards:

\pageno=O\advance\pageno by1 \ifodd\pageno ODD \else EVEN\fi

Oddly, TPC prints EVEN. Do you see what happened? Tpc sets \pageno to 0,
then is told to increment it by 1. But wait-maybe 1 is just the first digit of the
increment! Tpc has to read ahead to see where the number ends, so it evaluates
the \ifodd. At that time, \pageno is still O! What TPC sees next is EVEN. It
decides that's not part of the number, so it increases \pageno by 1, but doesn't
do the test again; the whole conditional has already been effectively replaced by
its \else portion.

Fortunately this sort of thing can be easily avoided by always leaving a space after
a number. The space is absorbed when Tpc reads the number, and doesn't show in
the output. We made tacit use of this fact in many examples throughout the book.

OK, so what's the value of \pageno after

\pageno=O\advance\pageno by1\ifodd\pageno 0 \else 1\fi

and what (if anything) does Tpc print?

Other conditionals
Tpc has many other tests besides \ifodd, of which we'll only talk about some.
In almost all cases the construction is the same:

test textl \else text2 \fi

Either textl or text2 can be empty (or even both, but then there isn't much point to
the conditional). If text2 is empty, the \else is not necessary.

Here then is a (non-exhaustive) list of TEX's conditionals:

• \ifnum integerl relation integer2; the relation is either <, = or > . A simple
footline macro for a technical report format might say, for instance,

\def\footline{\hfil \ifnum\pageno=1 \else\folio\hfil\fi}

T E?< Programming 185

Notice that in this case textl is empty.

• \ifodd integer. There's no \ifeven, but one can get the same effect by
switching textl and text2.

• \ifdim dimensionl relation dimension2; the relation is either <, = or >. A
macro to select the wider of two boxes can be written

\def\pickwider#1#2{\ifdim\wd#1>\wd#2\box#1\else\box#2\fi

• \ifmmode is true if TJY(is in math mode (text or display). Useful if you want
abbreviations that should work both inside and outside of math mode:

\def\a{\ifmmode\alpha\elseα\fi}

• \ifvoid box number is true if the corresponding box is undefined. Useful to
avoid the error of trying to use an undefined box: \ifvoid1 \else\box1 \fi .

• \ifcase integer is the only conditional with a different syntax, because it's
capable of choosing between n + 1 actions, depending on whether integer has the
value 0, I, ... , n. The use of \ifcase is easier to learn by example than from an
explanation:

\def\monthname{\ifcase\month\or January\or February\or
March\or April\or May\or June\or July\or August\or
September\or October\or November\or December\fi}

Custom-made tests
In addition to all the tests above, you can create new tests at any time using plain
TJY('s \newif command. In section 7.2 we said

\newif\iftitlepage \titlepagetrue

\footline={\iftitlepage\the\titlepagefoot
\global\titlepagefalse
\else\ifodd\pageno\the\oddpagefoot

\else\the\evenpagefoot\fi\fi}

Saying \newif\ifti tlepage defines three control sequences: \ifti tlepage ,
\titlepagetrue and \titlepagefalse. After that, saying \titlepagetrue
makes \iftitlepage test true, and saying \titlepagefalse makes it test
false. Inside \f oot 1 ine , we test if the current page is a title page or not; if it is, we
use the special footline \ ti tlepagefoot , and say \global \ ti tlepagefalse
so the next page will no longer be a title page. We have to say \global because
the effects of \titlepagetrue and \titlepagefalse are local to the current
group.

This example shows also that conditionals can be nested: the \else portion of
the \ifti tlepage conditional contained itself a complete conditional. We said
before that TJY(ignores braces and other groups when it's skipping over the rejected
portion of a conditional; but it does keep an eye out for \if ... \fi pairs, so it
will only stop at the correct \f i .

186 A Beginner's Book of T p<

12.10 For the aspiring wizard
To wrap up this chapter we will try to show how you can make use of Appendix B
of The TEXbook, even if you don't understand its details in full. We have already
created some macros, like \itemitemitem and \bbuildrel, by mimicking
plain TEX-here we'll do it wholesale and shamelessly.

The \cases macro
This is one of the simplest alignment-making macros in plain TEX, so we start
by trying to understand how it works, based on TEX's primitives. Its definition
appears on page 362 of The TEXbook:

\def\cases#1{\left\{\,\vcenter{\normalbaselines\m~th

\ialign{$##\hfil$&\quad##\hfil\crcr#1\crcr}}\right.}

First we get rid of the background noise. The \left\{ ... \right. we know
already: it creates left braces the size of the alignment. The alignment is placed in
a \vcenter, inside which the environment is normalized: \normalbaselines
copies the interline spacing information from \normallineskip to \lineskip,
and so on (which explains why \openup won't work with \cases). Moreover,
\m~th makes sure that \mathsurround is zero: this variable, of which nothing
had been said so far, is the amount of horizontal glue that TEX puts between a
formula and the surrounding text.

The alignment proper starts with \ialign, which is just \halign with yet
another initialization, \tabskip=Opt (better safe than sorry). So we're really
dealing with the following alignment:

\halign{$#\hfil$&\quad#\hfil\crcr#1\crcr}

As we saw in section 12.4, a double sharp ## encountered when a macro is read in
turns into a single # when the macro is executed. The only thing that's unfamiliar
here is the \crcr control sequence, a primitive that turns into \cr unless it's
already placed right after a \cr or \noalign{ ... }. We'll see it in action in a
minute.

Suppose now that \cases is used in the following way:

\cases{A & if $x=1$, \cr
B & otherwise.\cr}

The argument to \cases gets plugged into the replacement text in place of #1 ,
so what TEX ends up seeing is

\halign{$#\hfil$&\quad#\hfil\crcr
A & if $x=1$, \cr
B & otherwise.\cr\crcr}

The first \crcr turns into \cr, indicating the end of the preamble. According to
the preamble, the first entry of each column is read in math mode, the second isn't.

The second \crcr, at the end of the alignment, is superfluous, because the
argument ended with \cr. This use of \crcr just makes \cases a little bit
user-friendlier, making up for a missing \cr at the end of the argument.

T E!< Programming 187

A new macro: \Eqalign
One sometimes wants to arrange to formulas like this:

U2 + V2 = x2 + y2

V3 = x 3 + y3

V3 = X4 + y4

U~ + v~ = x4 + y4

v~ = x 3 + y3

v~ = x2 + y2

U~ + v~ = x 3 + y3

v~ = X4 + y4

A naIve solution is to place three \eqalign s side by side:

$$\eqalign{ ... }\quad\eqalign{ ... }\quad\eqalign{ ... }$$

That works as long as all the entries have the same height, but is inadequate in
general, since it doesn't guarantee that corresponding rows of the three alignments
match. Can we generalize \eqalign so it takes several pairs of entries per row?
The new macro should be used somewhat like \matrix:

$$\Eqalign{
u_2+v_2&=x-2+y-2&u'_2+v'_2&=x-4+y-4&u"_2+v"_2&=x-3+y-3\er
v_3 &=x-3+y-3&v'_3 &=x-3+y-3&v"_3 &=x-4+y-4\er
v_3 &=x-4+y-4&v'_3 &=x-2+y-2 \er

}$$

Let's inspect the definition of \eqalign on page 362 of The TJj(book:

\def\eqalign#1{\null\.\veenter{\openup\jot\m~th

\ialign{\strut\hfil$\displaystyle{##}$&
$\displaystyle{{}##}$\hfil\erer

#1\erer}}\.}

We see, incidentally, why \eqalign doesn't respond to springs in its entries:
when an entry with \hfill is plugged into the first template, the resulting text
is of the form

\hfil$\displaystyle{ ... \hfill}$

There is a pair of braces between the dollar signs. Unlike the situation in hori
zontal and vertical modes, groups in math mode create boxes for the subformulas
they enclose. Any spring in a subbox is totally powerless in the enclosing box.
To understand this point better, run the following experiments, and explain the
results:

\hbox to \hsize{a\hfil{b\hfill e}}
\hbox to \hsize{a\hfil\hbox{b\hfill e}}
\hbox to \hsize{a\hfil$b\hfill e$}
\hbox to \hsize{a\hfil${b\hfill e}$}
\hbox to \hsize{a\hfil{$b\hfill e$}}

We also notice an empty group {} just before the # in the second template. This
ensures that the operator with which the second half of each row normally starts
gets the appropriate amount of spacing around it. For more details, see the end of
section 11.18.

188 A Beginner's Book of T £X

But we're getting sidetracked. To make our \Eqalign macro, we make the
preamble periodic, by copying over the existing two templates after a double
ampersand:

\catcode'\@=ll
\def\Eqalign#l{\null\,\vcenter{\openup\jot\m@th

\ialign{\strut\hfil$\displaystyle{##}$&
$\displaystyle{{}##}$\hfil&&
\qquad\hfil$\displaystyle{##}$&
$\displaystyle{{}##}$\hfil\crcr

#l\crcr}}\,}
\catcode'\@=12

As you can see, you don't have to be a wizard to get a lot of mileage out of existing
macros!

Systems of equations
Our next goal is to typeset the following system of equations:

{

2x + 3y + 4z = ai + bi + Ci

22x2 - 33y2 + 44z2 = a~ + b~
222xll + 333yll - 4z = a3

- 7 x - 36y + 478z3 = b4

One idea is to use \matrix, as on page 158:

{ 2
x + 3 y + 4 z ai + bi + Ci

22 x2 33 y2 + 44 z2 a~ + b~
222 Xll + 333 yll 4 z a3
-7 x 36 y + 478 z3 b4

But this puts too much spacing between columns and not enough between rows,
and it also forces us to type monstrosities like

\hfill 22&x~2\hfill &-&\hfill 33 &y~2\hfill
&+&\hfill 44&z~2\hfill&=&a_2~2+b_2~2\hfill\cr

to format the rows. Instead, let's try to adapt \eqalign again, this time with a
preamble of the form

& coefficient & variable & operator \cr

The coefficients will be pushed right and the variables pushed left by springs. To get
the right amount of spacing around the operators, we surround the corresponding
with empty groups. Also, we may as well throw in the left braces. The macro
definition comes out fairly simple:

\catcode'\@=ll
\def\system#l{\left\{\vcenter{\openupl\jot\m@th

\ialign{&\hfil$##$&$##$\hfil&\strut${}##{}$\crcr
#l\crcr}}\right.}

\catcode'\@=12

T EX Programming 189

The code for the actual system, too, is quite natural. Notice that the last column
doesn't have coefficients:

$$\system{
2&x &+&3 &y &+& 4&z &=&&a_l+b_l+c_l\cr

22&x-2 &-&33 &y-2 &+& 44&z-2&=&&a_2-2+b_2-2\cr
222&x-{11}&+&333&y-{11}&-& 4&z &=&&a_3 \cr

-7&x &-&36 &y &+&478&z-3&=&&b_4 \cr
}$$

Numbering several equations

To number the formulas in a \displaylines, one must go through contortions
with \hfill, \llap and \rlap:

$$\displaylines{
\rlap{(3)}\hfill

\hfill
}$$

\hfill \cr
\hfill\llap{(4)}\cr

This is not only a nuisance, but also a source of errors. Let's try to create macros
\displaylinesno and \ldisplaylinesno to be used like \eqalignno and
\leqalignno.

We start from the definition of \di splay lines, also on page 362 of The Tp}{book:

\def\displaylines#l{\displ~y\halign{

\hbox to\displaywidth{$\~lign\hfil\displaystyle##\hfil$}
\crcr#l\crcr}}

The single template is essentially a box of full width \displaywidth, which is
the analogue of \hsize inside displays. It's straightforward to add a column at
the right with zero width, using \llap:

\catcode' \~=11
\def\displaylinesno#l{\displ~y\halign{

\hbox to\displaywidth{$\~lign\hfil\displaystyle##\hfil$}&
\llap{$##$}\crcr

#l\crcr}}
\catcode'\~=12

For labels on the left we need to be a bit craftier, since we want to keep the syntax
of \leqno and \eqalignno, which specifies the label after the equation. We
can still make a box of zero width, this time with \rlap, but we have to move it
all the way across the display with appropriate kerns:

\catcode' \~=11
\def\ldisplaylinesno#l{\displ~y\halign{

\hbox to\displaywidth{$\~lign\hfil\displaystyle##\hfil$}&
\kern-\displaywidth\rlap{$##$}\kern\displaywidth\crcr

#l\crcr}}
\catcode'\~=12

190 A Beginner's Book of T e<

The definition of \eqalignno and \leqalignno in plain TIYC (still on the same
page of The T8(book) is more complicated, because it cannot rely on an entry of
full width. It achieves centering by playing with the \ tabski p variable, discussed
in section 9.12. We don't have to worry about this problem here, but if you feel
adventurous you should try to disect those macros.

Here's an example of \ldisplaylinesno in action:

(1)

(1')

sin(a + b) = sin a cos b + cos asin b

sin(2x) = 2sinxcosx

$$\ldisplaylinesno{
\sin(a+b)=\sin a\cos b+\cos a\sin b &(1) \cr
\sin(2x)=2\sin x\cos x &(l')\cr

}$$

13
Dictionary and Index

There you are, now-a savvy user of TEX, with a finn grasp of all the basic features.
Should you be so inclined, you'll have no trouble at this point reading even the
small-print sections of The TEXbook, and making your way into the select rank of
TEX wizards. Or you can relax and enjoy the scenery-the knowledge you have
already acquired will be sufficient to typeset just about any document.

Meanwhile, we hope this book will continue to be of use. The following Dictionary
and Index contains all the control sequences discussed in the past twelve chapters,
and adds some new ones. It also contains the main concepts that we've discussed,
with references to the appropriate commands.

We have deliberately repeated infonnation and suggestions from the "textbook"
chapters, to make this chapter reasonably self-contained. But we also have made
liberal use of cross-references for those who would reread the relevant sections.

Most control sequences listed here are primitives or macros from plain TEX. Con
versely, most primitives and plain TEX macros are here, but we didn't include those
that only a wizard might need. Macros that don't belong to plain TEX are indicated
as such.

Backslashes introducing control sequences have been ignored in alphabetizing.
Non-alphabetic characters are given in their ASCII order, which is the following:

!"#$%&'()*+,-./:;<=>?<D[\]~_'{ I}-

The "non-printable" characters represented by CR, DEL, NULL, SP, SUB, SUP, TAB are
indexed under these abbreviations.

192 A Beginner's Book of T £!< - \,

\!

! c

\"

\#

$

\$

$$

\%
&

\&

&&

\'

Produces an exclamation mark in text and in math mode. See also \spacefactor.

Page 138. Math mode only. Produces a negative thin space, that is, brings the adjacent
symbols closer together by 3 math units:

$$\int\!\!\!\int_{\cal D}f(u,v)\,du\,dv$$ J l f(u,v)dudv

Page 19. Produces the Spanish j.

Pages 18, 36, 174. Produces right double quotes" ,like " . Also, when TEX is expecting to
read an integer (page 181), " announces that the number is written in base 16: see integers.
To make " stand for an umlaut, see page 174.

Pages 20-21,174. Places an umlaut, or dieresis, over the following character: ii. Works in
text mode only; for math mode, see \ddot. For 1 you must type \ "\i rather than \ "i.
See also the preceding entry.

Pages 17-18, 103, 167, 172. Used in the preamble of an \halign or \valign to indicate
where an entry should be plugged in (pages 103, 119). Many examples were given in chapter
9. Also used, together with a digit, in the definition of a macro, to indicate where an argument
should be inserted: see page 167, and examples on pages 51, 62, 92, etc.

Page 17. Produces a sharp, or hash mark #. See also \sharp ~.

Pages 169, 186. Used to represent a # in the replacement text of a macro.

Pages 15, 17, 22, 25-26, 81, 130-131, 172. Used to go in and out of text math mode. To
neutralize this special meaning, see page 173.

Page 17. Produces a dollar sign $.

Pages 22, 25, 82, 130. Used to go in and out of display math mode. Also useful in centering
non-math material: see examples on pages 90, 105, etc.

Pages 17-18, 172. Introduces a comment, or text disregarded by TEX. Its effect extends to
the end of the current line, including the carriage return that terminates it. Often necessary
inside macro definitions to prevent spurious spaces: see examples on pages 35, 97, 175, etc.

Page 17. Produces a percent sign %.

Pages 17-18, 103, 119, 122. Used to separate entries in the same row of a horizontal align
ment obtained with \hal ign or \ + , or entries in the same column of a \ val ign . Special
cases are discussed on pages 106-107. Also used with many macros that perform align
ments: see pages 147, 154--158, 186-190.

Another, unrelated use of & is explained under \dump.

Page 17. Produces an ampersand &. Page 125 suggests a redefinition useful if you have
many alignments made with \ + .

Page 106. In the preamble of an alignment, means that the following templates are to be
repeated cyclically. See examples on pages Ill, 188.

Pages 18,36, 137. Produces right single quotes' in text, and a prime I in math mode. See
also quotes and \spacefactor.

When TEX is expecting to read an integer (page 181), , announces that the number is written
in base eight: see integers.

Page 20. Places an acute accent over the following character: e. Works in text mode only;
for math mode, see \acute. For i you must type \' \i rather than \' i . The discussion
about " on page 174 is relevant if your text has many accents.

, ,

, ,

*

+

\+

±

\,

\-

Dictionary and Index 193

Pages 18-19,36,137. Produces right double quotes" in text, and a double prime /I in math
mode. See also quotes.

Produces a left parenthesis in text and in math mode. As a math delimiter, it can grow
arbitrarily large with \left (pages 146--147).

Produces a right parenthesis in text and in math mode. As a math delimiter, it can grow
arbitrarily large with \right (pages 146--147). See also \spacefactor.

Pages 61,133. Produces an asterisk in text * and in math mode *. The latter is synonymous
with \ast and is a binary operator. Redefined on page III to create spacing equal to the
width of a digit.

TEX types a * on your screen when it expects more input: page 16. At the beginning of an
interactive run (no file name give) the prompt is ** instead. This means that TEX is ready
to read a file name: if you type Hello it will look for a file called Hello. tex , rather than
printing Hello. So if you actually want to type text at the terminal, you must start with a
control sequence, such as \par or \relax, which are inoffensive.

The ** prompt has another function: it says that at that point, and only at that point, TEX
can read an encoded format file. For details, see \dump.

Indicates an allowed break at a multiplication in a mathematical formula; if the break is
realized, a \times is inserted. Forexample, $ Cx+y) * Cz+t) $ will come out as (x+y) x
(z + t) if it has to be broken across lines, but as (x + y) (z + t) otherwise.

Pages 19, 133. Produces a + in text and in math mode; in the latter case it is treated as a
binary operator. On page 149 it was used to construct a complicated new symbol.

Pages 122 and following. Starts a tabulated line, which should end with \cr. In the line
tabs can be set and used with &:, or deleted with \cleartabs.

This macro is \outer, that is, it is not allowed to appear in macro definitions and in certain
other situations. To get around this, use \ tabalign , which is otherwise entirely equivalent
to \+.

See \pm.

Produces a comma in text and in math mode; in the latter case it's automatically followed
by a thin space: (a, b). If you use it to separate groups of digits in a large number, this
spacing is undesirable: code $75{, }OOO$ to get rid of it. See also \spacefactor.

Pages 138, 140. Math mode only. Leaves a thin space II equal to 3 math units. Normally
this space is inserted at the appropriate places automatically; the most common case where
it should be explicitly used is before differentials, as in J x 2 dx from $\int x~2\,dx$.
See also \! .

Pages 19, 133. Produces a hyphen - in text and a minus sign - in math mode; in the latter
case it is treated as a binary operator. On page 150 it was used to construct a complicated
new symbol, but this is best done with \relbar. See also \hyphenation.

Page 166. Discretionary hyphen: tells TEX where a word can be broken between lines.
Useful when TEX's automatic hyphenation process fails, as it does occasionally. For instance,
TEX doesn't know how to hyphenate "manuscript," so if you happen to have an overfull line
ending with that word you can help TEX by writing man\-u\-script. Also, TEX won't
hyphenate compound words or words starting with a capital; you can override that with
discretionary hyphens. See also discretionary, \hyphenation and \showhyphens.

Page 19. Produces an en-dash - in text, except with typewriter fonts.

194 A Beginner's Book of T g< --- - \>

\.

/

\/

\;

<

\<

!.. , (

\=

>

\>

Page 19. Produces an em-dash - in text, except with typewriter fonts.

See \mp.

Produces a period in text and in math mode (page 130). Also used in math mode with \left
and \right to stand for a dummy delimiter: see page 147 and \abovewi thdelims . See
also \spacefactor.

Page 20. Places a dot above the following character: a. Works only in text mode; for math
mode, see \dot.

Page 141. Produces a slash / in text and in math mode. In the latter case it is treated as an
ordinary symbol for purposes of spacing, but it can grow with \big as if it were a delimiter:
pages 146-147. No break is allowed after a / not followed by space: compare \slash ;.

Also useful with abbreviations: page 166.

Page 37. Introduces an italic correction, a bit of spacing to compensate for the slant of the
previous letter. Useful after italicized and slanted words in the middle of upright text.

Produces a colon in text and in math mode (page 134). In the latter case it's considered a
relation and automatically gets a thick space before and after: f : X -+ Y. But $x: =y$
gives x := y, which is the right thing: the spacing is placed before and after the relational
symbols : and =, but not between them. See also \colon. For use in writing French,
see page 174. See also \spacefactor.

Produces a semicolon in text and in math mode. In the latter case it's automatically followed
by a thin space: H(X, Y; XI, yl). See also \spacefactor.

Math mode only. Leaves a thick space II equal to 5 math units, stretchable to 10. This space
is automatically placed around relations (page 134), but its explicit use is rare.

In math mode, produces the less-than sign <, a relation (page 134); it also serves as an
abbreviation for \langle after \bigl, \left, etc. (page 146). Outside math mode it
should only be used with typewriter fonts, otherwise it appears as a strange character j. Also
used between two numbers or dimensions in the conditional tests \ifnum and \ifdim
(pages 181-182), in which case it doesn't print.

Not part of plain TEX. Defined and used on page 128 to typeset the following word in bold.

See \angle, \langle.

In math mode, produces the equals sign =, a relation (page 134); see also \Relbar =. Also
used between two numbers or dimensions in the conditional tests \ifnum and \ifdim
(pages 181-182) and, optionally, in all assignments: see assignments, space tokens. In
such cases it doesn't print.

Page 20. Places a bar, or macron accent, above the following character: a. Works only in
text mode; for math mode, see \bar. For a bar over several characters, see \overline.

In math mode, produces the greater-than sign >, a relation (page 134); it also serves as an
abbreviation for \rangle after \bigr, \right, etc. (page 146). Outside math mode
it should only be used with typewriter fonts, otherwise it appears as a strange character
i.,. Also used between two numbers or dimensions in the conditional tests \ifnum and
\ifdim (pages 181-182), in which case it doesn't print.

Math mode only. Leaves a medium space II equal to 4 math units, stretchable to 6 and
shrinkable to O. This space is automatically placed around binary operators (page 133), but
its explicit use is rare.

?

?'

\[

\

\~

\-

Dictionary and Index 195

See \rangle.

Produces a question mark in text and in math mode. See also \spacefactor.

Page 19. Produces the Spanish i.,.

Produces an at-sign @ in text and in math mode. Its category can be changed so it can
be made part of the name of "protected" control sequences: see page 177 and an example
under \afterassignment .

Produces a left bracket in text and in math mode. As a math delimiter, it can grow arbitrarily
large with \left (pages 146-147). See also \count.

Not part of plain TEX. Defined and used on page 128 to typeset the following word in italics.

Pages 164, 172. The escape character: introduces a control sequence, a word that isn't
printed but interpreted as a command. To print a \ in math mode, USe \backslash or
\setminus . In text you must either switch to a typewriter font and say {\ tt \char' \ \} ,
which gives \, or go temporarily into math mode.

Produces a right bracket in text and in math mode. As a math delimiter, it can grow arbitrarily
large with \right (pages 146-147). See also \spacefactor.

Pages 17-18, 136, 172. In math mode, introduces a superscript: see superscripts, superscript
character. See also page 149 and ~~ .

Page 20. Places a circumflex accent over the following character: e. Works in text mode
only; for math mode, see \hat . Fori you musttype \ ~ \i rather than \ ~ i . The discussion
about " on page 174 is relevant if your text has many accents.

Gives a way to represent unprintable ASCII characters in a source file: ~ ~ followed by a
character whose ASCII code is n represents the character whose ASCII code is n + 64, if
n < 64, or n - 64, if 64 ::; n < 128. For example, a carriage return (CR) can be written
~~M (page 175), because its code is 13 and M's code is 77. This substitution works even
inside a control sequence name.

You can also refer to any character with code between 0 and 255 by saying ~ ~ xy, where xy
stands for the character code in hexadecimal (letters must be lowercase). This convention
overrides the one described in the previous paragraph, that is, ~ ~ aO represents the character
with code 10 x 16, not the character ~ ~a followed by O. This feature is not available in
versions of TEX prior to 3.0.

The following non-printable characters are discussed in this book: ~ ~ (Q , or NULL; ~ ~ A , or
SUB; ~~I,orTAB; ~~J,orsup; ~~M,orCR;and ~~?,orDEL.

Pages 17-18, 136, 172. In math mode, introduces a subscript: see subscripts. See also
page 149.

Produces an underscore _ , a character mostly used by computer scientists and programmers.

\i t very_long_identifier_name very_long_identifier_name

Page 18. Produces left single quotes' in text; see also quotes.

When TEX is expecting to read an integer (page 181), you can use ' followed by a
character token (page 190) or a control sequence token whose name has only one character.
The resulting integer value is the ASCII code of the character. Thus \catcode' \$ is the
same as \catcode 36, because 36 is the ASCII code of $; that's why the construction of
page 172 works. See also integers.

196 A Beginner's Book of T £X \' \abovedisplayskip

\'

, ,

'\

{

\{

\1

}

\}

\aa, \AA

Page 20. Places a grave accent over the following character: e. Works in text mode only;
for math mode, see \grave. For I you must type \' \i rather than \' i . The discussion
about " on page 174 is relevant if your text has many accents.

Pages 18-19. Produces left double quotes" in text; see also quotes.

See' .

Pages 17, 22, 172. The most common way of starting a group: changes made inside the
group are canceled when the matching } is found. Braces also follow such commands as
\vbox and \halign; this use also causes grouping. Yet another use of braces is to delimit
the definition of a macro (page 165), or an "undelimited" macro argument (pages 167-168,
170), or a token list (page 178).

Unmatched braces are a common input error (pages 26, 171): hence the idea of coding
from the outside, braces first (pages 105, 152, etc.) In macro definitions, on the other hand,
unmatched braces can be very useful, but they must sneak in in disguise: see \bgroup.

To print braces, see braces, \ { .

Page 135. Produces a left brace in math mode. As a math delimiter, it can grow arbitrarily
large with \left (pages 146---147).

Page 134. Produces a vertical bar, also obtained with \vert. As a math delimiter, it can
grow arbitrarily large with \left and \right. The same symbol, with spacing on both
sides, represents a relation: in that case it should be coded 'mid (normal size), \ bigm 1 ,
and so on. See pages 146---147.

In this book, 1 is used to introduce verbatim mode (page 174).

Page 134. Produces a double vertical bar II, also obtained with \ Vert. As a math delimiter,
it can grow arbitrarily large with \left and \right. The same symbol, with spacing on
both sides, represents a relation: in that case it should be coded \parallel (normal size),
\bigm\ 1 ,and so on. See pages 146---147.

Pages 17, 22, 172. Ends a group started by {; see that entry for more information.

Page 135. Produces a right brace in math mode. As a math delimiter, it can grow arbitrarily
large with \right (pages 146---147).

Pages 18,21,39,45,76, 173. Creates a tie, a space at which T}3X will not break lines and
which is the same regardless of what the preceding character is (see \spacefactor). The
- replaces the space in the input; thus you should say p. -314, rather than p. - 314.

Page 20. Places a tilde over the following character: e. Works in text mode only; for math
mode, see \tilde. For i you must type \ -\i rather than \ -i. The discussion about"
on page 174 is relevant if your text has many accents.

Page 19-20. Produce the Scandinavian letter a, A. See also \interior.

abbreviations in mathematics, page 143; in a preamble, page 116; in typing, page 166; see also macros.

\above Page 142. Math mode only. Like \over, but makes a fraction bar of specified thickness:
y+z

$$x+{y+z\above lpt v+w}$$ x + --
v+w

\abovedisplayshortskip, \abovedisplayskip
Page 131-132. Two of T}3X's glue variables: they control the amount of vertical spacing
between a displayed math formula and a preceding line of text in the same paragraph. The

\abovewi thdelims - aesthetics Dictionary and Index 197

first value is used if the end of the line is at least two quads to the left of the beginning of
the formula. Plain TEX sets

\abovedisplayshortskip=Opt plus 3pt
\abovedisplayskip=12pt plus 3pt minus 9pt

See also \eightpoint.

\abovewithdelims

accents

\active

Page 142. Math mode only. Like \over, but makes a fraction bar of specified thickness,
and encloses it between specified delimiters:

$$x+{y+z\abovewithdelims [] 1pt v+w}$$ x + [y + z]
v+w

Watch out! The construction \abovewi thdelims [. 1pt doesn't mean the bar thickness
is .1 pt: the . is a dummy closing delimiter (cf. page 147).

in text, pages 7, 20; in mathematics, page 137.

Pages 111, 173. A name for the number 13, the category code of an active character. For
example, plain TEX says \catcode' \ -=\active prior to defining - as a tie.

active characters

\acute

Pages 111, 173-176. A character of category 13 is treated by TEX as a macro; its meaning
must be defined with \def before the character can be used. Once defined, the meaning
is available whenever the character is active, no matter how many times the character has
been deactivated and reactivated in between. See also \mathcode.

Page 137. Math mode only. Places an acute accent over the following character: 0" Its text
counterpart is \, .

\adots Page 160. Not part of plain TEX. Math mode only. Makes three ascending dots.'

Addison-Wesley
Pages 1-2.

addition Page 183.

address formatting

\advance

Pages 54, 71.

Page 183. Adds to a register of type integer, dimension, glue or math glue another object
of the same type. Most commonly used to automatically increment counters for footnotes,
page numbers, and such like: see page 62 and the next entry.

\advancepageno

\ae, \AE

fEsop

aesthetics

This macro advances the value of \pageno variable when it comes time to move on to a
new page:

\def\advancepageno{\ifnum\pageno<O\global\advance\pageno by -1
\else\global\advance\pageno by l\fi}

The point of this is that, by convention, a negative \pageno is printed (by the \folio
macro) as a roman numeral. To increase the page number, then, \pageno should be
added 1 if positive, and added -1 if negative. The \global is necessary because
\advancepageno is ordinarily called inside a group, during the output routine.

Page 19. Produce the Scandinavian and Latin ligature 32, lE.

Page 19.

Pages 1, 3-4, 7; see also fine-tuning.

198 A Beginner's Book of T EX \afterassignment - alternatives

\afterassignment
Stores the next token until an assignment is performed, then puts it back into the input
stream. Useful in writing macros whose "arguments" don't have to be placed in braces.
Consider this bit of code from plain T}3X:

\def\openup{\afterassignment\~penup\dimen~=}

\def\~penup{\advance\lineskip\dimen~

\advance\baselineskip\dimen~

\advance\lineskiplimit\dimen~}

When T}3X sees \openup, it assigns to the register \dimen~ the dimension that follows.
Immediately after that, it sees \~penup, whose expansion causes \dimen~ to be added
to \lineskip, \baselineskip and \lineskiplimi t. See \romannumeral and
\spacemag for more examples.

\aftergroup Stores the next token until the current group ends, then puts it back into the input stream.

\aleph

aligning

alignments

Useful in writing macros whose "arguments" are not read ahead of time. Suppose, for
example, that you want \ toto{ ... } to expand to \pre{ ... } \post , but you want the
stuff in braces to be read only after \pre is expanded, perhaps because \pre changes
some category codes. If you say \def\ toto#1 {\pre#1 \post} , T}3X will read and store
the argument before \pre has a chance to act. Here's a solution:

\def\toto{\pre\bgroup\aftergroup\post\let\dummy=}

The trick is to get rid of the left brace after \ toto, by assigning it to a dummy control
sequence. The right brace at the end of the argument balances with the \bgroup, and
its occurrence causes T}3X to process \post. Naturally, \pre and \post can contain
anything, including additional "braces" \bgroup and \egroup.

This solution assumes that the argument to \ toto will always come in braces. It is possible
to relax that assumption by looking at the character following \ toto, using \ifnextchar,
for example. But it complicates things.

For an application, see \myfootnote.

Page 132. Math mode only. Produces the Hebrew letter ~.

boxes, pages 90, 99, 101; digits, page 111; formulas, pages 154, 187; radicals, page 144;
subscripts and superscripts. page 136.

Pages 102-129; exploded view of, pages 102, 114; and group nesting, pages 104, 157; in
macros, page 169; in math, pages 147, 154-155, 157-163, 186-189; opening up, pages 112-
113, 152, 154-155, 157, 186; spanning columns of, page 128; spillover entries, pages 108,
123.

alignment separator
Page 172. Any character of category 4, but generally &;.

allocating a box, page 84; a register, page 179.

\allowbreak Page 76. An abbreviation for \penal ty 0. It gives T}3X permission to break a line or page
at a point where it would not consider it otherwise. Useful in long math formulas:

$(x_O,\dots,x_{i-1},\hat x_i,\allowbreak x_{i+1},\dots,x_n)$

\alpha Pages 132, 185. Math mode only. Produces the Greek letter a.

alphabetic constants
See '

alternatives See \cases.

\amalg assignment Dictionary and Index 199

\amalg Page 133. Math mode only. Produces the binary operator Il. Compare \coprod U.
Americal Mathematical Society (AMS)

Page 4-6,30,34. See also \bb, \varnothing, negations.

ampersand See &:, \&.

Page 5.

Page 132. Math mode only. Produces the symbol L.

angle brackets
See \langle, <.

angstrom See \AA.

antimatter

apostrophe

\approx

Arabic

Page 48.

Page 18.

Page 134. Math mode only. Produces the relation~. Compare \sim "', \simeq c::',

\cong ~.

Page 7.

\arccos, \arcsin, \arctan
Page 140. Math mode only. Produce the abbreviations arccos, arcsin, arctan, which
function as large operators with no limits.

\arg Page 140. Math mode only. Produces the abbreviation arg, which functions as a large
operator with no limits.

arguments Pages 51, 167-171. While TJ3X is reading a macro's arguments, it scans at high speed,
paying heed to nothing but the expected delimiter, and to braces, which must balance inside
the argument. In particular, macros are not expanded, and \if ... \fi pairs don't have
to balance. Once an argument has been read, its characters have become tokens, and their
category codes can no longer change. Sometimes one needs a macro whose "argument" is
not read beforehand: see \myfootnote and \aftergroup. You can also have optional
arguments: see \ifnextchar.

argument character
Page 172. Any character of category 6, but generally #.

Arhus Page 19.

arithmetic

arrays

arrows

of glue, see page 42 and \hbadness; on registers, page 182.

See \matrix, \diagram, \Eqalign, \system.

above symbols, pages 145; horizontal, pages 46; in diagrams, pages 161; in math, pages 134,
145-146,161; to mark reference point, page 98; vertical, pages 134, 146.

The Art a/Computer Programming
Page 1.

Artificial Intelligence
Page 2.

ASCII code

aspiring wizard

assignment

Pages 4, 8, 172. See also ~ ~ , \catcode, \sf code, \mathcode.

sections for, pages 26, 32,62,90, 186.

Page 179; see also =. Examples of assignments are given on pages 29, 64, 84,166,173,
178.

200 A Beginner's Book of T£?(\ast - bars

\ast

asterisk

\asymp

at

at sign

\atop

Page 153. Math mode only. Produces the binary operator *. The character * has the same
effect.

See *.
Page 134. Math mode only. Produces the relation::=:o

Page 30. Keyword used in registering a font, if the font is to be used at other than its design
size: \font\bigten=cmrl0 at 12pt. See examples on pages 92, 96.

See (0.

Pages 142, 147. Math mode only. Stacks two formulas atop one another, as if to form
a fraction, but without the horizontal bar. Here's a non-obvious use: the matrix (~~),
which fits comfortably in a paragraph, isn't easy to generate with \matrix. Use instead
$\bigl({a \atop b}{c\atop d}\bigr)$.

\atopwithdelims

author

Page 142. Math mode only. Variant of \atop that surrounds the stacked formulas with
delimiters:

$$q+{x+u \atopwithdelims<> x+vw}$$ q + (xX :v:)
Used rarely, because there are abbreviations \choose, \brace and \brack for the most
common cases.

See \runningauthor.

avatars of TEX Page 5.

axis Pages 100-101, 144, 148. An imaginary horizontal line used as reference for the placement
of a \vcenter box and of many mathematical symbols, like -, +, ., and fraction bars.
The axis height is stored in the register \fontdimen22\textfont2. To lower something
that's centered about the axis so it's centered about the baseline, you must say

\lower\fontdimen22\textfont2\hbox{ ... }

The same construct with \raise achieves the opposite effect.

\b Page 20. Places a bar under the following character: ~. Works in text mode only; for math
mode, or for more than one character in text, see \underline.

backs lash See \, \backslash, \setminus.

\backslash Page 133. Math mode only. Produces a backslash \. The same symbol is obtained with
\setminus , but the spacing is different:

$H\backslash G/K$, $X\setminus Y$ H\ G / K, X \ y

backspacing Pages 39, 44, 48, 61, 123, 159.

badness Page 41; see also overfUll, underfull, \hbadness, \vbadness, \pretolerance, and
\tolerance.

Baillie, Kate Page 60.

balance of power
Page 77.

balancing columns
Pages 98.

bars Pages 20, 145-146; see also rules and the next entry.

\bar begin/end-math Dictionary and Index 201

\bar

baseline

Page 137, 145. Math mode only. Places a small bar over the following character: ii. Its text
counterpart is \=. For a longer bar, or a bar over several characters, see \overline.

Pages 78-80, 86-87,97-98, 100, 143.

\baselineskip

Basho, Matsuo

Page 93. One of TEX's glue variables: it controls the normal distance between baselines
of consecutive boxes or lines of text that are being stacked vertically. The value used to
separate the lines of a paragraph is the value at the end of the paragraph, so if you change
\baselineskip inside a group you must say \par before closing the group, or the last
paragraph won't be affected (cf. page 54).

Plain TEX sets \baselineskip=12pt, for use with 10-point fonts. You can modify this
value directly or indirectly, using \openup. The \normalbaselines macro resets the
default value; some macros like \matrix include a call to it (pages 159-160, 186). See
also pages 112-113 for its effect on tables.

Page 53.

Basic Page 65.

\batchmode Causes TEX to run without stopping for errors, no matter how serious, and not to print
anything on your screen. Typing q in response to an error has the same effect (page 15).
See also error checking.

\bb Pages 34-35. Not part of plain TEX. Some mathematicians prefer using "blackboard bold"
letters Z and lR instead of Z and R, even when they're not at the blackboard. If you're one
of them, try

\font\tenbb=msbm10 \textfont\bbfam=\tenbb
\font\sevenbb=msbm7 \scriptfont\bbfam=\sevenbb
\font\fivebb=msbm5 \scriptscriptfont\bbfam=\fivebb
\newfam\bbfam \def\bb{\fam\bbfam}

After that, $\bb R$ will give R and so on. This assumes your system has the appropriate
fonts msbm10, etc., which are not part of the Computer Modem family; if not, you can
get them from the American Mathematical Society. (The fonts come with macro files
amssym. def and amssym. tex that define a command \Bbb that is essentially the same
as \bb, so if you \input these files you don't have to worry about the definition above.)

\bbuildrel Pages 149, 170. Not part of plain TEX. Like \buildrel, but lets you add labels both above
and below an arrow or other relation.

beauty See aesthetics.

beads Pages 24, 78-79.

Beebe, Nelson
Pages xii, 241.

Beeton, Barbara
Page xii.

\begin Pages 24. Not part of plain TEX. This ft.T!¥, macro starts an environment, which must be

begin/end-math

ended by a corresponding \end command. The \midinsert ... \endinsert construc-
tion of plain TEX might be written in ft.T!¥, \begin{insert} ... \end{insert} .

Page 172. Any character of category 3, but generally $. Any begin/end-math character
can terminate a group started by another.

202 A Beginner's Book of Tg< begin-group character - bicycle mechanics

begin-group character
Page 172. Any character of category I, but generally { . Any end-group character can match
any begin-group character. Therefore begin- and end-group characters must be balanced
inside a macro definition; to define a macro that starts a group but doesn't end it, you must
resort to \bgroup.

\begingroup Pages 23-24. Marks the beginning of a special-purpose group, which must be ended by
\endgroup. Mostly used in the definition of macros in certain packages that do error
checking: otherwise { and \bgroup are sufficient.

beginning a paragraph
See mode changes.

\beginsection
A plain TJY(command to start a new section in a document. The section title is delimited
by a \par or empty line, and printed in bold: \beginsection Conclusion \par The
optimist ... gives

Conclusion
The optimist thinks we live in the best of possible worlds. The pessimist agrees.

This macro is \outer, that is, it is not allowed to appear in macro definitions and in certain
other situations. To get around this, see \outer.

See also \section.

\belowdisplayshortskip, \belowdisplayskip

Benares

Berber

Bergstr0m

\beta

\bf

\bffam

\bgroup

Page 131-132. Two of TJY('s glue variables: they control the amount of vertical spacing
between a displayed math formula and a following line of text in the same paragraph. The
first value is used if the end of the line preceding the formula is at least two quads to the left
of the beginning of the formula.

\belowdisplayshortskip=7pt plus 3pt minus 3pt
\belowdisplayskip=12pt plus 3pt minus 9pt

See also \eightpoint.

Page ISS.

Page 21.

Page 19.

Page 132. Math mode only. Produces the Greek letter (3.

Pages 28, 34-37, 135. Switches to a boldface font, in text or in math mode. Normally
should be used inside a group, so its effect goes away when the group ends.

In plain TJY(\bf always switches to the text font \tenbf, and to the math family
\bffam. To set things up so that \bf switches to a boldface font in the current size, see
\eightpoint and \tenpoint.

Page 34-36. A name for the boldface font family to be used in math mode. To select that
family, say \fam\bffam. The \bf command does this.

Pages 23-24. Another name for the left brace {. Its use is necessary for unmatched braces
inside a macro definition or token list: see an example on page 167.

bibliographies Pages 21, 37, 136, 169.

bicycle mechanics
Page 99.

Bilbo Baggins - \Bigm Dictionary and Index 203

Bilbo Baggins Page 11 .

\big, \Big Pages 146-148. Math mode only. \big makes a following delimiter slightly bigger, but
not so big that it will disturb the spacing between lines in a paragraph; while \Big makes
it half again as big as the corresponding \big delimiter. Here are all of TEX's delimiters,
in regular size, \big size and \Big size:

() [l {} LJ r 1 () / \ III i 1'tl ~ 1 n
O[]{HH10/\11I TillJJ-l:G:

() [] { } lJ fl () / \ III r ~ 1 n I n
These commands are commonly used only with / and \backslash. The variants \bigl,
\bigm, \bigr and corresponding \Big ones are to be preferred, because they put the
right amount of spacing around the delimiter.

\bigbreak Page 77. Causes a conditional vertical skip by \bigskipamount, and marks the place as
a very good one for a page break. If the \bigbreak was preceded by another skip, the
lesser of the two is canceled; in particular, two \bigbreak s have the same effect as one.

\bigcap Page 133. Math mode only. Produces the large operator n, n. Compare \cap n.
\bigeirc Page 133. Math mode only. Produces the binary operator O. Compare \eirc o.

\bigcup Page 133. Math mode only. Produces the large operator U, U. Compare \cup U.

\bigg. \Bigg
Pages 147-148. Math mode only. \bigg makes a following delimiter twice as big as the
corresponding \big delimiter, while \Bigg makes it two and a half times as big:

() [] {} lJ fl () /\llIii lnlli
O[]{}lH10/\ nan

These commands are commonly used only with / and \backslash. It's preferable to use
the variants \biggl, \biggm, \biggr and corresponding \Bigg ones, because they
put the right amount of spacing around the delimiter.

\biggl, \Biggl
Pages 146-147. Math mode only. Like \bigg and \Bigg, but used before an opening
delimiter.

\biggm, \Biggm
Pages 146-147. Math mode only. Like \bigg and \Bigg, but used before a relation
(generally a vertical bar or arrow).

\biggr. \Biggr

\bigl. \Bigl

\bigm. \Bigm

Pages 146-147. Math mode only. Like \bigg and \Bigg, but used before a closing
delimiter.

Pages 146-147. Math mode only. Like \big and \Big, but used before an opening
delimiter.

Pages 146-147. Math mode only. Like \big and \Big, but used before a relation
(generally a vertical bar or arrow).

204 A Beginner's Book of T g< \bigodot - \bmod

\bigodot Page 133. Math mode only. Produces the large operator 0, O. Compare \odot 0.

Page 133. Math mode only. Produces the large operator (B, Ef). Cf. \oplus E9. \bigoplus

big point See bp.

\Bigr \bigr,
Pages 146--147. Math mode only. Like \big and \Big, but used before a closing delim-
iter.

\bigskip Page 40. Causes a vertical skip by \bigskipamount. See also \bigbreak.

\bigskipamount
One of TPC's glue variables: it controls the amount of a \bigskip. Plain Tpc sets it to
12pt plus 4pt minus 4pt . See also \eightpoint.

\bigsqcup Page 133. Math mode only. Produces the large operator U, U. Compare \sqcup U.

\bigtriangledown
Page 133. Math mode only. Produces the binary operator 7. (There is no corresponding
\triangledown .)

\bigtriangleup
Page 133. Math mode only. Produces the binary operator 6., which is the same symbol
as \triangle, but with spacing on both sides. Compare also \triangleleft <I and
\triangleright [> (there is no \triangleup.)

\biguplus Page l33. Math mode only. Produces the large operator ~, l±J. Compare \uplus ltl.

\bigvee

\bigwedge

binary operator

Page 133. Math mode only. Produces the large operator V, V. Compare \vee V.

Page 133. Math mode only. Produces the large operator /\, " . Compare \wedge I\.

Page 131, 133, 153. A symbol or subformula of class 2. A binary operator preceded and
followed by letters or subformulas is separated from them by a medium space (given by
\medmuski p). But if nothing precedes the operator in the same subformula, or if nothing
follows it, no spacing is placed either before or after it: the operator is assumed to be unary.
Thus $(-x)$ gives (-x), while $({}-x)$ gives (-x). As with any symbol, you can
deprive a binary operator of spacing altogether by placing braces around it. Also, the spacing
is never put in in script and scriptscript styles. See also \mathbin.

binomial coefficients
See \choose.

birds, extant and extinct
Page 109.

bitmap fonts Page 31.

blackboard bold

black box

blank

\bmod

See \bb.

See \overfullrule.

box, pages 46,89; line in input, pages 38, 52, 54, 171; page, page 69; space, see sP, spacing.

Math mode only. Produces the abbreviation mod, considered as a binary operator. To be
distinguished from \pmod, which prints a "modulo condition" in parenthesis:

$y=x\bmod a$ y = x mod a
$x\equiv y\pmod n$ x == y (mod n)

boldface - \brace Dictionary and Index 205

boldface Pages 27-29.

book. mac Pages 50, 174. File containing macro definitions and style settings for this book.

boolean variables
See \if , \newif.

\bordermatrix
Math mode only. Creates a matrix bordered with labels. An n x n border matrix is input
like a normal (n + 1) x (n + 1) matrix with the upper-left comer entry empty. TEX places
parentheses at the right places.

$$A=\bordermatrix{
& P & q \cr

p & I_p & 0 \cr
q & 0 & J_q \cr }$$

p q

A=:(~ ~)
Boston Computer Museum

Page I.

\bot Page 132. Math mode only. Produces 1.., the same character as \perp, but without spacing
around it.

\botmark The mark text most recently encountered on a page just completed by TEX. See \mark.

Bourbaki, Salocin
Page 71.

\bowtie Page 134. Produces the relation 1><1, made with \joinrel from \triangleright and
\triangleleft.

boxes Page 78; arrangements of, pages 89-90, 97-98, 101; baseline of, pages 86--87; blank,
page 89; centered, see \vcenter; character, pages 78, 80, 86; comer, page 92; dimensions
of, pages 79-80, 88-89, 91; explicit, page 83; framed, see \boxit; and glue, pages 81,
93; and groups, pages 24, 83; horizontal, page 80; lowering, page 87; moving right and left,
page 88; placing side by side, page 90; raising, page 87; register, pages 84, 178-179; and
rules, page 81; splitting, page 98; storing, pages 84, 178-179; unboxing, page 85; using,
page 85; vertical, page 79; void, page 185.

\box Pages 85, 178-179. 181. Uses a previously stored box, and erases it: after

\boxit

bp

\brace

\setbox2=\hbox{ ... }\box2

box 2 is void. This erasure is not an assignment: it works across groups, up to the level
where the box was assigned to. In other words, replacing \box2 by {\box2} in the line
above wouldn't preserve the contents, even outside the group.
The \box command must be followed by an integer between 0 and 255, either explicit or
symbolic (i.e., an integer register or variable). Except for boxes 0 through 9, which can be
used for temporary storage, all other boxes should be allocated using \newbox: pages 84,
179.

Page 97. Not part of plain TEX. Puts its argument into a box and draws a frame around it,
leaving a specified amount of white space: \boxi t{2pt}{ toto} gives 1 toto I.

A keyword for big point, one of TEX's units. A big point is just a tiny bit bigger than a
regular point pt : by definition, one inch equals 72 big points.

Page 142. Math mode only. An abbreviation for \atopwithdelims\{\}:

$$p+{n \brace k}$$.. p + {~ }

206 A Beginner's Book of T e< braces - caret

braces

\brack

brackets

\break

breaking

in input, see {, groups, \bgroup; horizontal, pages 46, 145; vertical, pages 135, 146, 155.

Page 142. Math mode only. An abbreviation for \atopwithdelims [] :

$$p+{n \brack k}$$.. p + [~]
See [.

Page 76. An abbreviation for \penal ty -10000. It forces TFC to start a new line, if
in horizontal mode, or a new page, if in vertical mode. A line break does not start a new
paragraph. \break doesn't add any glue, so generally it makes the line or page underfull
unless you precede it with \hfill or \vfill. Also, xyz \break introduces a space
after xyz. For examples of use, see pages 46, 59, 70, 76, 95.

lines, pages 41, 44, 53, 70, 75-77; pages, pages 41, 44, 75-77; tables, page 105; formulas,
see page 153, *, \allowbreak. See also \break, hyphenation, discretionary, fine
tuning.

\breve Page 137. Math mode only. Places a breve accent over the following character: a. Its text
counterpart is \ u .

Breze, Pierre de
Page 60.

Buddha Page 155.

\buildrel Pages 148, 170. Places a symbol or group above another, as if superscripted: $\buildrel

\rm def \over{=}$ gives ~f. The material between \buildrel and \over forms a
group by itself, but a group after the \over must be explicitly marked. See also \mathop,
\bbuildrel.

bugs Page 5.

\bullet Pages 50, 133. Math mode only. Produces the binary operator e, also commonly used with
the \item and \meti macros.

by Page 183. Keyword used with the arithmetic operations \advance, \multiply and
\di vide: \advance \pageno by 1. In each case, by can be omitted.

\bye Pages 16, 76. The recommended way to end a TFC run: see examples on pages 11-12,
25-26,75.

\c Pages 20, 21. Places a cedilla under the following letter: Fran\c cois yields Fran~ois.
Not for use in math mode.

C version of TE'(
Page 6.

caddish behavior
Page 18.

\cal Pages 130, 136, 149. Math mode only. Switches to a font that has calligraphic capitals:
$\cal ABC$ gives ABC. If you don't put it inside a group the whole formula is typeset in
this font, with ludicrous results:

\cap

capitals

captions

caret

$\cal A*b+c*T+x/y-z$ A * l + J * T + §/t - t
Page 133. Math mode only. Produces the binary operator n. Compare \bigcap n.
See \uppercase. For caps and small caps, see pages 29, 169.

See legends.

See-,\-.

carriage return - Raymond Dictionary and Index 207

carriage return

carrot and stick

\cases

\catcode

category

cc

\cdot

\cdotp

\cdots

cedilla

centering

See CR, \cr.

See penalties.

Page 147, 159, 169, 186. Math mode only. For the enumeration of two or more cases in
formulas:

$\varphi(x) = \cases{
o & if $x\leq O$,\cr
e A {-l/x} & otherwise. \cr}

cp(X) = {~-l/X if x ~ 0,
otherwise.

On each row, the material before the & is typeset in math mode, and the material after in
horizontal mode. To separate the rows, use \noalign{\smallskip} immediately after
each \cr, because \openup has no effect.

Pages 172-173, 175-177. Followed by the ASCII code of a character or a construction
of the form '\X, functions as an integer register that holds the character's category (see
pages 178-179 for registers). For example, to change the category of ~ to "letter" you say
\catcode' \~=11 ; to save the current category in a register, \oldcode=\catcode' \~ ;
to print it on the screen, \showthe \catcode' \~ .

Pages 172-173. Number between ° and 15 indicating what function a character currently
serves. See also \catcode, \active, active characters.

A keyword for cicero, the pica's counterpart in most European countries. A cicero is 7%
bigger than a pica.

Page 133. Math mode only. Produces the binary operator·, which is vertically centered:

$x\cdot y=x_ly_l+\cdots+x_ny_n$ X· Y = X1Yl + ... + XnYn

Same as \cdot, but treated as punctuation. Sometimes useful after a fraction in display
math mode:

1 1
$x={1 \over 2}+{1 \over 3}. $ x = 2 + 3·

1 1
$x={l\over 2}+{1\over 3}\cdotp$ x = 2 + 3·
To raise other punctuation marks, see axis.

Pages 145, 160. Math mode only. Produces three dots at the right height to be placed
between operators such as +, -, x, =, <, >, C and ::>. See an example under \ cdot .

See \c.

alignment entries, page 104; numerator or denominator, page 43; tables, pages 105, 119,
123; text line by line, page 57; vertically, page 101. See also the next entry and $$.

\centerline Page 68. Centers what follows in braces: \centerline{\bf Chapter 2} gives

centimeter

Chapter 2
\centerline works by creating a box the same width as the page, so it must be used in
vertical mode. If you use it inside a paragraph, you'll get an overfull box. \centerline
uses springs \hss that can stretch or shrink indefinitely, so the centered material can spill
over the margins without Tpc complaining about an overfull box. See examples on pages 12,
15,16,49-50,69-70,89-90,119.

See cm.

Chandler, Raymond
Page 66.

208 A Beginner's Book of T £X \chapter - \chi

\chapter

\char

characters

\chardef

Page 51. Not part of plain TEX. Macro used in this book to start a new chapter; compare
\section and \subsection . It takes two arguments, the chapter number and the title.
The definition on page 51 was a fib; the real definition is the following:

\def\chapter#1#2{\vfil\eject
\message{Chapter #1. #2}
\chapno=#1 \sectno=O % for automatic section numbering
\chaptitle={#2} % used in \oddpagehead
\notenumber=O % for automatic footnote numbering
\rightline{\chapnumfont #1}\medskip
\rightline{\chaptitlefont #2}\vskip 14pc
\hrule height Opt % to prevent \section from

% deleting the \vskip
\pagetitletrue} % no header or footer

Page 36. Followed by an integer 0 :::: n < 256, prints the character in position n of the
current font. The integer can be expressed in any notation, or come from a register, etc. (see
page 181). In text fonts the position of ASCII characters normally occurring in text generally
corresponds to their ASCII codes. For example, the ASCII code of 'a' is 97, so \char97 or
\char) 141 or \char"61 or \char' \a all print a if the current font is cmr10, plain
TEX's basic font.

The contents of other slots in the fonts is unpredictable: \char 15 or \char) 017 or
\char"F or \char'\""O prints fR if the current font is cmr10 ", but l. if the font is
cmttlO. One common case is \char' \\ , which prints a backlash if the font has one, as
is the case with typewriter fonts, but prints " with cmr10 .

A character token of category letter (11) or ordinary (12) similarly causes TEX to print
whatever is in the position of the current font that is given by the character's ASCII code.
Thus typing \char' \X gives the same result as {\catcode' \X =12 X}. TEX's internal
operations \the, \string, \number and the like create tokens of category 12, so
\string X will again produce the same result (unless X is an escape character, in which
case TEX will read in a control sequence token and apply \string to that).

active, pages Ill, 173-176; as boxes, pages 78, 80, 86; category of, pages 173; dimensions
of, pages 9,80; in vertical mode, pages 25, 52, 82, 88, 109, 120. See also \char.

Page 36. Makes the following control sequence an abbreviation for a \char construction:
after \chardef\&=' \&, the control sequence \& gives the same result as \char' \& .
This is how \& is defined in plain TEX. A control sequence defined with \chardef is also
accepted for its numerical value, whenever TEX is expecting an integer (page 194). See also
\mathchardef.

Charolais, Count of
Page 60.

Chateau Margaux

\check

chewing

\chi

Page 58.

Page 137. Math mode only. Places a haeek (check mark) over the following character: C.
Its text counterpart is \ v. Some mathematicians like the same character to the right of
the letter, as a superscript: the best way to do this is to define a new control sequence with
\mathchardef\checkchar"7014. Then $C\checkchar$ gives C-.

See lexical analysis.

Page 132. Math mode only. Produces the Greek letter x.

\choose comments Dictionary and Index 209

\choose Page 142. Math mode only. An abbreviation for \atopwi thdelims 0 :

\eirc

$$p+{n \choose k}$$... p + (~)
Pages 133. Math mode only. Produces the binary operator 0; used on page 149 to build
up a new symbol. Can also be used as an exponent, to indicate degrees: $180 A {\circ}$
gives 180°.

Christmas tree ornament
Page 144.

cicero

circumflex

See cc.

See \ A , \hat, \widehat.

class of math symbol
Pages 36, 131 and following. Controls the amount of spacing placed around the symbol.

\cleartabs Page 125. Clears all tabs previously set or, if it occurs between \+ and \cr, all tabs to the
right of the current position.

clones Page 165; see also \let.

close quotes Page 18.

closing delimiters
Page 131, 135; see also \bigr, \right. No space is placed between a closing delimiter
and the preceding symbol, unless that symbol is a punctuation mark and the style is display
or text. But spacing is placed after a closing delimiter that is followed by a large operator,
a binary operator, a relation or an inner subforrnula, according to the rules for each of these
classes. See also \mathclose.

club line Page 75. The first line of a paragraph stranded on a page by itself. You can prevent club
lines by setting \clubpenalty=10000.

\clubsuit Page 132. Math mode only. Produces the character •.

cm Pages 32, 39. A keyword for centimeter, one of TEX's units. By definition, an inch equals
2.54 cm.

cmr, emit,
See Computer Modern fonts.

code typesetting of, page 128; see also verbatim mode.

coding hints See discipline.

\colon Math mode only. Produces a colon without any spacing before or after, unlike : , which is
a relation. For example, $f\colon g$ gives f: g. See \mathchar for the definition of
\colon.

columns Pages 102, 119, 122; common features in, pages 104, 107; glue between, page 117; of
numbers, page Ill; rules between, pages 114, 121, 127; width of, pages 103, 124.

\columns Page 124. Used with \settabs to set tabs at regular intervals. For example, \settabs
4 \columns sets tabs one-quarter of the way across the page, halfway and three-quarters of
the way.

comma See, .

commands See control sequences, macros.

comments Page 18; see also'!. .

210 A Beginner's Book of T EX

common features in column
Pages 104, 107.

comparison of \halign and \ +
Page 129.

compilation Page 3.

compound words
Pages 19, 166.

common features in column - \cornerbox

Computer Modem fonts, pages 27, 29-30, 36; Museum (Boston), page 1; networks, page 4; science
jargon, pages 3, 23; typesetting, pages 1-2; voice, see verbatim mode.

Computers and Typesetting
Pages 1,6.

commutative diagrams
See \diagram.

condensed fonts
Page 30.

conditionals Pages 183-185. In addition to the tests explained there, TEX has a number of more esoteric
tests: see \if and succeeding entries. See also \newif, \loop.

\cong Page 134. Math mode only. Produces the relation~. Compare \sim "-', \simeq ~,
\approx >::i.

Considerations sur les causes de la grandeur des Romains et de leur decadence.
Page 108.

context lines Page 15.

continued fractions
Page 141.

control sequence
Pages 8,10,19,164,173,176-178. A sequence of input characters that starts with an escape
character (generally the backslash) and is transformed into a single, indivisible token. See
escape character for the exact rules of how the control sequence name is determined.
Most control sequences are either primitives or macros, but there are other commands that
give meaning to control sequences, including \let, \font, \chardef, \mathchardef,
\countdef, \dimendef, \skipdef, \muskipdef,and \toksdef.

control structures

\coprod

\copy

Page 183.

Page 133. Math mode only. Produces the large operator 11, U. Cf. \amalg ll.

Pages 85, 179, 181. Uses a previously stored box without erasing it:

\setbox2=\hbox{ ... }\copy2\copy2

makes two copies of box 2. \copy must be followed by an integer, between 0 and 255,
either explicit or symbolic (i.e., an integer register or variable). Except for boxes 0 through
9, which can be used for temporary storage, all boxes should be allocated using \newbox:
pages 84,179.

\copyright Produces the symbol @.

\cornerbox Page 92. Not part of plain TEX. Macro used to place a big letter (dropped cap) or other
material in the upper left comer of a paragraph.

\cos - Cray Dictionary and Index 211

\cos, \cosh, \cot, \coth
Pages 140, 143. Math mode only. Produce the abbreviations cos, cosh, cot, coth, which
function as large operators without limits.

\ count Pages 178-183. Refers to one of TFX's 256 numbered registers for integers. Except for
\count255 , which can be used for temporary storage, all other registers should be allocated
using \newcount.

\countdef

CR

The value of \countO is printed on the terminal when a page is output, in brackets: [1]
[2] [3]... This register is also referred to as \pageno, and ordinarily contains the page
number. But \count1 to \count9 can also be used to store other levels of page numbers
or subdivisions, and their contents, too, are printed on the terminal if non-zero: [1.0.4]
is printed if \countO is 1, \count1 is 0, \count2 is 4 and \count3 through \count9
areO.

Makes the following control sequence an abbreviation for a \count construction: after
\countdef\pageno=O, the control sequence \pageno can be used intechangeably with
\countO. In practice \countdef is almost never used, because \count registers should
be allocated with \newcount: see previous entry and page 180.

The basic rule on page 38 is that one carriage return character (CR) equals one space, and
two or more CRS in a row start a new paragraph. The actual rule is a bit more complicated.
It's here for reference, but maybe you'll never have a reason to read it. Then again, maybe
you will. ..

From TFX's point of view your input file is divided into lines, separated by the CR character,
whose ASCII code is 13. This may not be the actual character your operating system uses to
separate lines, but TFX effectively starts the processing of every line by throwing out spaces
SP at the right end of the line and adding a CR there.

What happens next depends on the category of CR (page 172). If its category is end-of-line,
the normal case, TFX will tum it into a space, except that: (a) if the current line was empty,
except perhaps for characters of category space, the CR turns into \par instead; (b) if the
last thing on the line, except perhaps for characters of category space, was a control sequence
made of letters, the CR is ignored.

If CR has any other category, it is treated accordingly. The most common case is to make CR
active: see \obeylines.

Notice that TFX never gets to the CR if it sees a comment character while it's reading the
line. Thus you can comment out active CRs (page 53).

A CR can sneak into the middle of a line in the form - -M . If it has category 5, TFX will treat
it as if it were at the end of the line, ignoring the rest of the line. This happened on page 175.
TFX will treat in the same way any character of category 5.

Naturally, the CR you type to get TFX going again after an error message (page 15) or after it's
shown something on the screen (page 180) is not considered part of the input. Furthermore,
a line inserted from the terminal in response to an error message (page 15), starting with i
or I, does not get a CR at the end.

\CR This control sequence is read when there is a \ at the end of a line, as explained under CR.
It has the same meaning as \sP.

\ cr Pages 103, 119, 122. Indicates the end of each row of a horizontal alignment obtained with
\halign or \+, or each column of a \valign. Also used in many macros that perform
alignments: see pages 147, 154-158, 186-190.

Cray Page 5.

212 A Beginner's Book of TEX \crcr - \def

\crcr Page 105, 186. Turns into a \cr unless it's already placed right after a \cr or \noalign
construction; in those situations it does nothing. Used in defining alignment macros.

\cup Page 133. Math mode only. Produces the binary operator U. Compare \bigcup U.
\csc Page 140. Math mode only. Produces the abbreviation csc, which functions as a large

operator without limits. On page 169 we redefined it to print a word in caps and small caps.

current font Pages 39-40, 47, 66, 101, 140; see also \font, \fam.

Cyrillic fonts Page 30. The American Mathematical Society distributes a set of Cyrillic fonts for bibli
ographies.

Czech accent see \ v .

\d

\dag

\dagger

dash

\dashv

date

\day

dd

\ddag

\ddagger

\ddot

\ddots

debugging

Page 20-21. Places a dot under the following character: Kr\d sna gives Kr~na. Works
in text mode only.

Page 91. Produces the symbol t, in text or math mode. But see also \dagger t.
Page 133. Math mode only. Produces the binary operator t. Unlike \dag, this responds to
style changes (in subscripts, etc.), and gets spacing automatically.

Page 19.

Page 134. Math mode only. Produces the relation -t Compare \ vdash f-.

See \today.

One of TPC's integer variables: it contains the current date (according to your computer's
operating system). To print it you must precede it by \the or \number (page 180).

A keyword for didot point, the point's counterpart in most European countries. A didot
point is 7% bigger than an Anglo-Saxon one.

Produces the symbol t, in text or math mode. But see also \ddagger t.
Page 133. Math mode only. Produces the binary operator t. Unlike \ddag, this responds
to style changes (in subscripts, etc.), and gets spacing automatically.

Page 137. Math mode only. Places two dots over the following character: 0,. Its text
counterpart is \" .

Pages 12, 160. Math mode only. Produces three descending dots·· ..

See error checking and recovery, \show and subsequent entries, \ tracingcommands and
subsequent entries.

decimal constants

decimal

Tpc works mostly with integers, but in certain cases it understands decimal constants, as
when reading a dimension. The specification of a decimal constant is simple: an optional
sign, followed by optional digits, followed by . or , (continental notation), followed by
optional digits. Therefore a decimal point by itself is a valid decimal constant!

comma, see the preceding entry; point, see page 132 and the preceding entry; representation,
see page 181 and integers.

Decline and Fall of the Roman Empire
Page 108.

\def Page 167-171. Next to \ TeX , probably the most heavily used control sequence in this
book. It defines a macro: see examples on pages 23, 35-36, 86, 105, Ill, 125, 165, 173,
175. See also \edef, \gdef, \let.

\deg \dimendef Dictionary and Index 213

\deg Page 140. Math mode only. Produces the abbreviation deg, which functions as a large
operator with no limits.

degrees See \eire o.

DEL Page 172. The ASCII character with code 127; plain TEX makes it of category 15 (invalid).

\delta, \Delta
Pages 132, 151. Math mode only. Produce the Greek letter 8, ~.

delimiter for macro arguments, page 169; in math, pages 129, 135, 146.

demerits Page 75.

demibold font Page 30.

dependencies See implementation dependencies.

depth

depth

of boxes, see pages 78-80, \dp; of characters, page 9; of rules, see next entry. See also
dimensions.

Page 94. An optional specification after \hrule or \ vrule ; must be followed by a di
mension. A horizontal rule without an explicit depth will have depth zero; a vertical rule
without an explicit depth will be as deep as the immediately enclosing box or line.

Descartes, Rene
Pages 55-57.

descenders See pages 96, 112, \underbar, \underline.

\det Pages 140, 158. Math mode only. Produces the abbreviation det, which functions as a large
operator, with limits in display style. To get a matrix flanked by vertical bars, write

\leftl\matrix{ ... }\rightl

device dependencies, see implementation dependencies; independence, pages 3, 9.

diagonal arrows, pages 135, 163; dots, pages 160.

\diagram Pages 161-163. Not part of plain TEX. Allows the creation of diagrams with arrows and
letters.

\diamond Page 133. Math mode only. Produces the binary operator o.

\diamondsuit
Pages 101, 132. Math mode only. Produces the symbol <).

dictionary of macros
Page 165.

dieresis See \".

digital typography
Page 2.

digits Pages 17, 131, 164; aligning, page 111. See also error checking and recovery.

\dim Pages 140. Math mode only. Produces the abbreviation dim, which functions as a large
operator with no limits.

\dimen Pages 178-183. Refers to one ofTEX's 256 numbered registers for dimensions. Except for
\dimenO through \dimen9 and \dimen255, which can be used for temporary storage,
all other registers should be allocated using \newdimen.

\dimendef Makes the following control sequence an abbreviation for a \dimen construction. Used
like \eountef. In practice \dimendef is almost never used, because \dimen registers
should be allocated with \newdimen: see previous entry and page 180.

214 A Beginner's Book of T g< dimension - \displaylinesno

dimension of boxes, pages 79,88,91; of characters, pages 9,80; of glue, page 81; registers, pages 178-
183. When TEX is expecting to read a dimension (page 181), it will accept either an "internal
dimension," optionally preceded by a sign, or a number followed by a unit. An internal
dimension is a construction of the form \dimen n, or any control sequence defined with
\newdimen, or a dimension variable like \parindent, or a font or box dimension (see
\fontdimen, \dp). A unit is a physical unit like cm (see units), optionally preceded by
true, or one ofthe font-dependent units em and ex , or an internal dimension. The number
preceding a unit can be any integer (see integers), or a decimal constant. Therefore .5\dpO
and \hangafter\baselineskip are valid dimension specifications.

Notice that a number by itself--even O-is not a sufficient dimension specification. It must
be followed by a unit.

disappearing glue
Pages 44, 68.

Discours de la methode
Pages 55-57.

discipline in source file, pages 51,104-105,123,131,152,165,179.

discretionary A discretionary text is a text that should be typeset differently depending on whether or not
it is broken across lines. Every word of more than one syllable is an example: if a word is
broken across lines, the first part is terminated by a hyphen. We can think of the word as
containing implicit discretionary hyphens, like this: won\-der\-ful, where \- typesets
as a hyphen or as nothing, depending on whether or not there is a break there (page 166).
For another example, see * and the next entry.

\discretionary
Implements a general discretionary text: \discretionary{ x H y Hz} will print z if
it doesn't have to be broken, but it will print x at the end of a line and y at the beginning
of the next otherwise. Here x, y and z represent sequences of characters, boxes and kerns.
A discretionary hyphen \- (page 166) is equivalent to \discretionary{ - HH} . Next,
consider the German hyphenation rule that 'ck' becomes 'kk' at a line boundary: if we set
\def\ck{\discretionary{k-HkHck}}, dr\ "u{\ck}en prints as driicken or driik
ken, as the case may be.

\displayindent
One of TEX's dimension variables: it controls the amount of indentation of displayed math
formula. See \displaywidth for more details.

\displaylimits
Page 143. Math mode only. After a large operator (page 133), declares that limits (or sub
scripts and superscripts) should be placed above and below the operator in display style, but
to the right in other styles. This is the default behavior, but \displaylimi ts is useful
nonetheless to redefine an operator that has been defined with \limi ts or \nolimi ts :

\def\myint{\int\displaylimits}

\displaylines
Pages 152, 154, 157, 159, 189. Arranges several formulas in a single display, centering each
one.

\displaylinesno
Page 189. Not part of plain TEX. Arranges several centered formulas in a single display,
labeling each one individually. See also \ldisplaylinesno.

display math mode - dotless 'i' and 'j' Dictionary and Index 215

display math mode
Pages 25, 105, 130; see also \displaystyle, \displaywidth.

\displaystyle
Pages 139. Switches to display style, the biggest of the four styles of math formulas. The
change remains in effect till the end of the smallest enclosing group.

TP(starts in display style when it typesets a displayed math formula. For situations where
\displaystyle is appropriate, see pages 139, 141, 144, 162, 187. See also \textstyle,
\scriptstyle.

\displaywidth

\div

\divide

Page 189. One of Tp('s dimension variables: it controls the width of a displayed math
formula. More precisely, such a formula is centered in a box of width \displaywidth,
which is then placed at a distance \displayindent from the left margin.

TP(sets \displaywidth to the current line width and \displayindent
to the current indentation just after it reads the $$ that introduces the dis
play. In computing line width and indentation, it takes into account the para
graph's \parshape, \hangindent and \hangafter, but not the values of
\rightskip or \leftskip. Assume for concreteness that no hanging inden
tation or funny shape is in effect: the \displaywidth is set to \hsize and
\displayindent to zero. If \rightskip or \leftskip are non-zero, this
means that the display will be centered with respect to the full page, not with
respect to the indented text:

e"i + 1 = o.
If that's not what you want, you have an opportunity to fix it, because TP(doesn't actually
use the values until the end of the formula. To center a display with respect to text that has
been indented with \rightskip and \leftskip, you can say

\advance\displaywidth by-\leftskip
\advance\displaywidth by-\rightskip
\displayindent=\leftskip

somewhere before the closing $$. Or, if you have to do this for several displays, you can
say once and for all, at the top of your file:

\everydisplay={\advance ... \leftskip}

Pages 133. Math mode only. Produces the binary operator-;-.

Page 183. Divides the contents of an integer register by another integer: \di vide \pageno
by2. To divide a dimension register by two you can say \dimenO=. 5\dimenO; this doesn't
work for integers.

document description language
Page 4.

dollar sign

\dot

\doteq

See $.

Page 137. Math mode only. Places a dot over the following character: a. Its text counterpart
is \ .. For a dot under a character, see \d.

Page 134. Math mode only. Produces the relation ===.

\dotfill Pages 46, 98, 110, 156. Spring that leaves a trail of dots, also known as leaders.

dotless 'i' and 'j'
See \i, \j, \mathi, \mathj.

216 A Beginner's Book of T EX dot-matrix printer - \dump

dot-matrix printer
Page 5.

dots Here's a table of all the dots. Take your pick, and check the individual entries.

\cdot ----+ \cdotp ----+ \cdots ----+

\dots ----+ \ldotp ----+ \ldots --;

\adots --; \ddots ----> \vdots --;

\.a ----+ it \"a ----> ii \d a ----+ ~

$\dot a$ --; a $\ddot a$ ----+ a \line{\dotfill} --;

\dots Pages 11, 160. Produces an ellipsis, or three dots, in text. . . The result is better than what
you get by typing three dots ... Don't forget to say \dots\ if you want spacing after the
dots ... See also the preceding entry.

double columns, page 8; dot, see \ddot, \"; frame, page 97; indentation, page 57; quotes,
page 18; spacing, see page 93 and \spacemag; subscript or superscript, page 136.

\downarrow, \Downarrow
Pages 135, 162. Math mode only. Produce the relations 1 and JJ-. They can be extended
with \bigm and its bigger brothers, or with \left ... \right , but in any case remain
centered about the axis.

\downbracefill

\dp

\drawbox

driver

Pages 46, 116. A "spring" that makes braces opening down:

\hbox to lin{\downbracefill} , A,

Should always be put in a box by itself, because the thickness of the stroke depends on the
height of the enclosing box (page 117); for this reason it's normally used only in alignments,
or to match a box whose width is known:

\setbox2=\hbox{ ... }\vbox{\hbox to \wd2{\downbracefill}\box2}

The math mode macro \overbrace does all of this for you.

Pages 88, 181, 183. The construction \dp n is like a dimension register that contains
the depth of box n. Here n is an integer between 0 and 255, explicit or symbolic (see
\box). You can use \dp n anywhere like a dimension register, except with \advance,
\multiply and \divide.

Pages 98. Not part of plain TEX. Draws the outline and the baseline of a box with specified
height, depth and width.

Pages 5-7, 9,31. Program that takes a dvi file produced by TEX and translates the page
descriptions in it into a language understood by a particular printer, then sends the printing
commands to the printer.

dropped caps Page 92.

duality

\dump

Page 119.

A TEX run starts with the reading of a format file, like plain. tex , with definitions that
build on TEX 's primitives. Such files can be be quite long, slowing down the startup process.
However, TEX is capable of encoding this startup information in a very compact file, called
an fmt file, and of reading it back in much more quickly than it takes to read the original
source file. The regular TEX command, in effect, reads a file plain. fmt , automatically
and at high speed.

Dunhill fonts - \eject Dictionary and Index 217

If you have a format file of your own that you read in on top of plain TEX, of if you would
like to replace plain TEX altogether, you may want to be able to create an fmt file with
your definitions. To do so, you may need a special version of TEX called INITEX; consult
the documentation that came with your TEX system. You start by reading in your file in
the normal way: in the case of this book, we typed ini tex book. mac. After TEX has
digested all the information in your file, you type \dump to make TEX regurgitate and end
the run. In our case, this created a file book. fmt .

After that, we start the regular TEX by typing &book in response to the ** prompt given at
the beginning of each run. This makes TEX read the file book. fmt at high speed, and the
effect is the same as if it had read the slower book. mac file. (Again, the exact way to read
an fmt file depends on the implementation; in TEXtures, for example, you add an option to
a menu.)

Dunhill fonts Page 30.

dvi file Page 9, 15. File where TEX places the device-independent description of the pages it has
processed. The name of the file is inherited from the first input file read by TEX: for instance,
tex hobbit will read hobbit. tex and create hobbit. dvi. If the input is interactive
and no file is read on the first line of input, the output goes to texput. dvi .

economy of space, page 63, 142, 153; of memory, page 85.

\edef Defines a macro, expanding the replacement text at the time of the definition. Thus

\edef\thispage{\the\pageno}

defines \thispage to be the page number at the time of the definition, while \def ...
makes \ thispage expand to the current page number. For other examples of use, see
\outer and \spacemag.

editor Page 8.

\egroup Pages 23-24. Another name for the right brace }. Its use is necessary inside a macro
definition or token list: see an example on page 167.

\eightpoint Pages 35-36. Not part of plain TEX. Command to change font sizes across the board: after
\eightpoint , an \rm brings in an eight-point roman, \i t brings in eight-point italics,
and so on. The listing on pages 35-36 handles all the fonts, but there is also the matter of
interline spacing. For best results, add before the last line of the definition:

Eijkhout, Viktor

\eject

\abovedisplayskip=9pt plus 2pt minus 6pt
\belowdisplayskip=\abovedisplayskip
\abovedisplayshortskip=Opt plus 2pt
\belowdisplayshortskip=5pt plus 2pt minus 3pt
\smallskipamount=2pt plus 1pt minus 1pt
\medskipamount=4pt plus 2pt minus 2pt
\bigskipamount=9pt plus 4pt minus 4pt
\setbox\strutbox=\hbox{\vrule height 7pt depth 2pt width Opt}%
\normalbaselineskip=9pt \normalbaselines

Page xii.

Pages 69-71, 76. Forces a page break. Normally preceded by \vfill, so the material on
the current page doesn't get stretched out if the page is not full. Two \eject s in a row
only cause one page break; to get a blank page you must say

\vfill\eject\null\vfill\eject

218 A Beginner's Book of T EX elasticity - \enspace

elasticity Pages 40-41, 48, 55, 89, 93, 118, 178; see also springs, overfull, underfull.

\ell Page 132. Math mode only. Produces the letter C.

ellipsis Page 160.

\else Pages 183-185. Used in conditionals: \if ... \else ... \fi.

em Pages 39, 44, 51,140. A keyword for the em, one ofTEX's units that depends on the current
font.

em-dash Page 19.

empty box, pages 46,89; entry (in alignment), page 106; group, pages 136, 153, 161, 168, 187.

\emptybox Page 89, 97. Not part of plain TEX. Creates an empty (hence invisible) box of specified
dimensions. For a box outline, see \drawbox.

\emptyset Page 132. Math mode only. Produces the symbol 0, not to be confused with the letter (2)

(from \0). The font msbml0 ,distributed by the American Mathematical Society, contains
a version 0 of the empty set that is closer to what one generally sees in books. For more
details, see msam and msbm fonts.

Encyclopedia Britannica
Page 63.

\end

en-dash

Page 16, 26. Ends a TEX run; but in some cases may not print all the insertions that are in
TEX's memory. Therefore the best way to end a run is to type \bye. In U\T~ \end is
redefined to match \begin (page 24).

Page 19.

end-group character
Page 172. Any character of category 2, but generally }. Any end-group character can match
any begin-group character. Therefore begin- and end-group characters must be balanced
inside a macro definition; to define a macro that ends a previously started group, you must
resort to \egroup.

\endgroup Pages 23-24. Marks the end of a special-purpose group started with \begingroup.

ending a paragraph
See mode changes.

\endinsert Page 70. End of an insertion block: see \ topinsert, \midinsert.

endless See infinite.

end-of-file character
Page 16.

end-of-line character
Page 172. Any character of category 6, but generally CR. For detailed information on how
TEX treats such characters, see CR.

endomorph isms

engine

\enskip

\enspace

Pages 13.

Page 7.

Page 39. Leaves a space one en (half an em) wide.

Pages 44, 59, 63, 75. Leaves a horizontal kern, or unbreakable space, one en (half an em)
wide. Compare \qquad, \quad.

entries - error checking and recovery Dictionary and Index 219

entries See alignments, lists.

enumerations Page 58.

environments See \begin.

\epsilon

\eqalign

Page 132. Math mode only. Produces the Greek letter E. Compare \varepsilon E.

Pages 154, 159, 169. Math mode only. Arranges several formulas in a single display,
aligning them vertically at the & s. The result is a \vcenter that is only as wide as the
widest formula, so you can have other things in the same display as an \eqalign:

abc = O}
a+b+c=O

ab + be + be = 0

implies a = b = c = 0

was set with $$\left. \eqalign{ ... } \right \}\quad\hbox{implies $a=b=c=O$}$$.
See also page 147 and \cases for a similar arrangement.

Springs in the entries of an \eqalign are ineffective (page 187). The use of \noalign to
insert text between the formulas of an \eqal ign will destroy the centering unless the text is
in an \hbox (compare page 109); in any case the text will be left-aligned with the leftmost
formula, which is generally not what you want. For a better solution, see \eqalignno.

\Eqalign Page 188. Math mode only. Not part of plain TEX. Arranges several sets of formulas in a
single display, aligning each set vertically.

\eqalignno Page 156, 159, 189. Math mode only. Arranges severalformulas in a single display, aligning
them vertically at the & s and labeling them on the right. The result is a box as wide as the
page, so you can't have other things in the same display as an \eqalignno. On the other
hand, you can use \eqalignno to maintain formulas aligned even if there is text between
them:

cos 2x = cos2 X - sin2 x

and

sin 2x = 2 sin x cos x

was set with $$\eqalignno{\cos 2x&= ... \cr\noalign{and} \sin 2x&= ... \cr}$$.
See also \leqalignno.

\eqno Page 155. Math mode only. Labels a single displayed equation on the right; see also
\leqno.

equally spaced tabs

equations

\equiv

Page 124.

See formulas.

Page 134. Math mode only. Produces the relation =.
error checking and recovery

Pages 7, 10, 14-15,24,26, 171. When TEX stops because of an error and produces a ?
followed by a message, you can respond in several ways. In each you must terminate your
response with a carriage return.

(1) A CR by itself is often enough; it gets TEX going again as best it can. But the error may
have immediate or delayed consequences, and you may find yourself typing CR repeatedly
because of a single typo.

(2) An h causes TEX to print a help message and ask again for directions.

220 A Beginner's Book of T E?< \errorcontextlines - escape character

(3) A digit n from I to 9 followed by CR will cause the next n tokens in the input to be
ignored. This often lets you recover more gracefully than otherwise. For example, if you
forget to go into math mode and say ... for all \epsilon>O there is ... , TEJ(
will print

! Missing $ inserted.
<inserted text>

$
<to be read again>

\epsilon
1. 10 ... for all \epsilon

>0 there is ...
?

It tries to insert the missing $. But there should be another $ at the end of the formula, so if
you respond with CR the rest of the paragraph will be set in math mode, and you'll get another
error message at the end of the paragraph (cf. page 171). Instead, you should type 2: this
will delete two tokens, the inserted $ and the offending \epsilon. Your formula won't
come out right, but the idea is to salvage the run with a minimum of disruption, not to
achieve perfection.

(4) An i lets you insert text: if you make a typo, say \hobx{ ... }, TEJ(will tell you
that the control sequence is undefined. You then have a chance to right things by typing
I\hbox. Watch out: this correction doesn't go into the source file! It applies to this run
only, and it also gets registered in the log file. The CR that terminates this line and any
blanks that immediately precede it are not considered part of the input.

(5) An s tells TEJ(not to stop for error messages any longer; but they still get printed on
your screen.

(6) r is like s, but TEJ(won't stop even for very serious errors like a missing file.

(7) q is like r, but any error messages go into the log file only, not on the screen.

(8) x is for exit-you throw in the towel.

As shown by the example given under (3), TEJ(tries to help you figure out the source of
each error by displaying a context line, broken at the point where the error occurs. If the
error occurs while TEJ(is expanding macros, several such broken lines are displayed, one
for each level of macro expansion. Often these lines are uninformative, especially if you
didn't write the macros yourself; you can control TEJ('s verbosity by setting the variable
\errorcontextlines.

\errorcontextlines
One of TEJ('s token integer variables. It controls the number of context lines printed when
TEJ(detects an error (see the previous paragraph). If you set \errorcontextlines=O
you only get the innermost and outermost levels of context. These are the most important
anyway: the first contains the immediate cause of the error, and the last shows the ultimate
cause, something that TEJ(was reading from your file.

This primitive did not exist in versions of TEJ(prior to 3.0.

\errorstopmode
Causes TEJ(to resume its normal level of interactivity, stopping for errors. Typing CR in
response to an error or interruption has the same effect (page 15).

escape character
Pages 172, 177. Any character of category 0, but normally \. An escape character intro
duces a control sequence, whose name is determined as follows: (a) If there is nothing else

Essai sur les mceurs et l' esprit des nations - \everypar Dictionary and Index 221

on the line (not even a CR), the name is empty; this can happen if you say i \ in response
to a ? prompt. (b) If the next character is a generalized letter (has category 11), the name
is made of all subsequent characters of category 11. (c) Otherwise the name is the single
character after the \. Note: constructions like ""M (see ") are collapsed into single
characters while this scanning is taking place, so \""M gives a control sequence whose
name has a single character ""M = CR.

Essai sur les mreurs et l' esprit des nations
Page lOS.

es-zet

\eta

Pages 19, 36.

Page 132. Math mode only. Produces the Greek letter 'fl.

Euler Fraktur fonts
Pages 30, 34. These non-Computer Modem fonts, named eufml0, etc., are distributed by
the American Mathematical Society.

\evenpagefoot
Pages 65--66, lS3. Not part of plain TEX. In the fancy format, this variable contains the
material that forms the footer of each even-numbered page. For example, if you set

\evenpagefoot={\hfil\tenbf\folio\hfil}

you get a centered page number, in ten-point bold. It's important to set the font explicitly
inside this variable, since it may be read at unpredictable moments while TEX is setting a
footnote, or a caption ...

\evenpagehead

\everycr

Pages 65--66, 71, lS3. Not part of plain TEX. In the fancy format, this variable contains
the material that forms the header of each even-numbered page. See the previous entry.

One of TEX's token list variables. It is read after every \cr or non-redundant \crcr in
an alignment. Each displayed chunk of code in this book was typeset as an alignment at the
"outer level" (not inside a box) with a \noalign{\penalty500} between rows; the idea
was to make it hard, but not impossible, for TEX to break such alignments across pages. The
penalties were inserted automatically by including in the macro that typesets such displays
the following line:

\everycr{\noalign{\penalty500}}

\everydisplay
One of TEX's token list variables. It is read every time TEX starts a math display, after the
opening $$. See \displaywidth for an example of use.

\everypar One of TEX's token list variables. It is read every time TEX starts a paragraph, that is,
when it switches from vertical mode to ordinary horizontal mode. To number paragraphs
automatically, you can say

\newcount\parcount \parcount=l
\everypar={\llap{\bf\the\parcount\quad}

\global\advance\parcount by 1 }

The start of each paragraph now causes TEX to print the contents of \parcount register
on the margin, and to increment its value by one.

The material in \everypar effectively "cuts in" ahead of the character (or whatever) that
made TEX start the paragraph, but it is read already in horizontal mode. This means that

222 A Beginner's Book of T E!< evolution - \fam

evolution

ex

if anything inside \everypar makes TEX go into vertical mode, you get into an endless
loop. Just for fun, try saying

\everypar{\message{Boo!}\par} x

If you're wondering how you can get a \smallskip before every paragraph, check up
\parskip.

in TEX interfaces, page 8; in printing technology, pages 1-2,5.

Pages 40, 51. A keyword for the ex, one of TEX's units that depends on the current font.

exceptional entries
with \halign page 107-108, 112-115; with tabbing, pages 123, 128.

executing a command

\exists

\exp

Pages 165, 175.

Page 132. Math mode only. Produces the symbol 3.

Page 140. Math mode only. Produces the abbreviation exp, which functions as a large
operator with no limits.

expanding a macro

\expandafter

Page 165.

This subtle primitive is not for beginners! It causes the next token to be expanded only
after the following one. It turns out to be very useful in certain types of programming; for a
simple application, see \uppercase.

exploded view Pages 102, 114.

exponent See superscript.

extended fonts
Pages 29.

extensibility of TEX
Page 5.

extensible symbols
Pages 33, 35,144-148.

extra-deep, extra-high
characters, pages 91-92; lines, pages 112, 139.

eye Page 3.

\fam Pages 32-35, 139-140,143. One ofTEX's integer variables; it refers to the current math
font family, which ranges from 0 to 15. When it encounters a letter or digit in math mode
(or any variable-family character: see page 131 and \mathchar), TEX takes note of the
family number current at the time, and of the current style. As explained on page 139, this
character will be typeset in the font associated with this family and style: if the current
family is \faml and the the style is display or text, the font selected will be \ textfonti ;
if the style is script, the font will be \scriptfontl , and if the style is scriptscript, the font
will be \scriptscriptfontl. But the font selection is made at the end of theformula:
for example,

$\faml\textfontl=\tenrm a \textfontl=\tenbf a$

will set both 'a's in font \tenbf.

family of math fonts - fill Dictionary and Index 223

The value of \fam is automatically reset to -1 when TEX enters math mode: this value
means that even variable-family characters should be typeset from their intrinsic family,
which is I for letters and 0 for digits. Therefore letters come out in math italics by default
and digits in roman. Only when you explicitly reset the value of \fam inside a formula are
these conventions changed.

family of math fonts
See the previous entry.

fancy format
Page 66. The page layout format defined in the fancy. tex file described in chapter 7.

fancy paragraph shapes

If, Ifi, Ifl, fi

\fi

fil

See \parshape.

Page 19. Ligatures obtained by typing ff, ffi, ffl, fi, except with typewriter fonts.

Pages 183-185. Used in conditionals: \if ... \else ... \fi or \if . . . \fi.

Pages 48, 56. The unit of weak springiness, it can be part of the plus or minus component
of glue: for example, \hfil is equivalent to \hskip Opt plus ifil. If you add glue
containing fil to finite glue, the finite component disappears:

\newskip\scratch \scratch=3pt plus lOin
\advance\scratch by Opt plus lfil \showthe\scratch

will print 3. Opt plus 1. Of il on your screen. This is why if a box contains both a spring
and finite glue, only the spring will stretch to fill up any available space.

If an I comes after fil, even after spaces, it gets incorporated into the keyword, and the
result is fill. See fill and \relax.

\filbreak Page 77. Stands for \par\vfil \penalty-200\vfilneg . Makes the current spot a good
potential page break, even if the current page is not complete; the page will be padded with
white space if the break occurs. For concreteness, say the page height is 8 inches, and you
have chunks of text (say short sections, program listings, bibliographical entries) that are 2,
7, 3, 3 and 7 inches tall. You want chunks not to be broken across pages if at all possible,
but they don't necessarily have to start a fresh page. If you insert \filbreak between
the chunks, the layout will be as follows: page I will get the first chunk only, because the
second chunk doesn't fit whole in the remaining six inches. Page 2 gets the second chunk;
page 3, the third and fourth; and page 4 gets the last chunk.

As explained under \everypar , you can't use that command to insert \f ilbreak between
paragraphs automatically. But you can say

\let\oldpar\par \def\par{\oldpar\vfil\penalty -200\vfilneg}

to make \par imitate \f ilbreak. Still, you need to be careful: playing with the definition
of \par can lead to surprises.

file See source file, \input , dvi file, log file, fmt file, tfm file.

fill Page 48. fill is the unit of strong springiness; it is to fil as fil is to the finite units
em, in, and so on. This means that if you add glue of type fill to glue of type fil
(or finite glue), the weaker glue is thrown out: see under fil. The spring \hfill is
equivalent to \hskip Opt plus ifill.

If an I comes after fill, even after spaces, it gets incorporated into the keyword, and the
result is filll. See the next entry and \relax .

224 A Beginner's Book of T £X filll - \font

filll In a pinch you can make super-strong springs using filII, which cancels even fill
(see the previous entry). The use of filll is truly exceptional, so TEX doesn't provide
corresponding abbreviations \hfilll and \vfilll.

If an I comes after filll, even after spaces, TEX complains you're pushing it too far.
See \relax.

financial reports
Page 173.

fine-tuning Pages 87, 92,131, 148, 153; see also \looseness.

\firstmark The first mark encountered on a page that TEX has just completed. See \mark.

fixing dimensions
of a box, page 88; of a table, page 117.

\fivebf, \fiverm
Page 28. Plain TEX defines five-point fonts primarily for use in math second-order subscripts
(page 35), but these two, boldface and roman, can also be used in text. The other plain TEX
five-point fonts are \fivei (math italics) and \fivesy (math symbols).

fl Page 19. Ligature obtained by typing fl, except with typewriterfonts.

\flat Page 132. Math mode only. Produces the symbol o.
floats Pages 70, 76; see also insertions.

fmt file File containing a precompiled TEX format, and read in at high speed: see \dump.

\folio Pages 64-65, 71. Prints the current page number, stored in \pageno. By convention,
a negative \pageno is printed as a roman numeral; therefore plain TEX's definition for
\folio is

font

\font

\def\folio{\ifnum\pageno<O
\romannumeral-\pageno \else\number\pageno \fi}

For uppercase roman numerals, replace \romannumeral by \Romannumeral, whose
definition is given in the appropriate entry (it is not part of plain TEX).

Normally, \folio is called automatically, by some command that is activated when a
page is output. Plain TEX sets \footline={\hfil \tenrm\folio\hfil}. The fancy
format of chapter 7 uses the same footline by default, except on the first page, or on a page
where you're said \titlepagetrue. You can also say \titlepagefalse to get a folio
number on the first page.

To get no page numbers at all, type \nopagenumbers.

change, see page 8, \font, \fam; Computer Modem, pages 27-30, 36; current, pages 39-
40,47,66, 101, 140; Cyrillic, page 30; dimensions, see pages 6, 9, 101, \fontdimen;
files, page 9; in footline and headline, page 66; Fraktur ("gothic"), pages 30, 34; metric
information, see pages 6, 9, \fontdimen; names, pages 29, 165; in math mode, pages 32,
135; outline, page 31; preloaded, page 27; in plain TEX, page 28; Postscript, pages 6, 9, 27,
29,31,34,36; quality page 2; registration, page 28.

Page 29. Registers a font name: after \font\toto=cmssl0, no font change occurs, but
the control sequence \toto acquires the meaning "make the font found on file cmssl0
the current text font." Saying \ toto will still not change fonts inside a math formula; to do
that you must say (for example) \textfont\myfam=\toto \myfam, as explained under
\fam. See pages 23, 33-34, 37,49,92 for examples, and the entries at and scaled.

\fontdimen - \forall Dictionary and Index 225

Another use of \f ont , not discussed in the text, is to refer to the current font, in contexts
where TEX is already expecting to read a font. For example, \fontdimen5\font gives
the ex-height for the current font, and \the\font generates a control sequence associated
with the current font.

Warning: the binding of control sequences to font files is irreversible. After \f ont \ toto=
cmrl0 the construction \the\font yields \toto, assuming the current font is cmrl0.
But if you subsequently say \font \ toto=cmbxl0 , changing the meaning of \ toto alto
gether, TEX will still respond with \toto if you say \the\font while the current font is
cmrl0. This is not very sensible, and wouldn't matter much except that TEX uses the same
wrong names when describing the contents of a box. So try not to use the same control
sequence for different fonts.

\f ontdimen Page 1 ° 1. Among the metric information that TEX needs about its fonts and that it reads from
the font's tfm file are certain dimension parameters, like the design size, the ex-height, and
so on. These parameters can be accessed (and changed) with the construction

\fontdimen nfont

where n is the parameter number andfont is something like \ tenrm or \ textf ont \bff am .
You can use this construction anywhere like a dimension register, except with \advance,
\multiply and \divide.

Natually, direct use of such low-level stuff is not common, but one parameter, the height of
the math axis, is sometimes useful to know. It is stored in \fontdimen22\textfont2.

\footline Pages 64, 67,185. A token list from which a page's footline is made when the page is ready
to be shipped out: the plain TEX equivalent of \evenpagefoot, but used for all pages.
Often set to display the page number.

\footnote Pages 61-62. Macro used for footnote insertions. Takes two arguments, the mark and the
text of the note; see examples of use on pages 4, 11. Don't leave spaces or a CR before the
call to \footnote, as it will appear in the output just before the mark; use a % if you want
to type \footnote on a new line:

... word to which the note applies.%
\footnote{(*)}{Text of the note.}

Notice also that the note is set in whatever happens to be the current font. For a more
sophisticated macro that takes care of these details and also numbers notes automatically,
see \myfootnote.

\footnote won't work inside a vertical box, or inside a horizontal box that is part of a
paragraph or box of any kind; the footnote will disappear. See insertions for details.

Other references to footnotes can be found on pages 7, 34, 61, 76, 91.

\footnoterule
The rule (and glue) that separates a footnote from the rest of the page. Set as follows:

\def\footnoterule{\kern -3pt \hrule width 2truein \kern 2.4pt}

In addition, plain TEX leaves the equivalent of a \bigskip just before \footnoterule
is called. You can redefine \footnoterule at will; in particular, removing the width
2truein will make the rule extend to the width of the page.

foreign languages

\foraH

Pages 4, 7, 19-20,27,30, 174; see also \discretionary, \frenchspacing, \hyphen
ation and \language.

Page 132. Math mode only. Produces the symbol 'V.

226 A Beginner's Book of T e< format file - generalized letter

format file

formulas

Fortran

Pages 5, 64-65; see also \dump.

see math mode (chapter 11); aligning, pages 154, 187; breaking, page 153; numbering,
pages 155-156, 189.

Page 8.

Fouquet, Nicolas
Page 60.

fractions See \over, / .

\fr ak Pages 34-35. Not part of plain TEX. Switches to a Fraktur ("gothic") font, in text or in math
mode. See the next entry.

Fraktur fonts Pages 30, 34. The American Mathematical Society distributes a set of Fraktur fonts.

framed box Page 97.

French typography
Pages 20, 174; see also \oe and the next entry.

\frenchspacing

frieze

front ends

\frown

function names

Tells TEX not to follow the conventions of Anglo-Saxon typesetting regarding spacing
after punctuation. Ordinarily, TEX will leave more space after a comma than the ordinary
interword spacing, and even more between sentences, that is, after a period, colon, etc.

The dot after an abbreviation should not be followed by extra spacing, which is one reason
to use a tie instead of a sp in such positions: see - . But in bibliographies and other contexts
where there are lots of abbreviations it may be easier to say \frenchspacing once and
for all, so no ties are necessary.

For the definition of \frenchspacing, see \spacefactor. For the opposite behavior,
see \nonfrenchspacing.

Page 107.

Pages 3, 7.

Page 134. Math mode only. Produces the relation ----.

Pages 140, 143.

\futurelet This subtle primitive allows one to write macros that can "look ahead." See \ifnextchar
for an example.

\gamma, \Gamma
Page 132, 151. Math mode only. Produce the Greek letter 'Y, r.

Gandalf the Grey

\gcd

\gdef

Page 11.

Page 140. Math mode only. Produces the abbreviation gcd, which functions as a large
operator, with limits in display style.

Pages 165. An abbreviation for \global \def : used when a definition made inside a group
must survive after the group ends. For an example, see page 175.

generalized letter
Page 177. Any character of category 11 is considered a "letter" in the scanning of a control
sequence name: see escape character for more details. Making a non-letter like (Q have
category 11 for a while allows one to define control sequences that cannot be accessed or
overwritten after the category is changed back.

\ge - \goodbreak Dictionary and Index 227

\ge, \geq Page 134. Math mode only. Produce the relation ~, for "greater than or equal to." The two
control sequences are synomynous: we suppose \geq is for masochists.

German Page 174; see also \discretionary, \ss.

\gets Page 134. Math mode only. Produce the relation <-, and is synonymous with \leftarrow.

\gg Page 134. Math mode only. Produce the relation », for "much greater than."

Gibbon, Edward

\global

global

glue

Page 108.

Pages 24, 62, 65, 71, 84,125,165,179,185. Makes an immediately following assignment
or definition global, in the sense that it will remain in effect even after the current group
ends; ordinarily such changes die with the group. See also \gdef .

assignment or definition, see previous entry; magnification, page 31.

Pages 40, 45. Spacing that can stretch or shrink to meet a target. When Tpc is expecting
a blob of glue (page 181), it will accept either an "internal glue," optionally preceded by a
sign, or a specification of the form

do plus d+ minus d_

An internal glue is a construction of the form \skip n, or any control sequence defined
with \newskip, or a glue variable like \parskip; while do, d+ and d_ are arbitrary
dimensions (see dimensions), representing the natural, or ideal, dimension for the glue,
its stretchability, and its shrinkability. Tpc will never shrink glue by more than d_, but
the maximum stretchability can be violated, at a cost: see \hbadness. The plus and/or
minus components may be absent, in which case the corresponding dimensions are assumed
to be zero; but if present they must come in that order. They may also be negative, and
plus -5pt is not the same as minus 5pt: see \section. Finally, they may be infinite
(positive or negative), if they involve the units fil , fill or filll rather than "normal"
units like in.

Glue is created in many ways: by a space in horizontal mode (page 40), by the \hskip
and \ vski p commands (pages 39-40) and macros that call these commands, automatically
between boxes and lines that are being stacked up (pages 93, 112), between columns of an
alignment (pages 117-119), and so on.

Horizontal glue can only be used in horizontal mode and math mode, and it contributes to
the width of the enclosing horizontal box or line (page 81) or alignment entry (page 103).
Vertical glue can only be used in vertical mode, and it contributes to the vertical dimensions
of the enclosing vertical box or page, and it also influences the placement of the baseline
(page 86).

If several blobs of glue are present in the same box, they share the available space (or, which
is the same, the deficit toward the target box dimension) in proportion to their stretchability
or shrinkability: see page 42 and also fil, fill.

Tpc will gladly break a line or page at a blob of glue, in which case the glue disappears:
pages 44, 68. For unbreakable spaces, see \kern and \penal ty ; for spacing that doesn't
disappear at a break, see \hglue and \vglue.

goals of TEX Page 2.

God Page 61.

\goodbreak Page 77. An abbreviation for \penal ty -500. In horizontal mode, it marks the place as
a good one for a line break. It doesn't start a new paragraph, however, even if the break

228 A Beginner's Book of T e< good typography - \hangindent

occurs. In vertical mode, it marks the place as an excellent one for a page break. Compare
\bigbreak, which first puts TEX in vertical mode, then marks the place as a good page
break.

good typography
Pages 4,39,131; see also fine-tuning.

gothic See Fraktur.

graphics Pages 6, 163.

\grave Page 137. Math mode only. Places a grave accent over the following character: a. Its text
counterpart is \' .

Greek letters, pages 16, 132, 136, 151; papyri, page 176; quotation, page 151.

groups Pages 18,22; and tabbing, page 125; limits of, page 49; and macro arguments, page 166,
168, 170; and category codes, page 173; and conditionals, page 184; and font change,
page 28; in alignments, pages 104, 157.

h, H Page 15. When TEX has stopped because of an error, typing h or H followed by CR will
give a short help message. For other options, see error checking and recovery.

\H Page 20. Places a Hungarian umlaut over the following character: \H 0 gives (). Works in
text mode only.

hacek See \check, \v.

haiku Page 53.

\halign Pages 103 and following. The basic command to make alignments, or tables. Often not
used directly, but called by other macros, such as \matrix, \eqalign, and so on. Must
be used in vertical mode, or by itself in display math mode: page 105. Each entry is typeset
in restricted horizontal mode, and forms a group by itself: pages 25, 104. For a comparison
with \valign, see pages 119-120; for a comparison with \+, see page 129. See also
\openup and \noalign to adjust the spacing between rows, \tabskip to adjust the
spacing between columns, \span and \mul tispan for entries that span several columns,
and \omit for exceptional entries.

If you find yourself typesetting several similar alignments, it may be worth defining a macro
that fixes the preamble and performs necessary initializations. Plain TEX is full of such
macros, like \matrix and \eqalign. See pages 186-190, and remember to use ## to
represent # in the preamble.

\hang An abbreviation for \hangindent\parindent. It causes the current paragraph (or the
paragraph about to start, if TEX is in vertical mode) to be indented by \parindent, the
amount of indentation normally used for the first line. (This assumes \hangafter has its
default value 1.) To place the first line flush left, start the paragraph with \noindent. See
also the next entry.

\hangafter, \hangindent
Pages 60-62, 92. \hangafter is one of TEX's integer variables: it determines the number
of lines of a paragraph subject to hanging indentation (see below), while \hangindent,
a dimension variable, determines the amount of hanging indentation. These variables are
automatically reset at the end of each paragraph to 1 and zero, respectively, so they only
apply to the current paragraph or to the paragraph about to start (if TEX is in vertical mode).

If \hangafter is positive, say equal to 3, the first three lines will not be indented, but
all subsequent ones will. If \hangafter is -3, the first three lines will be indented, and

hanging indentation - height Dictionary and Index 229

the subsequent ones won't. If \hangindent is positive, the indentation applies to the left
margin; if it is negative, it applies to the right margin.

The values of \hangindent and \hangafter that apply to a paragraph are those in effect
atthe end of the paragraph. If you set \hangindent or \hangafter inside a group-say,
because you're also changing \parindent temporarily-you must close the paragraph
before the group ends and variables revert to their previous value: see page 54.

The first line of a paragraph with hanging indentation is further indented by \parindent,
unless you start it with \noindent. See also \displaywidth.

hanging indentation
See the previous entry, and page 55.

\harr Pages 161-162. Math mode only. Not part of plain Tpc. Draws a horizontal arrow with
labels, to be used in diagrams.

hash mark See #.

\hat Page 137. Math mode only. Places a circumflex accent, or hat, over the following character:
a. Its text counterpart is \ ~ . See also \widehat.

\hbadness One of TPC's integer variables. As explained on page 41, Tpc assigns a grade to each line,
page or box whose glue had to stretch or shrink to meet a goal. An overfull or underfull
box is reported if the badness grade exceeds \hbadness, for lines and horizontal boxes,
or \ vbadness , for pages and vertical boxes.

A badness of 100 means the glue has stretched or shrunk as much as it was designed to:
for instance, 12 pt plus 8 pt minus 4 pt has stretched to 20 pt, or shrunk to 8 pt. If the
glue has stretched twice as much as it was designed to, in this case to 28 pt, the badness is
100 x 23 = 800, so the badness grows fast with increasing stretching. In no event will glue
shrink by more than its design shrinkability; in this example it would not shrink to less than
8 pt. Instead Tpc would report an overfull box, assign it the maximum badness, 10000, and
(if a horizontal box) highlight it on the page with a black stroke. But see also \hfuzz.

Plain Tpc sets \hbadness=1000, which is pretty lax: glue can stretch by more than twice
its design stretchability. To set a more stringent standard, lower \hbadness; to set a laxer
one, increase it.

\hbar Page 132. Math mode only. Produces the symbol Ii.

\hbox Page 80. Introduces a horizontal box, made by placing side by side each element in its
interior. Often used to create a "line" of text that's only as long as the text itself (unlike lines
in paragraphs which extend across the page), and to temporarily go out of math mode inside
a formula. Examples of use appear on pages 33, 41-42, 47, 51, 59, 80, 84, 88, 96-97, 101,
109,119,135,137-138,143,147,162,181; see boxes for a breakdown.

\headline Pages 64-65,183. A token list from which a page's headline is made when the page is ready
to be shipped out: the plain Tpc equivalent of \evenpagehead, but used for all pages.
Can display the work's title and author, the page number, and so on.

\heartsuit Pages 132. Math mode only. Produces the symbol <::I.

Hebrew See pages 7, 30, \aleph.

height of boxes, see pages 78-80, 89, \ht; of characters, page 9; of pages, see \ vsize ; of rules,
see next entry. See also dimensions.

height Page 94. An optional specification after \hrule or \vrule; must be followed by a
dimension. A horizontal rule without this specification will have height .4 pt; a vertical rule

230 A Beginner's Book of T £X help messages - The Hobbit

help messages

Helvetica fonts

will be as tall as the immediately enclosing box or line. See examples on pages 115 and
following.

Page 15; see also error checking and recovery.

Pages 27, 31.

Henriques, E. Frank
Page 5S.

hexadecimal numbers

\hfil

\hfill

See page 36, integers, \mathchar.

Pages 42-43. A weak horizontal spring: it stretches to fill the available space in a box,
alignment entry, etc., unless there is a stronger spring (see the next entry) in the same
box. Several \hfil s in the same box share the available space equitably. Although a
primitive, \hfil is essentially the same as \hskip Opt plus ifil. See examples of
use on pages 45, 4S, 56, 105, 141, 150.

Pages 42-43. A strong horizontal spring: it stretches to fill the available space in a box,
alignment entry, etc., preventing weak springs from stretching altogether. Several \hfill s
in the same box share the available space equitably. Although a primitive, \hfill is
essentially the same as \hskip Opt plus ifill. See examples of use on pages 45, 49,
50,59,127,141,153,157,IS9.

One common use of \hf ill is with macros that center their arguments, such as \matrix,
etc. Such macros use \hfil for the centering, so you can counteract that with \hfill.
For the same reason, use \hf il if possible, rather than \hf ill, when writing your own
macros.

\hfilneg A weak horizontal spring whose stretchability is infinitely negative: although a primitive,
\hfilneg is equivalent to \hskip Opt plus -lfil. Unlike \hss, this spring doesn't
shrink to a negative length: its only use is to cancel another, positive, spring placed
somewhere else in the same box. An example of the related \ vf ilneg command is given
under \filbreak.

\hfq Pages 105, 107. Not part of plain TEX. Abbreviation of \hfil \quad; very useful in
alignment entries.

\hfuzz Page 16. One of TEX's dimension variables, set by plain TEX to .1 pt. An overfull line or
horizontal box is not reported if the excess material is less than \hfuzz. If you think it's
OK for a line to stick, say, 2 pt into the margin, set \hfuzz=2pt; then a line will have to
be worse than that before TEX bothers you with it.

\hglue Pages 44-45. Horizontal "glue" that will not disappear at a line break. It's really an invisible
rule followed by normal glue.

\hidewidth Pages 49, lOS, 12S. A spring that starts with a negative width and can stretch arbitrarily.
Used to hide the width of an alignment entry, so that entry doesn't influence the width of
its column. Its effect is to allow the entry to spill into an adjacent column, to either side,
depending on which end of the entry \hidewidth is at. You can even use \hidewidth
on both sides, to make the entry spill over symmetrically: see \oalign for an example.

history of England, page lOS; of France, page 60; of India, page 63; of Rome, page lOS; of TEX,
page 1; world, page lOS.

The Hobbit Page 11.

\hom

\hom

\hoffset

\hskip Dictionary and Index 231

Page 140. Math mode only. Produces the abbreviation hom, which functions as a large
operator with no limits.

One of TEX's dimension variables; it controls the horizontal offset of the text with respect to
your sheet of paper. When \hof f set is zero, the default, your printer is supposed to place
the left margin one inch from the edge. A positive offset moves the margin to the right, and
a negative one to the left. Useful in centering your text when \hsize is different from its
default value of 6.5 in, or your paper has width different from 8.5 in.

\hookleftarrow, \hookrightarrow

horizontal

hot lead

house plants

\hphantom

\hrule

Page 134. Math mode only. Produce the relations" '-+.

boxes, see boxes, \hbox; mode, see pages 24, 38, 52, 83 and mode change; rules, see
\hrule, \vrule; spacing, pages 39, 45.

Page 1.

Page 47-48.

Pages 111, 136, 151. Puts its argument inside a horizontal box, measures its width, then
typesets an empty box of the same width and zero height and depth. The material in the
argument does not appear on the page. See also \phantom, \ vphantom, \smash.

Pages 94-96. Creates a rule (straight line, or rectangle) of specified dimensions. The full
construction is

\hrule height h depth d width w

where the attributes can come in any order. If height is missing, it is set to .4 pt; if depth
is missing, it is set to zero; if width is missing, the rule is as wide as the immediately
enclosing vertical box, or the page.

\hrule must appear in vertical mode, or TEX will switch to it: page 52. But see the next
entry for an exception. To draw a horizontal rule in a paragraph, use \vrule: page 97.
No glue is placed above or below an \hrule as it gets stacked with other elements in a
vertical box or on the page: pages 81-82.

For use in alignments, see pages 109, 121, 125. For other examples of use, see pages 67,
97-98.

\hrulefill Pages 46,67, 114, 126. A rule that behaves like a spring, or is it the other way around?

\hsize

\hskip

Used in horizontal mode, in an \hbox or in a paragraph, it creates a horizontal rule of
height.4 pt and depth zero, stretching as far as \hfill would in the same circumstances:

\hbox to 1in{a \hrulefill \ rule} a rule

The definition of \hrulefill is \def\hrulefill{\leaders\hrule\hfill}. You
can specify a height and a depth after \hrule for special effects. (You can also set
width, but that has no effect.)

Page 13. One of TEX's dimension variables: it controls the width of the page. Plain
TEX sets \hsize=6. 5in. When TEX encounters any horizontal mode material while in
vertical mode (see mode changes), it switches to ordinary horizontal mode and composes
a paragraph, which is then chopped up into lines of width \hs ize : pages 41, 80, 109, etc.
The moral of the story is that if you want short lines of text stacked up in a vertical box, you
must fashion each line individually with \hbox, as on page 124, or make \hsize small,
as on pages 83, 99.

Page 39. Creates horizontal glue of a specified size, with specified stretchability and
shrinkability. For more details, see glue.

232 A Beginner's Book of T EX \hss - \if

\hss Page 49. Horizontal spring that can stretch or shrink indefinitely, taking on a negative width.
Useful for things that should be allowed to spill over: see \centerline, \llap, \rlap.
For another example, see page 96.

\ht Pages 88, 181, 183. The construction \ht n gives the height of box n. For details, see
\dp.

humanities Page 7.

Hume, David Page 108.

Humpty Dumpty
Page 171.

Hungarian umlaut
Page 20.

hyphen See -, \-.

hyphenation Pages 4, 7,19,41,75,166. See also \-, \language, \showhyphens and the next entry.

\hyphenation

i, I

\i

\ialign

IBM

\if

Adds one or more entries to a dictionary of exceptional words that are not correctly handled
by TFC's normal hyphenation rules. Plain TFC says

\hyphenation{as-so-ciate as-so-ciates dec-li-na-tion
oblig-a-tory phil-an-thropic present presents project
projects reci-procity re-cog-ni-zance ref-or-ma-tion
ret-ri-bu-tion ta-ble}

Each allowed break is indicated by -, not by a discretionary hyphen \-. Words are
separated by spaces, and they must consist entirely of letters: no accents are allowed. To
add your own entries, just follow the same pattern. You can do it as many times as you
want. Once learned, a word is never forgotten, even at the end of a group. See also
\showhyphens.

TFC can handle different sets of hyphenation rules for different languages; \hyphenation
only affects the hyphenation table for the current value of \language . (This doesn't affect
versions of TFC prior to 3.0.)

Page 15, 26. When TFC has stopped because of an error, typing i or I lets you insert
text to help TFC recover. For more details and for other options, see error checking and
recovery.

Pages 20-21. Produces a dotless 1, to be used with accents: \ ~\i, \"\i. Works in text
only; in math mode it gives the character C! But there is a math mode equivalent, \imath.

Page 186. The many plain TFC macros based on \halign must rely on certain variables
having known values: for example, \tabskip should be zero, and \everycr should be
empty. The \ialign macro makes these initializations and ends by calling \halign.
The moral of the story: to be on the safe side, use \ialign in your macros, instead of
\halign , if you think those variables might have been played with.

Page 5.

One ofTFC's more esoteric conditional tests-make sure you understand about tokens before
you try to use it! It tests true if the next two tokens found after macro expansion are the
same character (possibly with different category codes) or if they are both control sequences
(possibly different). For example, after \def\beast{aardvark}, saying \if\beast
TRUE\else FALSE\fi will print rdvarkTRUE. Notice that the remainder ofthe expansion

\ifcase - \ifnextchar Dictionary and Index 233

\ifease

\ifeat

\ifdim

\iff

\iffalse

\ifhbox

\ifhmode

\ifinner

\ifmmode

of \beast , after the two tokens being compared, is considered part of the "true" branch of
the conditional.

More usefully, you can make your own boolean variables: \if\toto T will test true if
you've previously said \def\ toto{T} , but false if you've said \def\ toto{F} . (Another
way to create boolean variables is with \nell'if, but this is more economical.)

Page 185. One ofTJY('s conditional tests. It tests whether the following integer is 0, 1, ... ,
and branches accordingly. See \ today and \magstep for examples of use.

One of TJY('s more esoteric conditional tests. It tests true if the next two tokens found after
macro expansion are (possibly different) characters with the same category code, or if they
are both (possibly different) control sequences.

Pages 182, 185. One of T£X"s conditional tests. Tests whether the two dimensions that
follow, separated by a relation =, < or > , satisfy that relation.

Page 134. Math mode only. Produces the symbol ~ , with a thick space on each side,
unlike \Longleftrightarroll', which is treated as a relation.

One of TJY('s conditional tests: always tests false. This may seem silly, but it's very useful
in macros. Plain TJY('s \nell'if scheme is based on it: when you say \nell'if\iftoto,
this causes two definitions to take place:

\def\tototrue{\let\iftoto\iftrue}
\def\totofalse{\let\iftoto\iffalse}

The next time you say either \tototrue or \totofalse, the "conditional" \iftoto
acquires the desired meaning.

One of TJY('s conditional tests. Followed by a number n between 0 and 255, tests whether
box n is a horizontal box.

One of TJY('s conditional tests. Tests true if TJY(is in horizontal mode, whether ordinary or
strict.

One of TJY('s conditional tests. Tests true if TJY(is in internal vertical mode, in strict
horizontal mode, or in text math mode (between single dollar signs).

Pages 185. One of TJY('s conditional tests. Tests true if TJY(is in math mode. Here's a
simple but useful application: Suppose you want to abbreviate α to \a. The
abbreviation will work fine as long as you want an a: by itself, but inside a formula like
a: + (3, you can't say $\a+\beta$, since this will expand to $$\alpha$+\beta$! No
problem: with \ifmmode, you can check whether \a should expand to \alpha or to
α :

\def\a{\ifmmode\alpha\elseα\fi}

\ifnextehar Not part of plain TJY(. A handy control sequence that no experienced user will want to
be without. It lets you look ahead and decide what to do based on what the next token
is-in particular, it lets you create macros with optional arguments. Consider the following
definitions:

\def\mybox{\ifnextehar[{\myBox}{\hbox to 2in}}
\def\myBox[#l]{\hbox to #l}

When TJY(sees \mybox, it checks whether or not the next token is a [. If not, the result
is \hbox to 2in; but if it is, the result is \hbox to whatever follows in brackets. (The
brackets delimit the argument of \myBox: see page 169.)

234 A Beginner's Book of T £X \ifnum - \ignorespaces

\ifnum

\ifodd

\ifti tlepage

\iftrue

\ifvbox

\ifvmode

\ifvoid

\ifx

Here's the definition of \ifnextehar. For it to work, the control sequences \tempa to
\ tempe should not be used otherwise.

\def\ifnextehar#1#2#3{\let\tempe=#1%
\def\tempa{#2}\def\tempb{#3}\futurelet\tempe\ifneh}

\def\ifneh{\ifx\tempc\tempe\let\tempd=\tempa
\else\let\tempd=\tempb\fi\tempd}

You can use this code even if you don't understand it. Aspiring wizards may want to figure
out how it works; they will need to know that \futurelet\tempe\ifneh causes TEX to
give \ tempe the meaning of the first token that has not been read yet (namely, whatever
comes after the arguments to \ifnextehar), and then to continue its normal work starting
with \ifneh. For more details on \futurelet, see The T#book, page 207.

Pages 181, 184. One ofTEX's conditional tests. Tests whether the two integers that follow,
separated by a relation =, < or >, satisfy that relation. For examples, see page 184 and
\folio.

Pages 181, 183, 184. One of TEX's conditional tests. Tests if the following integer is odd.
(There is no \ifeven.)

Pages 65,185. Not part of plain TEX. In the fancy format of chapter 7, decides if the current
page should get a headline and footline appropriate to a title page (\titlepagehead,
\titlepagefoot) rather than the regular ones. The value of \ifti tlepage is controlled
with \titlepagetrue and \titlepagefalse.

One ofTEX's conditional tests: always tests true. See \iffalse.

One of TEX's conditional tests. Followed by a number n between 0 and 255, tests whether
box n is a vertical box.

One of TEX's conditional tests. Tests true if TEX is in vertical mode, whether ordinary or
strict.

One of TEX's conditional tests. Followed by a number n between 0 and 255, tests whether
box n is void (that is, has never been set or was erased when it was used).

One ofTEX's more esoteric conditional tests. After \ifx, the next two tokens are compared
without macro expansion. The test is true if the tokens are "the same" in the following
sense: If they're both characters, they must be the same character and have same category
code; if they're both macros, they must have the same replacement text; if they're both
primitives, they must be the same; and similarly for control sequences defined with \font,
\eountdef, and so on. Synonyms (control sequences defined with \let) count as
being the same as whatever they've been \let equal to. For an example of use, see
\ifnextehar .

ignored characters
Page 172. Any character of category 9 is simply ignored when TEX reads your input file.
The only such character in plain TEX is NULL, which has ASCII code 0: there's no reason it
should be in your input file at all.

\ignorespaces
Pages 63, 92, 174. Causes TEX to ignore all space tokens encountered from then on, until
the occurrence of a non-space token returns things to their normal state. During this process
TEX is expanding macros: it's the tokens resulting from the expansion that count.

Very useful in writing macros that "clean up" after the user, avoiding spurious spaces. The
page references above provide examples.

Ikabruob - insertion Dictionary and Index 235

Ikabruob, Nicolas

\lm

\imath

Page 71.

Page 132. Math mode only. Produces the symbol ~, for the imaginary part of a complex
number. But this symbol seems confusing: many mathematicians now prefer 1m, which
you can define with \def\lm{\mathop{\rm 1m}} (cf. page 143).

Page 132. Math mode only. Produces the symbol t, a dotless 'i', to be used with math
accents: $\vec\imath$ gives i. Its text counterpart is \i.

implementation dependencies

in

\in

\indent

indentation

indexing

\inf

infinite

\infty

Pages 6-8,10,15-16,29,188; see also CR, \dump, \input, \special.

Pages 12-13,32,39. A keyword for inch, one ofTEJ('s units.

Page 134. Math mode only. Produces the relation E.

Pages 4, 46, 52, 62. In vertical mode, starts a new paragraph, indenting the first line by
an amount given by the \parindent variable. Inside a paragraph it also creates the same
amount of spacing; thus \indent\indent at the beginning of a paragraph causes double
indentation. See also \noindent.

negative, pages 53, 55; regular, page 53; hanging, page 55 and \hangafter.

Page 7.

Page 140. Math mode only. Produces the abbreviation inf, which functions as a large
operator, with limits in display style.

recursion, page 174, \everypar; stretchability, see springs.

Page 132. Math mode only. Produces the symbol 00.

inner subformulas

\ input

For the purposes of spacing, subformulas of a mathematical formula can be assigned any of
the classes 0--6 listed on page 131, as well as an eighth one. The last class consists of inner,
or delimited, subformulas, and it includes fractions, \left ... \right constructions, and
anything made with \ma thinner. An inner subformula is separated from most other things
by a thin space (given by \thinmuskip), but only in text and display styles. As with any
symbol, you can avoid the introduction of spacing around an inner subformula by putting it
in braces.

Pages 14, 50, 65. Causes TEJ(to put on hold the reading of the current file and to read
the named file. What exactly constitutes a file name is implementation-dependent, but a
sequence of letters and/or digits followed by a space should work on all systems. If the given
file name does not contain an extension, like . tex or .mac, TEJ(will add the extension
. tex to it before looking for the file.

If you run TEJ(interactively, it expects the first thing you type to be a file name, as if there
were an implicit \input before it. To override this, see under * .

input lines See CR, blank lines.

inserting text Page 15.

insertion An insertion is something that logically belongs at a certain point in the main text, but
physically can, or should, appear somewhere else. Plain TEJ(provides the two commonest
kinds of insertions: floats, obtained with \midinsert and \topinsert, and footnotes.
Like all insertions, these won't work except at the "outer level:" if you use \footnote,
\midinsert or \ top insert inside a vertical box, or inside a horizontal box that is part

236 A Beginner's Book of T £X inspecting a register - invalid characters

of a paragraph or box of any kind, the insertion will disappear. Insertions of the same class
always appear in the order of their references in the text, so even if you have a big figure
that doesn't fit on the current page followed by a small one that does, TEX will defer both
till the next page.

An experienced user can deal with insertions in great generality, defining new types and
treating them in different ways. For instance, in this book a new type of insertion was used
to typeset the parallel text of section 7.8. We won't go into details here; if you're interested
in such wizardry, it's time to read The T£Xbook.

inspecting a register
Page 180.

\int Page 133, 138-139, 142. Math mode only. Produces the large operator J, J. Unlike most

large operators, \int has its limits placed in the subscript/superscript position, rather than
above and below it. You can change this behavior with \displaylimits.

integers Pages 178, 181. When TEX is expecting to read an integer, it will accept either an "internal
integer" or an integer in decimal, octal, hexadecimal, or character notation. Any of these
may be preceded by a sign. Octal notation is introduced by ',hexadecimal by ", and
character notation by , , as explained under the entries for each of these characters.

interaction with T EX

interactivity

See page 26, error checking and recovery, *, \message, \show and subsequent entries.

lack of, page 7; levels of, see \batchmode, \errorstopmode, \noscrollmode, and
\quietmode.

interbox and interline spacing
automatic, pages 82, 93, 105; changing the, see under \openup, \normalbaselines,
\spacemag; with different fonts, see page 35, \eightpoint, \tenpoint; and rules,
page 109.

\interior Math mode only. Not part of plain TEX. Places the "interior operator" of topology above
the next character: $\interior A$ gives A. Its definition is

\def\interior{\mathaccent "7017 }

(the "7017 indicates the position of the symbol in the math fonts, as explained under
\mathcode).

internal vertical mode
Pages 25, 79.

interrow spacing
See interbox and interline spacing.

interrupt character
Page 15.

interword spaCing
Pages 40, 47; see also \frenchspacing, \spacefactor.

invalid characters
Page 172. Any character of category 15 in your input file causes TEX to issue an error
message. The only such character in plain TEX is DEL, which has ASCII code 255: there's no
reason it should be in your input file at all. But this helps detect when you've accidentally
given TEX a file not meant for its eyes.

invisible - \ker Dictionary and Index 237

invisible

\iota

isotopes

\it

box, see empty box, \strut, \phantom; characters, see SP, CR, TAB; delimiters, page 147;
digit, page 111; text, page 151. See also \phantom.

Page 132. Math mode only. Produces the Greek letter L

Page 136.

Pages 28, 33-37, 135, 165. Switches to an italic font, in text or in math mode; but in math
mode subscripts and superscripts don't work (page 34). This is generally not a problem,
since math mode uses a special italic font by default.

Normally \it should be used inside a group, so its effect goes away when the group ends.

In plain TEJ(\i t always switches to the text font \teni t , and to the math family \itfam.
To set things up so that \i t switches to an italic font in the current size, see \eightpoint
and \ tenpoint .

italic correction, page 37,136,144-145; fonts, pages 27-29,135; Greek capitals, page 136.

\item, \itemitem

\itfam

iteration

\j

Pages 58-59, 62--63. Each of these two macros starts a new paragraph and indents the
whole paragraph by \parindent or 2\parindent, respectively. The macro's argument
is written on the first line's indentation, separated from the text by half a quad. Plain TEJ(
doesn't have an \i temi temi tem macro, but one is defined on page 62.

If you're working with a zero \parindent , as in this book, \i tem won't behave sensibly.
To get any mileage out of it, you must increase the \parindent inside a group. In that case
you must close the paragraph before the group ends and variables revert to their previous
value: see page 54.

As an alternative for \i tem , see also \meti.

Page 34-36. A name for the italic font family to be used in math mode. To select that
family, say \fam\itfam. (The \it command does this.) In plain TEJ(this family only
has a \textfont, so subscripts and superscripts don't work.

Page 183.

Pages 20-21. Produces a dotless J, to be used with accents. Works in text only; in math
mode it gives the character:)! But there is a math mode equivalent, \jmath.

Jekyll and Hyde

\jmath

\joinrel

justification

Page 173.

Page 132. Math mode only. Produces the symbol J, a dotless 'j', to be used with math
accents: $\vec\jmath$ gives j Its text counterpart is \j .

Pages 146, 150, 162. Math mode only. Introduces a negative kern of 3 math units, or
negative thin space. Used to combine various arrows and other mathematical symbols
into one. Plain TEJ(defines \longrightarrow, which gives \longrightarrow, as
follows:

\def\longrightarrow{\relbar\joinrel\rightarrow}

Pages 4, 10, 40, 55, 96.

\kappa Page 132. Math mode only. Produces the Greek letter K.

Kendall, Paul Murray
Page 60.

\ker Page 140. Math mode only. Produces the abbreviation ker, which functions as a large
operator without limits.

238 A Beginner's Book of T £X kern - large operators

kern

\kern

keywords

killing TEX

Pages 4, 44, 81. Spacing that does not stretch or shrink, and at which no line or page breaks
are allowed (contrast with glue). It can be positive, to separate things, or negative, to bring
them together. Tpc inserts kerns automatically between certain letters:

VA, \hbox{V}\hbox{A} ... VA, VA

For explicit kerns, see the next entry.

Pages 44-45, 81, 138, 181-182. Introduces a horizontal or vertical kern of a specified
dimension, depending on the current mode. In math mode, the kern is horizontal. \kern
is followed by a dimension, not by glue: if you say \kern 10pt plus 2pt minus 2pt
you'll get a kern of 10 pt and the words plus 2pt minus 2pt in the output (compare
page 194). For examples of use, see pages 51, 92, 96-97,162,189. See also \mkern.

Words that have special meaning to TPC but are not preceded by a backslash. Their special
meaning is activated only in certain special situations: for example, units such as in or pt
are recognized as keywords in situations when Tpc is reading a dimension. The keywords
are: at and scaled (used in registering fonts); bp, cc, em, dd, em, ex, in, mm,
mu, pc and sp (units); by (used in register arithmetic); depth, height and width
(rule specifications); fil, fill and filll (units of infinite glue); minus and plus
(used to introduce the elastic components of glue); spread and to (used in fixing the
dimensions of a box); and true (preceding a unit).

Each letter in a keyword can be written in upper or lowercase. In addition, fill and
filll are special, in that spaces are allowed between the 'l's.

Pages 15-16.

Knuth, Donald E.
Pages 1,4,5-6,8,27, 176.

\1, \L Page 19. Produce the letter 1, L.

labeling formulas
Pages 155-156, 189.

\lambda, \Lambda
Page 132. Math mode only. Produce the Greek letter .A, A.

\land Pages 133. Math mode only. Produces the binary operator 1\, also obtained with \wedge.

\langle Pages 135. Math mode only. Produces left angle brackets (, not to be confused with the
less-than sign <. As a math delimiter, it can grow arbitrarily large with \big, \left, and
so on (pages 146-147); in this context you can use < as an abbreviation, since the less-than
sign doesn't grow. See also \lfq.

\language One of TPC's integer variables (not available before version 3.0). It tells Tpc which
hyphenation table it should use, assuming more than one such table was preloaded.

large operators

Plain Tpc only has a hyphenation table for English, but the typical site in Canada, for
example, might support both French and English. Normally such installations will offer
mnemonic commands to hide from the user the actual numerical values of \language : for
example, \french might be defined as \def\french{\language=1 \frenchspacing}
and \english as \def\english{\language=O\nofrenchspacing}.

Pages 131-132, 139, 142. A math symbol or subformula of class 1. A large operator is
separated from a preceding or following symbol of class 0 (ordinary) or 1 (operator) by a thin
space (glue given by \thinmuskip). Function names are considered "large" operators.

~TEX - \leavevmode Dictionary and Index 239

The positioning of a large operator's limits (subscripts and superscripts) depends on style,
and this dependence can be modified by the use of \limits, \displaylimits and
\nolimits.

If a large operator consists of a single symbol, it is vertically centered with respect to the
math axis, and its italic correction is taken into account in the placement of limits.

As with any symbol, you can deprive a large operator of spacing and other special behavior
by placing it within braces.

i£q"E'< Pages 5, 24, 102, 163; see also \begin.

layered structure

\lbraee

\lbraek

\leeil

Page 5.

Pages 135. Math mode only. Produces left braces {, just like \{. As a math delimiter, it
can grow arbitrarily large with \bigl, \left, and so on (pages 146--147).

Pages 135. Math mode only. Produces left brackets [, just like [. As a math delimiter, it
can grow arbitrarily large with \bigl, \left, and so on (pages 146--147).

Pages 135. Math mode only. Produces the symbol r, which, besides denoting the ceiling
function, is used by plain TEX as the top portion of an opening bracket. As a math delimiter,
\leeil can grow arbitrarily large with \bigl, \left, and so on (pages 146--147).

\ldisplaylinesno

\ldotp

\ldots

\le

leaders

\leaders

leading

Pages 189. Not part of plain TEX. Allows labeling (on the left) of several centered formulas
in a display.

Math mode only. A period with a bit of spacing before and after. Its direct use is very rare,
but \ldotp\ldotp\ldotp is how plain TEX defines the next macro, which is used all the
time.

Pages 145, 160, 167 Math mode only. Produces three dots at the right height and with the
right spacing to be placed between commas or letters. Gives better results than ... :

$x= (x_i, \ldots ,x_n) $ x = (Xl, ... ,Xn)

$x=(x_i, ... ,x_n)$ X = (Xl, ... , Xn)

Page 134. Math mode only. Produces the relation S, for "less than or equal to." Synonymous
with \leq.

Page 46--48. Dots in a row leading the eye across the page, as in an index entry. See also
the next entry.

Pages 47-48,51, 120. Produces "generalized leaders," a repeated pattern that fills up space
as if it were glue or springs. The general syntax is

\leaders prototype glue

The prototype can be a box or a rule: see \hrulefill for an example of the latter.
Horizontal glue is expected in horizontal mode, and the prototype is repeated horizontally;
vertical glue in expected in vertical mode, and the prototype is repeated vertically. Here's
how to set the pattern of page 51 using vertical leaders:

\vbox to .5in{
\leaders\line{\strut\hskip 3em\multitex\hskip 3em}\vfill}

See pages 40, 52, interbox and interline spacing.

\leavevmode Page 52. In vertical mode, starts a paragraph, or, which is the same, switches to horizontal
mode. Necessary when you want to start a paragraph with a box or space or something else

240 A Beginner's Book of T£X Le Brun, Charles - \leftskip

that can occur in either mode. There are examples on pages 46, 100, 176, but here's another
one: if you try to start a paragraph with

\hbox to lcm{\bullet\hfill} Once upon a time ...

you're in for a surprise:

•
Once upon a time ...

One solution is to precede \hbox with \leavevmode. In this case you could also use
\noindent or \indent, but inside a macro that can occur in the middle of a paragraph
as well you wouldn't want to do that.

Le Brun, Charles
Page 60.

\left Pages 147-148. Math mode only. Followed by any delimiter, causes T}3X to look for a
matching \right delimiter, and to make the delimiters as big as necessary to enclose the
formula between them. The whole construction is treated as an inner subformula for the
purposes of spacing.

The matching delimiter can be a dummy one, represented by \right. , but it must be there:
see examples on pages 90, 155-156, 158. You can use a closing delimiter with \left. For
cases where T}3X's choice of delimiter size is poor and should be overridden by hand, see
page 148.

left delimiters See opening delimiters.

\leftarrow, \Leftarrow
Page 134. Math mode only. Produce the relations .-, -¢=; the first is also given by \gets.
See also the next entry.

\leftarrowfill
Pages 46, 117. A "spring" that makes an arrow pointing left:

\hbox to lin{\leftarrowfill} <-I ------

You can combine it with \rightarrowfill to make an arrow that points both ways:
\hbox to lin{\leftarrowfill \rightarrowfill} . See also \overleftarrow and
\mathord.

\leftharpoondown, \leftharpoonup
Page 134. Math mode only. Produce the relations ~, ~.

\lefti tem Page 59. Not part of plain T}3X. Like \i tem , but places the tag flush against the left margin.

\leftline Page 68. Creates a line containing the material that follows in braces, flush left. It works
by creating a box the same width as the page, so it must be used in vertical mode. If you
use it inside a paragraph, you'll get an overfull box.

\leftrightarrow, \Leftrightarrow
Page 134. Math mode only. Produce the relations +->, ¢o>. See also \leftarrowfill.

\leftskip Pages 54--55, 57, 167. One ofT}3X's glue variables. It controls the amount of glue placed at
the beginning of each line of a paragraph, and its normal value is zero. Many applications
derive from giving it other values: indenting a chunk of text (pages 54, 57), centering
each line of a paragraph (page 57), and so on. If you use it inside a group, it's essential
to end the paragraph before closing the group, since the value of \leftskip used for
a whole paragraph is the one in effect at the end of the paragraph (page 54). See also
\displayindent.

legends lexical analysis Dictionary and Index 241

legends Page 90.

Le Notre, Andre
Page 60.

\leq Page 134. Math mode only. Produces the relation::;, for "less than or equal to." Synonymous
with \le.

\leqalignno Pages 156, 159, 189. Allows labeling (on the left) of several aligned formulas in a display.

\leqno

\let

Pages 12, 155. Allows labeling (on the left) of a single centered formula in a display.

Pages 166, 173, 176. Saying \let\foo=\bar gives \foo the current meaning of \bar
(it "clones" \bar). Most often used for abbreviations: after

\let\toto=\longleftrightarrow

you can use \toto wherever you would use \longleftrightarrow. The syntax is that
of an assignment, and different from that of \def ; the = is optional. Like all assignments,
its effect is restricted to the current group, unless it's preceded by \global.

A common use of \let is in saving the definition of a macro, so the macro can be redefined
with the old definition used inside the new. For instance, TEX typesets the Greek letter chi

. very low, which can be confusing when there are subscripts: Xc. You can say

\let\oldchi\chi
\def\chi{\vbox{\hbox{\oldchi}\hrule heightOpt}}

after which the baseline will be at the bottom of the letter: Xc. Of course we could have
chosen a different name for the new macro, but by using the same name we ensure that
the effect of the change is propagated to other macros that call the redefined macro. This
makes it possible to insulate macro modifications from changes to their original definitions;
this is particularly valuable in preparing minor modifications of style files. One can also
use this technique to give new meaning to control sequences such as \par, which are
normally primitives (see an example under \filbreak). Needless to say, this should be
done with care, because the change will affect any macro that includes the redefined control
sequence. (This paragraph was adapted from a remark by Nelson Beebe, to whom we are
very thankful.)

Sometimes \let is the only way to achieve a tricky effect: \bgroup is one such case.
Here's another: the definition of \obeylines includes the assignment \let~~M=\par
(recall that ~ ~M is a visible way to represent a CR). If you say \let \par=\cr \obeylines
\halign{ ... }, the effect is that \par first acquires the meaning of \cr, then ~ ~M

acquires the meaning of \par, which is also the meaning of \cr. This means that inside
the \halign you can separate rows using a CR, rather than having to type \cr! We used
this in the macro that typesets displayed chunks of code in this book (see \everycr).

A clone of an \outer or \long macro is also \outer or \long.

Let no one ignorant of geometry enter here
Page 151.

letters

letterhead

Pages 17, 131, 135, 164, 172. See also generalized letter.

Page 54, 71.

Le Vau, Louis Page 60.

lexical analysis
Page 176-177. See also space tokens, macro expansion.

242 A Beginner's Book of T g< \lfq - linear algebra

\lfq Not part of plain TEX. Left "foreign" quotation marks, ala fran,<aise:

Elle s'est mise it crier: «Au secours! it l'assassin!»

Elle s'est mise \'a crier: \lfq Au secours! \'a l'assassin!\rfq

Here is its definition, together with that of the matching right quotes:
\def\lfq{\leavevmode\raise.3ex\hbox{$\scriptscriptstyle

\langle\!\langle$}}
\def\rfq{\leavevmode\raise.3ex\hbox{$\scriptscriptstyle

\,\rangle\!\rangle$}}

\lfloor Pages 135. Math mode only. Produces the symboll, which, besides denoting the floor func
tion, is used by plain TEX as the bottom portion of an opening bracket. As a math delimiter,
\lfloor it can grow arbitrarily large with \bigl, \left, and so on (pages 146-147).

\lg Page 140. Math mode only. Produces the abbreviation 19, which functions as a large
operator with no limits.

\lhook Pages 134, 162. Math mode only. Produces the relation '. Mostly used with \joinrel to
make longer symbols: \hookleftarrow is composed of (you guessed it!) \lhook and
\leftarrow .

ligatures Pages 4, 9, 19,81. To prevent a ligature from occurring, it's enough to separate its characters
with an empty group: therefore you can write '{}" for British-style nested quotes, and
\ tt ?{}' if your program listing contains the string?' .

\ lim Pages 140, 150. Math mode only. Produces the abbreviation lim, which functions as a large
operator, with limits in display style. (Yes, "limit" is an overloaded word . . .)

\limind Not part of plain TEX. Math mode only. Two versions of this macro were proposed on
page 150: one gives lim ind, the other gives ~. Both function as large operators, with
limits in display style.

\liminf Pages 140. Math mode only. Produces the abbreviation lim inf, which functions as a
large operator, with limits in display style. Another version of this macro was proposed on
page 150: it gives lim.

\limi ts Pages 142, 162. Math mode only. After a large operator (page 133), declares that limits (or
subscripts and superscripts) should be placed above and below the operator in all styles. By
default, such operators get limits only in display style.

\limproj Not part of plain TEX. Math mode only. Two versions of this macro were proposed on
page 150: one gives lim proj, the other gives fug. Both function as large operators, with
limits in display style.

\limsup Pages 140. Math mode only. Produces the abbreviation lim sup, which functions as a
large operator, with limits in display style. Another version of this macro was proposed on
page 150: it gives lim.

line blank, pages 38, 52, 54, 171; breaks, pages 41, 44, 53, 70; of input, see CR; see also rules,
paragraphs, and the next entry.

\line Page 42. An abbreviation for \hbox to hsize. Creates a line, or box the width of
the page, containing the material that follows in braces. It doesn't add any springs to the
contents, so if they don't have enough elasticity, you'll get an overfull or underfull box.
\line should be used in vertical mode. If you use it inside a paragraph, you'll get an
overfull box. For examples, see pages 15,43,49,68,71.

linear algebra Pages 13, 71.

\lineskip - \loop Dictionary and Index 243

\lineskip, \lineskiplimit
Page 93. Two of TEX's variables: \lineskip is a glue variable that controls the glue
TEX puts between consecutive boxes or lines of text that are being stacked vertically, when
the boxes are unusually tall or deep. More precisely, TEX first tries to space them so their
baselines are at a distance \baselineskip from one another (see under that entry); but
if that would make the glue between the boxes less than \lineskiplimit, which is a
dimension variable, TEX uses \lineskip instead. Plain TEX sets \lineskip=lpt and
\lineskiplimit=Opt. See \baselineskip for more information.

list formatting, see \i tem, \meti; of tokens, see token list register.

\11 Page 134. Math mode only. Produce the relation «, for "much less than."

\l1ap Pages 48. Backtracks over existing text, then prints its argument. The argument is read in
horizontal mode, even if \l1ap is being used in math mode. See examples on pages 63,
67,79,98,189.

\In Page 140. Math mode only. Produces the abbreviation In, which functions as a large
operator with no limits.

\lnot Page 132. Math mode only. Produces the symbol --', also called \neg.

local changes Page 23; see also groups.

log file Pages 14-15, 180. File where TEX places a log of a run, including numbers of completed
pages (see \count), error messages, and so on. The name of the file is inherited from the
first input file read by TEX: for instance, tex hobbit will read hobbit. tex and create
hobbit .log . If the input is interactive, the output goes to texput .log. See also \show
and subsequent entries, \ tracingcommands and subsequent entries.

\log Page 140. Math mode only. Produces the abbreviation log, which functions as a large
operator with no limits.

logo

\long

See \TeX.

Page 171. Prefix placed before \def when the arguments of the macro being defined are
allowed to contain more than one paragraph. If a macro that is not \long (which is the
case with most) is passed an argument containing \par, TEX assumes a mistake was made
somewhere and complains of a runaway argument.

long formulas See pages 142, 153, *, \a11owbreak.

\longleftarrow, \Longleftarrow
Page 134, 150. Math mode only. Produce the relations f--, ~.

\longleftrightarrow, \Longleftrightarrow
Page 134, 166. Math mode only. Produce the relations <---->, {:=::}. The second symbolis
also given by \iff , but then it gets extra spacing around it.

\longmapsto Page 134. Math mode only. Produces the relation 1--+.

\longrightarrow, \Longrightarrow

look-ahead

loop

\loop

Page 134. Math mode only. Produce the relations --+,::::::}. The former is used in the
\showbox macro of pages 98, 101. The latter is used on pages 130, 149.

See \ifnextchar.

See page 183, recursion and the next entry.

The construction \loop textl test text2 \repeat provides a basic iteration capability. The
test is any conditional test (see \if and subsequent entries), without a matching \fi. TEX

244 A Beginner's Book of T £X \looseness - \magnification

starts by processing textl. It then tests the condition; if it is false, it jumps till after the
\repeat , but if it is true, text2 is processed and the loop starts over. As an illustration, here
is plain TfY('s definition of \multispan. It makes \multispan3, for example, expand
to \omit\span\omit\span\omit.

\newcount\mscount
\def\multispan#1{\omit\mscount=#1 \loop\ifnum\mscount>1 \sp~n\repeat}
\def\sp~n{\span\omit\advance\mscount\m~ne}

\looseness One of TfY('s integer variables. Its normal value is zero, and it is reset to zero after each
paragraph. If you set \looseness=1 , TfY(will try to loosen the current paragraph so it has
one more line than the number it would have otherwise. All resulting lines should still have
acceptable badness. Naturally, TfY(will only succeed if the paragraph is fairly long or if the
last line was almost full. You can also set \looseness to -1 to compress the paragraph,
or to 2 to stretch it even more, and so on.

All of that can help at the last stage of page makeup, if, say, a page break would be much
better if only you could squeeze another line in. But don't expect miracles.

\lor Pages 133. Math mode only. Produces the binary operator V, also obtained with \vee.

Louis Pasteur University

Louis Xl

Louis XIV

\lower

Pages 68, 71.

Page 60.

Page 60.

Pages 87, 181. The construction

\lower dimension box command

has the same effect as box command, except that it must occur in horizontal mode, and the
box is moved vertically so its baseline is displaced by dimension relative to the enclosing
box's baseline, instead of coinciding with it. If dimension is positive, the box is lowered; if
negative, the box is raised. The box command can be built on the fly, with \hbox, \ vbox ,
etc., or it can be fetched from memory, with \box or \copy. (But the unboxing commands
don't make sense here: the box has to be intact.) For examples, see pages 51, 98,101.

\lowercase Transforms the characters that follow in braces into lowercase. This is a subtle command:
for advice and examples see \uppercase.

\lq

Macintosh

macro

macron

A synonym for ' ,the left quote. Useful mostly to the poor souls whose keyboards lack the
real thing.

Pages 5, 7.

Pages 6, 51, 164 and following; arguments, pages 58, 167-171; in disguise, page 173;
expansion, see pages 15, 165, \expandafter, \if, \ifcat, \ifx, \ignorespaces,
\ the; file, pages 14, 16.

Page 20.

\magnification
Pages 31, 39. Sets the global magnification factor for a document; a value of 1000 corre
sponds to no magnification. This factor affects all dimensions in the document, except those
that are given in true units. But it is more accurate to say that the non-true dimensions
are unaffected, while the true ones are divided by the magnification factor; the driver
program is in charge of actually scaling everything up.

\magstep - \mark Dictionary and Index 245

As a result, a document's line and page breaks don't depend on the magnification unless a
true dimension is being used somewhere. Plain TEX does make the \hsize and \vsize
true dimensions at the time \magnification is used, in order for the physical size of the
page to be the same; so naturally each line fits fewer characters and each page fewer lines.

It follows also that when a true dimension is specified, TEX is committed to the current
magnification; so you can say \magnification only once, before any true dimensions
are specified. Furthermore, you must say it before any page is completed.

\magstep, \magstephalf
Page 31. \magstep1 equals 1200, so that \magnification=\magstep1 blows things
up by a factor of 1.2, or 20%. \magstep2 blows them up again by 1.2, for a total of
1.2 x 1.2 = 1.44, or 44%, and so on in multiplicative steps up to \magstep5. Finally,
\magstephalf is the same as 1095; the idea is that two half steps multiply up to one step:
1.095 x 1.095 = 1.2.

The definition of \magstep is a textbook example of the use of the conditional \ifcase:
\def\magstep#l{\ifcase#l 1000\or

1200\or 1440\or 1728\or 2074\or 2488\fi\relax}

man is a thinking reed
Page 92.

\mapsto Page 134. Math mode only. Produces the relation f->.

\mapstochar Math mode only. Produces a little vertical stroke I, normally used only in combination with
arrows: \mapsto is defined as \mapstochar\rightarrow.

margins

\marginnote

We wrote
\marginnote
{ ... } right
after "places,"
and here's what
came out.

Pages 23, 54, 57-58; see also \hoffset, \voffset. To typeset marginal notes, see
\marginnote below.

Not part of plain TEX. The command defined here can be used to typeset marginal notes; it
is not entirely robust, however.

\def\marginnote#l{\setboxO=\vtop{\hsize 4.75pc
\eightpoint\rightskip=.5pc plus 1.5pc #l}\leavevmode
\vadjust{\dimenO=\dpO

\kern-\htO\hbox{\kern-4 .75pc\boxO}\kern-\dimenO}}

This definition places the note 4.75 pc to the left of the main text, since that's the indentation
of section headers in this book. You can change that value at will. The \rightskip creates
a buffer zone between the note and the text; the vertical kerns ensure that the baseline of the
note's first line coincides with the baseline of the main line (notice that we must save the
value of \dpO because it becomes zero after the box is used); and \vadjust allows the
placement of the note without disturbing the paragraph.

To make the note come out on the right margin, change \hbox{\kern-4.75pc\boxO}
into

\hbox{\kern\hsize\kernlpc\boxO}

Maria Code Page 59.

\mark Places a mark in the current list of boxes and lines to be printed. The mark itself is not printed,
but the first and last marks placed on a page that TEX has just completed are accessible under
the names \firstmark and \botmark. In addition, \topmark contains the previous
page's \botmark.

More exactly, suppose that your file has the commands \mark{Matthew}, \mark{Mark},
\mark{Luke} and \mark{John}, and that page breaks are such that the first mark falls

246 A Beginner's Book of Tg< markup - \mathchar

markup

master file

Masters

mastication

math

on page 2, while the others fall on page 4. By the time page 1 is completed, no marks have
been found, so \topmark, \firstmark and \botmark all expand to nothing. At the
end of page 2, \firstmark and \botmark expand to Matthew, but \topmark still
expands to nothing. At the end of page 3, all three marks give Matthew. At the end of
page 4, \topmark is still Matthew, \firstmark is Mark, and \botmark is John.
For all subsequent pages, all three marks give John.

The headline of each page of a dictionary often contains the range of entries on the page, and
can be built from \firstmark and \botmark. This Dictionary-Index is no exception:
each new entry is introduced by the \entry command, whose definition includes an
automatic mark: \def\entry#1{\medbreak ... \mark{#1} ... }. The running heads
make use of this information in the following way:

\evenpagehead={\hbox to 3em{\folio\hfil}\the\runningtitle
\hfil{\firstmark}\quad--\quad{\botmark}}

and similarly for \oddpagehead. Note that \firstmark and \botmark are inside a
group, as they may contain font-change commands. Also, in the definition of \entry , it is
essential that no page break intervene between the mark and the beginning of the entry; if
we had written \def\entry#1{\mark{#1}\medbreak ... } and a break occurred at the
\medbreak , the last mark on the previous page would be the first entry of the next, and the
headers would come out wrong.

In other applications, \firstmark may not be adequate to reflect the state of affairs at
the top of a page, and one must use instead \topmark, or a combination of the two.
Such sophisticated mark management won't be discussed here: see pages 258-262 of The
TEXbook.

A few caveats are in order. First, \mark expands its argument, so if the value of a macro
is changed between the time it is used in a \mark and the time the mark is printed, the
change is not reflected in the mark. Next, \mark won't work except at the "outer level:" if
you use it inside a vertical box, or inside a horizontal box that is part of a paragraph or box
of any kind, the mark will never appear as a \firstmark or \botmark or \topmark.
Finally, the values of \firstmark, \botmark and \topmark are global, that is, they
are not affected by groups.

Page 3.

Page 13.

Page 102.

See lexical analysis.

article database, page 4; characters, page 131-135; classes of symbols, page 131; font
families, pages 32-35,139-140,143; formulas, see math mode; glue, pages 178, 182; italic
fonts, page 135; mode, pages 15-17, 19,24,28,38,52,81-82,84,91,100, chapter 11;
shift character, see $; symbols, pages 17,33, 131-135; unit, see page 140, mu.

\mathaccent Math mode only. Primitive from which macros like \hat, \tilde, etc., are built. For an
example of use, see \interior.

\mathbin Math mode only. Makes the following character or group into a binary operator, for the
purposes of spacing:

$a \ tau b$, $a \mathbin{\ tau} b$ aTb, a T b

\mathchar Page 36. Math mode only. Followed by an integer 0 :::; n < 32768, prints a character
in one of the math font families. The character depends on n in the following way: if

\mathchardef - \mathcode Dictionary and Index 247

\mathchardef

n = 16 x 256 x + 256y + Z, with 0 < x < 8,0 < y < 16 and 0 < Z < 256 (that is, if x is
the highest digit of n in hexadecimal notation, y is the second-highest, and Z represents the
two lowest), TEX typesets the character in position z of family y (see \fam), and considers
it to be of class x for the purposes of spacing (page 131). The values of x, y and z can be
read off easily if n is written in hexadecimal, which is indicated by a ". Here are some
examples:

• Plain TEX's definition for \colon is, in essence, \def\colon{\mathchar"603A};
the 6 indicates a punctuation mark, the 0 says it's taken from font family 0, which is the
roman family (page 33), and 3A is the colon's ASCII code in hexadecimal.

• Plain TEX also says \def\alpha{\mathchar"010B}; here 0 is the class of ordinary
characters, 1 is the family of italic fonts, where Greek letters are to be found, and OB is
the position of a in those fonts.

• Suppose we use \newfam to define a new family of symbol fonts, as explained on
page 34; let its symbolic name be \myfam. To access the symbol that is in position "40,
say, and treat it as a binary operator, we must type \mathchar"2y40, where y stands for
the hexadecimal digit that TEX associates with \myf am. We could look in the log file to
find out that number, but it might change from run to run; it's much better to deal only with
the name, not the number. How can we do that? Writing \myfam in place of y won't
work, because this control sequence is an integer register, not a digit. What we need is a
way to generate the hex representation of a number, just as \number generates the decimal
representation. TEX provides no such command, but we can easily define one for numbers
up to 15:

\def\hexnumber#l{\ifcase#l 0\orl\or2\or3\or4\or
5\or6\or7\or8\or9\or A\or B\or C\or D\or E\or F\fi}

We can now type \mathchar"2\hexnumber\myfam 40.

One last thing: as mentioned on page 131, a character of class 7 is a variable-family
character. This means that the character's family is replaced by the current value of \fam,
if \fam was set within the current formula to a number between 0 and 15. Otherwise
characters of class 7 behave like those of class O.

See also the closely related \mathcode.

Page 36. Makes the following control sequence an abbreviation for a \mathchar con
struction. It works in the same way as \chardef. The actual definitions of \alpha and
\colon (see previous entry) are

\mathchardef\alpha="010B \mathchardef\colon="603A

\mathchoice Pages 143, 150. Math mode only. Chooses among the four following groups, depending on
the style. Mostly used in macros: after \def\ toto{\mathchoice{1}{2}{3}{ 4}} , you
get the following bizarre behavior:

$\toto+\displaystyle\totoA{\toto_ {\toto}}$ 2 + 134

A more serious use is provided by plain TEX's \root command.

\mathclose Math mode only. Makes the following character or group into a closing delimiter. The
definition of \bigl is \mathclose\big.

\mathcode Associates with an input character a character in one of the math font families. The input
character is referred to by its ASCII code (generally with the '\ mechanism), and the output
character by means of the convention explained under \mathchar. For example, plain
TEX says \mathcode' \ : ="303A ; this means that when a : is seen in math mode TEX

248 A Beginner's Book of rEX mathematical - \medbreak

prints the character in position "3A of the appropriate font of family 0, and treats it as a
relation (class 3). Therefore, \colon and : print the same symbol, but treat it differently
for purposes of spacing.

The math code of a character can also be "8000, in which case the character is treated as
an active character whenever it is encountered in math mode. Plain TEX sets

\mathcode'\'="8000

and then specifies what ' should expand to:

{\catcode'\'=\active \gdef'{~\prime}}

(the actual definition is more complicated in order to allow for repeated primes).

mathematical, mathematics
See math.

\mathinner Page 160. Math mode only. Makes the following character or group into an inner subformula
(see entry). Used very rarely.

\mathop Pages 143, 149-150, 162. Math mode only. Makes the following character or group into a
"large" operator, for the purposes of spacing:

${\rm sin} x$, $\mathop{\rm sin} x$ sinx, sin x

\mathopen Math mode only. Makes the following character or group into an opening delimiter. The
definition of \bigl is \mathopen\big.

\mathord Math mode only. Makes the following character or group into an ordinary subformula, for
the purposes of spacing. Plain TEX uses - and \leftarrow to build up its stretchable
arrow \leftarrowfill; it first takes the precaution of making those two characters
ordinary, so no spacing is placed around them. (But enclosing a character or subformula in
braces is sufficient to make it ordinary.)

\mathrel Page 162. Makes the following character or group into a relation, for the purposes of spacing.
The definition of \bigm is \mathrel \big; other examples were given on page 162.

\mathstrut Page 151. Produces an invisible rule of width zero and same height and depth as paren
theses, used to uniformize the height and depth of different expressions. For examples, see
pages 141, 144-145. In spite of its name, \mathstrut can be used outside math mode.

\mathsurround
Page 186. One of TEX's dimension variables; it controls the amount of spacing placed
before and after a text math expression (one between single dollar signs). Its normal value
is zero.

\matrix Pages 157-158. Typesets a matrix, or array of math formulas. Each entry is centered in
its column. Entries are separated by ampersands &, and rows are terminated by \cr;
for examples, see pages 22, 43, 157-158. Page 159 shows how you can increase the
spacing between rows of a matrix, and pages 161-162 how \matrix can be adapted to do
diagrams. Matrices in parentheses can be obtained with \pmatrix. To surround matrices
with other delimiters, use \left ... \right (pages 147). Don't use \matrix for systems
of equations and such: see pages 186-188 for better solutions. And for a small matrix like
(~~), see \atop.

\max Pages 140, 143. Math mode only. Produces the abbreviation max, which functions as a
large operator, with limits in display style.

\medbreak Page 52, 77. Causes a conditional vertical skip by \medskipamount, and marks the place
as a fairly good one for a page break. If the \medbreak was preceded by another skip, the

medium space - minus Dictionary and Index 249

medium space

lesser of the two is canceled; in particular, two consecutive \medbreak s have the same
effect as one.

An amount of space controlled by \medmuskip (see next entry), and automatically placed
around binary operators (see that entry). It can also be requested explicitly with \>.

\medmuskip Page 182. One of TfY('s math glue variables, set by plain TfY(with \medmuskip=4pt
plus 2pt minus 4pt, or this much: II. Generally called a medium space (see preceding
entry).

\medskip Page 40. Causes a vertical skip by \medskipamount. For examples, see pages 12, 45,
49-50,52.

\medskipamount

memory

\message

\meti

metric

One of TfY('s glue variables: it controls the amount of a \medskip. Plain TfY(sets it to
6pt plus 2pt minus 2pt. See also \eightpoint.

Pages 6, 85.

Prints the material that follows in braces on the screen and in the log file. See examples
under \chapter, \section and \subsection.

Pages SO, 63. Starts a new paragraph and places its argument in the paragraph indentation,
separated from the following text by half an em.

files, see pages 6, 9, \fontdimen; system, see page 39, units.

microcomputers
Page 7.

\mid Page 134. Math mode only. Produces the relation I. The same symbol is obtained with I ,
but the spacing is different:

$K=\{(x,y)\mid x<lyl\}$ K =:; {(x,y) 1 x < Iyl}
\midinsert Page 70. Basically, TfY(sets the material between \midinsert and \endinsert at the

current spot on the page or at the top of one of the following pages, depending on space
constraints. More precisely, TfY(sets the material in a box and measures its height plus
depth. If there is room for it on the current page, separated from the existing text by
a \bigskip, TfY(prints the box there. Otherwise, TfY(treats the material as a floating
insertion, as if it had been found between \ topinsert and \endinsert.

millimeter

\min

minus

Occasionally it happens that a \midinsert is just over the amount of space left on the
current page. In such a case the resulting floating insertion may actually fit on the page,
because of the elasticity of the glue, with the unfortunate result that the material appears
at the top of the current page, before the point in the text where it is referred to. The only
way to fix this (short of changing the definition of \midinsert) is to jiggle the contents
of the insertion so the coincidence no longer happens: some 6 pt added or subtracted from
its height are generally enough to do the trick.

\midinsert won't work inside a vertical box, or inside a horizontal box that is part of a
paragraph or box of any kind; the insertion will disappear. See insertions for details.

See mm.

Pages 140. Math mode only. Produces the abbreviation min, which functions as a large
operator, with limits in display style.

Pages 40, 44-45,181,194. Keyword that introduces the shrinkability of glue.

250 A Beginner's Book of T p< minus sign - \month

minus sign

missing

\mit

\mkern

mm

mode changes

Pages 19, 100, 182. See also -.

braces, page 26; control sequence, pages 171, 175; dollar sign, pages 16, 171; rule dimen
sions, pages 94, 115, 126.

Pages 33, 136. Switches to a math italic font; its effect is felt only in math mode. Mostly
used for italic Greek capitals.

Page 138, 140, 160, 182. Math mode only. Introduces a horizontal kern of a specified
dimension, expressed in math units (see mu), and so dependent on the current math font
and style. For this reason it is to be preferred to \kern, which also works in math mode.
\mkern is followed by a dimension, not by glue. There is no corresponding vertical kerning
command: vertical skips don't make sense in math mode.

Pages 10, 13, 39. A keyword for millimeter, one of TEX's units.

Pages 24, 26, 52, 80-83, 94. Here is a summary of the situations when TEX changes mode:

The following commands, when encountered in vertical mode, cause TEX to go into or
dinary horizontal mode, starting a paragraph: any character whose category code is 11
or 12 (letter or ordinary); \char; any control sequence defined with \chardef; the un
boxing commands \unhbox and \unhcopy; \valign; \vrule; \hskip; the springs
\hfil, \hfill, \hss and \hfilneg; \accent; \discretionary; \-; \ ; and
any begin/end math character (normally $).

In ordinary horizontal mode, \par (or a blank line) causes TEX to wrap up and typeset the
current paragraph. In restricted horizontal mode, \par is ignored. The following com
mands are incompatible with horizontal mode, so their appearance causes TEX to generate
a \par (if in ordinary horizontal mode) or issue an error message (if in restricted hori
zontal mode): the unboxing commands \unvbox and \unvcopy; \halign; \hrule;
\vskip; the springs \vfil, \vfill, \vss and \vfilneg; \end; and \dump. The
same commands are forbidden in math mode, except that \halign is allowed in display
math if it's all by itself.

In ordinary horizontal mode, a begin/end math character (normally $) causes TEX to look
at the next token, without expanding it. If it is another similar character, TEX goes into
display math mode, otherwise into ordinary math mode. Math mode ends when a matching
$ is found, and the mode reverts to what it was. In restricted horizontal mode, $ has the
same effect, but $$ is not recognized as introducing display math mode: it creates an empty
formula instead.

In any mode, the appearance of \hbox or \halign puts TEX in restricted horizontal mode,
which lasts till the end of the group delimited by braces after the command; at the end of the
group the mode reverts to whatever it was before. Similarly, \ vbox, \ vtop, \ vcenter
and \ valign put TEX in internal vertical mode till the end of the corresponding group.
But \ vcenter is allowed only in math mode.

\models Page 134. Math mode only. Produces the relation p.
Monotype Pages 1-2.

Montesquieu Page 108.

\month Page 185. One of TEX's integer variables: it contains the current month (according to your
computer's operating system). To print it numerically you must precede it by \the or
\number (page 180). See also the next entry.

\monthname - \muskip Dictionary and Index 251

\monthname Page 185. Not part of plain TEX. Prints the name of the current month. See also the previous
entry.

Montlhery

mouse

mouth

Page 60.

Page 7.

See lexical analysis.

\moveleft, \moveright

\mp

Pages 88, 97, 181. The construction

\moveleft dimension box command

has the same effect as box command, except that it must occur in vertical mode, and the
box is moved horizontally so its reference point is displaced by dimension relative to the
enclosing box's reference point, instead of being vertically aligned with it. If dimension is
positive, the box is moved left; if negative, the box is moved right. The box command can
be built on the fly, with \hbox, \ vbox , etc., or it can be fetched from memory, with \box
or \copy. (But the unboxing commands don't make sense here: the box has to be intact.)

Unsurprisingly, \moveleft is like \moveright, but the direction of motion is reversed.

Pages 133. Math mode only. Produces the binary operator =F.

msam and msbm fonts
Page 34. Fonts distributed by the AMS, containing blackboard bold characters and many
mathematical symbols unavailable in plain TEX. The easiest way to use them in plain TEX
is to \input the macro files amssym. def and amssym. tex , which come with the fonts,
and where control sequences for the symbol.s are defined; for example, \ varnothing
stands for 0.

\mskip Pages 138, 140, 182. Math mode only. Introduces horizontal glue of a specified dimension,
expressed in math units (see mu), and so dependent on the current math font and style. For
this reason it is to be preferred to \hskip, which also works in math mode. There is no
corresponding vertical glue command: vertical skips don't make sense in math mode.

mu Pages 140, 160. A keyword for math unit, a unit of distance equal to 1/18 of an em in the
current font (which depends on the style).

\mu Page 132. Math mode only. Produces the Greek letter /-t.

\mul tiply Page 183. Multiplies the contents of an integer register by an integer: \mul tiply\pageno
by2 . To multipy a dimension register by any number-not necessarily an integer-you can
say, for example, \dimenO:2. 5\dimenO , according to the general rules explained under
dimensions. This doesn't work for integer registers.

\multispan Pages 110, 114, 116, 121. Used at the beginning of an \halign (or \valign) entry,
immediately after an &, \cr or \noalign construction. It is followed by an integer n,
which must be in braces if it has more than one digit, and causes the entry which it introduces
to span the next n columns of its row (or the next n rows of its column, for a \ valign).
The templates for all these columns are ignored. The use of \mul tispan anywhere else is
an error. For the definition of \multispan, see \loop.

\mul ti tex Page 51. Not part of plain TEX. Makes a TEX pattern repeated horizontally: see \leaders.

Murphy's law Page 29.

\muskip Pages 178, 182-183. Refers to one of TEX's 256 numbered registers for math glue. Except
for \muskipO through \muskip9 and \muskip255, which can be used for temporary
storage, all other registers should be allocated using \newmuskip.

252 A Beginner's Book of T 8< \muskipdef - nested

\muskipdef Makes the following control sequence an abbreviation for a \muskip construction. Used
like \countdef. In practice \muskipdef is almost never used, because \muskip
registers should be allocated with \newmuskip: see the previous entry and page 180.

\myfootnote Page 62. Not part of plain TEX. A more sophisticated command than \footnote. It takes
only one argument, the text, since the mark is a number incremented automatically. It can be
adapted to set the note in a different font from the text. Like \footnote, \myfootnote
won't work inside a vertical box, or inside a horizontal box that is part of a paragraph or
box of any kind; the footnote will disappear. See insertions for details.

In one respect \myfootnote is less sophisticated than \footnote: it doesn't read the
text of the note as an argument, so the characters' category codes are not frozen before
TEX has a chance to look at them. This is important, for example, if you're dealing with
verbatim text (page 174). Here's a rewriting of \myfootnote that avoids this problem; to
understand how it works, see \aftergroup:

\def\pre{\unskip\footnote{$A{\the\notenumber}$}}
\def\post{\global\advance\notenumber by 1}
\def\myfootnote{\pre\bgroup\aftergroup\post\let\dummy=}

\nabla Page 132. Math mode only. Produces the symbol V'.

naming a box, page 84; a font family, page 33; a register, page 179.

\narrow Page 167. Not part of plain TEX. The material between \narrow and \endnarrow is
typeset with \leftskip and \rightskip equal to \parindent. See the following
entry.

\narrower Pages 23, 57. Causes the subsequent material to be typeset with left and right margins pushed
in by the paragraph indentation: more precisely, it increases \leftskip and \rightskip
by \parindent. Useful in quotations, etc. The effect of \narrower can be limited by
grouping. In that case the last paragraph to which the change applies should end before the
group where it started.

\natural Page 132. Math mode only. Produces the symbol Q.

natural component

\ne

\nearrow

negations

negative

Pages 40-41, 178; see also glue.

Page 134. Math mode only. Produces the relation :t, also obtained with \neq.

Page 134. Math mode only. Produces the relation /.

Page 134. In plain TEX the negation of a relation is obtained by overstriking the relation
with \not. The only negation that deserves a more elaborate symbol is \notin. The
AMS distributes fonts that have proper negated relations: see msam and msbm fonts.

dimensions, see pages 79, 93, dimensions; glue, pages 39, 44, 48,61, 123, 159; indentation,
pages 53, 55; numbers, see integers, decimal constants; \pageno, page 65; penalties,
pages 76-77; spacing, pages 39, 44, 48, 61, 123, 159; springs, page 48; width, page 108.

\negspring Page 48. Not part of plain TEX. A "negative spring" whose natural width is zero but can
shrink to - 00.

\negthinspace
Pages 44, 138. Produces a negative thin space, that is, brings the adjacent symbols closer
together by one-sixth of an em. Its use is rare, since in math mode \! is to be preferred.

\neq Page 134. Math mode only. Produces the relation :t, also obtained with \ne.

nested conditionals, page 185; groups, page 22; macro definitions, page 169; quotes, see quotes.

network - \noalign Dictionary and Index 253

network

\newbox

Page 4.

Pages 84, 179. Assigns a name to the number of a box register that is guaranteed not to have
been used elsewhere, as long as the discipline explained on page 179 is followed. Saying
\newbox\toto makes \toto synonymous with the appropriate box number, not with the
box itself: you refer to the box by saying \setbox\toto, \box\toto, and so on.

This and all other plain TEX macros starting with \new ... are \outer, that is, they are
not allowed to appear in macro definitions and in certain other situations. To get around
this, see \outer.

\newcount, \newdimen
Pages 62,179-180. Assigns a name to an integer or dimension register that is guaranteed
not to have been used elsewhere, as long as the discipline explained on page 179 is fol
lowed. Saying \newcount\toto makes \toto synonymous with \count n, for some
(irrelevant) value of n; and similarly with \newdimen. See also \newbox above (last
paragraph) for an important warning.

\newfam Pages 33-34, 84. Assigns a name to a family of math fonts that is guaranteed not to have
been used elsewhere, as long as all new families are so assigned. Saying \newfam\toto
makes \toto synonymous with the appropriate family number, and \fam\toto sets the
current math family to the family referred to by \ toto. See also \newbox above (last
paragraph) for an important warning.

\newif Pages 65, 185. Saying \newif\iftoto defines three new control sequences: \iftoto,
\tototrue and \totofalse. The last two make \iftoto equivalent to \iftrue and
\iffalse, respectively. The name of the control sequence following \newif must start
with if . See \iffalse to find out how \newif works. See also \newbox above (last
paragraph) for an important warning.

\newmuskip, \newskip

newsletter

\newtoks

Page 179. Assigns a name to a math glue or regular glue register that is guaranteed not
to have been used elsewhere, as long as the discipline explained on page 179 is followed.
Saying \newskip\toto makes \toto synonymous with \skip n, for some (irrelevant)
value of n; and similarly with \newmuskip. See also \newbox above (last paragraph) for
an important warning.

Pages 3, 7.

Pages 65, 179. Assigns a name to a token list register that is guaranteed not to have been
used elsewhere, as long as the discipline explained on page 179 is followed. Saying, for
example, \newtoks\toto makes \toto stand for with \toks n, for some (irrelevant)
value of n. See also \newbox above (last paragraph) for an important warning.

Newton-Girard formulas
Page 156.

\ni Page 134. Math mode only. Produces the relation 3; a synonym for \owns. Used by
aficionados of machine language and other monstrosities:

\noalign

R n 3 x r-1-.. x + cp(x)y E Rm

Pages 108, 120. Used between rows of an \halign, or columns of a \valign, imme
diately after a \cr or another \noalign. It inserts the material that follows in braces,
generally a glue command, rule or box, between the rows or columns of the alignment. The
material is processed in vertical mode in the case of \halign, and in horizontal mode in

254 A Beginner's Book of T EX \nobreak - \normallineskiplimit

the case of \valign. Page 109 shows how to avoid a common mistake; pages 112 and
following how to open up tables, pages 157, 159, 186 how to open up displayed equations
and matrices. See also \eqalignno for how to add text between aligned equations.

\nobreak Page 76. An abbreviation for \penal ty 10000. It prevents TEX from breaking the line (if
in horizontal mode) or page (if in vertical mode) at this point. But it doesn't act retroactively,
so if \nobreak is preceded by glue its effect will be nullified. This causes no end of sorrow,
because the preceding glue may have been put there by a macro, without your knowledge.
For an example of what to watch out for, see \section and \subsection.

\noexpand Inhibits the expansion of the next token. For an example of use, see \outer.

\noindent Pages 12,46,52,57, 72, 92. Encountered in vertical mode, it starts a paragraph without
indentation. In horizontal mode it does nothing.

\nointerlineskip
Page 94. Placed between two boxes in vertical mode, it suppresses the automatic spacing
that would otherwise separate them. See also \offinterlineskip.

\nolimits Pages 142. Math mode only. After a large operator (page 133), declares that limits (or
subscripts and superscripts) should be placed in their normal positions, rather than above
and below the operator, in all styles. By default, such operators get limits above and below
in display style. See also \limits, \displaylimits.

\nonfrenchspacing

non-letter

\nonstopmode

Tells TEX to follow the conventions of Anglo-Saxon typesetting regarding spacing after
punctuation: see \frenchspacing. This is the normal state of affairs in plain TEX.

Page 164.

Causes TEX to run without stopping for errors, no matter how serious, but to print error
messages on your screen. Typing r in response to an error has the same effect. See also
error checking and recovery.

\nopagenumbers
Pages 64-65. Suppresses page numbering.

\normalbaselines, \normalbaselineskip
Pages 159-160, 163, 186. \normalbaselines makes \baselineskip, \lineskip
and \lineskiplimi t revert to their default values \normalbaselineskip, \normal
lineskip and \normallineskiplimit, which are set by plain TEX to 12 pt, 1 pt and
Opt, respectively. The idea is that these values are more or less permanent, while the values
of \baselineskip, \lineskip and \lineskiplimi t are changed for many purposes
(as by \openup). This is used by certain macros like \matrix to ensure consistent
spacing. But the "permanent" values can also be changed, and indeed it is essential to do
so to get good results with different size type: see \eightpoint. For double spacing and
the like one can modify the definition of \normalbaselines itself: see \spacemag.

\normalbottom
Cancels the effect of \raggedbottom, that is, makes all pages have the same height. This
is the standard setting in plain TEX.

\normallineskip, \normallineskiplimit
Pages 159-160, 163, 186. See \normalbaselines.

\not \DE Dictionary and Index 255

\not Page 134. Math mode only. Produces the symbol /, whose dimensions are such that it
overstrikes the following symbol:

$x\not=y$, $U\not\subset V$ x f. y, u rt V

See also negations.

\notenumber Page 62. Not part of plain TEX. Integer register used by \myfootnote to keep track of
note numbers.

\notin

\nu

NULL

\null

\number

Page 134. Math mode only. Produces the relation 1.. An alternative for \not\in, which
gives ~.

Page 132. Math mode only. Produces the Greek letter v.

Page 172. The character with ASCII code 0, assigned by plain TEX category 9 (ignored).

Pages 46, 51, 69, 90. An abbreviation for \hbox{}. Useful in preventing preceding or
following glue from disappearing.

Page 181. Generates the decimal representation of the following integer (see integers).
The tokens generated in this way may be printed or reinterpreted as a number, depending
on the context; for example, \number" 10 prints 16, but \pageno=\number\pageno 0
multiplies the page number by 1O!

numbering equations
Pages 155-156, 189.

\nwarrow Page 134. Math mode only. Produces the relation "'.

\0, \0 Page 19. Produce the letter 0,0. Compare \emptyset 0.

\oalign Page 151. Makes a tiny one-column alignment with very little space separating rows. Used
to place things above and below a character, closer than \atop will let you. Plain TEX's
dot-under accent is defined with

\def\d#l{\oalign{#l\cr\hidewidth.\hidewidth}}

\obeylines Pages 53, 57, 174--175. Causes TEX to interpret a CR in the input file as a \par command,
so each line of input starts a new line of output. But a blank line in the input doesn't cause a
blank line in the output! By changing the meaning of \par you can achieve special effects:
see under \let for an example.

There is no command to counteract \obeylines: it remains in effect till the end of the
group where it was found.

\obeyspaces Pages 25, 174, 176. Causes TEX to interpret a SP in the input file as a \space command,
so consecutive spaces are no longer merged as usual. Watch out: spaces just before the
beginning of a paragraph (or at the beginning of a line, if you've said \obeylines) are
still ignored, since they're read in vertical mode. To fix this, you must redefine the active
space by saying {\obeyspaces\gdef {\leavevmode\spaceH.

octal numbers See page 36, integers.

\oddpagefoot, \oddpagehead

\odot

\oe, \OE

Pages 65--{i6, 71, 183. Not part of plain TEX. In the fancy format, these variables contain
the material that forms the footer and header of each odd-numbered page. For more details,
see \evenpagefoot.

Pages 133. Math mode only. Produces the binary operator 8. Compare \bigodot 0.
Page 19,38. Produce the letter ee, CE.

256 A Beginner's Book of T £X \of - ordinary character

\of Page 145. Math mode only. Delimits the index of a radical: \root ... \of{ ... } .

\offinterlineskip
Pages 94, 97-98, 114, 116. Eliminates altogether the space TBC automatically places
between boxes and lines. Essential in tables that have vertical rules.

\oint Page 133. Math mode only. Produces the large operator 1, f. Unlike most large operators,

\oint has its limits placed in the sUbscript/superscript position, rather than above and below
it. You can change this behavior with \displaylimi ts .

\oldstyle Pages 33, 35-36, 136. Switches to a font that has old-style digits 1234567890. Works in
all modes. The use of non-digits while \oldstyle is in effect gives weird results, because
everything is taken from the math italic font:

\oldstyle Where is H\' el \ 'ene? WhereisHeUlne*

\omega, \Omega
Page 132, 151. Math mode only. Produce the Greek letter w, n.

\ominus Pages 133. Math mode only. Produces the binary operator e.
\omit Pages 107,112,114-115. Used at the beginning of an \halign (or \valign) entry,

immediately after an &, \cr or \noalign construction, it causes the template for the
corresponding entry to be ignored. The use of \omit anywhere else is an error. See also
\loop.

open quotes Page 18.

opening delimiter
Page 131, 135; see also \bigl, \left. No space is placed between an opening delimiter
and the following symbol, but spacing is placed before an opening delimiter that is preceded
by a binary operator, a relation, a punctuation mark or an inner subformula, according to the
rules for each of these classes. See also \mathopen.

\openup Pages 113, 116, 152, 154-155, 157, 159, 186. Saying \openup x, where x is a dimension,
is the same as increasing \baselineskip, \lineskip and \lineskiplimit by x.
The net result is that the glue placed automatically between lines and boxes that are being
stacked is increased uniformly. The effect of several \openup s is cumulative. If you want
to separate all the rows of an \halign (or one of the macros that perform alignments), you
must place \openup before, not inside, the \halign.

The interesting thing about \openup is that, although it is a macro, its argument doesn't
have to be placed in braces; TBC expects to see a dimension after \openup and will scan
ahead until finding one. The way that's achieved is clever: see \afterassignment.

operating system
See implementation dependencies.

optional arguments

options file

\oplus

\or

orchestra

See \ifnextchar.

Page 14.

Pages 133. Math mode only. Produces the binary operator EEl. Compare \bigoplus EB.
Page 185. Separates the cases in an \ifcase. See \today and \magstep for examples.

Page 3.

ordinary character
This expression has two senses. It means an input character of category 12 (page 172),
that is, one that cannot appear in multi-character control sequences, but doesn't have a

ordinary - overfull boxes and lines Dictionary and Index 257

ordinary

\oslash

\otimes

outer level

\outer

special meaning. But in math mode, it also means an output character, or symbol, of
class 0 (page 132). Ordinary math symbols and variable-family symbols (of class 7) are not
surrounded by space: $3abc$ gives 3abc. Any space around such characters comes from
an adjacent large operator, binary operator, relation, punctuation mark or inner subformula,
as explained under those entries. See also \mathord.

horizontal mode, pages 24,80; vertical mode, page 25, 79, 105.

Pages 133. Math mode only. Produces the binary operator 0.

Pages 133, 161. Math mode only. Produces the binary operator 0. Compare \bigotimes

®.
Page 25. Something is said to be at the outer level if it isn't inside any boxes, but is
being contributed directly to the page. The distinction is important because alignments, or
anything else, inside boxes will not be broken across pages, but no such restriction applies
to things at the outer level: see page 105 and \everycr. See also insertions and \mark.

Page 171. Placed before the definition of a macro, declares that the macro is not allowed to
appear in macro arguments or replacement text, nor in the portion of a conditional that is
being skipped over, nor in the preamble of an alignment. Therefore an \outer macro is
treated even more strictly than \par, which is only forbidden inside macro arguments.

In plain TEX the following macros are declared \outer: \beginsection, \proclaim,
\+ , and all macros starting with \new. But often one wants to have \newcount, for
example, as part of the replacement text of a macro, or inside a conditional. How to get
around its outemess? One way is to use instead a non-outer macro \mynewcount which
expands to \newcount. Defining \mynewcount is not trivial, because we can't just say
\def\mynewcount{\newcount} , because we run into the outemess problem again! We
must instead use a subterfuge:

\edef\mynewcount{\noexpand\newcount}

The idea is that \edef expands the stuff in braces before assigning it to \mynewcount
but the "expansion" of \noexpand\newcount is just \newcount ! In some sense, \edef
and \noexpand cancel each other, but the net effect is to allow an outer sequence to be
part of a replacement text.

outline fonts Page 31.

output See dvi file, log file.

\over Pages 148. Math mode only. Makes a fraction: $1 \over 2$ gives ~. The numerator
and denominator form groups, and extend to the limits of the smallest enclosing group.
They are typeset in a smaller style than the style in effect when the fraction is encountered:
pages 139-140. They are normally centered, but that can be changed by the use of \hfill :
page 33. See also the related entries \overwithdelims, \atop, \atopwithdelims,
\above and \abovewithdelims.

There is also a completely different use of \over, with the \buildrel control sequence:
page 170.

\overbrace Page 145. Math mode only. Places horizontal braces above its argument, which is also read
in math mode. Unlike \downbracefill, whose results are similar, \overbrace doesn't
have to be put in a separate box and stacked above the main text: it takes care of everything.

overfull boxes and lines
See pages 15-16,41,76,85,89, and \-.

258 A Beginner's Book of TP< \overfullrule - \parfillskip

\overfullrule
Pages 16,41. One of TFf('s dimension variables: it controls the thickness of the vertical
stroke ("black box") that TFf(places next to an overfull box or line, to catch your eye. Plain
TFf(sets \overfullrule=5pt; if you say \overfullrule=Opt, TFf(will not print the
stroke.

\overleftarrow, \overline, \overrightarrow
Page 145; for \overline, see also pages 150, 167. Math mode only. These macros draw
arrows and bars above their arguments. The results with single letters, especially capitals,
is not ideal: $\overline M$ gives M. Sometimes it helps to introduce a negative thin
space on the left, but that wrecks the spacing:

$\overline{\! M}+\overline{\! C}+\overline{\! Y}$ M +0 +"Y
Another alternative is to use \bar and \vec instead, although these produce a much
smaller accent.

\overwithdelims

\owns

\P

package

page

\pageno

papyri

\par

paragraphs

\parallel

parentheses

\parfillskip

Page 142. Math mode only. Like \over, but encloses the fraction between specified
delimiters:

$$x+{y+z\overwithdelims[] v+w}$$ x + [y + z]
v+w

Page 134. Math mode only. Produces the relation 3; a synonym for \ni.

Produces the symbol', in text or in math mode. In math mode it does not change size in
subscripts and superscripts.

Pages 5, 6; see also format file.

blank, pages 69; breaks, pages 41, 44, 75-77; building, pages 25, 79; description language,
pages 2-3, 5, 9; layout, pages 7, 40, 45, 64-77; number, pages 64, 66, 67; shipout, page 79;
width page 41.

Page 65, 181, 183-184. An integer register that contains the page number: the same as
\countO. For its use, see \folio and \count.

Page 176.

Pages 26, 28, 45, 47,51-53,75,171,175. Terminates the current paragraph, ifTFf(is in
ordinary horizontal mode. In vertical mode, it is ignored. In restricted horizontal mode, it
doesn't make sense (since TFf(is composing a single line), and is also ignored. In math
mode it causes an error.

A blank line is normally equivalent to \par: see CR. After \obeylines, a single CR is
equivalent to \par. In that case you can get interesting effects by changing the meaning
of \par: see \let.

beginning, see mode changes; and boxes, page 82; and display math, page 131; ending, see
mode changes; indentation, page 23; spacing between, page 45.

Page 134. Math mode only. Produces the relation II. The same symbol is obtained with
\ I , but in the latter case it is not surrounded by space.

Pages 100, 135; see also (.

Pages 47, 56, 70. One of TFf('s glue variables: it controls the glue added automatically
to the end of a paragraph. Plain TFf(sets it with \parfillskip=Opt plus Hil, so it
corresponds to a weak spring, to fill up the last line. A longish paragraph, like this one,

\parindent - \Pi Dictionary and Index 259

can be made to end flush with the right margin with the command \parfillskip=Opt,
without the interword spacing stretching overmuch. See also \qed and \raggedleft.

\parindent Pages 13-14, 23, 47, 49-50, 53, 55, 57, 62, 99. One of TEX's dimension variables: it
controls the automatic indentation at the beginning of a paragraph. It is also used by other
macros such as \narrower and \i tem , so if your format, like the one used in this book,
doesn't use paragraph indentation, you have to reset \parindent temporarily in order to
make use of those macros.

Paris Pages 60, 86.

\parshape Pages 61. A command to make paragraphs with spectacular shapes. Its syntax is ugly and
won't be repeated here. Applies only to the current paragraph. See also \hangafter and
\displaywidth.

\parskip Pages 13, 23, 45. One of TEX's glue variables: it controls the glue added just before a
new paragraph starts. Plain 'lEX sets it with \parskip=Opt plus lpt, adding a bit of
stretchability to the page.

Pascal Blaise, page 92; programming language, pages 6, 65; triangle, pages 123, 126.

\partial Page 132. Math mode only. Produces the symbol G.

pc

PC

\penalty

Pensees

Pages 32, 36. A keyword for pica, one of the commonest units in typesetting. One inch
equals approximately 6 picas; one pica equals 12 points.

Pages 5, 7.

Pages 75-77,173. Followed by an integer, instructs TEX to consider the current spot good or
bad for a line break (in horizontal mode) or page break (in vertical mode). Other things being
equal, the more positive the penalty the less likely a break is to occur, and the more negative,
the more likely. But many other factors influence the choice of breaks. There are only two
values that are absolute: \penalty-l0000 always causes a break, and \penaltyl0000
always prevents a break at any glue that follows-but it has no effect on preceding glue
(see \nobreak). Two consecutive penalties are equivalent to the lowest. There are many
abbreviations for various useful penalties: pages 76-77. Note: \penal ty is not a variable,
and you can't assign to it, so don't try an = between \penalty and the number.

Page 92.

percent sign See %, \%.

Perfect Table Page 115.

perpetual motion

\perp

\phantom

Page 174.

Page 134. Math mode only. Produces the relation .1.

Page 151. Puts its argument inside a horizontal box, measures it, then typesets an empty
box of same dimensions. The material in the argument does not appear on the page. See
also \hphantom, \vphantom, \smash.

\phi, \Phi Page 132. Math mode only. Produce the Greek letter 1>, <P. Compare \varphi 'P.

phototypesetting

physicists

\pi, \Pi

Pages 1,5.

Page 19.

Page 132. Math mode only. Produce the Greek letter 7r, IT. Compare \prod n, \varpi
roo

260 A Beginner's Book of T EX pica - \prime

pica

PicTEX

pixel file

plain TEX

Plato

Playback

plus

\pm

\pmatrix

\pmod

point

Polish L

portability

PostScript

\Pr

preamble

See pc.

Page 163.

Page 9.

Page 5. A basic TEX fonnat, contained in the file plain. tex. and described in detail in
this book. Often TEX is used to refer to plain TEX, although in this book we tried to keep
them separate.

Page 151.

Page 66.

Pages 40, 44-45, 180. Keyword that introduces the stretchability of glue.

Pages 133. Math mode only. Produces the binary operator ±.

Pages 12, 157, 159. Creates a matrix surrounded by parentheses. Used exactly in the same
way as \matrix.

Math mode only. Prints a parenthesized "modulo condition:" $$x\equiv y\pmod n$$
gives

x == y (mod n).

Compare \bmod; there is no \mod.

See. , pt.

See \1.

Pages 3-4.

commands, page 7; fonts, pages 6, 9, 27, 29, 31, 34, 36; images, 7.

Page 140. Math mode only. Produces the abbreviation Pr, which functions as a large
operator, with limits in display style.

Pages 103, 119, 169; see also \outer.

\prec, \preceq
Page 134. Math mode only. Produce the relations -<, ::S.

pre loaded fonts
Page 27.

preprints Page 68.

\pretolerance
One ofTEX's integer variables, set by plain 'lEX to 100. In attempting to break a paragraph
into lines, TEX starts by trying not to hyphenate any words. If there is a solution whose
badness is less than \pretolerance, the best such solution is chosen. Otherwise TEX
tries again, harder: see \ tolerance.

If you set \pretolerance=10000, TEX never gets to the second stage, and no words will
be hyphenated; however, the spacing may be pretty bad.

pretty pictures Pages 95-97,107,116.

previewer

\prime

Pages 6-7, 9.

Page 137. Math mode only. Produces the symbol I, nonnally used as a subscript. The con
struction x' is a shortcut for x~\prime , and you can even repeat the ' ! See \mathcode
to find out how this is done.

primitives - \qed

primitives

print

printer

Pages 4--5,165,191.

in Basic, page 65.

Pages 1-2,5,7.

printing output Page 10.

prize Page 5.

Dictionary and Index 261

\proclaim Page 74. Fonnats the statement of a theorem, proposition or other result. It takes two
arguments, the first delimited by a . and the second by a \par or blank line. The first
argument is printed in bold, the second in slanted type.

This macro is \outer, that is, it is not allowed to appear in macro definitions and in certain
other situations. To get around this, see \outer.

\prod Page 133. Math mode only. Produces the large operator n, II Compare \Pi II.

professional typesetting
Pages 3, 10,24.

programs typesetting of, page 128; see also verbatim mode.

programming in TEX
Pages 1,5-7, chapter 12.

proofreading Page 32.

proper names Page 119.

proprietary systems
Page 6.

protected macros
Page 177.

\propto Page 134. Math mode only. Produces the relation ()(. Compare \alpha 0:.

\psi, \Psi Page 132. Math mode only. Produce the Greek letter 'Ij;, \lI.

pt Page 13, 22-23, 39. A keyword for point, one of the commonest units in typesetting. One
inch equals 72.27 points.

public domain Page 6.

punctuation in math, page 131; in displays, page 152; in text, pages 17, 19. For a discussion of spacing
following punctuation in text, see \spacefactor.

A punctuation mark in a fonnula is a symbol or subfonnula of class 6. It gets a thin
space after it, no matter what follows, and a thin space before it, if preceded by an inner
subfonnula. But no spacing is added in either case if the style is script of scriptscript.

q, Q Page 15. When TEX has stopped because of an error, typing q or Q makes it continue in
batch mode: see \batchmode.

\qed Pages 71, 75. Not part of plain TEX. Creates an end-of-proof symbol o. The following
macro is a good example of the use of \parfillskip: it places the same symbol flush
right on the line, separated by .75 em from the text, or on a line by itself if the last line is

~~ 0
\def\flushqed{\unskip\nobreak

\hfil\penalty50\hskip.75em\null\nobreak\hfil\qed
{\parfillskip=Opt \finalhyphendemerits=O \par}}

262 A Beginner's Book of TEX \qquad - recursion

Cryptic? Perhaps, but don't despair. To understand it you just need to assimilate TEX's
process for breaking paragraphs into lines. See chapter 14 of The T@book, especially
page 106.

\qquad, \quad
Page 44. Leave horizontal kerns, or unbreakable spaces, respectively two ems and one em
wide. Both commands are very common: see examples on pages 12,39,44,90,92, 105,
116, 118, 123, 138, 153, 165. Compare \enspaee.

quality of typesetting
Pages 2-3.

quotations Page 18, 57.

quotes

r, R

radicals

radio

Page 18. For best results, consecutive single and double quotes should be coded '{}",
, '\ thinspaee' , ,\ thinspaee" and "{}', as the case may be.

Quotation marks in the input have a special meaning when TEX is expecting to read a
number: see integer.

When TEX has stopped because of an error, typing r or R makes it continue in non-stop
mode: see \nonstopmode.

Page 144.

Page 6.

\raggedbottom
Normally, all pages of a document start at a fixed distance from the top edge of the sheet, and
end at the same distance from the bottom edge. But if the material is very heterogeneous,
this rigid layout may require stretching the glue too much, and it may be better to relax it.
The \raggedbottom command instructs TEX to allow the bottom margin to vary by up to
60 pt from page to page. It is the vertical analogue of \raggedright , whence its name.

\raggedleft Page 56. Not part of plain TEX. Causes TEX to justify lines on the right only, leaving the left
margin ragged. Its effect extends to the end of the group where it was encountered. This
command is much less common than the next one.

\raggedright

\raise

Pages 55, 99. Causes TEX to justify lines on the left only, leaving the right margin ragged.
The line lengths can vary by as much as 2 ems. Very useful when the text is being set
in a narrow column, or is otherwise hard to justify. There is no command to counteract
\raggedright : its effect extends to the end of the group where it was encountered. See
also \ttraggedright.

Pages 87, 92,160, 181; see also \lfq. The opposite of \lower: raises a box when given
a positive dimension, and lowers it when given a negative one. For details, see \lower.

random variables

\rangle

\reeil

\Re

recipe

recursion

Page 63.

Pages 135. Math mode only. Produces right angle brackets). For details, see \langle.

Pages 135. Math mode only. Produces the symbol 1. For details, see \leeil.

Page 132. Math mode only. Produces the symbol ~, for the real part of a complex number.
If you prefer Re, change its definition to \def\Re{\mathop{\rm Re}} (page 143).

Page 103.

Page 174; see also \everypar.

reduction - repeated Dictionary and Index 263

reduction

reed

reference point

Page 31; see also \magnification.

Page 92.

Pages 78-79.

\refpoint Pages 98, 101. Not part of plain TEX. Placed before a box, draws an arrow indicating the
box's reference point.

register allocation, pages 84, 179; arithmetic on, page 182; names, page 165; safe, page 180.

registration of fonts
Page 28.

relation Pages 131, 134, 146. A symbol or subformula of class 3. A binary operator gets a thick
space \thickmuskip after it if it is followed by an ordinary character, a large operator,
an opening delimiter or an inner subformula. Similarly, it gets a thick space before it if
it is preceded by an ordinary character, a large operator, a closing delimiter or an inner
subformula. But the space is not added in script and scriptscript style. See also \mathrel.

relativity theory

\relax

Page 136.

Page 165. Tells TEX to do nothing! It is nonetheless quite useful, because it puts an end to
some activity that might otherwise invade your text. One example is given under *. For
another, plain TEX defines \quad as \hskip lem\relax. Let's take away the \relax,
an experiment a bit. All goes well until we type something like

\def\quad{\hskip lem}
\quad Plush carpeting welcomes our guests

Then TEX gives the inexplicable message

! Missing number, treated as zero.
<to be read again>

h
1. 2 \quad Plush

carpeting welcomes our guests ...

Do you see what happened? After \hskip lem, TEX is still on the lookout for plus and
minus. The capital P doesn't deter it (see keywords), and after it reads plus it expects a
dimension!

The moral of the story: when a macro definition ends with glue, curtail 'IEX's zeal with a
well-applied \relax. You can also use \relax at the beginning of macros, if you think
they might be called while TEX has unfinished business.

(However, after some commands even \relax is ignored, such is TEX's determination to
find a meaningful complement. For instance, \hbox\relax{ ... } is perfectly legal.)

\relbar, \Relbar
Page 146. Math mode only. Produce the relations - and =. The same symbols are obtained
with - and =, but \relbar and \Relbar are appropriate for building up arrows.

\removelastskip

repeated

Cancels an immediately preceding \vskip. For an application, see \section; see also
\unskip.

pattern, page 51; templates, page 106.

264 A Beginner's Book of T EX replacement text - \romannumeral

replacement text

reserving

reset key

resolution

Page 165.

a box, page 84; a register, page 179.

Page 15.

Pages 2-3.

restricted horizontal mode

\rfloor

\rfq

\rho

\rhook

\right

right delimiters

Pages 25, 80; see also \hbox.

Pages 135. Math mode only. Produces the symbol J. For details, see \lfloor.

Not part of plain TEX. Right "foreign" quotation marks: see \lfq.

Page 132. Math mode only. Produces the Greek letter p. Compare \varrho {2.

Pages 134, 162. Produces the relation '. For details, see \lhook.

Pages 90, 147, 155, 159. The inseparable companion of \left .

See closing delimiters.

\rightarrow, \Rightarrow
Page 134, 149. Math mode only. Produce the relations ~, =}; the first is also given by
\ to . See also the next entry.

\rightarrowfill
Pages 46, 117, 149, 162. A "spring" that makes an arrow pointing right. For details, see
\leftarrowfill .

\rightharpoondown, \rightharpoonup, \rightleftharpoons
Page 134. Math mode only. Produce the relations~, ~, <==.

\rightline Page 68. Creates a line containing the material that follows in braces, flush right. For
details, see \leftline .

\rightskip Pages 48, 54-55, 47, 167. One of TEX's glue variables. It controls the amount of glue
placed at the end of each line of a paragraph. For details, see \leftskip.

right-to-Ieft scripts

\rlap

\rm

Page 7.

Pages 48. Prints its argument, then backtracks to the starting position. The argument is read
in horizontal mode, even if \rlap is being used in math mode. See examples on pages 67,
79, 111, 162, 189, 189.

Pages 28, 33, 35-36, 75, 135. Switches to a boldface font, in text or in math mode. For
details, see \bf.

robustness Page 6.

roller coaster Page 83.

roman fonts, pages 27-28; numerals, see next entry.

\romannumeral
Page 181. Generates the roman numeral for the following integer, in lowercase. The integer
may follow explicitly, in any representation, or may come from an integer register. The
roman numeral "representation" of a non-positive number is empty.

The \Romannumeral macro below is not part of plain TEX, but comes in handy for
automatic copyrights and the like. It's used just like \romannumeral, but prints the

Rome - scaled Dictionary and Index 265

numeral in uppercase. To understand how it works, look up \afterassignment and
\uppercase.
\def\Romannumeral{\bgroup\afterassignment\endroman\count255=}
\def\endroman{\uppercase\expandafter{\romannumeral\count255}\egroup}

Rome Page 141.

\root Page 144-145. Macro that makes radicals: $\root 5\of{1+x A 2}$ gives ~1 + x 2 in

text style and {! 1 + x 2 in display style. If all you need is a square root, use \sqrt instead.

Rostaing, Bjarne
Page 99.

Rough Guide to Paris
Page 60.

rows of an alignment, pages 102, 119, 123; inserting material between, page 108; spacing
between, see pages 112-113, \openup, \normalbaselines.

rules Pages 46,81,86,94; in alignments, pages 114, 121, 127. See \hrule and \vrule for
synopses.

Rumanian

ruminant

Pages 21, 37.

Page 177.

runaway argument
Pages 16, 152, 171.

running head, page 67; TE,X, page 9.

\runningauthor, \runningtitle
Pages 65, 71. Not part of plain TE,X. In the fancy format, these variables contain the
author's name and the work's title, which get printed at the top of even- and odd-numbered
pages, respectively. But you can store anything you like in them. This book's format, a
variation of fancy, prints \runningt i tIe on even-numbered pages and the chapter title,
stored in the \chaptitle variable, on odd-numbered pages: see \chapter.

s, 8 When TE,X has stopped because of an error, typing s or 8 makes it continue in scroll mode:
see \scrollmode.

\S Produces the symbol §, in text or in math mode. In math mode it does not change size
in subscripts and superscripts. Also, \S5 and \S-5 are both unsatisfactory in terms of
spacing. You can use $\8\,5$ instead, which gives § 5.

safe registers Page 179.

Saint-Exupery, Antoine de
Page 155.

St. Pol Count of, page 60; de Leon, page 110.

Salmon, Tim Page 60.

sample line Page 124; see also preamble.

sans-serif fonts
Pages 27, 30.

saving space Page 70.

scaled Page 31. Keyword used in registering a font, if the font is to be used at other than its design
size: \font\bigten=cmrl0 scaled \magstepl.

266 A Beginner's Book of T e< scaled point - \section

scaled point Pages 3, 178, 181. TEX's smallest unit: see sp.

scientific texts Page 7.

scratch registers
Pages 84, 179.

\scriptfont, \scriptscriptfont
Pages 32,34--35. Followed by a family number (see \fam), these control sequences refer to
two of the family's fonts, called on for characters in script and scriptscript style, respectively
(see following entry).

\scriptscriptstyle, \scriptstyle
Page 139. Switch to scriptscript and script style, the two smallest styles used in math
formulas. The change remains in effect till the end of the smallest enclosing group.

TEX uses script style for subscripts and superscripts of an expression set in text or display
style, and for the numerator and denominator of a fraction set in text style. It uses scriptscript
style for subscripts and superscripts of an expression set in script or scriptscript style, and for
the numerator and denominator of a fraction set in script or scriptscript sty Ie. For situations
where \scriptstyle is appropriate, see pages 144, 162. \scriptscriptstyle is used
very rarely: see \lfq. See also \textstyle, \displaystyle.

\scrollmode Causes TEX to run without stopping for most errors, but to print error messages on your
screen. Very serious errors like a file that cannot be found will still cause an interruption.
Typing s in response to an error has the same effect. See also error checking and recovery.

\searrow Page 134. Math mode only. Produces the relation "".

\sec Page 140. Math mode only. Produces the abbreviation sec, which functions as a large
operator without limits.

\section Page 51. Not part of plain TEX. Command used in this book to start a section: section 1.1
started with \section{The birth of \TeX}. It takes one argument, the section name:
the chapter and section numbers are supplied automatically (cf. \chapter). Here is its
definition:

\newif\ifaftersection
\def\section#l{\removelastskip

\vskip 20pt plus 40pt \penalty-200 \vskip Opt plus -32pt
\hskip-4.75pc{\sectitlefont\the\chapno.\the\sectno\ #1}
\global\advance\sectno by 1 \nobreak\medskip
\aftersectiontrue
\global\everypar{\global\aftersectionfalse\global\everypar{}}}

It starts by removing any vertical spacing that might have been put there by some other
macro, so as not to interfere with its own spacing. It then adds a goodly amount of space:
20 pt, stretchable to 60 pt. But most ofthe stretchability is canceled by a subsequent \ vskip
Opt plus -32pt. The idea is that at most 60 - 32 = 28 pt of space should be left if the
new section starts on the same page; but if a page break occurs between sections, at the
\penal ty-200 , the blank space at the bottom of the page may be up to 60 pt.

Next \section prints the chapter and section numbers and the section title, and it incre
ments the section number. A \nobreak comes next since we don't want a page break after
the section title; notice that it has to precede the \medskip, or it has no effect. Finally,
a flag is set (\aftersectiontrue) indicating, for the use of other macros, that a section
has just started; this flag is automatically cleared (\aftersectionfalse) as soon as TEX
goes into horizontal mode (\everypar). See also \subsection.

semicolon - \showhyphens Dictionary and Index 267

semicolon See; .

Sendak, Maurice
Page 85.

series of items Page 58.

\setbox Page 84, 98-99, 154, 178-179. The construction

\setbox n box command

stores something in memory box n. Here n is an integer between 0 and 255, stated explicitly
or by means of a name (see \newbox). The box command can be built on the fly, with
\hbox, \vbox, etc., or it can be fetched from memory, with \box or \copy. (But the
unboxing commands don't make sense here: the box has to be intact.) When building a
complicated arrangement of boxes, it pays to store intermediate results using \setbox,
rather than nesting a number of \hbox and \ vbox commands. In any case, you must use
\setbox if you want to inspect or change the dimensions of a box: \hbox and \vbox
build a box and use it right away, without letting you manipulate it further.

\setminus Page 133. Math mode only. Produces the binary relation \. Compare \baekslash.

\settabs Page 124. Declares that thefollowing \+ ... \er material is notto be printed, but merely
serves as a sample line.

\sevenbf, \sevenrm
Page 28. Plain T}3X defines seven-point fonts primarily for use in math subscripts (page 35),
but these two, boldface and roman, can also be used in text. The other plain T}3X five-point
fonts are \seveni (math italics) and \sevensy (math symbols).

\sfeode Followed by an integer (indicating a character's Ascn code), defines the space factor for
spaces following that character. See \spaeefaetor.

shapes of characters, page 9; of paragraphs, see \parshape.

\sharp Page 132. Math mode only. Produces the symbol ~. Compare \#, which gives #.

shortcomings of TEX
Page 6.

shortcut for the preamble
Page 106.

\show Causes T}3X to print the current meaning of the next token on the screen, and to wait for a
CR to proceed. The meaning is also written into the log file.

\showbox Page 180. Followed by a number n, it writes the contents of box n in the log file. Here n
is an integer between 0 and 255, stated explicitly or by means of a name (see \newbox).
After \showbox, T}3X waits for a CR to proceed. If \ tracingonline is greater than zero,
the same information is also printed on the screen. See also the following entry.

\showboxbreadth, \showboxdepth

\showhyphens

Two of T£X's integer variables: they control the breadth and depth of the description of
boxescausedby \showbox and \traeingoutput. Forexample,if \showboxdepth is3
(the default), items nested more than three levels deep are not shown; if \showboxbreadth
is 5 (the default), only the first five items in each box are shown.

Followed by one or more words in braces, displays on the screen T}3X's idea of the allowed
hyphens for the words. It comes accompanied by an underfull box message, which you can
ignore.

268 A Beginner's Book of T g< \showthe - \slfam

\showthe Page 88,180. Followed by any object that can be examined using \the, such as a register
or one of TEX's variables, this command causes TEX to print the object's contents on the
screen, and to wait for a CR to proceed. The same information also goes into the log file.

shrinkability See elasticity.

\sigma, \Sigma
Page 132, 151, 158. Math mode only. Produce the Greek letter cr, E. For an end-of-word
c;, use \varsigma. Compare also \sum L'

\signed Not part of plain TEX. A useful macro borrowed from page 106 of The T£Xbook. Ittakes one
argument, a "signature," and concludes a paragraph with it. If there is room on the current
line, the signature goes there; otherwise, it goes on a line by itself. It is based on the same
principle as the mathematician's darling \flushqed macro: see under \qed.

\def\signed#l{\unskip\nobreak\hfil\penalty 50
\hskip 2em\null\nobreak\hfil\sl#1
{\parfillskip=Opt\finalhyphendemerits=O\par}}

Signet Encyclopedia o/Wine
Page 58.

\sim, \simeq
Pages 134. Produce the relations ~ and c::'. Compare \approx ~ and \cong "'"

\sin, \sinh Pages 130, 140, 143. Math mode only. Produce the abbreviations sin and sinh, which
function as large operators without limits.

\skewchar Page 36. Followed by a font name, refers to a special character in the font that contains
information about the positioning of math accents. Plain TEX sets \skewchar\ teni=' 177 ,
for math italic, and \skewchar\ tensy=' 60 , for the symbol font. You should do likewise
if you define math fonts in other sizes.

\skip Pages 178, 180-183. Refers to one of TEX's 256 numbered registers for glue. Except for
\skipO through \skip9 and \skip255, which can be used for temporary storage, all
other registers should be allocated using \newskip.

\skipdef Makes the following control sequence an abbreviation for a \skip construction. Used like
\countdef . In practice \skipdef is almost never used, because \skip registers should
be allocated with \newskip: see previous entry and page 180.

skipping templates

\sl

slanted

\slash

\slfam

Pages 107, 110.

Pages 28, 35-36, 135. Switches to a slanted font, in text or in math mode; but in math mode
subscripts and superscripts don't work (page 34). Should normally be used inside a group,
so its effect goes away when the group ends.

In plain TEX \sl always switches to the text font \ tensl , and to the math family \slfam.
To set things up so that \sl switches to a slanted font in the current size, see \eightpoint
and \tenpoint.

characters, correction for, see italic correction; fonts, pages 27-28, 30; lines, page 6. See
also diagonal.

Produces a / in text or math mode, after which a line break is allowed. See also / . For the
slash in \notin, see page 134.

Page 35-36. A name for the slanted font family to be used in math mode. To select that
family, say \fam\slfam. (The \sl command does this.) In plain TEX this family only
has a \textfont, so subscripts and superscripts don't work.

slots - space tokens Dictionary and Index 269

slots See registers, boxes.

\smallbreak Page 52, 77. Causes a conditional vertical skip by \smallskipamount, and marks the
place as a somewhat good one for a page break. If the \smallbreak was preceded by
another skip, the lesser of the two is canceled; in particular, two consecutive \smallbreak s
have the same effect as one.

\ small int Math mode only. Produces the symbol J, which functions as a large operator for purposes
of spacing.

\smallskip Pages 40. Causes a vertical skip by \smallskipamount. For examples, see pages 45,
49-50, 52, 112.

\smallskipamount
One of TFC's glue variables: it controls the amount of a \smallskip. Plain TFC sets
\smallskipamount=6pt plus 2pt minus 2pt. See also \eightpoint.

\smash Pages 59, 91, 117, 151, 153, 162. This wonderful macro prints its argument but sets
things up so that its height and depth are ignored. Therefore the material won't interfere
with interline spacing or with the placement of underlines, etc. But beware: the smashed
material may overlap with something else on the page!

\smile Pages 134. Math mode only. Produces the relation '-'.

source file, pages 3, 8, 15; of TFC, page 6. See also discipline.

sp Page 178. A keyword for scaled point, TFC's smallest unit. One point is made up of 65536
scaled points.

SP The basic rule on page 38 is that any number of consecutive space characters SP in the input
and up to one CR are merged into one space token, or thrown out altogether if they come
immediately after a control sequence made of letters.

To be precise, TFC ignores characters of category 10 in the following situations: (a) after
it has seen one such character; (b) at the beginning of a line; (c) after a control sequence
made of letters, or a control sequence made of one character of category 10. In each case,
TFC continues to ignore such characters until it sees a character of some other category. It
follows that only the first of a sequence of sp's turns into a space token.

It follows also that when spaces are made active (page 176), they are no longer merged (but
spaces at the right end of a line are thrown out at a previous stage: see under CR above).

See also space tokens, spurious spaces, \space, and the next entry.

\sP Pages 20, 38, 83, 138. In horizontal mode and in math mode, produces a space equal to the
normal space between words. In vertical mode it does the same thing, after starting a new
paragraph. Its use is necessary to get spacing after a control sequence made up of letters
(but see also page 166):

\TeX eats up spaces 'lEXeats up spaces
\TeX\ eats up spaces 'lEX eats up spaces

The amount of space created by \ does not depend on whether or not it comes after
punctuation; cf. the next two entries.

space tokens After your input has been turned into tokens, space tokens are no longer combined, but
there are still some situations where they are ignored (assuming they have the normal
category 10). The most important of them are: in vertical and math mode (page 131); after
\ignorespaces; when TFC is looking for something, like a number, a dimension, or a
keyword; at the beginning of an alignment entry (pages 104, 123); before the optional = in
an assignment; and after fil, fill and filll.

270 A Beginner's Book of T g< \space - \spacemag

\space

\spacefactor

In addition, there are cases where one space token is ignored: after a unit like pt ; after the
optional = in a \let assignment; and after a number expressed explicitly in decimal, hex,
octal or character notation. (In fact it is advisable to have a space in that position, to avoid
surprises: see page 184.)

Confused? Just wait until you see chapters 24-26 of The TEXbook . ..

Page 176. This macro is defined with \def\space{ }. Therefore \space \space creates
two space tokens, which are not combined, since the merging of input spaces takes place
at an earlier stage. In this respect \space is like \ , but there are important differences:
\space does nothing in math mode or vertical mode, since space tokens are ignored in
those modes; and the amount of space left by \space depends on whether or not it follows
a punctuation mark.

One of TEX's integer variables. It controls-indirectly-how much space TEX puts on the
page when it sees a space in your input. Its normal value is WOO, but it is set to 3000
after a period or exclamation mark or question mark, to 2000 after a colon, to 1500 after
a semicolon, and to 1250 after a comma. The higher the space factor at the moment when
an input space is seen, the more stretchability, and the less shrinkability, the output space
will have. In addition, if the \spacefactor is 2000 or more, the natural component of
the space is also increased, not just its stretchability. The space factor after a box or rule is
1000. Here is what happens when you put some text in a box and stretch or compress the
box with spread, in increments of 5 pt. The third line has its natural length.

"Oh, my! Here already?" I was surprised: she must have come running.
"Oh, my! Here already?" I was surprised: she must have come running.
"Oh, my! Here already?" I was surprised: she must have come running.
"Oh, my! Here already?" I was surprised: she must have come running.
"Oh, my! Here already?" I was surprised: she must have come running.
"Oh, my! Here already?" I was surprised: she must have come running.
"Oh, my! Here already?" I was surprised: she must have come running.

The numbers above are not set in stone. You can change the space factor at a particular
point by assigning a value to \spacefactor. More importantly, the space factor after
each input character can be controlled by means of the \sf code command. For example,
plain TEX says \sf code' \ . 3000 . The definition of \frenchspacing, which gets rid of
all niceties of spacing, is simple:

\def\frenchspacing{\sfcode'\.1000 \sfcode'\?1000 \sfcode'\!1000
\sfcode'\:1000 \sfcode'\;1000 \sfcode'\,1000}

Two more rules. The space factor doesn't change after things like parentheses and quotes
(such characters have \sfcode zero); in this way the effect of a period is still felt after
parentheses and quotes. And finally, if a period (or any punctuation) comes right after
a capital, its space factor is not taken into account, because TEX assumes it marks an
abbreviation, rather than the end of a sentence. Thus Donald E. Knuth gives Donald
E. Knuth, even though a tie is not used after the abbreviation.

\spacemag Not part of plain TEX. Sets a magnification factor of 1/1000 for interline spacing, where 1
is the following integer, which should not be less than 100 or greater than 9999. (Compare
\magnification.) For example, \spacemag 1600 causes the distance between base
lines to be 60% greater than it would be otherwise. This gives the impression of double
spacing: \spacemag 2000 sets the lines much too far apart.

Essentially, \spacemag 1 has the same effect as

\spaceskip - \span Dictionary and Index 271

\spaceskip

spacing

\spadesuit

\span

\edef\normalbaselines{\lineskip=\normallineskip
\lineskiplimit=\normallineskiplimit
\baselineskip= f/1000 \normalbaselineskip}

for f in the allowed range. We use \edef because the expression denoted by f/l000
must be evaluated as \normalbaselines is being redefined, rather than later on, when
\normalbaselines is used. The full definition of \spacemag is the following:

\def\spacemag{\afterassignment\endspacemag\count255}
\def\insertdot#l{#l.}
\def\endspacemag{%

\ifnum\count255<100
\message{spacemag \the\count255 \space too small}%

\else \ifnum\count255>10000
\message{spacemag \the\count255 \space too large}%

\else \edef\normalbaselines{%
\ifnum\count255<1000

\baselineskip=.\the\count255 \normalbaselineskip
\else\baselineskip=

\expandafter\insertdot\the\count255 \normalbaselineskip\fi
\lineskip\normallineskip
\lineskiplimit\normallineskiplimit}\fi\fi

\normalbaselines}

Pages 47, 55. One of TEX's glue variables. It controls the normal spacing between words
(that is, the spacing put there when the space factor is 1000: see \spacefactor). A
related variable, \xspaceskip, controls the spacing put in after a period, a question mark,
etc. (that is, when the space factor is 2000 or more). These variables are only taken into
account when their value is different from zero; if it is zero, TEX uses instead corresponding
quantities found in the metric file for the current font.

Here's the effect of changing \spaceskip and \xspaceskip in the example of the
previous entry. Each line has its natural width, with \spaceskip ranging from 1 pt to 5 pt
and \xspaceskip=.5\spaceskip.

"Oh, my! Here already?" I was surprised: she must have come running.
"Oh, my! Here already?" I was surprised: she must have come running.
"Oh, my! Here already?" I was surprised: she must have come running.
"Oh, my! Here already?" I was surprised: she must have come running.
"Oh, my! Here already?" I was surprised: she must have come running.

between boxes or lines in vertical mode, see pages 82, 93, \openup, \normalbaselines,
\spacemag; double, page 93, \spacemag; at end of paragraph, pages 45,70; in math, see
pages 4, 17, 36, 130-131, 138, ordinary symbols, large operators, binary operators, relations,
opening delimiters, closing delimiters, punctuation; between paragraphs, page 45; between
rows of an alignment, see pages 105, 112-113, 159, \openup, \normalbaselines;
above and below rules, page 109; between words, see pages 18,39-40, 174, \spaceskip,
\spacefactor, \frenchspacing.

Page 132. Math mode only. Produces the character •.

Placed in lieu of an &: in an alignment row, indicates that the entries before and after it
should be combined to form a single entry spanning both columns. The entries are plugged
into their templates, as usual, unless \omit is used as well. The \multispan macro is
based on \span: see \loop.

272 A Beginner's Book of T g< Spanish punctuation - Strasbourg

Spanish punctuation
See i, {..

\special Page 7. A command that is not interpreted by TEX, but put into the dvi file together with
its argument, for the benefit of the printer driver. Allows the inclusion of figures and other
tricks in an implementation-dependent way.

spectral sequence
Page 130.

splitting a box, page 98; a document, page 13.

\splittopskip

spread

springs

Page 99. One of TEX's glue variables. It controls the amount of glue placed at the top
of a box split with \ vspli t. The natural component of the glue is natural component of
\spli ttopskip minus the height of the first enclosed box; but if that would make the glue
negative, no glue is put in. The elasticity of the glue is the elasticity of \spli ttopskip .

Page 89. Keyword used in fixing the dimensions of a box from the outside.

Pages 42, 49, 89, 104, 178, 187; and \eqalign, pages 154, 187; in macros, page 43.

springlike creatures
Pages 46-48, 51, 120.

spurious spaces
Pages 35, 104, 110, 168-169, 173.

\sqcap, \sqcup
Pages 134. Math mode only. Produce the relations n, u.

\sqrt Page 144. Math mode only. Sets its argument under a square root sign. See also \root.

\sqsubseteq, \sqsupseteq
Pages 134. Math mode only. Produce the relations [;;;, J.

\ss Pages 19,36. Produces the letter B.

\star

stack

Pages 134. Math mode only. Produces the relation *.

Pages 23, 79.

stacking up symbols
Page 148.

staggered subscripts and superscripts
Page 136.

standard for on-line documents, page 4; for TEX, page 6.

Stanford University
Page 1.

starting a new page, page 69; in midpage, page 68; a paragraph, see mode change.

stopping TeX See \bye, \end.

storekeeper Page 24.

storing

St. Pol

Strasbourg

in a box, page 84; in a register, page 179.

Count of, page 60; de Leon, page 110.

Pages 19,54,71,110.

stretchability - \supereject Dictionary and Index 273

stretchability See elasticity.

\string Page 174. If followed by a character token, generates the same character with category 12
(ordinary). If followed by a control sequence, generates its name, also with characters of
category 12. See also \char .

string of beads
Pages 24, 78-79.

strong spring Page 43; see also \hfill, \vfill.

structured language

\strut

style

SUB

subscripts

Page 128.

Pages 112-113, 126, 151. Produces an invisible rule of width zero, height 8.5 pt and
depth 3.5 pt. Used to uniformize the distance between baselines in alignments, etc. More
generally, any invisible rule or box with a similar purpose is called a strut: see examples on
pages 99, 120, 141, and \mathstrut.

For efficiency, the rule is stored in a box called \strutbox, which should be modified
when the \baselineskip changes: see \eightpoint.

files, pages 5, 14,50,53; in math, pages 133, 138, 140, 144.

Page 172. The character with ASCII code 1, assigned by plain TEX category 8 (subscript). On
some keyboards this character appears as a down-arrow, which is more mnemonic than _.

Pages 32, 34, 91, 135-136, 172. A subscript is introduced by any character of category 8.
See also the previous entry.

\subsection Page 51. Not part of plain TEX. Command used in this book to start a subsection; it takes
the subsection name as an one argument. Here is its definition:

\def\subsection#l{\ifaftersection\else
\medbreak\fi{\subsectitlefont#l}\nobreak\smallskip}

If it occurs right after a \section command, the title is added after the spacing left by
that command (at which no break is allowed). Otherwise, a \medbreak is placed before
the title, indicating a fairly good place for a page break. After the title, breaks are again
forbidden.

\subset, \subseteq
Pages 134. Math mode only. Produce the relations C, S;; .

subtraction Page 183.

\succ, \succeq
Pages 134. Math mode only. Produce the relations ~, ~.

\sum Pages 133, 142. Math mode only. Produces the large operator L, L' Compare \Sigma
2::.

\sup Page 140. Math mode only. Produces the abbreviation sup, which functions as a large
operator, with limits in display style.

SUP Page 172. The character with ASCII code 10, assigned by plain TEX category 7 (superscript).
On some keyboards this character appears as an up-arrow, which is more mnemonic than ~ .

\supereject Page 76. Forces a page break; the comments made under \eject apply. The difference
between the two commands is that \supereject will also print, on subsequent pages, any
floating insertions that may be held over in TEX's memory.

274 A Beginner's Book of TEX superscripts - \ tenpoint

superscripts Pages 32, 34, 91, 135-136, 172. A superscript is introduced by any character of category 7.
See the entry SUP above.

superscript characters
In addition to introducing supersripts, characters of category 7 have another function: when
such a character occurs twice in a row, the duo combines with the subsequent character, as
explained under ~ ~ .

\supset, \supseteq
Pages 134. Math mode only. Produce the relations J, 2.

support environment

\surd

\swarrow

synomyms

\system

Page 6.

Page 132. Math mode only. Produces the symbol V' preferred by some over \sqrt:

$\surd a+\surd\,(b+l)$ va+v(b+l)

Page 134. Math mode only. Produces the relation ,/.

Page 165; see also \let.

Page 188. Not part of plain TJY(. Allows the easy coding of systems of equations.

system dependencies
Pages 6-8, 10, 15-16,29,188; see also \dump, \input, CR.

\ t Page 20. Tie-after accent: T\ t uut gives Ttfut.

TAB Page 172. The character with ASCII code 9, assigned by plain TJY(category 10 (space). Plain
TJY(also defines \ TAB to be equal to \ , so the two characters are everywhere equivalent.

tab character See alignment separator.

\tabalign A variation of \+ that can appear inside macro arguments.

tabbing Pages 102, 122-129; comparison with \halign, page 129; and springs, page 127.

tables See alignments.

\tabskip Pages 105, 117-118, 120, 186, 190. One of TJY('s glue variables. Its value while the
preamble of an alignment is being read controls the spacing between the alignment's columns
(or rows, for a \valign).

tall formulas Page 142.

\tan, \tanh Pages 130, 140, 143. Math mode only. Produce the abbreviations tan and tanh, which
function as large operators without limits.

\tau Page 132. Math mode only. Produces the Greek letter T.

technical report

template

\tenbf

Page 68.

Page 103; see also \multispan, \omi t, \span.

Pages 28,34--35. Plain TJY('s ten-point boldface font; generally activated through \bf.

\ teni, \ tenit
Pages 28, 33, 35. Plain TJY('s ten-point italic fonts; \teni is for use in math and \tenit
for use in text. Generally activated through \i t .

\ tenpoint Page 35. Not part of plain TJY(. Command to restore plain TJY('s font sizes across the board:
after \ tenpoint , an \rm brings in ten-point roman, \i t brings in ten-point italics, and

\ tenrm - \ the Dictionary and Index 275

\tenrm

\tensl

tensors

\tensy

\tentt

so on. The listing on pages 35 handles all the fonts, but there is also the matter of interline
spacing. For best results, add before the last line of the definition:

\abovedisplayskip=12pt plus 3pt minus 9pt
\belowdisplayskip=\abovedisplayskip
\abovedisplayshortskip=Opt plus 3pt
\belowdisplayshortskip=7pt plus 3pt minus 4pt
\smallskipamount=3pt plus 1pt minus 1pt
\medskipamount=6pt plus 2pt minus 2pt
\bigskipamount=12pt plus 4pt minus 4pt
\setbox\strutbox=\hbox{\vrule heightS.6pt depth3.6pt widthOpt}%
\normalbaselineskip=12pt \normalbaselines

Pages 27-28,33,35,64. Plain TEX's ten-point roman font, the granddaddy of all fonts. You
get it by default when you start TEX, and whenever you say \rm.

Pages 28, 35. Plain TEX's ten-point slanted font; generally activated through \sl.

Page 136.

Page 35. Plain TEX's ten-point math symbol font.

Page 28, 35. Plain TEX's ten-point typewriter font; generally activated through \tt.

Terre des Hommes
Page 155.

\TeX Pages 6, 38,47,51,88,96. Produces the TEX logo.
The T8(book page 1,6,33,36,51,61,62,67,89,120,131,176,181-182, 186-187, 189.

TEXtures Page 7; see also \dump.

TEX Users Group
Pages 1, 5, 59. Joining the TEX Users Group entitles you to a subscription to TUGboat,
a journal containing news, tutorials, program listings, conference announcements, adver
tisements, etc. The TUG office itself is a primary source of infonnation on TEX problems;
when the staff does not know the answer to a question, it can generally put you in touch
with someone who does. The address is P.O. Box 9506, Providence, RI 02940.

text editor, pages 6-8; inside fonnula, pages 137-138; italic font, pages 28,33, 135; math mode,
page 25,130; processor, pages 5, 8; style, see \textstyle.

\textfont Page 32, 34-35, 101, 139. Followed by a family number (see \fam), these control
sequences refer to two of the family's fonts, called on for characters in display or text style
(see \textstyle).

\ text indent Pages 62. At the beginning of a paragraph, places its argument in the paragraph indentation,
separated from the following text by half an em; in other words, it acts like \meti, except
that it doesn't start a new paragraph.

\textstyle Page 139. Switches to text style, the style that TEX starts in when enters ordinary math
mode, also used for the numerator and denominator of a fraction set in display style. The
change remains in effect till the end of the smallest enclosing group. For a situation where
\textstyle is appropriate, see page 142. See also \displastyle, \scriptstyle.

tfm file Pages 9, 30.

\the Pages 65, 71, 178, 180-183. Generates an explicit representation of the following ob
ject. It can act on many different things: registers of all types (\the\countO), variables

276 A Beginner's Book of T p< \theta - \titlepagehead

of all types (\ the \parindent), other constructions that represent integers or dimen
sions (\the\mathcode': or \the\fontdimen5\font), control sequences defined with
\chardef and \mathchardef (\the\alpha generates 267, the decimal version of
"OlOB), and even fonts (see \font). The result of a \the construction is a string of
character tokens of category 12 (ordinary), with two exceptions: a font yields a single
control sequence, and a token list register yields its contents, whatever they may be.

The tokens generated by \ the are spliced into the input. To have them printed on the
screen, use \showthe instead.

\theta, \Theta
Page 132. Math mode only. Produce the Greek letter B, e. Compare \vartheta fJ.

thick space An amount of space controlled by \thickmuskip (see next entry), and automatically
placed around relations (see that entry). It can also be requested explicitly with \; .

\thickmuskip
Page 182. One of TEX's math glue variables, set by plain TEX with \thickmuskip=5pt
plus 5pt, or this much: II. Generally called a thick space (see preceding entry).

thin space An amount of space controlled by \thinmuskip (see entry), and automatically placed
around large operators and inner subformulas, and after punctuation (see those entries). It
can also be requested explicitly with \, . See also \ thins pace, \negthinspace.

thinking reed Page 92.

\thinmuskip Page 182. One ofTEX's math glue variables, set by plain TEX with \ thinmuskip=3pt , or
this much: II. Generally called a thin space (see entry).

\ thins pace Page 44, 138. Leaves a horizontal kern, or unbreakable space, one-sixth of an em wide. Its
use is rare, since in math mode \, is to be preferred.

tie Pages 18,21,39,45,76,173.

tie-after accent

\tilde

Time

\time

\times

Times fonts

title

Page 20.

Pages 137. Math mode only. Places a tilde over the following character: ii. Its text
counterpart is \~ . See also \widetilde.

Page 2.

One of TEX's integer variables: it contains the time the TEX run started (according to your
computer's operating system), expressed in minutes after midnight. To print it you must
preceded by \the or \number (page 180).

Pages 29, 133, 145, 153. Math mode only. Produces the binary operator x.

Pages 27, 29, 34, 96.

page, pages 66, 68, 71; placement, page 69. See also \runningtitle.

\titlepagefalse
Pages 67,185. Not part of plain TEX. In the fancy format, causes the current page not to
be treated as a title page, which means the page's header and footer are the ones stored in
the even and odd header and footer macros (that is, \evenpagehead and the like), rather
than their title page counterparts.

\titlepagefoot, \titlepagehead
Pages 65--66. Not part of plain TEX. In the fancy format, these variables contain the
material that forms the footer and header of the title page, that is, the first page of the run.
See also the preceding entry and \evenpagefoot.

\titlepagetrue - \tracingonline Dictionary and Index 277

\titlepagetrue
Pages 67, 185. Not part of plain TEX. The opposite of \ti tlepagefalse .

\tm, \tmfam Pages 34-36. Not part of plain TEX. In this book's fonnat, \tm switches to a Times Roman
font, and \tmfam is the family name of a Times Roman family (used for digits).

to

\to

\today

token

Pages 42, 49,88,96, 98, 117-118, 163, 181 , 189. Keyword used to fix the size of a box
from the outside.

Pages 134. Math mode only. Produces the relation~, also obtained with \rightarrow.

Not part of plain TEX. Produces the date; its definition is

\def\today{\monthname\ \number\day, \number\year}
(\monthname is also not part of plain TEX).

Pages 177-180; see also macro expansion.

token list register
Page 178, 182; see also the next entry.

\toks Pages 178, 182. Refers to one ofTEX's 256 numbered registers for token lists. Except for
\toksO through \toks9 and \toks255, which can be used for temporary storage, all
other registers should be allocated using \newtoks.

\ tolerance One of TEX 's integer variables, set by plain TEX to 200. IfTEX is unable to break a paragraph
into lines without hyphenating any words, it tries again after having detennined all allowed
spots for hyphenation. This time around it tries to limit the badness to \ tolerance. If it
fails again, it will let you know by printing some overfull lines.

Talkien, J. R. R.
Page 11.

\top Page 134. Math mode only. Produces the relation T.

\ topglue Pages 44-45, 69. Vertical "glue" that will not disappear at the top of a page.

\ topinsert Page 70. TEX sets the material between \ topinsert and \endinsert at the top of the
current page, if it fits on the page together with the text that is already there. If not, it is
deferred till the next page. If there are many of these floating insertions on the same page,
they may need several subsequent pages to be printed.

\topinsert won' t work inside a vertical box, or inside a horizontal box that is part of a
paragraph or box of any kind; the insertion will disappear. See insertions for details.

\topmark The mark text that \botmark had as the preceding page was completed. See \mark.

torture test Page 6.

Total Book of Bicycling
Page 99.

\tracingcommands, \tracingmacros
Page 26. Two of TEX's integer variables. When the value of \ tracingcommands is non
zero, TEX registers in the log file every primitive that it sees. When \ tracingmacros
is non-zero, TEX registers each macro, its arguments and its expansion. A great help in
debugging, but interpreting the log requires a bit of practice. For best results, set both
variables to 2.

\tracingonline
Pages 26, 180. One of TEX's integer variables. When non-zero, causes TEX to print on the
tenninal everything that goes into the log file, including the debugging infonnation caused

278 A Beginner's Book of TEX \tracingoutput - \u

by the preceding and following variables. Therefore it should be used with care, or you'll
get a thousand lines scrolling by on your screen.

\tracingoutput
One of T!3X's integer variables. When non-zero at the time T!3X prints a page, it causes T!3X
to print on the log file the contents of the page in symbolic fonn.

transmission of files
Page 4.

Tres Corac;:oes
Page 20.

\triangle Page 132. Math mode only. Produces the symbol 1::::.. Compare \higtriangleup I::::. and
the next entry.

\triangleleft, \triangleright

trigraph

triptych

true

\tt

Page 133. Math mode only. Produce the binary operators <I and 1>.

Page 175.

Page 87.

Pages 32, 39. Keyword that causes a following unit to be treated as absolute, that is, not
subject to \magnification. Its use is not allowed before em, ex and mu, since these
units are defined in tenns of the current font.

Pages 28, 35-36, 135. Switches to a typewriter font, in text or in math mode; but in math
mode subscripts and superscripts don't work (page 34). Should nonnally be used inside a
group, so its effect goes away when the group ends.

In plain T!3X \ tt always switches to the text font \ tentt , and to the math family \ ttf am .
To set things up so that \ tt switches to a slanted font in the current size, see \eightpoint
and \tenpoint.

\ttfam Pages 35-36. A name for the typewriter font family to be used in math mode. To select that
family, say \fam\ttfam. (The \tt command does this.) In plain T!3X this family only
has a \textfont, so subscripts and superscripts don't work.

\ttraggedright
Spaces in typewriter fonts have no elasticity, since they're supposed to be as wide as other
characters. This makes justifying lines just about impossible, so any text of more than one
line is best done with ragged margins. The \ ttraggedright macro calls \ tt and turns
on ragged-right mode.

TUGboat Pages 1,5-6; see also TEX Users Group.

Two Friends Page 86.

typefaces design of, page 2; see also fonts.

typesetting, professional

typewriter fonts

Pages 3, 10, 24.

Pages 27-28, 30, 122-123, 174. In T!3X's typewriter fonts all characters and spaces have
the same width; in addition, most of the ligatures are absent, the exceptions being ! ' and
? ' , which give i and l..

typos Pages 10, 15, 166.

\u Page 20. Places a breve accent above the following character: a. Works only in text mode.

ugliness

ugliness

umlaut

unary operator

\unskip

See badness, beauty.

See \".

See binary operator.

Dictionary and Index 279

unboxing See \unhbox, \unvbox.

unbreakable space
See kern, tie.

undefined control sequence
Page 14.

\underbar Underlines its argument. Can only be used outside math mode. \underbar ignores
descenders: I want YQ.l!! If you don't like this, go into math mode and use \underline.

\underbrace Page 146. Math mode only. Places horizontal braces underneath its argument, which is
also read in math mode. Unlike \upbracefill, whose results are similar, \underbrace
doesn't have to be put in a separate box and stacked above the main text: it takes care of
everything.

underlul boxes, lines, pages
Pages 15,41,56,69,74,89,99,104,117, \showhyphens.

\underline Page 145, 150. Math mode only. Underlines its arguments. To maintain uniformity, use
\mathstrut :

$\underline q +\underline r$... ~ + r.
$\underline {\strut q} +\underline {\strut r}$ q + T

unextended bold
Page 27.

\unhbox, \unhcopy
Page 85-86, 89. Followed by an integer n between 0 and 255, \unhbox and \unhcopy
append the contents of box n, which must be a horizontal box, to the current horizontal
material. Therefore these commands must be issued in horizontal mode, or they will start a
new paragraph. The difference between the two commands is that \ unhbox voids the box
after it uses its contents (see \box), while \unhcopy preserves them.

units Page 39. For a list of TEX's units, see keywords; for the contexts in which they are
recognized, see dimensions.

Universite Louis Pasteur
Pages 68, 71.

UNIX workstation
Page 5.

unprintable characters
See AA.

\unskip Pages 62-63, 174. In horizontal mode, removes the last blob of glue added to the current
paragraph or horizontal box, as long as nothing else has been added since. Great thing to
put inside macros to make them "clean up after the user."

In theory \unskip also works in vertical mode to remove the most recent glue item, but it
does so only under conditions that are tricky to explain and check. Therefore you're better
off using \removelastskip in vertical mode.

280 A Beginner's Book of TEX unslanted italic font - \ valign

unslanted italic font
Page 27.

unspecified rule dimensions
Pages 94, 115, 126.

\unvbox, \unvcopy
Pages 85-86, 89, 100, 148. Followed by an integer n between 0 and 255, \unvbox and
\unvcopy append the contents of box n, which must be a vertical box, to the current vertical
material. Therefore these commands must be issued in vertical mode, or they will cause the
paragraph to end. The difference between the two commands is that \unvbox voids the
box after it uses its contents (see \box), while \unvcopy preserves them.

\uparrow, \Uparrow

\upbracefill

Pages 135, 148. Math mode only. Produce the relations i and 11'. They can be extended
with \bigm and company, or with \left . .. \right , but in any case remain centered
about the axis.

Pages 46, 116. A "spring" that makes braces opening up. See \downbracefill for
details, and \underbrace for an alternative.

\updownarrow, \Updownarrow
Page 135. Math mode only. Produce the relations i and 11'; for details, see \uparrow.

\uplus Pages 133. Math mode only. Produces the binary operator I±I. Compare \biguplus I:!:J.
\uppercase Transforms the letters that follow in braces into uppercase. Non-alphabetic characters are

left unchanged, and macros are not expanded until \uppercase has done its job; for
example, after \def\foo{bar}, \uppercase{\foo} prints bar, not BAR. So is the
only use of this command to offer \uppercase{ toto} as an alternative to TOTO? That
would be silly indeed.

The trick is to expand the material in braces before \uppercase has a chance to look at
it. The way to accomplish that is the precede the left brace with \expandafter, like this:
\uppercase\expandafter{\foo}. Now everything works nicely. See \romannumeral
for another application.

\upsilon, \Upsilon
Page 132, 151. Math mode only. Produce the Greek letter v, Y. The lowercase is hard to
distinguish from an italic 'v', but why is the capital so little used?

user-friendly Page 7.

using a register

\v

\vadjust

\valign

Page 180.

Page 20. Places a Meek above the following character: \ v c gives c. Works in text mode
only; for math mode, see \check.

In ordinary horizontal mode, inserts the material that follows in braces between the current
line and the next, without disturbing the composition of the current paragraph. For exam
ple, \vadjust{\smallskip} at this point causes the skip that you see here. Similarly,

\vadjust{\vfil \eject} breaks the page after the current line, without interrupting the
paragraph. For another example, see \marginnote.

Pages 119 and following . Makes "vertical alignments," that is, alignments by columns
instead of by rows. It's used in the same way as \halign, but all roles are reversed:
horizontal becomes vertical, rows become columns, and so on.

Vaux-Ie-Vicomte - vertical Dictionary and Index 281

Vaux-Ie-Vicomte
Page 60.

\varepsilon, \varphi, \varpi.
Page 132. Produce the Greek letters, 10, <p, w. Compare \epsilon E, \phi <p, \pi 7r.

variables Pages 5, 23, 179.

variable-family characters
Page 131. In math mode, a character of class 7 is treated as if it were of class 0 (ordinary),
except that its family is disregarded when \fam has a value between 0 and 15, and the
character is taken instead from family \f am. For details, see \f am and ordinary characters.

\varnothing Math mode only. Not part of plain TEX. Produces the empty set symbol 0. To use this
command you must have the symbol fonts distributed by the AMS: see msam and msbm
fonts.

\varr Pages 161-162. Math mode only. Not part of plain TEX. Draws a vertical arrow with labels,
to be used in diagrams.

\varrho, \varsigma, \vartheta.
Page 132. Produce the Greek letters, (2,~, {}. Compare \rho p, \sigma (Y, \theta e.

\ vbadness Page 99. One ofTEX's integer variables: a threshold for complaints about underfull vertical
boxes. For details, see \hbadness. Plain TEX sets \ vbadness=1000 .

\vbox Page 79. Introduces a vertical box, made by stacking one above the other the elements in
its interior. Its baseline coincides with the baseline of the topmost box in it. Examples of
use appear on pages 22, 26, 43, 67,88,97,99,155; see also boxes.

\veenter Pages 79. Math mode only. Introduces a vertical box which, before being added next to the
formula being composed, is shifted vertically so its top and bottom are equidistant from the
axis. Loosely speaking, the resulting box's baseline goes through its center. Examples of
use appear on pages 22, 84, 89, 96, 100, 148, 155, 162, 186; see also boxes.

\vdash Page 134. Math mode only. Produces the relation f--. Compare \dashv --1.

\vdots Pages 12, 160. Math mode only. Produces three vertical dots :.

\vee Page 137, 145. Math mode only. Places a small bar over the following character: a. For a
longer arrow, or an arrow over several characters, see \overrightarrow.

\vee Pages 133. Math mode only. Produces the binary operator V, also obtained with \lor.

vegetables Pages 75, 109.

Velocio Page 99.

verbatim mode
Pages 128, 174; see also I , \myfootnote.

versatility Page 4.

\vert, \Vert

vertical

Page 132. Math mode only. Produce single and double vertical bars I and II. Synonymous
with I and \ I : see those entries for details.

alignments, pages 119 and following; arrows, page 146; bars, see I and \ I ; boxes, see
boxes, \ vbox, \ vtop, \ veenter ; dots, page 160; mode, see pages 24-25, 52, 79, 82, 88,
109, 120, mode change; rules, see \hrule, \vrule; spacing, see pages 40,52, interbox
and interline spacing.

282 A Beginner's Book of T g< \vfil - \vskip

\vfil

\vfill

\vfilneg

\vfuzz

\vglue

Pages 42, 45. A weak vertical spring: it stretches to fill the available space in a box,
page, etc., unless there is a stronger spring (see the next entry) in the same box. Several
\ vf il s in the same box share the available space equitably. Although a primitive, \ vf il
is essentially the same as \vskip Opt plus Hil.

Pages 42-43. A strong vertical spring: it stretches to fill the available space in a box, page,
etc., preventing weak springs from stretching altogether. Several \vfill s in the same box
share the available space equitably. Although a primitive, \vfill is essentially the same
as \vskip Opt plus Hill. See examples of use on pages 45,71,120.

Page 77. A weak vertical spring whose stretchability is infinitely negative: although a
primitive, \vfilneg is equivalent to \vskip Opt plus -Hil. Unlike \vss, this
spring doesn't shrink to a negative length: its only use is to cancel another, positive, spring
placed somewhere else in the same box. An example of use is given under \filbreak.

Page 16. One ofTp('s dimension variables, set by plain TP(to.1 pt. An overfull page or
vertical box is not reported if the excess material is less than \ vfuzz. See \hfuzz.

Pages 44-45, 69-70. Vertical "glue" that will not disappear at a page break. It's really an
invisible rule followed by normal glue. See also \ topglue .

visible springs See leaders.

\voffset One of Tp('s dimension variables; it controls the vertical offset of the text with respect to
your sheet of paper. When \ voff set is zero, the default, your printer is supposed to place
the top margin one inch from the edge. A positive offset moves the margin down, and a
negative one up. Useful in centering your text when \vsize is different from its default
value of 8.9 in, or your paper has height different from 11 in.

Voltaire Pages 61,108.

\vphantom Pages 151. Puts its argument inside a vertical box, measures its height and depth, then
typesets an empty box of zero width and same height and depth. The material in the
argument does not appear on the page. See also \phantom, \hphantom, \smash.

\vrule Pages 94-96. Creates a rule (straight line, or rectangle) of specified dimensions. The full
construction is

\vrule height h depth d width w

where the attributes can come in any order. If height or depth is missing, it's set to the
height or depth of the immediately enclosing horizontal box or line; if width is missing, it
is set to .4 pt.

\ vrule must appear in horizontal mode, or TP(will start a new paragraph: pages 52,
81. But see the next entry for an exception. To draw a vertical rule in vertical mode, use
\hrule: pages 97, 117, 126. For use in alignments, see pages 115, 120, 126. For other
examples of use, see pages 90, 98.

\vrulefill Page 120. Not part of plain Tp(. In vertical mode, creates a vertical rule of width .4 pt and
stretching up and down as far as \hfill would in the same circumstances. Its definition is
\def\vrulefill{\leaders\vrule\vfill}, showing that inside \leaders a vertical
rule can be used in vertical mode.

\vsize Pages 13-14, 181. One of Tp('s dimension variables: it controls the height of the page.
Plain TP(sets \hsize=8. gin.

\ vskip Page 40. Creates vertical glue of a specified size, with specified stretchability and shrinka
bility. For more details, see glue.

\vsplit

\vsplit

\vss

\vtop

Walton, Bill

\wd

\Xi Dictionary and Index 283

Pages 98-100. The construction \vsplit n to height, where box n is a vertical box and
height is any dimension, produces a vertical box obtained by skimming off the top of box
n. The choice of a breakpoint is made exactly as if TEX were filling a page with \ vsize
equal to height; in particular, you can influence it with penalties, and so on.

Pages 49. Vertical spring that can stretch or shrink indefinitely, taking on a negative height.
Useful for things that should be allowed to spill over: see page 89.

Page 79. Introduces a vertical box, made by stacking one above the other the elements in
its interior. Its baseline coincides with the baseline of the bottommost box in it. Examples
of use appear on pages 22, 59, 89, 97; see also boxes.

Page 99.

Pages 88, 92, 181, 183. The construction \wd n gives the width of box n. For details, see
\dp.

weak springs Page 43; see also \hfil, \vfil.

\wedge Pages 133. Math mode only. Produces the binary operator /\, also obtained with \land.

Where the Wild Things Are
Page 85.

\widedotfill
Pages 47-48. Not part of plain TEX. Produces leaders that align vertically and are slightly
more spaced than \dotfill.

\widehat, \widetilde

widow line

width

width

window

Page 137. Math mode only. Place over the following group a circumflex or a tilde that
grows as needed (but not beyond about three characters): \widehat{ab} gives;;b.

Page 75. The last line of a paragraph stranded on a page by itself. You can prevent widow
lines by setting \widowpenalty=10000.

of boxes, see pages 79-80, \wd; of characters, page 9; of column, pages 103, 124, 127; of
page, see \hsize; of rules, see next entry. See also dimensions.

Pages 94, 96. An optional specification after \hrule or \ vrule ; must be followed by a
dimension. A horizontal rule without an explicit width will be as wide as the immediately
enclosing box, or the page; a vertical rule without an explicit width will have width .4 pt.

Page 7.

Winston, Pat Page 2.

wizard

words

\wp

\wr

write

Wroclaw

WYSIWYG

x, X

\xi, \Xi

Page 11; see also aspiring wizard.

spacing between, see pages 40, 47, \frenchspacing, \spacefactor.

Page 132. Math mode only. Produces the symbol p.

Pages 133. Math mode only. Produces the binary operation /. Also useful next to an vertical
arrow in diagrams: page 162.

in Pascal: page 65.

Page 19.

Pages 2-3, 7-8, 10, 166.

Page 15. When TEX has stopped because of an error, typing x causes it to quit the run.

Page 132. Math mode only. Produce the Greek letter e, 3.

284 A Beginner's Book of T eX \xspaceskip - \zeta

\xspaceskip Pages 47, 55. One of T}3X's glue variables. It controls the spacing between words after a
period, question mark, etc. See \spaceskip for details.

\year

\zeta

One of T}3X's integer variables: it contains the current year (according to your computer's
operating system). To print it you must precede it by \the or \number (page 180). See
also \romannumeral.

Page 132. Math mode only. Produces the Greek letter (.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF000d004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

