
Forth
Programmer’s

Handbook

Edward K. Conklin
Elizabeth D. Rather

and the technical staff of FORTH, Inc.

Software products and services since 1973
www.forth.com

Forth Programmer’s Handbook

2

FORTH, Inc. makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. FORTH, Inc. shall not be liable for errors
contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

All brand and product names are trademarks or registered trademarks of their
respective companies.

Copyright © 1997-2010 by FORTH, Inc. All rights reserved.

First edition, September 1997

Second edition, August 1998
Third edition, August 2007
Latest revision, October 2010

ISBN 1-4196-7549-4

This document contains information proprietary to FORTH, Inc. Any
reproduction, disclosure, or unauthorized use of this document, either in whole
or in part, is expressly forbidden without prior permission in writing from:

FORTH, Inc.
Los Angeles, California
www.forth.com

http://www.forth.com

Forth Programmer’s Handbook
Contents

Preface to the Third Edition 11

Welcome! 13
About the Forth Programming Language 13
About This Book 13
How to Use This Book 14
Typographic Conventions 14
Reference Materials 15
How to Proceed 15

1. Introduction 17

1.1 Forth Language Features 18

1.1.1 Definitions of Terms 18
1.1.2 Dictionary 18
1.1.3 Data Stack 22
1.1.4 Return Stack 24
1.1.5 Text Interpreter 25
1.1.6 Numeric Input 29
1.1.7 Two-stack Virtual Machine 31

1.2 Forth Operating System Features 33

1.2.1 Disk I/O 34
1.2.2 Multitasking 34

1.3 The Forth Assembler 36

1.3.1 Notational Differences 36
1.3.2 Procedural Differences 37

1.4 Documentation and Programmer Aids 38

1.4.1 Comments 38
1.4.2 Locating Command Source 40
1.4.3 Cross-references 41
1.4.4 Decompiler and Disassembler 42

1.5 Interactive Programming—An Example 43
Contents 3

Forth Programmer’s Handbook
2. Forth Fundamentals 47

2.1 Stack Operations 47

2.1.1 Stack Notation 47
2.1.2 Data Stack Manipulation 49
2.1.2.1 Single-item operators 49
2.1.2.2 Two-item operators 50
2.1.3 Return Stack Manipulation 51
2.1.4 Programmer Conveniences 53

2.2 Arithmetic and Logical Operations 54

2.2.1 Arithmetic and Shift Operators 54
2.2.2 Logical Operations 58

2.3 Memory and Data Storage 60

2.3.1 Defining Words 60
2.3.2 Single Data Objects 61
2.3.2.1 Variables 62
2.3.2.2 Constants and Values 63
2.3.3 Arrays and Tables 65
2.3.4 Memory Stack Operations 69
2.3.5 Data Object and Memory Access Examples 71

3. String Handling 73

3.1 General String Topics 73

3.1.1 Single Characters 73
3.1.2 Scratch Storage for Strings 74
3.1.3 Internal String Format 75

3.2 Strings in Definitions 76

3.3 Strings in Data Structures 79

3.4 String Management Operations 80

3.5 Comparing Character Strings 82

3.6 Number Conversions 84

3.6.1 Input Number Conversion 84
3.6.2 Numeric Output 88
3.6.2.1 Standard Numeric Output Words 88
3.6.2.2 Pictured Number Conversion 89
4 Contents

Forth Programmer’s Handbook
3.6.2.3 Using Pictured Numeric Output Words 90
3.6.2.4 Using Pictured Fill Characters 93
3.6.3 Processing Special Characters 94

4. Structured Programming 97

4.1 Controlling Program Flow 97

4.2 Comparison and Testing Operations 98

4.3 Conditionals 100

4.4 Indefinite Loops 102

4.4.1 Infinite loops 102
4.4.2 Post-testing loops 103
4.4.3 Pre-testing loops 104

4.5 Counting (Finite) Loops 105

4.6 Finite vs. Indefinite Loops 109

4.7 Case Statement 110

4.8 Nesting Structures 111

4.9 Nesting and Un-nesting Structures and Definitions 112

5. System Functions 115

5.1 Vectored Execution 115

5.1.1 Execution Tokens 115
5.1.2 Single Function Pointers 116
5.1.3 Execution Vector Tables 118
5.1.4 Vectored System Routines 119

5.2 System Environment 120

5.3 Exception Handling 123

5.4 Serial I/O 128

5.4.1 Terminal Input 128
5.4.2 Terminal Output 131
5.4.3 Support of Special Terminal Features 132
Contents 5

Forth Programmer’s Handbook
5.5 File-Based Disk Access 133

5.5.1 Overview 133
5.5.2 Global File Operations 134
5.5.3 File Reading and Writing 135
5.5.4 File Support Words 137

5.6 Time and Timing Functions 138

5.7 Dynamic Memory Management 139

5.8 Floating Point 140

5.8.1 Floating-Point System Guidelines 140
5.8.2 Input Number Conversion 142
5.8.3 Output Formats 143
5.8.4 Floating-Point Constants, Variables, and Literals 143
5.8.5 Memory Access 144
5.8.6 Floating-Point Stack Operators 146
5.8.7 Floating-Point Arithmetic 147
5.8.8 Floating-Point Conditionals 148
5.8.9 Logarithmic and Trigonometric Functions 149
5.8.10 Address Management 151
5.8.11 Custom I/O 153

6. The Forth Interpreter and Compiler 155

6.1 The Text Interpreter 155

6.1.1 Input Sources 155
6.1.2 Input Source Management 157
6.1.3 Parsing Text in the Input Stream 159
6.1.4 Dictionary Searches 161
6.1.5 Text Interpreter Conditionals 163

6.2 Defining Words 164

6.2.1 Creating a Dictionary Entry 165
6.2.2 Colon Definitions 166
6.2.3 Code Definitions 169
6.2.4 Custom Defining Words 170
6.2.4.1 Basic Principles of Defining Words 170
6.2.4.2 Constructing Custom Defining Words 171
6.2.4.3 High-level Defining Words 173

6.3 Compiling Words and Literals 175
6 Contents

Forth Programmer’s Handbook
6.3.1 The Forth Compiler 175
6.3.2 Literals and Constants 178
6.3.3 Compiling Execution Tokens 180
6.3.4 Compiling Strings 180

6.4 Compiler Directives 182

6.4.1 Making Compiler Directives 182
6.4.2 The Control-flow Stack and

Custom Compiling Structures 186

6.5 Overlays 188

6.6 Word Lists 190

6.6.1 Basic Principles 190
6.6.2 Managing Word Lists 192
6.6.3 Sealed Word Lists 193

7. Forth Cross compilers 195

7.1 Issues in Cross Development 196

7.2 Host and Target Roles and Functions 196

7.3 Managing Scopes 197

7.4 Data Space Management 199

7.4.1 Vectored Words 200
7.4.2 Data Types 201
7.4.3 Effects of Scoping on Data Object Defining Words 202

7.5 Interactive Programming 204

7.6 I/O Drivers for Embedded Systems 205

8. Programming Style and Editing Standards 209

8.1 FORTH, Inc. Editing Standards 209

8.1.1 Stack Effects 210
8.1.2 General Comments 211
8.1.3 Spacing Within Files 212

8.2 Open Firmware Coding Style 213

8.2.1 Typographic Conventions 213
8.2.2 Use of Spaces 213
Contents 7

Forth Programmer’s Handbook
8.2.3 Conditional Structures 214
8.2.4 Finite Loop Structures 215
8.2.5 Indefinite Pre-testing Loop Structures 215
8.2.6 Indefinite Post-testing Loop Structures 216
8.2.7 Block Comments 216
8.2.8 Stack Comments 216
8.2.9 Return Stack Comments 217
8.2.10 Numbers 217

8.3 Wong’s Rules for Readable Forth 218

8.3.1 Example: Magic Numbers 218
8.3.2 Example: Factoring 219
8.3.3 Example: Simplicity 220
8.3.4 Example: Testing Assumptions 221
8.3.5 Example: IF Avoidance 221
8.3.6 Example: Stack Music 222
8.3.7 Summary 224

8.4 Naming Conventions 224

Appendix A: Bibliography 229

Appendix B: Glossary & Notation 233
B.1 Glossary 234

B.2 Data Types in Stack Notation 238

B.3 Flags and IOR Codes 241

B.4 Forth Glossary Notation 241

Appendix C: Blocks for Disk Storage 243
C.1 Overview 243

C.2 Loading Forth Source Blocks 248

C.3 Block-based Programmer Aids and Utilities 252

C.4 Style Guidelines for Block-based Source 253

Appendix D: Index to Forth Words 257

General Index 271
8 Contents

Forth Programmer’s Handbook
List of Figures

1. Dictionary entry links 19
2. Logical structure of the Forth dictionary 20
3. Structural details of a typical dictionary entry 21
4. Items on the data stack 23
5. Flow diagram of the text interpreter 28
6. Example of a control program that runs a washing machine 44
7. Dictionary entry built by CONSTANT 64
8. Format of a counted string 75
9. Use of COUNT 76

10. Format of arguments for most two-string operators 80
11. Actions of string copy operators 81
12. String comparison 83
13. String search 83
14. Logical flow of a conditional structure 100
15. Logical flow of a post-test indefinite loop 103
16. Logical flow of a pre-test indefinite loop 104
17. Examples of legal and illegal nested structures. 112
18. Dictionary entry built by CREATE 165
19. Structures defined by using DOES> 174
20. Action of the Forth compiler 177
21. Compile-time action of IF 184
22. Hierarchy of data types 240
23. Relationship between blocks and block buffers 245

List of Tables

1. Integer precision and CPU data width 29
2. Valid numeric punctuation characters 30
3. Registers in the Forth virtual machine 31
4. Common stack notation 39
5. Order of arguments, Forth postfix vs. infix 55
6. String comparison examples 83
7. Conversion results from NUMBER? 87
8. Pre-processing for output number conversion 91
9. Environmental query strings and associated data 121

10. ANS Forth reserved throw codes 125
11. Identifying the input source 156
Contents 9

Forth Programmer’s Handbook
12. Summary of compile-time branch words 187
13. Availability of words defined in various scopes 198
14. Types of memory space in cross-compilers 199
15. Naming conventions 225
16. Notation for the data type of stack arguments 238
10 Contents

Forth Programmer’s Handbook
Preface to the Third Edition

It’s hard to believe it’s been nearly ten years since the release of the
Second Edition of this book. I find that, although the language itself
has changed relatively little, there have been vast improvements in
Forth programming tools and in the collective experience of Forth pro-
grammers.

The advent of ANS Forth in 1994 freed Forth from supporting certain
implementation strategies and from assumptions about cell size: its
predecessor, FORTH-83, mandated an indirect-threaded implementa-
tion (see Section 1.1.7) with a 16-bit cell size. Following are just a few
of the innovations that have followed:

• By the mid-1990s the majority of implementations were for 32-
bit platforms and today several 64-bit Forths are available, at Sun
Microsystems and other places.

• Compiler technology has vastly improved, with several sophisti-
cated optimizing compilers available that deliver extremely effi-
cient code, in both size and performance.

• Programming tools have improved, further enhancing the interac-
tive and incremental programming strategy that has been a hall-
mark of Forth since the beginning. In particular, Windows-based
development systems take full advantage of the features of this
popular OS to provide programmer convenience as well as access
to the vast libraries of DLLs and other facilities found on PCs.

• Cross-compilers have flourished, and now support most popular
microprocessors and microcontrollers. Modern Forth cross-com-
pilers use their powerful PC hosts to support compilers and opti-
mization strategies that rival more conventional C/C++ tool
chains, while delivering almost the same level of interactive sup-
port as resident Forths.

• OOP extensions have been developed for several popular Forth
implementations. Unfortunately, these have not been standard-
ized and vary significantly, so we have not included them here
(see the documentation for virtually any popular Forth system).
However, the widespread use of OOP techniques and terminology
has enabled us to clarify the discussion of Forth defining words
considerably.
Preface 11

Forth Programmer’s Handbook
I want to particularly acknowledge Leon Wagner and Ron Oliver for
valuable input on this book, and Rick Van Norman, the “father” of
SwiftForth which is the basis of most of the current systems at FORTH,
Inc. Also particular thanks to a dedicated set of reviewers who have
offered many valuable comments and suggestions on drafts of this
book: Fred Carter, David Haas, Byron Jeff, Stan Katz, Simon Matthews,
Morten Steien, Daniel Wright, and Mike Zdancewicz. Finally, many
thanks to Marlin Ouverson, our longtime editor and webmaster, who
contributed the cover of this as well as the previous edition, not to
mention help with many other aspects.

Cheers,

Elizabeth D. Rather

Authors Edward K. Conklin and Elizabeth D. Rather (2007)
12 Preface

Forth Programmer’s Handbook
Welcome!

About the Forth Programming Language

The Forth programming language was originally developed in the early
1970s by Charles H. Moore at the National Radio Astronomy Observa-
tory. Forth was used at several NRAO installations for controlling
radio telescopes and associated scientific instruments, as well as for
high-speed data acquisition and graphical analysis.

Forth’s popularity expanded considerably in the 1980s, with the advent
of PCs and widespread use of microprocessors and microcontrollers in
embedded systems. Early implementations were very simple, befitting
the limited nature of the platforms on which they ran. As time passed,
however, Forth technology advanced dramatically, as did implementa-
tions of other languages. An ANSI Standard for Forth was passed in
1994. Many modern Forths feature sophisticated optimizing compilers,
fast multitasking executives, and powerful development systems.

Today Forth is used worldwide by people seeking maximum flexibility
and efficiency in a wide variety of applications. Versions are available
for all popular operating systems, as well as for most microcontrollers
used in embedded applications. Befitting its origins, Forth continues
to be widely used in scientific, industrial control, and data acquisition
systems. One of the most widespread Forth applications is Open Firm-
ware, a standardized boot firmware system originally developed at
Sun Microsystems and used in many workstations and servers today.

About This Book

The Forth Programmer’s Handbook provides a detailed technical refer-
ence for programmers and engineers developing software using Stan-
dard Forth (ANSI X3.215:1994, the standard adopted in 1994 and
reaffirmed in 1999; equivalent to ISO/IEC 15145:1997) provided by
FORTH, Inc. or other vendors. It features Standard Forth and many
extensions commonly in use; some information in this book is taken
directly from the official standard document.
Welcome! 13

Forth Programmer’s Handbook
This book assumes the reader has general knowledge of programming
principles and practices, and general familiarity with computer hard-
ware and software systems.

How to Use This Book

Each section of this book documents a single subject, and many are
followed by a glossary containing pertinent Forth words and their
descriptions. Each Forth word is shown with its stack effects and with
the Standard Forth word list in which it appears, if any. Some words
are included which are not part of Standard Forth; these are indicated
by the phrase “Common usage.” Sections in this book often conclude
with references to related topics or other resources.

Appendix D provides an index of each Forth word that appears in
these glossaries, including its stack effect, the page on which its
description may be found, and the Standard Forth word list, if any, in
which it appears.

Typographic Conventions

In this manual, typefaces are used as follows:

• This typeface is used for text, with italic used for some symbolic
notation and for the first appearance of new terms;

• Executable Forth commands and source code are shown in a
monospaced bold type, e.g., PAD 20 ACCEPT.

• Parameters that are described indirectly instead of explicitly are
shown in distinctive plain type and inside brackets, e.g., <addr>
<len> ACCEPT. When these parameters are discussed in text, they
usually are shown in italic.

• Non-executable text strings such as error messages are shown in
plain type without brackets, e.g., Page Fault.
14 Welcome!

Forth Programmer’s Handbook
Reference Materials

The following reference materials may be of use to the reader of this
manual.

• Forth Application Techniques (introductory tutorial).

• American National Standard for Information Systems Program-
ming Languages — Forth (ANSI X3.215:1994)

• ISO/IEC 15145:1997 Information technology — Programming lan-
guages — Forth (the content of this standard is identical to ANSI
X3.215:1994)

• Additional publications are listed in Appendix A: “Bibliography”
on page 229, with other sources of information about Forth.

How to Proceed

If you are not already familiar with Forth, we encourage you to begin
by reading the Introduction and Forth Fundamentals chapters carefully,
writing simple programs using an ANS Forth system of your choice.
Use this book for technical details about your system and to assist you
as you move on to more ambitious programming challenges.

Good luck!
Welcome! 15

Forth Programmer’s Handbook
16 Welcome!

Forth Programmer’s Handbook
1. INTRODUCTION

This Forth Programmer’s Handbook provides a reference source for
the most common features of the integrated software development
systems based on the Forth programming language. We assume at
least an elementary knowledge of programming, including any high-
level language or assembler. If you are new to Forth, we encourage you
to begin by reading this chapter and the next carefully, writing simple
programs using an ANS Forth system of your choice.

This book is primarily intended to describe how a programmer can
use Forth to solve problems. This is a rather different goal from
explaining how Forth works, but it is a practical necessity for the new
user of a Forth system. This manual is also organized to serve experi-
enced programmers who need to check some point quickly.

We highly recommend that you spend time examining the Forth
source code supplied with your system, along with its documentation.
Forth was designed to be highly readable, and the source code offers
many examples of good usage and programming practice.

This manual does not attempt to cover all Forth commands. Indeed,
no book can do that—Forth is an extensible system, and no two imple-
mentations need or use identical components. What we can do is pro-
vide a detailed exposition of the most valuable and most commonly
used features and facilities of the fundamental system from which
your application begins.

FORTH, Inc. provides development environments for a growing num-
ber of computer systems and embedded microprocessors. Because
hardware is unique for each computer, it is not feasible for this docu-
ment to cover every feature of every system supported. The Forth Pro-
grammer’s Handbook presents features common to Standard Forth
and to the most common extensions found in all FORTH, Inc. systems.
When discussing hardware-specific features, particularly dictionary
structure, high-level object format, database management, and device
drivers, an idealized model of a Forth system is used. Separate prod-
uct documentation provides implementation details and descriptions
of features specific to that system.
Introduction 17

Forth Programmer’s Handbook
1.1 FORTH LANGUAGE FEATURES

This section highlights special considerations arising from the actual
implementation of a system. More detailed technical discussions of
subjects covered here will be found in later sections of this book, espe-
cially Section 2. Appendix B, Glossary & Notation provides supplemen-
tary definitions of many of the terms used in this manual, as well as a
detailed description of the notation conventions.

1.1.1 Definitions of Terms

Forth allows any kind of ASCII string (except one containing spaces) to
be a valid name, and this introduces some ambiguities in references.
For instance, Forth calls subroutines words, but word could also mean
an addressable unit of memory. To resolve this, we use the following
conventions:

• A Forth execution procedure is called a definition. A word is the
name of such a definition.

• The word length of the processor is always referred to as a cell.
This is also the size of an address and the size of a single item on
Forth’s stacks.

• Eight bits is called a byte. On a 32-bit or larger processor, a 16-bit
item may be called a 16-bit cell or half-cell.

A more extensive glossary of terms may be found in Appendix B.1.

1.1.2 Dictionary

The dictionary contains all the executable routines (or words) that
make up a Forth system. System routines are entries predefined in the
dictionary that become available when the system is booted. Electives
are optionally compiled after booting. User-defined words are entries
the user adds.

The basic form of the most common type of word definition is:

: <name> <words to be executed> ;
18 Introduction

Forth Programmer’s Handbook
…where : constructs a new definition called name, which is termi-
nated by ;. When name is referenced, the words in the body of the def-
inition name will be executed. There are other kinds of words in Forth:
words defined in assembler code, words that function as data objects,
etc. All have dictionary entries with a similar structure and are man-
aged by the same internal rules. The various kinds of definitions are
discussed in Section 6.2.

Regardless of the kind of definition it is, each word is basically the
same: an executable function with a defined behavior. This is true even
of things that seem analogous to data objects in other languages and
things that look like punctuation. There is no punctuation in Forth,
and no syntax, just executable words.

The dictionary is the fundamental mechanism by which Forth allo-
cates memory and performs symbol table operations. Because the dic-
tionary serves so many purposes, it’s important that you understand
how to use it.

The dictionary is a linked list of variable-length entries, each of which
is a Forth word and its definition. In most implementations, the dic-
tionary grows toward high memory; the discussion in this section will
assume it does. Each dictionary entry points to the entry that logically
precedes it (see Figure 1).

Figure 1. Dictionary entry links

Dictionary entries are not necessarily contiguous. For example, in
cross-compilers used to construct programs for embedded systems,
the searchable portion of the dictionary (name, link, and a pointer to
the content—see Figure 2) may reside in a host computer, and the
actual content may reside in a target image being constructed in the
host computer’s memory for later downloading or for burning into
flash or PROM.

The dictionary is searched by sequentially matching names in source
text against names compiled in the dictionary. On some systems, the
search is speeded by providing more than one chain of definitions,

previous
definition

previous
definition

latest
definition

unused
dictionary space

HERE
Introduction 19

Forth Programmer’s Handbook
with entries linked in logical sequences that do not necessarily reflect
their physical locations. The Forth text interpreter selects one of these
chains to search; the selection mechanism is implementation depen-
dent and may include two or more chains in a programmer-controlled
order (see Section 6.6). The search follows the selected chain until a
match is found or the end of the chain is reached. Because the latest
definition will be found first, this organization permits words to be
redefined, a technique that is frequently useful.

Figure 2. Logical structure of the Forth dictionary

The Standard Forth term for one of these chains is word list. A word
list is a subset of the dictionary containing words for some special
purpose. Several word lists usually are present in a system and they
are normally available to all users on a re-entrant basis.

The essential structure of dictionary entries is the same for all words
and is diagrammed in Figure 2. The link cell contains the location of
the preceding entry. Searches start at the recent end of the dictionary
and work backwards to the older end. By this process, the most recent
definition of a word is always found. In a developed application, where
the user is dealing with the highest level of the program, this process
optimizes search time.

The name field in a dictionary entry contains the count of characters
in the full name, followed by some number of characters in the name.
The count (and, thus, the longest allowable name length) usually is
limited to 31 characters. On most systems, any characters other than
space, backspace (BS or DEL), and carriage return (CR) can be used as

lin k n am e co n ten t

link n am e co n ten t

link n am e co n ten t

p o in te r to
to p en try

la test d efin it ion

p rev iou s d efin it ion

ear lie st d efin it ion

… m o re d e fin it io n s…
20 Introduction

Forth Programmer’s Handbook
part of a name field. However, Standard Forth advises that you can
only depend on being able to use displayable graphic characters.

Some systems are case sensitive and others are not; see your product
documentation for details. To avoid problems and to maximize the
transportability of code, the names of the words provided in a stan-
dard system are defined in upper-case letters and should always be
referred to in upper-case letters when using them in subsequent defi-
nitions. When defining and using new names, it is important to be con-
sistent: always refer to a name using exactly the same case(s) in which
it was defined. Also, in systems that are case sensitive, avoid creating
names that differ only in their use of case; such code will not be trans-
portable to a case-insensitive system.

Although fields in a dictionary entry are arranged differently in each
implementation to optimize dictionary searches, Figure 3 shows a gen-
eral model with the fields grouped into a head and a body. The head
contains features that enable a definition to be found in the diction-
ary, while the body contains information that makes it executable or
enables it to carry data.

Figure 3. Structural details of a typical dictionary entry

The head will always include a link field and a name field. There may
also be a locate field containing information about where this word is
defined in source code. In addition, there are usually several control
bits1 to control the type and use of the definition. Because the longest
name field in some implementations has 31 characters, thus requiring
only five bits to express its count, the control bits are often found in
the byte containing the count.

The most important control bit is the precedence bit. A word whose
precedence bit is set executes at compile time. The precedence bit is

1. Not all implementations use control bits for these purposes; here we describe a com-
mon implementation strategy.

LOCATE link count name code
field

parameter
field

previous definition

head body

control bits
Introduction 21

Forth Programmer’s Handbook
set by the word IMMEDIATE. The precedence bit is used for a few special
words, such as compiler directives, but it is zero for most words.

Another common control bit is the smudge bit. A word whose smudge
bit is set is invisible to a dictionary search. This bit is set by the com-
piler when starting to compile a high-level : (colon) definition, to pre-
vent unintentional recursive references. It is reset by the word ;
(semicolon) that ends the definition.

The body will usually include a code field. The code field will contain
either a pointer to the run-time code to be executed when this defini-
tion is invoked, or in some implementations the code itself. There is
often a parameter field of variable length, containing references to
data needed when this definition executes. Data objects such as vari-
ables keep their data in their parameter fields.

On cross-compilers used for developing programs for embedded sys-
tems, the head may exist only on the host, with a pointer to the actual
executable portion being constructed in the target image. The data
space portion of the body need not be contiguous with the code field;
on Harvard architecture parts, for example, code space may be in ROM
or flash, and data space in RAM.

References

Code field addresses, Section 6.2.2
Creating dictionary entries, Section 6.2.1
Word lists, Section 6.6

1.1.3 Data Stack

Every Forth system contains at least one data stack. In a multitasked
system, each task may have its own data stack. The stack is a cell-wide,
push-down LIFO (last-in, first-out) list; its purpose is to contain
numeric operands for Forth commands. Commands commonly expect
their input parameters on this stack and leave their output results
there. The stack’s size is indefinite. Usually it is located at a relatively
high memory address and grows downward towards areas allocated
for other purposes; see your product documentation for your system’s
particular layout. The data stack rarely grows deeper than just a few
entries in a well-written application.
22 Introduction

Forth Programmer’s Handbook
When numbers are pushed onto or popped off the stack, the remaining
numbers are not moved. Instead, a pointer is adjusted to indicate the
last used cell in a static memory array. On most implementations, the
top-of-stack pointer is kept in a register.

Stacks typically extend toward low memory for reasons of implemen-
tation efficiency, but this is by no means required or universally true.
On implementations in which the stack grows toward low memory, a
push operation involves decrementing the stack pointer, while a pop
involves incrementing it.

Figure 4. Items on the data stack

A number encountered by the text interpreter will be converted to
binary and pushed onto the stack. Forth data objects (such as those
defined by VARIABLE and CONSTANT) push their addresses or values
onto the stack. Thus, the stack provides a medium of communication
not only between routines but between a person and the computer.
You may, for example, place numbers or addresses on the stack and
then type words which act on them to produce a desired result. For
example, typing:

12 2400 * 45 / .

…(a) pushes the number 12 on the stack; (b) pushes 2400 above it (see
Figure 4); (c) executes the multiply routine * which replaces both num-
bers by their product; (d) pushes 45 on the stack; (e) executes the
divide routine / which replaces the product and the 45 withs the quo-
tient; and (f) executes the output routine . (“dot”), which removes and
displays the top stack item (the quotient). All numbers put on the
stack have been removed, leaving the stack as it was before typing 12.

most stacks
grow towards
low memory

0

12

2400

“bottom” of stack

“top” of stack
Introduction 23

Forth Programmer’s Handbook
The standard Forth dictionary provides words for simple manipula-
tion of single- and double-length operands on the stack: SWAP, DUP,
DROP, 2SWAP, etc. (covered in detail in Section 2.1).

The push-down stack simplifies the internal structure of Forth and
produces naturally re-entrant routines. Passing parameters via the
stack means fewer variables must be named, reducing the amount of
memory required for named variables (as well as reducing the pro-
grammer’s associated housekeeping).

A pointer to the top (i.e., the latest entry) of the user’s stack is main-
tained by the system. There is also a pointer to the “bottom” of the
stack, so that stack-empty or underflow conditions can be detected,
and to aid in clearing the stack if an abort condition is detected.

Most Forth systems check for stack underflow only after executing (or
attempting to execute) a word from the input stream (see Figure 5).
Underflows that occur in the process of execution will not be detected
immediately when they occur, but only when the text interpreter is
ready to parse the input stream again.

The usual result of a detected stack underflow is the message:

Stack empty

…followed by a system abort.

References

Stack manipulation, Section 2.1
System abort routines, Section 5.3
Data types in stack notation, Section B.2
Stack operations, Section 2.1

1.1.4 Return Stack

Every Forth system also has a return stack. In a multitasked system,
each task has its own return stack. Like the data stack, the return
stack is a cell-wide LIFO list. It is used for system functions, but may
also be accessed directly by an application program. It commonly
serves the following purposes:
24 Introduction

Forth Programmer’s Handbook
• It holds return addresses for nested definitions.

• It holds loop parameters.

• It may be used by the system for other temporary purposes; con-
sult your system documentation.

Because the return stack has multiple uses, care must be exercised to
avoid conflicts when accessing it directly.

There are no commands for directly manipulating the return stack,
except those for moving one or two parameters between the data
stack and the return stack.

The maximum size of the return stack for each task is specified at the
time the task is defined, and remains fixed during operation; a typical
size is 128 cells.

References

Loading, Sections 5.5.1, C.2
Loop parameters, Section 4.5
Data stack, Section 1.1.3
Transfers between stacks, Section 2.1.3

1.1.5 Text Interpreter

The text interpreter processes the input stream, which may contain:

• the commands users type (often called the command line);

• source code stored on disk;

• a string whose address and length are supplied to the word
EVALUATE.

The operator’s keyboard is the default input stream source. The key-
board handler will accept characters into a text buffer called the termi-
nal input buffer until a user event occurs, such as a Return or Enter
keypress, function keypress, etc. Most implementations provide key-
board editing of the line before the Return or Enter keypress. When
the Return or Enter keypress is detected, the text interpreter will pro-
cess the text in the buffer. Interpretation from source code on disk is
buffered separately in an implementation-dependent fashion.
Introduction 25

Forth Programmer’s Handbook
Another name for the place text resides while the text interpreter pro-
cesses it is the parse area, because the process involves parsing the
text in the input stream looking for words separated by spaces.

The text interpreter repeats the following steps until the parse area is
exhausted or an error has occurred:

1. Starting at the beginning of the parse area, skip leading spaces
and extract a word from the input string using the space charac-
ter (ASCII 32) as a delimiter. Set the interpreter pointer to point to
the first character beyond the delimiter. If there was no delimiter
(end of input buffer was reached), set the interpreter pointer to
the end of the parse area, to complete the operation. If the text is
coming from a text file, the interpreter will treat any non-graphic
characters as “whitespace” (equivalent to a space character).

2. Search the dictionary for a definition name matching the input
word (including case sensitivity, if applicable). If a matching defi-
nition is found, perform its interpretation behavior (if currently
in interpretation mode) or compilation behavior (if currently in
compiling mode). Then check for stack underflow and, if there
has been no error, return to step (1); if there was a stack under-
flow, abort.

3. If a definition name matching the input word is not found,
attempt to convert the word to a binary number (see next sec-
tion). If this is successful, place the number on the data stack (if
currently in interpretation mode); or, if in compilation mode,
compile code that, when executed, will place this number on the
data stack (see the definition of LITERAL). Then return to step 1.

4. If neither the dictionary search nor the number conversion is suc-
cessful, abort.

For example, typing:

PAD 100 DUMP

…causes the word PAD to be interpreted from the text input buffer. It
will be found in the dictionary and executed, returning the address of
a scratch area (described in Section 3.1.2) to be pushed on the stack.
Then the string 100 is converted to a number that is pushed on the
stack, and DUMP is found in the dictionary and executed. The result is
to display 100 bytes of memory starting at the location given by PAD.
26 Introduction

Forth Programmer’s Handbook
INCLUDE and INCLUDE-FILE temporarily re-direct the interpreter to pro-
cess source code from text files (Section 5.5). For this, the prior posi-
tion in the input stream is saved, and is restored after the file is
completely processed. If an INCLUDE command is found in a file being
processed, the pointers to that input stream are saved and restored,
so the INCLUDEs are nested.

When the text interpreter executes a defining word (e.g., CREATE,
VARIABLE, or :), a definition is compiled into the dictionary.

A flow diagram for the interpreting process is shown in Figure 5.

The commands SAVE-INPUT and RESTORE-INPUT are available if you wish
to manually direct the text interpreter to a different area. These are not
required around standard words that redirect the interpreter, such as
INCLUDE-FILE, and EVALUATE.

References

Text files for program source, Section 5.5
System abort routines, Section 5.3
Text interpreter words, Section 6.1
Disk blocks, Appendix C
Introduction 27

Forth Programmer’s Handbook
Figure 5. Flow diagram of the text interpreter

INTERPRET

BEGIN

Get next string of characters,
delimited by blanks, and try to

look it up in the dictionary.

Execute the word
(interpretation or

compilation behavior).

Try to convert the
string to a number.

Issue "unknown
word" message.

Push the number
onto the stack

(interpreting), or
compile literal.

Issue "stack
empty" message.

AGAIN
Endless loop back to

BEGIN

Stack
underflow?

Found?no yes

Success? noyes

Reset the stacks and
interpreter.

no

yes

ABORT
28 Introduction

Forth Programmer’s Handbook
1.1.6 Numeric Input

If the text interpreter fails to find a word in the dictionary, it will
attempt to convert it into a binary integer that will be pushed onto the
stack. If there is no punctuation (except for an optional leading minus
sign), a string of valid numerals is converted to a single-cell number,
regardless of length. If a string of valid numerals is terminated by a
decimal point, the text interpreter will convert it to a double-cell (dou-
ble-precision) number regardless of length. A double-precision num-
ber will occupy two data stack cells, with the high order part on top.

On eight-bit and 16-bit systems, a single-precision integer is 16 bits
wide and a double-precision integer is 32 bits wide. On 32-bit systems,
these widths are 32 and 64 bits, respectively. On systems with
optional floating-point routines, valid numeric strings containing an E
or e (for exponent) will be converted as floating-point numbers occupy-
ing one floating-point stack location (see Section 5.8 in this book and
your product documentation for details).

All Standard Forth systems will interpret a number with a trailing
period as a double-precision integer, but some, including those from
FORTH, Inc., will interpret any number containing embedded punctua-
tion (see below) in any position as a double-precision integer. Single-
precision numbers are recognized by their lack of special punctuation.
Conversions operate on character strings of the following format:

[-] dddd [punctuation] dddd … delimiter

…where dddd is one or more valid digits according to the current base
or radix in effect for the user. The content of the user variable BASE is
always used as the radix. All numeric strings must be ended by a blank
or the end of the input stream. If another character is encountered—
i.e., a character which is neither a valid digit in the current base, nor

Table 1: Integer precision and CPU data width

CPU
Data Width

Forth
Single-Precision

Integer

Forth
Double-Precision

Integer

8 bits 16 bits 32 bits

16 bits 16 bits 32 bits

32 bits 32 bits 64 bits
Introduction 29

Forth Programmer’s Handbook
punctuation, nor a whitespace character (see glossary)—an abort will
occur. There must be no spaces within a number, because a space is a
delimiter.

On systems allowing embedded punctuation, the characters shown in
Table 2 may appear in a number. A leading minus sign, if present,
must immediately precede the first digit or punctuation character.

All punctuation characters are functionally equivalent, including the
period (decimal point). The punctuation performs no function other
than to set a flag that indicates its presence. Multiple punctuation
characters may be contained in a single number; the following charac-
ter strings both convert to the same double-precision integer 123456:

1234.56
12,345.6

On some systems, a punctuation character also causes the digits that
follow it to be counted, with the count available to subsequent num-
ber-conversion words. Immediately after a number conversion, on
many systems, the count of digits to the right of the rightmost punctu-
ation is found in the address given by DPL.

Glossary

BASE (— a-addr) Core
Return a-addr, the address of a cell containing the current number
conversion radix. The radix is a value between 2 and 36, inclusive. It is
used for both input and output conversion.

Table 2: Valid numeric punctuation characters

Character Description

, comma

. period

+ plus

- hyphen, may appear anywhere except to the immediate
left of the most-significant digit

/ slash

: colon
30 Introduction

Forth Programmer’s Handbook
DECIMAL (—) Core
Sets BASE such that numbers will be converted using a radix of 10.

HEX (—) Core Ext
Sets BASE such that numbers will be converted using a radix of 16.

References

Use of the text interpreter for number input, Section 3.6.1
Floating point input, Section 5.8.2

1.1.7 Two-stack Virtual Machine

A running Forth system presents to the programmer a virtual machine
(VM), like a processor. It has two push-down stacks, code and data
space, an Arithmetic Logic Unit (ALU) that executes instructions, and
several registers. Previous sections briefly discuss the stacks and
some aspects of memory use in Forth; this section describes some fea-
tures of the virtual machine as a processor.

A number of approaches to implementing the Forth VM have been
developed over the years. Each has features that optimize the VM for
the physical CPU on which it runs, for its intended use, or for some
combination of these. Here we discuss the most common implementa-
tion strategies.

The function of the Forth VM, like that of most processors, is to exe-
cute instructions. Two of the VM’s registers are used to manage the
stacks. Others control execution in various ways. Various implementa-
tions name and use these registers differently; for purposes of discus-
sion in this book, we use the names in Table 3.

Table 3: Registers in the Forth virtual machine

Name Mnemonic Description

S data Stack
pointer

Pointer to the current top of the data stack.

R Return stack
pointer

Pointer to the current top of the return
stack.

I Instruction
pointer

Pointer to the next instruction (definition)
to be executed; controls execution flow.
Introduction 31

Forth Programmer’s Handbook
A standard Forth high-level, or colon, definition consists fundamen-
tally of a name followed by references to previously defined words.
When such a definition is invoked by a call to its name, the run-time
code needs to manage the sequential execution of the words compris-
ing the body of the definition. Exactly how this is done depends on the
particular system and the method it uses to implement the Forth vir-
tual machine. The implementation strategy affects how definitions are
structured and how they are executed; see the relevant documentation
for your system. There are several possibilities:

• Indirect-threaded code. This was the original design and is still
the most common method. Pointers to previously defined words
are compiled into the executing word’s parameter field. The code
field of the executing word contains a pointer to machine code
for an address interpreter that sequentially executes those defini-
tions by performing indirect jumps through register I, which is
used to keep its place. When a definition calls another high-level
definition, the current I is pushed onto the return stack; when
the called definition finishes, the saved I is popped off the return
stack. This process is analogous to subroutine calls, and I in this
model is analogous to a physical processor’s instruction pointer.

• Direct-threaded code. In this model, the code field contains the
actual machine code for the address interpreter, instead of a
pointer to it. This is somewhat faster but requires more memory
for some classes of words. For this reason, it has been most prev-
alent on 32-bit systems.

• Subroutine-threaded code. In this model, for each referenced def-
inition in the executing word, the compiler places an in-line,
jump-to-subroutine instruction with the destination address.
This is an enabling technique to allow progression to native code
generation. In this model, the underlying processor’s instruction
pointer is used as Forth’s I (which usually is not a named register
in such implementations).

W Word pointer Pointer to the current definition being exe-
cuted; used to get access to the parameter
field of the definition.

U User pointer In multitasked implementations, a pointer
to the currently executing task.

Table 3: Registers in the Forth virtual machine (continued)

Name Mnemonic Description
32 Introduction

Forth Programmer’s Handbook
• Native code generation. Going one step beyond subroutine-
threaded code, this technique generates in-line machine instruc-
tions for simple primitives, such as +, and uses jumps to other
high-level routines. Many native code implementations also apply
optimizing strategies to the generated code. The result can run
much faster, at the cost of compiler complexity. A side-effect of
this technique is that it may not be possible to reconstruct the
source code from the compiled instructions.

• Token threading. This technique compiles references to other
words by using a token, such as an index into a table, which is
more compact than an absolute address. Token threading was a
key element in the original implementation of MacForth and has
been used in a number of other specialized Forth systems. In
other respects, such an implementation resembles an indirect-
threaded model.

References

:, Section 6.2.2
Compiling words and literals, Section 6.3

1.2 FORTH OPERATING SYSTEM FEATURES

Early Forth implementations ran in a fully standalone mode, in which
Forth provided all drivers for the hardware attached to the system.
More recently, most versions of Forth run in a co-resident mode, with a
host operating system such as Windows or a variant of Unix. Stand-
alone implementations are still used in embedded systems, however.

In co-resident implementations, the drivers that supply I/O services for
peripherals such as disks and printers do so by issuing calls to the host
system. Although co-resident systems are typically slower than stand-
alone versions, they offer full file compatibility with the host OS and
usually are more flexible with respect to hardware configuration, in
that they automatically have access to all devices supported by the OS.

Co-resident versions of Forth usually offer all the system-level features
of native systems plus added commands for interacting with the host
OS. The latter are documented in the system’s product documentation.
Introduction 33

Forth Programmer’s Handbook
1.2.1 Disk I/O

Disk I/O is handled by Forth systems in different ways, depending on
the system environment. Co-resident Forth systems access disk using
a file-based system, as described in Section 5.5. Files may contain pro-
gram source or data, and are compatible with the host OS. Source files
may be edited by any programmer’s editor, although some Forths also
provide an editor.

Standalone systems that include a disk drive typically use standard
blocks of 1024 bytes. This fixed block size applies both to Forth source
program text and to data used by Forth programs. This standard for-
mat allows I/O—using different media with different physical sector
or record sizes, or even on different operating systems—via a stan-
dard block handler. Block-based Forths are rare today, but several are
still available. Some systems achieve a hybrid approach by mapping
blocks into host OS files; this provides a measure of source code por-
tability between the two types of systems. Blocks are discussed fur-
ther in Appendix C. Also see your product documentation for details.

The majority of Forth implementations today are purely file based, so
we will assume this strategy for the balance of this book.

1.2.2 Multitasking

Since the early 1970s, standalone Forth systems have commonly
offered the ability to control multiple asynchronous tasks, either back-
ground tasks or terminal tasks that provide independent user inter-
faces. A small set of commands controls the multitasking facility. The
number of tasks in the system usually is limited only by memory size.
Because Forth definitions are naturally re-entrant, tasks rarely require
much memory.

A terminal task has associated hardware that allows it to support a
user interface (perform text input and output). Each terminal task has
a partition that contains its stacks, private (or user) variable area, and
a scratch PAD (for text strings).

A background task has a much smaller area, with only enough space
for its stacks. There is no terminal associated with it, and it cannot
perform text I/O. The routines the background task executes are in a
34 Introduction

Forth Programmer’s Handbook
shared area or in the dictionary of one of the terminal tasks.

The use in Forth of stacks for parameter passing facilitates multitask-
ing, because it enables most words to be inherently re-entrant. Provid-
ing a unique set of stacks for each task enables words to be re-entrant,
concurrently executable by multiple tasks.

A standalone Forth normally runs with interrupts enabled. Interrupt
vectors transfer control directly to code that services the interrupting
device, without system intervention or overhead. The interrupt code is
responsible for saving and restoring any registers it changes.

Interrupt code (actual assembler code) is responsible for performing
time-critical actions such as reading a value from an analog device and
storing it in a temporary location. The interrupt routine may also
notify the task responsible for the device, although some (notably
clock interrupts) are self-contained. Notification may take many
forms, ranging from incrementing a counter, to “awakening” the task
by storing in the task’s status area a pointer to code that will cause the
task to become active the next time the task is available. Many inter-
rupt handlers do nothing else.

Any processing that is not time-critical can be done by a task running
a high-level Forth routine. In effect, the time-critical aspect of servic-
ing an interrupt is decoupled from the more logically complex aspects
of dealing with the consequences of the event signalled by the inter-
rupt. Thus, it is guaranteed that interrupts will be serviced promptly,
without having to wait for task scheduling, yet as a programmer you
have the convenience of using high-level Forth (executed by the
responding task) for the main logic of the application.

Co-resident Forths also commonly offer multitasking capabilities con-
sistent with the OS under which they run. Consult your product docu-
mentation for details.

References

PAD, Section 3.1.2
Terminal I/O, Section 5.3
Introduction 35

Forth Programmer’s Handbook
1.3 THE FORTH ASSEMBLER

Most Forth systems contain an assembler for the CPU on which the
system runs. Although it offers most of the same capabilities of other
assemblers, its integration into the Forth environment means it may
not use the same notation as assemblers supplied by the computer’s
manufacturer.

A Forth assembler produces exactly the same code as a conventional
assembler, which means the assembled code runs at full machine
speed, but may do it somewhat differently. The differences are in
notation and procedure, and are described in the following sections.

1.3.1 Notational Differences

Notational differences occur for two reasons:

1. To take advantage of Forth’s stack and natural post-fix notation
to simplify the assembler and improve flexibility.

2. To produce an assembler that generates immediately executable
code, thus facilitating interactive programming and debugging.

Code words in Forth have the form:

CODE <name> <instructions> END-CODE

This defines a new word name, which is linked in the dictionary like all
other words. And like other words, it is immediately executable. It will
expect arguments on the data stack and leave its results there. The
only difference is that its behavior is defined in terms of instructions
which will be assembled to machine code.

Forth assemblers use the manufacturer’s instruction mnemonics
whenever possible. Occasionally, there are differences, for example, to
resolve awkward name conflicts. Any differences should be explained
in your Forth product documentation.

Most assemblers encourage a four-column source format, with one
instruction per line; this allows space for labels, opcodes, addressing
operands, and remarks. But in some Forth assemblers, the opcode itself
is a Forth command that assembles the instruction according to
36 Introduction

Forth Programmer’s Handbook
addressing operands passed on the stack. This leads to a format in
which addressing operands and mode specifiers precede the opcode.

Some Forth assemblers support structured programming in the same
way high-level Forth does. In these assemblers, arbitrary branching to
labelled locations is discouraged; on the other hand, structures such
as BEGIN … UNTIL and IF … ELSE … THEN are available in the assembler,
implemented as macros that assemble appropriate conditional and
unconditional branches.

1.3.2 Procedural Differences

The Forth assembler is normally resident at all times. This means a
programmer can assemble code at any time, either from source on
disk or from the command line. Regardless of where the code comes
from, the assembled version will be the same.

In conventional programming, assemblers leave their object code in a
file, which a linker must integrate with code in files from high-level
language compilers (if any) before the resultant program can be
loaded into memory for testing. But the resident Forth assembler
assembles its code directly into memory in executable form, thus
avoiding this cumbersome procedure.

The Forth assembler is used to write short words that function just
like words written in high-level Forth; that is, when their names are
invoked, it will be executed. Like other Forth words, code words nor-
mally expect their arguments on the stack and leave their results
there. Within a code definition, one may refer to defined constants (to
get a value), variables (to get an address), or other defined data types.
Code words may be called from high-level definitions, just as other
Forth words are, but cannot themselves call high-level definitions
except on subroutine-threaded or machine code implementations.
Consult your product documentation for details.

A Forth system runs on a virtual machine. For optimum performance,
some of its virtual registers are permanently assigned to actual hard-
ware registers. The product documentation for each Forth system docu-
ments the register assignments for that CPU. Some registers may be
designated as scratch, meaning they can be used within a code routine
without saving or restoring their contents. Because the scratch registers
Introduction 37

Forth Programmer’s Handbook
are sufficient for most Forth code routines, there is less need to save
and restore registers than in conventional programming. But registers
containing Forth pointers must be used carefully. Forth system regis-
ters are given names that make references to them in code easy and
readable. In co-resident systems, Forth code routines may need to save
and restore Forth registers when calling host operating system services.

Consult your product documentation for details of your assembler.

1.4 DOCUMENTATION AND PROGRAMMER AIDS

In Forth, as in all other languages, the primary responsibility for pro-
ducing readable code lies with the programmer. Forth supports the
programmer’s efforts to produce easily managed code by providing
aids to internal documentation. In addition to these, we recommend
that each Forth programming group adopt uniform editorial and nam-
ing standards and conventions. Sample standards adopted by some
groups are offered in Section 8. Although readability is rather subjec-
tive, a set of standards that all members of a group adhere to will
improve their ability to share code and to support one another.

1.4.1 Comments

Comments embedded in Forth source are enclosed in parentheses. For
example:

(This is a comment)

The word (must have a space after it, so that it can be recognized and
executed as a command (to begin the comment). A space is not needed
before the closing right parenthesis delimiter. The \ (backslash) char-
acter is used to indicate that the entire remainder of the current line
of source is a comment.

The word .((note the preceding dot) is like (but begins a comment
that will be displayed when it is encountered. If it occurs inside a defi-
nition, the text will be displayed when the definition is compiled, not
when it is executed. It is commonly used in source code to indicate
progress in compilation, e.g.:

.(Begin application compilation)
38 Introduction

Forth Programmer’s Handbook
Forth comments are most often used to give a picture of a word’s
stack arguments and results; for example, a high-level definition of the
Forth word = is:

: = (n n -- flag) - 0= ;

The dashes in the comment separate a word’s arguments (on the left) from
its results. By convention, certain letters have specific, common meanings:

Thus, in the example above, the word = expects two single-cell integers
and returns a truth flag.

On some systems, addresses must be aligned on cell boundaries for
cell fetches. The stack notation addr is sometimes further specified as
a character-aligned address (c-addr) or cell-aligned address (a-addr). A
character-aligned address is on a byte boundary, which on most sys-
tems is equivalent to saying there is no particular alignment. The nota-
tion addr indicates no alignment is implied.

Defining words, which have separate interpretive and run-time behav-
iors, should have comments1 for both behaviors:

: CONSTANT (n --) CREATE ,
 DOES> (-- n) @ ;

Glossaries in this book that feature defining words show an entry for

Table 4: Common stack notation

Symbol Data type Size on stack

n Signed number 1 cell

u Unsigned number 1 cell

flag Flag (boolean)a

a. A single-cell Boolean value (zero is false, non-zero is true; a “well-formed flag”
has all bits set for true).

1 cell

addr Address 1 cell

d Signed double number 2 cells

ud Unsigned double number 2 cells

1. The DOES> part of this type of definition starts with the address of the instance on
the stack, but it’s conventional to omit this from the stack comment as the calling
routine is not expected to provide it.
Introduction 39

Forth Programmer’s Handbook
the word’s defining behavior and an entry for the instance behavior of
words defined by it, i.e., what an instance will do when executed.

Most implementations also have a way to denote multi-line comments
that may include parentheses, however this has not been standard-
ized. Consult your product documentation or look at the source pro-
vided with your system.

References

Stack notation, Section 2.1.1
Data types in stack notation, Section B.2
Defining words, Section 2.3.1

Glossary

((—) Core, File
Begin a comment. Stop compilation or interpretation and parse the
characters that follow, looking for a right parenthesis) which closes
the comment.

.((—) Core Ext
Like (, but begin a comment that will be sent to the display device
when it is encountered. Terminated by a right parenthesis).

\ (—) Block Ext, Core Ext
Begin a comment that includes the entire remainder of the current line
of source code. No closing delimiter is needed.

1.4.2 Locating Command Source1

After code has been compiled from source files, the LOCATE command
can display the source code for a command. For example:

LOCATE /STRING

…starts the editor, opens the correct source block or file, and posi-
tions the cursor at the start of the definition of /STRING:

: /STRING (c-addr1 len1 n -- c-addr2 len2)
 OVER MIN >R SWAP R@ + SWAP R> - ;

1. This facility is common, but not standardized, and may not be implemented on all
systems.
40 Introduction

Forth Programmer’s Handbook
Glossary

LOCATE <name> (—) Common usage
If name is the name of a definition compiled from source code, display
the source code for name. On some systems, the phrase VIEW name
performs a similar function.

1.4.3 Cross-references1

This tool finds all the places a word is used. The syntax is:

WHERE <name>

It gives the first line of the definition of the word name, followed by
each line of source code in the currently compiled program that con-
tains name.

If the same name has been redefined, WHERE gives the references for
each definition separately. The shortcut:

WH <name>

…does the same thing.

This command is not the same as a source search, because it is based
on the code you currently have compiled and are debugging. This
means you will be spared instances of name in files you aren’t using.

Glossary

WH <name> (—) Common usage
Short synonym for WHERE, defined for typing convenience.

WHERE <name> (—) Common usage
Display all the places in the currently compiled program where name
has been used, showing any re-definitions separately.

1. This facility is common, but not standardized, and may not be implemented on all
systems.
Introduction 41

Forth Programmer’s Handbook
1.4.4 Decompiler and Disassembler1

The disassembler/decompiler is used to reconstruct readable source
code from CODE and : (colon) definitions. This is useful as a cross
check, whenever a new definition fails to work as expected.

The command SEE name decompiles and/or disassembles both CODE
commands and colon definitions. On indirect, direct, and subroutine-
threaded implementations, SEE can reconstruct the high-level defini-
tion from which the running version was compiled. On native code sys-
tems, this is not possible; use LOCATE (Section 1.4.2) to view the source.

For example, one source definition for /STRING is:

: /STRING (c-addr1 len1 n -- c-addr2 len2)
 >R SWAP R@ + SWAP R> - ;

…but if you decompile it (on a FORTH, Inc. 68000 cross-compiler, for
example, which is an optimized native code generator), you get:

SEE /STRING
08BE A6)+ A7 -) MOV 2F1E
08C0 SWAP BSR 6100FB72
08C4 A7) A6 -) MOV 2D17
08C6 A6)+ D0 MOV 201E
08C8 D0 A6) ADD D196
08CA SWAP BSR 6100FB68
08CE A7)+ A6 -) MOV 2D1F
08D0 A6)+ D0 MOV 201E
08D2 D0 A6) SUB 9196
08D4 RTS 4E75 ok

This example clearly shows the combination of in-line code and sub-
routine calls in this implementation.

An alternative approach is to start disassembly or decompilation at
some address. This is useful for decompiling headless code, such as
code preceded only by a LABEL. The command to disassemble a CODE
definition, given an address addr, is:

<addr> DASM

1. This facility is common, but not standardized, and may not be implemented on all
systems.
42 Introduction

Forth Programmer’s Handbook
The word .' is becoming increasingly popular in this debugging con-
text, though it is not in Standard Forth nor in all systems. It attempts
to identify the definition in which an address occurs. For example,
given /STRING above, you could type:

HEX 8C6 .'

…and get:

/STRING +08 ok

...indicating that the location $8C6 was eight bytes into the definition
of /STRING.

Glossary

SEE <name> (—) Tools
Reconstruct the source code for name, using a decompiler for high-
level definitions or a disassembler for code definitions.

DASM (addr —) Common usage
Begin disassembly at the address addr on top of the stack. The disas-
sembler stops when it encounters an unconditional transfer of control
outside the range of the definition, such as returns from interrupt or
from subroutines, branches, and jumps. Subroutine calls are excluded,
as control is assumed to return to the location following the call.

.' (addr —) Common usage
Display the name of the nearest definition before addr, and the offset
of addr from the beginning of that definition. “dot-tick”

1.5 INTERACTIVE PROGRAMMING—AN EXAMPLE

The Forth language was designed from first principles to support an
interactive development style. By developing a very simple application
in this section, we will show how this style translates into practice.

The general process of developing a program in Forth is consistent
with the recommended development practices of top-down design and
bottom-up coding and testing. However, Forth adds another element:
extreme modularity. You don’t write page after page of code and then
try to figure out why it doesn’t work; instead, you write a few very
brief definitions and exercise them one by one.
Introduction 43

Forth Programmer’s Handbook
Suppose we are designing a washing machine. The highest-level defini-
tion might be:

: WASHER WASH SPIN RINSE SPIN ;

The colon indicates that a new word is being defined; following it is the
name of that new word, WASHER. The remainder are previously defined
words that comprise this definition. Finally, the definition is terminated
by a semi-colon.

Figure 6. Example of a control program that runs a washing machine

Typically, we design the highest-level routines first. This approach
leads to conceptually correct solutions with a minimum of effort. In

\ Port addresses

HEX
7000 CONSTANT MOTOR3 7002 CONSTANT VALVE
7004 CONSTANT FAUCETS 7006 CONSTANT DETERGENT
7008 CONSTANT TIMER 700A CONSTANT CLUTCH
7010 CONSTANT LEVEL
DECIMAL

\ Basic commands

: ON (port --) -1 SWAP OUTPUT ;
: OFF (port --) 0 SWAP OUTPUT ;
: SECONDS (n --) 1000 * MS ;
: MINUTES (n --) 60 * SECONDS ;

\ Machine functions

: ADD (port --) DUP ON 10 SECONDS OFF ;
: TILL-FULL (--) BEGIN LEVEL INPUT UNTIL ;
: DRAIN (--) VALVE ON 3 MINUTES VALVE OFF ;
: AGITATE (--) MOTOR ON 10 MINUTES MOTOR OFF ;
: SPIN (--) CLUTCH ON MOTOR ON 5 MINUTES
 MOTOR OFF CLUTCH OFF ;
: FILL (--) FAUCETS ON TILL-FULL FAUCETS OFF ;

\ Sequencing

: WASH (--) FILL DETERGENT ADD AGITATE DRAIN ;
: RINSE (--) FILL AGITATE DRAIN ;
: WASHER (--) WASH SPIN RINSE SPIN ;
44 Introduction

Forth Programmer’s Handbook
Forth, words must be compiled before they can be referenced. Thus, a
listing begins with the most primitive definitions and ends with the
highest-level words. If the higher-level words are entered first, lower-
level routines are added above them in the listing.

Figure 6 shows a complete listing of the washing machine example.
Comments follow parentheses (to a delimiting right-parenthesis) or
backslashes. In this example, the first few lines define named con-
stants, with hex values representing hardware port addresses. The
remaining definitions define, in sequence, the application words that
perform the work.

The code in this example is nearly self-documenting; the few com-
ments show parameters being passed to certain words. Forth allows as
many comments as desired, with no penalty in object code size or per-
formance.

When reading,

: WASHER (--) WASH SPIN RINSE SPIN ;

…it is obvious what RINSE does. To determine how it does it, you read:

: RINSE (--) FILL AGITATE DRAIN ;

When you wonder how FILL works, you find:

: FILL (--) FAUCETS ON TILL-FULL FAUCETS OFF ;

Reading further, one finds that FAUCETS is simply a constant which
returns the address of the port that controls the faucet, while ON is a
simple word that turns on the bits at that address.

Even from this simple example, it may be clear that Forth is not so
much a language as a tool for building application-oriented command
sets. The definition of WASHER is based not on low-level Forth words,
but on washing-machine words like SPIN and RINSE.

Because Forth is extensible, Forth programmers write collections of
words that apply to the problem at hand. The power of Forth, which is
simple and universal to begin with, grows rapidly as words are defined
in terms of previously defined words. Each successive, newer word
becomes more powerful and more specific. The final program
becomes as readable as you wish to make it.
Introduction 45

Forth Programmer’s Handbook
When developing this program, you would follow your top-down logic,
as described above. But when the time comes to test it, you see the
real convenience of Forth’s interactivity.

If your hardware is available, your first step would be to see if it
works. Even without the code in Figure 6, you could read and write the
hardware registers by typing phrases such as:

HEX 7010 INPUT .

This would read the water-level register at 7010H and display its value.
And you could type:

-1 7002 OUTPUT 0 7002 OUTPUT

…to see if the valve opens and closes.

If the hardware is unavailable, you might temporarily re-define the
words MOTOR, etc., as variables you can read and write, and so test the
rest of the logic.

You can INCLUDE your file of source (as described in Section 5.5),
whereupon all its definitions are available for testing. You can further
exercise your I/O by typing phrases such as:

MOTOR ON or MOTOR OFF

…to see what happens. Then you can exercise your low-level words,
such as:

DETERGENT ADD

…and so on, until your highest-level words are tested.

As you work, you can use any of the additional programmer aids
described in Section 2.1.4. You can also easily change your code and
re-load it. But your main ally is the intrinsically interactive nature of
Forth itself.

References

Disk and file layout and design, Section 8.1
Stack notation conventions, Section 2.1, Table 16, and Section B.2
Number base, Sections 1.1.6, 3.6
Numeric output (the word .), Section 3.6.2
Programmer conveniences, Section 2.1.4
46 Introduction

Forth Programmer’s Handbook
2. FORTH FUNDAMENTALS

This section defines the major elements of the Forth language. These
words are grouped into categories. Except where noted as deriving
from “common usage,” all words are found in, and comply with, the
American National Standard for the Forth language (ANSI
X3.215:1994, equivalent to ISO/IEC 15145:1997), commonly referred
to here as Standard Forth. Appendix B, “Glossary & Notation” on
page 233 provides definitions of many of the terms used in this sec-
tion, as well as a detailed description of the notation conventions.

2.1 STACK OPERATIONS

Forth is based on an architecture incorporating push-down stacks
(last-in, first-out lists). The data stack is used primarily for passing
parameters between procedures. The return stack is used primarily for
system functions, such as storing procedure return addresses, loop
parameters, etc. Because the data stack is the one most directly used
by programmers, references to “the stack” should be interpreted as
referring to the data stack. Where we refer to the return stack, we
explicitly say so.

Stack operators work on data that are on one or more of the stacks.
The words defined in this section are principally tools you can use to
manipulate stack items directly (to duplicate items, change their
order, etc.). Many other Forth words also result in modification of the
stack, and are described in the sections of this manual that deal with
their primary functions. In addition to the stack operators discussed
in this manual, stack manipulation words that relate to assembly lan-
guage are covered in your Forth system’s documentation.

2.1.1 Stack Notation

Stack parameters used as input to and output from a procedure are
described using the notation:

(before — after)
Forth Fundamentals 47

Forth Programmer’s Handbook
Operations that use the stack usually require that a certain number of
items be present on the stack, and then leave another number of items
on the stack as results. Most operations remove their operands, leav-
ing only the results. To document an operation’s effect on the number
and type of items on the stack, each word has a stack notation.

Individual stack items are depicted using the notation in Table 16, Sec-
tion B.2. Any other, special notation will be explained when it is used.
Where several arguments are of the same type, and clarity demands
that they be distinguished, numeric subscripts are used.

If you type several numbers on a line, the rightmost will end up on top
of the stack. As a result, we show multiple stack arguments with the
top element to the right. In rare cases when alternate conditions may
exist, they are separated by a vertical bar (|), meaning “or.” For exam-
ple, the notation (— n1 | n2 n3) indicates a word that may leave either
one or two stack items; and (— addr | 0) indicates that the procedure
takes no input and returns either a valid address or zero.

Please remember that the items shown in a word’s stack notation are
relative to the top of the stack and do not affect any stack items that
may be below the lowest stack item referenced by the operation. For
example, (x1 x2 — x3) describes an operation that uses the top two
stack items and leaves a different, one-item result. Therefore, if the
stack initially contained three items, execution would result in a stack
of two items, with the bottom item unchanged and the top item
derived as a result of the operation.

Some procedures have stack effects both when they are compiled and
when they are executed. The stack effects shown in this manual refer
to the execution-time behavior unless specifically noted, because this
is usually the behavior of most interest to a programmer.

Where an operation is described that uses more than one stack, the
data stack behavior is shown by S: and the return stack behavior by R:.
When no confusion is possible, the S: is omitted.

With the addition of the floating-point stack (see Section 5.8), it
becomes necessary to document its contents, as well. Floating-point
stack comments follow the data stack comments, and are indicated by
F:. If a command does not affect the floating-point stack, only the data
stack comments are shown, and vice versa. If neither stack is affected,
a null data stack comment is shown.
48 Forth Fundamentals

Forth Programmer’s Handbook
For example:

: SF@ (a-addr —) (F: — r)

…indicates that a cell-aligned address (a-addr) is removed from the
data stack, and a floating-point number (r) which was fetched from
that address is pushed on the floating-point stack by the execution of
SF@.

: F. (F: r —)

…indicates that there are no data stack arguments, and that a floating-
point number is removed from the floating-point stack by the execu-
tion of F..

A more complete table of stack comment notation is given in Section B.2.

References

Data stack, Section 1.1.3
Data types in stack notation, Section B.2

2.1.2 Data Stack Manipulation

This category of stack operations contains words which manipulate
the contents of the data stack without performing arithmetic, logical,
or memory reference operations.

2.1.2.1 Single-item operators

The words in the glossary below manipulate one or more single items
on the data stack.

Glossary

?DUP (x — 0 | x x) Core
Conditionally duplicate the top item on the stack if its value is non-
zero. “question-dup”

Logically equivalent to: DUP IF DUP THEN

DEPTH (— +n) Core
Return the number of single-cell values that were on the stack before
Forth Fundamentals 49

Forth Programmer’s Handbook
this word executed. DEPTH will return 2 for each double-precision inte-
ger on the stack.

DROP (x —) Core
Remove the top entry from the stack.

DUP (x — x x) Core
Duplicate the top entry on the stack.

NIP (x1 x2 — x2) Core Ext
Drop the second item on the stack, leaving the top unchanged.

OVER (x1 x2 — x1 x2 x1) Core
Place a copy of x1 on top of the stack.

PICK (+n — x) Core Ext
Place a copy of the nth stack entry on top of the stack. The zeroth item
is the top of the stack; i.e., 0 PICK is equivalent to DUP and 1 PICK is
equivalent to OVER.

ROT (x1 x2 x3 — x2 x3 x1) Core
Rotate the top three items on the stack.

SWAP (x1 x2 — x2 x1) Core
Exchange the top two items on the stack.

TUCK (x1 x2 — x2 x1 x2) Core Ext
Place a copy of the top stack item below the second stack item.

2.1.2.2 Two-item operators

In the following glossary, the naming convention uses the prefix “2” to
indicate that the word is dealing with one or more pairs of stack items.
The prefix itself has no special meaning to Forth (a name is just a
name), but naming conventions such as this are helpful to humans.
The 2… operators always maintain the order of items within the pair.
They do not assume any particular relationship between members of
the pair: they could be the high and low parts of a double-length num-
ber, an address and length of a string, or any other two items.
50 Forth Fundamentals

Forth Programmer’s Handbook
Glossary

2DROP (x1 x2 —) Core
Remove the top pair of cells from the stack. The cell values may or
may not be related. “two-drop”

2DUP (x1 x2 — x1 x2 x1 x2) Core
Duplicate the top cell pair. “two-dup”

2OVER (x1 x2 x3 x4 — x1 x2 x3 x4 x1 x2) Core
Copy cell pair x1 x2 to the top of the stack. “two-over”

2ROT (x1 x2 x3 x4 x5 x6 — x3 x4 x5 x6 x1 x2) Double ext
Rotate the top three cell pairs on the stack, bringing cell pair x1 x2 to
the top of the stack. “two-rote”

2SWAP (x1 x2 x3 x4 — x3 x4 x1 x2) Core
Exchange the top two cell pairs. “two-swap”

2.1.3 Return Stack Manipulation

The return stack is so named because it is used by the Forth virtual
machine (VM) to keep track of where Forth words will return when
they have finished executing. When a high-level Forth word invokes a
previously defined Forth word, the address of the next word to be exe-
cuted is pushed onto the return stack; it will be popped off the return
stack when the called word is finished, so execution can resume where
it left off.

The return stack is a convenient place to keep values temporarily, but
it must be cleared before an executing word reaches the end of the
current definition, or the virtual machine will return to the “address”
on the return stack. The words >R, R@, and R> move an item from the
data stack to the return stack, fetch to the data stack a copy of the top
of the return stack, and remove an item from the return stack and
push it onto the data stack. Careful use of these operators can sim-
plify stack handling when you have more than two or three items to
deal with.

If you use the return stack for temporary storage, you must be aware
that this is also a system resource, and obey the following restrictions:
Forth Fundamentals 51

Forth Programmer’s Handbook
• Your program must not access values on the return stack (using
R@, R>, 2R@, or 2R>) that it did not place there using >R or 2>R.

• When inside a DO loop (see Section 4.5), your program must not
access values placed on the return stack before the loop was
entered.

• All values placed on the return stack within a DO loop must be
removed before I, J, LOOP, +LOOP, UNLOOP, or LEAVE is executed.

• All values placed on the return stack within a definition must be
removed before the end of that definition or before EXIT is exe-
cuted.

The glossary below documents operations that involve both the return
stack and the data stack.

Glossary

2>R (S: x1 x2 —) (R: — x1 x2) Core Ext
Pop the top two cells from the data stack and push them onto the
return stack. “two-to-R”

2R> (S: — x1 x2) (R: x1 x2 —) Core Ext
Pop the top two cells from the return stack and push them onto the
data stack. 2R> is the inverse of 2>R. “two-R-from”

2R@ (S: — x1 x2) (R: x1 x2 — x1 x2) Core Ext
Push a copy of the top two return stack cells onto the data stack. “two-
R-fetch”

>R (S: x —) (R: — x) Core
Remove the item on top of the data stack and put it on the return
stack. “to-R”

R> (S: — x) (R: x —) Core
Remove the item on the top of the return stack and put it on the data
stack. “R-from”

R@ (S: — x) (R: x — x) Core
Place a copy of the item on top of the return stack onto the data stack.
“R-fetch”

References

Finite (counting) LOOPs, (DO), Section 4.5
EXECUTE, Section 5.1
52 Forth Fundamentals

Forth Programmer’s Handbook
2.1.4 Programmer Conveniences

The words in this section are intended as programming aids. They
may be used interpretively at the keyboard or inside definitions.

Glossary

.S (—) Tools
Display the contents of the data stack using the current base (e.g., dec-
imal, octal, hex, binary). Stack contents remain unchanged. “dot-S”

? (a-addr —) Tools
Fetch the contents of the given address and display the result accord-
ing to the current base. “question”

Equivalent to the phrase: @ .

DUMP (addr +n —) Tools
Display the contents of a memory region of length +n starting at addr:

<addr> <+n> DUMP

Output is formatted with the address on the left and up to eight val-
ues on a line. On some systems this word’s output is always in hex; on
others, it may be in the current base. Two cells are removed from the
stack.

ENVIRONMENT? (c-addr u — false | i*x true) Core
This word is used to inquire about the values of system parameters
and the existence of options. See Section 5.2 for a full description.
“environment-query”

WORDS (—) Tools
List all the definition names in the first word list of the search order.

References

Environmental interrogation, Section 5.2
Search orders, Section 6.6.1
Forth Fundamentals 53

Forth Programmer’s Handbook
2.2 ARITHMETIC AND LOGICAL OPERATIONS

Forth offers a comprehensive set of commands for performing arithme-
tic and logical functions. The functions in a standard system are opti-
mized for integer arithmetic, because not all processors have hardware
floating-point capability and software floating point is too slow for most
real-time applications. All Forth systems provide words to perform fast,
precise, scaled-integer computations; many provide fixed-point fraction
computations, as well. On systems with hardware floating-point capabil-
ity, many implementations include an optional, complete set of floating-
point operations, including an assembler. See Section 5.8 in this manual
and the product documentation for these systems for details.

2.2.1 Arithmetic and Shift Operators

In order to achieve maximum performance, each version of Forth
implements most arithmetic primitives to use the internal behavior of
that particular processor’s hardware multiply and divide instructions.
Therefore, to find out at the bit level what these primitives do, you
should consult either the manufacturer’s hardware description or the
implementation’s detailed description of these functions.

In particular, signed integer division where only one operand (either
dividend or divisor) is negative and there is a remainder may produce
different, but equally valid, results on different implementations. The
two possibilities are floored and symmetric division1. In floored divi-
sion, the remainder carries the sign of the divisor and the quotient is
rounded to its arithmetic floor (towards negative infinity). In symmet-
ric division, the remainder carries the sign of the dividend and the
quotient is rounded towards zero, or truncated. For example, dividing
-10 by 7 can give a quotient of -2 and remainder of 4 (floored), or a
quotient of -1 and remainder of -3 (symmetric).

Most hardware multiply and divide instructions are symmetric, so
floored division operations are likely to be slower. However, some
applications (such as graphics) require floored division in order to get
a continuous function through zero. Consult your system’s documen-
tation to learn its behavior.

1. One reference about this topic is The Logic of Computer Arithmetic by Ivan Flores,
Prentice Hall, 1963.
54 Forth Fundamentals

Forth Programmer’s Handbook
The following general guidelines may help you use these arithmetic
operators:

• The order of arguments to order-dependent operators (e.g., - and
/) is such that, if the operator were moved to an infix position, it
would algebraically describe the result. Some examples:

• All arithmetic words starting with the letter U are unsigned; oth-
ers are normally signed. The exception to this rule is that, on
most systems, M*/ requires a positive divisor.

These operators perform arithmetic and logical functions on numbers
that are on the stack. In general, the operands are removed (popped)
from the stack and the results are left on the stack.

Glossary

Single-Precision Operations

* (n1 n2 — n3) Core
Multiply n1 by n2 leaving the product n3. “star”

*/ (n1 n2 n3 — n4) Core
Multiply n1 by n2, producing an intermediate double-cell result d.
Divide d by n3, giving the single-cell quotient n4. “star-slash”

*/MOD (n1 n2 n3 — n4 n5) Core
Multiply n1 by n2, producing intermediate double-cell result d. Divide d
by n3, giving single-cell remainder n4 and single-cell quotient n5. “star-
slash-mod”

+ (n1 n2 — n3) Core
Add n1 to n2, leaving the sum n3. “plus”

Table 5: Order of arguments, Forth postfix vs. infix

Forth Algebraic

a b - a - b

a b / a / b

a b c */ a * b / c
Forth Fundamentals 55

Forth Programmer’s Handbook
- (n1 n2 — n3) Core
Subtract n2 from n1, leaving the difference n3. “minus”

/ (n1 n2 — n3) Core
Divide n1 by n2, leaving the quotient n3. See the discussion at the
beginning of this section about floored and symmetric division. “slash”

/MOD (n1 n2 — n3 n4) Core
Divide n1 by n2, leaving the remainder n3 and the quotient n4. “slash-mod”

1+ (n1 — n2) Core
Add one to n1, leaving n2. “one-plus”

1- (n1 — n2) Core
Subtract one from n1, leaving n2. “one-minus”

2+ (n1 — n2) Common usage
Add two to n1, leaving n2. “two-plus”

2- (n1 — n2) Common usage
Subtract two from n1, leaving n2. “two-minus”

2* (x1 — x2) Core
Return x2, the result of shifting x1 one bit toward the most-significant
bit, filling the least-significant bit with zero (same as 1 LSHIFT). “two-
star”

2/ (x1 — x2) Core
Return x2, the result of shifting x1 one bit towards the least-significant
bit, leaving the most-significant bit unchanged. “two-slash”

LSHIFT (x1 u — x2) Core
Perform a logical left shift of u places on x1, giving x2. Fill the vacated
least-significant bits with zeroes. “L-shift”

MOD (n1 n2 — n3) Core
Divide n1 by n2, giving the remainder n3.

RSHIFT (x1 u — x2) Core
Perform a logical right shift of u places on x1, giving x2. Fill the vacated
most-significant bits with zeroes. “R-shift”
56 Forth Fundamentals

Forth Programmer’s Handbook
Double-precision Operations

In this group of words, we see another naming convention: the “D”
prefix identifies words that work with double-length integers. These
are always represented as two stack items with the high-order (most
significant) part in the higher stack position and the low-order (least
significant) part beneath.

D+ (d1 d2 — d3) Double
Add d1 to d2, leaving the sum d3. “D-plus”

D- (d1 d2 — d3) Double
Subtract d2 from d1, leaving the difference d3. “D-minus”

D2* (d1 — d2) Double
Return d2, the result of shifting d1 one bit toward the most-significant
bit and filling the least-significant bit with zero. “D-two-star”

D2/ (d1 — d2) Double
Return xd2, the result of shifting d1 one bit towards the least-signifi-
cant bit and leaving the most-significant bit unchanged. “D-two-slash”

Mixed-precision Operations

The “M” prefix in this group identifies mixed-precision operators,
involving at least one double-length integer and at least one single-
length integer. Take special note of the order in which they appear on
the stack!

D>S (d — n) Double
Convert double-precision number d to its single-precision equivalent
n. Results are undefined if d is outside the range of a signed single-cell
number. “D-to-S”

FM/MOD (d n1 — n2 n3) Core
Divide d by n1, using floored division, giving quotient n3 and remain-
der n2. All arguments are signed. This word and SM/REM will produce
different results on the same data when exactly one argument is nega-
tive and there is a remainder. “F-M-slash-mod”

M* (n1 n2 — d) Core
Multiply n1 by n2, leaving the double-precision result d. “M-star”
Forth Fundamentals 57

Forth Programmer’s Handbook
M*/ (d1 n1 +n2 — d2) Double
Multiply d1 by n1, producing a triple-cell intermediate result t. Divide t
by the positive number n2, giving the double-cell quotient d2. If double-
precision multiplication or division only is needed, this word may be
used with either n1 or n2 set equal to 1. “M-star-slash”

M+ (d1 n — d2) Double
Add n to d1, leaving the sum d2. “M-plus”

M- (d1 n — d2) Common usage
Subtract n from d1, leaving the difference d2. “M-minus”

M/ (d n1 — n2) Common usage
Divide d by n1, leaving the single-precision quotient n2. This word does
not perform an overflow check. “M-slash”

S>D (n — d) Core
Convert a single-precision number n to its double-precision equivalent
d with the same numerical value. “S-to-D”

SM/REM (d n1 — n2 n3) Core
Divide d by n1, using symmetric division, giving quotient n3 and
remainder n2. All arguments are signed. This word and FM/MOD will
produce different results on the same data when exactly one argument
is negative and there is a remainder. “S-M-slash-rem”

UM/MOD (ud u1 — u2 u3) Core
Divide ud by u1, leaving remainder u2 and quotient u3. This operation
is called UM/MOD because it assumes the arguments are unsigned and it
produces unsigned results. Compare with SM/REM and FM/MOD. “U-M-
slash-mod”

UM* (u1 u2 — ud) Core
Multiply u1 by u2, leaving the double-precision result ud. All values and
arithmetic are unsigned. “U-M-star”

2.2.2 Logical Operations

As in the case of arithmetic operations, Forth’s implementation of logical
and relational operations optimizes for speed and simplicity. The words
described in this section provide a rich, flexible set of logical operations.
58 Forth Fundamentals

Forth Programmer’s Handbook
Glossary

Single-Precision Logical Operations

ABS (n — +n) Core
Replace the top stack item with its absolute value.

AND (x1 x2 — x3) Core
Return x3, the bit-wise logical and of x1 with x2.

INVERT (x1 — x2) Core
Invert all bits of x1, giving its logical inverse x2.

MAX (n1 n2 — n3) Core
Return n3, the greater of n1 and n2.

MIN (n1 n2 — n3) Core
Return n3, the lesser of n1 and n2.

NEGATE (n — -n) Core
Change the sign of the top stack value; if the value was negative, it
becomes positive. The phrase NEGATE 1- is equivalent to INVERT (one’s
complement of the input value).

OR (x1 x2 — x3) Core
Return x3, the bit-wise inclusive or of x1 with x2.

WITHIN (x1 x2 x3 — flag) Core
Return true if x1 is greater than or equal to x2 and less than x3. The val-
ues may all be either unsigned integers or signed integers, but must all
be the same type.

XOR (x1 x2 — x3) Core
Return x3, the bit-wise exclusive or of x1 with x2. The phrase -1 XOR is
equivalent to INVERT (one’s complement of the input value).

Double-Precision Logical Operations

Once again, we see the “D” prefix in use to indicate double-precision
integers.
Forth Fundamentals 59

Forth Programmer’s Handbook
DABS (d — +d) Double
Return the absolute value of a double-precision stack value. “D-abs”

DMAX (d1 d2 — d3) Double
Return d3, the larger of d1 and d2.

DMIN (d1 d2 — d3) Double
Return d3, the lesser of d1 and d2.

DNEGATE (d — -d) Double
Change the sign of a double-precision stack value. Analogous to NEGATE.

2.3 MEMORY AND DATA STORAGE

In other languages, you can't do anything without naming data. In
Forth, you can do quite a lot. This is one of the big sources of effi-
ciency in the language. But complex applications usually do require
named data items and structures. Forth not only supports this, but
also offers a unique level of flexibility in defining new kinds of data
structures, which we discuss in Section 6.2.1.

This section describes the standard ways of making definitions whose
purpose is to provide storage for data.

2.3.1 Defining Words

The word : (colon) is a defining word; that is, it makes a dictionary entry.
In this and in later sections we encounter other defining words. Indeed,
Section 6.2 documents how to make your own custom defining words.

Each defining word creates instances of its class of words. We may
describe a defining word as having two “behaviors:” a defining behav-
ior (when it creates a member of this class of words) and an instance
behavior (shared by all words defined by this defining word). All mem-
bers of a class—that is, constructed by the same defining word—share
the same, characteristic defining and instance behaviors.

For example, the word VARIABLE defines a word associated with a sin-
gle cell of data storage:

VARIABLE ITEM
60 Forth Fundamentals

Forth Programmer’s Handbook
…defines a word which, when invoked, returns the address of its data
space.

The two behaviors of VARIABLE are as follows:

1. VARIABLE's defining behavior (that is, what happens when
VARIABLE is executed, as in creating the definition of ITEM above)
creates a dictionary entry and allocates one cell of data space.
This action is equivalent to the phrase:

1 CELLS ALLOT

2. When it is executed, the instance behavior of a word defined by
VARIABLE (such as ITEM) pushes the address of its data space onto
the stack.

The two behaviors of : are:

1. Its defining behavior is to create a dictionary entry and associate
it with the words that follow the name until a terminating ; is
encountered.

2. The instance behavior of words defined by : is to execute those
words.

All Forth defining words are immediately followed by the name of the
object being defined. All define permanent (static) global objects.
These are independent definitions, just like colon definitions. Forth’s
data stack fills the role used by local variables in other languages. ANS
Forth has a limited provision for local variables, but they are rarely
used and are not recommended for beginners because their use tends
to inhibit the development of good stack management skills.

In the following glossary, and in others featuring defining words, we
show one entry for the word’s defining behavior and another for the
instance behavior of words defined by it, i.e., what an instance will do
when executed.

2.3.2 Single Data Objects

There are two generic kinds of individual data objects, variables
(named storage locations) and constants (named values). A third kind
of data object has characteristics of both: it is a named value that can
be changed (whereas constants cannot be changed).
Forth Fundamentals 61

Forth Programmer’s Handbook
2.3.2.1 Variables

A VARIABLE is a named memory location whose value may equally eas-
ily be fetched onto the stack or stored into.

The definition of a VARIABLE takes the form:

VARIABLE <name>

This constructs a definition for name, with one cell allotted for a
value. A single-cell value may be stored into the parameter field of the
definition. For example:

VARIABLE DATA
6 DATA !

…will store 6 in the parameter field of DATA.

When a VARIABLE is referenced by name, the address of its parameter
field is pushed onto the stack. This address may be used with @ or ! to
fetch or store, respectively, the variable’s value.

Similarly, the word 2VARIABLE defines a variable whose parameter field
is two cells long. Such a variable may contain one double-precision
number, a pair of single-precision numbers (such as x,y coordinates),
or even two unrelated values. 2VARIABLE differs from VARIABLE only in
the number of bytes allotted. The operators 2@ and 2! are used with
this format.

On some eight-bit and 16-bit CPUs, such as those used in embedded
systems in which data space is limited, CVARIABLE defines a variable
that is one byte long. The operators C@ and C! are used with this for-
mat. Note that CVARIABLE allots only one byte, so it leaves the data
space pointer unaligned. If you are concerned about alignment, either
group CVARIABLEs to leave the space aligned or use ALIGN afterwards.

In summary, to place the value of a variable on the stack, invoke its
name and a fetch instruction. For example, you could type:

<variable name> @

or <2variable name> 2@

To store a value into a variable, invoke its name and a store instruc-
tion. For example:
62 Forth Fundamentals

Forth Programmer’s Handbook
<value> <variable name> !

or <value1> <value2> <variable name> 2!

In a read-only-memory environment, VARIABLE is re-defined to allot
space in read/write memory rather than in name’s parameter field; in
this case, the assigned read/write memory address is compiled into
the parameter field. The run-time behavior of a variable in ROM is to
return the contents of its ROM parameter field (like a constant does);
that value is the address of the variable's data space in RAM.

Glossary

VARIABLE <name> (—) Core
Create a dictionary entry for name associated with one cell of data
space.

name (— a-addr)

Return the address of the data space associated with name.

2VARIABLE <name> (—) Double
Create a dictionary entry for name associated with two cells of data
space. “two-variable”

name (— a-addr)

Return the address of the first cell of the data space associ-
ated with name.

CVARIABLE <name> (—) Common usage
Create a dictionary entry for name associated with one character of
data space. Typically found in smaller systems for embedded micro-
controllers and other environments where it is advantageous to allo-
cate variables only one character in size. “C-variable”

name (— c-addr)

Return the address associated with name.

References

@, !, 2@, and 2!, Section 2.3.4
ALIGN, Section 2.3.3

2.3.2.2 Constants and Values

The purpose of a CONSTANT is to provide a name for a value that is ref-
erenced often but never changed. There are both single- and double-
Forth Fundamentals 63

Forth Programmer’s Handbook
precision versions. Figure 7 shows an example of a dictionary entry
built by CONSTANT.

Figure 7. Dictionary entry built by CONSTANT

The syntax for defining constants is:

<value> CONSTANT <name>

For example, you may define:

1000 CONSTANT LIMIT
0 5000 2CONSTANT LIMITS
3141593. 2CONSTANT PI

When a CONSTANT is referenced by name, its value (not its address) is
pushed onto the stack. Similarly, when a 2CONSTANT is referenced, two
stack items are pushed onto the stack. In the case where a 2CONSTANT
is used for two values (as in LIMITS, above), the values are placed on
the stack in the order specified (e.g., 5000 on top, 0 below). In the case
of a double-precision number, the high-order part of the number is on
top of the stack.

The purpose of a VALUE is to provide a name for a single-precision
value that is referenced often and may need to change. On systems
with a mix of RAM and ROM, VALUEs are compiled into RAM. The pro-
cedure for defining values is to declare:

<initial value> VALUE <name>

For example, you may define:

1000 VALUE LIMIT

When a VALUE is referenced by name, its current value is pushed onto
the stack. The word TO is used to change a value. The syntax is:

<new value> TO <name>

LOCATE link count name code
field parameter field

previous definition

code to push the contents of the
parameter field onto the stack

contains the value
of the constant

head body

control bits
64 Forth Fundamentals

Forth Programmer’s Handbook
For example, you might type this:

1000 VALUE LIMIT LIMIT . 500 TO LIMIT LIMIT .

The first phrase creates a VALUE named LIMIT whose value when
defined is 1000. The second phrase changes the value to 500.

VALUE combines the convenience of a CONSTANT—it returns its value
without requiring an explicit @—with the writeability of a VARIABLE.

Glossary

CONSTANT <name> (x —) Core
Create a dictionary entry for name associated with the value x. Note:
the value of a CONSTANT cannot be changed.

name (— x)

Return the value associated with name.

2CONSTANT <name> (x1 x2 —) Double
Create a dictionary entry for name associated with the two values x1

and x2. Note: the value of a 2CONSTANT cannot be changed. “two-constant”

name (— x1 x2)

Return the values associated with name.

VALUE <name> (x —) Core Ext
Create a dictionary entry for name associated with one cell of data
space initialized to x.

name (— x)

Return the value associated with name. (To change the VALUE,
use TO.)

References

TO, used to change the value of a VALUE, Section 2.3.4

2.3.3 Arrays and Tables

CREATE is a generic defining word that provides a minimal defining
behavior: construct the dictionary entry and associate it with the next
available location in data space. It doesn’t allocate any memory and,
Forth Fundamentals 65

Forth Programmer’s Handbook
hence, should be followed by something that does. ALLOT will allocate
a specified number of bytes of memory; the words , and C, place spec-
ified values in memory (one cell and one byte, respectively) and allo-
cate the required amount of space for them.

CREATE is often used to mark the beginning of an array. The space for
the rest of the array is reserved by incrementing the data space
pointer with ALLOT, as in this example:

CREATE DATA 100 ALLOT

The example reserves a total of 100 bytes for an array named DATA.
When DATA is used in a colon definition, the address of the first byte of
DATA will be pushed on the stack by the instance behavior of CREATE.
The array is not initialized. If you wish to set all the elements of the
array to zero, you may use ERASE, as in the following example:

DATA 100 ERASE

When executing operations involving address calculations, use the
words CELL+, CELLS, CHAR+, and CHARS as appropriate to convert logical
values, rather than literal numbers, to bytes. For example, to incre-
ment an address by three cells on a 32-bit system, use 3 CELLS +, not 12
+; this makes the code portable to systems with other cell widths.

On the vast majority of platforms in use today, a character is exactly
one byte in size, so the terms “character” and “byte” are equivalent
and 1 CHARS is equal to 1. On these systems, CHARS is usually a no-op
and CHAR+ is equivalent to 1+. If you are confident the program you’re
writing will not be required to run on a platform where a character is
other than one byte in size, you can omit these words. However, you
should document the fact that you have made this assumption. If you
wish to maintain compatibility with systems on which a character may
occupy more than one byte (such as those using international charac-
ter sets), use CHARS to convert characters to the equivalent number of
bytes. The example above, for example, would be:

CREATE DATA 100 CHARS ALLOT

This book generally assumes that a character occupies one byte.

If you wish to allocate a number of cells, or to increment an address by
a certain number of cells, you may use CELLS:

CREATE CELL-DATA 100 CELLS ALLOT
66 Forth Fundamentals

Forth Programmer’s Handbook
CELL-DATA returns the address of the beginning of this region, which is
400 bytes long on a 32-bit implementation or 200 bytes long on a 16-
bit implementation. The next cell would be CELL-DATA CELL+, and sub-
sequent cells would be CELL-DATA <n> CELLS +.

The word , (“comma”) stores the top stack item into the next available
dictionary location, and increments the data space pointer by one cell.

The most common use of , is to put values into a table whose starting
address is defined by using CREATE; CREATE defines a word that
behaves identically to VARIABLE, in that, when the new word is exe-
cuted, its address is returned. CREATE differs from VARIABLE only in
that it does not allot any space.

Consider this example:

CREATE TENS 1 , 10 , 100 , 1000 , 10000 ,

This establishes a table whose starting address is given by TENS and
which contains powers of ten from zero through four. Indexing this
table by a power of ten will give the appropriate value. A possible use
might be:

: 10** (n1 n2 -- n) CELLS \ Convert n2 to a byte offset
 TENS + \ Add offset to address

 @ * ; \ Fetch value & multiply

Given a single-precision number n1 on the stack, with a power of ten n2

on top, 10** will multiply the number by the power of ten to yield the
product.

When a single byte of data is sufficient, C, performs for bytes the
same function that , performs for cells. On processors that do not tol-
erate addresses that are not cell-aligned (e.g., 68000), uses of C, must
be for strings of even cell length or some other action must be taken
to re-align the data space pointer.

Even on processors that allow references to any byte address in data
space, there may be an execution penalty for addresses that are not
cell-aligned (the even addresses in a 16-bit system and the addresses
divisible by four in a 32-bit system). Most dictionary entries, such as
those created by a colon definition, contain only cell-sized items, so
the data space pointer will stay aligned if is aligned to begin with.
However, use of words such as C, or string-compiling words may
Forth Fundamentals 67

Forth Programmer’s Handbook
result in subsequent unaligned addresses.

Two words facilitate alignment in such cases. ALIGN takes no stack
arguments; when executed, it examines the data space pointer and, if
it is not cell-aligned, reserves enough additional bytes to align it.
ALIGNED takes an arbitrary address and returns the first aligned
address that is greater than or equal to the given address.

Dictionary entries made by CREATE and by words that use CREATE are
aligned. Data laid down by , are not automatically aligned, but cell-
sized words that access data (such as @) may require alignment. There-
fore, if you are mixing uses of , and C, you must manually perform
the alignment, e.g.:

CREATE TEST 123 C, ALIGN 1234 ,

…so the phrase TEST CELL+ @ will properly return 1234.

The notation a-addr indicates an address that will be cell-aligned on
platforms where this is required; the notation c-addr indicates charac-
ter alignment (i.e., may be an odd or unaligned address).

Glossary

, (x —) Core
Reserve one cell of data space and store x in the cell. If the data-space
pointer is aligned initially, it will be aligned after , executes. “comma”

ALIGN (—) Core
If the data-space pointer is not aligned, reserve enough space to align it.

ALIGNED (addr — a-addr) Core
Return a-addr, the first aligned address greater than or equal to addr.

ALLOT (u —) Core
Allocate u bytes of data space beginning at the next available location.
Normally used immediately following CREATE.

BUFFER: <name> (n —) Common usage
Create a dictionary entry for name associated with n bytes of data
space. “buffer colon”

name (— addr)

Return the address of the first byte of the data space associ-
ated with name.
68 Forth Fundamentals

Forth Programmer’s Handbook
C, (char —) Core
Reserve one byte of data space and store char in the byte. “C-comma”

CELL+ (a-addr1 — a-addr2) Core
Add the size in bytes of a cell to a-addr1, giving a-addr2. Equivalent to
2 + on a 16-bit system and to 4 + on a 32-bit system. “cell-plus”

CELLS (n1 — n2) Core
Return n2, the size in bytes of n1 cells.

CHAR+ (c-addr1 — c-addr2) Core
Add the size in bytes of a character to c-addr1, giving c-addr2. “care-plus”

CHARS (n1 — n2) Core
Return n2, the size in bytes of n1 characters. On many systems, this
word is a no-op. “cares”

CREATE <name> (—) Core
Create a dictionary entry for name associated with the next available
location in data space. Normally followed by one or more words that
allocate data space, such as ALLOT or , (comma).

name (— a-addr)

Return the address associated with name.

2.3.4 Memory Stack Operations

Having defined words that return memory addresses, we now need to
consider how to access memory. This category of operations allows
you to reference memory by using addresses that are on the stack.

The words @ and ! (pronounced “fetch” and “store,” respectively) are
used to reference single cells. Each expects on the stack a memory
address, such as that returned by an instance of VARIABLE.

@ expects an address on top of the stack. This address is replaced with
the contents of the addressed cell. Similarly, 2@ and C@ expect an
address, which will be replaced by the two cells or one character,
respectively, at that address. In the case of C@, its character will be
placed in the low-order bits of the cell on top of the stack, with the
higher order bits set to zero. C@ does not “sign extend,” i.e., it does not
Forth Fundamentals 69

Forth Programmer’s Handbook
propagate the sign bit leftward into more-significant bit positions.

! expects an address on top of the stack and will replace its contents
by the contents of the cell beneath it. Similarly, 2! expects two cells
beneath the address. C! expects one character in the low-order bits of
the cell beneath the address; the high-order bits of this lower cell are
ignored. The character is stored in the addressed location; the address
and character cells are removed from the stack.

For example, the following phrase would fetch the first character in
PAD to the top of the stack:

PAD C@

It is the programmer’s responsibility to use the appropriate fetch and
store operators for the size of the container being referenced. For
example, storing a cell into a place defined by CVARIABLE will damage
the adjacent bytes with unpredictable results.

Glossary

! (x a-addr —) Core
Store x in the cell at a-addr, removing both from the stack. “store”

+! (n a-addr —) Core
Add n to the contents of the cell at a-addr and store the result in the
cell at a-addr, removing both from the stack. “plus-store”

2! (x1 x2 a-addr —) Core
Store the cell pair x1 x2 in the two cells beginning at a-addr, removing
three cells from the stack. The order of the two cells in memory is the
same as on the stack, usually meaning that the one in the top stack
position (x2) is in the lower memory address. “two-store”

2@ (a-addr — x1 x2) Core
Push the cell pair x1 x2 at a-addr onto the top of the stack. The com-
bined action of 2! and 2@ will always preserve the stack order of the
cells. “two-fetch”

@ (a-addr — x) Core
Replace a-addr with the contents of the cell at a-addr. “fetch”

BLANK (c-addr u —) Core
Set a region of memory, at address c-addr and of length u, to ASCII
blanks (hex 20). Two cells are removed from the stack.
70 Forth Fundamentals

Forth Programmer’s Handbook
C! (c c-addr —) Core
Store the low-order character of the second stack item at c-addr,
removing both from the stack. “C-store”

C+! (c c-addr —) Common usage
Add the low-order character of the second stack item to the character
at c-addr, removing both from the stack. “C-plus store”

C@ (c-addr — c) Core
Replace c-addr with the contents of the character at c-addr. The char-
acter fetched is stored in the low-order character of the top stack item,
with the remaining bits cleared to zero. “C-fetch”

ERASE (c-addr u —) Core Ext
Erase (set to zero) a region of memory, given its starting address
c-addr and length u.

FILL (c-addr u b —) Core
Fill a region of memory, at address c-addr and of length u, with the
least-significant byte of the top-of-stack item. Three cells are removed
from the stack.

MOVE (addr1 addr2 u —) Core
Copy u bytes from a source starting at addr1 to the destination start-
ing at addr2. After the transfer, the destination area at addr2 contains
exactly what the source area addr1 did before the transfer, even if the
address ranges overlap. See also CMOVE and CMOVE> for strings, Section
3.4.

TO <name> (x —) Core Ext
Store x in the data space associated with name. name must have been
defined by VALUE.

References

Defining word VALUE, Section 2.3.1

2.3.5 Data Object and Memory Access Examples

This section presents some examples showing how data objects may
be defined and accessed.
Forth Fundamentals 71

Forth Programmer’s Handbook
Example 1: A Variable

VARIABLE ITEM \ Defines a variable

100 ITEM ! \ Sets its value to 100

: SEE-ITEM (--) ITEM ? ; \ Displays its value

Example 2: An array of characters or bytes

1000 CONSTANT SIZE \ Defines a constant

CREATE BYTE-ARRAY SIZE ALLOT \ Allocates SIZE bytes

BYTE-ARRAY SIZE DUMP \ Displays its contents

Example 3: Two arrays of cell-wide items

CREATE DATA1 SIZE CELLS ALLOT \ DATA1 is SIZE cells long

SIZE CELLS BUFFER: DATA2 \ Same size as DATA1

In these examples, the use of a constant for the array size improves
readability. In Section 4.5 we also see this used to provide the upper
limit (size parameter) for loops dealing with arrays. By defining such
constant values you can avoid “magic numbers” (arbitrary literal val-
ues) in code. This makes your code more readable and more easily
maintainable. If you need to change the size, you need do so in only
one place and all other uses will automatically follow.

Example 4: Array of cells initialized to zeroes (nulls)

CREATE DATA SIZE CELLS ALLOT DATA SIZE CELLS ERASE

This defines DATA, which will return an address. Following the ALLOT,
DATA returns the starting address of the array for ERASE, which will
clear the region to zeroes.

Later sections describe accessing individual bytes or cells in an array.

References

CELLS, Section 2.3.3
Accessing elements of an array in a loop, Section 4.5
72 Forth Fundamentals

Forth Programmer’s Handbook
3. STRING HANDLING

This section covers a range of topics relating to character strings, both
for text and for representing numbers.

Forth contains many words used to reference single characters (bytes)
or character strings. Characters may be grouped and thought of as a
string; this string can be operated on as a single variable.

A special set of string operations is devoted to converting numbers
from characters to binary values on the stack, and vice-versa.

3.1 GENERAL STRING TOPICS

A standard working area is used to hold most character strings for
processing. This area is referred to as PAD.

In addition to the words described here, other words may be used to
reference character data in specific environments, e.g., database sup-
port. Such words are described in the product-specific manuals.

References

PAD, Section 3.1.2

3.1.1 Single Characters

It is frequently desirable to refer to the ASCII code for a character, for
example, to specify a delimiter for a parsing operation. Forth provides
two words for this purpose. They differ in that one is intended for use
inside a definition, where it compiles a character as a literal; the other
is intended to be used interpretively (i.e., in a command line or a
source file outside a definition).

For example, if you type:

CHAR A

…you'll get the ASCII code for the capital letter A (65) on the stack.
String Handling 73

Forth Programmer’s Handbook
However, inside a definition, you might write:

: ?DIGIT (c -- t) [CHAR] 0 [CHAR] 9 1+ WITHIN ;

…which returns true if the character supplied on the stack is a decimal
digit. Specifying a character this way makes your code much more
readable than plugging in the numeric ASCII code as a literal. And
because [CHAR] compiles the ASCII code as a literal, there's no differ-
ence from other literals in either size or performance.

This strategy is only practical with visible graphic characters, however.
If you're working with control codes, we recommend defining them as
CONSTANTs, such as:

HEX 1B CONSTANT ESC DECIMAL

The constant BL returns the code for a blank or space ($20).

Glossary

CHAR <c> (— char) Core
Parse the word (normally a single character) following CHAR in the
input stream. Put the ASCII value of the first character of this word on
the stack. See [CHAR] for the function that compiles a character as a lit-
eral inside a definition. “care”

[CHAR] <c> (— char) Core
Inside a colon definition, parse the word (normally a single character)
following [CHAR] in the input stream and compile the ASCII value of its
first character as a literal. At run time, this character will be pushed on
the stack. “bracket-care”

BL (— char) Core
Return the character for a blank or space ($20) on the stack.

3.1.2 Scratch Storage for Strings

PAD is a storage area of indefinite size (84 characters minimum) that is
used to hold strings for intermediate processing. Each terminal task in
a multitasked system contains a private PAD area. The word PAD places
the address of the first byte in this area on the top of the stack.

The contents of the region addressed by PAD are under the complete
74 String Handling

Forth Programmer’s Handbook
control of the user. No words defined in a Standard Forth system or
described in this manual place anything in this region, although
changing data space allocations (e.g., by adding new words to the
Forth dictionary) may change the address returned by PAD.

In cases where PAD is located relative to the top of the dictionary, the
location of PAD changes whenever something is added to the diction-
ary. On implementations where data space is intermingled with the
dictionary, the location of PAD will also be affected by adding data or
data areas with , (comma), C, (c-comma), or ALLOT and by discarding
definitions. Thus, information left in PAD before one of these opera-
tions may not be addressable after the operation (and may, in fact, be
overwritten by a new definition).

Glossary

PAD (— addr) Core Ext
Return the address of a temporary storage area, usually used for pro-
cessing strings. The area can hold at least 84 characters. It may be
located relative to the top of the dictionary, in which case the address
of PAD will vary as the dictionary is modified.

References

, and C,, Section 2.3.3
ALLOT, Section 2.3.3

3.1.3 Internal String Format

Many Forth words that store strings in memory use an internal format
called a counted string. This format stores the length of the string (up
to 255) in the first byte, as shown in Figure 8.

Figure 8. Format of a counted string

This format is more efficient than a zero-terminated string (a common
format in C programming) because the count is stored when the string
is acquired, and doesn't have to be repeatedly re-counted at run time.

n

n bytes
String Handling 75

Forth Programmer’s Handbook
Figure 9. Use of COUNT

A word frequently used with counted strings is COUNT. COUNT takes as its
parameter the address of a counted string. It returns the address of the
string’s first character and the length of the string, as shown in Figure 9.

COUNT’s definition is equivalent to:

: COUNT (addr1 -- addr2 u) DUP 1+ SWAP C@ ;

Glossary

COUNT (c-addr1 — c-addr2 u) Core
Return the length n and address c-addr2 of the text portion of a
counted string beginning at c-addr1.

3.2 STRINGS IN DEFINITIONS

It is often desirable to have text messages included in definitions, e.g.,
to issue error messages, user prompts, or report headings. Forth pro-
vides several words that compile strings in definitions.

Of these words, the most generally useful is S" (pronounced “s-
quote”). When used in a definition, S" compiles a string (delimited by a
quotation mark), and stores it in the dictionary. When the word con-
taining this string is executed, the address and length of the string are
pushed on the stack. When used interpretively (i.e., not in a definition),
it puts the string in a temporary location and leaves its address and
length on the stack. You may then move the string to a permanent
location, display it, or do anything else you might do with the string’s
address and length parameters.

addr
1
COUNT

returns addr
2

and 5
on the stack.

5 H E L L O

5 H E L L O

length of string

addr
1

addr
2

A string of text in memory
76 String Handling

Forth Programmer’s Handbook
Here is a word to search for a compiled string in a longer string whose
address and count are on the stack:

: ?DUCK (addr n -- flag) S" duck"
 SEARCH -ROT 2DROP ;

The phrase -ROT 2DROP discards the address and character count
where the match (may have) occurred, leaving only the flag that
reports the outcome.

In cases similar to the examples above, you might need to allow the
test string to contain an arbitrary mixture of upper- and lower-case
characters. If so, you should set or clear the appropriate bit in each
byte of the test string, to standardize on all upper or all lower case,
before making your comparison.

S" also may be executed interpretively to provide the address and
count of a string outside of a definition. For example, INCLUDED (Sec-
tion 5.5.3) loads a file, given the address and count of a string on the
stack containing the filename and optional path information. Typical
usage would be:

… S" <filename and path>" INCLUDED …

On many implementations, however, an interpreted S" uses a single
buffer to hold the string. Therefore, successive uses of S" may over-
write the buffer from a previous use. If you’re going to use the string
immediately, as in the example above, that’s no problem. If you want
to save it for later use, move it to a more permanent location.

C" is a similar word that is used only inside colon definitions. It com-
piles a counted string (compiled with its count in the first byte, a com-
mon practice in Forth). At execution time, C" returns the address of
the length byte. Therefore, it’s common to use COUNT to fetch the
address of the first byte of the string and the string’s length.

For example, consider a word ?NO that compares a data string—whose
address and length are on the stack—to a string compiled as part of
the definition of ?NO, and returns true if they match:

: ?NO (addr u -- flag) C" no" COUNT COMPARE ;

?NO takes the address and length of an input string. When ?NO is exe-
cuted, C" will push the address of a compiled counted string on the
String Handling 77

Forth Programmer’s Handbook
stack. COUNT converts that address to a string address and length, leav-
ing appropriate arguments for COMPARE to perform the comparison.

ABORT" is a generic error-handling word. It handles its input value as a
truth flag: if it is non-zero, the string which follows will be displayed
and a system abort will occur.

Finally, ." simply displays its string.

Each of these words performs functions both when the definition in
which it’s used is compiled and when the definition is executed. At
compile time for each, a reference to the execute-time function is com-
piled, followed by the string. At execute time the behavior differs
among them: For S", the address and length of the string will be
pushed on the stack. For C", the address of the counted string will be
pushed on the stack. For ABORT", the test will be performed. For both
." and ABORT", the string will be typed out. The stack notation for the
words below refers to the execution-time behavior.

Glossary

S" <string>" (— c-addr u) Core, File
If interpreting, return the address and length of the following string,
terminated by ", which is in a temporary buffer. If compiling (inside a
colon definition), compile the string; at run time, the address and
length of the string will be pushed on the stack. “S-quote”

C" <string>" (— c-addr) Core Ext
Similar to S" but only used inside colon definitions. C" compiles a
counted string whose length is stored in the first byte. As with S", the
string is terminated by ". At run time, the address of the counted
string will be pushed on the stack. “C-quote”

." <string>" (—) Core
Compile string, which will be typed when the word that contains it is
executed. “dot-quote”

For example:

: GREETING (--) ." Hi there" ;

References

Error handling, Section 5.3
Compiling strings, Section 6.3.4
78 String Handling

Forth Programmer’s Handbook
3.3 STRINGS IN DATA STRUCTURES

In addition to compiling strings in definitions, you might want to com-
pile a string in a data structure—for example, following CREATE. The
word ," compiles a string up to a terminating " in the next available
locations in data space. The string is compiled as a counted string (see
Section 3.1.3), with its length in the first byte. Here’s an example:

CREATE MARY ," Mary Brooks"
CREATE JOHN ," John Smith"
... more code ...

: GREETING (addr --) ." Your instructor will be "
 COUNT TYPE ;

Usage:

MARY GREETING Your instructor will be Mary Brooks.

Here the name MARY or JOHN provides the address of the counted string
displayed by GREETING.

The name ," is intended to be consistent with , and C, which compile
numbers in tables, as described in Section 2.3.3.

You must provide some way of getting the address of your string. In
the examples above, CREATE is used to define a data structure whose
content is the string. In this usage, it is not necessary to worry about
address alignment (on platforms that require it), because CREATE will
ensure that its data space pointer is aligned, as will other defining
words. However, if you are using a more manual approach, such as:

HERE ," Mary" HERE ," Brooks" 2CONSTANT NAME

...there is no guarantee these addresses will be aligned, and you may
wish to use ALIGN before each HERE. Also note that the actual strings in
this example are not contiguous because each is prefaced by its count
byte and, if ALIGN is used, possibly by one or more alignment bytes.

Glossary

," <string>" (—) Common usage
Compile the following string, terminated by ". “comma-quote”
String Handling 79

Forth Programmer’s Handbook
References

Address alignment, Section 2.3.3

3.4 STRING MANAGEMENT OPERATIONS

Forth contains several words used to reference strings, compare and
adjust them, and move strings to different locations. Other words
used to input or output character strings are discussed in Section 5.3.

Figure 10. Format of arguments for most two-string operators

Most words that operate on one string expect the length of that string
to be on top of the stack, with its address beneath it. Many words that
operate on two separate strings expect three items on top of the stack
in the format shown in Figure 10, in which one length count applies to
both strings. The above format is used instead of two separate charac-
ter counts.

The word MOVE (Section 2.3.4) is the general purpose string copy opera-
tor. CMOVE and CMOVE>, described in the glossary below, allow special
handling if the string areas overlap. MOVE will detect overlap and han-
dle the move so the original content of the source area is identical to
the destination area after the move.

Two string move commands are diagrammed in Figure 11. This figure
shows the difference in operation between CMOVE and CMOVE> and the
effects of text movement. The strings overlap in both cases.

stack
growing toward

low memory

c-addr
1

c-addr
2

n

next stack item: source address

next stack item: destination address

top stack item: length of string
80 String Handling

Forth Programmer’s Handbook
Figure 11. Actions of string copy operators

The behavior of CMOVE and CMOVE> can be exploited to “ripple” a partic-
ular bit pattern through a region of memory. Consider this sequence:

PAD 80 ERASE HEX DEADBEEF PAD ! DECIMAL
PAD DUP 4 + 76 CMOVE
PAD 80 DUMP

CMOVE will copy each character to a position 4 bytes higher in memory,
so the pattern $DEADBEEF will be replicated throughout the region. This
trick is occasionally useful, for example in diagnostic procedures.

Glossary

-TRAILING (c-addr u1 — c-addr u2) String
Remove any trailing blanks in a string at address c-addr whose original
length is u1, and return adjusted string parameters. The same address
is returned but with an adjusted length u2 equal to u1 less the number
of spaces at the end of the string. If u1 is zero, or if the entire string
consists of blanks, u2 is zero. “minus-trailing”

/STRING (c-addr1 u1 n — c-addr2 u2) String
Adjust the character string at c-addr1 u1 by n characters. Return the
parameters c-addr2 = c-addr1 + n, and length u2 = u1 - n. “slash-string”

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

10 9 8 7 6 5 4 3 2 1

10 9 8 7 6 5 4 3 2 1

overlap region

addr
2

addr
1

addr
1

addr
2

overlap region

addr1 addr2 n CMOVE

addr1 addr2 n CMOVE>

Numbered boxes
indicate the order

in which characters
are moved.
String Handling 81

Forth Programmer’s Handbook
HERE (— addr) Core
Push the address of the next available location in data space onto the
stack.

CMOVE (c-addr1 c-addr2 u —) String
Copy u characters from a source starting at address c-addr1 to the des-
tination starting at c-addr2. The copy proceeds character-by-character
from lower to higher addresses. Three cells are removed from the
stack. See also MOVE, Section 2.3.4. “C-move”

CMOVE> (c-addr1 c-addr2 u —) String
CMOVE> has the same arguments as CMOVE but the copy proceeds char-
acter-by-character from higher to lower addresses. CMOVE> is used for
transferring from a data field to an overlapping data field in higher
memory. Three cells are removed from the stack. See also MOVE, Sec-
tion 2.3.4. “C-move-up”

References

Character string I/O, Section 5.3
Parsing strings, Section 6.1.5

3.5 COMPARING CHARACTER STRINGS

Character-string comparisons operate on two separate character
strings. This allows the two to be compared by use of the ASCII collat-
ing sequence.

The words in the following glossary are provided. Both of them com-
pare strings, but they are intended for entirely different situations.
COMPARE is intended for finding a match in a list or table, or in a sort or
binary search operation when the collating order of non-matching
strings is relevant. SEARCH is intended for finding a short string in a
longer string, as in an editor’s search function.

As an example of their use, you could compare a string whose address is
returned by NAME with one temporarily stored at PAD, testing as follows:

PAD <length> DUP NAME SWAP COMPARE

For a more detailed example, consider the two strings in Figure 12.
82 String Handling

Forth Programmer’s Handbook
Figure 12. String comparison

Table 6 shows some comparisons and their results.

SEARCH is generally used to find a short string in a longer string. It is
used by the Forth editor. As an example of SEARCH, consider the strings
in Figure 13.

Figure 13. String search

<addr1> 56 <addr2> 7 SEARCH

…would return:

<addr3> 38 -1

Table 6: String comparison examples

Phrase Result Remarks

<addr1> 55 <addr2> 55 COMPARE 0 Strings are equal

<addr1> 56 <addr2> 56 COMPARE 1 String at addr1 is later
in collating sequence

<addr1> 55 <addr2> 56 COMPARE -1 String at addr1 is
shorter, hence earlier in
collating sequence

addr
1

addr
2

addr
1

+ 56

addr
2

+ 56

This is the forest primeval, the murmuring pines and them

This is the forest primeval, the murmuring pines and that

addr
1

addr
2

It was an ancient mariner, and he stoppeth one of three.

mariner

addr
3

length = 56

length = 7
String Handling 83

Forth Programmer’s Handbook
…because there is a match starting at addr3 with 38 characters left in
the long string.

Glossary

COMPARE (c-addr1 u1 c-addr2 u2 — n) String
Compare the string specified by c-addr1 u1 to the string specified by c-
addr2 u2 and return a result code n. The strings are compared charac-
ter-by-character, beginning at the given addresses and continuing up
to the length of the shorter string or until a difference is found. If the
two strings are identical and of equal lengths, n is zero. If the two
strings are identical up to the length of the shorter string, n is -1 if u1

is less than u2, and +1 otherwise. If the two strings are not identical up
to the length of the shorter string, n is -1 if the first non-matching
character in the string at c-addr1 has a lesser numeric value than the
corresponding character in the string at c-addr2, and +1 otherwise.

SEARCH (c-addr1 u1 c-addr2 u2 — c-addr3 u3 flag)String
Search for a match of the string c-addr2 u2 in the string c-addr1 u1 (the
latter is presumed to be longer). If a match is found, return true with
the address c-addr3 of the first matching character and the length u3

of the remainder of the string. If no match is found, c-addr3 = c-addr1,
u3 = u1, and flag is false.

References

PAD, Section 3.1.2

3.6 NUMBER CONVERSIONS

The strings that comprise numeric values require special processing.
This section discusses both input and output number conversions.

3.6.1 Input Number Conversion

Forth’s text interpreter will automatically convert strings it encounters
to numbers if they are not named words and if their characters contain
only numeric digits from zero to BASE-1 plus optional special punctua-
tion. Numbers converted in this fashion are pushed onto the data stack.
84 String Handling

Forth Programmer’s Handbook
Wherever possible, design your applications to take advantage of
Forth’s interactive nature. Thus, a hypothetical word SCANS whose
function is to perform some user-specified number of scans (an appli-
cation function) should expect only its parameter on the stack. Then,
to perform 100 scans, the user could type:

100 SCANS

Such usage is natural and convenient for the operator, and requires no
special programming to handle the input parameter.

However, there are occasions in which normal Forth syntax is inade-
quate. Some examples include:

• Parsing a text string that comes from a source other than a termi-
nal, such as magnetic tape.

• Entry of numbers that must be in double-precision but are not
punctuated (i.e., zip codes).

• Entry of numbers that must follow, rather than precede, the com-
mand.

• Applications in which there is no user access to words in the dic-
tionary.

Forth provides words to enable the user to handle numeric input in a
variety of circumstances. This section describes these methods.

>NUMBER is the basic input number conversion routine. If it encounters
any non-numeric digit during the conversion, it stops with a pointer to
that character, rather than aborting. For this reason, >NUMBER is often
used when a number is input by a program directly, without using the
text interpreter.

>NUMBER expects a double-precision integer and the address and count
of the input string. It leaves a double-precision integer (the result of
the conversion), and an address and count. The initial address given to
>NUMBER must point to the first (most-significant) digit of the string of
numerals. The initial double-precision number is normally set to zero.

After >NUMBER stops, the address in the second stack item is the
address of the first non-numeric character >NUMBER encountered or, if
the string was entirely converted, of the first character past the end of
the string. The double-precision integer will contain data from all dig-
its converted thus far.
String Handling 85

Forth Programmer’s Handbook
An example of the use of >NUMBER is:

: INPUT (-- n) PAD 5 BLANK PAD 5 ACCEPT >R
 0. PAD R> >NUMBER 2DROP DROP ;

This initializes a region of PAD to blanks, and awaits up to five digits
which will be stored there. 0. provides an initial double-precision
value, and PAD R> provides the address and actual count for >NUMBER.
The phrase 2DROP DROP discards the address and count returned by
>NUMBER and the high-order part of the converted number.

INPUT will not convert input strings with a leading minus sign, because
a minus is not a digit. If negative input is necessary, the above defini-
tion can be extended to check the first character before beginning the
conversion; if it is a minus sign, start >NUMBER with the next character
and negate the result.

>NUMBER returns the address of the string’s next byte, so it may be
called in a loop. The text interpreter’s number conversion routine calls
>NUMBER in just this way.

An application similar to this is parsing a packet of data received over
a communications line or from a tape record, in which numeric fields
are separated by an arbitrary delimiter such as //. To skip punctuation
or fields that are not of interest, the appropriate number of bytes may
simply be given as an argument to /STRING (Section 3.4) to space for-
ward in the string.

Sometimes numbers may be in fields of known length but not sepa-
rated by any delimiter. In such cases, the best solution may be to move
groups of digits to PAD, where they may be converted easily by
>NUMBER.

>NUMBER is a fairly low-level operator. Most implementations have
added higher-level input number conversion words which are usually
more convenient; they are not standardized, however. Common high-
level input number conversions words are given in the glossary below.

Glossary

>NUMBER (ud1 c-addr1 u1 — ud2 c-addr2 u2) Core
Convert the characters in the string at c-addr1, whose length is u1, into
digits, using the radix in BASE. The first digit is added to ud1. Subse-
quent digits are added to ud1 after multiplying ud1 by the number in
86 String Handling

Forth Programmer’s Handbook
BASE. Conversion continues until a non-convertible character (includ-
ing an algebraic sign) is encountered or the entire string is converted;
the result is ud2. c-addr2 is the location of the first unconverted char-
acter or, if the entire string was converted, of the first character
beyond the string. u2 is the number of unconverted characters in the
string. “to-number”

NUMBER (c-addr u — n | d) Common usage
Attempt to convert a string at c-addr of length u into digits, using the
radix (e.g., 10 for decimal, 16 for hex) in BASE. If valid punctuation (, .
+ - / :) is found, return d; if there is no punctuation, return n. If con-
version fails due to a character that is neither a digit nor punctuation,
an ABORT occurs.

NUMBER? (a n - 0 | n 1 | d 2) Common usage
Like NUMBER, but returns a flag above the result (if any) describing the
result:

References

Numeric input, Section 1.1.6
String moves, Section 3.4
ACCEPT, Section 5.4.1
PAD, Section 3.1.2

Table 7: Conversion results from NUMBER?

Flag value Result

0 Failure (no ABORT occurs)

1 No punctuation, single number

2 Punctuation, double number.
String Handling 87

Forth Programmer’s Handbook
3.6.2 Numeric Output

Numeric output words allow the display of numeric quantities as
ASCII characters. This output is generally directed to the terminal.

Numeric output words are divided into two categories: normal output
words and conversion output words. The latter allow the picturing of
ASCII text in a manner that somewhat resembles COBOL picturing.

All numeric output words produce ASCII text, which is the ASCII num-
ber expressed in the current BASE. BASE is a user variable, meaning that
in a multitasked implementation each task may have its own copy. It
contains the current conversion radix and is controlled with the
appropriate radix word (e.g., DECIMAL or HEX) or by setting its value
directly. For example, BASE may be set to binary by:

2 BASE !

References

Numbers, Section 1.1.6

3.6.2.1 Standard Numeric Output Words

Several standard words allow displaying single- or double-precision
signed numbers in various formats. All of them remove their argu-
ments from the stack. To preserve a number you are about to display,
DUP it first. Each display word produces an output string that consists
of the following characters:

1. If the number is negative, a leading minus sign (hyphen).

2. The absolute value of the number, with leading zeroes sup-
pressed. (The number zero results in a single zero in the output.)

3. In some cases, a trailing blank.

The standard numeric output words are:

Glossary

. (n —) Core
Remove the top of stack item and display it as a signed single-preci-
sion integer followed by one space. “dot”
88 String Handling

Forth Programmer’s Handbook
.R (n1 +n2 —) Core Ext
Display the signed single-precision integer n1 with enough leading
spaces to fill a field of width +n2. This word expects a positive integer
n2 on top of the stack to specify the length of the output field. The
width of the printed string that would be output by . is used to deter-
mine the number of leading blanks. No trailing blanks are printed. If
the magnitude of the number to be printed prevents printing within
the number of spaces specified, all digits are displayed with no leading
spaces in a field as wide as necessary. “dot-R”

? (a-addr —) Tools
Display the contents of the address on the stack. “question”

? is equivalent to the phrase: @ .

D. (d —) Double
Display the top cell pair on the stack as a signed double-precision inte-
ger. “D-dot”

D.R (d +n —) Double
Display the top cell pair on the stack as a signed double-precision inte-
ger in a field of width +n, as for .R. “D-dot-R”

U. (u —) Core
Display the top stack item as an unsigned single-precision integer fol-
lowed by one space. “U-dot”

U.R (u +n —) Core Ext
Similar to .R but unsigned. Display the unsigned single-precision inte-
ger u with enough leading spaces to fill a field of width +n. “U-dot-R”

3.6.2.2 Pictured Number Conversion

Forth converts numeric quantities to strings through a set of “pictured
format” control words. These let the programmer specify field sizes,
embedded punctuation, etc.

In Forth, the description of the desired output format starts with the
rightmost (least-significant) character and continues to the left.
Although this is the reverse of the method apparently used in other
languages, it is the actual conversion process in all languages.

Binary numbers on the stack will be converted to ASCII character
String Handling 89

Forth Programmer’s Handbook
strings formatted according to the picture specifications. The string is
built in a temporary area in memory large enough to accommodate at
least 66 characters of output (on 32-bit CPUs) or 34 characters (on 16-
bit CPUs).

After the picture conversion, the address of the beginning of the string
and its length are returned on the stack. At this point, the converted
string can be displayed, sent to a serial-type device with TYPE, moved
to a buffer, saved to disk, or used in some other way.

The standard numeric output words (see previous section) use the
same temporary region in the user’s partition as the pictured format
words. As a result, they may not be executed while a pictured output
conversion is in process (e.g., during debugging). Furthermore, you
must not make new definitions during the pictured conversion pro-
cess; on many systems the buffer used for this purpose is defined by
an offset from the current top of the dictionary and, therefore, modi-
fying the dictionary will cause the buffer to move.

References

Standard numeric output, Section 3.6.2.1
TYPE, Section 5.4.3

3.6.2.3 Using Pictured Numeric Output Words

These words provide control over the conversion of binary numbers
into digits. This section describes only pictured words with numeric
output (digits); following sections describe the output of non-numeric
punctuation such as periods and commas.

All the pictured numeric output words operate on an unsigned double-
precision integer on the data stack. Throughout the process, this num-
ber remains on the stack, where it is repeatedly divided by BASE as dig-
its are converted; it is finally discarded by #> at the end of the process.
If you intend to append a possible sign to the number, you need to
keep a signed value in the third stack position for that purpose.

Depending on the kind of number you begin with, the formula to get
the required stack arrangement may be found in Table 8.
90 String Handling

Forth Programmer’s Handbook
As an example of the use of these words, consider a definition of the
standard Forth word . (“dot”):

: . (n --) DUP ABS 0 <# #S ROT SIGN #> TYPE SPACE ;

DUP ABS leaves two numbers on the stack: the absolute value of the
number is on top of the original number, which is now useful only for
its sign. 0 adds a cell on top of the stack, so the 0 cell and the ABS cell
form the required double-precision integer to be used by the <# … #>
conversion routines. <# initializes the conversion process, then #S and
SIGN assemble the string. #> completes the conversion and leaves the
address and count of the ASCII string on the stack, suitable as input to
TYPE.

To print a signed double-precision integer with the low-order three
digits always appearing, regardless of the value, you could use the fol-
lowing definition:

: NNN (d --) SWAP OVER DABS <# # # #S
 ROT SIGN #> TYPE SPACE ;

The SWAP OVER DABS phrase establishes the signed value beneath the
absolute value of the number to be printed, for the word SIGN. The
sequence # # converts the low-order two digits, regardless of value.
The word #S converts the remaining digits and always results in at
least one character of output, even if the value is zero.

From the time the initialization word <# executes until the terminating
word #> executes, the number being converted remains on the stack. It
is possible to use the stack for intermediate results during pictured
processing but any item placed on the stack must be removed before
any subsequent picture editing or fill characters may be processed.

Table 8: Pre-processing for output number conversion

If you start with... Use this phrase

Unsigned single precision 0 (adds dummy high-order part)

Signed single precision DUP ABS 0

Unsigned double precision (no steps needed)

Signed double precision SWAP OVER DABS
String Handling 91

Forth Programmer’s Handbook
Glossary

<# (ud — ud) or (n ud — n ud) Core
Initialize pictured output of an unsigned double-precision integer. If
the output is to be signed, a signed value n must be preserved some-
where, typically immediately beneath this integer, where it may later
be passed to SIGN (below). “bracket-number”

(ud1 — ud2) Core
Divide ud1 by BASE, giving the quotient ud2 and the remainder n. Con-
vert n to an ASCII character and append it to the beginning of the
existing output string. Must be used after <# and before #>. The first
digit added is the lowest-order digit (units), the next digit is the BASE
digit, etc. A character is generated each time # is used, even if the
number to be converted is zero. “number-sign”

#S (ud1 — ud2) Core
Convert digits from ud1 repetitively until all significant digits in the
source item have been converted, at which point conversion is com-
plete, leaving ud2 (which is zero). Must be used after <# and before #>.
#S always results in at least one output character, even if the number
to be converted is zero. “number-sign-S”

SIGN (n —) Core
Insert a minus sign at the current position in the string being con-
verted if the signed value n is negative. This signed value n is a single-
precision number; if the high-order bit is set, a minus sign will be
introduced into the output as the leftmost non-blank character. The
magnitude of the signed value is irrelevant. In order for the sign to
appear at the left of the number (the usual place), SIGN must be called
after all digits have been converted.

#> (ud — c-addr u) Core
Complete the conversion process after all digits have been converted.
Discard the (presumably) exhausted double-precision number, and
push onto the stack the address of the output string, with the count of
bytes in this string above it. “number-bracket”

References

TYPE, Section 5.4.3
92 String Handling

Forth Programmer’s Handbook
3.6.2.4 Using Pictured Fill Characters

In addition to pictured numeric output, it is possible to introduce arbi-
trary fill characters (or punctuation) into the output string at any point
through the use of HOLD. HOLD requires as a parameter the numeric
value of the ASCII character to be inserted. Thus,

2F HOLD

(value given in hex) or, more readably:

CHAR / HOLD

(value obtained by CHAR from the ASCII character following it)

…inserts the character / into the output string at the point where HOLD
is executed. The phrase <value> HOLD may be executed as many times
as desired in a given output conversion sequence.

Because this is normally done inside a colon definition, you would use
[CHAR] (which compiles the character value as a literal) instead of CHAR.
.

If fill characters are likely to be used in several definitions, you may
wish to add specific commands for them. The following format may be
used for such a definition:

: '<name>' <char-value> HOLD ;

…where char-value is the ASCII value of the character in the current
radix and 'name' is the name of the word to be defined. There are no
restrictions on the format of the name, 'name' is merely an often-
used convention that includes the specified character appearing in the
name itself. For example, a word that inserts a comma might be called
','. HOLD is defined in such a way that executing 'name' during pic-
tured editing causes the indicated fill character to be inserted at the
current point in the string being constructed.

In the following example, '.' produces a decimal point at the current
position in the pictured numeric output. Then .$ is defined to print
double-precision integers as signed amounts with two decimal places:

: '.' [CHAR] . HOLD ;
: .$ (d --) SWAP OVER DABS <# # # '.'
 #S ROT SIGN #> TYPE SPACE ;

The word [CHAR] is only used in definitions. At run time, it places on
String Handling 93

Forth Programmer’s Handbook
the stack the ASCII value of the first character in the word following it.
CHAR is similar, but is only used interpretively (i.e., not in definitions).

Glossary

HOLD (char —) Core
While constructing a pictured numeric output string, insert char at the
current position. HOLD must occur only inside a <# … #> number con-
version sequence.

References

CHAR and [CHAR], Section 3.1.1

3.6.3 Processing Special Characters

The normal pictured output capabilities described in the preceding
two sections can handle most output requirements. But special cases,
such as introducing commas in a number or “floating” a character
(e.g., $) to the left of all significant digits, require special processing.

To perform certain of these operations, it is necessary to refer to the
unconverted portion of a number being printed. This unconverted por-
tion is equivalent to the original number divided by the current radix,
for each numeric digit already generated. For example, if the initial
number is 123 and the radix is 10, the intermediate number is 12 (fol-
lowing the conversion of the first digit) and 1 (following conversion of
the second digit).

The value of this number may be tested and logical decisions may be
based on its value. To illustrate, consider the following definitions.
The word D.ENG prints a double-precision integer in U.S. engineering
format (i.e., a comma after every three decimal places):

 VARIABLE #PLACES \ Counts number of digits

 : ',' (--) [CHAR] , HOLD ; \ Inserts a comma

 : (D.ENG) (d -- c-addr n) \ Formats the string

 SWAP OVER DABS \ Set up stack

 0 #PLACES ! \ Initialize place counter

 <# BEGIN \ Start the conversion
94 String Handling

Forth Programmer’s Handbook
 # 1 #PLACES +! \ Increment counter

 2DUP D0= NOT WHILE \ More significant digits?

 #PLACES 3 MOD 0= IF \ Every 3 digits...
 ',' THEN REPEAT \ ... insert a comma
 ROT SIGN #> ; \ Append sign, finish

 : D.ENG (d --) (D.ENG) TYPE SPACE ;

Using techniques similar to those above, you can do any kind of
numeric output editing in Forth.
String Handling 95

Forth Programmer’s Handbook
96 String Handling

Forth Programmer’s Handbook
4. STRUCTURED PROGRAMMING

The concept of structured programming was introduced by Edsger W.
Dijkstra in a seminal series of papers beginning in 1968. Structured
programming provides a uniform way to break a complicated struc-
ture into simple parts. The basic principles are:

1. Things must be defined before they are referenced.

2. A routine should have only one entry point and one exit.

3. Flow-of-control is restricted to sequential, conditional, and itera-
tive (no arbitrary branching).

Forth’s architecture strongly encourages adherence to these principles
in both high-level code and in assembler. This section focuses on the
flow-of-control issue.

4.1 CONTROLLING PROGRAM FLOW

Forth provides a set of words used to establish program loops and to
alter the normal, sequential execution of words. Similar words for use
in CODE definitions are available in some Forth assemblers.

The words that manage flow of control must be used within a colon
definition. They will not operate properly when typed from a key-
board, because the text interpreter—processing the input stream
sequentially—has no way to know where a forward branch should ter-
minate. Loops must be opened and closed within the same definition.
Loops may be nested to any depth, although deeply nested loops
(above two or three levels) are difficult to test and not recommended.

Some words in this section are called compiler directives. When the
compiler sees other words, it compiles references to those words’ run-
time behaviors. But when the compiler sees a compiler directive, it
executes it immediately instead of compiling it. Forth is extensible, so
you may define your own compiler directives; specific techniques
appear in the section referenced below.

References

Compiler directives, Section 6.4
Structured Programming 97

Forth Programmer’s Handbook
4.2 COMPARISON AND TESTING OPERATIONS

The words in this section perform logical operations that may be the
basis for decisions involving flow of control.

These words test the contents of one or more items on the stack and
leave a resulting truth value, or flag. In general, the test is destructive:
it removes the item(s) tested and leaves only a numerical result flag.
All numbers in Forth may be interpreted as true or false values: zero
equals false, and any non-zero value equals true. Each word below per-
forms a specific test and returns a “well-formed flag” (-1 for true).

Comparison and testing operations often precede an IF, WHILE, or
UNTIL construct. Because they return well-formed flags, they may also
be combined using the Boolean operators AND, OR, or XOR.

Glossary

0< (n — flag) Core
Return flag, which is true if and only if n is less than zero. “zero-less-
than”

0<> (n — flag) Core Ext
Return flag, which is true if and only if n is not equal to zero. “zero-not-
equal”

0= (n — flag) Core
Return flag, which is true if and only if n is equal to zero. “zero-equal”

0> (n — flag) Core Ext
Return flag, which is true if and only if n is greater than zero. “zero-
greater-than”

< (n1 n2 — flag) Core
Return flag, which is true if and only if n1 is less than n2. “less-than”

<> (n1 n2 — flag) Core Ext
Return flag, which is true if and only if n1 is not equal to n2. “not-equal”

= (n1 n2 — flag) Core
Return flag, which is true if and only if n1 is equal to n2. “equal”

> (n1 n2 — flag) Core
Return flag, which is true if and only if n1 is greater than n2. “greater-than”
98 Structured Programming

Forth Programmer’s Handbook
D0< (d — flag) Double
Return flag, which is true if and only if the double-precision value d is
less than zero. “D-zero-less”

D0= (d — flag) Double
Return flag, which is true if and only if the double-precision value d is
equal to zero. “D-zero-equal”

D< (d1 d2 — flag) Double
Return flag, which is true if and only if d1 is less than d2. “D-less-than”

D= (d1 d2 — flag) Double
Return flag, which is true if and only if d1 is equal to d2. “D-equals”

DU< (ud1 ud2 — flag) Double Ext
Return flag, which is true if and only if ud1 is less than ud2. “D-U-less”

FALSE (— flag) Core Ext
Return a flag that is false (binary zero).

NOT (x — flag) Common usage
Identical to 0=, used for program clarity to reverse the results of a pre-
vious test.

TRUE (— flag) Core Ext
Return a flag that is true (single-cell value with all bits set).

U< (u1 u2 — flag) Core
Return flag, which is true if and only if u1 is less than u2. “U-less-than”

U> (u1 u2 — flag) Core Ext
Return flag, which is true if and only if u1 is greater than u2. “U-greater-
than”

References

Conditionals, Section 4.3
MAX and MIN, Section 2.2.2
Post-testing loops, Section 4.5
Pre-testing loops, Section 4.3
String comparisons, Section 3.5
Structured Programming 99

Forth Programmer’s Handbook
4.3 CONDITIONALS

The words described in this section allow conditional execution of
words within a single definition. They may only appear within a colon
definition and may not be used in interpretive text or in text executed
by direct entry from a terminal. Other, similar conditional words can
be used interpretively (see Section 6.1.5).

The general usage of these words is:

<test value> IF <true clause> ELSE <false clause> THEN
or
<test value> IF <true clause> THEN

When IF is executed, the item on top of the stack is removed and
examined. If test value is true (non-zero), execution continues with the
words after IF (the true clause). If test value is false (zero), execution
resumes with the words after ELSE (the false clause) or, if ELSE is not
present, with the words after THEN. Execution of the true clause termi-
nates with the word ELSE, if present, and resumes with the word after
THEN. The logical flow is diagrammed in Figure 14.

Figure 14. Logical flow of a conditional structure

Both the true clause and the false clause may be any group of previ-
ously defined Forth words. Either clause may contain DO … LOOPs,
BEGIN … UNTIL loops, and/or other IF … ELSE … THEN structures—as
long as the entire conditional is contained within the same parent
clause. Similarly, one IF … THEN structure may be nested inside
another structure of any kind, so long as the THEN that terminates it
appears within the same clause as its IF.

The ELSE clause (ELSE and the words that follow it) is optional, if the

If flag is non-zero, execute ‘true’ code
then branch to location after THEN.

If flag is zero, branch to location after ELSE
and continue through THEN.

skip ‘true’
code

<flag> IF <true code> ELSE <false code> THEN <code continues>

skip ‘false’ code
100 Structured Programming

Forth Programmer’s Handbook
true clause is the only one of interest. However, every IF must have a
THEN to terminate the structure. If only the false clause is of interest, it
is good style to reverse your test, so that you don’t have an empty or
trivial true clause. For example, if you only want to process non-zero
values, you might write:

: TEST (n --) DUP 0= IF DROP ELSE PROCESS THEN ;

However, it would be both clearer and more efficient to use:

: TEST (n --) ?DUP IF PROCESS THEN ;

The comparison words in Section 4.2 are often used to produce a flag
for IF, but you should also remember that IF will regard any non-zero
value as true. In other words, it has a built-in 0<>.

The glossary below describes the functional behavior of the words
used in conditional structures. Their behavior as compiler directives is
considered further in Section 6.4.1.

Glossary

ELSE (—) Core
Mark the end of the true part of a conditional structure, and com-
mence the false part. May be omitted if there are no words to be exe-
cuted in the false case.

IF (x —) Core
If x is zero, branch to the code immediately following an ELSE if one is
present; if ELSE is omitted, branch to the point following THEN. If x is
non-zero, continue execution with the code immediately following the
IF and branch over any code following an ELSE to the point following
THEN.

THEN (—) Core
Mark the point at which the true and false portions of an IF structure
merge (the end of the structure).

References

Comparison operations, Section 4.2
Control-flow stack, Section 6.4.2
Text interpreter directives, Section 6.1.5
Structured Programming 101

Forth Programmer’s Handbook
4.4 INDEFINITE LOOPS

The loop structures described in this section are generally referred to
as “indefinite loops.” It is not possible to know in advance how many
times, or even the maximum number of times, the looping behavior
needs to be repeated. Common situations include running a process
until a switch is thrown or a key is pressed, waiting for a device to be
turned on before accepting data from it, and converting digits to
binary until a non-digit is detected.

The indefinite loop structures described in this section begin with the
word BEGIN. BEGIN marks the location to which a subsequent branch-
ing word (e.g., UNTIL, REPEAT, AGAIN) will return to repeat the loop.

All the indefinite loop words are summarized in a single glossary at
the end of this section.

4.4.1 Infinite loops

The simplest looping method available in Forth is the BEGIN … AGAIN
loop. This loop endlessly repeats any code between BEGIN and AGAIN.
BEGIN … AGAIN loops are used for control activities which are not
expected to stop. Commonly, these are used to define the power-up
behavior of an embedded system, or for a loop that will only terminate
if an error condition causes a THROW. Examples of such applications
include process-control loops and computer-sequenced machinery.
BEGIN … AGAIN is also used in QUIT, the highest-level word of an inter-
active Forth system. Loops with no exit can only be used at the highest
level in a program.

An example of the outermost loop in a program to control an indus-
trial process might be:

: REACTION (--) CONTROLS CLEAR
 BEGIN DATA ERROR CORRECT AGAIN ;

This process-control loop clears the controls, then enters an infinite
loop which continuously collects data, calculates an error quantity,
and applies a correction function. Usually, such a program is run asyn-
chronously by a background task, and the operator can stop it with an
application command built from task-control words.
102 Structured Programming

Forth Programmer’s Handbook
4.4.2 Post-testing loops

BEGIN and UNTIL allow the user to set up a loop to be executed repeti-
tively—similar to BEGIN … AGAIN loops, but a test is performed before
the loop repeats. This structure is appropriate when you want to con-
tinue looping until an event occurs.

The form of a BEGIN … UNTIL construct is:

BEGIN <words to execute repeatedly> <test value> UNTIL

When execution reaches the word UNTIL, the test value on top of the
stack is removed and examined. If this value is false (zero), execution
returns to the word that follows BEGIN; if the value is true (non-zero),
execution continues with the word that follows UNTIL.

UNTIL is similar to IF in that:

• its argument is removed from the stack, and

• any non-zero value will be considered true.

As is the case with IF, you may wish to use a comparison operator
from the list in Section 4.2 before UNTIL.

The logical flow of a BEGIN … UNTIL loop is diagrammed in Figure 15.

Figure 15. Logical flow of a post-test indefinite loop

Like other structures in Forth, BEGIN … UNTIL may only be used within
a definition. It may not be executed interpretively from a terminal.

References

Comparison operations, Section 4.2

BEGIN <looping code> <flag> UNTIL <code continues>

If flag is non-zero, branch to location
after UNTIL (leaving the loop).

If flag is zero, branch to location
after BEGIN to repeat the loop.

BEGIN <looping code> <flag> UNTIL <code continues>
Structured Programming 103

Forth Programmer’s Handbook
4.4.3 Pre-testing loops

Pre-testing indefinite loops are similar to BEGIN … UNTIL loops, except
the test to leave the loop is performed before the end of the loop code.
This structure is appropriate when you want to continue looping while
some condition remains true. It also makes it possible to execute the
conditional words zero times (if the condition fails on the first try).

The syntax of the Forth pre-testing loop is:

BEGIN <executed every iteration> <test> WHILE
 <not executed on the last iteration> REPEAT

WHILE removes the top number from the stack and tests it, then leaves
the loop if the value is false (zero), skipping the words between WHILE
and REPEAT. If the value on the stack is true (non-zero), WHILE contin-
ues to the next word in the loop. When program execution reaches
REPEAT, it branches unconditionally back to the words immediately
after BEGIN and repeats the loop. There may be no code before WHILE
except the test; however you must take care that a new test value is
left on the stack by code within the loop, because it is removed each
time WHILE executes.

The logical flow of a BEGIN … WHILE … REPEAT structure is diagrammed
in Figure 16.

Figure 16. Logical flow of a pre-test indefinite loop

For an example, consider a word that counts fruit in a mechanical
sorter:

: GOOD (-- n) 0 BEGIN
 FETCH FRUIT ?GOOD WHILE
 KEEP 1+ REPEAT ;

If flag is zero, branch to location
after REPEAT (leaving the loop).

BEGIN <code> <flag> WHILE <conditional code> REPEAT

flag <> 0

flag = 0

If flag is non-zero, continue to REPEAT
then repeat the loop.
104 Structured Programming

Forth Programmer’s Handbook
As long as the machine sees good fruit in the test cell (as indicated by
a flag returned by ?GOOD), the loop continues and the machine consid-
ers the next fruit. When the test fails, the fruit remains in the test cell,
to be evaluated by some process other than the word ?GOOD.

In situations when both structures are equally convenient, the BEGIN …
UNTIL loop is faster and requires slightly fewer bytes, and thus is pref-
erable to the BEGIN … WHILE … REPEAT loop.

Glossary

AGAIN (—) Core Ext
Unconditionally branch back to the point immediately following the
nearest previous BEGIN.

BEGIN (—) Core
Mark the destination of a backward branch for use by the other indefi-
nite structure words UNTIL or REPEAT.

REPEAT (—) Core
In a BEGIN … WHILE … REPEAT structure, unconditionally branch back to
the location following the nearest previous BEGIN.

UNTIL (x —) Core
If x is zero, branch back to the location immediately following the
nearest previous BEGIN; otherwise, continue execution beyond the
UNTIL.

WHILE (x —) Core
If x is zero, branch to the location immediately following the nearest
REPEAT; otherwise, continue execution beyond the WHILE.

References

Comparison operations, Section 4.2
Control-flow stack, Section 6.4.2
Error handling with THROW, Section 5.3

4.5 COUNTING (FINITE) LOOPS

The words described in this section are appropriate for constructing
loops when it is clear how many times you wish the loop to execute
(or, at least, the maximum number of times). The words associated
Structured Programming 105

Forth Programmer’s Handbook
with counting loops are given in the glossary at the end of this section.

The possible forms of a finite loop in Forth are as follows:

<limit> <initial> DO <words to repeat> LOOP
or <limit> <initial> DO <words to repeat> <value> +LOOP

A DO … LOOP increments its index value by one and always runs in the
positive direction. A DO … +LOOP increments its index by the given inte-
ger value, which may be positive or negative.

To illustrate the use of loops, the word SUM is defined to add the val-
ues of the integers 1 to 100 and to leave the result on the stack:

: SUM 0 101 1 DO I + LOOP ;

The limit value is specified as 101, not 100, because the loop code I +
executes first and then the loop index is incremented. The exit test is
performed by LOOP, so the loop code will not be executed when the
loop index equals 101.

The word I returns the current loop index on the stack. Loops may be
nested to any depth, limited only by the capacity of the return stack.
At each point in a nested loop, the word I returns the index of the
innermost active loop, and the word J returns the index of the next
outer loop.

+LOOP allows the programmer to specify the integer number by which
the loop index will be incremented on each repetition of the loop. A
negative value for this increment permits descending index values to
be used. When an index value is descending, however, the loop is ter-
minated when the limit is passed (not merely reached). When the index
value is ascending (i.e., the increment value specified for +LOOP is posi-
tive), the loop terminates when the index value is reached, as for LOOP.

To illustrate the use of +LOOP with descending index values, the follow-
ing definition is equivalent to the first definition of SUM:

: SUM 0 1 100 DO I + -1 +LOOP ;

Here the initial value of the index is 100 and the final value is 1.

Loop parameters usually are kept on the return stack (see glossary
entry for DO, below), and are not affected by structures other than DO
… LOOP.
106 Structured Programming

Forth Programmer’s Handbook
Loop parameters are checked at the end of the loop, so any loop will
always execute at least once, regardless of the initial values of the
parameters. Because a DO loop with equal input parameters will execute
not once but a very large number of times—equal to the largest possi-
ble single-cell unsigned number—the word ?DO should be used in pref-
erence to DO if the loop parameters are being calculated or if the upper
limit is supplied as a parameter and might be equal (e.g., both zero).

DO ... LOOPs are frequently used to manage arrays and strings. Consider
this example (using a hypothetical word A/D to read a value from an
analog device and leave it on the stack):

1000 CONSTANT SIZE
CREATE DATA SIZE CELLS ALLOT DATA SIZE CELLS ERASE
: FILL (--) SIZE 0 DO
 A/D DATA I CELLS + ! \ Read value, put in Ith cell
 LOOP ;
: SHOW (--) SIZE 0 DO
 I 10 MOD 0= IF CR THEN \ CR every 10th line

 DATA I CELLS + @ . \ Display Ith value

 LOOP CR ;

In this example, the constant SIZE is used both to define the array of
cell-wide items and to manage the loops that fill and display the data.
Should you need to change the size, you have only to change that con-
stant and recompile.

The array is defined and initialized to zeroes. When FILL is executed,
it will read SIZE values and store them in consecutive cells in the
array. SHOW will display the data, 10 values per line.

Loops and conditionals in Forth may be nested, providing you nest an
entire structure within an outer structure. That is, you must not
attempt to branch into or out of a loop. Two forms of indefinite loops
(BEGIN … UNTIL and BEGIN … WHILE … REPEAT) incorporate mechanisms
for deciding when to exit the loop. If you wish to exit from a finite
loop, the appropriate mechanism is to use LEAVE inside an IF … THEN
structure. For example, suppose you’re searching a table of SIZE items
for a match on a string:

: FIND-IT (addr len -- 0 | index)
 0 -ROT SIZE 1+ 1 DO 2DUP FIND-ITEM IF
 ROT DROP I -ROT LEAVE THEN
 LOOP 2DROP ;
Structured Programming 107

Forth Programmer’s Handbook
Here we place a false flag on the stack below the address and length of
the key we’re searching for. If we find a match, we’ll discard that and
replace it with the index of the matching item. At the end of the loop,
we discard the string parameters of the key, leaving only the index of
the found item or false. Note that in this case the index starts with 1
rather than 0, so if we find a match on the first item it’s still non-zero.

Glossary

DO (n1 n2 —) Core
Establish the loop parameters. This word expects the initial loop index
n2 on top of the stack, with the limit value n1 beneath it. These values
are removed from the stack and stored elsewhere, usually on the
return stack, when DO is executed. If conditions could occur in which
the limit will equal the initial loop index, consider ?DO instead.

?DO (n1 n2 —) Core Ext
Like DO, but check whether the limit value and initial loop index are
equal. If they are, continue execution immediately following the next
LOOP or +LOOP; otherwise, set up the loop values and continue execu-
tion immediately following ?DO. This word should be used in prefer-
ence to DO whenever the parameters may be equal. “question-do”

LOOP (—) Core
Increment the index value by one and compare it with the limit value.
If the index value is equal to the limit value, the loop is terminated, the
parameters are discarded, and execution resumes with the next word.
Otherwise, control returns to the word that follows the DO or ?DO that
opened the loop.

+LOOP (n —) Core
Like LOOP, but increment the index by the specified signed value n.
After incrementing, if the index crossed the boundary between the
loop limit minus one and the loop limit, the loop is terminated as with
LOOP. “plus-loop”

I (— n) Core
Push a copy of the current value of the index onto the data stack. This
word may only be used for this purpose within the definition that
opened the loop, not in definitions the loop invokes. That is because
nested colon definitions may cause a return address to be put on the
stack—on top of the loop index. If the code in the body of the loop
places any values explicitly on the return stack, they must be removed
108 Structured Programming

Forth Programmer’s Handbook
before I is executed; otherwise, an erroneous index value may result.

J (— n) Core
Push a copy of the next-outer loop index onto the data stack. When
two DO … LOOPs are nested, this obtains the value of the outer index
from inside the inner loop.

LEAVE (—) Core
Discard loop parameters and continue execution immediately follow-
ing the next LOOP or +LOOP containing this LEAVE.

UNLOOP (—) Core
Discard the loop parameters for the current nesting level. This word is
not needed when a DO … LOOP completes normally, but it is required
before leaving a definition by calling EXIT. One UNLOOP call for each
level of loop nesting is required before leaving a definition.

References

EXIT and un-nesting definitions, Section 4.8
Control-flow stack, Section 6.4.2

4.6 FINITE VS. INDEFINITE LOOPS

We have seen three styles of indefinite loops and one class of finite
loops (with several variations). Ignoring the infinite loop, which is a
specialized structure, there are general guidelines for deciding which
form to use:

• Use DO … LOOP if:

You know how many times you want to do it;
You know the maximum number of times you want to do it;
You need access to the loop index.

• Use an indefinite loop if:

You want to do it until some event occurs;
You want to do it while a condition exists;
You have no idea how long either of these intervals may be;
You don’t need a loop counter;

• Use BEGIN … WHILE … REPEAT if:

You have a requirement for indefinite loops and need to be
Structured Programming 109

Forth Programmer’s Handbook
able to perform the “repeating” code zero times if the situa-
tion warrants.

• Use ?DO … LOOP if:

You need to do something a specified number of times, and
that number might be zero.

4.7 CASE STATEMENT

A high-level CASE statement structure is available for situations in
which an input condition needs to be checked against more than one
or two possible values. The usual syntax is:

CASE
 <x1> OF <x1 action> ENDOF

 <x2> OF <x2 action> ENDOF

 …
 <default action> ENDCASE

The structure begins with the word CASE. When it executes, a case selec-
tor x must be on the stack. A series of OF … ENDOF clauses follows, each
OF preceded by a test value on the stack (x1, x2, etc.). The case selector is
compared against the test values in order. If it matches one, the corre-
sponding code between that OF and ENDOF is executed, and execution
branches beyond the ENDCASE. If the case selector does not match any of
the test values, it remains on the stack after the last ENDOF, and some
default action may be taken. Any action should preserve the stack
depth (use DUP if necessary), because ENDCASE performs a DROP (presum-
ably on the case selector) and then continues execution beyond ENDCASE.

For example:

: TEST (n —) CASE ." Value is "
1 OF ." One" ENDOF
2 OF ." Two" ENDOF
3 OF ." Three" ENDOF
DUP .

ENDCASE ;

This structure is flexible, and is more readable than nested IF state-
ments if there are more than two or so comparisons. However, it may
110 Structured Programming

Forth Programmer’s Handbook
use more memory than nested IFs. Note also that the comparison val-
ues (1, 2, and 3 in the above example) must be constants or literal val-
ues, and not expressions.

CASE statements may be nested; there may be any number of OF …
ENDOF pairs; and there may be any amount of logic inside an OF … ENDOF
clause, including computation of the next test value. However, if the
content of an OF … ENDOF clause is complex, it is highly recommended
that you factor it into a separate definition to facilitate testing and to
improve readability.

Glossary

CASE (—) Core Ext
Mark the start of a CASE … OF … ENDOF … ENDCASE structure.

ENDCASE (x —) Core Ext
Discard the top stack value x (presumably the case selector) and con-
tinue execution.

ENDOF (—) Core Ext
Unconditionally branch to the instruction immediately following the
next ENDCASE.

OF (x1 x2 — | x1) Core Ext
If the test value x2 is not equal to case selector x1, discard x2 and
branch forward to the location immediately following the next ENDOF
(presumably another OF or default code, if any, before an ENDCASE);
otherwise, discard both values and continue execution beyond the OF.

References

Logic operations, Section 2.2.2
Control-flow stack, Section 6.4.2

4.8 NESTING STRUCTURES

In Forth, any structure may be nested inside any other structure, pro-
viding the entire structure is nested. That is, you may not “straddle”
structures or, for example, attempt to use a conditional to branch into
or out of a finite or indefinite loop.

Examples of legal and illegal nesting strategies are shown in Figure 17.
Structured Programming 111

Forth Programmer’s Handbook
In general, strive to keep your definitions short and simple, and avoid
nesting structures more than a couple of layers, as this makes testing
and maintenance more difficult.

Figure 17. Examples of legal and illegal nested structures.

For this reason, the DO … LOOP words don’t include a mechanism for
accessing loop indices beyond one level of nesting (I and J). Programs
with many nested structures become very difficult to test thoroughly.

4.9 NESTING AND UN-NESTING STRUCTURES AND DEFINITIONS

When a high-level definition calls another, it is said to nest the calls,
because the return will normally be to the next location in the calling
definition. The called definition un-nests when it is finished executing,
to effect this return.

It is possible to force an exit from a definition at any point, even inside
a structure, by using the word EXIT. EXIT will immediately leave the
current definition and return to whatever called it. However, because
return addresses are usually stored on the return stack, EXIT must be
used with caution, following these rules:

• If EXIT is called with a DO … LOOP structure, you must first discard
the loop’s parameters using UNLOOP.

• If you have placed any temporary values on the return stack
(using >R), you must remove them before calling EXIT.

Here is a trivial example of the use of EXIT:

Legal:

… DO … <t> IF LEAVE THEN LOOP …

… DUP IF 0 DO I . LOOP THEN …

Illegal:

… DO … <t> IF … LOOP THEN …
112 Structured Programming

Forth Programmer’s Handbook
: TEST (n) 1 . IF EXIT THEN 2 . ;

0 TEST 1 2
1 TEST 1

Frequently, words containing EXIT will have different stack results
depending on whether the word EXITs or not. The standard stack nota-
tion for such a situation is:

(input-arguments -- EXIT-case | normal-case)

EXIT is the only Forth word which permits unstructured programs
(modules with multiple exit points). Because unstructured techniques
tend to impair code’s readability and maintainability, they should be
used sparingly—only when the overall effect is to simplify the code. It
is considered bad form to use EXIT more than once in a word; if you
believe you need to do so, try factoring that word into several words.

Glossary

EXIT (—); (R: nest-sys —) Core
Return control immediately to the calling definition specified by nest-
sys. Before executing EXIT, a program must remove any items explic-
itly stored on the return stack. If EXIT is called within a DO … LOOP,
UNLOOP must be executed first to discard the loop-control parameters.

References

Interpreter pointer, Section 1.1.7
Text interpreter, Section 1.1.5
UNLOOP, Section 4.5
Structured Programming 113

Forth Programmer’s Handbook
114 Structured Programming

Forth Programmer’s Handbook
5. SYSTEM FUNCTIONS

Forth is more than a programming language. The earliest versions of
Forth ran standalone on primitive minicomputers and early micropro-
cessors in the 1970s, providing an integrated system, language, and
application functions in a single package. This heritage persists in the
Forth virtual machine, even though today it is frequently implemented
on top of a conventional operating system.

This section describes words used to load, organize, and manage
Forth applications, as well as to interact with standard system devices
(e.g., disk, terminal, and clock). But before considering details of vari-
ous Forth system functions, the next section will present a fundamen-
tal concept commonly used to implement system functions.

5.1 VECTORED EXECUTION

Normal Forth usage (as well as good programming practice) empha-
sizes the structured programming modes of sequential, iterative, and
conditional execution. But sometimes it is desirable to direct Forth to
execute a specific function in response to some external stimulus. This
technique may be used, for example, by a report that searches a data-
base, selecting records according to a criterion that may need to vary;
by a bank of push-buttons, each attached to a particular Forth word; or
by a routine that computes the address of a function to be executed.

5.1.1 Execution Tokens

The word EXECUTE expects an execution token on the stack. An execu-
tion token is a value, typically an address, that points to the execution
behavior of a definition. EXECUTE removes the token from the stack
and uses it to cause the associated definition to execute.

You may find the execution token of a word by using:

' <name>

…interpretively, in which case the execution token for name is
System Functions 115

Forth Programmer’s Handbook
returned on the stack. Inside a definition, you may use ['] <name> to
compile the execution token for name as a literal.

Execution tokens may be used as single function pointers or in tables
of execution vectors. In stack comments, an execution token is indi-
cated as xt.

Glossary

' <name> (— xt) Core
Search the dictionary for name and leave its execution token on the
stack. Abort if name cannot be found. “tick”

['] <name> (— xt) Core
Used in a definition, ['] finds the word name in the dictionary and
compiles its execution token as a literal to be pushed on the stack
when the definition in which it appears is executed. If name is not in
the dictionary, ['] aborts. “bracket-tick”

EXECUTE (i*x xt — j*x) Core
Remove execution token xt from the stack and perform the execution
behavior it identifies. Other stack effects are due to the word that is
EXECUTEd. The stack notation i*x and j*x is a reminder that there may
be a stack effect for the word being EXECUTEd, but it is not affected by
EXECUTE itself.

@EXECUTE (i*x addr — j*x) Common usage
Perform the execution behavior identified by an execution token
stored in addr. Equivalent to @ EXECUTE, except it’s a no-op if addr con-
tains zero, instead of an error. “fetch-execute”

In some Forth implementations, this function is known by the syn-
onym PERFORM.

5.1.2 Single Function Pointers

A single function pointer in Forth is equivalent to a variable whose
contents is an execution token.

Consider the following example:
116 System Functions

Forth Programmer’s Handbook
VARIABLE NUMERAL
: T1 1 . ;
: T2 2 . ;
: ONE ['] T1 NUMERAL ! ; \ Stores the xt of T1.

: TWO ['] T2 NUMERAL ! ; \ Stores the xt of T2.

: N NUMERAL @ EXECUTE ;

If the user types:

ONE N

…the system will display 1. Typing:

TWO N

…will produce 2.

The stack effect must be the same for each member of a set of words
to be EXECUTEd in a particular context. That is, each must require and
leave the same number of items on the stack as all the other words.

The word DEFER provides a convenient means of managing a single
execution vector. The syntax is:

DEFER <name>

This creates a dictionary entry for name and makes it an execution
variable. name is similar to a variable but specifically contains the exe-
cution token of another word; the other word is executed when name
is executed. The execution token of the other word to be executed is
stored into the data area of name by the word IS1.

In the example above, you will get unpredictable results if the
VARIABLE is not initialized to a valid execution token. However, DEFER
will initialize its instances to the execution token of a word that will
abort with a message.

DEFER lets you change the execution of previously defined commands
by creating a slot which can be loaded with different behaviors at dif-
ferent times. The preceding example would be defined this way using
DEFER:

1. Some systems use TO for changing a DEFER. We believe IS is the preferred usage.
System Functions 117

Forth Programmer’s Handbook
DEFER NUMERAL
: T1 1 . ;
: T2 2 . ;
: ONE ['] T1 IS NUMERAL ;
: TWO ['] T2 IS NUMERAL ;

Then, typing:

ONE NUMERAL

…displays 1, and

TWO NUMERAL

…displays 2.

Like VARIABLEs, DEFERs are global in scope. A similar strategy is used in
multitasking versions of Forth to make function pointers that may
have a different value for each task. See Section 5.1.4 for details.

Glossary

DEFER <name> (—) Common usage
Define a function pointer with an initial behavior that will abort safely
if it is executed before being initialized. The content of a DEFER can be
changed using IS.

name (i*x — j*x)

Execute the word whose execution token is stored in name’s
data space. Stack effects depend on the word being executed.

IS <defer-name> (xt —) Common usage
Store the xt in the data space for defer-name, which must be the name
of an instance of DEFER.

5.1.3 Execution Vector Tables

Most uses of EXECUTE are for implementing a variable function, as
described in the previous sections. The ability to generate and manage
a table of execution addresses is also extremely useful for such pur-
poses as managing a function-button pad, a menu on a graphics tablet,
etc. The following example outlines a simple button-response applica-
tion which may serve as a model for similar situations.

Let us assume we are programming a device which is controlled by a
118 System Functions

Forth Programmer’s Handbook
panel containing five buttons. Each button is wired to return a value 0–
4. The hypothetical word BUTTON? waits for a button to be pressed and
returns its value. Now imagine that you’ve defined five functions, each
to be associated with one of these buttons: Button 0 is START, 1 is SLOW,
2 is MED, 3 is FAST, and 4 is FINISH.

Now we can construct a table of behaviors, using the words described
in Section 2.3.3:

CREATE BUTTONS ' START , ' SLOW , ' MED ,
 ' FAST , ' FINISH ,

BUTTONS returns the address of the start of a table five cells long, con-
taining the execution tokens of each of the button response words.
Here’s how we might handle these buttons:

: BUTTON (--) BUTTON? CELLS BUTTONS + @EXECUTE ;

BUTTON gets a button number and converts it to a cell offset that can be
added to the table address (returned by BUTTONS) to get the location of
an xt that can be passed to @EXECUTE.

This could also be achieved using CASE (Section 4.7), but this version is
significantly smaller and faster. It also has a unique advantage that
allows you to store an xt in the table after BUTTONS, and even after
BUTTON, have been defined. In other words, if you have a later defini-
tion for one of those words—even a temporary one entered from the
keyboard during debugging—you can patch it in.

A disadvantage of this approach, however, is that it assumes that the
selector values (button numbers, in this example) are either sequential
or at least dense. If they’re completely arbitrary values, CASE may be
more convenient.

References

['], Section 5.1.2
CASE, Section 4.7

5.1.4 Vectored System Routines

It is often desirable to modify or re-direct system functions—perhaps
because of changing hardware or application requirements—without
System Functions 119

Forth Programmer’s Handbook
recompiling the system kernel. Forth facilitates this by providing exe-
cution vectors containing the addresses of the current versions of
these system-level functions. There are two groups of vectored rou-
tines: system-wide functions and terminal-dependent functions (i.e.,
those whose behavior differs between different kinds of CRT or
between keyboard/display and printer). For each vectored function,
there are at least three Forth words: the function itself (which executes
the vector), the vector itself, and at least one routine to be executed.

Examples of functions that are typically vectored on a system-wide
basis include basic disk access, compiler functions (e.g., to facilitate
adding an optimizing compiler), input number conversions (e.g., to
facilitate adding floating point), and other generically global issues.

In addition, some routines in multitasking systems are vectored
through user variables for differing task-specific functions. Typically,
these control different kinds of “display” devices, such as printers and
other serial peripherals.

Refer to your product documentation for specific details of vectored
system functions on your implementation.

References

@EXECUTE, Section 5.1.1
Support of special terminal functions, Section 5.4.3
TYPE, Section 5.4.2

5.2 SYSTEM ENVIRONMENT

Standard Forth systems provide a mechanism for inquiring about the
configuration and parameters of a particular system, either interac-
tively or within program code. The word ENVIRONMENT? expects to find
on the stack the address and length of a text string referring to an
option or parameter, and returns either a single false flag (parameter/
option is unknown), or a true flag (known) on top of the stack, with a
second flag or data value beneath. The word S" (see Section 6.1.5),
which returns the address and length of a string, is often used with
ENVIRONMENT?. For example, the string STACK-CELLS is defined as indi-
cating the maximum number of cells in the data stack. You might type
at the keyboard, or include in a definition, the phrase:
120 System Functions

Forth Programmer’s Handbook
S" STACK-CELLS" ENVIRONMENT?

…which might return:

256 -1

…where the -1 (true) indicates that the system recognized the STACK-
CELLS string, and the 256 shows that the maximum size of the stack is
256 cells. Table 9 lists the standard strings available for environmen-
tal queries and the data values they may return. The data type is the
type of the associated data or second flag.

Most ANS Forth word sets contain a basic part and extensions whose
presence may be tested for individually. For example, in this table,
BLOCK and BLOCK-EXT separately test for the presence of the basic
block word set and the block extensions word set.

Table 9: Environmental query strings and associated data

String Type Meaning

/COUNTED-STRING n Maximum size of a counted string, in char-
acters.

/HOLD n Maximum size of pictured numeric output
string, in characters.

/PAD n Size of the scratch area PAD in characters.

BLOCK flag true if block word set is present.

BLOCK-EXT flag true if block extensions word set is pres-
ent.

CORE flag true if complete Standard Forth core word
set is present.

CORE-EXT flag true if complete Standard Forth core exten-
sions word set is present.

DOUBLE flag true if double number integer word set is
present.

DOUBLE-EXT flag true if double-number extensions integer
word set is present.

EXCEPTION flag true if exception word set is present.

EXCEPTION-EXT flag true if exception extensions word set is
present.

FACILITY flag true if facility word set is present.
System Functions 121

Forth Programmer’s Handbook
FACILITY-EXT flag true if facility extensions word set is pres-
ent.

FILE flag true if file word set is present.

FILE-EXT flag true if file extensions word set is present.

FLOATING flag true if floating-point word set is present.

FLOATING-EXT flag true if floating-point extensions word set is
present.

FLOATING-STACK n If n=0, floating-point numbers are kept on
the data stack; otherwise, n is the maximum
depth of the separate floating-point stack.

FLOORED flag true if floored division is the default,
false if symmetric division is the default.

MAX-CHAR u Maximum value of a character in the
implementation-defined character set.

MAX-D d Largest usable signed double number.

MAX-FLOAT r Largest usable floating-point number.

MAX-N n Largest usable signed integer.

MAX-U u Largest usable unsigned integer.

MAX-UD ud Largest usable unsigned double number.

MEMORY-ALLOC flag true if memory-allocation word set is pres-
ent.

RETURN-STACK-
CELLS

n Maximum size of the return stack, in cells.

STACK-CELLS n Maximum size of the data stack, in cells.

SEARCH-ORDER flag true if search-order word set is present.

SEARCH-ORDER-
EXT

flag true if search-order extensions word set is
present.

STRING flag true if string word set is present.

TOOLS flag true if programming tools word set is pres-
ent.

TOOLS-EXT flag true if programming tools extensions word
set is present.

WORDLISTS n Maximum number of word lists usable in
the search order.

Table 9: Environmental query strings and associated data (continued)

String Type Meaning
122 System Functions

Forth Programmer’s Handbook
Because a system may load options in any order, some environmental
queries could return either false or true, depending on when they were
executed. The Standard Forth requirements are:

• If a query returns false (unknown) in response to a string, subse-
quent queries with that string may return true, because addi-
tional capabilities may have been acquired.

• If a query returns true (known) and a numerical value, subse-
quent queries with the same string must also return true and the
same numerical value. In other words, added capabilities may not
take away or fundamentally alter entitlements already presented
to the program.

• Flags indicating the presence or absence of optional word sets
may change; the flag indicating floored or symmetric division
may not change.

Glossary

ENVIRONMENT? (c-addr u — false | i*x true) Core
Return information about the system software configuration. The
character string specified by c-addr u should contain one of the
strings from Table 9. If it does not, return false; otherwise, return true
and data specified in Table 9 for that string. “environment-query”

5.3 EXCEPTION HANDLING

Forth provides several methods for error handling. ABORT and ABORT"
may be used to detect errors. However, they are relatively inflexible, in
that they unconditionally terminate program execution and return to
the idle state. Frequently, when a terminal task aborts, it is desirable
to display a message, clear the stacks, and re-enter a default state
awaiting user commands. This is the primary use of ABORT".

CATCH and THROW, discussed in this section, provide a method for prop-
agating error handling to any desired level in an application program.
THROW may be thought of as a multi-level EXIT from a definition, with
CATCH marking the location to which the THROW returns.

Suppose that, at some point, word A calls word B, whose execution
may cause an error to occur. Instead of just executing word B’s name,
word A calls word B using the word CATCH. Somewhere in word B’s def-
System Functions 123

Forth Programmer’s Handbook
inition (or in words that B’s definition may call), there is at least one
instance of the word THROW to be executed if an error occurs, leaving a
numerical throw code identifier on the stack. After word B has exe-
cuted and program execution returns to word A just beyond the CATCH,
the throw code is on the stack to assist word A in resolving the error. If
the THROW was not executed, the top stack item after the CATCH is zero.

When CATCH executes, it requires the execution token of the lower-level
routine it calls to be on top of the stack:

… ['] <name> CATCH …

…is appropriate usage (inside a definition). At the time CATCH executes,
there may be other items on the data stack, such as parameters that
name is expecting.

After the lower-level routine executes and control returns to the rou-
tine that will handle any errors, the data stack will have one of two
behaviors. If the lower-level routine (and any words it called) did not
cause a THROW to execute, the top stack item after the CATCH will be
zero and the remainder of the data stack may be different than it was
before, changed by the behavior of the lower-level routine. If a THROW
did occur, the top stack item after the CATCH will contain the throw
code, and the remainder of the data stack will be restored to the same
depth—although not necessarily to the same data—it had just before
the CATCH. The return stack will also be restored to the depth it had
before the CATCH.

When THROW executes, it requires a throw code on top of the stack. If
this code is zero, THROW does nothing except remove the zero from the
stack; the remainder of the stack is unchanged. If the throw code is
non-zero, THROW returns the code on top of the stack, restores the data
stack depth (but not necessarily the data) to its value when CATCH was
executed, restores the return stack depth, and passes control to the
error-handling routine. If a non-zero THROW occurs without a corre-
sponding CATCH to return to in the application, it is treated as an ABORT.

The set of information (e.g., stack depths) that may be needed for res-
toration is called an exception frame. Exception frames are placed on
an exception stack in order to allow nesting of CATCHes and THROWs.
Each use of CATCH pushes an exception frame onto the exception stack.
If execution proceeds normally, CATCH pops the frame; if an error
occurs, THROW pops the frame and uses its information for restoration.
124 System Functions

Forth Programmer’s Handbook
An example of CATCH and THROW taken from Standard Forth is:

: COULD-FAIL (-- c) KEY DUP [CHAR] Q = IF
 1 THROW THEN ;

: DO-IT (n n -- c) 2DROP COULD-FAIL ;

: TRY-IT (--) 1 2 ['] DO-IT CATCH IF
 2DROP ." There was an exception" CR
 ELSE ." The character was " EMIT CR THEN ;

The higher-level word TRY-IT calls the high-risk operation DO-IT
(which in turn calls COULD-FAIL) using CATCH. Following the CATCH, the
data stack contains either the character returned by KEY and a zero on
top, or two otherwise-undefined items (to restore it to the depth
before the CATCH) and a one on top. Because any non-zero value is
interpreted as true, the returned throw code is suitable for direct
input to the IF clause in TRY-IT.

Standard Forth reserves negative throw codes for system implemen-
tors. Throw codes -1 through -255 are reserved for assignment by the
Standard itself in order to specify common types of errors, so differ-
ent Forth implementations will have compatible associated behaviors.
See Table 10 for a list of existing assignments. The remaining negative
throw codes may be used for implementation-specific system excep-
tions. All positive throw codes are available for application use.

Table 10: ANS Forth reserved throw codes

Code Meaning Code Meaning

-1 ABORT -30 obsolescent feature

-2 ABORT" -31 >BODY used on non-CREATEd
definition

-3 stack overflow -32 invalid name argument
(e.g., TO <xxx>)

-4 stack underflow -33 block read exception

-5 return stack overflow -34 block write exception

-6 return stack underflow -35 invalid block number

-7 do-loops nested too
deeply

-36 invalid file position

-8 dictionary overflow -37 file I/O exception
System Functions 125

Forth Programmer’s Handbook
-9 invalid memory address -38 non-existent file

-10 division by zero -39 unexpected end of file

-11 result out of range -40 invalid BASE for floating
point

-12 argument type mis-
match

-41 loss of precision

-13 undefined word -42 floating-point divide by zero

-14 interpreting a compile-
only word

-43 floating-point result out of
range

-15 invalid FORGET -44 floating-point stack over-
flow

-16 attempt to use zero-
length string as a name

-45 floating-point stack under-
flow

-17 pictured numeric output
string overflow

-46 floating-point invalid argu-
ment

-18 parsed string overflow -47 compilation word list
deleted

-19 definition name too long -48 invalid POSTPONE

-20 write to a read-only loca-
tion

-49 search-order overflow

-21 unsupported operation -50 search-order underflow

-22 control structure mis-
match

-51 compilation word list
changed

-23 address alignment
exception

-52 control-flow stack overflow

-24 invalid numeric argu-
ment

-53 exception stack overflow

-25 return stack imbalance -54 floating-point underflow

-26 loop parameters
unavailable

-55 floating-point unidentified
fault

-27 invalid recursion -56 QUIT

-28 user interrupt -57 exception sending or receiv-
ing a character

-29 compiler nesting

Table 10: ANS Forth reserved throw codes (continued)

Code Meaning Code Meaning
126 System Functions

Forth Programmer’s Handbook
Glossary

ABORT (i*x —); (R: j*x —) Core, Exception Ext
Unconditionally terminate execution, empty both stacks, and return to
the task’s idle behavior (usually QUIT—see Section 6.1.2). No message
is issued. May be executed by any task in a multitasking implementa-
tion.

ABORT" <text>" (i*x flag —); (R: j*x —) Core, Exception Ext
If flag is true (non-zero), type the specified text at the user’s terminal,
clear both stacks, and return to the task’s idle behavior. Must be used
inside a definition.For example:

: CHECK (n -- n) 1000 OVER <
 ABORT" TOO BIG" ;

The definition of ABORT" concludes with the word ABORT (or otherwise
includes its functionality). On many systems it echoes the word being
interpreted when the error occurred. “abort-quote”

CATCH (i*x xt — j*x 0 | i*x n) Exception
Save information about the depth of the data and return stacks in an
exception frame and push the frame on the exception stack. Execute
the execution token xt (as with EXECUTE). If the execution of xt com-
pletes normally (i.e., a non-zero THROW is not executed), pop the excep-
tion frame and return zero on top of the data stack—above whatever
stack items were returned by xt EXECUTE—and delete the stack-depth
information. Otherwise, see the definition of THROW for completion of
the exception-processing behavior.

THROW (k*x n — k*x | i*x n) Exception
If n is zero, simply remove n from the data stack. If n is non-zero, pop
the topmost frame from the exception stack, restore the input source
specification that was in use before the corresponding CATCH, and
adjust the depths of all stacks so they are the same as the depths
saved in the exception frame (the value of i in THROW’s stack comments
is the same as the value of i in CATCH’s comments). Place n on top of
the data stack and transfer control to a point just beyond the CATCH
that pushed the exception frame.

References

Execution tokens, Section 5.1.1
System Functions 127

Forth Programmer’s Handbook
5.4 SERIAL I/O

Forth supports a variety of means to perform I/O with a terminal,
printer, or other serial-type I/O device. In addition, a simplified
method is provided to make use of cursor positioning and other hard-
ware-dependent features without forcing the use of particular termi-
nal models.

5.4.1 Terminal Input

The words described in this section handle character input from
devices. The input is received from the current input device (e.g., key-
board, serial port). Selection of the current input device is system
dependent.

The command KEY awaits one character and leaves it on the stack. KEY
does not edit or echo. As this is a “blocking” word (i.e., it waits for
input), you may wish to use KEY?, which will return true if a key is
available for input. If KEY? returns true, a subsequent call to KEY will
return the character without waiting.

Technically, KEY and KEY? only respond to 7-bit ASCII keys, although
many implementations will return 8-bit ASCII values. A similar pair of
words is available to receive “keyboard events” of a more generic
nature (e.g., mouse clicks, function keys, etc.). These are EKEY and
EKEY?. Whereas KEY returns a character in the low-order bits of the top
stack item, EKEY returns a full cell, which may have information in the
high-order bits for extended character sets, formatting information,
etc. The exact nature of the characters returned by EKEY is platform-
dependent (naturally, as its primary purpose is to let a program
receive unfiltered data).

ACCEPT awaits a character string from the terminal or other serial
device, given the maximum number of characters and the address
where they are to be stored. Input is terminated by a return (0DH). If
the terminator is not received before the maximum character count is
reached, the excess characters are discarded. ACCEPT returns the
length of the character string that was stored at the given address. For
example,

PAD 10 ACCEPT
128 System Functions

Forth Programmer’s Handbook
…will await up to ten characters, place them at PAD, and return the
actual character count on the stack.

On most systems, incoming characters are checked for the return,
which terminates input; and for backspace (08) or DEL (7FH), which
cause the character pointer to be “backed up” one and a backspace (or
equivalent) to be sent to the terminal. All other characters are echoed
to the terminal. Because ACCEPT edits for special keys, it is not appro-
priate for receiving binary data on a serial port. The recommended
procedure is to use KEY in a loop for this purpose.

ACCEPT should not be executed if there is no terminal or serial device
capable of providing input for the task.

No indication is provided at the terminal that the system is awaiting
input as a result of an ACCEPT request. The programmer should indi-
cate this fact through some output message issued prior to the ACCEPT
request.

The conventional place to put incoming strings is the input message
buffer. At least 80 bytes are available. The system text interpreter
ACCEPTs 80 bytes into the input message buffer and performs the nec-
essary housekeeping to process the text. The text interpreter is called
by QUIT, which performs a terminal’s basic idle loop behavior.

However, you can use any memory region as a buffer for ACCEPT.
Another handy temporary storage place is PAD. Here’s an example of
the use of PAD for input:

: GET-STRING (-- n) PAD 40 ACCEPT ;
: SHOW-STRING (--) GET-STRING PAD SWAP TYPE ;

The word SHOW-STRING obtains the string, whose actual length is
returned by GET-STRING, and displays it. More commonly, you might
use this string to search or store in a database.

Glossary

ACCEPT (c-addr +n1 — +n2) Core
Get, at most, +n1 characters from the current input device, echo each,
and place them in memory beginning at c-addr. The process continues
until ACCEPT encounters a carriage return (line terminator). If the line
terminator is not received before a count of +n1 is reached, any excess
characters are discarded. Return the actual count +n2 of characters
System Functions 129

Forth Programmer’s Handbook
received. An example of use is:

PAD 10 ACCEPT <cr> 12345 ok
. 5 ok

ACCEPT is used for most terminal input. On most systems, ACCEPT will
back up over previously input characters in response to the backspace
(08) or DEL ($7F) key. When the character pointer points to c-addr, the
original address, ACCEPT stops backing up and may thereafter emit a
tone for each backspace or DEL it receives.

EKEY (— u) Facility Ext
Receive one keyboard event and place the result on the stack. The
encoding of keyboard events is system dependent. “E-key”

EKEY>CHAR (u — u 0 | char -1) Facility Ext
Attempt to convert a keyboard event into a character. If successful,
return the character and true, otherwise return the event and false. “E-
key-to-care”

EKEY? (— flag) Facility Ext
Check whether a valid keyboard event has been received on the task’s
serial device since the last call to ACCEPT, KEY, or EKEY. If so, return
true, otherwise return false. The value of the event may be obtained by
the next execution of EKEY. After EKEY? returns with a value of true,
subsequent executions of EKEY? before executing KEY, KEY?, or EKEY
will also return true, because they refer to the same event. “E-key-
question”

KEY (— b) Core
Await exactly one character from the input device and place its value
on the stack. KEY does not echo. KEY is sometimes used for input
prompting and in serial protocols. KEY is also often useful to interac-
tively determine the ASCII numeric value of a character. For example,
if you type:

KEY .

…the system will wait for you to press one key and will display its
ASCII value.

KEY? (— flag) Facility
Check whether a character has been received on the current input
device since the last call to ACCEPT, KEY, or EKEY. If so, return true, oth-
130 System Functions

Forth Programmer’s Handbook
erwise return false. Invalid (non-character) keyboard events occurring
before a valid character are discarded and made unavailable. The value
of the character received may be obtained by the next execution of
KEY. After KEY? returns with a value of true, subsequent executions of
KEY? before executing KEY or EKEY will also return true, without dis-
carding keyboard events. “key-question”

References

String operations, Section 3
Input number conversion, Section 3.6.1
QUIT, Section 6.1.2
PAD, Section 3.1.2
TYPE, Section 5.4.2

5.4.2 Terminal Output

Forth provides words to output character strings, as well as single
characters. The output is sent to the current output device (e.g., the
display or printer). Selection of the current output device is system
dependent.

The command EMIT will transmit a single ASCII character, given its
value on the stack. Thus,

65 EMIT

…will output an “A”.

TYPE outputs a character string to the current output device. The char-
acter string is emitted exactly as it appears in storage.

The length of the string, in bytes, must be on top of the stack, with the
address of the first byte of the string beneath it.

For example, you could use the following phrase to display thirty-two
characters from PAD on the terminal:

PAD 32 TYPE
System Functions 131

Forth Programmer’s Handbook
Glossary

EMIT (b —) Core
Output one character from the least-significant byte of the top item on
the stack, then pop the stack. EMIT is often useful for initial “cut-and-
try” definitions.

EMIT? (— flag) Facility Ext
Check that it is okay to output a character (e.g., the device is ready).
Return flag, which is false if it is known that the execution of EMIT
instead of EMIT? would suffer an indefinite delay; otherwise, return
true, including the case where the device status is indeterminate.
Used, for example, in modem protocols with the RTS line. “emit-
question”

TYPE (c-addr u —) Core
Output the character string at c-addr, length u.

References

PAD, Section 3.1.2
Scanning strings, Section 6.1.5
Vectored I/O words, Section 5.1.4

5.4.3 Support of Special Terminal Features

Each terminal task in a Forth system may have unique user variables,
including a port address or other device- and system-specific parame-
ters. Each task may require different control character sequences for
functions such as CR (go to beginning of next line) and PAGE (go to top
of next page).

The standard Forth words that perform terminal functions are listed
in this section. The method of vectoring these functions to the particu-
lar output sequences required for given devices is system dependent.

Glossary

AT-XY (u1 u2 —) Facility
Configure the current output device so the next character displayed
will appear in column u1, row u2 of the device’s output area. The
upper-left corner of this area is at u1 = 0, u2 = 0. “at-X-Y”
132 System Functions

Forth Programmer’s Handbook
CR (—) Core
Cause subsequent output to appear at the beginning of the next line
on the current output device. “C-R”

GET-XY (— u1 u2) Common usage
Return the current cursor position (column u1, row u2) from the cur-
rent input device. “get-X-Y”

PAGE (—) Facility
Move to another page for output on the current device. On a CRT, clear
the screen and reset the cursor position to the upper-left corner. On a
printer, perform a form feed.

SPACE (—) Core
Display one space on the current output device.

SPACES (u —) Core
Display u spaces on the current output device.

5.5 FILE-BASED DISK ACCESS

Forth systems provide access to mass storage using a block-based or
file-based method. This section discusses words that access mass stor-
age using files. Appendix C discusses words used to access and manage
disk blocks and block buffers in Forth.

Many items discussed in this section—the specific value and meaning
of non-zero I/O result codes, allowable forms of filenames, values of
line terminators, etc.—are system dependent. Consult your product
documentation for details.

5.5.1 Overview

Forth words described in this section provide access to mass storage
in the form of files, under the following conditions and assumptions:

• Files are provided by a host operating system.

• File state information (e.g., current position in file, size) is man-
aged by the host operating system. File sizes are dynamically vari-
able, so write operations will change the size of a file as necessary.
System Functions 133

Forth Programmer’s Handbook
• Filenames are represented as character strings whose format is
determined by the host operating system. Filenames may include
system-specific pathnames.

• A file identifier (fileid) is a single-cell value passed to file opera-
tors to refer to specific files. Opening a file assigns it a file identi-
fier, which remains valid until the file is closed. When the text
interpreter is using a file as input, its fileid will be returned by
SOURCE-ID. The other possible values that SOURCE-ID can return
are zero (if the user input device is the source) and -1 (if the
source is a character string passed by EVALUATE).

• File contents are accessed as a sequence of characters. The file
position is the character offset from the start of the file. The file
position is updated by all read, write, and re-position commands.

• File read operations return an actual transfer count, which can
differ from the requested transfer count.

• A file access method (fam) is a single-cell value indicating the per-
missible means of accessing a specific file, such as read/write or
read-only.

• An I/O result (ior) is a single-cell value indicating the result of an
I/O operation. A value of zero always indicates success; non-zero
values are definition- and system-specific. An operation reaching
the end of a file shall not consider it an error and shall return a
zero ior.

5.5.2 Global File Operations

The words in this section manipulate files as entire entities.

Glossary

CLOSE-FILE (fileid — ior) File
Close the file identified by the fileid. Return an I/O result code.

CREATE-FILE (c-addr u fam — fileid ior) Core
Create a file, whose name is given by the character string at c-addr of
length u, and open it using file access method fam. If the file already
exists, re-create it as an empty file that replaces the pre-existing file of
that name. If creation and opening are successful, return an ior of zero
and the fileid. Otherwise, return a non-zero ior and an undefined value
for fileid.
134 System Functions

Forth Programmer’s Handbook
DELETE-FILE (c-addr u — ior) File
Delete the file whose name is given by the character string at c-addr
and whose length is u. Return an I/O result code.

FLUSH-FILE (fileid — ior) File Ext
Force any buffered contents of the file referred to by fileid to be writ-
ten to mass storage, and the size information for the file to be
recorded by the system, if it changed. Return an ior of zero if success-
ful; otherwise, return a system-dependent value.

OPEN-FILE (c-addr u fam — fileid ior) File
Open the file, whose name is given by the character string at c-addr of
length u, using file access method fam. If successful, set the file posi-
tion to zero, and return an ior of zero and the fileid; otherwise, return
a non-zero ior and an undefined value for fileid.

RENAME-FILE (c-addr1 u1 c-addr2 u2 — ior) File Ext
Rename the file, whose current name is given by the character string
at c-addr1 of length u1, to the name given by the character string at c-
addr2 of length u2. Return an I/O result.

RESIZE-FILE (ud fileid — ior) File
Set the size of the file identified by fileid to ud and return an I/O result
code. If the file size increases, the contents of the newly allocated
space is indeterminate. After this operation (if successful), FILE-SIZE
will return the same value for ud, and FILE-POSITION returns an unde-
fined value.

5.5.3 File Reading and Writing

The words in this section are used to read or write to a specific file.
Commands whose names include INCLUDE share the property of direct-
ing Forth’s text interpreter to process the file as an alternate input
stream. The READ and WRITE words are lower-level generic functions
that access the file without assumptions about its contents.

Glossary

INCLUDE-FILE (fileid —) File
Read and interpret the given file, performing the following steps: Save
the current input source specification. Store the given fileid in SOURCE-
ID, set BLK to zero, and make this file the input source. Read a line
System Functions 135

Forth Programmer’s Handbook
from the file at the current file position, fill the input buffer with the
contents of the line, set >IN to zero, and interpret the buffer contents.
Continue reading lines until the end of the file is reached. When the
end of file is reached, close the file and restore the previous input
source specification.

INCLUDED (c-addr u —) File
Same as INCLUDE-FILE, except the file is specified by its name, which is
stored at c-addr and is of length u. The file is opened and its fileid is
stored in SOURCE-ID.

INCLUDE <filename> (—) Common usage
Same as INCLUDE-FILE, except the file is specified by the filename
which follows in the input stream.

READ-FILE (c-addr u1 fileid — u2 ior) File
Read and store text from the given file—without interpretation—and
update FILE-POSITION. Read u1 consecutive characters from the cur-
rent position in the file identified by fileid, storing them at c-addr.
Return an ior and the number u2 of characters successfully read. If no
exception occurs, return an ior of zero and u2 = u1 or the number of
characters actually read before encountering the end of the file, which-
ever is smaller. If FILE-POSITION was equal to FILE-SIZE before execut-
ing READ-FILE, u2 is zero. If a non-zero ior is returned, u2 is the number
of characters successfully transferred before the exception occurred.

READ-LINE (c-addr u1 fileid — u2 flag ior)File
Read and store one line of text from the given file—without interpreta-
tion—and update FILE-POSITION: Read up to u1 consecutive characters
from the current position in the file identified by fileid, storing them at
c-addr. Terminate the read if end-of-line delimiter(s) are encountered.
Return an ior and the number u2 of characters successfully read, not
including any line delimiter(s). One or two line delimiter(s may be read
into memory at the end of the line in addition to u2; therefore, the buf-
fer at c-addr should be at least u1+2 characters long. If u2 = u1, the line
delimiter was not reached. If no exception occurs, the returned ior is
zero and flag is true. If FILE-POSITION was equal to FILE-SIZE before
executing READ-LINE, flag is false, ior is zero, and u2 is zero. If an non-
zero ior is returned, other returned parameters are undefined.

REFILL (— flag) Block Ext, Core Ext, File Ext
When the input source is a text file, attempt to read the next line from
136 System Functions

Forth Programmer’s Handbook
the current file. If successful, make the result the current input buffer,
set >IN to zero, and return true; otherwise, return false.

WRITE-FILE (c-addr u fileid — ior) File
Write u characters from c-addr to the file identified by fileid, starting
at its current file position. Increase FILE-SIZE if necessary. Return an
I/O result code. After this operation, FILE-POSITION returns the next
file position after the last character written to the file, and FILE-SIZE
returns a value equal to or greater than FILE-POSITION.

WRITE-LINE (c-addr u fileid — ior) File
The same as WRITE-FILE except a line terminator is written to the file
after the u characters.

5.5.4 File Support Words

The words in this section provide support for other file access func-
tions.

Glossary

BIN (fam1 — fam2) File
Modify the given file access method fam1 to additionally select a
binary (not line-oriented) file access method, returning the modified
access method fam2.

FILE-POSITION (fileid — ud ior) File
Return the double-cell current file position ud for the file identified by
fileid, and an I/O result code. If the ior is non-zero, the position ud is
undefined.

FILE-SIZE (fileid — ud ior) File
Return the double-length file size ud for the file identified by fileid,
and an I/O result code. This operation does not affect the value
returned by FILE-POSITION. If the ior is non-zero, the size ud is unde-
fined.

FILE-STATUS (c-addr u — x ior) File Ext
Return the status of the file whose name is given by the character
string at c-addr of length u. The ior is zero if the file exists, otherwise
it is a system-dependent value. Cell x contains system-dependent
information about the file.
System Functions 137

Forth Programmer’s Handbook
R/O (— fam) File
Return the read-only file access method. “R-O”

R/W (— fam) File
Return the read/write file access method. “R-W”

REPOSITION-FILE (ud fileid — ior) File
For the file identified by fileid, reset the file position to ud and return
an I/O result code. After this operation (if successful), FILE-POSITION
will return this same value for ud.

S" <string>" (— c-addr u) Core, File
Store string in a temporary buffer, which is at least 80 characters long,
and return the address and length of the string. “S-quote”

This word normally compiles a string in a definition, returning its
address and count when executed. In a file-based disk access system,
this word is extended to operate interpretively with filenames. When
interpreting, it looks ahead in the input stream to obtain a character
string terminated by ".

W/O (— fam) File
Return the write-only file access method. “W-O”

5.6 TIME AND TIMING FUNCTIONS

Many Forth systems support an asynchronous, free-running millisec-
onds timer, and retrieval of date and time from a host operating sys-
tem (if the host provides this function). The precision of the
milliseconds timer depends both on the resolution of the system clock
and on relevant hardware characteristics. A task executing MS is sus-
pended until its time-out period has elapsed.

Glossary

MS (u —) Facility Ext
Wait for at least u milliseconds, but not more than u plus twice the
resolution of the system clock. “M-S”

TIME&DATE (— u1 u2 u3 u4 u5 u6) Facility Ext
Return the current time and date: u1=seconds (0–59), u2=minutes (0–
59), u3=hours (0–23), u4=days (0–31), u5=months (1–12), and u6=years
(0–9999).
138 System Functions

Forth Programmer’s Handbook
5.7 DYNAMIC MEMORY MANAGEMENT

Some applications require dynamic data storage. For example, a large
number of asynchronous tasks may be taking data intermittently.
When one of them receives a burst of data, it needs a temporary buffer
to hold and process the data, but can relinquish the buffer when pro-
cessing is complete.

The words in this section allocate, resize, and free regions of data
space. Memory regions allocated this way are at arbitrary addresses,
so they are useful only for data. They cannot be used, for example, for
the Forth dictionary, because there is no way for an application to
manage the dictionary pointer. Although a given region will be inter-
nally contiguous, it is not guaranteed to be contiguous with any other
region, so no operation should attempt to cross a region’s boundary.

Glossary

ALLOCATE (u — a-addr ior) Memory
Attempt to allocate u bytes of contiguous data space. The data space
pointer is unaffected by this operation. The initial content of the allo-
cated space is not defined. If the allocation is successful, the aligned
starting address a-addr of the allocated space and an ior of zero is
returned. If the allocation is not successful, a-addr is an undefined
value and a system-dependent non-zero ior is returned.

FREE (a-addr — ior) Memory
Release the contiguous data space identified by a-addr to the system
for later re-allocation. The address a-addr is a value previously
returned by ALLOCATE or RESIZE. The data space pointer is unaffected
by this operation. If the release operation succeeds, ior is zero; other-
wise, it is a system-dependent non-zero value describing the failure.

RESIZE (a-addr1 u — a-addr2 ior) Memory
Change the size of a contiguous data space previously allocated by
ALLOCATE or RESIZE at a-addr1 to u bytes, where u may be either larger
or smaller than the current size of the space. The data space pointer is
unaffected by this operation. If the operation succeeds, a-addr2 is the
aligned starting address of the u bytes of allocated memory and ior is
zero. a-addr2 may be, but need not be, the same as a-addr1. In any
case, the contents of the area before and after the RESIZE are pre-
served up to u bytes or to the original size, whichever is smaller. If
System Functions 139

Forth Programmer’s Handbook
a-addr2 is not the same as a-addr1, the region of memory at a-addr1 is
released to the system as if by FREE. If the resize operation fails,
a-addr2 equals a-addr1, the content of the region of memory at a-addr1

is unaffected and a system-dependent non-zero ior code is returned.

5.8 FLOATING POINT

Many Forth applications do not require floating-point math. Arithme-
tic that might seem to need floating-point calculations can often be
done more simply, using less memory and executing faster, when
coded with integer operators and with intelligent use of scaling words
such as */. This is especially true when hardware floating point is not
available, often the case in embedded applications. The key issue is
dynamic range in the variables of interest; if that is limited to fewer
than 15 bits, say (as it usually will be if driven by I/O devices), integer
math is usually the better choice unless hardware floating point is
available.

For applications in which floating-point mathematics is essential and
to take advantage of floating-point hardware, Forth defines a full set
of optional floating-point operators. This section describes the general
operators available on systems that comply with Standard Forth and
support floating point. Their implementation is very system specific
and may use floating-point hardware. Your implementation-specific
documentation should be consulted for additional features that may
be present (such as hardware-stack implementation and additional
hardware error trapping).

References

Multi-stack notation, Section 2.1.1

5.8.1 Floating-Point System Guidelines

Floating-point packages may exist on systems with widely varying
hardware capabilities, and thus may require different implementation
strategies. Therefore, the basic Standard Forth floating-point word set
is flexible in many areas. For details of a particular implementation,
you will need to consult CPU-specific documentation. The following
guidelines apply:
140 System Functions

Forth Programmer’s Handbook
• The internal representation of a floating-point number, including
the format and precision of both significand and exponent, is
implementation specific, as is the largest usable floating-point
number. For portability, supplementary words are defined that
fetch and store to standard 32- or 64-bit IEEE floating-point num-
ber format (see ANSI/IEEE Standard 754 -1985).

• Because the length in memory of a floating-point number is
implementation specific, the question of alignment arises. A
float-aligned address (stack comment f-addr) is an address where
a floating-point number can be accessed. Similarly, a single-float
aligned address (sf-addr) or double-float-aligned address (df-addr)
is an address where a single-precision (32-bit) or double-preci-
sion (64-bit) IEEE standard floating-point number can be
accessed.

• There is a logically separate floating-point stack. Both the width
and the depth are implementation specific, but the stack must be
able to contain at least six items.

• The floating-point stack may be physically separate or it may be
implemented using the data stack. If it uses the data stack, inte-
ger data and floating-point numbers can become mixed on the
same stack. An application program intended to be portable
across different implementations (with and without separate
stacks) must order its operations carefully. For example, it must
clear the floating-point stack of all items before trying to access
any data stack items that may be underneath (and vice versa). It
must also ensure that arguments to operations using both stacks
(e.g., F!) are produced in the correct order. A program can deter-
mine whether floating-point numbers are kept on the data stack
by passing the string FLOATING-STACK to ENVIRONMENT? (see Sec-
tion 5.2). If the value returned is zero, the data stack is used; oth-
erwise, the non-zero value indicates the maximum depth of the
separate floating-point stack.

• For floating-point input and output, the current base must be
DECIMAL; if the base is other than decimal, number conversion or
display will not take place. Floating-point numbers to be inter-
preted by a system that complies with Standard Forth must con-
tain an exponent indicator E or e. For example, one legitimate
floating-point representation of the number 12300 is 1.23E4,
where 1.23 is the significand and 4 is the exponent.

• Floating-point operators may address memory in data space
System Functions 141

Forth Programmer’s Handbook
regions declared with FVARIABLE. These regions are not necessar-
ily contiguous with subsequent regions allocated with , (comma)
or ALLOT.

5.8.2 Input Number Conversion

A floating-point number in Forth must contain an E or an e (signifying
an exponent), and must begin with a digit (optionally preceded by an
algebraic sign). For example, -0.5e0 is valid, but .2e0 is not. A number
does not need to contain a decimal point or a value for the exponent;
if there is no exponent value, it is assumed to be zero (a multiplier of
one). Punctuation other than a decimal point is not allowed in a float-
ing-point number.

During number conversion, BASE must be DECIMAL so numbers such as
1E are not interpreted as hexadecimal digits. If BASE is not DECIMAL,
floating-point number conversion will not take place.

All the following are valid floating-point numbers:

3.14159E+00 -3E-07 1e 1.E 0.005e02

…but the following are double-precision integers (under the enhanced
rules described in Section 1.1.6), not floating-point numbers:

3.14159 -1,000,000.12 -0.003

Input conversion of floating numbers is accomplished by adding an
additional level to Standard Forth number conversion routines. First,
an attempt is made to convert an input string to a floating-point num-
ber. If this succeeds, the number is returned on the floating-point
stack; otherwise, control passes to the integer number conversion rou-
tines. Thus, 20.E would be converted as a floating number and 20. as a
double-precision integer.

References

Input number conversion, Sections 1.1.6, 3.6.1
142 System Functions

Forth Programmer’s Handbook
5.8.3 Output Formats

Three standard output formats are provided to display floating-point
numbers. All of them remove the top item on the floating-point stack.
The number of significant digits to display is set globally for all three
formats and will remain in use until changed. There is also low-level
support for custom output (and input) formatting; see Section 5.8.11.

Glossary

F. (F: r —) Floating Ext
Display the top number on the floating-point stack, followed by a
space. Uses fixed-point notation (decimal point only, no exponent). The
number of significant digits displayed is set by SET-PRECISION. “F-dot”

FE. (F: r —) Floating Ext
Display the top number on the floating-point stack, followed by a
space. Uses engineering notation (the significand is greater than or
equal to 1.0 and less than 1000.0, and the decimal exponent is a multi-
ple of three). The number of significant digits displayed is set by
SET-PRECISION. “F-E-dot”

FS. (F: r —) Floating Ext
Display the top number on the floating-point stack, followed by a
space. Uses scientific notation (significand plus exponent), where the
significand is greater than or equal to 1.0 and less than 10.0. The num-
ber of significant digits to display is set by SET-PRECISION. “F-S-dot”

PRECISION (— u) Floating Ext
Return the number of significant digits currently displayed by F., FE.,
or FS..

SET-PRECISION (u —) Floating Ext
Set the number of significant digits to be used by F., FE., or FS. to u.

5.8.4 Floating-Point Constants, Variables, and Literals

There are floating-point counterparts to the integer Forth words
CONSTANT, VARIABLE, and LITERAL. The memory storage requirements,
maximum value, and precision of the floating-point versions are
implementation specific.
System Functions 143

Forth Programmer’s Handbook
Glossary

FCONSTANT <name> (F: r —) Floating
Define a floating-point constant with the given name whose value is r.
For example:

3.14159E FCONSTANT PI.

name (— F: r)

When name is executed, the value r is returned on the float-
ing-point stack. “F-constant”

FLITERAL (F: r —) Floating
Used only within a definition. When the definition is compiled and the
word FLITERAL is reached, there must be a value r on the floating-point
stack; it will be removed and added to the definition. When the defini-
tion is executed, FLITERAL returns the value r on the floating-point
stack. “F-literal”

FVARIABLE <name> (—) Floating
Create a dictionary entry for name, associated with an amount of data
space sufficient to store one floating-point number of the implementa-
tion-specified size.

ANS Forth cautions that subsequent allocations of memory with , or
ALLOT may not be contiguous with the data space of an FVARIABLE. An
FVARIABLE may be initialized with, e.g., F! (see below). “F-variable”

name (— f-addr)

Return the address of the data space associated with name.

5.8.5 Memory Access

Memory access words similar to those in other parts of a Forth system
are provided for floating-point data types. These words obtain
addresses from the data stack, and transfer data to and from the float-
ing-point stack.

The requirement for float-alignment creates some issues in defining
floating-point arrays. An object defined by CREATE returns a cell-
aligned address, but it is not necessarily float-aligned. Therefore, you
would create an array of ten floats this way:

CREATE MY-FLOATS FALIGN 10 FLOATS ALLOT
144 System Functions

Forth Programmer’s Handbook
Subsequently, you must use FALIGNED following any reference to
MY-FLOATS. For example, to print them, you could write:

: SHOW-FLOATS (--) MY-FLOATS FALIGNED
 10 0 DO DUP I FLOATS + F@ F. LOOP DROP ;

A potential simplification would be to start with FVARIABLE:

FVARIABLE MY-FLOATS 9 FLOATS ALLOT

This version of MY-FLOATS is guaranteed to return a float-aligned
address. ANS Forth cautions that the use of ALLOT or , following a
VARIABLE or FVARIABLE does not necessarily allocate space contiguous
to the variable’s data space. But situations in which this is problematic
are very rare. We advise checking your system’s documentation in this
regard. If the spaces will be contiguous, you can use this simpler
approach (which avoids invoking FALIGNED every time you reference
your array) and simply document your dependence on contiguity.

Glossary

F! (f-addr —); (F: r —) Floating
Store the floating-point value r at f-addr. In single-stack implementa-
tions, f-addr must be on top of the stack. “F-store”

F@ (f-addr —); (F: — r) Floating
Fetch the value stored at f-addr to the floating-point stack. “F-fetch”

DF! (df-addr —); (F: r —) Floating Ext
Store the floating-point value r as a 64-bit IEEE double-precision num-
ber at df-addr, rounding if the internal representation has more preci-
sion. In single-stack implementations, df-addr must be on top of the
stack. “D-F-store”

DF@ (df-addr —); (F: — r) Floating Ext
Fetch the 64-bit IEEE double-precision number at df-addr, convert to
internal representation and place on the floating-point stack, rounding
if the internal representation has less than 64-bit precision. “D-F-fetch”

SF! (sf-addr —); (F: r —) Floating Ext
Store the floating-point value r as a 32-bit IEEE single-precision num-
ber at sf-addr, rounding if the internal representation has more preci-
sion. In single-stack implementations, sf-addr must be on top of the
stack. “S-F-store”
System Functions 145

Forth Programmer’s Handbook
SF@ (sf-addr —); (F: — r) Floating Ext
Fetch the 32-bit IEEE single-precision number at sf-addr, convert to
internal representation and place on the floating-point stack, rounding
if the internal representation has less than 32-bit precision. “S-F-fetch”

5.8.6 Floating-Point Stack Operators

The floating-point stack operators generally correspond to equivalent
operators for the integer data stack. Operators are also provided for
exchanging values between the data and floating-point stacks. Before
coding complicated floating-point stack maneuvers, check your partic-
ular system’s maximum floating-point stack depth—it may be small.
On systems that keep floating-point numbers on the data stack, take
care with the order of floating-point and integer operations.1

Glossary

D>F (d —); (F: — r) Floating
Convert a double-precision integer d to internal floating-point repre-
sentation r and place it on the floating-point stack. “D-to-F”

F>D (— d); (F: r —) Floating
Convert a floating-point number r to a double-precision integer d, dis-
carding the fractional part, and place it on the data stack. “F-to-D”

FDEPTH (— +n) Floating
Return the number +n of values on the floating-point stack. If floating-
point numbers are kept on the data stack, +n is the maximum possible
number of floating-point values given the current data stack depth in
cells. “F-depth”

FDROP (F: r —) Floating
Drop the top item on the floating-point stack. “F-drop”

FDUP (F: r — r r) Floating
Duplicate the top item on the floating-point stack. “F-dupe”

FOVER (F: r1 r2 — r1 r2 r1) Floating
Copy r1 to the top of the floating-point stack. “F-over”

1. These operators function as described even if the system implements the floating-
point stack on the data stack.
146 System Functions

Forth Programmer’s Handbook
FROT (F: r1 r2 r3 — r2 r3 r1) Floating
Rotate the third item to the top of the floating-point stack. “F-rote”

FSWAP (F: r1 r2 — r2 r1) Floating
Exchange the top two items on the floating-point stack. “F-swap”

5.8.7 Floating-Point Arithmetic

The words in this section perform arithmetic on the floating-point
stack. All operations are carried out to the full precision of the imple-
mentation-specific representation of a floating-point number.

Glossary

F* (F: r1 r2 — r3) Floating
Multiply r1 by r2, giving r3. “F-star”

F** (F: r1 r2 — r3) Floating Ext
Raise r1 to the power r2, giving the result r3. “F-star-star”

F+ (F: r1 r2 — r3) Floating
Add r1 to r2, giving the sum r3. “f-plus”

F- (F: r1 r2 — r3) Floating
Subtract r2 from r1, giving the difference r3. “F-minus”

F/ (F: r1 r2 — r3) Floating
Divide r1 by r2, giving the quotient r3. “F-slash”

FABS (F: r1 — r2) Floating Ext
Return r2, the absolute value of r1. “F-abs”

FLOOR (F: r1 — r2) Floating Ext
Round r1 toward negative infinity to the next integral value, giving r2.
“floor”

FMAX (F: r1 r2 — r3) Floating
Return r3, the greater of r1 and r2. “F-max”

FMIN (F: r1 r2 — r3) Floating
Return r3, the lesser of r1 and r2. “F-min”
System Functions 147

Forth Programmer’s Handbook
FNEGATE (F: r1 — r2) Floating
Return r2, the negation of r1. “F-negate”

FROUND (F: r1 — r2) Floating
Round r1 to the nearest integral value, giving r2. “F-round”

FSQRT (F: r1 — r2) Floating Ext
Return r2, the square root of r1. An error may occur if r1 is less than
zero. “F-square-root”

5.8.8 Floating-Point Conditionals

Conditional tests of floating-point numbers consume their argu-
ment(s) on the floating-point stack and return a truth flag to the data
stack. The word F~ provides both exact and near-equality testing. F~ is
usually preferable to F0= because a floating-point number may fail to
be zero by an infinitesimal amount.

Glossary

F0< (— flag); (F: r —) Floating
Return true if and only if r is less than zero. “F-zero-less-than”

F0= (— flag); (F: r —) Floating
Return true if and only if r is exactly equal to zero. (See the definition
of F~ below.) “F-zero-equals”

F< (— flag); (F: r1 r2 —) Floating
Return true if and only if r1 is less than r2. “F-less-than”

F~ (— flag); (F: r1 r2 r3 —) Floating Ext
Test for equality or near equality, on an absolute or relative basis. If
the increment r3 is positive, return true if and only if the absolute
value of [r1 - r2] is less than r3. If the increment r3 is zero, return true
if and only if r1 and r2 are exactly identical (be aware that some imple-
mentations may encode positive zero and negative zero differently). If
the increment r3 is negative, return true if and only if the absolute
value of [r1 - r2] is less than the absolute value of r3 times the sum of
the absolute values of r1 and r2. “F-proximate”
148 System Functions

Forth Programmer’s Handbook
5.8.9 Logarithmic and Trigonometric Functions

The words in this section provide a full set of logarithmic, exponential,
and trigonometric functions. All angles are in radians. The function
FSINCOS is a little unusual: it returns the sine and the cosine of the
given angle (cosine on top). FSINCOS and FATAN2 are complementary
operators that convert angles to 2-vectors and vice versa. They cor-
rectly handle the conversion even when the tangent of the angle would
be infinite. The pair of values returned by FSINCOS is a Cartesian unit
2-vector in the direction of the given angle, measured counter-clock-
wise from the positive X-axis. FATAN2 takes arguments in the same
order, converting a 2-vector back to a scalar angle. For all principal
angles (-pi to +pi radians), the phrase FSINCOS FATAN2 is an identity
operation within the accuracy and range of the operators. The phrase
FSINCOS F/ is functionally equivalent to FTAN, but is useful only over a
limited range of angles, whereas FSINCOS and FATAN2 are useful for all
angles.

Glossary

FACOS (F: r1 — r2) Floating Ext
Return r2, the principal radian angle (zero to +pi) whose cosine is r1. “F-
A-cos”

FACOSH (F: r1 — r2) Floating Ext
Return r2, the floating-point value whose hyperbolic cosine is r1. “F-A-
cosh”

FALOG (F: r1 — r2) Floating Ext
Raise 10 to the power r1, giving r2. “F-A-log”

FASIN (F: r1 — r2) Floating Ext
Return r2, the principal radian angle (-pi/2 to +pi/2) whose sine is r1.
“F-A-sine”

FASINH (F: r1 — r2) Floating Ext
Return r2, the floating-point value whose hyperbolic sine is r1. “F-A-sine-H”

FATAN (F: r1 — r2) Floating Ext
Return r2, the principal radian angle (-pi/2 to +pi/2) whose tangent is
r1. “F-A-tan”
System Functions 149

Forth Programmer’s Handbook
FATAN2 (F: r1 r2 — r3) Floating Ext
Return r3, the principal radian angle (-pi to +pi) whose tangent is r1/r2.
The values r1 and r2 may be, but need not be, components of a unit
vector. An error will occur if both r1 and r2 are zero (vector of zero
magnitude). “F-A-tan-two”

FATANH (F: r1 — r2) Floating Ext
Return r2, the floating-point value whose hyperbolic tangent is r1. “F-A-
tan-H”

FCOS (F: r1 — r2) Floating Ext
Return r2, the cosine of the radian angle r1. “F-cos”

FCOSH (F: r1 — r2) Floating Ext
Return r2, the hyperbolic cosine of r1. “F-cosh”

FEXP (F: r1 — r2) Floating Ext
Raise e (2.71828…) to the power r1, giving r2. “F-E-X-P”

FEXPM1 (F: r1 — r2) Floating Ext
Raise e (2.71828…) to the power r1 and subtract one, giving r2. This
function provides increased accuracy over FEXP when the argument r1

is close to zero. “F-E-X-P-M-one”

FLN (F: r1 — r2) Floating Ext
Return r2, the natural logarithm of r1. “F-L-N”

FLNP1 (F: r1 — r2) Floating Ext
Return r2, the natural logarithm of (1 + r1). This function provides
increased accuracy over FLN when the argument r1 is close to zero. “F-L-
N-P-one”

FLOG (F: r1 — r2) Floating Ext
Return r2, the base-ten logarithm of r1. “F-log”

FSIN (F: r1 — r2) Floating Ext
Return r2, the sine of the radian angle r1. “F-sine”

FSINCOS (F: r1 — r2 r3) Floating Ext
Return r2 (sine) and r3 (cosine) of the radian angle r1. “F-sine-cos”
150 System Functions

Forth Programmer’s Handbook
FSINH (F: r1 — r2) Floating Ext
Return r2, the hyperbolic sine of r1. “F-sine-H”

FTAN (F: r1 — r2) Floating Ext
Return r2, the tangent of the radian angle r1. “F-tan”

FTANH (F: r1 — r2) Floating Ext
Return r2, the hyperbolic tangent of r1. “F-tan-H”

5.8.10 Address Management

The floating-point command set introduces three new data types:
internal floating point, 32-bit IEEE single-precision floating point, and
64-bit IEEE double-precision floating point. An application creating
data structures using any of these types should use the support words
described in this section to manage the address space. For example,
the length of an internal floating-point number should always be
referred to indirectly with words such as FLOAT+ or FLOATS, as the size
may vary in different implementations.

When defining custom data structures, be aware that CREATE does not
necessarily leave the data-space pointer aligned for the various float-
ing-point data types. You can ensure alignment by explicitly specifying
it both at compile time and at execution time. An example from Stan-
dard Forth is:

: FCONSTANT (F: r --) CREATE FALIGN HERE
 1 FLOATS ALLOT F! DOES> (F: - r) FALIGNED F@ ;

In this example, the FALIGN after CREATE ensures that the address
returned by HERE is float-aligned for the F! operation. FALIGN may have
needed to reserve extra data space to do this, so, when an example of
FCONSTANT is executed (using the code following DOES>) and the exam-
ple’s address is returned, the word FALIGNED is used to skip any such
extra space and access the floating-point value properly with F@.

In many implementations, alignment of floating-point data types
requires nothing more than ordinary cell alignment. In such systems,
words such as FALIGN and FALIGNED may simply be aliases for ALIGN
and ALIGNED. An application should not rely on this equivalence, how-
ever, and should use the floating-point words in this section.
System Functions 151

Forth Programmer’s Handbook
Glossary

FALIGN (—) Floating
If the data-space pointer is not float aligned, reserve enough data
space to make it so. “F-align”

FALIGNED (addr — f-addr) Floating
Return f-addr, the first float-aligned address equal to or greater than
addr. “F-aligned”

FLOAT+ (f-addr1 — f-addr2) Floating
Add the size in bytes of a floating-point number to f-addr1, giving f-
addr2. “float-plus”

FLOATS (n1 — n2) Floating
Return n2, the size in bytes of n1 internal floating-point numbers.

DFALIGN (—) Floating Ext
If the data-space pointer is not double-float aligned, reserve enough
data space to make it so. “D-F-align”

DFALIGNED (addr — df-addr) Floating Ext
Return df-addr, the first double-float-aligned address equal to or
greater than addr. “D-F-aligned”

DFLOAT+ (df-addr1 — df-addr2) Floating Ext
Add the size in bytes of a 64-bit IEEE double-precision floating-point
number to df-addr1, giving df-addr2. “D-float-plus”

DFLOATS (n1 — n2) Floating Ext
Return n2, the size in bytes of n1 64-bit IEEE double-precision floating-
point numbers. “D-floats”

SFALIGN (—) Floating Ext
If the data-space pointer is not single-float aligned, reserve enough
data space to make it so. “S-F-align”

SFALIGNED (addr — sf-addr) Floating Ext
Return sf-addr, the first single-float-aligned address equal to or
greater than addr. “S-F-aligned”

SFLOAT+ (sf-addr1 — sf-addr2) Floating Ext
Add the size in bytes of a 32-bit IEEE single-precision floating-point
number to sf-addr1, giving sf-addr2. “S-float-plus”
152 System Functions

Forth Programmer’s Handbook
SFLOATS (n1 — n2) Floating Ext
Return n2, the size in bytes of n1 32-bit IEEE single-precision floating-
point numbers. “S-floats”

5.8.11 Custom I/O

The input number conversion routines in the text interpreter and the
standard output words F., FE., and FS. can be used for most floating-
point I/O, but in some cases more control over the process is desir-
able. The words >FLOAT (for input) and REPRESENT (for output) can be
used as the basis for custom I/O routines. The input word >FLOAT is
more flexible than the text interpreter routines (for example, an expo-
nent marker E or e is not required), but it cannot distinguish between
integers and floating-point numbers; it assumes the input string is to
be converted as a floating-point number, if possible. >FLOAT is defined
broadly to permit valid floating-point input from many standard pro-
gramming environments.

Glossary

>FLOAT (c-addr u — true | false); (F: — r |) Floating
Attempt to convert the string specified by starting address c-addr and
length u to internal floating-point representation. If the conversion is
successful, its floating-point value r and true are returned. If it was not
successful, only false is returned. A string of blanks should be con-
verted as floating-point zero. “to-float”

Nearly any reasonably constructed string will convert. Decimal base is
assumed. A valid number has a significand and an optional exponent.
The significand has an optional sign and at least one digit, with or
without a decimal point. The exponent, if present, is signified by E, e,
D, or d followed by an optional integer (signed or unsigned), or by a
plain + or - followed by an optional integer. >FLOAT will convert all the
following to valid floating-point numbers:

-1.23e-01 -1 .3 5D -6.12+34 7+3 .456- .006 9+00

REPRESENT (c-addr u — n flag1 flag2); (F: r —)1 Floating
Attempt to convert the significand of the floating-point number r. At

1. For single-stack systems, the order of the input arguments to REPRESENT is r on the
bottom followed by c-addr and u (top).
System Functions 153

Forth Programmer’s Handbook
c-addr, place an ASCII representation of the u most-significant digits
of the significand. The string is to be interpreted as a decimal fraction,
with an implied decimal point to the left of the first digit; the first
digit is zero only if all digits are zero. Return on the stack the resulting
decimal base exponent n, the sign of the floating-point number as
flag1 (true if r was negative), and a valid-result flag2 (true if r was in
the implementation-defined range of valid floating-point numbers).
The significand is rounded to u digits using the round-to-nearest-inte-
ger rule, and n is adjusted as necessary after the rounding.

If flag2 is false, n, flag1, and the contents of c-addr are implementation
specific. However, the string at c-addr shall consist of displayable
characters. For example, a system might return the informative mes-
sages +infinity or nan (“not a number”) to c-addr.
154 System Functions

Forth Programmer’s Handbook
6. THE FORTH INTERPRETER AND COMPILER

Forth is primarily a development environment, usually presented as a
fairly complete “integrated development environment” including pro-
gramming tools, libraries, compiler, assembler, and in some cases an
editor. This section describes features specific to the Forth compiler
as well as Forth’s uniquely powerful ability to construct data objects
of various types. Unlike more conventional compilers, the Forth com-
piler uses a text interpreter that is also available to the programmer
for application use. Moreover, the tools used inside the Forth compiler
and interpreter are available, so you can modify and extend both.

6.1 THE TEXT INTERPRETER

The text interpreter in Forth is used for terminal interaction and for
processing text on disk (either in direct execution or in compilation). A
brief description of its operation is given in Section 1.1.5. This section
covers the text interpreter in more detail and discusses ways the pro-
grammer may use the text interpreter in application routines.

References

Text interpreter, Section 1.1.5

6.1.1 Input Sources

The text interpreter always interprets from an input buffer (also called
an input stream), which may or may not be a physically separate loca-
tion. There are up to four sources for input: the user input device
(almost always a keyboard), a character string in memory, a text file,
and a block file. The default source is the keyboard. All systems have a
keyboard input buffer, typically 80 characters long. All systems can
also treat a character string in memory as an input buffer, if given the
string’s address and length. When systems with source code in text
files interpret from files, the current line in the current file is the input
buffer. When systems with source code in blocks interpret from
blocks, the current block (1024 bytes) is the input buffer.
The Forth Interpreter and Compiler 155

Forth Programmer’s Handbook
Early Forth systems that ran without a host OS always kept source in
blocks, and as more Forths were developed to run under operating
systems many implementors and users found blocks to be convenient.
In the 21st century most Forths use text files, but some block-based
Forths still exist. The words BLK and SOURCE-ID constitute a bridge
between block-oriented and text file-oriented Forths.

The word SOURCE-ID returns a value that identifies the input source,
unless it is a block. On systems that implement blocks, the variable
BLK contains the block number that is the current input source, or zero
if the input is not a block. On systems with all four inputs, checking
BLK first and then SOURCE-ID will uniquely identify the input. See Table
11 below:

Glossary

BLK (— a-addr) Block
Return the address of a cell containing zero or the number of the
mass-storage block being interpreted. If BLK contains zero, the input
source can be identified by SOURCE-ID. “B-L-K”

SOURCE-ID (— n) Core Ext, File
Return a value indicating the current input source. The value is 0 if the
source is the user input device, -1 if the source is a character string, a
fileid if the source is a file, and undefined if the source is a block.

References

File-based disk access, Section 5.5
Block-based disk access, Appendix C

Table 11: Identifying the input source

Input Source SOURCE-ID BLK @

User Input Device (keyboard) 0 0

Character String -1 0

File Text file fileid 0

Block (undefined) block number
156 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
6.1.2 Input Source Management

The word QUIT is the basic idle behavior of the terminal task that con-
trols the user input device. Executing QUIT makes the user input device
the current input source and awaits a line of input into the keyboard
buffer. When the input is received, the character pointer >IN is set to
zero and interpretation begins. If interpretation completes normally,
the system-defined prompt is displayed (typically OK) and QUIT awaits
the next line of input.

EVALUATE directs interpretation to take place from a specified charac-
ter string. When EVALUATE is executed, the address and count of a char-
acter string must be on the stack. EVALUATE saves the current input
source specification, makes the character string the input buffer, sets
>IN to zero, and begins interpretation. When the parse area is empty
(there are no more words to be interpreted in the string), the prior
input source is restored.

Interpretation from a file usually is done with INCLUDE-FILE, INCLUDE,
or INCLUDED. These and other file-handling words are described in
detail in Section 5.5 of this manual.

Interpretation from blocks is done with LOAD or THRU. See Appendix C.2
for details of block reading and writing.

The support words in the following list are connected with text inter-
pretation. In general, they are used at the system level to create cus-
tom text interpretation words and will not be needed by an
application; for example, all standard source-selection words—such as
EVALUATE, INCLUDE, and LOAD—automatically save and restore the cur-
rent input source specification. Some lower-level words—such as
READ-FILE and READ-LINE—do not, and might need explicit uses of
SAVE-INPUT and RESTORE-INPUT.

Glossary

>IN (— a-addr) Core
Return the address of a cell containing the offset, in characters, from
the start of the input buffer to the start of the current parse area. “to-in”

EVALUATE (i*x c-addr u — j*x) Core, Block
Save the current input source specification. Set SOURCE-ID to -1. Make
the string at c-addr, whose length is u, the input source and input buf-
The Forth Interpreter and Compiler 157

Forth Programmer’s Handbook
fer, set >IN to zero, and interpret. When the parse area is empty,
restore the prior input source specification. Other stack effects are
due to the word(s) that were EVALUATEd.

QUIT (i*x —); (R: j*x —) Core
Terminate execution of the current word (and all words that called it).
Clear the return and data stacks. No indication is given to the terminal
that a QUIT has occurred. Enter interpretation state and begin an infi-
nite loop of awaiting a line of text from the input source and interpret-
ing it. QUIT is the default idle behavior for terminals.

REFILL (— flag) Block Ext, Core Ext, File Ext
Attempt to fill the input buffer from the input source, returning a flag
that is true if successful. If no input is available from the current
source, return false.

If the input source is the keyboard, await a line of input. If successful
(a line of zero characters—i.e., only CR was pressed—is successful), set
>IN to zero and return true.

If the input source is a string from EVALUATE, return false and take no
other action.

If the input source is a block, make the next block the input source
and buffer by adding one to BLK and setting >IN to zero. Return true if
the new value of BLK is a valid block number, otherwise false.

If the input source is a text file, attempt to read the next line from the
file. If successful, make the result the current input buffer, set >IN to
zero, and return true; otherwise, return false.

RESTORE-INPUT (xn … x1 n — flag) Core Ext
Attempt to restore the input source specification to the state
described by the parameters on the stack. The number and content of
the parameters are system dependent. Return true if the input source
cannot be so restored. It is an error if the input source represented by
the arguments is not the same as the current input source (i.e., SAVE-
INPUT and RESTORE-INPUT are intended for re-positioning within a
given source, not for switching between sources).

SAVE-INPUT (— xn … x1 n) Core Ext
Save n parameters (and n itself) describing the state of the current input
source specification for later use by RESTORE-INPUT. The number and
content of the parameters are system dependent. The parameters will
158 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
include the value of >IN and others that are input-source dependent.

SOURCE (— c-addr u) Core
Return the address and length of the input buffer.

References

Text interpretation and >IN, Section 1.1.5

6.1.3 Parsing Text in the Input Stream

The normal behavior of a Forth system is to await text from some
source (e.g., the keyboard or a text file) and process it. Text in the
input stream may be parsed—that is, processed—by searching for a
delimiter used to segregate portions of the input stream.

WORD and PARSE are the main workhorses of Forth’s text interpreter.
They are very similar but have two critical differences.

Both of these parsing words fetch characters from the input stream,
starting at the offset given by the user variable >IN, until reaching a
specified delimiter. This input stream, or current input source, is nor-
mally the terminal input buffer although it can be in other places, as
described in Section 6.1.1. Both words also expect the delimiter charac-
ter in the low-order byte of the top item that is on the stack. The area
where the characters are placed is not initialized, although WORD will
insert one trailing blank after the string.

The differences between WORD and PARSE are:

• WORD skips any leading occurrences of this character, searching
for a non-delimiter character. If one is found, it is placed in a
temporary storage area. Succeeding characters are then moved
into this area until a delimiter character is encountered or until
the specified end of the string is reached, terminating the opera-
tion. It returns the address of the string as a counted string (Sec-
tion 3.1.3), that is, its first byte contains the length of the string.
Therefore, the maximum length of a string that can be parsed by
WORD is 255 characters.

WORD is frequently followed by COUNT (Section 3.1.3) to convert
a counted string to a plain character string, returning its
address and length on the stack.
The Forth Interpreter and Compiler 159

Forth Programmer’s Handbook
• PARSE does not skip leading delimiters. If it encounters a leading
delimiter, it will simply report having found a zero-length string.
And PARSE returns the address and length of the actual found
string, which may be of any length.

The maximum length of a string to be parsed depends on the input
source. If the source is the keyboard, the maximum length is set by the
size of the terminal input buffer. If the source is a block, the maxi-
mum length is 1024. If the source is a file, the string expires at the end
of the file.

The storage space used by these parsing words may also be used by
other Forth functions, such as output number conversion words. As a
result, when you use a parsing word to pick up a string from the input
stream, you should finish working with it or promptly move it to
another area (such as PAD) to avoid data corruption.

As an example of the use of these words, consider the following sim-
ple TEST examples:

: TEST1 (--) 32 WORD COUNT TYPE ;
: TEST2 (--) 32 PARSE TYPE ;

Both words would be used in the following way:

TESTn ABC (cr) ABC ok

Results from TEST1 and TEST2 will be identical providing there are no
leading spaces; if there are leading spaces, however, TEST2 will find an
empty string and the interpreter will abort when it encounters the
string ABC (presumably an undefined word).

Because using a space for a delimiter is so common, the word BL (for
blank) is provided to return the ASCII value for the space character.
Thus, phrases such as 32 WORD can be replaced by BL WORD, which
many find to be more readable.

COUNT may also be used with strings other than counted strings. The
behavior of COUNT is to fetch the byte at the current address and return
both the byte and the address incremented by one. Thus, successive
calls to COUNT “walk” through the string, returning each character and
incrementing the address.
160 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
Glossary

BL (— char) Core
Return char, the ASCII character value for a space (20H). “B-L”

PARSE <text> (char — c-addr n) Core Ext
Parse text to the first instance of char, returning the address and
length of a temporary location containing the parsed text.

WORD <text> (char — c-addr) Core
Skip any leading occurrences of the delimiter char. Parse text delim-
ited by char. Return c-addr, the address of a temporary location con-
taining the parsed text as a counted string. If the parse area is empty
or contains only the delimiter(s), the resulting string length is zero.

References

Current input stream, Section 6.1.2
Fetching input characters to PAD, Section 5.4.1
>NUMBER, Section 3.6.1
Text interpreter, Section 1.1.5
Character string output (TYPE), Section 5.4.2

6.1.4 Dictionary Searches

It must be possible to look up words and their definitions in the dic-
tionary. Forth provides several words to do this; each performs a
search and returns information about a word, typically its execution
token. Such searches are used by the text interpreter and colon com-
piler.

The word ' (“tick”) performs a dictionary search for the word that
immediately follows it in the current input stream.

The phrase:

' <name>

…when typed at a terminal or executed interpretively in source text,
pushes onto the stack the execution token of name if name can be
found in the dictionary. If name cannot be found, an abort will occur
with an error message such as:
The Forth Interpreter and Compiler 161

Forth Programmer’s Handbook
<name> ?

The precise definition of the “execution token” returned from diction-
ary searches varies, depending on the implementation, so the standard
word >BODY is provided. Given an execution token, it will always return
a parameter field (content) address. On many systems >BODY is a no-
op.

The most common uses of ' for dictionary searches are:

• To learn whether a word has been defined.

• To find the location of a word, using >BODY (for example, to DUMP
its contents).

• To obtain the location of a data object (again, using >BODY) whose
run-time behavior is other than returning its address.

Note that ' (tick) reads forward in the input stream when it’s executed.
Like most other Forth words, if you use it inside a definition it will be
executed when the definition is executed. If you want to compile the
execution token of a word as a literal inside a definition, you should
use the related word [']. Because ['] is a compiler directive, it is inap-
propriate to use it interpretively (outside a colon definition).

The following are dictionary search words:

Glossary

' <name> (— xt) Core
Search the dictionary for name. If name is found, return its execution
token; otherwise, abort. “tick”

['] <name> (— xt) Core
Similar to ' but must be used in a colon definition. ['] finds name in
the dictionary and compiles its execution token as a literal. If name is
not in the dictionary, ['] aborts. ['] is an IMMEDIATE word (executed,
rather than compiled by the colon compiler; see the references sec-
tion). The stack behavior shown is for the run-time code, which is that
of a literal. “bracket-tick”

>BODY (xt — a-addr) Core
Given a word’s execution token, return the address of the start of that
word’s parameter field. “to-body”
162 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
FIND (c-addr — c-addr 0 | xt 1 | xt -1)Core, Search
Attempt to find a definition whose name is in a counted string at
c-addr. If the definition is not found, return the address and zero; if
the definition is found, return its execution token. If the definition is
immediate, also return +1; otherwise, return -1.

References

Execution tokens, Section 5.1.1
['], Section 6.3.3
IMMEDIATE words, Section 6.4.1
Word lists, Section 6.6
WORD, Section 6.1.3

6.1.5 Text Interpreter Conditionals

It is useful to control the logical flow when compiling an application.
You may wish, for example, to load a certain source code file only if a
flag indicates the need for that file. A number of Forth words provide
this kind of control. These words are almost always used outside of def-
initions, but they all are IMMEDIATE (i.e., they execute when encountered
during compilation) and so may be used in definitions, too, if needed.

Here are two examples:

Example 1:

<flag> [IF] INCLUDE <file1> [THEN]

This will load the file file1 if the flag is true (non-zero). This can be
used to manage various options at compile time.

Example 2:

[DEFINED] <word in file1> [IF] INCLUDE <file2>
[ELSE] INCLUDE <file3> [THEN]

Depending on the presence or absence of a particular word, file2 or
file3 may be loaded. This is useful when managing source files that
may contain or need optional features.
The Forth Interpreter and Compiler 163

Forth Programmer’s Handbook
Glossary

[DEFINED] <name> (— flag) Common usage
Search the dictionary for name. If name is found, return true; other-
wise, return false. “bracket-defined”

[UNDEFINED] <name> (— flag) Common usage
Search the dictionary for name. If the word is found, return false; oth-
erwise, return true. “bracket-undefined”

[IF] (flag —) Tools Ext
Begin an interpretive branch. If the flag is true, do nothing—i.e., con-
tinue interpretation. If the flag is false, parse and discard words from
the parse area1 (including nested occurrences of [IF] … [THEN]
clauses) until either the word [ELSE] or the word [THEN] has been
parsed and discarded. Because [IF] discards [ELSE] (if the latter is
present) when flag is false, interpretation will continue after [ELSE]
with the contents of the [ELSE] clause. “bracket-if”

[ELSE] (—) Tools Ext
Parse and discard words from the parse area1 (including nested occur-
rences of [IF] … [THEN] clauses) until the word [THEN] has been
parsed and discarded. [ELSE] is only executed if the flag for the asso-
ciated [IF] was true; therefore, it always discards the words between
[ELSE] and [THEN]. “bracket-else”

[THEN] (—) Tools Ext
Take no action. [THEN] performs no function but must exist in the
source code in order to mark the end of parsing for an [IF] or [ELSE].
“bracket-then”

References

REFILL, Section 5.5.3

6.2 DEFINING WORDS

Forth provides a basic set of words used to define objects of various
kinds. As with other features of Forth, this set of commands may be
expanded. Some defining words that are standard in all Forth systems
are introduced in Section 2, such as : (colon), CONSTANT, VARIABLE,

1. If the parse area becomes exhausted, it is refilled as with REFILL.
164 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
VALUE, and others. In this section, we discuss basic principles of defin-
ing words and how you can create custom defining words.

6.2.1 Creating a Dictionary Entry

A word is defined when an entry is created in the dictionary. CREATE is
the basic word that does this; it (or its components) may be used by :,
CODE, VARIABLE, CONSTANT, and other defining words to perform the ini-
tial functions of setting up a dictionary entry. CREATE behaves roughly
as follows:

1. Memory is checked to see if a minimum amount remains. If not,
there may be an abort. At the same time, the data-space pointer
is aligned to an even cell address, if the platform the system is
running on requires it.

2. WORD fetches the next word in the input stream. A dictionary
entry is created for this word, including a pointer to the previous
entry in this word list.

3. The code field of the new word is set to point to the run-time
code of CREATE, which will push the address of this word’s
parameter field onto the stack when the word is executed. How-
ever, no data space is allocated by CREATE.

Other defining words that use CREATE may reset the new word’s code
field to define different run-time behavior by using the words ;CODE or
DOES>. Figure 18 shows a dictionary entry built by CREATE.

Figure 18. Dictionary entry built by CREATE

The word UNUSED places on the stack the number of bytes left in the
memory area where dictionary entries are constructed. On some sys-
tems, this region of memory is also used for other purposes: the dic-
tionary may start at the bottom and grow towards high memory, with

LOCATE link count name code
field

parameter
field

previous definition

control bits

code to push the address of the
parameter field onto the stack no space

allocated (yet)
The Forth Interpreter and Compiler 165

Forth Programmer’s Handbook
something else starting at the top of this region and growing towards
low memory. On such systems, UNUSED may give different answers at
different times, even though the dictionary pointer is unchanged.

Glossary

ALLOT (u —) Core
If n is greater than zero, reserve n address units of data space. If n is
less than zero, release |n| address units of data space. If n is zero,
leave the data-space pointer unchanged

If the data-space pointer is initially aligned and n is a multiple of the
cell size, the data space pointer will remain aligned after the ALLOT.

CREATE <name> (—) Core
Construct a dictionary entry for name. Execution of name will return
the address of its data space. But no data space is allocated for name,
that must be done by subsequent actions such as ALLOT.

UNUSED (— u) Core Ext
Return u, the number of bytes remaining in the memory area where
dictionary entries are constructed.

References

:, Section 6.2.2
CODE, Section 6.2.3
CONSTANT, Section 2.3.2.2
ERASE, BLANK, FILL, Section 3.4
VARIABLE, Section 2.3.2.1

6.2.2 Colon Definitions

The defining word : (colon) is discussed briefly in Section 1.1.7, and
examples appear in other sections. In this section, we describe the use
and behavior of this important defining word in more detail.

The basic form of a : definition is:

: <name> <action> ;

When the colon is executed, the system enters a compilation state. A
dictionary entry is created for the word name. action represents a list
166 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
of previously defined words that will be executed in sequence when-
ever name is invoked. The ; terminates the definition and returns the
system to interpretation state.

The variable STATE contains the compilation-state flag. The value of
STATE is true (non-zero) when compiling (e.g., between : and ;), and is
false (zero) when interpreting. STATE is only changed by the following
seven standard words: :, ;, ABORT, QUIT, :NONAME, [, and]. Programs
that comply with Standard Forth may not modify STATE directly.

Like other defining words, : has two types of behavior—one for com-
pile time (its defining behavior) and another for run time (the instance
behavior of words it is used to define):

• The defining behavior of : constructs a dictionary entry (e.g., by
using CREATE) and begins compiling. It also smudges the name so
the word will not inadvertently compile a reference to itself. (The
word RECURSE may be used if the definition of a word must call
itself.)

• The instance behavior of a word defined by : is to execute the
words that form the body of the word’s definition.

The ; ends compilation and compiles a reference to the word EXIT (on
most indirect-threaded implementations), or a return instruction or
equivalent, depending on the implementation. The effect is to return
to the calling environment.

Most of the words that make up the content of a definition are not exe-
cuted during compilation; instead, references to them are compiled in
the parameter field of the definition. The exception to this are com-
piler directives or literals. These generally have both compile-time and
run-time behaviors, just as : and ; do.

Every colon definition requires a minimum of three components: a
colon, a name, and a semicolon. Such a minimum definition (com-
monly called a null definition) executes properly but does no real work.
But it has useful purposes; for example, to provide placeholder defini-
tions for routines to be written later, or to mark a location in the dic-
tionary as the beginning of an overlay area.

It is possible to create colon-type definitions without associated
names. This is an advanced technique not commonly used in a Forth
application but, on rare occasions, it can be useful. The word that
The Forth Interpreter and Compiler 167

Forth Programmer’s Handbook
makes nameless definitions is :NONAME and the syntax is simply:

:NONAME <action> ;

A piece of code created this way is an isolated fragment; it cannot be
found in the dictionary and has no referenceable name to cause it to
execute. A :NONAME definition returns the execution token of the com-
piled code that is on the stack at the time the nameless definition is
created. You must take action at that time to store the execution token
in a useful place, such as in a variable or other data structure. :NONAME
is mainly used to build definitions attached via their execution tokens
to mechanisms such as execution vectors or push buttons.

The execution token may be placed on the stack as soon as :NONAME
starts compiling. This can lead to subtle errors. For example:

35 :NONAME LITERAL . ;
. 35

The result is not the xt of the nameless definition but the number you
intended to compile as the literal—because :NONAME left the xt on the
stack above the 35. Because of details like this, even many experienced
Forth programmers avoid using :NONAME.

Glossary

: <name> (—) Core
Create a definition for name, called a colon definition. Enter compila-
tion state and start compiling the definition. The run-time behavior of
name will be determined by the previously defined words that fol-
low—those are compiled into the body of the definition. name cannot
be found in the dictionary until the definition is ended. At run time,
the stack effects of name depend on its behavior. “colon”

:NONAME (— xt) Core Ext
Create an execution token xt and place it on the stack. Enter compila-
tion state and start compiling the definition. The execution behavior
of xt will be determined by the words compiled into the body of its
definition. This definition may be executed by the phrase xt EXECUTE.
“colon-no-name”

; (—) Core
End the current definition, allow it to be found in the dictionary and
enter interpretation state. If the data-space pointer is not aligned,
168 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
reserve enough data space to align it. “semi-colon”

RECURSE (—) Core
Append the execution behavior of the current definition to the current
definition, so that it calls itself recursively.

References

Forth virtual machine, Section 1.1.7
Alignment, Section 2.3.3
Compiler directives, Section 6.4
Execution tokens, Section 5.1.1
EXIT, Section 4.9
EXECUTE, Section 5.1.1
Overlays, Section 6.5
Program structures, Section 4
STATE, Section 6.3.1

6.2.3 Code Definitions

The form of a CODE definition is:

CODE <name> <assembler instructions> <code-ending>

The word CODE performs the following functions at assembly time:

1. Construct a standard dictionary entry for name.

2. Set the execution token for name to point to name’s parameter
field.

3. Select the ASSEMBLER word list.

The words used inside a CODE definition are executed directly. This has
the effect of assembling machine instructions into the parameter field
of the word being defined. There is nothing analogous to the compila-
tion state that exists between : and ;. When high-level Forth words are
encountered, they are executed directly as well. Thus, when used in a
CODE definition, words such as SWAP and DUP manipulate the stack dur-
ing assembly.

Macros can be defined as colon definitions containing assembler
words, provided you first select the ASSEMBLER word list. This works
The Forth Interpreter and Compiler 169

Forth Programmer’s Handbook
because of the normal consequence of putting executable words in a
colon definition: they will be executed when the definition is executed.
Thus, one 8051 assembler defines:

\ Subtract without borrow

: SUB (r1 r2 --) C CLRB SUBB ;

The new “mnemonic,” used in the form:

<r1> <r2> SUB

…will assemble instructions that clear the carry bit before subtracting
r2 from r1.

Assembler mnemonics, addressing modes, and conventions are cov-
ered in the documentation for your Forth system.

6.2.4 Custom Defining Words

One of the most powerful capabilities in Forth is the ability to define
new defining words. Thus, the programmer may create new data types
with characteristics peculiar to the application, new generic types of
words, and even new classes of words with specified behaviors com-
mon to each class.

The programmer must specify two separate behaviors when creating a
custom defining word:

• The defining behavior of the defining word (creating the diction-
ary entry, allocating memory, storing parameters, etc.).

• The instance behavior (the action to be performed by words cre-
ated by the new defining word).

In cases discussed in following sections, defining behavior is
described in high-level Forth. Several methods for specifying run-time
behavior are also discussed.

6.2.4.1 Basic Principles of Defining Words

In Forth, a defining word will create a new dictionary entry when exe-
cuted. All words defined by the same defining word share a common
defining and instance behavior.
170 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
For example, VARIABLE is a defining word. All words defined by
VARIABLE (instances of VARIABLE) share two common characteristics:

• Defining behavior: Each has one cell allotted in which a value may
be stored. (Some systems may initialize this cell to zero.)

• Instance behavior: When executed, each of these words pushes
onto the stack the address of its one-cell area.

On the other hand, all words defined by CONSTANT—which is another
defining word—share two other behaviors:

• Defining behavior: Each is associated with the single-precision
value that was on the stack when CONSTANT executed.

• Instance behavior: When a word defined by CONSTANT executes, it
pushes its value on the stack.

All defining words must have a defining behavior and an instance
behavior. In the examples above, the defining behavior relates to the
physical construction of the word and is determined when the word is
compiled. The instance behavior describes what all defined words of
that type do when executed.

6.2.4.2 Constructing Custom Defining Words

There are two ways to create new defining words in Forth. When using
DOES>, the defining behavior is described in high-level Forth. When
using ;CODE, the run-time behavior is described in assembler code. The
basic principles are the same.

The general definition of a defining word looks like:

: <name> <defining behavior> <transition word>
 <instance behavior> <ending>

The transition word ends the specification of compile-time behavior
and begins the specification of run-time behavior. There are two such
transition words: ;CODE begins run-time behavior described in code
(assembler), whereas DOES> begins run-time behavior described in
high-level Forth. Each of these transition words requires a different
ending; in the case of DOES>, it is ; (semi-colon); in the case of ;CODE, it
is an implementation-defined code ending followed by END-CODE.

The exact behavior of these two words is discussed in the following sec-
The Forth Interpreter and Compiler 171

Forth Programmer’s Handbook
tions. The description of compile-time behavior is the same, regardless
of which transition word is used. In fact, if you change the transition
word and run-time behavior from DOES> plus high-level to ;CODE plus
equivalent code, no change to the compile-time behavior is necessary.

The compile-time portion of a defining word must contain CREATE (or a
defining word that calls CREATE) to create the dictionary entry. If one
or more parameters are to be compiled, or if space for variable data is
to be allocated, it is convenient to use a previously defined defining
word to handle that.

Every defining word must provide space for data or code belonging to
each instance of the new class of words it is used to define. For example,
when a variable is defined, a cell is allocated for its data space. If more
space is needed, the usual approach is to use CREATE followed by ALLOT.

After a new defining word has been created, it can be used to create
specific instances of its class, with the syntax:

<parameters> <defining word> <instance1>
<parameters> <defining word> <instance2>

…and so forth. The instance1 and instance2 are names that would be
specified in an application. Any parameters depend on the defining
word’s requirements and they are specific to each instance.

When a defining word is executed, it may be followed by any number of
words, such as , (to compile a single-precision value) or C, (to compile
an eight-bit value) to fill the allotted storage area with explicit values.

Glossary

;CODE (—) Tools Ext
Begin run-time behavior, specified in assembly code. “semi-colon-code”

DOES> (—) Core
Begin run-time behavior, specified in high-level Forth. At run time, the
address of the parameter field of the instance of the defining word is
pushed onto the stack before the run-time words are executed. “does”
172 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
References

, and C,, Section 2.3.3
ALLOT, Section 2.3.3
CONSTANT, Section 2.3.2
CREATE, Section 2.3.2
DOES>, Section 6.2.4.3
VARIABLE, Section 2.3.2.1

6.2.4.3 High-level Defining Words

New defining words whose instance behavior is specified in high-level
Forth may be created by a technique similar to that used for ;CODE. For
these definitions, the word DOES> terminates the defining behavior
portion of the definition and introduces the instance behavior portion.
The form of a DOES> definition is:

: <name> <defining behavior words>
 DOES> <instance behavior words> ;

After such a definition is compiled, name can be used to define a new
instance of this class of words. Here the run-time behavior is
described in high-level Forth.

At run time, the address of name’s parameter field is pushed onto the
stack before the run-time words are executed. This provides easy
access to the parameter field.

An example of a DOES> definition is the word MSG, which might be used
to type short character sequences:

: MSG (--) CREATE
 DOES> (--) COUNT TYPE ;

Here is an example of how MSG would be used (assuming HEX base):

MSG (CR) 2 C, 0D C, 0A C,

(CR) is a specific instance of the MSG class: it uses the same code—the
DOES> phrase—as other words defined by MSG, but uses that code to
emit its own unique character string.

The values that comprise the string are kept in the parameter field of
the word—in this case, (CR)—that was defined by MSG. At execution
The Forth Interpreter and Compiler 173

Forth Programmer’s Handbook
time, the defining word’s DOES> puts the address of the instance’s
parameter field (used here to store the string) on the stack to serve as
the parameter for COUNT, which returns the string’s length and byte
address as arguments for TYPE.

Figure 19. Structures defined by using DOES>

Figure 19 shows a possible implementation of DOES> that works like
this:

1. The : compiler executes DOES>. The compile-time behavior of
DOES> is to compile code that resets the code field of the new
word being defined (the instance of the defining word containing
DOES>) to point to the cell following the compiled address of
(;CODE).

2. After the address of (;CODE), DOES> compiles a subroutine call to
the run-time code for DOES>. The compiler then proceeds to finish
compiling addresses in the new defining word. (The use of a sub-
routine call in the defining word is system dependent. However,
all implementations of DOES> compile something in the defining
word to allow the run-time code for DOES> to find the defining
word’s high-level code without losing the defined word’s data
space address.) When the new defining word is executed, its last
step will be to change the execution token of the entry it creates
to point to the jump-to-subroutine created by DOES> in the defin-
ing word.

3. When one of the instances created by the new defining word is
executed, the virtual machine jumps to the subroutine call in the

LOCATE link count (CR)
code
field 2 0D 0A

previous definition

control bits
contains the value

of the variable

LOCATE link count MSG
xt

(;CODE)

previous definition

control bits

JSR xt
(DOES>)

xt
COUNT

xt
TYPE

code field set by DOES>
174 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
defining word. Then the subroutine call saves the address of the
cell following itself, in some CPU-dependent way, and jumps to
the run-time code for DOES>. That code uses the address from the
subroutine linkage to find the execution token for the defining
word. The run-time code for DOES> also pushes the address of the
defined word’s parameter field onto the data stack.

References

, and C,, Section 2.3.3
CONSTANT, Section 2.3.2.2
CREATE, Section 2.3.3
TYPE, Section 5.4.2

6.3 COMPILING WORDS AND LITERALS

A compiling word stores addresses or values into the dictionary and
allots space for definitions and data.

A literal is a number compiled directly into a definition or in some
other unnamed form. Covered in this section are several Forth words
for compiling literals, including LITERAL and ['].

References

CODE, Section 6.2.3
CONSTANT, Section 2.3.2.2
CREATE, Section 2.3.3
LITERAL, Section 6.3.2

6.3.1 The Forth Compiler

When a high-level definition is created in the dictionary for a given
name, it is the task of the Forth compiler to produce a series of execut-
able references, one for each of the previously compiled words that
appears in the body of name’s definition. The word COMPILE,
(“compile-comma”) is a generic word used by the compiler to create
those executable references. COMPILE, is usually invoked after the
compiler finds a word in the dictionary. It expects the execution token
of a word to be on the stack and it adds the behavior of that word to
The Forth Interpreter and Compiler 175

Forth Programmer’s Handbook
the definition currently being compiled. But the compiler must also
handle two special cases that differ from references to previously
compiled words.

The first case occurs when numbers are included in a high-level defini-
tion. The compiler handles numbers much like the standard Forth text
interpreter does. When a dictionary search fails, the compiler attempts
to convert the ASCII string into a number. When conversion succeeds,
the number is compiled in-line with a reference to code that pushes
the number’s binary value onto the stack at run time. When the
numeric conversion fails, the conversion word aborts and prints an
error message.

The second special case occurs with words that must be executed at
compile time by the compiler. Such words are called compiler direc-
tives. IF, DO, and UNTIL are examples of compiler directives. After the
word is found in the dictionary, the compiler checks the precedence
bit in the header of the word’s dictionary entry. If the precedence bit is
set (i.e., 1), the word is executed. If the precedence bit is reset (i.e., 0), a
reference to the word is compiled. The precedence bit of any word
may be set by placing IMMEDIATE directly after the word’s definition.

Additionally, sometimes it is necessary to explicitly force the system
into interpretation or compilation state. This is done by the words [
(enter interpretation state, pronounced “left-bracket”) and] (enter
compilation state, pronounced “right-bracket”). These words set the
value of a system variable called STATE. STATE is true (non-zero) when
in compilation state and is false (zero) otherwise. The only other
words that modify STATE are : (colon), ; (semicolon), ABORT, QUIT, and
:NONAME. It is a violation of Standard Forth to modify the value of
STATE directly.

The most common use of [and] is to leave compile mode temporarily
to perform some run-time operation at compile time. For example, in a
definition containing numbers most naturally thought of in decimal,
suppose you wish to refer to an ASCII code in hex:

: GAP (n) 10 0 DO [HEX] 0A [DECIMAL]
 EMIT LOOP ;

Because the words that control BASE aren’t IMMEDIATE, it is necessary
to leave compile mode and execute HEX before compiling the hex code.
[is an IMMEDIATE word which leaves the compiler and resumes inter-
176 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
pretation.] returns to compile mode.

Figure 20. Action of the Forth compiler

BEGIN

Get next word and try to look
it up in the dictionary.

Execute it.

Try to convert the
string to a number.

Issue "unknown
word" message.

 Compile
literal.

Issue "stack
empty" message.

AGAIN
Endless loop back to BEGIN

Immediate?

Found?no yes

Success?yes

Reset the stacks and
interpreter.

ABORT

Compile
reference to it.

yes

Stack
underflow?

no

yes

no

no
The Forth Interpreter and Compiler 177

Forth Programmer’s Handbook
Glossary

COMPILE, (xt —) Core Ext
Append the execution behavior of the definition represented by the
execution token xt to the execution behavior of the current definition.
“compile-comma”

STATE (— a-addr) Core, Tools Ext
Return a-addr, the address of a cell containing the compilation-state
flag: a non-zero value (interpreted as true) when in compilation state,
false (zero) otherwise.

[(—) Core
Enter interpretation state. [is an immediate word. “left-bracket”

] (—) Core
Enter compilation state. “right-bracket”

References

ABORT, Section 5.3
Forth virtual machine, indirect-threaded implementations, Section 1.1.7
Colon definitions, Section 6.2.2
Compiler directives, Section 6.4
Dictionary searches, Section 6.1.4
IMMEDIATE, Section 6.4.1
Input number conversion, Section 3.6.1

6.3.2 Literals and Constants

When the Forth compiler encounters a number in a : definition, the
number is converted to binary and is compiled as a literal. The com-
piled form of a literal in a : definition has two parts: the number itself
and a reference to code which, when executed, will push the number
onto the stack. When Forth is compiling a definition and a number is
encountered, this form is automatically compiled. Other ways in which
a literal in a definition may be generated are discussed in the following
section, but this is the most common situation.

On many systems, the size of a literal is optimized by the compiler; for
example, a literal less than 256 will be compiled as a byte. Some opti-
mizing compilers are able to incorporate short literals into instruc-
178 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
tions, thereby avoiding the need to push them on the stack.

A literal, which requires both an in-line number and a reference to run-
time code for it, it may be larger than a constant, which needs only the
reference. Therefore, a generic number that is used frequently (e.g.,
more than six times) should be defined as a constant to save space.
There is not much difference in the times required to execute a con-
stant and a literal. Numbers with specific meanings (e.g., 86400
CONSTANT SECONDS/DAY) should always be defined as constants for pro-
gram readability.

The word LITERAL compiles into a definition the value that was on the
stack at compile time. When the definition is executed, that value will
be pushed onto the stack. The compiled result of LITERAL is identical
to that of a literal number, described in the previous section. LITERAL
is useful for compiling a reference to an address or number that is
computed at compile time.

A common use of [and] (leaving and entering compiling state) com-
bined with LITERAL is to compile the results of complex calculations
that only need to be performed once. As a trivial example, disk status
information might be stored in the third cell of an array of disk data
named DISK. A word to retrieve that information could be:

: STATUS [DISK 2 CELLS +] LITERAL @ ;

The [stops compilation, and] restarts compilation. During this hia-
tus, the words DISK 2 CELLS + are interpreted and executed, leaving on
the stack the address of the status cell, which after compilation
resumes is compiled into the definition by LITERAL. If the calculations
are in an inner loop, the time savings can be large compared to per-
forming them at run time.

The word 2LITERAL functions exactly the same as LITERAL but requires
two values on the stack at compile time and will return those values,
in the same order on the stack, at execution time.

SLITERAL is for use with strings. This word requires an address and
length of a string on the stack at compile time. The string is compiled
into the definition and, at execution time, SLITERAL returns the
address where the string was compiled and its length. See Section
6.3.4 for a fuller description.
The Forth Interpreter and Compiler 179

Forth Programmer’s Handbook
Glossary

LITERAL (— x) Core
At compile time, remove the top number on the stack and compile it
into the current definition. At run time, return the number to the
stack.

2LITERAL (— x1 x2) Double
At compile time, remove the top two items on the stack and compile
them into the current definition. At run time, return the items to the
stack in the same order. “two-literal”

References

[and], Section 6.3.1

6.3.3 Compiling Execution Tokens

The word ['] (“bracket-tick”) is used inside a definition to compile as
a literal the execution token of the word that follows it at compile
time. The most common use of ['] is to obtain an execution token
that will be stored in a DEFER (described in Section 5.1.2). Consider the
following example:

DEFER TYPE
: PRINTER (--) ['] (PRINTER) IS TYPE ;
: DISPLAY (--) ['] (DISPLAY) IS TYPE ;

...where the words (PRINTER) and (DISPLAY) are driver-level words
that route strings to a printer or display, respectively. Given these def-
initions, typing PRINTER or DISPLAY routes the output from TYPE to the
appropriate device.

References

['], Section 5.1.2

6.3.4 Compiling Strings

SLITERAL is the low-level compiling word used by S", C", and similar
string-handling words. Just as LITERAL compiles into a definition the
180 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
number found on the stack at compile time and returns that number
at execution time, SLITERAL compiles into a definition a string charac-
terized by an address and length on the stack at compile time and
returns the string’s address and length at execution time. The address
at compile time is not the same as the address at execution time—the
former typically is an address in the input source being interpreted
(e.g., a source file), and the latter is an address connected with the def-
inition using SLITERAL.

Consider how you might define the word S" to begin compiling a
string, terminated by a second quote, which will leave the string’s
address and count on the stack at execution time. It could be used as
follows:

: ALARM-MESSAGE S" Too Hot!" TYPE ;

A possible definition for S" would be:

: S" [CHAR] " WORD COUNT POSTPONE SLITERAL ;
IMMEDIATE

When S" executes (at compile time, as it is marked IMMEDIATE), the
phrase [CHAR] " returns the ASCII value for the quote character, which
is passed to WORD for use as the delimiter. WORD parses the input stream
and returns the address of a counted string in the input buffer con-
sisting of all the characters between the S" (the name of the executing
word) and the delimiting ". All spaces are included, even leading
spaces, because a space is not the delimiter in this case. COUNT con-
verts the counted string address to a character string address and
length; these two parameters are passed to SLITERAL, which compiles
the string into the definition. The POSTPONE command preceding
SLITERAL causes SLITERAL’s compilation behavior to occur rather than
its execution behavior. When ALARM-MESSAGE executes, the run-time
behavior of SLITERAL returns the address and count of the stored mes-
sage Too Hot! for TYPE to display.

Glossary

SLITERAL (— c-addr u) String
Compile into a definition a string characterized by the starting
address and length on the stack at compile time. At run time, return
the string’s address and length to the stack. In general, the run-time
address will not be the same as the compile-time address. “S-literal”
The Forth Interpreter and Compiler 181

Forth Programmer’s Handbook
References

Defining words, Section 6.2
String comparisons, Section 3.5
POSTPONE, Section 6.4.1
Strings in data structures, Section 3.3

6.4 COMPILER DIRECTIVES

A compiler directive in Forth is a word that is executed at compile time,
i.e., during a : compilation. Many such words exist: DO; LOOP and +LOOP;
BEGIN and UNTIL; IF, ELSE, and THEN; literals; and others. It is rare that a
user needs to add compiler directives; it is not difficult, but requires
mastery of IMMEDIATE and POSTPONE.

Some compiler directives have only compile-time behavior (such as
BEGIN). Other directives need to perform some actions at compile time
and other actions at run time. For example, at compile time DO must
mark the position to which LOOP or +LOOP will return; at run time, it
must push the index and limit for the loop onto the return stack.

These functions are managed by defining (usually with CODE) the run-
time activity as a separate word and having the compile-time defini-
tion, which is IMMEDIATE, compile the address of the run-time code (in
addition to its other activities).

6.4.1 Making Compiler Directives

IMMEDIATE is used directly after a definition. It signals the compiler
that this definition is to be executed at compile time (when all non-
immediate words are being compiled). This is done by setting the new
word’s precedence bit (usually the high-order bit in the count field).

POSTPONE is used inside IMMEDIATE definitions. It has the opposite func-
tion from IMMEDIATE. Used in the form POSTPONE <name>, it causes the
compilation behavior of name, rather than the execution behavior, to
be added to the current definition. POSTPONE can be used with
IMMEDIATE words (such as compiler directives) and with non-immedi-
ate words, as shown in the following examples.
182 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
Consider a common definition of BEGIN:

: BEGIN HERE ; IMMEDIATE

This definition of BEGIN is simply an IMMEDIATE version of HERE. The
difference is that, when HERE appears in a normal definition, its
address is compiled; it will push the value of the dictionary pointer1

onto the stack when the word that contains HERE is executed. BEGIN, on
the other hand, compiles nothing; it pushes the dictionary pointer
onto the stack at compile time to serve as the address needed by UNTIL
(or a similar structure word) to compile a conditional return to that
location.

Structure words such as IF provide classic examples of the use of
POSTPONE. Most of these words have a run-time behavior we usually
think of. For example, IF checks the truth of the top stack item and
conditionally branches. But there is also a compile-time behavior for
IF, which is to compile a reference to its run-time behavior and to pro-
vide for the branching associated with the structure.

If the run-time behavior is defined as a word called (IF), we could
define the compiler directive IF this way:

: IF (-- addr)
 POSTPONE (IF) HERE 0 , ;
IMMEDIATE

When executed during compilation of a word, this IF will compile the
reference to (IF) and leave a one-cell space in the definition, placing
the address of that cell on the stack as shown in Figure 21. Subsequent
execution of ELSE or THEN will resolve the branch by storing an appro-
priate offset in that space.

1. Strictly speaking, HERE pushes on the stack the address of the next available loca-
tion in data space. For implementations that intermingle dictionary entries and data
space (a common strategy), it’s also the next location in the dictionary. If data space
is separate, BEGIN is defined differently.
The Forth Interpreter and Compiler 183

Forth Programmer’s Handbook
Figure 21. Compile-time action of IF

As a second example, suppose you often use the phrase … ?DUP IF …
in definitions and you want to create a word ?IF that performs both
functions. Here is how ?IF would need to be defined:

: ?IF POSTPONE ?DUP POSTPONE IF ; IMMEDIATE

?IF is an IMMEDIATE word because it needs to set up a conditional
branch at compile time. However, we do not want the run-time behav-
ior for ?DUP and IF to execute at compile time; instead, we want these
words’ compilation behaviors to occur. Hence, each must be preceded
by POSTPONE. ?DUP is non-immediate, and IF is IMMEDIATE, but the syn-
tax for POSTPONE is identical.

POSTPONE is very similar to ['] except, whereas ['] compiles as a lit-
eral the execution token of the word that follows so the address will
be pushed onto the stack at run time, POSTPONE lays down a pointer to
the execution token so the word can be executed by the Forth virtual
machine.

The glossary below describes the principal compiler directives. They
are discussed elsewhere, but here we describe their behavior as com-
piler directives rather than as programming elements.

Glossary

AGAIN (—) Core Ext
At compile time, compile an unconditional backward branch to the
location on the control-flow stack (usually left there by BEGIN; see Sec-
tion 6.4.2). At run time, execute the branch.

IF(rest of head) code field POSTPONE
xt

(IF)
xt

(HERE)
literal

0
xt
,

xt
EXIT

(head, etc.) (first part of definition) xt
(IF) 0 (rest of definition)

address on stack

this compiles
this

compiles
addr left
on stack
184 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
ELSE (—) Core
At compile time, originate the true clause branch and resolve the false
clause branch. It is assumed there is a branch origin on the control
stack, usually left there by IF. Provide the location following ELSE as
the destination address for the forward conditional branch originated
by IF. Place a new forward reference origin on the control stack, mark-
ing the beginning of an unconditional branch at the end of the true
clause (this will later be resolved by THEN). At run time, execute the
unconditional branch to skip the false clause.

IF (x —) Core
At compile time, place a forward reference origin on the control stack,
marking the beginning of a conditional branch. At run time, if x is zero
take the forward branch to the destination that will have been sup-
plied (e.g., by ELSE or THEN); otherwise, continue execution beyond the
IF.

THEN (—) Core
At compile time, provide the location beyond THEN as the destination
address for the forward branch origin found on the control stack. This
origin normally will have been placed there by ELSE if there was a false
clause or by IF if there was no false clause. At run time, simply con-
tinue execution.

REPEAT (—) Core
At compile time, resolve two branches, usually set up by BEGIN and
WHILE. In the most common usage, BEGIN leaves a destination on the
control-flow stack and WHILE places an origin under BEGIN’s destina-
tion. Then REPEAT compiles an unconditional backward branch to the
destination location following BEGIN and provides the location follow-
ing REPEAT to serve as the destination address for the forward condi-
tional branch originated by WHILE.

At run time, execute the unconditional backward branch to the loca-
tion following BEGIN.

UNTIL (x —) Core
At compile time, compile a conditional backward branch to the loca-
tion on the control-flow stack, usually left there by BEGIN. At run time,
if x is zero, take the backwards branch; otherwise, continue execution
beyond the UNTIL.
The Forth Interpreter and Compiler 185

Forth Programmer’s Handbook
WHILE (x —) Core
At compile time, place a new unresolved forward reference origin on
the control stack under the topmost item, which is usually a destina-
tion left by BEGIN. At run time, if x is zero, take the forward branch to
the destination that will have been supplied (e.g., by REPEAT) to resolve
WHILE’s origin; otherwise, continue execution beyond the WHILE.

IMMEDIATE (—) Core
Make the most recent definition an immediate word. When the com-
piler encounters an immediate word, it causes it to execute at that
time rather than compiling a reference to it.

POSTPONE <name> (—) Core
At compile time, add the compilation behavior of name—rather than
its execution behavior—to the current definition. Usually used in
IMMEDIATE definitions.

References

Colon definitions, Section 6.2.2
DO … LOOP, program structure words, Section 4.5
Literals, Section 6.3.2
The Forth compiler, Section 6.3.1
Use of BEGIN, Section 4.4
Word lists, Section 6.6
['], Section 6.3.3
Compiler directives, Section 6.4

6.4.2 The Control-flow Stack and Custom Compiling Structures

The standard branching constructs in Forth (IF … ELSE … THEN, BEGIN
… UNTIL, BEGIN … AGAIN, and DO … LOOP) are examples of control-flow
words. In direct management of control flow, every branch must termi-
nate at some destination. An origin (abbreviated orig in Table 12) is
the location of the branch itself; a destination (dest in Table 12) is
where control will continue if the branch is taken. A natural implemen-
tation to manage control flow uses a stack to remember the origin of
forward branches and the destination of backward branches. This is
the control-flow stack in Forth. How it is implemented is system depen-
dent, and generally is not of concern to the user; in virtually all imple-
mentations, it is the data stack at compile time.
186 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
This section describes additional primitive words which directly
access the control-flow stack. With them, a programmer can create
branching structures of any degree of complexity. The abilities
required are compilation of forward and backward conditional and
unconditional branches, and compile-time management of branch ori-
gins and destinations. These are provided by just three words: AHEAD,
CS-PICK, and CS-ROLL. Table 12 summarizes the compilation behavior
of these and of other basic Forth words that affect control flow.

All other branching words—such as WHILE, REPEAT, and ELSE—can be
defined in terms of the primitive words in Table 12. For example:

: ELSE (addr1 -- addr2) \ Resolve IF, set up for THEN

 POSTPONE AHEAD \ Set up forward branch

 1 CS-ROLL \ Get addr of IF’s branch

 POSTPONE THEN ; \ Resolve IF’s branch

IMMEDIATE

In this definition, the phrase POSTPONE AHEAD marks the origin of an
unconditional branch (around the “false clause”) to be taken at the end

Table 12: Summary of compile-time branch words

Word Control-flow stack Function

IF (— orig) Marks the origin of a
forward conditional branch.

THEN (orig —) Resolves the branch originated
by IF or AHEAD.

BEGIN (— dest) Marks the destination of a back-
ward branch.

AGAIN (dest —) Resolves a backward uncondi-
tional branch.

UNTIL (dest —) Resolves a backward conditional
branch.

AHEAD (— orig) Marks the origin of a
forward unconditional branch.

CS-PICK (i*x u — i*x xu) Copies item on control-flow
stack.

CS-ROLL (i*x u — (i-1)*x xu) Reorders items on control-flow
stack.
The Forth Interpreter and Compiler 187

Forth Programmer’s Handbook
of the “true clause.” This will be resolved later by the THEN at the end of
the IF statement. Because POSTPONE AHEAD places one item on the con-
trol-flow stack, the phrase 1 CS-ROLL (the equivalent of SWAP) is needed
to restore the previous origin placed there by the IF. Next, POSTPONE
THEN compiles the branch resolution for this origin, providing entry to
the “false clause” following ELSE if the conditional branch at IF was
taken.

Glossary

AHEAD (— orig) Tools Ext
At compile time, begin an unconditional forward branch by placing
orig (the location of the unresolved branch) on the control-flow stack.
The behavior is incomplete until the orig is resolved, e.g., by THEN. At
run time, resume execution at the location provided by the resolution
of this orig.

CS-PICK (i*x u — i*x xu) Tools Ext
Place a copy of the uth control-stack entry on the top of the control
stack. The zeroth item is on top of the control stack; i.e., 0 CS-PICK is
equivalent to DUP and 1 CS-PICK is equivalent to OVER. “C-S-pick”

CS-ROLL (i*x u — (i-1)*x xu) Tools Ext
Move the nth control-stack entry to the top of the stack, pushing down
all the control-stack entries in between. The zeroth item is on top of
the stack; i.e., 0 CS-ROLL does nothing, 1 CS-ROLL is equivalent to SWAP,
and 2 CS-ROLL is equivalent to ROT. “C-S-roll”

References

Indefinite loops, Section 4.4
DO … LOOPs, Section 4.5
IF … ELSE … THEN, Section 4.3

6.5 OVERLAYS

Because of Forth’s compilation speed, there is rarely need for a
dynamic run-time overlay capability. Many resident applications have
several functionally independent subsets, however, and it is conven-
tional to organize these as mutually exclusive overlays, any one of
which may be loaded into each terminal’s private dictionary. This is
done by explicit command. Once loaded, an overlay remains resident
188 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
until replaced by another.

Examples of such overlay categories in a business environment might
include order entry, payroll, and general ledger. In a scientific labora-
tory, there may be several data acquisition and analysis modes.

Overlays are enabled with MARKER. The phrase MARKER <name> creates a
dictionary entry for name. When name is executed, it will discard the
definition name and all words defined after name in a user’s partition.
The user’s dictionary pointer will be reset to the last definition in the
vocabulary before name. Because the dictionary pointer is reset, the
dictionary is truncated spatially as well as logically. Other system-
dependent actions may be taken as well, such as restoration of inter-
rupt vectors (see your product documentation).

MARKER has two uses:

• To discard only part of your definitions. For example, when test-
ing, you may wish to reload only the last block, not your entire
application.

• To create additional levels of overlays.

Suppose your application includes an overlay called GRAPHICS. After
GRAPHICS is loaded, you want to be able to load one of two additional
overlays, called COLOR and B&W, creating a second level of overlay. Here
is the procedure to follow:

1. Define a marker as the final definition of GRAPHICS, using any
word you want as a dictionary marker. For example:

MARKER OVERLAY

Preferably, such a definition would be placed at the bottom
of the GRAPHICS load block.

2. Execute OVERLAY and then redefine it (as it forgets itself) on the
first line of the source code of each level-two overlay. For
instance,

(COLOR) OVERLAY MARKER OVERLAY

Thus, when you execute the phrase:

INCLUDE COLOR

…the system will forget any definitions which may have been compiled
after GRAPHICS and will restore the marker definition of OVERLAY in the
The Forth Interpreter and Compiler 189

Forth Programmer’s Handbook
event you want to load an alternate level-two definition, such as B&W.

By using different names for your markers, you may create any num-
ber of overlay levels.

Glossary

MARKER <name> (—) Core Ext
Create a dictionary definition for name, to be used as a deletion
boundary. When name is executed, remove the definition of name and
all subsequent definitions from the dictionary. Restore all dictionary
allocation and search order pointers to the state they had just prior to
the definition of name.

6.6 WORD LISTS

In general, we speak of the dictionary as a single searchable list of def-
initions. However, in many systems several such lists can be searched
independently. These are called “word lists.” Word lists have three
principal uses:

• In the resident system, to segregate special-purpose words such
as those in the ASSEMBLER to allow them to have the same names
as standard Forth words.

• In a target compiler environment where two types of CPU exist,
to segregate target versions of FORTH and ASSEMBLER words from
the host versions.

• In applications running in the host system, to isolate particular
groups of words for security or other purposes.

ANS Forth guarantees there will be at least eight word lists available to
the user. Dictionary searches proceed from one word list to another in a
specified sequence. This mechanism allows you to control which list or
lists are searched. Within a word list, the search is from newest to oldest.

6.6.1 Basic Principles

The standard word lists provided by typical Forth systems are:

FORTH
190 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
ASSEMBLER (on most systems)
EDITOR (on systems with an internal editor)

Other lists may be created, as described below. The FORTH word list
contains most familiar words such as DUP, SWAP, DO, etc. Another word
list on most systems, ASSEMBLER, contains words used to assemble
machine code. EDITOR contains the commands for editing source text.

The use of separate word lists makes it possible, for instance, for the
word I to supply a loop index in one context (FORTH), to insert a string
in another context (EDITOR), or to name a register in yet another
(ASSEMBLER).

When the Forth interpreter receives a word, whether it is one you type
at the keyboard or one it gets from a file, it looks for that word in an
ordered sequence of word lists. That sequence is called the search
order. A word will not be found unless it is contained in a word list in
the search order. The search order may be changed at any time.

A pointer to the first word list in the search order is kept in the vari-
able CONTEXT. To display the search order, use ORDER.

When a Forth word is compiled, it will be placed in the current compi-
lation word list. That word list is not necessarily first in the interpreta-
tion search order. A pointer to the current compilation word list is
kept in the variable CURRENT. Words are provided, as described below,
to manipulate both the interpretation search order and the compila-
tion word list.

You may change the contents of CONTEXT (i.e., select the word list to
search first) simply by naming the desired word list. For example, the
word:

ASSEMBLER

…changes CONTEXT so future searches will begin with the ASSEMBLER
word list. (CONTEXT is set to ASSEMBLER by the defining words CODE and
;CODE.)

Similarly, you may employ the word:

EDITOR

…to set CONTEXT to begin by searching the EDITOR word list. In many
The Forth Interpreter and Compiler 191

Forth Programmer’s Handbook
cases, EDITOR commands are found in FORTH and automatically set
CONTEXT to the EDITOR word list.

The contents of CURRENT, which selects the compilation word list, may
also be changed. The word DEFINITIONS sets CURRENT to the word list
indicated by CONTEXT. For example, in the phrase:

EDITOR DEFINITIONS

…EDITOR sets the value in CONTEXT to be the EDITOR word list.
DEFINITIONS then sets CURRENT also to EDITOR. Thereafter, any future
definitions will be linked according to the EDITOR word list. Subsequent
changes in the search order will change CONTEXT, but CURRENT remains
as set until explicitly changed. When the system starts, or following an
EMPTY, the default word list for both CONTEXT and CURRENT is FORTH.

Invoking the name of a word list always replaces the word list previ-
ously at the head of the search order. To add a word list to the head of
the search order and still retain the previous word list in the search
order, use ALSO (see below) followed by the name of the word list you
want to add.

6.6.2 Managing Word Lists

Here are some words for manipulating word lists:

Glossary

ALSO (—) Search Ext
Duplicate the first word list in the search order, increasing the number
of word lists in the search order by one. Commonly used in the phrase
ALSO name, which has the effect of adding name to the top of the
search order.

ASSEMBLER (—) Tools Ext
Set future dictionary searches to begin with the ASSEMBLER word list
(available on most systems).

CONTEXT (— a-addr) Core
Return a-addr, the address of a cell that contains a pointer to the first
word list in the search order.
192 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
CURRENT (— a-addr) Common usage
Return a-addr, the address of a cell that contains a pointer to the cur-
rent compilation word list.

DEFINITIONS (—) Search
Change the compilation word list to be the same as the current first
word list in the search order. Set a pointer to this word list in the vari-
able CURRENT. Subsequent changes to the interpretation search order
will not affect the compilation word list; this word list remains in
effect until explicitly changed.

EDITOR (—) Tools Ext
Set future dictionary searches to begin with the EDITOR word list.

FORTH (—) Search Ext
Set future dictionary searches to begin with the FORTH word list (which
contains all standard words provided by the system implementation).

ONLY (—) Search Ext
Reduce the search order to the minimum word list(s), usually just FORTH.

ORDER (—) Search Ext
Display the names of all word lists in the search order, in their present
search order sequence. Also display the word list into which new defi-
nitions will be placed (the CURRENT word list).

PREVIOUS (—) Search Ext
Remove the first word list (the one in the CONTEXT position) from the
search order. This may be used to undo the effect of an ALSO.

VOCABULARY <name> (—) Common usage
Create a word list name. Subsequent execution of name replaces the
first word list in the search order with name. When name becomes the
compilation word list, new definitions will be appended to name’s list.

WORDS (—) Tools
Display the names of all words in the first word list of the search order.

6.6.3 Sealed Word Lists

The word list mechanism offers an exceptionally powerful security
technique. You can implement this by setting up a special application
The Forth Interpreter and Compiler 193

Forth Programmer’s Handbook
word list consisting of a limited number of commands guaranteed to
be safe for users. You then ensure that no application word can
change CONTEXT, and that CONTEXT is set so the text interpreter will only
search the application word list.
194 The Forth Interpreter and Compiler

Forth Programmer’s Handbook
7. FORTH CROSS COMPILERS

Early Forth systems were completely self-contained: the Forth on the
computer provided all OS functions, a compiler, an assembler, and
programming environment as well as supporting the application. In
the late 1970s, the advent of small microprocessors and their use on
devices without disks, keyboards, and displays challenged this system
organization, as did the widespread use of commercial host operating
systems on PCs in the 1980s. In response, Forth providers developed
cross compilers which ran on PCs but generated code and provided
testing facilities for embedded microprocessors.

One of the agenda items for further Forth standards development is
addressing issues raised by embedded systems and cross compilers.
This is important, as such systems have always represented a large
body of Forth use. In 1996, FORTH, Inc. and Microprocessor Engineer-
ing Ltd. (MPE) jointly developed a draft standard for such systems and
both companies developed cross compilers based on it. The draft stan-
dard has been through several public review periods and may be
adopted in a future standards process.

Cross compilers following the proposed standard have now been used
for over ten years, by a large number of programmers for widely vary-
ing projects. Cross compilers utilizing the principles discussed in this
section are available from FORTH, Inc. and support a wide range of
microprocessors and microcontrollers.

Many Forth systems are written entirely in Forth (and Forth assem-
blers). Metacompilers are used to generate new kernels for resident
Forths; they use many of the same strategies discussed here.

This section is intended for programmers who wish to learn more
about Forth for embedded systems and about cross compiler or meta-
compiler strategies.
Forth Cross-compilers 195

Forth Programmer’s Handbook
7.1 ISSUES IN CROSS DEVELOPMENT

The following issues are peculiar to cross-development systems:

• What needs to be in the target? On many embedded systems it’s
inappropriate to have a full dictionary, heads, compiler, inter-
preter, etc., resident in the target, as memory may be extremely
limited and the device may have no physical user interface.
Exactly what features are required to support a reasonable devel-
opment cycle?

• What about managing memory spaces? Where does the diction-
ary reside, and how do you manage data space? Developers of
embedded systems must concern themselves with ROM or flash,
RAM, on-chip and external memory, etc.

• How do you manage name-space issues? If the cross compiler
itself is written in Forth, as most are, how do you distinguish the
underlying system’s Forth words from the versions that con-
struct the target or that are only executable in the target?

• How can you run and test code on the target system? One of the
key advantages of Forth programming is its interactive style.
How can this be preserved in the face of the limited facilities pro-
vided by many targets?

All these issues have been addressed satisfactorily. The balance of this
section provides a general overview of the result. Further details about
specific products may be obtained from FORTH, Inc. and MPE, or from
other providers of similar systems.

7.2 HOST AND TARGET ROLES AND FUNCTIONS

Cross development in Forth is best understood by first recognizing
that Forth is composed of:

• words that build and manage definitions and data structures,
and

• all other executable words.

In a cross-development environment, the first set may be confined to
the host, so they are called host functions. The second set, normally
built by the first set, are referred to as target functions.
196 Forth Cross-compilers

Forth Programmer’s Handbook
Host functions include all defining words, “syntactic elements” such
as IF and DO, words such as , (comma), and DOES> that put things in
data structures. Target functions include normally executable words
like + and DUP.

A conventional Forth integrates these two. A cross-development sys-
tem segregates them and manages them quite distinctly. There may be
versions of target words that execute on the host as well as the target.

Host functions are defined using the resident Forth on the host com-
puter, usually a PC running Forth under an OS. Host functions include
special versions of the normal defining words and memory manage-
ment facilities—they are used to construct and manage a target dic-
tionary. A specific subset of these is specifically directed at processing
the source for the purpose of building a program to run in the target.

The target is not required to provide host-type functionality, such as a
text interpreter and compiler, although it may do so.

7.3 MANAGING SCOPES

A scope is defined as the logical space in which a word is visible or can
operate. In this context, the host and target systems require separate
scopes, to distinguish (for example) the DUP used in the host com-
puter’s underlying Forth from the one that executes only on the target,
and the : used to build cross-compiler functions from the one that
builds target definitions.

Cross compilers define the following scopes:

• HOST: This scope provides access to the underlying system’s
Forth, and is used to construct the cross compiler. It’s rarely
used explicitly in programs built for the target, but is available
for special needs.

• INTERPRETER: These words are executed on the host to construct
and manage target definitions and data structures. They include
all defining words plus words such as , (comma). New applica-
tion-specific defining words are also in INTERPRETER scope.

• COMPILER: This is used to make words executed inside TARGET
colon definitions, e.g., to construct flow-of-control structures.

• TARGET: This is the default scope. It contains all words that exe-
Forth Cross-compilers 197

Forth Programmer’s Handbook
cute in the target. They are not guaranteed to be executable on
the host.

By default, new commands belong to the TARGET scope; i.e., they are
compiled onto the target. But after the INTERPRETER command, new
words are added to the host that will be found when the host is inter-
preting on behalf of the target.

If you use any of these selectors to change the default scope, we rec-
ommend that you later use TARGET so subsequent words will again be
compiled to the target.

The compiler directive in force at the time you create a new colon def-
inition is the scope in which the new word will be found. As a trivial
example:

TARGET ok
: Test1 1 . ; ok
Test1 1 ok

INTERPRETER ok
Test1
Error 0 TEST1 is undefined
Ok

Table 13 summarizes the availability of words defined in various
scopes.

Scopes are usually defined by using wordlists and search orders.

Table 13: Availability of words defined in various scopes

If defined in:

Available in these scopes while

interpreting: compiling:

COMPILER Not allowed TARGET

HOST HOST, INTERPRETER,
COMPILER

HOST, INTERPRETER,
COMPILER

INTERPRETER TARGET INTERPRETER

TARGET Not allowed TARGET
198 Forth Cross-compilers

Forth Programmer’s Handbook
7.4 DATA SPACE MANAGEMENT

Target memory space can be divided into multiple sections of three
types, shown in Table 14. Managing these spaces separately provides
an extra measure of flexibility and control, even when the target pro-
cessor does not distinguish code space from data space.

At least one instance of each section must be defined, including its
upper and lower address boundaries, before it is used. Address ranges
for instances of the same section type may not overlap. The syntax for
defining a memory section is:

<low address> <high address> <type> SECTION <name>

An instance becomes the current section of its type when its name is
invoked. The compiler will work with that section as long as it is cur-
rent, maintaining a set of allocation pointers for each section of each
type. Only one section of each type is current at any time.

Multiple sections of a given type enable you to specify on-chip and
external RAM or to handle non-contiguous memory maps. For exam-
ple, you may wish to have a CDATA section in flash containing a ker-
nel and another in RAM where you can download definitions for
testing. When the new definitions are stable, they can be added to the
kernel. Similarly, you might define a small section of UDATA in inter-
nal RAM (perhaps for stacks and system variables) and a larger section
in external RAM.

As an example, consider this report showing the memory allocation

Table 14: Types of memory space in cross compilers

Type Description

CDATA Code space; includes all code plus initialization tables.
May be in PROM or flash. CDATA may not be accessed
directly by standard programs.

IDATA Initialized data space; contains preset values specified at
compile time and instantiated in the target automatically
as part of power-up initialization. It is writable at run
time, so it must be in RAM.

UDATA Uninitialized RAM data space, allocated at compile time.
Its contents cannot be specified at compile time.
Forth Cross-compilers 199

Forth Programmer’s Handbook
for a SwiftX system on an 8051 (a Harvard architecture part with seg-
regated code and data space). It includes code space sections in PROM
and RAM (the latter for testing), as well as internal and external
UDATA sections. The “used” column reports how much of each sec-
tion is occupied by the SwiftX kernel; the remainder is available to the
application.

Start End Size Used Unused Type Name
8000 BFFF 16384 0 16384 CDATA PRAM
0000 7FFF 32768 6868 25900 CDATA PROM
F000 FF7F 3968 47 3921 IDATA EXT-IDATA
C000 EFFF 12288 1672 10616 UDATA EXT-UDATA
0040 007F 64 15 49 UDATA INT-UDATA

7.4.1 Vectored Words

The words used to allocate and access memory are vectored to operate
on the current section of the current type. Using a section-type selec-
tors—CDATA, IDATA, or UDATA—sets the vectors for those words. If you
only have one section of each type, the section names are rarely used;
but, for example, if you have multiple IDATA sections, using the name
specifies where the next data object to be defined will go.

The vectored words are given in the glossary below.

Glossary

ORG (addr —) Cross1

Set the address of the next available location in the current section of
the current section type.

HERE (— addr) Cross

Return the address of the next available location in the current section
of the current section type.

ALLOT (n —) Cross
Allocate n bytes at the next available location in the current section of
the current section type.

1. “Cross” refers to the draft Cross-compiler wordset which is not part of the ANS Forth
standard.
200 Forth Cross-compilers

Forth Programmer’s Handbook
ALIGN (—) Cross
Adjust the space allocation pointer for the current section of the cur-
rent section type to be cell-aligned.

C, (b —) Cross
Compile b at next available location (CDATA and IDATA only).

, (x —) Cross
Compile x at the next available location (CDATA and IDATA only).

7.4.2 Data Types

Target defining words may place their executable components in code
space. Data-defining words such as CREATE—and custom defining
words based on CREATE—make definitions that reference the section
that is current when CREATE is executed.

Because UDATA is only allocated at compile time, there is no compiler
access to it. UDATA is allocated by the defining words themselves; a
summary of defining words is given below. At power-up, UDATA is
uninitialized.

VALUEs must be in IDATA or CDATA, because they are initialized. IDATA is
the normal place; CDATA works only if code space is writable. VARIABLEs
are switch selectable: they are usually in UDATA but can be configured
to be in IDATA and initialized to zero. We don’t specify where
CONSTANTs go because some compilers compile references to CONSTANTs
as literals; for that reason, we follow the rule that they cannot be
changed and do not specify where they go.

The @ and ! words, as well as the string-initialization words FILL, etc.,
may be used at compile time if the destination address is in IDATA. It’s
an ambiguous condition (FORTH, Inc. compilers will abort) to attempt
to access UDATA other than from code executing in the target. If you
have an active cross-target link (XTL), you can read and write target
RAM—but that is achieved by using the host to send commands to the
target.

References

Cross-target links, Section 7.5.
Forth Cross-compilers 201

Forth Programmer’s Handbook
7.4.3 Effects of Scoping on Data Object Defining Words

Defining words other than : (colon) are used to build data structures
with characteristic behaviors. Normally, an application programmer is
primarily concerned with building data structures for the target sys-
tem; therefore, the dominant use of defining words is in the TARGET
scope while in interpreting state. You may also build data objects in
HOST that may be used in all scopes except TARGET; such objects might,
for example, be used to control the compiling process.

Data objects fall into three classes:

• Objects in initialized data memory—e.g., words defined by
CREATE, VALUE, etc., including most user-defined words made with
CREATE … DOES>.

• Objects in uninitialized data memory—e.g., words defined by the
use of VARIABLE, BUFFER:, etc.

• Constants—words defined by CONSTANT or 2CONSTANT.

Unlike target colon definitions, target data objects may be invoked in
interpreting state. However, they may not exhibit their defined target
behavior because that is available only in the target or when you’re
connected to a target by a cross-target link, as described in Section 7.5.

Constants will always return their value; other words will return the
address of their target data space address. IDATA objects may be given
compiled, initial values with , (comma) and C, (c-comma), and you
may also use @ and ! with them at compile time. However, there is no
way to initialize UDATA objects at compile time.

Some special issues arise when creating custom data objects in a
cross-compiled environment: defining words are executed on the host
to create new definitions that can be executed on the target. There-
fore, you must be in the INTERPRETER scope when you create a custom
defining word, and you must be aware of what data space you are
accessing in the new data object.
202 Forth Cross-compilers

Forth Programmer’s Handbook
Consider this example:

INTERPRETER
\ ARRAY is an array of specified size in UDATA.

: ARRAY (n --)
 IDATA CREATE \ New definition

 UDATA HERE OVER ALLOT \ Get addr, allocate space

 IDATA (Loc) , (Size) , \ Save size & address

DOES> (i –- addr) \ Take index, return addr

 2@ ROT MIN + \ Compute indexed address

 ;

TARGET
100 ARRAY STUFF

You must specify INTERPRETER before you make the new defining
word, then return to TARGET to use this word to add definitions to the
target. The INTERPRETER version of DOES> allows you to reference
TARGET words in the execution behavior of the word, as that will be
executed only on the target.

When CREATE (as well as the memory allocation words listed above) is
executed to create the new data object, it uses the current section
type. The default in our practice is IDATA. Defining words that explic-
itly use UDATA (VARIABLE, etc.) do not affect the current section type. If
you wish to force a different section type, you may do so by invoking
one of the selector words (CDATA, IDATA, or UDATA) inside the defining
portion or before the defining word is used. If you do this, you must
assume responsibility for reasserting the default section.

You can control where individual instances of CREATE definitions go,
like this:

IDATA
CREATE BYTES 1 C, 2 C,
UDATA
CREATE STUFF 100 ALLOT

In this case, the data space for BYTES is in initialized data space, but
the data space for STUFF is in uninitialized data space.

CDATA CREATE (followed by data compiled by words such as , and ,") is
useful for defining data structures such as messages or fonts that
won’t be modified at run time.
Forth Cross-compilers 203

Forth Programmer’s Handbook
7.5 INTERACTIVE PROGRAMMING

The most important facility a Forth cross compiler can provide is the
ability to program and test your target interactively. The objective is
always to reproduce as nearly as possible the intimate environment
presented by a resident Forth.

This is done in Forth cross compilers by a facility called a cross-target
link or XTL. This involves a connection with the target, which may be
any available technology: serial line, parallel line, USB, JTAG, etc. It
also requires a tiny amount of code on the target to receive commands
from the host and execute them, and to send requests to the host.

The target needs to be able to:

• Receive a byte from the host and store it at a specified address.

• Interrogate a specified address and send its contents to the host.

• Commence executing at a specified address.

Given these facilities, the host can download either a package of pre-
compiled code or a small set of instructions (such as a single defini-
tion), execute them, and communicate results to the host. The
required footprint for these facilities can be quite small.

Typically, the host compiles a kernel consisting of the facilities listed
above plus a basic set of Forth primitives. This may reside in EEPROM
or flash. Based on this, a link is established with the host, and thereaf-
ter the host can incrementally compile and download individual defi-
nitions, execute definitions, and report results.

The heads of compiled definitions are retained in the host, along with
an image of the target’s CDATA and IDATA. Thus, the host can “know” at
all times what the target’s code and initialized data space contains.

The target may also send commands to the host. Commands such as
KEY, EMIT, ACCEPT, and TYPE can be defined in the target to send a com-
mand byte plus other parameters to the host, requesting the host to
provide appropriate services (e.g., return keyboard data or display a
character string).

Once a kernel has been installed on the target and an XTL link estab-
lished, the programmer has a relationship with the target that’s
almost as intimate and effortless as with a resident Forth. A represen-
204 Forth Cross-compilers

Forth Programmer’s Handbook
tative procedure will flow like this:

• The user types commands, such as FOO 100 DUMP (desiring to dis-
play 100 bytes starting at the address returned by FOO).

• The host’s stack, which contains the specified address and
length, is downloaded to the target.

• The address of the target’s DUMP is found in the host’s image of
the target dictionary.

• The target is requested to begin execution at this address.

• Because the target’s TYPE is programmed to request the host to
display the string, the resulting output appears on the host’s
screen.

• The target’s stack is uploaded to the host.

The result is operationally indistinguishable from interactive debug-
ging on a resident Forth.

A typical cross-development cycle starts with downloading (flashing,
burning, etc.) a basic kernel consisting of support for the XTL and a
representative set of primitives. Thereafter, the programmer can
download and test definitions individually and, as they achieve stabil-
ity, add them to the kernel image. When all application definitions
have been tested, the kernel image includes the entire application.

When debugging of this complete program is finished, it should be
possible to remove the target’s code that supports the XTL and perma-
nently install the final code.

7.6 I/O DRIVERS FOR EMBEDDED SYSTEMS

One of the major differences between programming for an embedded
system and for a resident Forth is that embedded systems typically
run stand-alone with no host OS. Therefore, the programmer is
responsible for writing drivers for any devices attached to the system.
Often these consist of devices designed and developed specifically for
the project, with no prior use or support software. Forth is an ideal
tool in such situations, because its inherently interactive nature plus
an active cross-target link (Section 7.5) make it easy for the program-
mer to debug new hardware.
Forth Cross-compilers 205

Forth Programmer’s Handbook
The general approach to writing drivers in Forth is not significantly
different from writing drivers in assembly language or C: you must
study the documentation for the device in question, determine how to
control the device, decide how you want to use the device for your
application, and then write the code.

A few suggestions may help you take advantage of Forth’s interactivity
and ease of interfacing to various devices. Here we offer some general
guidelines to make writing and testing drivers easier.

1. Name your device registers, usually by defining them as con-
stants. This will help make your code more readable. It will also
help “parameterize” your driver: for example, if you have several
devices that are similar except for their hardware addresses, you
can write the common control code and pass to it a port or regis-
ter address to indicate the specific device, efficiently reusing the
common code.

Special registers associated with other devices may be named at
the beginning of the file containing the driver. For example, the
file containing code for the 68332 Periodic Interval Timer (PIT)
contains:

\ Periodic interrupt control register:

$FFFFFA22 CONSTANT PICR
\ Periodic interrupt timing register:

$FFFFFA24 CONSTANT PITR

2. Test the device before writing a lot of code for it. It may not work,
it may not be connected properly, and it may not work exactly as
the documentation says it should. It’s best to discover these
things before you’ve written a lot of code based on incorrect
information, or have gotten frustrated because your code isn’t
behaving as you believe it should.

If you’ve named your registers and have your target board con-
nected, you can use the XTL to test your device. Memory-mapped
registers can be read or written using C@, C!, @, !, etc. (depending
on the width of the register), and the . (“dot”) command can be
used to display the results. (Usually you want the numeric base
set to HEX when doing this!) For example, to look at the Port A
data register, you could type:

PORTA C@ .

Try reading and writing registers; send some commands and see
206 Forth Cross-compilers

Forth Programmer’s Handbook
if you get the results you expect. In this way, you can explore the
device until you really understand it and have verified that it is at
least minimally functional.

3. Design your basic strategy for the device. For example, if it’s an
input device, will you need a buffer or are you only reading sin-
gle, occasional values? Will you be using it in a multitasked appli-
cation? If so, will more than one task be using this device? In a
multitasked environment, it’s often advisable to use interrupt-
driven drivers so I/O can proceed while the task awaiting it is
asleep and other tasks can run. An interrupt (or expiration of a
count of values read, etc.) can wake the task. Multitasking facili-
ties are very implementation-dependent; see your product docu-
mentation for a discussion of these features.

4. Keep your interrupt handlers simple! If you’re using interrupts,
the recommended strategy is to do only the most time-critical
functions (e.g., reading an incoming value and storing it in a buf-
fer or temporary location), then wake the task responsible for the
device so that task can handle any high-level processing.
Forth Cross-compilers 207

Forth Programmer’s Handbook
208 Forth Cross-compilers

Forth Programmer’s Handbook
8. PROGRAMMING STYLE AND EDITING STANDARDS

In this section, we explore some of the issues that make Forth code
easier to read and to maintain, notably formatting standards and nam-
ing conventions. In addition, we are reprinting a set of “rules for read-
able Forth,” published by Leo Wong on the Internet newsgroup
comp.lang.forth.

Successful Forth programming groups generally acknowledge the
importance of agreeing within the group on a single set of coding stan-
dards. This contributes significantly to long-term code maintainability
and facilitates code-sharing within the group, because all group mem-
bers become comfortable reading the group’s code.

Two sets of source guidelines are provided: one is used by FORTH, Inc.
for file-based source and one is recommended by the Open Firmware
working group for use with Open Firmware. Open Firmware (IEEE Std.
1275-1994) is a Forth-based system for use in boot firmware used on
SPARC systems, PowerPC PCI bus systems, and others. You will notice
that, in Section 8.2, Forth words are spelled in lower case. This is con-
ventional in Open Firmware and some Forth systems, although tradi-
tionally (and elsewhere in this book) upper case has been used for
standard Forth words. This issue should be addressed in your group’s
coding standards. Additional guidelines for BLOCK-based source are
given in Section C.4.

Style and readability are highly subjective matters. We encourage you
to modify the guidelines in this section to suit your own taste and the
consensus of your group. The important thing is to have some set of
standards and follow it consistently!

8.1 FORTH, INC. EDITING STANDARDS

This section describes the source code editing standards used at
FORTH, Inc. to ensure readability and notational consistency across all
Forth systems.
Programming Style 209

Forth Programmer’s Handbook
8.1.1 Stack Effects

1. All colon or code definitions must include a comment identifying
stack parameters on entry and exit. If no stack parameters are
used, an “empty” stack comment is still required.

2. The format of the comment is: (input -- output)
with the rightmost item in each list representing the top of the
stack.

Example 1, input only
: TYPE (addr n --)

Example 2, output only
: -FOUND (-- addr addr' flag)

Example 3, both input and output
CODE @ (addr -- n)

Example 4, no arguments
: NO-OP (--)

3. The stack comment begins one space after the name of the word.
Remember to leave one space after the opening (. The last char-
acter of the comment should be followed by one space and the
terminating parenthesis. Exactly three spaces follow the right
parenthesis before the code begins.

4. The specific description of a stack item should follow these con-
ventions:

addr address
b 8-bit byte
char ASCII character
n single-length number, usually signed
u single-length unsigned number
d double-length signed number
ud double-length unsigned number
flag Boolean truth flag (0=false)

These special cases should be used when appropriate:

c l screen position, in columns and lines
s d n source, destination, count (in that order)
y x 2-vector (for graphics, etc.;

single-precision unless otherwise noted)
f l First, last limits; inclusive
f l+1 First, last limits; exclusive at end

Other special situations may be dealt with similarly if necessary
210 Programming Style

Forth Programmer’s Handbook
to improve clarity, but use single characters where possible.
Remember to describe any special stack notation in the source
comments!

5. Where there are several arguments of the same type and if clarity
demands that they be distinguished, use ' (prime) or suffix
numerals. For example:

CODE RSWAP (n addr addr' -- n addr)

…shows that the address returned is the same as the first one
input.

8.1.2 General Comments

1. All source files should begin with a comment that succinctly
describes the contents of the file. This should be followed by any
discussion that applies to the file as a whole, a list of required
support features (over and above ANS Forth), and a list of words
in this file that are intended for “public” use (as opposed to
words intended for use only within the file as support words).

2. Use a block comment before each closely related group of defini-
tions. It should describe the group as a whole (e.g., assumptions
or rules of usage) and the individual words in the group. A block
comment begins with:

{ --

and ends with:

-- }

3. Comments within definitions (other than stack effects) should
help a reader understand what the code is doing from the appli-
cation perspective, or elucidate any possibly obscure strategy.

good:
177566 (SEND +2) , 177562 (RCV+2) ,

redundant:
DUP 0= ABORT" Value is zero" \ Aborts if zero

not helpful:
TEMP @ (Fetch content of TEMP)

In general, discussions of usage should go in block comments.

Comments should begin with a capital letter and otherwise be
Programming Style 211

Forth Programmer’s Handbook
lower case except as standard usage indicates, e.g.,

(Defining words)

(DLL interface)

8.1.3 Spacing Within Files

1. Blank lines are valuable. Use them to separate definitions or
groups of definitions. Avoid a dense clump of lines with a lot of
blank lines below, unless the clump is a single definition. A blank
line inside a definition is usually not helpful and should be
avoided. Try to leave at least one blank line at the end.

2. Definitions should begin in the left-most column of a line, with
the following exceptions:

• If the definition is prefaced by a bar (|) to make it headless,
the bar should go in the first column followed by one
space. The definition should begin immediately thereafter.

• Two or three related variables, constants, or other data
items may share a line if there is room for three spaces
between them.

• Very short colon definitions may share a line provided they
are closely related, spaced properly internally, and sepa-
rated from each other by at least three spaces.

3. The name of a definition must be separated from its defining
word by only one space. If it is a CONSTANT or other object with a
specified value, the value must be separated from the defining
word by only one space.

4. Individual instructions in a CODE definition must be separated by
three spaces. Components of each instruction must be separated
by only one space. For example:

R0 POPR 1 R0 R0 ADDS R0 PUSHR1

This makes it easy for a person to identify individual instruc-
tions.

5. Second and subsequent lines of colon and CODE definitions must
be indented by multiples of three spaces (e.g., 3, 6, 9). Indenta-
tion beyond one set of three spaces is used to indicate nested
structures.

1. From SwiftX™ for the ARM microcontroller family.
212 Programming Style

Forth Programmer’s Handbook
6. Forth examples in documentation also should conform to these
rules.

8.2 OPEN FIRMWARE CODING STYLE

This section describes the coding style in some Open Firmware imple-
mentations. These guidelines are a “living” document that came into
existence in 1985. By following these guidelines, you will produce code
similar in style to a large body of existing Open Firmware work. This
will make your code more easily understood by others within the Open
Firmware community.

8.2.1 Typographic Conventions

The following typographic conventions are used in this document:

• The underscore symbol _ is used to represent space characters
(i.e., ASCII 0x20).

• The ellipsis symbol … is used to represent an arbitrary amount of
Forth code.

• Within prose descriptions, Forth words are shown in this font.

8.2.2 Use of Spaces

Because Forth code can be very terse, the judicious use of spaces can
increase the readability of your code.

Two consecutive spaces are used to separate a definition’s name from
the beginning of the stack diagram, another two consecutive spaces
(or a new line) are used to separate the stack diagram from the word’s
definition, and two consecutive spaces (or a new line) separate the last
word of a definition from the closing semi-colon. For example:

: new-name__(_stack-before_--_stack-after_)__foo__bar__;
: new-name__(_stack-before_--_stack-after_)
___foo_bar_framus_dup_widget_foozle_ribbit_grindle
;

Programming Style 213

Forth Programmer’s Handbook
Forth words are usually separated by one space. If a phrase consisting
of several words performs some function, that phrase should be sepa-
rated from other words/phrases by two consecutive spaces or a new
line.

: name__(_stack before_--_stack
after_)__xxx_xxx__xxx_xxx__;

When creating multiple-line definitions, all lines except the first and
last should be indented by three spaces. If additional indentation is
needed with control structures, the left indent for each nesting level
should be three spaces to the right of the preceding level’s indent.

: name__(_stack before_--_stack after_)
___xxx…
______xxx…
______xxx…
___xxx
;

8.2.3 Conditional Structures

In if…then or if…else…then control structures that occupy no more
than one line, two spaces should be used both before and after each
if, else, or then.

__if__xxx__then__
__if__xxx__else__xxx__then__

Longer constructs should be structured like this:

<code to generate flag>__if
___<true clause>
then
<code to generate flag>__if
___<true clause>
else
___<false clause>
then
214 Programming Style

Forth Programmer’s Handbook
8.2.4 Finite Loop Structures

In do…loop constructs that occupy no more than one line, two spaces
should be used both before and after each do or loop.

<code to calculate limits>__do__xxx__loop__

Longer constructs should be structured like this:

<code to calculate limits>__do
___<body>
loop

The longer +loop constructs should be structured like this:

<code to calculate limits>__do
___<body>
<incremental value>_+loop

8.2.5 Indefinite Pre-testing Loop Structures

In begin…while…repeat constructs that occupy no more than one line,
two spaces should be used both before and after each begin, while, or
repeat.

__begin__<flag code>__while__<body>__repeat__

Longer constructs:

begin__<short flag code>__while
___<body>
repeat
begin
___<long flag code>
while
___<body>
repeat
Programming Style 215

Forth Programmer’s Handbook
8.2.6 Indefinite Post-testing Loop Structures

In begin…until and begin…again constructs that occupy no more than
one line, two spaces should be used both before and after each begin,
until, or again.

__begin__<body>__until
__begin__<body>__again

Longer constructs:

begin
___<body>
until
begin
___<body>
again

8.2.7 Block Comments

Block comments begin with _. All text after the space is ignored until
after the next new line. It would be possible to delimit block com-
ments with parentheses, but the use of parentheses is reserved by
convention for stack comments.

Precede each non-trivial definition with a block comment giving a clear
and concise explanation of what the word does. Put more comments at
the very beginning of the file to describe external words which could
be used from the User Interface.

8.2.8 Stack Comments

Stack comments begin with (_ and end with). Use stack comments
liberally within definitions. Try to structure each definition so that,
when you put stack comments at the end of each line, the stack pic-
ture makes a nice pattern.
216 Programming Style

Forth Programmer’s Handbook
: name (stack before -- stack after)
___xxx xxx bar (stack condition after the execution of bar)
___xxx xxx foo (stack condition after the execution of foo)
___xxx xxx dup (stack condition after the execution of dup)

8.2.9 Return Stack Comments

Return stack comments are also delimited with parentheses. In addi-
tion, the notation r: is used at the beginning of the return stack com-
ment to differentiate it from a data stack comment.

Place return stack comments on any line that contains one or more
words that cause the return stack to change. (This limitation is a prac-
tical one; it is often difficult to do otherwise due to lack of space.) The
words >r and r> must be paired inside colon definitions and inside
do…loop constructs.

: name (stack before -- stack after)
___xxx >r (r:addr)
___xxx r> (r:)

8.2.10 Numbers

Hexadecimal numbers should be typed in lower case. If a given num-
ber contains more than four digits, the number may be broken into
groups of four digits with periods. For example:

dead.beef

All literal numbers should have a preceding h# (for hex) or d# (for dec-
imal). The only exception is in tables, where the number base is explic-
itly specified. For example:

hex
create foo
 1234 , abcd , 56ab , 8765 ,
 0023 , …
Programming Style 217

Forth Programmer’s Handbook
8.3 WONG’S RULES FOR READABLE FORTH

This set of rules for readable Forth was posted in comp.lang.forth by:

Leo Wong
New York State Department of Civil Service
Albany, NY 12239

…with additional commentary by Wil Baden and including quotes
from Leo Brodie (author of the popular tutorial Starting Forth; see
Appendix A, Bibliography). These rules are not provided here as defin-
itive guidelines—they are presented to provoke thought about which
approaches may be most useful in your own programming practice.

1. Use the word that fits the data.

2. Do not use ASCII codes (or other “magic numbers”) in colon defi-
nitions.

3. Do not factor just to factor.

4. Get all three right: code, comment, and name.

5. Do not use syntactic sugar.

6. Eschew sophistication.

7. Test it, even if it’s obvious.

8. Do not shun Scylla by falling into Charybdis.1

9. Feature the stack machine.

10. Pattern names after other names.

These rules are not for beginners learning their Forth ABCs, but might
be helpful to a person who has written a program and wants to make
it clearer.

8.3.1 Example: Magic Numbers

Here are some examples:

1. In the Odyssey, the mighty Ulysses was required, at one point, to sail through a strait
that was guarded on one side by the many-headed monster Scylla, and on the other
by Charybdis, the whirlpool of oblivion. Many sailors tried so hard to avoid the one
that they succumbed to the other.
218 Programming Style

Forth Programmer’s Handbook
: STAR 42 EMIT ;
: STAR ." *" ;
: STAR [CHAR] * EMIT ;

Each of these definitions has a fault:

• The first forces the reader to know that ASCII 42 means *
(although this could be remedied by a comment).

• The second uses a word intended for strings.

• The third is wordy in the source, although it compiles the same
result as the first.

I don’t consider the lack of a stack comment in these definitions a fault.
I find the third STAR to be the most readable and, hence, preferable.

Two rules:

1. Use the word that fits the data.

2. Do not use ASCII codes or other unidentified numbers in colon
definitions.

8.3.2 Example: Factoring

From the first edition of Starting Forth (p. 43):

: QUARTERS 4 /MOD . ." ONES AND " . ." QUARTERS " ;

From the second edition (p. 40):

: $>QUARTERS (dollars -- quarters dollars) 4 /MOD ;
: .DOLLARS (dollars --) . ." dollar bills" ;
: .QUARTERS (quarters --) . ." quarters " ;
: QUARTERS (dollars --)
 $>QUARTERS ." Gives " .DOLLARS ." and " .QUARTERS
;

In the second edition, a name and two stack comments are wrong (as
is the output, not shown here). In addition, this approach is both
larger and slower without contributing significantly to readability or
functionality.
Programming Style 219

Forth Programmer’s Handbook
Rules:

3. Do not factor just to factor.

4. Get all three right: code, comment, and name.

8.3.3 Example: Simplicity

Two solutions adapted from Starting Forth, 2nd edition (pp. 277–278):

(1)
: bdot" BRIGHT R> COUNT 2DUP + >R TYPE -BRIGHT ;
: B." POSTPONE bdot" [CHAR] " WORD C@ 1+ ALLOT ;
IMMEDIATE

Brodie: “The foregoing solution is messy and probably not transport-
able.”

[Note: transportability is limited by the assumptions this approach
makes about the implementation.]

(2)
: B." POSTPONE BRIGHT POSTPONE ." POSTPONE -BRIGHT ;
IMMEDIATE

Brodie: “The disadvantage of this solution over the previous one is that
every invocation of B." compiles two extra addresses. The first solu-
tion is more efficient and therefore preferable if you have the system
source listing and lots of invocations of B.". The second solution is
simpler to implement, and adequate for a small number of invocations.

“Other languages may be easier to learn; but what other languages let
you extend the compiler like this?”

An alternative that doesn’t include the compilation features might be:

: .BRIGHT (a u) BRIGHT TYPE -BRIGHT ;

Rules:

5. Do not use syntactic sugar.

6. Eschew sophistication.
220 Programming Style

Forth Programmer’s Handbook
8.3.4 Example: Testing Assumptions

In Thinking Forth (reprint edition, p. 219), Brodie quotes Moore:

“In books you often see a lot of piece-wise linear approximations that
fail to express things clearly. For instance the expression

x = 0 for t < 0

x = 1 for t ≥ 0

“This would be equivalent to:

t 0< 1 AND

“…as a single expression, not a piece-wise expression.”

Rule:

7. Test it even if it’s obvious.

8.3.5 Example: IF Avoidance

Forth programmers strive to avoid IF, some going so far as to use CASE
whenever possible. Here are two examples, from Starting Forth, of IF-
avoidance:

First the IF versions (second edition, p. 183):

: CATEGORY (weight-per-dozen -- category#)
 DUP 18 < IF 0 ELSE
 DUP 21 < IF 1 ELSE
 DUP 24 < IF 2 ELSE
 DUP 27 < IF 3 ELSE
 DUP 30 < IF 4 ELSE
 5
 THEN THEN THEN THEN THEN SWAP DROP ;

(Note: the “official table” on which CATEGORY is based is ambiguous.
See p. 85.)
Programming Style 221

Forth Programmer’s Handbook
: LABEL (category# --)
 DUP 0= IF ." Reject " ELSE
 DUP 1 = IF ." Small " ELSE
 DUP 2 = IF ." Medium " ELSE
 DUP 3 = IF ." Large " ELSE
 DUP 4 = IF ." Extra Large " ELSE
 ." Error "
 THEN THEN THEN THEN THEN DROP ;

Now the “simple and elegant for experts” versions (pp. 189 and 253):

CREATE SIZES 18 C, 21 C, 24 C, 27 C, 30 C, 255 C,
: CATEGORY (weight-per-dozen -- category#)
 6 0 DO DUP SIZES I + C@
 < IF DROP I LEAVE THEN LOOP ;

CREATE "LABEL"
ASCII " STRING Reject Small Medium Large Xtra
LrgError "
: LABEL (category# --)
 8 * "LABEL" + 8 TYPE SPACE ;
: LABEL 0 MAX 5 MIN LABEL ;

It may seem unfair of me to give the code without the explanations,
but:

• Experts wouldn’t need the explanations.

• I would have to mention the bugs in the elegant LABEL.

Which versions would you rather maintain?

Rule:

8. Do not shun Scylla by falling into Charybdis.

8.3.6 Example: Stack Music

What is stack noise to you and me is music to a stack machine. It is
time to face the music.

In Thinking Forth, Brodie gives a solution (reprint edition, p. 222) to a
phone-rate problem posed and analyzed earlier in the book (pp. 45–51):
222 Programming Style

Forth Programmer’s Handbook
\ Telephone rates 03/30/84

CREATE FULL 30 , 20 , 12 ,
CREATE LOWER 22 , 15 , 10 ,
CREATE LOWEST 12 , 9 , 6 ,
VARIABLE RATE \ Points to FULL, LOWER or LOWEST

 \ depending on time of day
FULL RATE ! \ For instance
: CHARGE (o --) CREATE ,
 DOES> (-- rate) @ RATE @ + @ ;
0 CHARGE 1MINUTE \ Rate for first minute
2 CHARGE +MINUTES \ Rate for each additional minute
4 CHARGE /MILES \ Rate per each 100 miles

\ Telephone rates 03/30/84

VARIABLE OPERATOR? \ 90 if operator assisted; else 0
VARIABLE #MILES \ Hundreds of miles
: ?ASSISTANCE (Direct-dial charge -- total charge)
 OPERATOR? @ + ;
: MILEAGE (-- charge) #MILES @ /MILES * ;
: FIRST (-- charge) 1MINUTE ?ASSISTANCE MILEAGE +
;
: ADDITIONAL (-- charge) +MINUTES MILEAGE + ;
: TOTAL (#minutes -- total charge)
 1- ADDITIONAL * FIRST + ;

No stack noise. Readable?

Here’s a try at a solution that requires stack manipulations:

\ Phone-rate table from Brodie, Thinking Forth,
\ reprint edition, p. 51
\ Rates are used as offsets into arrays

0 CELLS CONSTANT FULL
1 CELLS CONSTANT LOWER
2 CELLS CONSTANT LOWEST
\ Array-defining word

: FOR CREATE DOES> (rate - charge-per-minute) + @ ;
\ Table comprises three arrays
\ Charge-per-minute at FULL LOWER LOWEST rate

 FOR FIRST 30 , 22 , 12 ,
 FOR +MINUTES 20 , 15 , 9 ,
 FOR DISTANCE 12 , 10 , 6 ,
Programming Style 223

Forth Programmer’s Handbook
90 CONSTANT ASSISTANCE \ Charge for operator assistance
: ?ASSISTANCE (flag - charge) ASSISTANCE AND ;
: ADDITIONAL (#minutes-1 rate - charge) +MINUTES * ;
: MINUTES (#minutes rate - charge)
 DUP FIRST ROT 1- ROT ADDITIONAL + ;
: MILES (distance #minutes rate - charge) DISTANCE * *
;
: TOTAL (distance #minutes rate assistance-flag - charge)
 ?ASSISTANCE >R 2DUP MINUTES >R MILES 2R> + + ;

Stack music. Unreadable?

Rule:

9. Feature the stack machine.

8.3.7 Summary

How do we feel about these rules? Are any of them helpful? Hurtful?
Are there better rules? Do we want rules anyway? These are questions
for you to answer, should you so choose.

8.4 NAMING CONVENTIONS

Table 15 presents some naming conventions that have been widely
used in Forth for many years. These take advantage of Forth’s flexible
naming rules to use special characters to convey additional meaning.

In this table, the word name refers to some word the programmer has
chosen to represent a Forth routine.

Where possible, a prefix before a name indicates the type or precision
of the value being operated on, whereas a suffix after a name indicates
what the value is or where it is stored.
224 Programming Style

Forth Programmer’s Handbook
Table 15: Naming conventions

Format Meaning Examples

!name Store into name !DATA

#name Size or quantity #PIXELS

Output numeric operator #S

Buffer name #I

'name Address of name 'S

Address of pointer to name 'TYPE

(name) Internal component of name, not nor-
mally user-accessible

(IF)

(FIND)

Run-time procedure of name (:)

File index (PEOPLE)

*name Multiplication *DIGIT

Takes scaled input parameter *DRAW

+name Addition +LOOP

Advance +BUF

Enable +CLOCK

More powerful +INITIALIZE

Takes relative input parameters +DRAW

-name Subtract, remove -TRAILING

Disable -CLOCK

not name (opposite of name) -DONE

Returns reversed truth flag
(1 is false, 0 is true)

-MATCH

Pointers, especially in files -JOB

.name Print named item .S

Print from stack in named format .R .$

Print following string ." string"

May be further prefixed with data type D. U. U.R

/name Division /DIGIT

Initialize routine or device /COUNTER

“per” /SIDE
Programming Style 225

Forth Programmer’s Handbook
1name First item of a group 1SWITCH

Integer 1 1+

One-byte size 1@

2name Second item of a group 2SWITCH

Integer 2 2/

Two-cell size 2@

;name End of something ;S

End of something, start of something
else

;CODE

<name Less than <LIMIT

Open bracket <#

From device name <TAPE

<name> Name of an internal part of a device
driver routine

<TYPE>

>name Towards name >R, >TAPE

Index pointer >IN

Exchange, especially bytes >< (swap bytes)

>MOVE< (move,
swapping
bytes)

?name Check condition, return true if yes ?TERMINAL

Conditional operator ?DUP

Check condition, abort if bad ?STACK

Fetch contents of name and display ?N

@name Fetch from name @INDEX

Cname One-byte character size, integer C@

Dname Double-cell integer D+

Mname Mixed single and double operator M*

Tname Three-cell size T*

Uname Unsigned encoding U.

[name] Executes at compile time [']

\name Unsigned subtraction (ramp-down) \LOOP

Table 15: Naming conventions (continued)

Format Meaning Examples
226 Programming Style

Forth Programmer’s Handbook
name! Store into name B!

name" String follows, delimited by " ABORT" xxx"

name, Put something into dictionary C,

name: Start definition CASE:

name> Close bracket #>

Away from name R>

name? Same as ?name B?

name@ Fetch from name B@

Table 15: Naming conventions (continued)

Format Meaning Examples
Programming Style 227

Forth Programmer’s Handbook
228 Programming Style

Forth Programmer’s Handbook
APPENDIX A: BIBLIOGRAPHY

American National Standard For Information Systems: Programming
Languages – Forth (ANSI X3.215–1994). American National Stan-
dards Institute, 11 W. 42nd St., New York, NY 10036, (212) 642-
4900.

This is the official reference for Standard Forth. It includes def-
initions for all Standard words as well as specific rules of usage
and an explanatory appendix. The last draft of this document is
available on the Internet.

Bailey, G., Sanderson, D., Rather, E. “clusterFORTH, A High-Level Net-
work Protocol” Proceedings of the 1984 FORTH Conference.
Rochester, NY: The Institute for Applied Forth Research, 1984.

This is difficult to find, but describes an interesting and com-
plex protocol developed for a challenging application at the air-
port at Riyadh, Saudi Arabia.

Brodie, L. Starting FORTH, Englewood Cliffs, NJ: Prentice-Hall, 1981, 2nd

ed. 1987. Contact: Forth Interest Group, 100 Dolores St., Suite
183, Carmel, California 93923.

This book was written for readers who are not necessarily com-
puter-knowledgeable, and is both accessible and entertaining.
Unfortunately, it is also very dated with respect to contempo-
rary practice. Partially updated versions are available on the In-
ternet.

Brodie, L. Thinking FORTH, Englewood Cliffs, NJ: Prentice-Hall, 1984;
reprinted by the Forth Interest Group, 100 Dolores St., Suite
183, Carmel, California 93923, 1994.

This book is also rather dated, but is very valuable for under-
standing good Forth style.

FORTH, Inc. SwiftForth Reference Manual. Hawthorne, CA: FORTH, Inc.,
1998–2006. This proprietary document is included as a PDF
with all SwiftForth systems (including the evaluation versions)
and describes FORTH, Inc.’s Windows Forth in detail.

FORTH, Inc. SwiftX Reference Manual. Hawthorne, CA: FORTH, Inc.,
1998–2006. This proprietary document is included as a PDF
with all SwiftX cross-compilers (including the evaluation ver-
sions) and describes FORTH, Inc.’s Forth cross-compilers in de-
tail. Separate documents cover processor-specific topics.
Bibliography 229

Forth Programmer’s Handbook
ISO/IEC 15145:1997: Information technology—Programming languag-
es—FORTH. This is the International Standard equivalent of
ANS Forth. In the U.S., it is available through the American Na-
tional Standards Institute, 11 W. 42nd St., New York, NY 10036,
(212) 642-4900. For sources in other countries or on-line order-
ing, see http://www.iso.ch.

This document is technically identical to the ANSI document
referenced above.

Koopman, P. Stack Computers, The New Wave. Chichester, West Sussex,
England. Ellis Horwood Ltd., 1989.

Koopman addresses hardware implementations of the Forth
virtual machine.

Moore, C.W. “The Evolution of Forth — An Unusual Language” Byte, Au-
gust 1980.

Primarily of historical interest, this article was the cover article
in an issue devoted to Forth. It was the first widely circulated
publication on Forth.

Noble, J.V. Scientific Forth. Charlottesville, VA: Mechum Banks Publish-
ing, 1992.

Dr. Noble describes uses of Forth in mathematics and other sci-
entific applications.

Pountain, R. Object Oriented Forth. New York: Academic Press, 1987.

Many OOP extensions to Forth have been developed. This book
describes one of the early ones.

Pelc, Stephen. Programming Forth. Southampton, England: Micropro-
cessor Engineering Ltd., 2005.

A good modern text by the Managing Director of one of the lead-
ing Forth vendors. Downloadable from www.mpeforth.com.

Rather, E.D. Forth Application Techniques. Hawthorne, CA: FORTH, Inc.,
2003.

An introductory text on Forth used for courses at FORTH, Inc.
Includes many examples and problem sets. An ideal workbook
for the beginning Forth programmer.

Rather, E.D. “Forth Programming Language” Encyclopedia of Physical
Science & Technology (V. 5) Academic Press, Inc., 1987, 1992.

This is an overview of Forth for a technical audience.

Rather, E.D. “Fifteen Programmers, 400 Computers, 36,000 Sensors and
230 Bibliography

http://www.iso.ch
http://www.iso.ch

Forth Programmer’s Handbook
Forth” Journal of Forth Application and Research (V. 3, #2,
1985), P.O. Box 27686, Rochester, NY 14627.

This paper describes the overall project for which the protocol
in the Bailey paper referenced above was used.

Rather, E.D., Colburn, D.R., and Moore, C.H. “The Evolution of Forth”
ACM SIGPLAN Notices, Vol. 28, No. 3, March 1993.

This paper presents a detailed history of the development of
Forth, from the early 1970s through the early 1990s. It is avail-
able at www.forth.com.
Bibliography 231

Forth Programmer’s Handbook
232 Bibliography

Forth Programmer’s Handbook
APPENDIX B: GLOSSARY & NOTATION

This section describes technical terms and notational conventions
used in this manual. Additional notation specific to certain sections is
described in those sections.

In this manual, the words “shall” and “must” indicate mandatory
behavior. The word “will” indicates predicted or consequential behav-
ior. The word “may” indicates permitted or desirable, but not manda-
tory, behavior. The phrase “may not” indicates prohibited behavior.

Abbreviations

ALU Arithmetic Logic Unit

ANS American National Standard

ASCII American Standard Code for Information Interchange

CPU Central Processing Unit

H Hexadecimal (base 16), when used as a subscript

I/O Input/Output

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

JTAG Joint Test Action Group (IEEE 1249.1 standard)

OS Operating System

PC Personal Computer

PCI Peripheral Component Interconnect, a common PC bus

PROM Programmable Read-Only Memory

RAM Random-Access Memory

ROM Read-Only Memory

USB Universal Serial Bus

VM Virtual Machine
Glossary & Notation 233

Forth Programmer’s Handbook
B.1 GLOSSARY

address unit — In Standard Forth, the units in which the length of a
region of memory is expressed, or the units into which the region is
divided for the purpose of locating data objects. These are nearly
always bytes, and are referred to in this manual simply as bytes.

aligned address — The address of a memory location at which a charac-
ter, cell, cell pair, or double-cell integer can be accessed. For cell-aligned
addresses, the address is evenly divisible by the cell size in bytes.

ANS Forth — The Forth programming language as defined by the
American National Standard X3.215, 1994.

ASCII string — A string whose data contains one ASCII character per
byte. An ASCII string is specified by a cell pair representing its starting
address and its length in bytes.

big-endian — Describes a CPU’s byte-ordering system in which the
highest-order byte of a cell is at the lowest address (i.e., appears first
in a data stream). Little-endian is the converse of this. Motorola proces-
sors are big-endian and Intel processors are little-endian.

body — The portion of a definition that contains its executable code
and/or data. See also head.

cell — The primary unit of information storage in the architecture of a
Forth system. The word length of the processor is always referred to
as a cell. This is also the size of an address, and is the size of a single
item on Forth’s stacks.

cell pair — Two cells that are treated as a single unit. The cells may
contain a double-length number, two related single-length numbers
(such as a 2-vector), or two entirely unrelated values. A cell pair in
memory is contiguous: the cell at the lower address is “first” and its
address identifies the pair. Unless otherwise specified, a cell pair on
the stack has the first cell immediately above the second cell.

character — In Standard Forth, one meaning of this word is the num-
ber of address units needed to store a character. In this manual, char-
acters are assumed to occupy one byte each. The length of a character
string in bytes is, therefore, equal to the number of characters in it
(plus one if it is a counted string—see below).
234 Glossary & Notation

Forth Programmer’s Handbook
character-aligned address — In Standard Forth, the address of a
memory location at which a character can be accessed. In nearly all
implementations, a character occupies a single byte and this is an arbi-
trary byte address.

code space — The logical area of the dictionary in which word defini-
tions are implemented.

compile — Transform source code into dictionary definitions.

compilation behavior — The behavior of a Forth definition when its
name is encountered by the text interpreter in compilation state.

counted string — A data structure consisting of one character con-
taining the length followed by 0–255 data characters. A counted string
in memory is identified by the address of its length character.

cross-compilation — Generation on a host system of an executable
program for a target CPU that may be different from the host’s CPU.

data field — The data space associated with a word defined via
CREATE.

data space — The logical area of the dictionary in which data can be
accessed.

data space pointer — The address of the next available data space
location. The Forth word HERE returns this address. On implementa-
tions where data space is intermingled with dictionary definitions, it is
the same as the dictionary pointer.

data stack — A stack that may be used for passing parameters
between procedures. When there is no possibility of confusion, the
data stack is referred to simply as “the stack.” See also return stack.

defining word — A Forth word that creates a new definition when exe-
cuted.

definition — A Forth execution procedure compiled into the dictionary.

dictionary — An extensible structure containing definitions and asso-
ciated data space.

dictionary pointer — The address of the next available location in the
dictionary. On implementations where data space is intermingled with
Glossary & Notation 235

Forth Programmer’s Handbook
dictionary definitions, it is the same as the data space pointer (above).

double-cell integer — A double-precision integer, signed or unsigned,
occupying two cells. On the stack, the most-significant cell is above the
least-significant cell. In memory, the most-significant cell is normally at
the lower address, independent of processor type (see big-endian). Plac-
ing a single-cell integer zero on the stack above a single-cell unsigned
integer produces a double-cell unsigned integer with the same value.

exception frame — The implementation-dependent set of information
recording the current execution state, necessary for exception pro-
cessing using the Forth words CATCH and THROW.

exception stack — A stack used for nesting exception frames. It may
be, but need not be, implemented using the return stack.

execution behavior — The behavior of a Forth definition when it is
executed.

execution token — A single-cell value that identifies the execution
behavior of a procedure. Multiple definitions may have the same exe-
cution token if their definitions have equivalent execution behaviors.

flag — A single-cell Boolean true/false value. A word using a flag as
input treats zero as false, and any non-zero value as true. A word
returning a flag returns either all bits zero (false) or all bits one (true).

head — The portion of a dictionary entry containing the word’s name,
length, and other identifying information. See also body.

headless — In some systems, especially metacompilers and cross-
compilers, it is possible to make definitions whose heads are kept only
on the host. The target versions of these definitions do not have heads
and cannot be referenced by name internally. Definitions made with
:NONAME are also headless.

immediate word — A Forth word whose compiling behavior is to per-
form its execution behavior. Commonly used to compile program-flow
structures.

input stream — ASCII string data input to the host interpreter. It may
come from an input device (such as a keyboard) or from a file. The
input stream is the vehicle by which user commands, program source,
and other data are provided to the host system.
236 Glossary & Notation

Forth Programmer’s Handbook
interpretation behavior — The behavior of a Forth definition when its
name is encountered by the text interpreter in interpretation state.

keyboard event — A value received by a Forth system as a result of a
user action at the user input device. This manual’s use of the word
keyboard does not exclude other types of user input devices.

metacompiler — Most Forth systems are written in Forth. A metacom-
piler is used to generate a new Forth system, for the same or a differ-
ent target.

name space — The logical area of the dictionary in which definition
names are stored during compilation and testing in the host computer.

number — In this manual, number used without qualification means
“integer.” Double number or double-precision number means “double-
cell integer.”

parse — To select and exclude a character string from the parse area
using a specified set of delimiting characters, called delimiters.

parse area — The portion of the input stream that has not yet been
processed by the host interpreter and is, therefore, available for pro-
cessing by the host interpreter and other parsing operations.

return stack — A stack that may be used for program execution nest-
ing, DO loop execution, temporary storage, and other purposes.

stack — An area in memory containing a last-in, first-out list of items.
See also data stack and return stack.

Standard Forth — This refers to a Forth system that complies with the
ISO/IEC 15145:1997 and ANSI X3.215:1994 standards for the Forth
programming language.

variable — A named region of data space, located and accessed by its
memory address.

whitespace character — A blank or non-graphic character encoun-
tered by the Forth interpreter while processing source in a text file.
Definitions of whitespace vary; in ANS Forth it includes all control
characters.

word — The name of a Forth definition. In the text interpreter, word
can also refer to a sequence of non-space characters to be processed.
Glossary & Notation 237

Forth Programmer’s Handbook
word list — A list of related Forth definition names that may be exam-
ined during a dictionary search. A word list is a subset of the entire
Forth dictionary.

B.2 DATA TYPES IN STACK NOTATION

Table 16 gives a description of the Standard Forth notation used to
refer to the different data types that may appear in stack notation or
descriptions in this manual. Some items are implementation-depen-
dent; their stack size is noted as “impl.” Additional tables in this sec-
tion describe other notational conventions.

Table 16: Notation for the data type of stack arguments

Symbol Data type
Size on
stack

a-addr A byte address that is cell-aligned (the address is
evenly divisible by the cell size in bytes).

1 cell

addr Address. 1 cell

b A byte, stored as the least-significant eight bits of
a stack entry. The remaining bits of the stack
entry are zero in results, and are ignored in argu-
ments.

1 cell

c or
char

An ASCII character, stored as a byte (see above)
with the parity bit reset to zero.

1 cell

c-addr A byte address that is character-aligned (on cur-
rent systems a character is always one byte, so
this amounts to an arbitrary byte address).

1 cell

d A double-precision, signed, two’s complement
integer, stored as two stack entries (least-signifi-
cant cell underneath the most-significant cell). On
16-bit machines the range is from -2**31 through
+2**31-1. On 32-bit machines, the range is from -
2**63 through +2**63-1.

2 cells

+d A double-precision integer which is guaranteed to
be >0.

2 cells

dest Control-flow destination. impl.
238 Glossary & Notation

Forth Programmer’s Handbook
echar Extended character (occupying the two low-order
bytes of a stack item).

1 cell

flag A single-precision, Boolean truth flag (zero means
false, non-zero means true). See Section B.3 for
details.

1 cell

i*x, j*x,
etc.

Zero or more cells of unspecified data type; nor-
mally used to indicate that the state of the stack
is preserved during, or is restored after, an opera-
tion.

Varies

ior Result of an I/O operation. See Section 5.5.1 for
use of iors in the file access words.

1 cell

len Length of a string or buffer. 1 cell

loop-sys Loop-control parameters. These include imple-
mentation-dependent representations of the cur-
rent value of the loop index, its upper limit, and a
pointer to a termination location where execution
continues following an exit from the loop.

impl.

nest-sys Implementation-dependent information for proce-
dure calls. It may be kept on the return stack.

impl.

n A signed, single-precision, two’s complement
number. On 16-bit machines, the range is -2**15
through +2**15-1. On 32-bit machines, the range
is -2**31 through +2**31-1. If a stack comment is
shown as n, u is implied, unless specifically stated
otherwise (e.g., + may be used to add signed or
unsigned numbers). If there is more than one
input argument, signed and unsigned types may
not be mixed.

1 cell

+n A single-precision number that may not be nega-
tive and has the same positive upper limit as n,
above.

1 cell

orig Control-flow origin. impl.

u An unsigned, single-precision integer, with the
range 0 to 2**16-1 on 16-bit machines, or 0
through 2**32-1 on 32-bit machines.

1 cell

Table 16: Notation for the data type of stack arguments (continued)

Symbol Data type
Size on
stack
Glossary & Notation 239

Forth Programmer’s Handbook
Some data types are sub-types of other data types. Figure 22 shows
the hierarchy for single-cell and double-cell types. Any Forth definition
that accepts an argument of a type shown in the figure must also
accept all the subtypes below it. For example, a word with an input
stack argument of type n also accepts arguments of type +n and char.

Figure 22. Hierarchy of data types

Standard Forth does not require data-type checking, and most imple-
mentations do not include it among their standard functions. Also,
most implementations do not include arithmetic error checking on
standard math functions (such as overflow on a multiply operation).
The reason for both of these restrictions is that error checking and
data-type checking on low-level functions could be prohibitively costly
in execution time. Most Forth implementations do support whatever
hardware error-detection functions exist, such as a trap for divide by
zero, or the various exceptions signaled by the 80387/80486 floating-
point processor. An application may, of course, build in error checking

ud An unsigned, double-precision integer, with the
range 0 to 2**32-1 on 16-bit machines, or 0
through 2**64-1 on 32-bit machines.

2 cells

x A cell (single stack item), otherwise unspecified. 1 cell

xt Execution token. This value identifies the execu-
tion behavior of a definition. When this value is
passed to EXECUTE, the definition’s execution
behavior is performed.

1 cell

Table 16: Notation for the data type of stack arguments (continued)

Symbol Data type
Size on
stack

xd

udd

+d

x

flag xt n u

addr

c-addr

a-addr

+n

char
240 Glossary & Notation

Forth Programmer’s Handbook
and/or type checking at any level deemed necessary, simply by rede-
fining the words in question and adding an outer layer of protection.

B.3 FLAGS AND IOR CODES

Procedures that accept flags as input arguments shall treat zero as
false, and any non-zero value as true. A flag returned as an argument
is a well-formed flag if all bits are zero (false), or all bits are one (true).

Certain device control and other functions return an ior (I/O Result) to
report the results of an operation. An ior may be treated as a flag, in
the sense that a non-zero value is true; however, it is not necessarily a
well-formed flag, because its specific value often is used to convey
additional information. A returned value of zero for an ior shall mean
successful completion (i.e., no error); non-zero values may indicate an
error condition or other abnormal status, and are device dependent.

B.4 FORTH GLOSSARY NOTATION

Words described in this manual are grouped functionally. An alpha-
betical list of all words is given in Appendix D.

Each entry consists of two parts: an index line and a semantic (behav-
ioral) description of the word. The index line is a single-line entry con-
taining, from left to right:

• Definition name in upper-case, monospaced, boldface letters;

• Stack behavior (the notation follows the conventions described in
Sections B.2 and B.3, above).

The first paragraph of the behavioral description concludes with the
natural-language pronunciation of the word (shown in distinctive
type), if it is not obvious.

A word’s behavior may be context dependent. The behavior(s) for each
such word are described, as applicable, for:

• Compiling
An action taken by the system when adding to the Forth diction-
ary.
Glossary & Notation 241

Forth Programmer’s Handbook
• name Execution
The behavior of name when executed, where name is an instance
of a class of words created by a defining word (see Section 6.2).

• Interpreting
An action taken by the system when the name of a word is
encountered by the text interpreter in interpretation state.

• Run-time
The behavior executed by the system.

While many words—such as defining words and compiler directives—
possess specific compiling behaviors, the default compilation behav-
ior of a word is to append its execution behavior to the current defini-
tion. Behaviors in different modes will be shown if they differ.

Some words will be executed (i.e., will perform their behavior) when
encountered in compiling mode. In Forth, these are known as immedi-
ate words. If execution of such a word will cause some run-time action
in the word being compiled, this is shown as a separate run-time
behavior.
242 Glossary & Notation

Forth Programmer’s Handbook
APPENDIX C: BLOCKS FOR DISK STORAGE

Early Forth implementations ran standalone on various minicomput-
ers and microprocessors, with no other operating system. They orga-
nized disk into 1024-byte “blocks,” mapping blocks to physical disk
sectors. This method was extremely fast, significantly faster than any
OS. It was also highly reliable, in that there was no disk directory
which could become damaged leading to loss of data.

In the 1980s, many Forth systems were adapted to run under a host
OS, such as MS-DOS, MacOS, Windows, or Unix. Those requiring com-
patibility with block-based Forths retained the block organization,
mapping Forth blocks to host OS files. This approach facilitated a
migration path from the purely native systems, and also helped those
attempting to port complex applications to more modern platforms.

By the late 1990s, the number of active block-based Forths had
become very small, and an increasing number of implementors simply
used OS-based text files for program source. As that is now the pre-
vailing mode of operation, we have moved this discussion of disk
block management to an appendix, in order to keep it available for
those who may encounter block-based systems.

This section discusses the words used to access and manage disk
blocks and block buffers in Forth. If you have a block-based Forth,
refer to your system documentation for additional instruction on
implementation-specific features.

C.1 OVERVIEW

The block-based disk access method is intended to be simple and to
require minimum effort. The disk driver makes data on disk directly
accessible to other Forth words by copying disk data into a buffer in
memory, and placing the buffer’s address on the stack. Thus, Forth rou-
tines access disk data using the same techniques as for other kinds of
memory access. Because disk data always appears to be in memory, this
scheme is a form of virtual memory for program source and data storage.

Another consideration in the design of the disk driver is to make disk
Blocks for Disk Storage 243

Forth Programmer’s Handbook
access as fast as possible. Because disk operations are very slow com-
pared to memory operations, data is read from disk or written to disk
only when necessary.

The disk is partitioned into 1024-byte data areas called blocks. This
standard unit has proven to be a useful increment of mass storage.
Used for source text, for example, it contains an amount of source that
fits comfortably on a modest display. As the basis for a database sys-
tem, 1024 is a common multiple of typical record sizes.

Each block is addressed by a block number. On native Forth systems,
the block number is a fixed function of the block’s physical position
on the disk. Absolute addressing of the disk both speeds the driver’s
execution and eliminates most of the need for disk directories and
indexes. On OS-hosted Forth systems, the blocks may be located in
one or more files, each an integral multiple of the block size; an inter-
nal table maps OS files to block space.

C.1.1 Block-Management Fundamentals

A program ensures that a block in memory is in a block buffer by exe-
cuting the word BLOCK. BLOCK uses a block number from the stack and
returns the address in memory of that block’s first byte. For example:

9 BLOCK U.

…will return an address such as:

46844 ok

…where 46844 is the address of the first byte of the buffer containing
block 9. If a block is already in memory, BLOCK will not re-read it from
disk.

Although BLOCK uses a disk read to get data if it is not already in mem-
ory, BLOCK is not merely a read command. If BLOCK must read a
requested block from disk, it uses BUFFER to select a buffer to hold the
block’s contents. BUFFER frees a block buffer, writing the buffer’s pre-
vious contents to disk if it is marked (by UPDATE, see below) as having
been changed since it was read into memory.
244 Blocks for Disk Storage

Forth Programmer’s Handbook
BUFFER expects a block number on the stack and returns the address
of the first byte of the buffer it assigns to this block. For example:

127 BUFFER U.

…will get a block buffer, assign block number 127 to the buffer, and
then type the address of the buffer’s first byte:

36084 ok

Figure 23. Relationship between blocks and block buffers

Although BUFFER may write a block, if necessary, it will not read data
from disk. When BUFFER is called by BLOCK to assign a buffer, BLOCK fol-
lows by reading the requested disk block into the buffer.

The following example displays an array of the first 100 cells in block
1000, shown with five numbers per line:

system RAM

block buffers
in memory

blocks in
mass storage

all blocks
available
on disk

block read
into a

buffer for
easy access
Blocks for Disk Storage 245

Forth Programmer’s Handbook
: SHOW (--) \ Display array contents

 100 0 DO
 I 5 MOD 0= IF CR THEN \ Allow 5 per line

 1000 BLOCK I CELLS + ? \ Show Ith value in block

 LOOP ;

The phrase I CELLS + converts the loop counter from cells to bytes
(because internal addresses are always byte addresses) and adds the
resulting byte offset to the address of the block buffer returned by
BLOCK. The word ? fetches and types the cell at that address.

BUFFER may be used directly (i.e., without being called by BLOCK) in sit-
uations where no data needs to be read from the disk. Examples
include initializing a region of disk to a default value such as zero, and
a high-speed data acquisition routine writing incoming values 1024
bytes at a time from a memory array directly to disk.

Forth systems have at least one, and usually many, block buffers. The
number of buffers may be changed easily. Applications with several
users accessing disk heavily may run slightly faster with more buffers.
Your product documentation will give details on changing the size of
the buffer pool.

The command UPDATE marks the data in a buffer as changed, so it will
be saved to disk when that buffer must be used for another block.
UPDATE works on the most recently referenced buffer, so it must be
used immediately after any operation that modifies the buffer’s data.

The following example uses BUFFER to clear a range of blocks to zero:

: ZEROS (first last --)
 1+ SWAP DO
 I BUFFER 1024 ERASE UPDATE
 LOOP ;

As another example, assume that an application has defined A/D to
read a value from an A/D converter. To record up to 512 samples in
block 700, use:

: SAMPLES (n --) \ Record n samples

 512 MIN 0 DO \ Clip n at 512

 A/D \ Read one sample

 700 BLOCK I CELLS + ! UPDATE \ Record it

 LOOP ;
246 Blocks for Disk Storage

Forth Programmer’s Handbook
In this example, the phrase 512 MIN “clips” the specified number of
samples at 512. As in the example of SHOW above, the phrase I CELLS
converts the loop counter (in samples) into a byte offset to be added
to the address of the start of the block. BUFFER cannot be used in this
case, because we are adding samples one at a time and must preserve
previous samples written in the block.

Because BLOCK maps disk contents into memory, virtual memory appli-
cations are simple. The first step is to write a word to transform an
application address into a physical address consisting of a block num-
ber and an offset within that block. For a virtual byte array, such a def-
inition is:

: VIRTUAL (i -- a) \ Return the addr of the ith byte

 1024 /MOD \ Q=blk offset, R=byte in block

 250 + \ Add starting blk#=250

 BLOCK + ; \ Fetch block, add byte offset

Here, 1024 is the number of bytes per disk block and 250 is the block
number where the virtual array starts. The array may occupy any num-
ber of blocks, limited only by physical mass storage constraints.

Fetch and store operations for this virtual memory scheme are defined
as:

: V@ (i -- n) \ Return ith byte in the array

 VIRTUAL C@ ;

: V! (b i --) \ Store b in ith byte

 VIRTUAL C! UPDATE ;

BLOCK does not normally perform any error checking or retries at the
primitive level, because an appropriate error response is fundamen-
tally application-dependent. Some applications processing critical data
in non-real-time (e.g., accounting applications) should attempt retries1

and, if these fail, stop with an error message identifying bad data. But
applications running continuously at a constant sampling rate (e.g.,
data loggers) cannot afford to wait and should simply log errors.

1. Most disk controllers and all OSs perform retries automatically. On these, there is
nothing to be gained by attempting retries from within a Forth application.
Blocks for Disk Storage 247

Forth Programmer’s Handbook
Glossary

BLOCK (u — addr) Block
Return the address of a buffer containing a copy of the contents of
block u, having read it from disk, if necessary. If a read occurred, the
previous contents of the buffer is first written to disk, if the buffer has
been marked as updated.

BUFFER (u — addr) Block
Return the address of a buffer marked to contain block u, having writ-
ten its previous contents to disk, if necessary (does not perform any
read operation).

UPDATE (—) Block
Mark the most recently referenced buffer as having been updated. The
contents of a buffer that has been marked in this way will be written
to disk when its buffer is needed for a different block.

FLUSH (—) Block
Ensure that all updated buffers are written to disk, and free all the
buffers.

SAVE-BUFFERS (—) Block
Write all updated buffers to disk, leaving them in memory but with
their UPDATE flags cleared.

EMPTY-BUFFERS (—) Block Ext
Erase all block buffers without saving them. EMPTY-BUFFERS works by
clearing the update bits in all buffers and performing a FLUSH to free
the buffers.

C.2 LOADING FORTH SOURCE BLOCKS

Most compiled languages require a three-step process to construct
executable programs:

1. Compile the program to an object file on disk.

2. Link this program to other previously compiled and/or assem-
bled routines.

3. Load the result into memory.

This often-lengthy procedure hampers programmer effectiveness.
Forth supports fully interactive programming by shortening this cycle
248 Blocks for Disk Storage

Forth Programmer’s Handbook
to a single, fast operation: it compiles from source code to executable
form in memory. This process is accomplished by the word LOAD.

C.2.1 The LOAD Operation

LOAD specifies interpretation of source text from a disk block. It expects
on top of the stack the block number of the Forth block to be loaded:

<number> LOAD

This block number is also stored in the variable BLK, used by Forth’s text
interpreter. If BLK contains zero, the source is not a block and usually is
the terminal. When BLK is zero, the word SOURCE-ID returns a value indi-
cating the input source (zero if it is the user input device or terminal, -1
if it is a character string passed by EVALUATE, and optionally a file-identi-
fier if the input is a text file—see Section 5.5). A consequence of this
convention is that Block 0 cannot be used for source text.

When LOAD is encountered, interpretation of text from the current
input source is suspended and input is taken from the specified disk
block. The text interpreter starts at the beginning and processes each
word until it reaches the end of the block (after 1024 characters). On
some systems, if the word EXIT is encountered interpretively in the
block, it will cause processing to terminate at once.

When all processing specified by the disk block is complete—assum-
ing no errors were encountered while processing the block—execution
resumes with input from the source that was in control when the LOAD
was encountered.

If a block contains definitions, the result of a LOAD operation will be to
process them via the text interpreter and compile them into the dic-
tionary. The process of LOADing disk blocks is identical to processing
the same information entered at the terminal or loaded from a text
file, but all information in a single disk block is processed as a single
string (i.e., there will be no embedded carriage returns).

The block to be loaded may itself contain a LOAD command, at which
point the loading of the first block is suspended. When this occurs, the
current block number and text interpreter pointers are saved on the
return stack, pending loading of the requested block. This nested load-
ing process may continue indefinitely, subject to return stack size.
Blocks for Disk Storage 249

Forth Programmer’s Handbook
A group of blocks to be loaded should be specified by LOAD commands
contained in a single block, called a load block, as opposed to serial
nesting (i.e., having each block load the next block in sequence). From
a management viewpoint, loading groups of related blocks from a sin-
gle load block aids readability and maintainability.

The command THRU can load a group of sequential blocks. For exam-
ple, if blocks 260 through 270 need to be loaded:

260 270 THRU

A LOAD operation may also be compiled in a definition, in which case
the requested LOAD is done when the definition is executed. Following
the LOAD, execution will resume at the word immediately after LOAD.

If an error is detected during the loading process, an error message is
produced and all loading ceases. Both the return stack and the data
stack are cleared, and Forth reverts to terminal input.

During loading, all text interpreter input is taken from the specified
disk block. All output, however, proceeds to its normal destination.
Thus, . (“dot”) or other output commands will send output to the ter-
minal of the task executing the LOAD.

Glossary

BLK (— a-addr) Block
Return a-addr, the address of a cell containing the number of the mass-
storage block being interpreted, or zero if the current input source is
not a block. “B-L-K”

LOAD (i*x u — j*x) Block
Save the current input source specification in a system-specific man-
ner. Store u in the variable BLK, thus making block u the input source.
Set the input buffer to contain the contents of block u. Set the buffer
pointer >IN to zero and interpret the buffer contents. When the parse
area is exhausted, restore the prior input specification. Any other
stack effects are due to the words executed as a result of the LOAD.

THRU (i*x u1 u2 — j*x) Block Ext
Execute LOAD in sequence for each of the blocks numbered u1 through
u2. Any other stack effects are due to the words executed as a result of
the LOADs.
250 Blocks for Disk Storage

Forth Programmer’s Handbook
References

EXIT, Section 4.9
Input source identification, Section 6.1.1
Text file identifiers, Section 5.5.1

C.2.2 Named Program Blocks

The defining word CONSTANT may be used to give names to important
blocks, such as load blocks, which load other blocks to form a utility
or application. For example, define:

120 CONSTANT OBSERVING

…which will be used as:

OBSERVING LOAD

The above has the effect of loading block 120 and executing any other
LOAD instructions specified in that block.

CONSTANT is particularly appropriate when you want to use the name in
additional ways, such as:

OBSERVING LIST

We recommend the use of a key block for each major section of an
application. The key block should primarily load other associated
blocks, specified numerically or through constants; it may also contain
other brief, application-wide definitions. Then you can see at a glance
which of your application blocks are loaded, and in what order.

This technique is much safer than chaining blocks (i.e., serial nesting),
which can cause return-stack overflow. Generally, a single block nam-
ing all key blocks in the system is loaded immediately after booting.

A convenient side effect of named blocks is that they can be success-
fully LOADed regardless of the current number conversion base. But,
for this reason, named key blocks should have a DECIMAL command in
the first line to guard against incorrect loading of subsidiary blocks
due to an unexpected current base.
Blocks for Disk Storage 251

Forth Programmer’s Handbook
References

CONSTANT, Section 2.3.2.2
LOAD and the return stack, Section C.2.1
LIST, Section C.3

C.3 BLOCK-BASED PROGRAMMER AIDS AND UTILITIES

As a consequence of its standalone heritage, Forth has traditionally
accompanied its block-based systems with a rich portfolio of program-
mer aids and utilities. These will vary depending upon the implemen-
tation, but a fully supported block system will normally include:

• An editor. Traditional Forth block editors format a block in 16
lines of 64 characters each, a convenient size on most displays.
By convention, the first line of each block includes a comment
summarizing the contents of that block. The balance of the block
should contain a few simple definitions related to its stated
objective. Most block editors provide a command line and are
string oriented. Some are quite powerful; all include the basic
command LIST to display a block, and the variable SCR which
contains the number of the block most recently LISTed.

• Shadow-block, on-line documentation. Space within a block is
limited, so comments are conventionally kept in a separate block
and the system pairs each source block with its “shadow.” From a
keyboard, you should be able to toggle between a source block
and its shadow. Shadow blocks are not compiled or executed.

• Program-listing utilities. Typical systems include a utility to
print indexes (the first, or comment, line from each of a range of
blocks) and lists of blocks. Depending on the printer, normally it
is possible to print a source and shadow block pair side-by-side,
with three pairs on a page.

• Disk-management utilities. These include simple functions for
moving blocks and their associated shadows, initializing regions
of disk, browsing a disk (displaying the first-line comments), etc.

• Source-block comparison utilities. Comparison utilities that
highlight differences between ranges of similar blocks are
extremely helpful on multi-programmer projects when work has
to be merged from several sources.

• Programmer aids. The words described in Section 1.4 (page 38)
252 Blocks for Disk Storage

Forth Programmer’s Handbook
are normally available on block-based systems. LOCATE, for exam-
ple, will show the block from which a word was compiled; with
one keystroke, you can display its associated shadow block.

Consult your product documentation for further details regarding
your system’s features.

Glossary

LIST (u —) Block Ext
Display block u in a system-dependent format (usually 16 lines of 64
characters each). Store u in the variable SCR.

SCR (— a-addr) Block Ext
Return a-addr, the address of a cell containing the block number of the
most recently LISTed block. “S-C-R”

C.4 STYLE GUIDELINES FOR BLOCK-BASED SOURCE

The purpose of this section is to describe a set of editing standards
used to ensure the readability and notational consistency of block-
based Forth source code.

C.4.1 Stack Effects

1. Any colon or code definition which expects or leaves data stack
arguments must include a comment identifying them.

2. The format of the comment is:

(input -- output)

…with the rightmost item on each side of the dash representing
the top item on the stack. If there is input but no output, you
may omit the dash.

Example 1, input only:
: TYPE (addr n --)

Example 2, output only:
: -FOUND (-- addr addr' flag)

Example 3, input and output:
CODE @ (addr -- n)

3. The stack comment begins one space after the name of the word.
Blocks for Disk Storage 253

Forth Programmer’s Handbook
Remember to leave one space after the opening (. The terminat-
ing parenthesis should follow the last character without an inter-
vening space. Exactly three spaces follow the right parenthesis
before the code begins, if it begins on the same line.

4. The specific notation used to represent each stack item should
follow these conventions:

addr address
b eight-bit byte
c ASCII character
n single-precision number, usually signed
u single-precision unsigned number
flag Boolean truth flag (0=false)

The following special cases should be used when appropriate:

l c screen position, in lines and columns (in that order)
s d nsource, destination, count (in that order)

y x 2-vector (x,y coordinate pairs, e.g., for graphics)
f l first, last limits; inclusive
f l+1 first, last limits; exclusive at end
c t cylinder, track (for disk drivers)

Other special situations may be dealt with similarly, if necessary
to improve clarity, but use single characters where possible.

5. Where several arguments are of the same type and clarity
demands that they be distinguished, use ' (prime) or suffix
numerals. For example:

CODE RSWAP (n addr addr' -- n addr)
CODE RSWAP (n addr1 addr2 -- n addr1)

…both show that the address returned is the same as the first
one input.

C.4.2 General Comments

1. All source files must start with a comment succinctly describing
their contents. Examples of good and bad style follow:

good:
(Double-precision arithmetic)

wordy:
(This code contains double-precision operators)

useless:
(Misc. OPS)
254 Blocks for Disk Storage

Forth Programmer’s Handbook
2. Comments within source (other than stack effects) should be
restricted to situations in which a serious ambiguity needs to be
resolved.

good:
177566 (Send +2) and 177562 (RCV+2)

redundant:
DUP 0= ABORT" Value is zero" (Aborts if zero)

not helpful:
S) 0 MOV (Move top of stack to R0)

3. Comments should begin with a capital letter and otherwise be
lower case, except as standard usage indicates, e.g.,

(Defining words)

(RX01 Bootstrap)

C.4.3 Spacing Within Source

1. Blank lines within source are valuable. Use them to separate defi-
nitions or groups of definitions. Avoid a dense clump of lines at
the top of a file with a lot of blank lines below, unless the clump
is a single definition. Never have two blank lines together except
at the end.

2. Definitions should begin in the left-most column of a line, except
that two or three related VARIABLEs, CONSTANTs, or other data
items may share a line if there is room for three spaces between
them.

3. The name of a definition must be separated from its defining
word by only one space. If it is a CONSTANT or other data item with
a specified value, the value must be separated from the defining
word by only one space.

4. Within a colon definition, three spaces are required after the
stack comment. Thereafter, words are separated by one space,
except when a second space is added between groups of closely
related words.

5. Second and subsequent lines of colon and CODE definitions must
be indented by multiples of three spaces (e.g., 3, 6, 9). Indenta-
tion beyond one set of three spaces indicates nested structures.

Examples of Forth in documentation should conform to these rules.
Blocks for Disk Storage 255

Forth Programmer’s Handbook
256 Blocks for Disk Storage

Forth Programmer’s Handbook
APPENDIX D: INDEX TO FORTH WORDS

This section provides an alphabetical index to the Forth words in the
glossaries of this book. Each is shown with its stack arguments and a
page reference where you may find more information.

Stack operations are described in Section 2.1. The stack-argument
notation is described in Appendix B, Table 16. Where several argu-
ments are of the same type, and clarity demands that they be distin-
guished, numeric subscripts are used.

On the following pages, the “Wordset” column identifies the Standard
Forth word list in which each word appears. “Core” words are required in
all Standard Forth systems. Words marked “Common usage” are not men-
tioned in Standard Forth but may be found in many Forth systems. All
other designations represent optional Standard Forth wordsets (group-
ings by logical function) that may be present in some systems. You may
use ENVIRONMENT? (Section 5.2) to determine whether a particular optional
wordset is present.

Word Stack Wordset Pg

((—) Core, File 40

.((—) Core Ext 40

+ (n1 n2 — n3) Core 55

- (n1 n2 — n3) Core 56

, (x —) Core 68

. (n —) Core 88

, (x —) Cross 201

1+ (n1 — n2) Core 56

1- (n1 — n2) Core 56

2+ (n1 — n2) Common usage 56

2- (n1 — n2) Common usage 56

' <name> (— xt) Core 116

' <name> (— xt) Core 162

! (x a-addr —) Core 70

(ud1 — ud2) Core 92
Index to Forth Words 257

Forth Programmer’s Handbook
#> (ud — c-addr u) Core 92

#S (ud1 — ud2) Core 92

* (n1 n2 — n3) Core 55

*/ (n1 n2 n3 — n4) Core 55

*/MOD (n1 n2 n3 — n4 n5) Core 55

," <string>" (—) Common usage 79

.' (addr —) Common usage 43

." <string>" (—) Core 78

.R (n1 +n2 —) Core Ext 89

.S (—) Tools 53

/ (n1 n2 — n3) Core 56

/MOD (n1 n2 — n3 n4) Core 56

/STRING (c-addr1 u1 n —
c-addr2 u2)

String 81

: <name> (—) Core 168

:NONAME (— xt) Core Ext 168

; (—) Core 168

;CODE (—) Tools Ext 172

? (a-addr —) Tools 53

? (a-addr —) Tools 89

?DO (n1 n2 —) Core Ext 108

?DUP (x — 0 | x x) Core 49

@ (a-addr — x) Core 70

@EXECUTE (i*x addr — j*x) Common usage 116

[(—) Core 178

['] <name> (— xt) Core 116

['] <name> (— xt) Core 162

[CHAR] <c> (— char) Core 74

[DEFINED] <name> (— flag) Common usage 163

[ELSE] (—) Tools Ext 164

[IF] (flag —) Tools Ext 164

[THEN] (—) Tools Ext 164

Word Stack Wordset Pg
258 Index to Forth Words

Forth Programmer’s Handbook
[UNDEFINED]
<name>

(— flag) Common usage 164

\ (—) Block Ext,
Core Ext

40

] (—) Core 178

+! (n a-addr —) Core 70

+LOOP (n —) Core 108

< (n1 n2 — flag) Core 98

<# (ud — ud) or
(n ud — n ud)

Core 92

<> (n1 n2 — flag) Core Ext 98

= (n1 n2 — flag) Core 98

> (n1 n2 — flag) Core 98

>BODY (xt — a-addr) Core 162

>FLOAT (c-addr u —
true | false);
(F: — r |)

Floating 153

>IN (— a-addr) Core 157

>NUMBER (ud1 c-addr1 u1 —
ud2 c-addr2 u2)

Core 86

>R (S: x —) (R: — x) Core 52

0< (n — flag) Core 98

0<> (n — flag) Core Ext 98

0= (n — flag) Core 98

0> (n — flag) Core Ext 98

2! (x1 x2 a-addr —) Core 70

2* (x1 — x2) Core 56

2/ (x1 — x2) Core 56

2@ (a-addr — x1 x2) Core 70

2>R (S: x1 x2 —)
(R: — x1 x2)

Core Ext 52

2CONSTANT <name> (x1 x2 —) Double 65

2DROP (x1 x2 —) Core 51

Word Stack Wordset Pg
Index to Forth Words 259

Forth Programmer’s Handbook
2DUP (x1 x2 —
x1 x2 x1 x2)

Core 51

2LITERAL (— x1 x2) Double 180

2OVER (x1 x2 x3 x4 —
x1 x2 x3 x4 x1 x2)

Core 51

2R@ (S: — x1 x2)
(R: x1 x2 — x1 x2)

Core Ext 52

2R> (S: — x1 x2)
(R: x1 x2 —)

Core Ext 52

2ROT (x1 x2 x3 x4 x5 x6 —
x3 x4 x5 x6 x1 x2)

Double ext 51

2SWAP (x1 x2 x3 x4 —
x3 x4 x1 x2)

Core 51

2VARIABLE <name> (—) Double 63

ABORT (i*x —);
(R: j*x —)

Core,
Exception Ext

127

ABORT" <text>" (i*x flag —);
(R: j*x —)

Core,
Exception Ext

127

ABS (n — +n) Core 59

ACCEPT (c-addr +n1 — +n2) Core 129

AGAIN (—) Core Ext 105

AGAIN (—) Core Ext 184

AHEAD (— orig) Tools Ext 188

ALIGN (—) Core 68

ALIGN (—) Cross 201

ALIGNED (addr — a-addr) Core 68

ALLOCATE (u — a-addr ior) Memory 139

ALLOT (u —) Core 68

ALLOT (u —) Core 166

ALLOT (n —) Cross 200

ALSO (—) Search Ext 192

AND (x1 x2 — x3) Core 59

ASSEMBLER (—) Tools Ext 192

AT-XY (u1 u2 —) Facility 132

BASE (— a-addr) Core 30

Word Stack Wordset Pg
260 Index to Forth Words

Forth Programmer’s Handbook
BEGIN (—) Core 105

BIN (fam1 — fam2) File 137

BL (— char) Core 74

BL (— char) Core 161

BLANK (c-addr u —) Core 70

BLK (— a-addr) Block 156

BLK (— a-addr) Block 254

BLOCK (u — addr) Block 252

BUFFER (u — addr) Block 252

BUFFER: <name> (n —) Common usage 68

C! (c c-addr —) Core 71

C" <string>" (— c-addr) Core Ext 78

C, (char —) Core 69

C, (b —) Cross 201

C@ (c-addr — c) Core 71

C+! (c c-addr —) Common usage 71

CASE (—) Core Ext 111

CATCH (i*x xt —
j*x 0 | i*x n)

Exception 127

CELL+ (a-addr1 — a-addr2) Core 69

CELLS (n1 — n2) Core 69

CHAR <c> (— char) Core 74

CHAR+ (c-addr1 — c-addr2) Core 69

CHARS (n1 — n2) Core 69

CLOSE-FILE (fileid — ior) File 134

CMOVE (c-addr1 c-addr2 u —) String 82

CMOVE> (c-addr1 c-addr2 u —) String 82

COMPARE (c-addr1 u1 c-addr2 u2
— n)

String 84

COMPILE, (xt —) Core Ext 178

CONSTANT <name> (x —) Core 65

CONTEXT (— a-addr) Core 192

COUNT (c-addr1 — c-addr2 u) Core 76

Word Stack Wordset Pg
Index to Forth Words 261

Forth Programmer’s Handbook
CR (—) Core 133

CREATE <name> (—) Core 69

CREATE <name> (—) Core 166

CREATE-FILE (c-addr u fam —
fileid ior)

Core 134

CS-PICK (i*x u — i*x xu) Tools Ext 188

CS-ROLL (i*x u — (i-1)*x xu) Tools Ext 188

CURRENT (— a-addr) Common usage 192

CVARIABLE <name> (—) Common usage 63

D- (d1 d2 — d3) Double 57

D. (d —) Double 89

D.R (d +n —) Double 89

D+ (d1 d2 — d3) Double 57

D< (d1 d2 — flag) Double 99

D= (d1 d2 — flag) Double 99

D>F (d —); (F: — r) Floating 146

D>S (d — n) Double 57

D0< (d — flag) Double 99

D0= (d — flag) Double 99

D2* (d1 — d2) Double 57

D2/ (d1 — d2) Double 57

DABS (d — +d) Double 60

DASM (addr —) Common usage 43

DECIMAL (—) Core 31

DEFER <name> (—) Common usage 118

DEFINITIONS (—) Search 193

DELETE-FILE (c-addr u — ior) File 135

DEPTH (— +n) Core 49

DF! (df-addr —);
(F: r —)

Floating Ext 145

DF@ (df-addr —);
(F: — r)

Floating Ext 145

DFALIGN (—) Floating Ext 152

Word Stack Wordset Pg
262 Index to Forth Words

Forth Programmer’s Handbook
DFALIGNED (addr — df-addr) Floating Ext 152

DFLOAT+ (df-addr1 — df-addr2) Floating Ext 152

DFLOATS (n1 — n2) Floating Ext 152

DMAX (d1 d2 — d3) Double 60

DMIN (d1 d2 — d3) Double 60

DNEGATE (d — -d) Double 60

DO (n1 n2 —) Core 108

DOES> (—) Core 172

DROP (x —) Core 50

DU< (ud1 ud2 — flag) Double Ext 99

DUMP (addr +n —) Tools 53

DUP (x — x x) Core 50

EDITOR (—) Tools Ext 193

EKEY (— u) Facility Ext 130

EKEY? (— flag) Facility Ext 130

EKEY>CHAR (u — u 0 | char -1) Facility Ext 130

ELSE (—) Core 101

ELSE (—) Core 185

EMIT (b —) Core 132

EMIT? (— flag) Facility Ext 132

EMPTY-BUFFERS (—) Block Ext 252

ENDCASE (x —) Core Ext 111

ENDOF (—) Core Ext 111

ENVIRONMENT? (c-addr u —
false | i*x true)

Core 53

ENVIRONMENT? (c-addr u —
false | i*x true)

Core 123

ERASE (c-addr u —) Core Ext 71

EVALUATE (i*x c-addr u — j*x) Core, Block 157

EXECUTE (i*x xt — j*x) Core 116

EXIT (—);
(R: nest-sys —)

Core 113

F- (F: r1 r2 — r3) Floating 147

Word Stack Wordset Pg
Index to Forth Words 263

Forth Programmer’s Handbook
F! (f-addr —);
(F: r —)

Floating 145

F* (F: r1 r2 — r3) Floating 147

F** (F: r1 r2 — r3) Floating Ext 147

F. (F: r —) Floating Ext 143

F/ (F: r1 r2 — r3) Floating 147

F@ (f-addr —);
(F: — r)

Floating 145

F~ (— flag);
(F: r1 r2 r3 —)

Floating Ext 148

F+ (F: r1 r2 — r3) Floating 147

F< (— flag);
(F: r1 r2 —)

Floating 148

F>D (— d); (F: r —) Floating 146

F0< (— flag); (F: r —) Floating 148

F0= (— flag); (F: r —) Floating 148

FABS (F: r1 — r2) Floating Ext 147

FACOS (F: r1 — r2) Floating Ext 149

FACOSH (F: r1 — r2) Floating Ext 149

FALIGN (—) Floating 152

FALIGNED (addr — f-addr) Floating 152

FALOG (F: r1 — r2) Floating Ext 149

FALSE (— flag) Core Ext 99

FASIN (F: r1 — r2) Floating Ext 149

FASINH (F: r1 — r2) Floating Ext 149

FATAN (F: r1 — r2) Floating Ext 149

FATAN2 (F: r1 r2 — r3) Floating Ext 150

FATANH (F: r1 — r2) Floating Ext 150

FCONSTANT <name> (F: r —) Floating 144

FCOS (F: r1 — r2) Floating Ext 150

FCOSH (F: r1 — r2) Floating Ext 150

FDEPTH (— +n) Floating 146

FDROP (F: r —) Floating 146

Word Stack Wordset Pg
264 Index to Forth Words

Forth Programmer’s Handbook
FDUP (F: r — r r) Floating 146

FE. (F: r —) Floating Ext 143

FEXP (F: r1 — r2) Floating Ext 150

FEXPM1 (F: r1 — r2) Floating Ext 150

FILE-POSITION (fileid — ud ior) File 137

FILE-SIZE (fileid — ud ior) File 137

FILE-STATUS (c-addr u — x ior) File Ext 137

FILL (c-addr u b —) Core 71

FIND (c-addr —
c-addr 0 | xt 1 | xt -1)

Core, Search 162

FLITERAL (F: r —) Floating 144

FLN (F: r1 — r2) Floating Ext 150

FLNP1 (F: r1 — r2) Floating Ext 150

FLOAT+ (f-addr1 — f-addr2) Floating 152

FLOATS (n1 — n2) Floating 152

FLOG (F: r1 — r2) Floating Ext 150

FLOOR (F: r1 — r2) Floating Ext 147

FLUSH (—) Block 252

FLUSH-FILE (fileid — ior) File Ext 135

FM/MOD (d n1 — n2 n3) Core 57

FMAX (F: r1 r2 — r3) Floating 147

FMIN (F: r1 r2 — r3) Floating 147

FNEGATE (F: r1 — r2) Floating 148

FORTH (—) Search Ext 193

FOVER (F: r1 r2 — r1 r2 r1) Floating 146

FREE (a-addr — ior) Memory 139

FROT (F: r1 r2 r3 —
r2 r3 r1)

Floating 147

FROUND (F: r1 — r2) Floating 148

FS. (F: r —) Floating Ext 143

FSIN (F: r1 — r2) Floating Ext 150

FSINCOS (F: r1 — r2 r3) Floating Ext 150

FSINH (F: r1 — r2) Floating Ext 151

Word Stack Wordset Pg
Index to Forth Words 265

Forth Programmer’s Handbook
FSQRT (F: r1 — r2) Floating Ext 148

FSWAP (F: r1 r2 — r2 r1) Floating 147

FTAN (F: r1 — r2) Floating Ext 151

FTANH (F: r1 — r2) Floating Ext 151

FVARIABLE <name> (—) Floating 144

GET-XY (— u1 u2) Common usage 133

HERE (— addr) Core 82

HERE (— addr) Cross 200

HEX (—) Core Ext 31

HOLD (char —) Core 94

I (— n) Core 108

IF (x —) Core 101

IF (x —) Core 185

IMMEDIATE (—) Core 186

INCLUDE <filename> (—) Common usage 136

INCLUDED (c-addr u —) File 136

INCLUDE-FILE (fileid —) File 135

INVERT (x1 — x2) Core 59

IS <defer-name> (xt —) Common usage 118

J (— n) Core 109

KEY (— b) Core 130

KEY? (— flag) Facility 130

LEAVE (—) Core 109

LIST (u —) Block Ext 257

LITERAL (— x) Core 180

LOAD (i*x u — j*x) Block 254

LOCATE <name> (—) Common usage 41

LOOP (—) Core 108

LSHIFT (x1 u — x2) Core 56

M- (d1 n — d2) Common usage 58

M* (n1 n2 — d) Core 57

M*/ (d1 n1 +n2 — d2) Double 58

Word Stack Wordset Pg
266 Index to Forth Words

Forth Programmer’s Handbook
M/ (d n1 — n2) Common usage 58

M+ (d1 n — d2) Double 58

MARKER <name> (—) Core Ext 190

MAX (n1 n2 — n3) Core 59

MIN (n1 n2 — n3) Core 59

MOD (n1 n2 — n3) Core 56

MOVE (addr1 addr2 u —) Core 71

MS (u —) Facility Ext 138

NEGATE (n — -n) Core 59

NIP (x1 x2 — x2) Core Ext 50

NOT (x — flag) Common usage 99

NUMBER (c-addr u — n | d) Common usage 87

NUMBER? (a n - 0 | n 1 | d 2) Common usage 87

OF (x1 x2 — | x1) Core Ext 111

ONLY (—) Search Ext 193

OPEN-FILE (c-addr u fam —
fileid ior)

File 135

OR (x1 x2 — x3) Core 59

ORDER (—) Search Ext 193

ORG (addr —) Cross 200

OVER (x1 x2 — x1 x2 x1) Core 50

PAD (— addr) Core Ext 75

PAGE (—) Facility 133

PARSE <text> (char — c-addr n) Core Ext 161

PICK (+n — x) Core Ext 50

POSTPONE <name> (—) Core 186

PRECISION (— u) Floating Ext 143

PREVIOUS (—) Search Ext 193

QUIT (i*x —);
(R: j*x —)

Core 158

R/O (— fam) File 138

R/W (— fam) File 138

R@ (S: — x) (R: x — x) Core 52

Word Stack Wordset Pg
Index to Forth Words 267

Forth Programmer’s Handbook
R> (S: — x) (R: x —) Core 52

READ-FILE (c-addr u1 fileid —
u2 ior)

File 136

READ-LINE (c-addr u1 fileid —
u2 flag ior)

File 136

RECURSE (—) Core 168

REFILL (— flag) Block Ext,
Core Ext,
File Ext

136

REFILL (— flag) Block Ext,
Core Ext,
File Ext

158

RENAME-FILE (c-addr1 u1 c-addr2 u2
— ior)

File Ext 135

REPEAT (—) Core 105

REPEAT (—) Core 185

REPOSITION-FILE (ud fileid — ior) File 138

REPRESENT (c-addr u —
n flag1 flag2);
(F: r —)

Floating 153

RESIZE (a-addr1 u —
a-addr2 ior)

Memory 139

RESIZE-FILE (ud fileid — ior) File 135

RESTORE-INPUT (xn … x1 n — flag) Core Ext 158

ROT (x1 x2 x3 —
x2 x3 x1)

Core 50

RSHIFT (x1 u — x2) Core 56

S" <string>" (— c-addr u) Core, File 78

S" <string>" (— c-addr u) Core, File 138

S>D (n — d) Core 58

SAVE-BUFFERS (—) Block 252

SAVE-INPUT (— xn … x1 n) Core Ext 158

SCR (— a-addr) Block Ext 257

SEARCH (c-addr1 u1 c-addr2 u2
— c-addr3 u3 flag)

String 84

SEE <name> (—) Tools 43

Word Stack Wordset Pg
268 Index to Forth Words

Forth Programmer’s Handbook
SET-PRECISION (u —) Floating Ext 143

SF! (sf-addr —);
(F: r —)

Floating Ext 145

SF@ (sf-addr —);
(F: — r)

Floating Ext 146

SFALIGN (—) Floating Ext 152

SFALIGNED (addr — sf-addr) Floating Ext 152

SFLOAT+ (sf-addr1 — sf-addr2) Floating Ext 152

SFLOATS (n1 — n2) Floating Ext 153

SIGN (n —) Core 92

SLITERAL (— c-addr u) String 181

SM/REM (d n1 — n2 n3) Core 58

SOURCE (— c-addr u) Core 159

SOURCE-ID (— n) Core Ext, File 156

SPACE (—) Core 133

SPACES (u —) Core 133

STATE (— a-addr) Core, Tools Ext 178

SWAP (x1 x2 — x2 x1) Core 50

THEN (—) Core 101

THEN (—) Core 185

THROW (k*x n —
k*x | i*x n)

Exception 127

THRU (i*x u1 u2 — j*x) Block Ext 254

TIME&DATE (— u1 u2 u3 u4 u5 u6) Facility Ext 138

TO <name> (x —) Core Ext 71

-TRAILING (c-addr u1 — c-addr u2) String 81

TRUE (— flag) Core Ext 99

TUCK (x1 x2 — x2 x1 x2) Core Ext 50

TYPE (c-addr u —) Core 132

U. (u —) Core 89

U.R (u +n —) Core Ext 89

U< (u1 u2 — flag) Core 99

U> (u1 u2 — flag) Core Ext 99

Word Stack Wordset Pg
Index to Forth Words 269

Forth Programmer’s Handbook
UM* (u1 u2 — ud) Core 58

UM/MOD (ud u1 — u2 u3) Core 58

UNLOOP (—) Core 109

UNTIL (x —) Core 105

UNTIL (x —) Core 185

UNUSED (— u) Core Ext 166

UPDATE (—) Block 252

VALUE <name> (x —) Core Ext 65

VARIABLE <name> (—) Core 63

VOCABULARY <name> (—) Common usage 193

W/O (— fam) File 138

WH <name> (—) Common usage 41

WHERE <name> (—) Common usage 41

WHILE (x —) Core 105

WHILE (x —) Core 186

WITHIN (x1 x2 x3 — flag) Core 59

WORD <text> (char — c-addr) Core 161

WORDS (—) Tools 53

WORDS (—) Tools 193

WRITE-FILE (c-addr u fileid — ior) File 137

WRITE-LINE (c-addr u fileid — ior) File 137

XOR (x1 x2 — x3) Core 59

Word Stack Wordset Pg
270 Index to Forth Words

Forth Programmer’s Handbook
General Index

See also Appendix D: Index to compiler

Forth Words.

A alignment 67–69
ANS Forth 13, 15, 47, 237
array 66
ASCII character values 93
assembler

structured programming
in 37

assemblers in Forth 36

B big-endian 234
BLOCK 244
blocks 34

buffers 243
editors 252
load 250
mapped to OS files 244
named 251
programmer aids 252
shadow block

documentation 252
used for data 246
used for program

source 249
BUFFER 245

C CATCH and THROW 123
cell 18, 234

alignment 67–69
pair 234

character pointer 157
code space 235
comments 39
"common usage" 14
compilation state 167, 176
compilation word list 191
compile 235

literal values 67

directive 97, 176, 182
CONTEXT 191
control-flow stack 186–188
co-resident systems 33, 38
counted string 77
counted strings 75, 235
cross-compilation 235
cross-compiler 11, 195–207

dictionary 19, 22
programmer aids 42

D DASM 42
data field 235
data space 235

pointer alignment 165
data space pointer 62, 66, 139,

235
data stack (See stack, return

stack)
date and time functions 138
debug tools

cross-reference 41
disassembler/

decompiler 42
LOCATE 40

defining behavior 60
definition 18
delimiter character 159
development system 235, 237
device drivers

and multitasking 207
dictionary entry 166

typical 21
dictionary pointer 166

and PAD 75
disassembler/decompiler 42
disk

blocks 243
double precision

vs. floating point 142
General Index 271

Forth Programmer’s Handbook
E exception
frame 236
handling 123
stack 236

execution token 115, 161, 168
execution variable 117
execution vectors 120

F fileid 134
files

file access method
(fam) 134

I/O result (ior) 134
used for program

source 135
flags, true and false 98
floating point

punctuation 142

H headless definition 22, 212,
236

I I/O result (ior) 134
IN 157
input buffer 155
input message buffer 129
input stream 155
instance behavior 60
interpretation state 176
interrupts 35
ISO/IEC Forth 13, 15, 47, 237

L literal 178
compile a value 67

load block 250
LOCATE 40

M MARKER 189
MS 138
multitasking 34

and device drivers 207

N name space 237
naming convention 50, 57, 209

nested conditionals 100
number conversion 176

input 29
punctuation

in floating point 142

O overlays 188

P precedence bit 176, 182
programmer aids 38

block based 252
comments 39
cross-references 41
disassembler/

decompiler 42
LOCATE 40
shadow blocks 252

punctuation
in floating point 142

Q QUIT 129

R registers
device

define as constants 206
test interactively 206

return stack 47, 51
restrictions 51–52

run-time behavior 171

S search order 53, 191
serial I/O 128
stack 47–52, 237

comments 39
notation 241

T table 67
terminal input buffer 159
terminal task 34
terminals

cursor control 132
drivers 128
input 128
output 131
272 General Index

Forth Programmer’s Handbook
text interpreter 129, 159
directives 139, 163
number conversion 29

THROW 236
transition word 171

U user variable 88
user variables

terminal characteristics
in 132

V variable, user 88
vectored execution 120

W WH 41
WHERE 41
word 237
word lists

commands 192
compilation 191
General Index 273

Forth Programmer’s Handbook
274 General Index

	Contents
	Preface to the Third Edition
	Welcome!
	About the Forth Programming Language
	About This Book
	How to Use This Book
	Typographic Conventions
	Reference Materials
	How to Proceed

	1. Introduction
	1.1 Forth Language Features
	1.1.1 Definitions of Terms
	1.1.2 Dictionary
	1.1.3 Data Stack
	1.1.4 Return Stack
	1.1.5 Text Interpreter
	1.1.6 Numeric Input
	1.1.7 Two-stack Virtual Machine

	1.2 Forth Operating System Features
	1.2.1 Disk I/O
	1.2.2 Multitasking

	1.3 The Forth Assembler
	1.3.1 Notational Differences
	1.3.2 Procedural Differences

	1.4 Documentation and Programmer Aids
	1.4.1 Comments
	1.4.2 Locating Command Source
	1.4.3 Cross-references
	1.4.4 Decompiler and Disassembler

	1.5 Interactive Programming—An Example

	2. Forth Fundamentals
	2.1 Stack Operations
	2.1.1 Stack Notation
	2.1.2 Data Stack Manipulation
	2.1.3 Return Stack Manipulation
	2.1.4 Programmer Conveniences

	2.2 Arithmetic and Logical Operations
	2.2.1 Arithmetic and Shift Operators
	2.2.2 Logical Operations

	2.3 Memory and Data Storage
	2.3.1 Defining Words
	2.3.2 Single Data Objects
	2.3.3 Arrays and Tables
	2.3.4 Memory Stack Operations
	2.3.5 Data Object and Memory Access Examples

	3. String Handling
	3.1 General String Topics
	3.1.1 Single Characters
	3.1.2 Scratch Storage for Strings
	3.1.3 Internal String Format

	3.2 Strings in Definitions
	3.3 Strings in Data Structures
	3.4 String Management Operations
	3.5 Comparing Character Strings
	3.6 Number Conversions
	3.6.1 Input Number Conversion
	3.6.2 Numeric Output
	3.6.3 Processing Special Characters

	4. Structured Programming
	4.1 Controlling Program Flow
	4.2 Comparison and Testing Operations
	4.3 Conditionals
	4.4 Indefinite Loops
	4.4.1 Infinite loops
	4.4.2 Post-testing loops
	4.4.3 Pre-testing loops

	4.5 Counting (Finite) Loops
	4.6 Finite vs. Indefinite Loops
	4.7 Case Statement
	4.8 Nesting Structures
	4.9 Nesting and Un-nesting Structures and Definitions

	5. System Functions
	5.1 Vectored Execution
	5.1.1 Execution Tokens
	5.1.2 Single Function Pointers
	5.1.3 Execution Vector Tables
	5.1.4 Vectored System Routines

	5.2 System Environment
	5.3 Exception Handling
	5.4 Serial I/O
	5.4.1 Terminal Input
	5.4.2 Terminal Output
	5.4.3 Support of Special Terminal Features

	5.5 File-Based Disk Access
	5.5.1 Overview
	5.5.2 Global File Operations
	5.5.3 File Reading and Writing
	5.5.4 File Support Words

	5.6 Time and Timing Functions
	5.7 Dynamic Memory Management
	5.8 Floating Point
	5.8.1 Floating-Point System Guidelines
	5.8.2 Input Number Conversion
	5.8.3 Output Formats
	5.8.4 Floating-Point Constants, Variables, and Literals
	5.8.5 Memory Access
	5.8.6 Floating-Point Stack Operators
	5.8.7 Floating-Point Arithmetic
	5.8.8 Floating-Point Conditionals
	5.8.9 Logarithmic and Trigonometric Functions
	5.8.10 Address Management
	5.8.11 Custom I/O

	6. The Forth Interpreter and Compiler
	6.1 The Text Interpreter
	6.1.1 Input Sources
	6.1.2 Input Source Management
	6.1.3 Parsing Text in the Input Stream
	6.1.4 Dictionary Searches
	6.1.5 Text Interpreter Conditionals

	6.2 Defining Words
	6.2.1 Creating a Dictionary Entry
	6.2.2 Colon Definitions
	6.2.3 Code Definitions
	6.2.4 Custom Defining Words

	6.3 Compiling Words and Literals
	6.3.1 The Forth Compiler
	6.3.2 Literals and Constants
	6.3.3 Compiling Execution Tokens
	6.3.4 Compiling Strings

	6.4 Compiler Directives
	6.4.1 Making Compiler Directives
	6.4.2 The Control-flow Stack and Custom Compiling Structures

	6.5 Overlays
	6.6 Word Lists
	6.6.1 Basic Principles
	6.6.2 Managing Word Lists
	6.6.3 Sealed Word Lists

	7. Forth Cross compilers
	7.1 Issues in Cross Development
	7.2 Host and Target Roles and Functions
	7.3 Managing Scopes
	7.4 Data Space Management
	7.4.1 Vectored Words
	7.4.2 Data Types
	7.4.3 Effects of Scoping on Data Object Defining Words

	7.5 Interactive Programming
	7.6 I/O Drivers for Embedded Systems

	8. Programming Style and Editing Standards
	8.1 FORTH, Inc. Editing Standards
	8.1.1 Stack Effects
	8.1.2 General Comments
	8.1.3 Spacing Within Files

	8.2 Open Firmware Coding Style
	8.2.1 Typographic Conventions
	8.2.2 Use of Spaces
	8.2.3 Conditional Structures
	8.2.4 Finite Loop Structures
	8.2.5 Indefinite Pre-testing Loop Structures
	8.2.6 Indefinite Post-testing Loop Structures
	8.2.7 Block Comments
	8.2.8 Stack Comments
	8.2.9 Return Stack Comments
	8.2.10 Numbers

	8.3 Wong’s Rules for Readable Forth
	8.3.1 Example: Magic Numbers
	8.3.2 Example: Factoring
	8.3.3 Example: Simplicity
	8.3.4 Example: Testing Assumptions
	8.3.5 Example: IF Avoidance
	8.3.6 Example: Stack Music
	8.3.7 Summary

	8.4 Naming Conventions

	Appendix A: Bibliography
	Appendix B: Glossary & Notation
	B.1 Glossary
	B.2 Data Types in Stack Notation
	B.3 Flags and IOR Codes
	B.4 Forth Glossary Notation

	Appendix C: Blocks for Disk Storage
	C.1 Overview
	C.1.1 Block-Management Fundamentals

	C.2 Loading Forth Source Blocks
	C.2.1 The LOAD Operation
	C.2.2 Named Program Blocks

	C.3 Block-based Programmer Aids and Utilities
	C.4 Style Guidelines for Block-based Source
	C.4.1 Stack Effects
	C.4.2 General Comments
	C.4.3 Spacing Within Source

	Appendix D: Index to Forth Words
	General Index

