RTL-SDR for Linux Quick Start Guide

RTL-SDR for Linux Quick Start Guide

v10.16 by Kenn Ranous

- Page 3 Introduction
- Page 4 Installing Drivers
- Page 6 Gqrx General Purpose Radio & Spectrum Software
- Page 8 Cubic SDR General Purpose Radio & Spectrum Software
- Page 9 ADS-B Aircraft Tracking with Dump1090
- Page 12 Advanced Aircraft Tracking with Virtual Radar Server
- Page 16 Spectrum Analysis with Qspectrum Analyzer
- Page 17 Monitoring Trunked Radio Systems with SDR Trunk
- Page 19 Other interesting RTL-SDR applications
- Page 19 Additional Resources
- Page 19 In Closing ...

Introduction:

How to get an RTL-SDR dongle working on a Linux PC made (relatively) quick and easy. These instructions were created for Linux Mint and should work in any Debian or Ubuntu based distribution. I'll cover the software that I've found to be complete and working. Note that most things RTL-SDR are a work in progress, including this guide. Calibrate your expectations to that of beta software. Updates sometimes break things and documentation isn't always accurate. I'll be updating this guide using the convention vMonth.Year in an attempt to keep up with what works.

Preferred dongles have the 820T2 tuner, a TXCO and are in a shielded enclosure with heat-sink. Use a good quality USB extension cable with ferrite cores on both ends. Try to position the dongle away from the computer and other sources of electrical noise to minimize interference.

PC system requirements are modest. Decoding and GUI displays need some processing power so opt for a dual-core or better CPU. None of the applications here are highly demanding of Video or HDD. At least 2GB of RAM is best.

Regardless of cost, any radio is only as good as it's antenna. For now I'll just touch on antennas as there's an abundance of information on-line and in ARRL publications.

- A set of TV rabbit ears is a good way to get started.
- Discone antennas are broadband and work well for general purpose use.
- Outdoor TV antennas work quite well for scanning.
- Turnstiles and Folded Dipoles excel at FM broadcast reception.
- For ADS-B a 12 element Coaxial Collinear is notably superior to a discone.
- Dipoles and long wires work well for the HF bands.
- Ground planes, J-poles, dipoles, yagis, quads and log periodic antennas can offer superior performance when designed for a specific band.

In summary, VHF/UHF frequencies tend to be line-of-sight and can be blocked by some building materials, especially metal. Higher is better and outdoors is best.

Watch out for those power lines!

Installing the drivers:

1. Open a terminal and confirm you're in your home directory. This is the preferred convention and will be assumed throughout this text. Text highlighted in gray is exactly what you want to type at the command line. Yes it's case sensitive.

2. Update your distribution.

sudo apt-get update

3. Install the tools needed to retrieve (git), compile (cmake) and build (buildessential).

sudo apt-get install git sudo apt-get install cmake sudo apt-get install build-essential

4. Install libusb-1.0-0-dev which is a C library that provides generic access to USB devices.

sudo apt-get install libusb-1.0-0-dev

5. Retrieve, build and compile the RTL2832U Osmocom drivers from the source.

```
git clone git://git.osmocom.org/rtl-sdr.git
cd rtl-sdr/
mkdir build
cd build
cmake ../ -DINSTALL_UDEV_RULES=ON
make
sudo make install
sudo ldconfig
sudo cp ../rtl-sdr.rules /etc/udev/rules.d/
```

6. Blacklist the default driver that is automatically loaded for using the dongle as a TV device as it doesn't work for SDR purposes and clashes with the new Osmocom drivers we just installed.

A. Open your /etc/modprobe.d folder as an administrator.

B. Create a new file 'blacklist-rtl.conf' and add this one line:

blacklist dvb_usb_rtl28xxu

- C. Save the file, close the editor and restart the machine.
- 7. Test that the dongle is working by opening a terminal and typing:

rtl_test -t

Terminal - + × File Edit View Search Terminal Help kenn@radiobox ~ \$ rtl test -t Found 1 device(s): 0: Realtek, RTL2838UHIDIR, SN: 00000001 Using device 0: Generic RTL2832U OEM Found Rafael Micro R820T tuner Supported gain values (29): 0.0 0.9 1.4 2.7 3.7 7.7 8.7 12.5 14.4 15.7 16.6 19.7 20.7 22.9 25.4 28.0 29.7 32.8 33.8 36.4 37.2 38.6 40.2 42.1 43.4 43.9 44.5 48.0 49.6 [R82XX] PLL not locked! Sampling at 2048000 S/s. No E4000 tuner found, aborting. kenn@radiobox ~ \$

Don't worry about messages like PLL not locked or E4000 tuner not found or that it says R820T and not R820T2. If you're seeing the above then your drivers and dongle are working. You're now ready to install some applications.

Gqrx General Purpose Radio/Spectrum Analyzer:

This can be found in the Synaptic Package Manager. To get the latest version, visit <u>http://gqrx.dk</u> for instructions on how to add their PPA's (Personal Package Archive) to your system and install. They've made it pretty easy.

On first startup you'll see the Configure I/O devices box. Default values are usually correct, just make sure your RTL dongle is selected then hit OK.

Click the Power Button in the upper left corner to start receiving. Input the desired frequency and under Mode select the appropriate demodulator. (ie Narrow FM for NOAA Weather Radio).

Hover over each item to see what it does. Toggle hardware AGC and adjust LNA gain to maximize the signal but not so high that static or distortion takes over. Note that you'll need to alter gain settings as you tune around the spectrum. I find setting gain and AGC so the noise floor is around -60db to -70db works well.

You can also bookmark favorite frequencies and organize them by category.

If the audio sounds choppy, try reducing the sample rate. Also check under the FFT Settings tab and reduce the FFT size and Rate fps. You may also need to adjust your PPM as described next.

Frequency Correction with GQRX:

The RTL-SDR dongles are mass-produced devices designed for TV where precise frequency accuracy is not important. For use with narrow-band signals we need a greater degree of accuracy. Later model dongles have a more accurate TXCO but older ones may be off by enough to compromise reception.

Fortunately, there's an easy fix. Most applications have provisions to adjust the PPM. Once you've determined your PPM error correction factor you can use that value in most software. As long as the dongle doesn't overheat, this value should remain reasonably constant. To determine your dongles PPM, launch GQRX and tune your SDR to one of the National Weather Service Radio frequencies as listed.

162.400	162.425	162.450	162.475	162.500	162.525	162.550
---------	---------	---------	---------	---------	---------	---------

Zoom in on the signal and adjust your PPM until the tuning line is centered on the signal. See the next two images for details.

Uncorrected PPM error.

Adjust your PPM + or - until tuning line is centered on signal.

CubicSDR General Purpose Radio/Spectrum Analyzer:

A bit more visually oriented than Gqrx, I find that CubicSDR delivers smoother audio. The latest v0.2.0 is available for download from <u>http://cubicsdr.com</u> where there's instructions on how to build it, get it via flatpak or you can just download the .AppImage file. Locate it in your Downloads folder and Right-click > Properties > Permissions and tick 'Allow executing file as a program' then double-click to run. (yes, it's that simple, just one 13 meg file) On startup, select 'Generic RTL2832U' and click 'Start'.

Hover over each section for info, it's pretty self explanatory. Enter a frequency directly or click on one of the streams in the lower waterfall panel to start listening. If the audio sounds choppy, click 'Input Bandwidth' on th top menu and select a lower number. The .AppImage file can be placed anywhere you like and sessions can be saved as .xml files.

ADS-B Aircraft Tracking with Dump1090

Dump1090 is a good ADS-B decoder. Originally created by antirez, several developers (malcolrobb, mutability and tedsluis) have modified the original code to make improvements. Each one is called fork. Install as many as you like, just make sure each is in it's own unique folder.

I'll focus on the Ted Sluis fork as it seems to detect more aircraft and provides more information. It also has interesting features such as range & altitude color codes and ten map & chart styles.

http://github.com/tedsluis

Open a terminal and type:

git clone git://github.com/tedsluis/dump1090.git dump1090 cd dump1090 make ./dump1090 --interactive --net --enable-agc

Within a few moments you should see a list of aircraft in the terminal window. Open a web browser and in the address bar enter localhost:8080 and you should see a map with aircraft. You might need to hit the browser refresh button once or twice to get it going.

To launch dump1090 without needing to remember paths and optimal flags, create a text file named d1090 in your /home/username/bin folder. (Note there's no extension) Enter these lines, substituting your own lat, lon and PPM values.

#!/bin/bash

#A bash script to start Ted Sluis' dump1090 with optimal flags cd /home/yourname/dump1090 ./dump1090 --interactive --net --enable-agc --gain -10 --ppm 12 --phase-enhance --lat 33.0 --lon -111.0 --oversample --dcfilter

Note: make sure those last two lines are all on one line in the editor. Save as d1090 then Right-click the script file, click 'Permission' and tick 'Allow executing file as a program'. At the terminal just d1090 to start. Easy!

Ŧ				Term	ninal					-	+ ×
File Edit View	Search	Terminal	Help								
Hex Mode	Sqwk	Flight	Alt	Spd	Hdg	Lat	Long	RSSI	Msgs	Ti∖	
A44988 S			38975	459				-6.5	28	1	
A27F07 S		454656	16800	376	169	34, 263	-112,177	-5.7	18	15	
ADB712 S	0351	ASHOSO	5575	570	105	54.205	112.1//	-6.4	51	5	
A68554 S	0331		2625					-3.1	70	õ	
A54B0A S			1800					-12.0	2	59	
A1E6B9 S			14600					-13.3	2	17	
A46D70 S			33000	481	102			-8.0	54	0	
A1463A S	4761		33000					-5.1	78	1	
ABE124 S	4135		33250	423	246			-8.3	12	6	
A23A02 S			13250					-5.8	127	1	
AAA244 S	1742	UAL1851	35000	457	108	33.215	-113.070	-6.8	646	0	
A10614 S	0460		17925					-6.7	52	1	
A1239C S	0733		12850					-1.4	144	26	
A0B473 S			2925					-5.1	41	51	
A2E6DD S	1200		5475	116	086	33.059	-111.749	-6.9	42	13	
A54D0A S	1200	N4400W	1975	74	239	33.478	-111.701	-1.7	839	0	
000000 S	4022							-11.5	4	10	
A54D4D S	1200	N4402T	2425	101	034	33.469	-111.677	-4.0	826	5	
A2D4D6 S	1200	N28154	3650	116	100	33.394	-111.606	-5.0	552	0	
ABEFBA S	4141	SWA289	17025	394	069	33.379	-111.700	-2.7	1105	1	
A54D50 S	1200	N4402W	1900	91	232	33.470	-111.713	-5.8	622	46	
A54D87 S	1200	N4404F	3825	120	098	33.393	-111.588	-5.2	795	3	
AD7754 S	2473		35000					-5.1	747	0	
A16EC2 S	7432	UAL1535	36000	435	293			-7.2	527	2	
A4F179 S	0362	N4177L	3400	93	332	33.413	-111.743	-5.0	962	0	
AA9E04 S	0766		28725					-2.9	850	0	
A10E29 S	7334		38975					-2.1	1801	0	
A04B24 S		AAL139	34000	447	293	32.612	-110.254	-5.2	827	0	
A4846E S	2642		21300					-3.8	821	0	
A17343 S			17875					-2.5	425	0	
A533FB S	7622		6950					-3.5	933	0	
A85607 S	7401		37000					-4.0	995	1	
AD20C5 S	1303		3250					-5.9	1682	4	
A2EDB4 S	0635		9075					-1.5	501	29	
A18E6B S	1353	DCM3160	13300	374	298	32.878	-111.124	-3.1	1404	0	
A45072 S		938	36000	452	292	32.693	-110.505	-4.2	1683	0	
A577D4 S	2025		41000					-5.5	1133	3	
AB509C S	1200	N828WW	3675	117	127	33.435	-111.693	-1.5	1172	3	
AS4DIE S	1200	N4401F	19/5	/5	230	33.4//	-111.708	-4.7	1390	11	
AC/F35 S	1522	CD4007	3/000	611	245	22 212	111 454	-2.2	1342	9	
780A29 S	1532	CPA097	34000	211	345	33.313	-111.454	-3.0	3009	1	
AUBI99 S	/320	AAL24/3	309/5	490	105	32.784	-111.422	-3.4	4000	0	
A443EF 5	0400	UAL1090	32000	202	105	22.200	-111.772	-1.9	43/0	0	
A00EFD 5	7347	AAL1024	32975	490	100	52.748	-111.225	-3.5	1720	0	
	1200	N/110C	5550					-2.0	1/20	44	
A2856E S	2643	101 1672	38000	442	266			-7.8	5044	49	
AD7471 S	2045	0461072	41000	112	200			-4 0	995	0	
AD3556 S	0751	N95AH	32275	488	898			-9.5	6591	37	
ADBEFA S	3175	AAI 1278	37000	463	103	32 401	-109 893	-7.5	5075	1	
A4F8F0 S	4723	NAL1270	6575	105	105	52.401	105.055	-6.3	671	õ	
ADECD7 S	7704	N997CA	4425					-2.8	515	1	
	1101	assiren	1125					2.0	515	1	

Advanced Aircraft Tracking with Virtual Radar Server

While Dump1090 is a good ADS-B decoder, there's another choice when it comes to web serving & mapping functions. In this section, I'll document how to use Dump1090 as the receiver/decoder and VRS (**V**irtual **R**adar **S**erver) to show their location.

1. Install your choice of Dump1090 as explained previously.

2. VRS is a .net application. To run it in Linux we need to install mono. Open a terminal and type:

sudo apt-get install mono-complete

3. Visit <u>http://www.virtualradarserver.co.uk</u> and download the mono tarball.

4. Extract/decompress the tarball. I put the VirtualRadar folder in my home folder and will assume that convention in this guide.

5. We need to change the port number that VRS serves on to something besides 8080 so it doesn't conflict with the dump1090 web server. This must be done manually. Open a terminal and type:

cd VirtualServer mono VirtualRadar.exe

Click 'Help' > 'About...' and at the bottom should be a link to the configuration folder. Click it and it will open that folder. (just in case it doesn't, we're looking for the /home/username/.local/share/VirtualRadar folder. Note the period in front of .local means it's a hidden folder.)

In this folder, create a text file called InstallerConfiguration.xml then open it and paste this into it:

```
<?xml version="1.0" encoding="utf-8" ?>
<InstallerSettings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<WebServerPort>8888</WebServerPort>
</InstallerSettings>
```

I chose 8888 because it's easy to remember and as far as I know nothing else uses it. Use any port you like so long as it isn't being used by something else on your system. Save this file and close your text editor. Shut down VRS. 6. Launch dump1090 at the command line:

cd /dump1090

./dump1090 --net --interactive

(Or via the script I showed earlier if you created one.)

7. Launch VRS at the command line:

cd /VirtualRadar

mono VirtualRadar.exe

If you like, you can create a script file in your home/username/bin folder called vrs with these lines:

#!/bin/bash

A script to start Virtual Radar Server

cd /home/username/VirtualRadar

mono VirtualRadar.exe

Right click on vrs and click > permissions > 'Allow executing file as a program'.

8. Click 'Tools' > 'Options' > 'Receivers' the green + sign to add a receiver. Run the wizard and tell it you have 'A software defined radio' > 'Dump1090' > and tick 'Yes' to 'Is the SDR decoder running on this computer'. All other settings should be left at default values. Hit OK.

9. Back at the main VRS screen under 'Feed status' you should be seeing Receiver
- Connected - a number of Total Messages rising - and some Aircraft Tracked.

Right above that should be a blue hyperlink to <u>http://127.0.0.1:8888/VirtualRadar</u>. Click and a browser should open with aircraft on the map.

10. The map might start centered over London. If so move to your location. Now you would think that by looking under 'Tools' > 'Receiver' > 'Receiver Locations' and entering your lat & lon it would start the map centered around your location, but for me it hasn't. If I find a fix I'll post it on the next update.

Data Sources		Enabled	*• Wizard							
Receivers Receiver Receiver Locations	Name: Format:	Name: Receiver Format: AVR or Beast Raw T Is SatCom A								
Merged Feeds	Location:	007 x								
Kebroadcast Servers Users admin Raw Feed Decoding Web Server	Connection type:	Network Test Connection								
Users Administrators		C Merge only								
 Web Site ⊕ Initial Settings General ☆ Mono Settings 	Network	Push receiver								
	Address: Port:	30002 ×								
	Passphrase:	Send keep-alive packets								
	Idle timeout:	60 (seconds)								
	Access Control									
	Default access:	→ + ×								
	Allow these addresses:	CIDR From a	address To address							
	Data source The receiver or program that will be sending aircraft data to Virtual Radar Server. Th supports *, @ and : messages as well as Beast binary format messages.									

Under Tools > Options > Receivers.

v			т	ermin	al			- + 3	×	Ŧ		Virtual	Radar Server ()	(64)			- + ×
File Edit View	Search	Terminal H	ielp							File Tools He	lp						
Hex Mode	Sqwk	Flight	Alt	Spd	Hdg	Lat Long	RSSI	Msgs Ti		Web server statu	;						
										The web server is	online					Take Of	fline
ACD143 S		CHA 4EO	35075	210	160	24 021 112 111	-7.4	11 1		UD-D		- 1-1				Dut onto In	ta and
ABEEEA S	0726	SWA450	13323	202	100	34.021 -112.111	-4.0	24 13		UPhP support has	not been en	apied			_	Put onto ir	iternet
	0730	SWA2350	12825	363	346	33 676 -112 220	-1.0	220 0		IP Address	User	Last Request	Bytes Se	nt Last URL			
	6167	AAL 321	34725	418	284	32 322 -109 987	-2.0	895 0		127.0.0.1		9/10/2016 1:12:	5,080,9	66 /AircraftList.json			
454003 5	1200	N4400P	1900	66	232	33 475 -111 706	-3.7	689 0									
ACF946 S	7331	1111001	29675		232	55.475 111.700	-4.4	347 0									
AB2496 S	1056	AAL2572	37000	469	100	33.161 -112.859	-4.4	725 0									
A4846E S			36000				-6.9	92 4									
ACB285 S	1653	AAL563	22075	385	228	34.279 -110.892	-7.4	89 2									
ADEA26 S	6706	AAL1488	19300	403	234	34.100 -111.050	-5.4	596 0									
A2E49E S	1576		7050				-2.4	165 1		Change land a datase	-						
A22BF0 S	5623		6600				-3.6	812 1		Isnow local addres	is	Derault Versio		fline mode			
AA6BA6 S	7722		3575				-5.0	1934 3		http://127.0.0.1:88	88/VirtualRa	adar					
A5FEF4 S	6232	ASA763	38000	436	286	32.647 -110.853	-3.0	3539 0		Feed status							
AA2E36 S	3465		36000				-3.0	1474 0		Teed status.							
A2B0ED S	2573	UAL1948	16725	355	304	32.805 -111.300	-3.1	4698 0		Name	Conne	ection Status	Total Messa	ges Bad M	essages	Aircraft Trac	ked
A4FF0E S	4244	51177416	6825	183	299	33.085 -111.681	-7.8	3509 0		Receiver	Conne	cted	138	237	0		66
A4EF61 S	6631		35000				-8.6	3090 15									
AA02AB S	4057	AAL540	12800				-2.0	2594 0									
A84ABD S	7723	VRD882	37000	472	100	32.834 -111.126	-3.3	928 1									
A00244 S	7364		41000				-2.0	2810 0		Reproducast serv	er status -						
ACAB11 S	1512	AAL516	10400	303	338	33.058 -111.560	-2.0	5608 0		Configuration:	None						
A6049B S	2267		38000				-5.7	1330 3		Name		IP Address	Port	Bytes Buffered	Bytes	Sent Bytes	Disca
A838E2 S	1033	NK5326	35000	470	102	32.637 -110.395	-5.0	7716 0									
AIC8EB S	5750	1853	4050	223	248	33.446 -111.827	-3.1	1824 0									
A2C515 S	2775	N278K	40000				-6.7	1137 10									
AAEZA8 S	0731	N800JC	11625	196	074	33.605 -110.284	-3.8	4447 0									
									U								

Dump1090 receiving & decoding while VRS serves & plots.

Click on a plane to see its path and info.

Explore the options under 'Menu'. There's also an optional Web Admin Plugin available from http://virtualradarserver.co.uk that adds a web-based user interface to monitor and configure the server. VRS can also be made public so others can view your radar system remotely.

If you really want to get the most out of your ADS-B system, look into purchasing an ADS-B pre-selector filter, an LNA (Low Noise Amplifier) aka a pre-amplifier and either purchasing or building a coaxial collinear antenna.

<u>http://balarad.net</u> - The best documentation I've found on DIY ADS-B antennas

Spectrum Analysis with Qspectrum Analyzer

A limitation of RTL-SDR dongles is a maximum bandwidth window of about 2.4 MHz and general purpose radio applications store a limited history. If we want to, for example, monitor the entire 2 meter ham band from 144 to 148 MHz for a full day and log the results we'll need another tool. The command line utility rtl_power included with the Osmocomm drivers we installed earlier can do this but there's a better way. Using an enhanced tool called rtl_power_fftw we can rapidly scan 2.4 MHz chunks in rapid succession and visually display it with Qspectrum analyzer.

1. Install rtl-power-fftw and required libraries:

sudo apt-get install libfftw3-dev libtclap-dev

2. Retrieve, build and compile:

git clone git://github.com/AD-Vega/rtl-power-fftw
cd rtl-power-fftw
mkdir build
cd build
cd build
cmake ..
sudo make install
cd -L
rtl_power_fftw --version
If all has gone well you should see:
rtl power fftw version: 1.0-beta2

3. Install Qspectrumanalyzer and dependencies then launch:

sudo apt-get install python3-pip python3-pyqt4 python3-numpy

sudo pip3 install qspectrumanalyzer

qspectrumanalyzer

The GUI should now be running. Click 'File' then 'Settings' and change the backend to 'rtl_power_fftw'. Enter the desired Start and Stop Frequencies and click Start. Hover the mouse over any peaks in the upper window to find out what it's frequency is. Note this is a power over time monitor and not a radio application. You won't hear anything, what you'll see is where transmissions are occurring across the given frequency range.

In the above image, I'm scanning the entire 2 meter amateur radio band from 144-148MHz. Each spike represents a signal. The waterfall below represents time, so the dots are short transmissions, likely repeater identifications.

For more information, visit the developer's github pages at:

https://github.com/AD-Vega/rtl-power-fftw

https://github.com/xmikos/qspectrumanalyzer

Monitoring Trunked Radio Systems with SDR Trunk:

Trunking radio systems are more complex than traditional radio systems as are the applications used to track them. In brief, a typical standard analog radio system will have one or more mountaintop transmitters as needed to cover an area. There might be a few channels or a dozen or more. Mobile units transmit up to the tower at one frequency and the tower retransmits out on another frequency. All the scanner enthusiast needs to know is the output frequencies.

Now imagine a city has 20 different departments each with their own set of mountaintop transmitters and channels. That's a LOT of hardware to maintain. It's also hundreds of dedicated frequencies and spectrum is getting crowded. Most departments probably aren't using most of their channels most of the time anyway.

So imagine all 20 departments share one radio network and a pool of channels. A computer picks a clear frequency and the right call goes to the right department. That, in a nutshell is trunked radio. Some are analog, others are digital. A few are encrypted.

SDR Trunk is the only trunking software I've found so far that works in Linux. Installation and usage is a bit more complex than a standard radio application.

https://github.com/DSheirer/sdrtrunk

The install instructions are generally complete, a few things to note:

Many municipalities are using the APCO25 digital standard. To listen in you'll need to download and compile the JMBE libraries, created by the same author. The installation guide can be found in the wiki on the sidebar under APCO25. At this time, only phase I (aka type I) is supported.

When creating a new system in SDR Trunk, you're prompted to enter a frequency. Usually that will be the control channel frequency. This can be found for the system you want to monitor on the radioreference.com database. You don't need to enter all the frequencies for a site, just the control channel and SDR Trunk will tune in to and follow across the other channels.

At this point, the best way to accurately follow apco25 type II trunked system is with a digital scanner or via an online feed such as <u>http://www.broadcastify.com</u>

Other interesting RTL-SDR apps:

rtl_433 receives and decodes sensor data from remote temperature, rain gauges, thermostats, etc. in the ISM bands. It's not limited to 433MHz. A good antenna can pick up several from your immediate neighborhood.

Resources:

http://sdr.osmocom.org/trac/wiki/rtl-sdr – Source of the RTL-SDR drivers. http://rtl-sdr.com – Great place to buy and learn about RTL-SDR http://distrowatch.org – A one-stop index of the top 200 Linux distributions http://linuxmint.com – Currently the most popular Linux distribution http://balarad.net – The best documentation I've found on DIY ADS-B antennas qsl.net/na4it/dbgp.html – A cheap, easy & good dual-band ground-plane antenna wikipedia.org/wiki/Electromagnetic_spectrum – A primer on radio waves radioreference.com/ - Excellent database of frequencies qsl.net/kb5wck/antenna.html – A good source of antenna design calculations https://linuxconfig.org/bash-scripting-tutorial – Bash Scripting http://www.howtogeek.com/67469/the-beginners-guide-to-shell-scripting-thebasics/ - Introduction to Shell Scripting http://www.programmingsimplified.com/c-program-examples – C tutorial http://www.cplusplus.com/doc/tutorial/ - C++ tutorial http://www.github.com – Mass guantities of source code!

In Closing:

I'll be updating this guide over time as I discover new software, hardware, tricks and mods. I welcome constructive feedback. You can contact me through my blog at <u>http://ranous.wordpress.com</u> where you'll find additional RTL-SDR articles. If you send me a coherent message I'll most likely respond.

Thanks for tuning in!