
DOCID: 3722346

UNClASSIFIED

WrHing Efficient FORTRAN
Byl I

Unclassified

(b) (3)-P.L. 86-36

This paper de.~cribes a .nurn ber of method.... that a pro/?rammer can
use to write more etficient prugrams. Its goal is to foster the attitude
that the efficiency of a program is often as important as its accuracy.
and to provide the understanding necc..:;.<;ary to accomplish thi,,:;.

I. INTRODlJCTION

This paper has been written in an attempt to influence FORTHAN
programmers t.o write more efficient programs, with little extra effort
on their parts, Programming is very niucha matter of style, and
one's style may he good or had..Just as one's prose style can he improved
throu~h guidance and pract.ice, so too can one's programming style.
This paper cont.ains a list of "do's and don'ts" of programming which,
if adhered to, will guarantee the' development of a more efficient.
programming style.

The emphasis of the paper is on FORTRAN, and many of the
comments apply only to FORmAN, and, in particular, the CDC 6600
IDASYS version of FORTRAN. Other comments apply more generally,
to all, higher level algorithmic languages; :'iome, finally, apply to any
programming lan~age. The examples employed will be exclusively
in FORTRAN, "

There are two cardinal rules of efficient. programming:
(1) Never perform an unnecessary operation,
(2) If an operation may be performed several ways, always choose

the cheapest way.
The remainder of the paper is essentially an explication and expansion
of these two principles.

II SUBSCRIPTED VARIABLES

A programmer should be aware of the effect of his use of a sub­
scripted variable. Variables in general are simply names of storage
locations in which values are stored. During compilation, each vari­
able name is replaced with the address of the corresponding storage
location. The address is then available during the execution of the
program and need not he recalculated.

This is not true for a subscripted variable. Only the address of t.he
first location of the array can be prepared during calculation. But every
execution-time reference entails a computation of the effective address.

73

@'pproved for Release by NSA on 07-16-2010, FOIA Case # 6207)

UNCLASSIFIED

DOClD: 3122346
UNCLASSifIED EFFICIRNl' FORTRAN

For a singly dimensioned array, this ()perates as follows:

. address (A(1) = address (first location orA) + I-I

for multiply-dimensioned. arrays, the situat.ion is somewhRt more
complex. Let A be dimensioned:

DIMENSION A(L,M}

Then we have:

address (A(l,J» = address (tirst location of A) + I -- I I L·
(J- 1)

Finally, the three-dimensional formulae an!:

DIMENSION A(L,M,N)
address (A(i,.J,K)} = address (tirst location of A) 1- 1--1 -1- L *

[.J - 1 + ~ -* (K -1) I ;
In other words, for each additional dimension above one. there is an
additional mult.ipli(:at.ion and addition {or each reference during
execution .

.To understand the effects of this extra work, cOn!;ider the following
loop example:

DIMENSION A(lO.lOf

DO 101= 1,10
DO 10.1=1,10

10SUM=SUM -I- A (I,J)

This short loop involves 100 references to the array A, at a cost of one
multiplication and one addition each. Now consider the following
alternative: ..

DIMENSION A(lO,lO)

DO IO.J = 1,10

J.J= 1O*(.J -I}

DO 101=1,10

lOSUM=SUM + A(I-t·JJ)

We now have eliminated the 100 multiplications from the array ref­
erences and replaced them with 10 set-up multiplicat.ions. We can
impn)ve things even further:

DIMENSION A(lO,lO)

DO 10 .1=0,90,10

DO 101= 1,10

10 SUM=cSUM + A(I +.J)

UNCLASSIFIED 74

DOClO: 3122346
(brT3T,:::p;L~86-36

UNCLASSIFIED

Of course, since most FORTRAN compilers do not-permit DO-loops
to start at 0, the progTarnmer will usually have to Mite his own loop
control statements.

To measure the possible savings this type of change can achieve, 1
modified a CDC 6600 pro~am in this way. Five minutes' effort resulted
in a time savings of ~%.

Another" comment. regarding suhscripted variable- is in order.
Frequently, several referenc~s to the same variahie" will be made.
Instead of making all these references to the subscripted variable, it is
more efficient to save the value of a variable in a simple variable and
refer thereafter to that variable:

X=A(l,.J)

. (statements using X)

HI: LOOPS

In the great majority of programs. the bulk of the processing is per­
formed within loops-··usually within deeply nested loops. The eflicient
programmer will, therefore, hold the processing" in his loops to a
minimum and do whatever is really loop-invariant outside of the loop_
While this sounds like a fairly simple idea, it is far too frequently
violated.

One important example has already been given: the references to
subscripted variables_ It is very iJJlportant to understand how address
calculations were made loop-invariant. The Oflginal example had the"
I-loop out..c;ideand the .J-loop inside (the way most programmers
would tend to writ.e). Rut thi~ way, the calculation JJ= IO*(J= 1) is
not loop-invariant. The trick is to reverse the nesting order of the two
loops. Once the I-loop is inside, the JJ calculation can be removed
from the inner loop_

This may he stated as a general principle: If arrays are stored in rOLI.'­

major order (that is, the row subscript varies most rapidly), then nest
DO-loops so that the loop of the row subscript iH innermost. If column­
major order is employed by the compiler. then nest DO-loops with the
loop of-the column subscript. innermost. This happens t.ohe a compiler­
depend~nt factor, hut "program efficiency is usually purchased at the
cost of machine or compiler dependency .

IV. ARITHMETIC CALCULATIONS

The stat.ements a programmer tends to write most. automatically
are those which perform· arithmetic cakulations and assignments.

75 UNClASSIFIED

DOClD: 3722346
UNCLASSIFIED EFFICIENT FORTRAN

Yet here. too. considerable savings in speed are frequently possible.
especially if the arithmetic is performed within a loop. There are two
basic points to keep in mind.

First of all. the arithmetic operations are not usually equally fast.
On most machines, floating point arithmetic is slower than inte~er

arithmetic; within each class, division is ~enerally the slowest opera­
tion, then multiplication. and then addition and subtraction. Powers,
roots, logarithms, and trigonometric operations are all implemented
by subroutines. But these rules do have exceptions. For example. the
CDC 6600 has only floating point multiplication. To multiply two
integers,· the machine must first convert them to floating point, then
multiply them and convert the result back to integer format. This is
clearly much more expensive than a simple floating point multiplica­
tion.

The efficient programmer. having learned the relative costs of the.
arithmetic operations on his machine, will be able to arrange his
computation!'; to favor the cheapest operations. Some examples follow.

Expressions involving small (integer) constants can usually be
modified, !';o as to replace expensive operations with cheaper ones.
Thus, the expression 2.0*A may be written as A+A, and A**3 can be
replaced with A*A*A. It is true that some compilers will do the latter
substitution on their own, but the programmer can make sure by
doing it himself.

Another example involves loops. Consider the following normaliza­
tion loop:

DO 11= 1,10

1 X(1)= Y(l)/Z

This requires ten divil'ions; we can get hy with one division and ten
multiplications:

Zl= 1.0/Z

DO 2 1= 1,10
2 X(I)= Y(I)*ZI

A final example involves algebraic simplification that the program­
mer can perform. The statement

A = (R +1.0fB)*(C +1.0/C)+(D+ 1.0/D)

requires three divisions, two multiplications, and three additions. But
it is equivalent to

A = (B*B\-1.0)*(C*C-t 1.0)*(0*D+ 1.0) /(B*C*D>.

which requires one division. seven multiplications, and three additions.
Assume that a division takes as long as three multiplications. Then

I·

UNCLASSIFIED 76

DOCID: 3122346
"(bl"(3')='P;L.S,6:::J§

"'uuuuuuul~_ , UNCLASSIFIED

II

the first approach requir~ the equivalent of eleven multiplications
and three additions, while the second requires ten multiplications
and three additions. We can thus save one multiplication out of
eleven, or 9%. A more precise estimate is obtained if we take the
addition into account. Suppose addition is twice as fast as multiplica­
tion. Then the first approach requires the equivalent of 25 additions,
aod the second approach needs' 23. The savinJ,t is then 8%. It is
worth mentionin~ that the estimates given approximate the true
fiRures for the 6600.

The second basic point with regard to possible savinRs in arithmetic
operations concerns partial results. If a computation requires some
intermediate result for two subsequent operations, it is usually worth­
while to first compute the intermediate result, assign the value to a
simple variable, and then use that variable later:

x = SQRT(B*B -,- 4.0*A"C)

Y = (-B+X)/(A+A)

Z = (- B-- X)/(A4 A)

Sometimes it. costs more to store and fetch a result than to compute
it twice. In the above example, thi!'\ was assumed to be the case for the
value A+A (or 2.0*A). But the value assigned to X is clearly not in

,this exceptional category.

V. ARGt1MRNT PASSA(~E AND "COMMON"
i;1:

Whenever arJ,tuments or res~lts ~re passed between a program and a
subroutine or function via a callin~ sequence, overhead will accrue.
This is because either the value or the address of each argument must.
be fetched and stored to a specified location or register. The overhead
is therefore proportional to the number of elements in the calling
sequence.

All of this overhead can be avoided by placing these elements into a
COMMON block (in both the calling program and called subroutine,
of course). Then the subroutine knows at its compile time where its
arguments' are to be found, and where it should place its results.
None of this information need be passed during execution.

VI, BRANCHING

Executing a branch instruction on any computer requires time,
whereas allowing control to proceed sequentially does not. The efficient
programmer will take advant.age of this fact tn minimize the amount

77 UNCLASSIFIED

DOClD: 3722346
UNCLASSIFIED EFFICIENT FORTRAN

of branching his pro~am will have to execute. Consider the following
schematic example:

. . '.

IF (Condition) GO TO

GO TO 2

1 CONTINUE

2 CONTINUE

In this case, whether the condition is true or false. one branch instruc­
tion must be executed. Rut suppose the probahility that the condition
will .occur is only 1~{" We can arrange for control to proceed sequentially
when the condition is false, at the price of two branch instructions
whenever the condition is true:

IF (Condition) GO TO 1

2 CONTINUE

RETURN

CONTINUE

GO 1'02

Notice that the statements to be executed if the condition holds arc
placed after some unconditional branch point in the pr()~am.

There is a second u!'.eful technique in hranching,and this is table
lookup. The FORTRAN equivalent is the computed .GO-TO state­
ment. When a programmer must implement a multiple branch (that
is, test for a number of conditions and perform different actions for
each), he can frequently arrange for a simple integer-valued function
of the conditions, and use the function value as the index of the rom-

·1

UNCLASSIFIED 78

DOClD: 3722346 (bfr:5):::p:L>86~36
J.

UNCLASSIFIED

puted GO-TO. Suppo~e we wish to t~t if a variable X is positive,
negative, or zero.Then:

. ..' .

N ~ ISIGN(X)-t-2

GO TO (1,2.3) ,N

If X is negative, N will be 1; if X is zero, N will be 2; if X is positive, N
~n~3. .

VTI. SPECIAL EfFECTS

Many FORTRAN compilers (and those of other higher level lan­
guagel'» offer special, nonstandard features in their dialecL<;;. Thel'>e fea­
tures provide convenience, and in many cases, efficiency as well. I will

. cite some of the features that the CDC 6600 IDASYS FORTRAN
provides.

(a) Several assignments may begpecified in a single statement:

A= B= C= D= 1.01X

This is preferred to the sequence:

A= l.O/X
B=A
C=A.
D=A

because it avoids the three extra "fetch" operations the letter sequence
is likely to produce.

(b) A suhroutine called ERASER will set all elements of an array to
a specified value:

CALL 8RASER (A,lOO,3.14)

.will set the tirst 100 elements of the'"array A to the value 3.14. This is
preferred to theDO-loop:

DO 11= 100

1 A(I)=:U4

for the same reasons as in (a).

(c) Certain functions, based on some of the 6600'$ instructions, are
compiled as in-line code; this precludes the overhead due to subroutine
linkage. Examples are:

ISHIFT : shifts a word left (circular) or right. .
LVAL extracts a bit from a word.
MOD2 .adds two words mod-2 bit-by-bit.
lDENS counts the number of 1's in a word.
ISGN returns a -1,0,+ 1 if t.he argument. lli negative, zero.

positive, respectively.
SGN similar to ISGN. but returns a floating point value.

79 UNCLASSIFIED

- fill

DOClD: 3122346

UNCLASSIFIED EFFICIENT FORTRAN

VIII. PROGRAM SIZE

. The type of efficiency we have been ~tressing is execution·time ori­
ented. For many "third-~eneration"operating systems, this is only one
factor. The amount of memory used by a program is equally impor­
tant for these current systems. In fact, the accounting routines of some
of these sy!'tems reflect this situation. Instead of char~ing the user only
for his processor time, the system charges for memory usage and proc­
essor time. One approach is to multiply these two factors together and
charge for the total amount o("word-seconds" used.

In such an environment, the user should seek to minimize his space­
time product. Sometimes speed can be gained without a penalty in
space; this is certainly a worthwhile change. Similarly, space can often
be gained without a speed decrease. Judicious use of the FORTRAN
EQUIVALENCEslatement is oneexamplcofthis process.

Most often, however, we face a t.radeoff between speed and memory
usage; and the decision is a harder one. For example, we might speed
upa procedure by precalculating some lal'g"e t.ables; during the proce­
dure, we refer to the tables instead of repeating the calculations. In
such a case. one should eStimate the space penalty and the speed
bonus, and determinewhich fachlr outweighs the other.

A final comment is in order regarding those multi~programming

systems which still orient their accountinR· exclusively toward process­
ing time. The user here will not be charged for wasted space, yet the
system itself will suffer de~aded performance, and the user will ulti­
mately feel this in slower service. Hence, it is still to a useT'sadv~ntage

to reduce the memory requirements ('Jf his program if he can. In addi­
tion, to enforce this tendency t.oward smaller 'pro~rams, system man­
agers would be wise to amend their accounting procedures.

IX ALGORITHMIC EFFICIENCY

My next comments apply not to programming per se, but to the
writing of alRorithms. ,An algorithm is a detailed specification of the
~teps that must be performed to transform a given input to the desired
output. Programs are thus examples of algorithms. Thus far, we've
analyzed ways of writing more efficient programs, under the tacit as­
sumption that the alRorithm had already been produced~ Clearly, one
must also do his best to ensure that the algorithm he defines is efficient
as well.

Frequently, one will write a bad algorithm because of an inadvisable
data representation. Consider the following task: produce an algorithm
to process alphabetic text and perform a frequency count; the text is
1000 characters long and is punched 50 characters to a card. One might
approach this problem by· defining a 26-1ong array of alphabetic con-

;.

UNCLASSIFIED 80

DOCIO: 3722346

I

i
I
I

I
i

r

I
I

(b) {3)-P. L. 86-36
....................... ..:

UNCLASSIFIED·

stant.< and then comparing each character of text against these con,
stants:

INTEGER KONST(26), TEXT(1000). KOUNT(27)

DATA K.oNST/IHA IHBIHC.... IHZI
READ (5,10n TEXT

101 FORMAT (50AI)

DO 60 1= 1,1000

,J=TEXT(l)

DO 40 K= 1,26

40 IF (J .EQ. KONST(K» GO TO 50
KOUNT(27) = KOUNT(27)+1

GO TO 60
. C KOUNT(27) COUNTS GARBLES

50 KOUNT(K) = KOUNT(K)+l

60 CONTINUE

If the text is Hat random, we expect thirteen passes through the inner
loop for each character of text.

We can do much better than this by translating the hinary-coded
decimal (BCD) values stored in TEXT into integers (running from 1
t(j26). This can be done rapidly via a translation table: .

.'"
INTEGER TRANTB(64)

DAT A TRANTB/. . ./

where

TRANTB(l) = ,J

if the BCD value of the J-th character (1 :? .J~ 26) considered as an
octal number is I. In other words. if the BCD of Ais 21s, set TRANTB
(17)=A. since 2h= 17. 0 • Now we must read the text in Rl format
to keep t.he characters right-adjusted:

. READ (f),lOl) TEXT

LOl FORMAT (50Rl)

0050 1= 1,1000

L = TEXT(1) 1- 1

J = TRANTH(L)

50 KOUNT(J) = KOUNT(J)+ 1

81 UNCLASSIFIED

DOClD: 3122346
UNCLASSIFIED EFFICIRNT FORTRAN

As long as we fill the 64-26=38 values ofTRANTB that don't correspond
to alphabetic characters with the value of 2i, this method is exactly
equivalent to the first.

INTEGER COUNT(27)

HEAD(5,lOI) TEXT

DIMENSION KOUNT(64)

101 FORMAT (SOR!)

no 50 1= 1,1000

J = TEXT(l) + I

50 KOUNT(Jl = KOUNT(J) +1

DO 60 I~ 1,64

,J = TRANTB(l) .

60 COlJNT(.J) = COUNT(.}) -I- KOUNT(I)

C ASSUMES KOUNT AND COUNT ARE ZEROIZED

The moral of this example is: Don't be restricted by conventional data
representations, but search for the most convenient. representation for
your purposes.

. A second example of this prinCiple (from Professor T.E. Cheatham)
will ~e described, but left as an exercise to the reader:

(1) Write an algorithm to put in two integers, divide the first hy the
second, and put out the quotient and remainder. You may use addi­
tion, subtraction, and multiplication. 6ut not division (since, in
effect, this is what you are defining). Assume that all numbers are in
a decimal representation.

(2)00 the tasks of (11. but assume a Roman numeral reIJresentation.

x. CONCLUSION

The foregoing has· been an attempt to motivate programmers to
adopt more efficient techniques and to explain a number of possibil­
ities. Two important caveats are in order.

first, not all of the suggeRtions are always goin~ to work. For each
, technique there will be situations in which it will prove counter-produc­

tive. The programmer must analyze the applicability of these sugges­
tions to his specific problem and system.

On·e method thatmsy be used is controlled experimentation. The
programmer face·d with a choice of two methods can time them on his
target system and then make a choice hased on fact rather than belief.

i
i.
I
I
I
I

\.

UNCLASSIFIED 82

UNCLASSIFIED

DOCID: 372234 6 -r-----.:;--ttOs)}"J-rr3";3)r;--~::pp,::::.__ ;r:;-:r:;~.~8'"G6::-'-33E6)---'-;::::=======--------
<-I
---- ...J

Asanexllmple.consider the followirig statements (see above. section
IV):

x = (A +1.0/A)*(B+ 1.0/B)*(C+ 1.0/C)

X = (A*A+1.0)*m*B+1.0)*(C·C-t1.0l!(A*B*C)

We <:8n write a toy program, embedding each statement in a loop, so
that it is iterated one million times_ We can time each loop, and es­
tablish the percent difference between the methods. This experiment
was performed on the 6600, and the results, even though the second was
expected to be 8% faster, indicated that the two methods were equiv~

alent. The explanation lies in the ability of the 6600 to execute some
arithmetic operations in paralleL The sequences of instructions pro­
duced by the compiler for each statement determined t.he degree of
uverlap, and the fin;t method was favored more. This example thus
demonstrated not only the method of analysis that the programmer
can use, but also the need for such analysis.

It must also he horne in mind that this is but a partial listing of effi­
ciency techniques. It is intended more to stimulate additional thought
on the subject than to serve as a handhook. Given the Agency's invest­
ment in computing power, it is a topic of no small interest and
importance.

8.1 UNClASSIFIED

