
A Rolling Gopher Gathers No Moss

Jerry Berkman
Programmer
217 Evans Hall, U. C. Berkeley
Berkeley, California 94720
jerryOuclink.berkeley.edu
Tel: (510&Q-4804 Fax: (510)643-5385

Abstract

At U.C. Berkdq, zoe hazje recently started using Gopherfor on-
line documentation and publishing. This paper describes hozu ZLV
decided to use Gopher,first for OUT nezufree e-mail and
information access service, and then for OZ~Y campus information
semis

It then discusses the specific features in a Gopher serverfor
student jobs listings, how to invoke Gopher in a restricted
environment, hozu searches work zuith the extended WAlS code,
how departments install their data in the e-mail system’s
Gopher, and other aspects of Gopher at U.C. Berkeley.

Paper

At U.C. Berkeley, as at many other Universities, we have
found Gopher has made a significant improvement in our
ability to publish information on-line. This paper describes
a few Gopher projects in which I have been involved, and
some notes on my experiences with Gopher.

Choosing Gopher for UCLink

In early 1993, U.C. Berkeley’s Information Systems and
Technology began offering free accounts for e-mail and
intemet access to UCB students and employees. We
wanted this service, called UCLink, to be easier to use and
more user friendly than our traditional UNIX services.

One of our first actions was to decide what program to use
to supply on-line information on UCLink. We could port
our home-grown help” system from our other UNIX
systems or go with Gopher or some other information
server.

Permission to copy without fee all or part of this material is granted prozlided that the copies are not made OY distributed for direct
commercial advantage, the ACM copyright notice and the title of the pzlblication and its date appear, and notice is given that
copying is by permissiolz of the Associafion for Computing Machinery. To copy otherzuise, OY to republish, requires a fee and/or
specific permission.

0 2993 ACM 0-89791-631-X/93/001 2.. $1.50

One factor was that we wanted a way to provide on-line
information on UCLink so that it would be accessible both
to users who logged in and those who accessed their mail
on UCLink via POP (Post Office Protocol) clients such as
Eudora for the Mac and NUPop for DOS systems. Gopher
provides that ability while our home-grown UNIX help
system does not.

It is also difficult to get the documents in the home-grown
system distributed to all the machines on which they may
be useful. For example, I maintain a set of help files for
FORTRAN users. Often people would send me questions,
and I would want to reply “the details are in the help
system”. But I couldn’t since they were on deparimental
systems or workstations and had no access to our help
system. That is not a problem with Gopher.

For me, switching to Gopher served another purpose. It
serves as an indicator that this is a new system and that we
are addressing a new constituency. Our UNIX help system
is oriented to people who know UNIX; for example it uses
the notation “..” to mean parent directory and the
documents assume the user know how to modify files with
an editor. Many of our UCLink users do not know how to
do this. Using Gopher and starting with a fresh approach
was important.

Information Server Task Force

At about the same time as we were developing strategies
for UCLink, a computing center task force was organized
to study information servers. We had to decide whether to
continue local efforts to develop a server called Infocal, or
to switch to a public domain server such as WAIS, Gopher,
or World Wide Web.

As part of our deliberations, we surveyed a group of
comparable universities to see what they were doing. We
found that 10 of the 15 universities surveyed were using or
switching to Gopher for their campus wide information
systems (CWIS). Several had local systems which were
being converted to Gopher, and several expressed interest
in WAIS or WW%V, but no-one seemed to be running a
CWIS based on WAIS or WWW.

168 l ACM SIGUCCS XXI 1993 Toward New Horizons

Jerry Be&man A Rolling Gopher

It became clear that Gopher was the only system which
had working client for a wide variety of platforms, had
sufficient functionality, would be easy to support, and had
an ongoing commitment from the Internet community.

have set up a special account named “jobs” on UCLink for
simplified access.

Any student or employee can connect to UCLink and use
the “jobs” id to login to UCLink. Then the user is asked to
supply his or her last name, identification number, and

Departmental Publishing via Gopher birthday (month and day). After verifying the information,
the program invokes Gopher to look at the jobs listings.

Once we began the UCLink project, we discovered not
only did people want to have access to e-mail and the
Internet, but that many people wanted to publish
information electronically for the campus. As Gopher is an
easy way to do this, we decided that departments and
recognized student groups could use UCLink to publish
material via the UCLink Gopher.

However, I do not have a lot of time to devote to helping
them. Many of them had already downloaded the Gopher
software and documentation, but had trouble figuring out
what to do.

I developed a short write-up which tells people exactly
what steps to take to run Gopher with their own data on
UCLink to develop their menus and documents. Once they
get a little experience and have information ready to be
published, they then contact me and we copy it into the
main UCLink Gopher system. This approach has proven
quite popular. Currently a wide variety of departments
and units, such as the residence halls, telecommunications,
research units, and academic departments, are working on
developing information to be published via Gopher.

The Student Jobs Gopher

I recently helped set up student job listings in Gopher. This
has two unique features compared to my other Gopher
work.

First, since the listings include both on-campus and off-
campus jobs, we want the listings to be restricted to UC
Berkeley students. We do not want high school students,
non-students, or Stanford students reading the listings and
applying for the jobs.

Gopher is not yet able to restrict access to a particular set of
people, but it is easy to restrict access to the Berkeley
Domain, “berkeley.edu”, via the Gopher configuration file.
This means it is not restricted to students, but that faculty
and staff can also read the listings; this is acceptable to the
information providers.

The second special feature is that we want to allow the
easiest possible access to these listings. To provide this, we

Of course any student can get an account on UCLink or
access Gopher from other campus systems, so a special
access method for the jobs Gopher is not strictly necessary.

However some may not want to open an account just to
look at the job listings. They may have an account on
another system which is temporarily unavailable, or they
may be at home and find it easier to connect directly to
UCLink rather than go through another system.

On our part, we don’t want to encourage people to open
accounts they will not be using regularly because then the
people often forget their password, leading to extra work
for us when they decide to use the account in the future. It
will be interesting to see how much this special access
method is used. I’ll have a better feel for this by SIGUCCS.

Since we are providing this access specifically for the
student jobs listings, I tried to make the access secure. If
the user wants more general access to UCLink, he or she
can open an account on UCLink.

The UNIX Gopher client normally lets you save files, print
files, and select alternate versions of “telnet” and “lpr”.
The ‘I-s” (secure) option on the UNIX client eliminates
these capabilities. In addition, it restricts mail addresses to
normal looking addresses, and excludes addresses which
have odd syntax which could have obscure purposes.

In normal use of Gopher, you may invoke “telnet” and the
“more” pager utilities. These both allow escape to the
user’s shell. The Gopher software distribution directory
has versions of “telnet” and “more” that do not allow shell
escapes (See “Gophertools” under “UNIX” under “Gopher
Software Distribution”).

The secure “telnet” supplied by the Minnesota seems ok,
but the “more” seems very simple minded. I decided
instead to take the Ultrix source for “more” and make a
few minor changes: I commented out the code for the “!”
and “:!” shell escapes, I commented out the “v” editor
escape, and I supplied a different “help” file. I invoke the
Gopher client at the end of the “jobs” shell program,

Toward New Horizons ACM SIGUCCS XXI 1993 l 169

A Rolling Gopher Jerry Be&man

setenv("PAGER",
M/usr/local/gopher/secure/more". 1);
setenv("GOPHER~TEl.M3T".
8n/usr/local/gopher/secure/telnetsecure". 1);
execl("/usr/local/gopher/bin/gopher",
"/usr/local/gopher/bin/gopher".
II - 8 n ,
%clink.berkeley.edu" I
"1601".
(char l) 0);

Since the “jobs” account is set up with this program as its
logon shell, exiting Gopher results in logging off. The
program logs the identity of each person using it; if they
do manage to escape from the program and try to do
something out of line, we will have a record of their
identity.

Searches in Gopher

The WAIS system returns a weighted list of files which
contain the search word. In this case, ‘job1 1” contains
several instances of “berkeley” so it is listed first; the other
entries each contain only one instance of the word
“berkeley”, so they are listed in alphabetical order. The
search ignores case.

If you search for a simple word and then display one of the
selected files, the word is highlighted where it occurs in
the file.

If you list several words in the search field, the search
looks for files which contain any of the specified words.
ThlJS:

Search pattern: programmer berkeley

will look for all files which contain programmer or
berkeley. These will be presented in weighted order. In my
experiment, a file which contained both berkelev and
programmer once was listed before a file containing
berkeley three times, which in turn was listed before files
which contained berkeley only once.

The UNIX Gopher Server uses the code from the WAIS
(Wide Area Information Server) system for searches. The
official W AIS search code comes from Thinking Machines,
Inc. It is also possible to use the WAIS code as modified by
Don Gilbert, Indiana University. It is available via

The implied or can cause trouble. For example:

anonymous ftp from ftp.bio.indiana.edu . Search pattern: San Francisco

The original WAIS code only indexes words; the modified
code adds boolean operators “and” and “not”, partial
word matches indicated by I’+” at the end of a word, literal
phrases enclosed in quotes, and other features.

I installed the modified code in our Gopher server.
Although there is a short “readme” file, it is not all that
clear how the searches work. The following description is
based on experiments.

For the experiments, I used a small data base of job
listings. If you specify a single word in a search, e.g.:

Search pattern: berkeley

the files which contain that word are presented in a new
Gopher menu:

This is supposed to be a search for jobs in San Francisco.
However it is really a search for files containing either San
or Francisco and could include jobs in San Jose. You could
try using the boolean “and“:

Search pattern: San and Francisco

Even so, this would include a listing for a clerk at San
Leandr o Graphics at 110 Francisco Street in San Leandr o
and this listing could easily come out as the top weighted
listing since it contains “San” twice and “Francisco” once.

To get the desired search, use the literal form (either single
or double quotes may be used):

Search pattern: "San Francisco"

Search Jobs Listings: berkeley This excludes the listing for San Leandro Graphics.

1. job11
2. job1

However, when you display the files found, there is no
highlighting. Highlighting is used only when searching for
words, not for literals. In small files, such as the job

3. job10
4. job4

listings, this is not very important. In longer files, this is a
severe disadvantage.

5. job8 You can exclude files using the “not” operator:

170 l ACMSIGUCCSXXI1993 Toward New Horizons

Jerry Be&man A Kolling Gopher

Search pattern: programmer not
berkeley

could be an attempt to look for a programmer job outside
of berkeley. However it could also exclude a listing
containing something innocuous like “Berkeley students
welcome” or “Berkeley course credit possible”.

The order in which the operators are applied is not the
same as the order in which they are written. All “not”
words are saved and applied at the end to the list of files
which contain the sought after words.

Gopher Problems

We are using Gopher on an Ultrix system. The “vi” editor
uses the termcap facility, but Gopher uses the terminfo
facility. This means someone can logon, use the editor, but
not be able to use Gopher:

% gopher
Sorry, I don't know how to deal with

your 'xterm48' terminal.
Segmentation fault (core dumped)

The other words are applied starting from the left. To
quote from the “iubio-wais.readme” file:

Not only did Gopher not work, it aborted with a core
dump! This leads to fairly vitriolic mail to our consult
account. Hopefully, someone will fix this soon. The

“For example, this query minimal fix-would be to exit politely with a comment but
without the segmentation fault and core dump. A better fix

red and blue or yellow but not green would be to prompt the user for a terminfo compatible
and orange or black but not white terminal name or to convert on the fly the termcap entry to

terminfo.

will be interpreted like this (the parentheses just show the
implicit left-to-right interpretation):

Believe it or not, if you get the message:

((((((red and blue) or yellow) and
Sorry, this isn't a WAIS index...

orange) or black) not green) not
white)" on an attempt to use a WAIS index, your index may be

fine. The problem is probably that you for got to compile or
link in the WAIS code.

As mentioned earlier, you can search using the asterisk as a
wild card, e.g.:

Search pattern: comput* Menu Titles and Ordering

will match files with “computer”, “computes”,
“computing”, “computation”, etc. Again, there will not be
any highlighting.

Don Gilbert’s patches to WAIS give us a much more

Gopher has a facility to title and order menu items via a
parallel set of files in a directory named “.cap”. For
example, if you have a file named “ucbinfo”, you can give
it a title and a position in the menu by creating a file
“.cap/ucbinfo” and putting in it lines such as:

.
powerful tool. However, I would use them with some
caution. Sometimes the result is not what I would expect.
For example, I would expect the following two commands
to be equivalent:

But they are not. The first works as expected and found
several jobs; the second did not find anything.

The “iubio-wais.nes” file states that booleans and literals
can “generally be mixed in a query“. But

Search pattern: analyst not Isan
francisco'

excludes a job in San Carlos.

Name=UCB Campus Information
Numb=1

This specifies the title and location of the entry in the
Gopher menu. I found this feature to be inconvenient to
use. I could not see what the menu was going to look like,
and I had to edit several files for minor changes in
ordering of the menu. Gopher also seems to be very
particular about the placement of the “Numb=” line.

I create a file called “.order” which contains both the file
names and titles in the order I want them,

Toward New Horizons ACMSIGUCCSXXI1993 l 171

A Rolling Gopher

e.g. :
PAPS FAQ.5 : Frequently Asked Questions about UCLink
email Information on E-mail (Pine, forwarding,...)
Netnews Information about Net New
accollnta Accounts: Eligibility, Passwords, . . .
help Where to Go for Help and More Information

internet About the Internet: Gober, FTP, News. . . .

FAQs FAQs: Frequently Asked Questions about UCLink
email Information on E-mail (Pine, forwarding, . . .)
Netnews Information about Net News accounts Accounts:
Eligibility, Passwords, . . . help Where to Go for Help and
More Information internet About the Internet: Goher, FTI’,
News, . . .

The first token is the name of the file; the rest of the line is
the title to appear in the menu. The following shell script
creates the “.cap” directory and files. I find this approach
must easier to use than creating “.cap” files directly.

#!/bin/csh -f
I
if .order file exists:
#I Convert .order into .cap files
currently ignores any .Links file
removes old .cap directory
if no .order, do nothing
#I
if(! -e . order) exit
/bin/rm -fr .cap
mkdir .cap
eet awkf = ‘mktemp‘
cat << "EOT" D! $awkf
BEGIN (ekip[" "1 = "yes"; skip["\t"] = "yesHi]
1
n = length($1) + 2;
while(skip[substr($0, n, 1)I == "yesH 1 n = n + 1;
print "cat <C XXYY > .cap/' $1 ;
print "Name=" substr($0, n);
print "Numb=" NR;
print "XXYY w * I

1
"EOT"
awk -f $awkf .order I cab

/bin/m -f $awkf .cache

Our Gopher Configuration

Since many departments are preparing information for our
Gopher, and some of them may install shell scripts or per1
programs, we have decided to run our Gopher server on
UCLink not as root, but as a special user who has no
special privilege. Since making that conversion, I have not
been able to get chroot to run with the WAIS server and
other options. However, that does not seem important
with as the user id has no special permissions.

Our Gopher servers are run out of “inetd.conf” with a
command of the form:

Jerry Berkman

gopherd -I -c -u gopherm -0
. ../config -1 . ../log . . .

However, commands in “inetd.conf” can only have 4
arguments, so I wrote a short C program to “exec”
“gopherd”.

Acknowledgements

In concluding, I would like to thank Tamara Sturak for
introducing me to Gopher and Ed Moy and Darek
Milewski for helping me with Gopher projects. Without
their help, those Gopher servers would still be in the
debugging stage.

172 . ACM SIGUCCS XXI 1993 Toward New Horizons

