
EK-DCJ11-UG-PRE

DCJ11

Microprocessor

User’s Guide

4

4
FL |

|

‘ 1
‘a
“

X

PRELIMINARY

EK-DCJ11-UG-PRE

DCJ11
Microprocessor

User's Guide

PRELIMINARY

Prepared by Educational Services
of

Digital Equipment Corporation

Preliminary, October 1983

Copyright ©1983 by Digital Equipment Corporation
All Rights Reserved

The material in this manual is for informational purposes and is
subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any
errors which may appear in this manual.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem RSTS
DECnet IAS RSX
DECUS MASSBUS TOPS-10
DECsystem-10 MI? 'C-11 TOPS-20
DECSYSTEM-20 OM: %3US UNIBUS
DECwriter OS/8 VAX
DIBOL PDP VMS

it PDT vr

CONTENTS

Page

PREFACE | -

CHAPTER 1 ARCHITECTURE

INTRODUCTION soeeen e# oe 8 *#*e5oee#8@8@ 6 @ 8

GENERAL-PURPOSE REGISTERS.....
oeeeoeneee8e @eee4ensteeeeeeoeet 8 6 @

PROCESSOR STATUS WORD... ccc cccccsccce

1-1
1-2

e a ee ee er 2 2 rr 2 1-3

3.1 PrOCeSSOL MOGES. ccc cere cre veccecvecvesseceseceseccecsess L=§
~3.2 Priority LevelS..vccrcccvccvceveevssessesesesessesse Lh
3.3 The Trace/Trap Bit... cecsvvcccsvecvvsessvessvsecssee 1-6
~3.4 CONGICION COdES. ccc cccccvccevevsensesesvesvseseseses L=6
3.5 Processor Status (PS) Protection... .ccccecevsecscveee 1-6

coeeseeee lll
HALTING DCJ11 OPERATION.cccvecce cece rece e rere e ences 1-14

1 PROGRAM INTERRUPT REQUEST REGISTER... cccvccvecccseves
CPU ERROR REGISTER... cece cee r errr cence reese seereeseeveee 1-15
STACK PROTECTION... ..cccccccccccccccccccsscccccccsecccs 1-16
FLOATING-POINT PROCESSING. ee eee coerce ccccccesccess§ Lol?

0 MEMORY SYSTEM REGISTERS... ssc ceceseccccccccececeercncns 1-17
1 DIRECT-MEMORY ACCESS (DMA) MECHANISM......ccsececceeeeeee I-17

| ~~

mn

1.1
1.2
1.3
1.3
1.3
1.3
1.3
1.3
1.4 INTERRUPTS AND TRAPS... cere sscvccevvvesvvece
1.5
1.6
1.7
1.8
1.9
1.1
1.1

CHAPTER 2 PIN DESCRIPTION

2.1 INTRODUCTION... cc cece ence rere ese reer sere seeseeseeseses
2.2 DATA/ADDRESS LINES (DAL<K<21:00>) .. ccc never vere vevccvece

1 Upper Data/Address Lines (DAL<21:16>)cccecccves
2 Lower Data/Address Lines (DAL<15:00>)...... ce ccceee

SYSTEM CONTROL LINES... cere even ccc rsccesvcessvscesesvese

Bank Select (BS<1:0>) . cc ccc vecvvescervccccvecvvcces
Address Input/Output (AIO<3:0>) ... sree ee eeccvevves
Buffer Control (BUFCTL) .ccwvvcccvnvcveccccsrcesvece
Continue (CONT)......6- Ce reer rere eee nner reese esenes
Data Valid (DV)...... eee eect e rere reese sere eeneceene

TIMING SIGNALS... cere ene ecnene corer e eee cerene

Address Latch Enable (ALE)... ccc cccccvvvvvvsvccene
Stretch Control (SCTL)...... wee e rere ere e ee eve
Strobe (STRB)....cceene oeeee Chere e eer e ees e case eene

Clock 1 (CLK)... ccc ewe nerves nvccesevccsscenceeeces
Clock 2 (CLK2)..-cccveevecsvecsvccssvevrsseceecsccecs

START/STOP CONTROL..... cece reer eccne eee cere rcv ee eeoecanes

1 Initialize (INIT) .. ccc wr ccc eevee snes ones ereesvecver
2 Halt (HALT)e.e- es esessvvees

STATUS SIGNALS... ccc eccevreevnsvsr rene vevsseeseeseceseeese

Cache MiSS (MISS)... cco reevnvcccvsesseccesccsesverveeces
Parity Error (PARITY) ...ccc veces ccecs
Abort (ABORT)ccecsceone
Map Enable (MAP)... cece rerscvesevcvseccseserseveses
Predecode (PRDC)...ccsevecvsvvccsvcevsecssvesceesesvcese

INTERRUPT AND DMA CONTROL... . eee meee ener ee seers esene .

Interrupt Request (IRQ<3:0>) .. ccc cre ccc ec vcsees eee
Direct-Memory Access Request (DMR)....e.eeeee
Power Fail (PWRFE) ..ccccccccvccccrcccvcceevcsvece wee

iii

|
D
B
I
Y
W
I
N
D
N
W
U
V
H
D
A
A
H
A
A
M
N
U
N
N
N
N
U
W
U
S

&

HS
R
P
W
N
H
O
N
N
H
O
N
N
E

e
e

e
e

e
e

e
e

e
°

e
e

@
e

e

e
e

e
e

e
e

e
e

e
°

e
e

UO
&

Ww
N
F

On

&

WwW

N
r

N
O
N

A
I
D

BH
0

1

r
e
e
e
!
t
&
b
t
t
t

4

eoe@eetoeee#erxeeeeeees5nee#se#e¢#e?e¢

e@

e
e

®
e

O
N

&

W
D
N
E
e

*
e

°

A
Y
A
I
D
I
A
G
A
R
H
A
A
R
M
N
N
G
H
S

A
H

a

Ph
W
W
W

W
W
W
D
H
N
D

e
e

Ww

t
o
 |

Ti
e

I
N
B
S

F
E
R

N
A
D

M
N
D

H
H
H

H
N
N

N
N
N

H
N
N

N
L

N
N

DH
D
M
N

N
N
N

PD
MY

M
O
D

N
N
N

N
N
N

N
N
N

NH

t a e

J

2.7.4 Floating-Point Exception (FPE) ..ccceccnsccvereccees 278
2.7.5 Event (EVENT)... ccc ce ccc cee ce reece cece eres sesesceese L279

2.8 TEST PINS... ccc cece nner are v nce sneer ees eres erer reser eeece 2-9

2.8.1 Test 1 (TESTL) .. cc cece c wee eee rere reer ese seesesesecs 29
2.8.2 Test 2 (TEST2) ... cc ewe wcrc cece e reser eserves seseseee L279
2.9 OSCILLATOR PINS... cc wc cece rece rece r ser nvesveeresecesvees 2-9

2.9.1 XTALI and XTALO Generation. wcccccvcccvereeversessee aenr9
2.10 POWER PINS... es eceees creer cer ree eee ere e meter eee e tence ene 2-9

2.10.1 POWEr (VEC) cece reercrecvererccreercrccvevccscscccesse 2-10
2.10.2 Ground (GND)... ceccccccccccesrcccvesevcevesesessseess 2-10
2.11 PIN DESCRIPTION SUMMARY....-.cee20-. cee ee reer ere rer eesene 2-10

CHAPTER 3 BUS CYCLES

INTRODUCTION. Cr ee er

DURATION OF BUS CYCLES oeoe3oeeoeseee#e#tkeee*e¢en#2ee#eseesenee#stseeeeese#¢e#e8 8

BUS CYCLE PARTS... 2. cceecvccvvvvccoce

3.1 3-1
3.2 3-2
3.3 cere eee e eee eevee sees 303

3.4 NON-I/O (NIO) CYCLE... . ccc cc cc cc cc ccc cee c cece ee eees 303
3.5 BUS READ CYCLE... cee ccc ccc ec ce et eee ete cee eeeesecesee 304
3.6 BUS WRITE CYCLE...... Lecce er Co)
3.7 GENERAL-PURPOSE (GP) READ CYCLE... ..seccceeccceeccceeres 328
3.8 GENERAL-PURPOSE (GP) WRITE CYCLE... ... cc cece ccc cccceee 3-9
3.9 INTERRUPT ACKNOWLEDGE CYCLE........c.ecccccccccccceseee Bel
3.1 3-1 he

©

O DMA REQUESTS AND GRANTS... cece creer errr veces creo vreces

CHAPTER 4 MEMORY MANAGEMENT

INTRODUCTION... ccc ccs cr env nccnaee sec c em eo nee ae eo eaneeen

ADDRESSING. cc cence eee n veer ccees Cece cee eee ee rer tere et eee

I SPACE AND D SPACE... ccc cn errr v crv rrr nrervesrcesvvececen

CONSTRUCTION OF A PHYSICAL ADDRESS... .. cee reves vvvvcces

MANAGEMENT REGISTERS... cece rec nc cnn nvcccerreseseecveces

Page Address Registers (PARS) . See mee we rere cenee
Page Descriptor Registers (PDRS) ve ec cc ceceeccceress

1 ByDASS CACNE... eee ree ee rer ne vere e reves cece reece
2 Page Length Field (PUF).....ccvccvsssvees cee
3 Page Written... crc re rene rerervrsvveserevesvvecs

4 Expansion Direction (ED)....... cece eee eee e ee
5

6
N

e
».

6
s

os

~
~
~

A
A
S

W
Y

W
Y

Y
A
Y
A
Y

D
V
M

M
M
N
M
N
M
N
N
A
N

N
D
S

W
W

OH
e

s
e

es.

#
°
¢

*
°

e
e

>».

¢@

!

Access Control Field eeeeerevneeveevee eeooeoeevneeeewvmeeeove

Reserved BitS...e. eoeveee oeeovee vee oeoenennvveeseoens

INTERRUPT CONDITIONS UNDER MEMORY MANAGEMENT CONTROL...
FAULT RECOVERY REGISTERS..... oe rar

Memory Management Register #0. (MMRO) sscccccceccccee
L Error Flags. Cem ee ree eww n ae Smee ear nace oresee
Le. Abort -- “Non-Resident....sccccececcceceeue,
1.2 Abort -- Page Length.......e.0- ce ewer eee
1.3 Abort -- Read Only....... wee weno es

22 Reserved BitS..... cme weer ere rere ee eees
3
4
5

6

d
4
d
?
@
d
s
t

{

M
R

O
D
D
O

M
W
D
D
O
I
N
I
Y
I
Y
D
H
N
W
N
P
E

Oo
Oo

e
e

I

e
e

P
e

P
W
N

R
R
P

E
e
e

E
e
e

e
e

e
.

a
e

e
°

e

' m
e

o
o
 PLrOCESSOL MOdEC. cree ere eve c nv cececscsces

Page AddreSS SPaCO. esc eesecesvevesevens
Page NUMDEL... cece ec re rere nara vevrserseeee
Enable Relocation... .ccccccescces

ha

P
P
A

H
H

A
H
H
H

E
A

A
H
H

HD
Hh
b
h

Hh
bh

&

Hb

|

eeove 4-10

4-10

&

A
h
h

h
P
D

H
h

HP
Hh
H
P

h

H
P
H
h
b
h

H
H
H

b
P

H
H

bh
h
h

Sb
b

LP
ee

e
e

@
e

e
0
6
6

.
8

@
..

m6
UG

—r
h!

/h
UF

l
e

: Memory Management Register #1 (MMR1).....ceeeeeeeee 4-10
7. Memory Management Register #2 (MMR2).....ceccceeee5 4-11

7. Memory Management Register #3 (MMR3) 2... ec ceeeesveee 4-11
~7.4.1 REServed BLitS...c.ccevvcccrevccscccsscsesesccesess 4-1]

~4.2 Enable 1/0 Maps cscs cccececeeccecccceuvccceccen. 4-11

iv

e
 e

s

oe
e e

x.

nn

&
 W

w

Y
H
A
 P
&S

bh
Lh
h
h

B
h

o
P

h

b

CHAPTER 5 SPECIAL FEATURES

5.1 INTRODUCTION... . ccc wer er ce rer cc cccercecevsesene

5.2 CACHE MEMORY STATUS AND CONTROL REGISTERS.......

5.2.1 Cache Control RegiSter.. creer escevescsseces
5.2.1.1 Unconditional Cache Bypass (R/W)........
5.2.1.2 Force Cache Miss (R/W) .ccccccvcccccvcces
5.2.1.3 Uninterpreted BitS...ccrcccscccrvccvccvees
5.2.2 Hit/MiSS REgGiSteri ccc ucesvvccsecssvvcvseces
5.2.3 General ODELatiOn.. cc ccuvecvesccsvvervessece
9.2.4 Cache Memory In A Multiprocessor Environment
5.2.5 Sample TmplementatlOonesseeerrerersssssrreccs
5.3 CONSOLE ODT. Cem mem meee mena re renee nernessseses

5.3.1 Terminal. Interface. sc cceccecceecceucerceees .
5.3.1.1 Receiver Control/Status Register (RCSR).
5.3.1.2 Receiver Buffer Register (RBUF).........
5.3.1.3 Transmitter Control and Status Register
5.3.1.4 Transmitter Buffer Register (XBUF)......
5.3.2 Console ODT Operation... ..ccsecccsevcccvvesse
5.3.2.1 Console ODT Initialization... vec veveece
5.3.2.2 Console ODT Output Sequence.......-eoeee
9.3.3 Console ODT Command Set... scree vevccveccves
5.3.3.1 (ASCTI 057) Slash... ccucvcvecvesevesccce
5.3.3.2 <CR> (ASCII 015) Carriage Return....eees
5.3.3.3 <LF> (ASCII 012) Line Feed...........2.-

5.3.3.4 S$ (ASCII 044) Or R (ASCII 122)..........
5.3.3.5 S (ASCII 123) Processor Status Word.....
5.3.3.6 G (ASCII 107) Gov. ccccvevervecvsveveoes

9.3.3.7 P (ASCII 120) Proceed... ccc. vevevesvveves
5.3.3.8 Control-Shift-S (ASCII 023)......c.ceeee
5.3.4 Address Specification. ..ceccervcevessvcvcese
5.3.4.1 General REgGiSters, ..cccceeeverevvevesees
5.3.4.2 Stack POINCELS. ccc ccececeessevevcseveccs
5.3.4.3 Floating-Point AccumulatoOrS....cccresees
5.3.5 Entering Octal DIgGitS...cccwceecscvesvvveses
5.3.6 ODT Timeout...... sewer reer ener eres ease nevene
5.3.7 Invalid CharacterS...crccrccvvccvccvevscvvvcese
5.4 DCI11 PIPELINE PROCESSING... ccc cece ce eve cece cee
5.4.1 Pipeline Flow Example... cccecccccvcvcccvcece

CHAPTER 6

6.1
6.2

INTRODUCTION...
ADDRESSING MODES.

Enable 22-Bit MApPing..cccccccceccccccccceveccs

Enable Call To Supervisor Mode Instruction.....
Kernel, Supervisor, and User Mode D Space Bits.

Instruction Back-Up/Restart Recovery........
Clearing Status Registers Following Abort...

Multiple Faults...
IMPLEMENTATION... cer cccc rcv vecccreseceeeeees
Typical Memory Page. ..csscccecssecvcccvccvace

Non-Consecutive Memory PageS....cscccccences
Stack MeMOry PaAGeS..cercrvccecrvcccrvcccsvecs
Transparency.....

oeeoenovescsweeenreeeeeeeeeeeee#e 8 ¢

MEMORY MANAGEMENT UNIT -- REGISTER MAP.......0--

ADDRESSING MODES AND BASE INSTRUCTION SET

o*# @@0@#8# @®@ @e 8 e @ @ H@e @mOhmUhOUCmhUCUCOmCUCUOMCUCUcMhCUhOHChUcPH FH HH HF HT FF 8 8 6 @

oe @@ @@ 0@ #68 @@#@¢8# 8&8 #&@ eee © 86 @—UhOHhUchOrh—CUCrhOChUchHMUM WU HOH HF FO

e
e

e
e

e

e
e

e
e

e

e
e

e
e

e

e
e

e
e

e

eee eo @ @ @

eoee eee?

eoeee#ee?#?*#

oee#e3es8e¢

eoeees#5rse#¢

eoeoee#e#ees#

oeeee#*#

eee *#

(XSCR)

on eo eo ee @

oe0e34eeg#e?:

eoee%#e¢e?#@

@oeoeee#e%#*e¢

eee? 8 © @

eoeoe## @

eeeee@ 8 6

e*esee*°¢

H
M
P
R
r
m
O
o
O
O

PP

&

W
N

MH
Y
D

H
P
F

D
a
n
n

&

W
W

W
W
W

d
e

e

e
e

e
e

e
e

e
e

W
W
W

WwW

W
H

W
W
W

Ww
W
w
w

W
w
w

W
W
W

W
W

Ww
W
w

T
M
H

NY
N
M

NH
[
H
H

PM
NH

NH
f
o

HY
NM

e
e@

e
e

s
s

e
e

e
e

&

W
N

re

e
e
e

©
©

©
8&

@#
@

o
e
e
e
e
#

8s
&©

@

2.
°

«
ee

@¢
.e

O
o
O
m
n
~
A

D
U

&

W
D

fF
N
F

&

W
N

D
A
I
N
T
D
A
A
R
A
A
R
A
A
B
A
N
A
N

U
h

S
h

&
W
N

be

2

D
A
A
D
V
H
A
A
A
A
A
A
G
A
A
A
G
R
A
A
A
G
A
A
G
A
A
R
A
A
A
R
A
A
A
H
A
H

D
A
A
D
A
A
A
A
R
A
A
A
A
R
A
I
G
 ‘Single-Operand AdGreSSingercceccescccervsecvesecees

ol

Double-Operand AddreSSing....csccccccssccecccecesece
Direct AGdrESSing.. cc cvcrvccccesccscecvescesvcesces

RegiSter Mode... .ccccevcvvvveccsceccesescecsccce
Autoincrement Mode... ccccccvcccvevesessesecseser

Autodecrement MOd@..ccccccrcccsesesecssessvsces
INdUEX MOGEC... cc ccc reece ne sess eeeeseeeseeseceee

Register.....c.6.

Deferred (Indirect) AddreSSing....ccccccccsesevvees
Use of the PC As a General-Purpose Register........

eeeeoeeseeeeeeoeerteeeoseeeeereeoeentreeeeeeeeee*e?ee es

INSTRUCTION SET... ccc rere vc vnvscevrcerccccsesesesecreceser
Instruction FOrmatsS..cccerccsccvsccesesesessvecvves

Byte InNStructionS...ccscccvvevvecvecceesceseesseceee
List Of InStructionsS. ..cccccssrncvvccccsessvesccees
Single-Operand InStructionS.....ccccncccscccscveces

GENeCLFal. wc ccccvveccccrecesseverersvecseccsevevece

Shifts and Rotates. eeesees30e82s¢08e0ec8@e8#8@#e@eeeenevseeeeoe#eesee# 6

Multiple-Precision. eseeeeeneseesevpee0er4eseeeeeeeseeseereeeoeee @

PS Word Operators. #eeeeeseteeneestenroeev_eeee1ee+#es2#noeeteeeoeees¢

Double-Operand InStructionsS...ccscccsccsccvecsecees
GENECLaAl.. ccc cv vccccvecccressecesesesesseveccece

LOGICAL... www ever ccc ccvesnevevccsesesesesecees

Program Control InStructions...ccccccccccccccsccces
BrancheS.ccrccvcccccsecesescvesseseseccessessevsere

Signed Conditional BrancheS......cccssccsvcccee
Unsigned Conditional Branches... ...ceecccccvens
Jump and Subroutine InStructionsS....ccccscccoce
Traps

Trace Trap....

@eeeseeoevne*es7+eesenoveeteeoeeeoeeeeeeeeseeoeeeeeeee se

Miscellaneous Program COntrol.....sccccecnecves
Reserved InsStruction TrapS...ccccsccsecccesseee

*#eeeseoe¢tntstesteeoeeenrneeeernrterenreseesee#se#ee? 6

Special Cases Of The T-Bit.ccccccccccessece

MiscellaneouS InStructionsS....cccccvccccsesecsvvesers
Condition Code OperatorS..cccccecvccsesesevsecsvecses

D
D

D
F

G
D

A
A

N
N

R
M
m
r
e
M
O

O
A
H
U

w
w

2.5.1 Immediate Mode. .cccscccscvcccscsccceneccenecvcce -15
-2.5.2 Absolute AddreSSing...ccccccccerecesrecccccceeese 6-16
-2.5.3 Relative Addressing... ccccccccrcccvceeseseveeee 6-17
~2.5.4 Relative-Deferred AddresSing....csccccsecseeveee 6-17
ode Use of the Stack Pointer As a General-Purpose

CHAPTER 7 FLOATING-POINT ARITHMETIC

INTRODUCTION... cccccccvncscsescvecseseveccecrecesnececescece

FLOATING-POINT DATA FORMATS ..ccccscvcccccsesccsescvecece

ol Non-Vanishing Floating-Point NumberS.....cccccscces
e oa Floating-Point ZEOLOc cc eccvcevvesvseces *eeeoeeeee#2ee8e8e0¢06¢800 @

e 3

4

PE
PE

EE
T

TT

M
O
D
Y
I
W
N
H
N
N
E
H
E

Undefined Variables..... Ce meee meer ee nascar ser enseee.
Floating-Point Data... rcccscrcccccvnsenvevssscscece

FLOATING-POINT STATUS REGISTER... ccccvccvcccccssccccees
FLOATING EXCEPTION CODE AND ADDRESS REGISTERS.......00.
FLOATING-POINT INSTRUCTION ADDRESSING... .cccccccccces
ACCURACY . cc cc eee e ere ccc rere rece c cre r cere e eee eeeeeene
FLOATING-POINT INSTRUCTIONS... cccvevccevvccccvcscssceces

CHAPTER 8 INTERFACING

8.1 INTRODUCTION... c.cccccvesvccvvrecsccsccncresccsceececcee. 8-1

vi

GENERAL-PURPOSE (GP) CODES . ccc ew eee cece ere r cree sen cceee

POWER-UP AND INITIALIZATION........- oeee35u«oeoteeeerteseteeeeesest @

1 Initialization Timing... cere reccccvvccccvcccccecces
2 Initialization Microroutine. .. cern cccccevecsvsccces
3 Power-Up Configuration... .ccvevvesvccsccvessccsecee
4 POWEL-Up CLIrculit..cccccvevcescescessessassensescece
OTHER MICROROUTINES........... Dee e cece eee e ee ec enc ecees B

O
D
R
B
O
e
°
e

S
C
O
A
N
N
N
F

APPENDIX A DC CHARACTERISTICS

APPENDIX B AC CHARACTERISTICS

APPENDIX C HARDWARE AND SOFTWARE DIFFERENCES

APPENDIX D INSTRUCTION TIMING

APPENDIX E GLOSSARY

INDEX

FIGURES

|
-

co
 & ry

@ Page

DCJ11 Block Diagram... ccc ccc cn cncccessvvcceesssssvees lel
DCJ11 General-PurpoSe REgiSterS....cccrecseescescsseesses il-2
Processor Status Word.....cseoes Cece eee e reer reste seve ees 13
PIRQ Register... .cceeseees evens emcee cece rcceccecesees§ l=l15
CPU Error ReEGiSter.cwccccccvecsccsccccreccesesecseseseeee LH15
DCJ11 Pin ASSIGNMENTS... ccc nce ese neeveevecesscsesesses orl
Typical XTALI and XTALO Generation...cececsvccvccves
Non-Stretched Non-I/O Cycle... .ceccccencvecvcccvscessces
Stretched Non-I/O Cycle... cveesvceccvcccvvesvesesvcsens
Non-Stretched Bus Read Cycle... cc ceccecvevvesccecvescves
Stretched BuS Read Cycle... rece aeccevvcccevevcseesevenes
BuS Write Cycle. wc ccccvervenvcnvecscvsesseesevsesessere
General-Purpose (GP) Read Cycle... cc cwcseercereecvevce
General-Purpose (GP) Write Cycle... ccc rcccescvecccvene
Interrupt Acknowledge Cycle... creer cvccecenessevcceces
Virtual Address Mapping Into Physical Address........e.-
Interpretation Of A Virtual Address... ce cere reesevecese
Displacement Field Of Virtual Address.....c.cccccsccvsece

r
e
 be

t
e
e
o
u
e
t
e
d

t

l
P
O
D
Y
N
M
H
U
N

P
W
N

D
I
A

U
P
W
H
R
P
N
H
P
U
S

W
N
P

- Construction Of A Physical AddreSS....c.ccccveccscevvece
- Active Page RegisterS.....cueooe cece rece rere reer reveves -
~ Page Address Register e*eoeee8e oe @@#@eoee0eese#e##e#eee8#e@e%mhm6UmOGhmhUchOrhCUcPhrhUchM Hh HhUhUhUhOCmhUMFHMhUMMhUCUh]hUhF =

Page Descriptor Register (PDR)... cccccvccvescccseseces
Memory Management Register #0 (MMRO) ...cccevccccccssone
Memory Management Register #1 (MMR1)...ccccvevcccccvece

0 Memory Management Register #3 (MMR3)...ccescvcscecssves
“ll 16-Bit Mapping... ccc wccrvccvcvcusvsevrvseesssevesessseces

4-12 18-Bit Mapping... .cccervnccveecnnssccesnnsecesssscesere
4-13 22-Bit Mapping.......... Co meee meee ree rene eee c er eseesees
4-14 Typical Memory Page.....ceeueee eee e newer eer en eee eeee
4-15 Non-Consecutive Memory PageS...cwccecescecvvsvsvevceves
4-16 Typical Stack Memory Page... rorcevvecevssevesevecesvses

P
L

o
D

P
&
P

P
P

&

W
W

W
W
W

W
W
D

N
E

Fe

i

S
E
S
E

L
A
A

L
A
R

E
E
E

W
Y
Y
W

W
W
W

W
W
D

P
R
E

P
E
R
E

H
O
T
A

A
A
e

W
N
H

O
O

I
U
U
N
A
W

OO

I

o
n
~
U
n

Ww
M
N

F
F

vii

t
(
t
e
o
e
r
r
e
t
b
t
t

t
t

1

r
e
r
e

O
O
Y
H
A
M
N
P

W
H
E

R
R
O

O
N
D

h
w

N
M
P
’

r
©
O

D
A
H
A
N
A
A
R
A
A
H
R
D
A
A
A
A
G
A
G
A
U
V
I
F
A
N
N
M
K
H

n
n
a

t
Cache Control Register.......
Hit/Miss Register....... o#*# @@# @@# 8 @ @ @ @ @ @&

Physical Address Partitioning For Cache Memory.
Cache Entry. eo@e@@66 6H 6H ee @ 68 08@ @ 8 @ 6 eooeov0e58

Cache Entry With Parity.......e+eee0.%

Sample Cache Control Register...
Receiver Control/Status Register
Receiver Buffer Register

Transmitter Control/Status Register
Transmitter Buffer Register

oe0eeee#%#8¢¢ @

(RCSR) ..- eee
(RBUF) .. ec ecccrevvvee

(XCSR)....
(XBUF) ...6-

Pipeline Filling ProcessS.....cccccssccccccsecs
Single-Operand Addressing...ccccccccseveves
Double-Operand Addressing.......+.. wwe evenness
Mode 0 REGISteri wee creccscveeecvcsesservcvsece
Mode 2 AutOincreMent.....cecwercrrevvevesessene
Mode 4 AutOdeCremMent... cc ccc rr casccrsvevrsceves
Mode 6 INdeX.. cee eer een ener cere rcesessecvecces

INC R3 INCreMeNnt... ccc ere c recs ercverervsevveces
ADD R2,R4 Addi... ccc wre rvecvevecs . oon ceeees

COMB R4 Complement Byte........ cece eer ee cee
CLR (R5)+ Clear. cc crcccvecves a
CLRB (R5)+ Clear Byte... cee ever ve rec cene wee
ADD (R2)+ R4 Addie ww rec re nerve vccvevvcvesesvece

INC -(RO) Increment... cc cen en scene vvvvvvvvvece

INCB -(RO) Increment Byte......... ce eee eee coe

ADD -(R3),RO Add... cece eeceaoes eee reeves eee
CLR 200(R4) Clear... wcrc ervnevccvcveves cee eee
COMB 200(R1) Complement Byte... ccc eevvecvees
ADD 30(R2),20(R5) Add.www. ce cnwvvevsvcevevcves
Mode 1 Register-Deferred. Seem ee ce eee
Mode 3 Autoincrement-Deferred.... coer er eee
Mode 5 Autodecrement-Deferred.... cece renee.
Mode 7 Index-Deferred...... cece ewes cee.
CLR @R5 Clear. wcrc eserves cvrcvees ra wee
INC @(R2)+ Increment... ...ceevee seme ee eee eee.
COM @-(RO) Complement. cece een en neces eae.
ADD @1000(R2),R1 Add....... wee ee nee cece ee
ADD #10,RO Add... ccrc rcv ccvervsccesevece eee

CLR @#1100 Clear.......... eee n ween eee nes soe
ADD @#2000 Add.......-eees eee reece eons cee
INC A Increment......... pee enn eenve cocoon

CLR @A Clear....... cee cee eee eee nee bos
Single-Operand Group cece veer e ee ween oe
Double-Operand Group 1.......... see coe e ene
Double-Operand Group 2.....-..0e6. wee wee oe
Program Control Group Branch........ seneer
Program Control Group JSR....... . . oe soe

Program Control Group RTS........ peer eens soe
Program Control Group Traps..... seme ewer cere
Program Control Group SUbtracth..r. cc ccecvcvccce

MALK. cc ecw eee w rence erence ne rueene see cecerece
Call To SuperviSor Mode... cccrccvevvececvcves
Set Priority Level... cc cccvvnvccscnvevvvccves
Operate GLOUP.. . ce revere cer vvavevresvevsessvece
CONGItiON GLOUP.... cere vvevcecvceverevsves

Byte Instructions. cc ee eee

viii

Move To And From Previous Instruction/Data_ Space Group.

t
a
t

t

t

§

bt
t

t£
b
t

b
o
t

F
M
W
D

D
O
O
A
D
W
W
A
M
N
M
N
M
M
N

P
W
N

R
R
O
D

MN
MN

&

d
d

o
r
o

Oo
o
o

P
H
D
H
A
H

A
A
A

A
H
T
D
A
A
A
A

A
A

R
B
A
A
A
M
A
I
M
I
M
A

M
M
M

A
M
K
H
N
H
n
w
n

an
 t R
r
 ite

N
r

h-12
6-12
6-23
6-24

6-13
6-14
6-15
6-16
6-16
6-17
4-18
6-19
6-20
6-20
6-20
5-20

6-20
6-20
6-21

6-21
6-21
6-21
6-21
6-21
6-22
6-22

Single-Precision Format.........
Double-PreciSion Format.......-.
2°s Complement Format.....-cceees
Floating-Point Status Register..
Floating-Point Addressing Modes.
Initialization... . cc ccvccsvccves
Initialization Sequence.....ueee
Power-Up Configuration Register.

Power-Down SEQUENCE... eee wee vvee

Console ODT Start Sequence......

Clock Timing. . cee wer eee

MOS Output Test Circuit.........
Non-Stretched Bus Read Timing...
Stretched Bus Read Timing.......
Bus Write Timing.ceeeccevees
General-Purpose Read Timing.....
General-Purpose Write nee

QO Interrupt Acknowledge Timing....
l Interrupt Timing........ soccer oee

TABLES

Table

—
w
 t

O
m
e

B
B

Ww
W
w

Ww
M
O
M

W
r

r
e

b
e
e
s

be

b
a
b
e
s

I
i

- Interrupts, Traps, and Aborts.....

- BS Device Selection..... cece tweens
- ATO Decode... c.cevecvvvrvese cee ere ees

- Interrupt Requests On IRO<3:0>.. eee oe
IRQO<3:0> Interrupt Request Levels..

- AIO Codes for Bus Cycles..... sees
General-Purpose Read Codes...... o.

|
P
R
W
E
B

W
N

P
W
N

O
W
A

ES
W
N
P

General-Purpose Write Codes.....

I and D Space Referencing.......
Mode Bit Operations......... cee
Typical Hit/Miss Operations.....
Console ODT Commands........se0-
Pipeline Flow........ cee ee wee ees
FPS Register BitS....cccccesceee
GP Codes and FunctionsS......eeee
DCJ11 Programming Differences...

ix

Three State Disable ‘Test Circuit.

TTL Output Test Circuit......0ee.e.

l
2

3
4
5

1
2
3

4

5
6

~l1 Voltage Waveforms....... rs
Ll
2

3
4

5

6
7

8
9

-l
-1l

Power-Up Circuit..... se eees coe eo eee

Interrupt Acknowledgement.........

Instructions Influenced By Processor Modes.
Priority LevelsS..wcrercvcsccrcresevacecce
PS Protection For Explicit Accesses.
PS Protection For Traps And Interrupts..
PS Protection For RTI, RTT Instructions.
PS Protection For MTPS Instruction....
PS Initialization During Power-Up.....

!
&

W

W
N

—

D
o
o
r

Y
I

AW
A

r
t
t
t
r
t
a
o
d
e

oO

'
r
e
d
t
d

1
W
S
A
A
Y
O
N
M
O
N
O

P
H
S

P
W

P
H

O
O

~
I
W
N
F

D
O
O
D

M
D
D
O
O
D

O
Y

o
n
e

“
0
 oY Ve

) o

r
r

1
t
d
e
#
t
t
t
t

&
t

W
r
 Oo

n
e

re
|

to
t

D
e

P
N
M

W
H
W
H
r
R
r
P
O
N

D
D
R
W
H
H
H
O
D
A
I
A
H
N
M

ND
Ww

Ww

F
O

A
I
D
I
M
M
A

SR
B
W

W
W
W

N
N
N

N
F
P

P
R
Y

i

PREFACE

This user’s guide is intended to familiarize the reader with the
hardware and software characteristics of the DCJ11 microprocessor
CPU chip. It is assumed that the reader has had some experience
with Microprocessor design. Readers should also have_ some
familiarity with PDP-11 architecture.

The book is organized as follows:

Chapter 1 provides an architectural overview of the DCJll.

Chapter 2 describes the function of each DCJll pin.

Chapter 3 describes the various types of DCJ11 bus cycles” and
provides an overview of the timing relationships among DCJ11
inputs and outputs during these cycles.

Chapter 4 describes the architecture and operation of the DCJ1l1’s
integral memory management unit.

Chapter 5 provides information on three special features integral
to the DCJ1ll: cache memory registers (this description also
includes cache memory design considerations), console ODT (also
called micro-ODT), and pipeline processing.

Chapter 6 describes the DCJ11 base instruction set.

Chapter 7 describes the integral floating-point unit and its
instruction set. ,

Chapter 8 provides some introductory information on interfacing
external logic to the DCJ1ll. Power-up and initialization circuits
are provided.

Appendix A contains a summary. of the DCJ11 DC characteristics.

Appendix B contains a summary of the DCJ11 AC characteristics.

Appendix C summarizes the hardware differences between: (1) the
DCJ11 and the PDP-11/44 and (2) the DCJ11 and the PDP-11/70.
Appendix C also contains a summary of the software differences
between the DCJ11 and other processors in the PDP-1ll family.

Appendix D describes how to determine the duration of a DCJll
instruction. Timings for both the base instruction set and the

floating-point instruction set are provided.

Appendix E contains a brief glossary of some DCJ11l terms.

x1

CHAPTER 1
ARCHITECTURE

1.1 INTRODUCTION

This chapter provides a brief introduction to the architecture of
the DCJ11 microprocessor. The DCJ11 is organized as shown in
Figure l-l.

r | _ y DATA CHIP

apoar
[ABOAT [-——e

FAR 5 pe tp——~ ALE CaRRy

1G a

ANE ae }H—— STAR ——-—_—_— PALL
ug Cb. Te re ——— TATE poo SCTE —— c MPARATOR Pp = Les) . MA

ARTUR? ° SECUENCER BUECTS VA112G6:

o—» PROC FSU
fat a

| APL ER wee
-_———»

MULTOPLEX C ren “ee en

SPECIAL REZ STERN

MMPG CALNE FOr OL INPUT
MMRI one t REGS Te UT

MEMORY J MVE} PH: : LATCHES

FRUS 32 BIT
SHIFTER IWePUTS

We DATA 27 B'T 4 OUTPUT LOGIC “
| AWAPPER ' MULIPLEXER

ULIPLEXE DAL 21-00
ol j 1

 | MAIN REGISTER B RUS I? BT y

FILE (CONTAINS ARITHMETIC | 7 .
GENERAL PULAPOSE $ BUS 328'T

REGISTERS

ARUS IP BT

D =
Q

uw ~_

Za
 yw

at

m
i
?

a
e
 >

o <

—

o
n
e

—
—

e
e
e

|
|

|

SHIFT EXECUTION |
SHIFT CONTROL CONTHOL
REGISTEA

CONDITION
moe

ead

EXECUTION A BUS 32 BIT

—— moe we — — — — — ae ——— = —= =_— — — — = — —— =— oma aa

| KC IDAL BUS 168." |
* IDAl

PE eH <> LATCH K

| PY RE anne {

nAL1 ABORT
NTERRUPT SFAVICE

Parry SERVICE 7 Oc’
| EVENT ed ESIC Pla NEXT {

(POT AODARESS NAF

A mt RES, STFa LOGIC
bo — |

NA Lg | ps AlO0

awa Xiah
ee Aig l cont pn AD

MICROSTORE GFE RATOR
oa ROA ——e At

Figure 1-1 DCJ11 Block Diagram

As shown in Figure 1-1, the DCJ1l microprocessor consists of a
data chip and a control chip.

The data chip performs all arithmetic and logic functions, handles
all data and address transfers, and generates most of the signals
used for system timing. In addition to the primary execution data
path, the data chip contains memory management logic, an I/O state
sequencer, and floating-point and cache control registers.

The control chip directs the operation of the data chip with
microinstructions. The major components of the control chip are
the microprogram control store and the microprogram sequencing
logic.

A detailed description of the data chip and control chip and _ the
interface between them is beyond the scope of this book. We will
consider the data chip and control chip as one functional unit and
will describe only those portions of this unit that are
architecturally significant to the design engineer.

The remainder of this chapter briefly describes each of the major
components of the DCJ11l architecture. The chapter covers six
major topics:

General-purpose registers
Processor status word
Traps and interrupts
Floating point processing
Memory system registers
DMA mechanism 0

0
0
0
0
0

1.2 GENERAL-PURPOSE REGISTERS

As shown in Figure 1-2, the DCJ1l has a dual set of six registers
RO through R5S and RO” through R5”%, three stack pointers (R6)
corresponding to the three processor modes (see Paragraph 1.3.1),
and a program counter (R7). RO through R5 is also referred to as
register set 0 and RO” through R5° is also called register set l.

These registers are called general-purpose because they can be
used in a variety of ways. General-purpose registers serve as
accumulators, index registers, autoincrement registers,
autodecrement registers, or as stack pointers for temporary
storage of data. Arithmetic operations can be performed between
one general-purpose register and another or between a
general-purpose register and memory or an I/O device register.

RO RO’ KSP

Ri Ri’ ssp

R2 A2 usP

R3 R37

R4 Ra’ PC

R5 RS’ PSW

Figure 1-2 DCJ11 General-Purpose Registers

At any given time, either register set RO through R5 is used or
register set RO” through RS5* is used. The two sets can not be
used simultaneously. These general-purpose registers are
organized as two sets to increase the speed of context switching
and some types of real-time data handling.

1-2

Register R6 is used as the hardware stack pointer (SP), which
indicates the last entry in the appropriate stack (the stacks are
common temporary areas with LIFO - last in, first out -
characteristics). There are three stack pointers: a kernel stack
pointer (KSP), a supervisor stack pointer (SSP), and a user’ stack
pointer (USP). Each stack pointer is associated with a different
processor mode (see Paragraph 1.3.1). When adn interrupt or trap
occurs, the current CPU state (PC and PS) is automatically pushed
on the stack indicated by the interrupt or trap vector (see

Paragraph 1.4 for more information on interrupts and traps). The
stack-based architecture also facilitates reentrant programming.

Register R7 is used as the program counter-(PC). The PC contains
the address of the next instruction to be executed; thereby
controlling the order of execution of instructions. The PC is a
general-purpose register in the sense that it is directly
accessible by all single- and double-operand instructions. Much
of the power of the DCJ11 instruction set is achieved by utilizing
the PC in conjunction with various addressing modes. The PC is
not normally used as an accumulator for arithmetic operations.

1.3 PROCESSOR STATUS WORD

As shown in Figure 1-3, the processor status word (PS) contains
the condition codes describing the arithmetic or logical results
of the last instruction, a trace bit that forces a trap at the end
of an instruction (used for program debugging), the current
processor priority, and the current and previous processor modes.
The PS is located at physical address 17777776.

15 14 13 12 11 10 09 08 0? 0 O04 03 00
T TT ya, “Tt

0 0 T N 2 Vv c
! ! ty ! oo

& Ak J & , L J % ,

CURRENT CONDITION
MODE CODES

PREVIOU ODE s TRACE BIT

REGISTER SET , PRIORITY UNUSED

MR 11042

Figure 1-3 Processor Status Word

BIT NAME FUNCTION

15:14 Current Mode Current processor mode:
(RW, protected) .

Bits Mode
15 14

0 O Kernel
0 il Supervisor
1 O Illegal
1 dl User

13:12

ll

10:9

3:0

Previous Mode

(RW, protected)

Register Set
(RW, protected)

Unused
(Read only)

Reserved

(RW)

Priority
(RW, protected)

Trace Trap

(RW, protected)

Condition Codes

(RW)

O
C
O
O
O
C
O
O
C
O
F
F

F
F

~
l

Previous processor mode; same
encoding as for bits <15:14>.

General register set select:
0 register set 0 (RO--RS).
1 register set 1 (RO°--R5“).

The bits are unused and are always
read as zeroes.

This bit is reserved for future
DIGITAL uSe.

Processor interrupt priority level:

Bits Priority Level

C
O
O
F
F
O
O
F
F
R
 A

O
o
O
r
O
o
O
r
o
r

O
F

WM

C
O
M
N

W
h

UI

HA
~)

Also called the T-bit. When set,
the processor traps to location 14
at the end of the current
instruction. This bit cannot be
set directly by writing data to the

PS. This bit is typically set by the
RTI/RTT instruction. Trace trap is

Gisabled when this bit iS zero.

Processor condition codes:

N: Set if the result of the
previous operation was negative.

Z: Set if the result of the
previous operation was zero.

V: Set if the previous operation
resulted in an ar-thmetic
overflow.

C: Set if the previous operation
resulted in a carry of its most
Significant bit.

1.3.1 Processor Modes - Three processor modes (user, supervisor,
and kernel) permit a fully protected environment for a
mMultiprogramming system by providing the programmer with three
distinct sets of processor stacks and memory management registers
for memory mapping. In addition, certain PDP-l1l instructions are
privileged in that their operation is inhibited in supervisor and
user modes. For example, in supervisor or user mode, the
processor will ignore the RESET and SPL (Set Priority Level)

instructions and the HALT instruction will cause a trap through
the vector at virtual address 4 in kernel data space. In kernel
mode, the processor will execute all instructions. A summary of

the effects of processor modes on various instruction types is
provided in Table 1-1.

Table 1-1 Instructions Influenced by Processor Modes

Instruction

Or Instruction Operation in Operation in
Type . Kernel Mode Supervisor/User Mode

HALT Depends on Traps through a vector
halt option at location 4 in kernel
selected (see data space.
Paragraph 1.5)

WAIT, RESET, Executes as Executes as a NOP,
SPL specified

RTI, RTT, Can alter Can not alter PS<7:5>
MPTS PS<7:5>

Stack Checked for Not checked for stack

Reference stack overflow.
overflow.

1.3.2 Priority Levels -‘The priority level (mask bits) is
contained in bits <7:5> of the PS and is used by software to
determine which interrupts will be processed, as indicated in
Table 1-2.

Table 1-2 Priority Levels

Octal Value Interrupt Level
of PS<7:5> Acknowledged

Oo 7 None”
6 7

5 7, 6

4 7, 6, 5

3 7, 6, 5, 4

2 7, 6, 5, 4, 3

1 7, 6, 5, 4, 3, 2

0 7, 6, 5, 4, 3, 2, 1

1.3.3. The Trace/Trap Bit - The trace/trap bit (bit 4) is used for
program debugging, enabling single-step execution of instructions

for step-by-step monitoring.

1.3.4 Condition Codes - The four condition codes N, Z, V, and C
contain information about the result of the last CPU operation.

These bits are set as described in Paragraph 1.3.

1.3.5 Processor Status (PS) Protection - Tables 1-3, 1-4, 1-5,
1-6, and 1-7 summarize how the PS is protected under a variety of

conditions. The PS is initialized at power-up (the value to which
it is initialized depends on power-up options) and is cleared at
console start. The RESET instruction does not affect the PS.

1-6

Table 1-3

PS Bit(s)
oF @P om GD aw a» om a ow a

Condition
Codes
PS <3:0>

Trap Bit

PS <4>

Processor
Priority
PS <7:5>

Register
Select
PS <ll>

Previous

Mode

PS <13:12>

Current

Mode

PS <15:14>

PS Protection For Explicit Accesses

EXPLICIT PS ACCESS
User

loaded
from

source

un-

changed

loaded

from

source

loaded

from
source

loaded

from

source

Super

loaded
from
source

un-
changed

loaded

from
source

loaded

from

source

Kernel

loaded
from

source

un-
changed

a ae oe a ee ee oe

loaded

from
source

loaded

from

source

1-7

Table 1-4

PS Protection For Traps and Interrupts

| TRAPS & INTERRUPTS

PS Bit(s) User Super Kernel

Condition loaded loaded loaded

Codes from from from
PS <3:0> vector vector vector

loaded loaded loaded

Trap Bit from from from
PS <4> vector vector vector

Processor loaded loaded loaded

Priority from from from
PS <7:5> vector vector vector

Register loaded loaded loaded
Select from from from

PS <ll> vector vector vector

Previous copied copied copied
Mode from from from

PS <13:12> PS PS PS

<15:14>) <15:14>|] <15:14>

Current loaded loaded loaded

Mode from from from

PS <15:14> vector vector Vector

1-8

Table 1-5 PS Protection For RTI, RTT Instructions

ee ee ee |---~---- |--------

RTI, RTT

PS Bit(s) User Super Kernel

Condition loaded loaded loaded
Codes from from from
PS <3:0> stack stack stack

loaded loaded loaded

Trap Bit from from from
PS <4> stack stack stack

Processor un- un- loaded

Priority changed| changed| from
PS <7:5> stack

Register ORed ORed loaded
Select from from from

PS <ll> stack* stack* stack

Previous ORed ORed loaded

Mode from from from

PS <13:12> stack* stack* stack.

Current ORed ORed loaded

Mode from from from

PS <15:14> stack* stack* stack
* "ORed from stack" means that when the old

PS is popped from the stack (restored),
it cannot clear PS<15:1l> in the current
PS if these bits have been set.

1-9

Table 1-6 PS Protection for MTPS Instruction

| |------- |-------- |--------
| MTPS

PS Bit(s) User Super Kernel

Condition -loaded| loaded loaded
Codes from from from
PS <3:0> source! source source

Trap Bit un- un- un-
PS <4> changed! changed| changed

Processor un=- un- loaded |
Priority changed| changed| from
PS <7:5> source

Register un- un- un-
Select changed|changed |changed
PS <ll>

Previous un= un= un=
Mode changed|changed |changed
PS <13:12>

Current un- un- un-
Mode changed|changed |changed -
PS <15:14>

Table 1-7 PS Initialization During Power-Up

| POWER-UP
PS Bit(s)

Condition

Codes cleared
PS <3:0>

Trap Bit
PS <4> cleared

Processor depends
Priority On power-
PS <7:5> up option

Register
Select cleared

PS <ll>

Previous

Mode cleared

PS <13:12>

Current cleared

Mode i.e.,

PS <15:14> kernel
mode

1.4 INTERRUPTS AND TRAPS

This paragraph provides a brief overview of DCJ1l1 interrupts and
traps and describes user-visible registers related to interrupts
and traps. Abort conditions are also _ covered. For detailed
timing and bus information, see Chapter 3 - Bus Cycles.

Interrupts and traps are requests that cause the DCJ1ll to
temporarily suspend the execution of the current program and
provide service for the device or condition that caused the

interrupt or trap. Interrupts differ from traps in that
interrupts are initiated by some external event, while traps are
caused by conditions internal to the DCJ1l.

The DCJ11 operates at any of 8 levels of priority. In general, an
interrupt or trap affects the DCJ1l if its priority is greater
than the DCJ11°s priority as indicated by PS<7:5>. The exception
to this is a non-maskable interrupt or trap, which occurs
independently of the processor priority. Note that non-maskable

interrupts and traps have a priority structure amongst themselves.

When an interrupt or trap occurs, the current PS and PC are
preserved in order to allow a return to the interrupted program.
The new contents of the PC and the PS are fetched from _ two
consecutive memory words called a vector. The first word of the
vector contains the interrupt or trap service routine starting
address (the new PC), and the second word contains the new PS.
Vectors are either predefined by the DCJ1l or are user defined.
User defined vectors are vectors associated with interrupts

occuring on IRQ<3:0>. The predefined vectors are shown in Table
1-8. |

Specifically, for an interrupt or trap, the following sequence of
events occurs:

PS --> templ s;save PS, PC in temporary
PC --> temp2 ;scratchpad locations
Q <--> PS<15:14> ;force kernel mode

M(V] --> PC ;fetch PC from vector, data space
M[V+2] --> PS ;fetch PS from vector, data space

templ<15:14> --> PS<13:12> ;set previous mode
SP-2 --> SP ;pushed stack selected by new PS

templ --> M[SP} ;push old PS on stack, data space
SP-2 --> SP

temp2 --> M[SP] ;push old PC on stack, data space
;then execute interrupt service
sroutine |

After the interrupt or trap service routine has been completed, an
RTI (Return From Interrupt) or RTT (Return From Trap) instruction

is typically executed. The top two words of the stack are
automatically popped off the stack and placed in the PC and PS,
respectively, thereby restoring the state of the interrupted
program.

The DCJ11 also responds to a variety of conditions which can abort
the current operation. An abort is Similar to an interrupt or
trap in that a vector is used to point to ae service routine.
Aborts differ from traps and interrupts in that the DCJ11 services
an abort immediately rather than waiting until the end of the
current macroinstruction. Aborts generated by the DCJ11 itself
include memory management and address errors. Aborts which must
be generated by external logic include bus timeouts, non-existent
memory accesses, and parity aborts. The signal ABORT is asserted
to indicate the presence of an abort condition.

DCJ11 interrupts, traps, and aborts (with their associated
priorities) are summarized in Table 1-8. For interrupts and
aborts, the name of the signal which initiates the interrupt or
abort (if any) appears in the last column. For completeness,
Table 1-8 also lists several instructions that result in traps.
These instructions are mutually exclusive and have no priority
structure.

Table 1-8 Interrupts, Traps, and Aborts

Description

Red stack violation
(CPU error register,

bit 2)

Address error

(CPU error register,
bit 6)

Memory management
violation (MMRO,
bits <15:13>)

Timeout/non-existent
memory (CPU error

register, bits <5:4>)

Parity error

Trace (T bit) set
(PSW, bit 4)

Yellow stack violation
(CPU error .register,
bit 3):

Power fail (PWRF)

Floating point
exception (FPA
present)

Floating point
exception (no
FPA)

PIR 7 (PIRQ, bit 15)

Interrupt level 7

EVENT

PIR 6 (PIRQ, bit 14)

Interrupt level 6

PIR 5 (PIRQ, bit 13)

Interrupt,
Trap, or Vector
Abort Address

Abort 4

Abort 4

Abort 250

Abort 4

Interrupt 114
or Abort

Trap 14

Trap 4

Interrupt 24

Interrupt 244

Trap 244

Trap 240

Interrupt UD

Interrupt 100

Trap 240

Interrupt UD

Trap 240

Priority
Level Signal

NM —

NM --

NM --

NM ABORT

NM PARITY,

ABORT

NM --

NM --

NM PWRF

NM FPE

NM --

7 --

7 IRQ7

6 EVENT

6 --

6 IRQ6

5 --

Interrupt level 5 Interrupt ‘ UD 5 IRQ5

PIR 4 (PIRQ, bit 12) Trap 240 4 --

Interrupt level 4. Interrupt UD 4 IRQ4

PIR 3 (PIRQ, bit 11) Trap 240 3 --

PIR 2 (PIRQ, bit 10) Trap 240 2 --

PIR 1 (PIRQ, bit 9) Trap 240 | 1 --

TRAP Instruction Trap 34 | -- --

“EMT Instruction Trap 30 -- --

IOT Instruction Trap 20 -- --

Illegal Instruction Trap 10 -- --

NM = Non-maskable
UD = User-defined
-- = None

1.5 HALTING DCJ11 OPERATION

A halt operation differs from a interrupt, trap, or abort in that

there is no vector associated with it. It is similar, however, in
the sense that it interrupts the usual operation of the DCJ1l.
The two main means of halting the operation of the DCJ1l are to:
(1) assert the HALT line or (2) execute a HALT instruction.

The HALT line has a lower priority than any interrupt, trap, or
abort. However, it has the highest priority during vector reads.
This is to allow the user to break out of potential infinite
loops. An infinite loop could occur for example if a vector is
not properly mapped during a memory management operation.

Execution of the HALT instruction performs different operations
depending upon the CPU operating mode and the halt option
currently selected. See Chapter 8 - Interfacing for more details
on halt options. In kernel mode, a halt option of 1 causes a trap
through lecation 4 and sets bit 7 of the CPU error register when:
HALT is éxecuted. If the halt option is 0 in kernel mode,
execution of the HALT instruction causes the DCJ1l into console
ODT. Execution of the HALT instruction in user or supervisor mode
causes a trap through location 4 and sets bit 7 of the CPU error
register.

1-14

1.6 PROGRAM INTERRUPT REQUEST REGISTER

The program interrupt request register (PIRQ) provides seven
levels of software interrupt (i.e., trap) capability. An
interrupt request is queued by setting one of bits <15:9>, which
correspond to interrupt priority levels 7 through 1
(respectively). Bits <7:5> and <3:1> are set-by the DCJ1l to the
encoded value of the highest pending request. When the program
interrupt request is granted, the processor traps through a vector
at virtual location 240. It is the responsibility of the
interrupt service routine to clear the appropriate bit in the PIRQ
before exiting. The format of the PIRQ is as shown in figure 1-4.

15 14 13 12 a 10 09 08 07 05 04 03 01 00
v , Jt '

PIRTIPIRGIPIR S}PIR 4) PIR 3/ PIR 2] PIR 1 Q- 0 0

al L J 1

LX + ee) J 4 - om premmmavvemmmmnseniesscmnedl

REQUEST ees

 PRIORITY ENCODED VALUE OF BITS <15:.9>

Figure 1-4 PIRQ Register

Bits <15:9> can be read or written. Bits <7:5> and <3:1> are
read-only. The remaining bits are always read as zeros. PIRQ is
cleared by a console start, by a RESET instruction, and at
power-up time. The PIRQ resides at physical address 17777772.

1.7 CPU ERROR REGISTER

The CPU error register assists the operating system by identifying
the source of a trap through location 4. The CPU error register
is located at physical address 17777766. The format of the CPU
error register is as shown in Figure 1-5.

 ILLEGAL HALT

ADORESS ERROR

NON-EXISTENT MEMORY

1/0 BUS TIMEOUT

VELLOW STACK VIOLATION

RED STACK VIOLATION

MA 9326

Figure 1-5 CPU Error Register

ke
 t “15

Bit

<1538>

<1:0>

Name

Unused

Illegal HALT
(Read only)

Address Error

(Read only)

Non-Existent
Memory

(Read only)

I/O Bus

Timeout
(Read only)

Yellow Stack

Trap

(Read only)

Red Stack Trap
(Read only)

Unused

Description

These bits are unused and are always

read as zeros,

Set when execution of a HALT instruction
is attempted in user or supervisor mode,
or in kernel mode when the HALT option is
enabled (refer to the power-up options in
Paragraph 8.3.3).

Set when a word access is made to an odd
byte address, or when an instruction
fetch from an internal register is
attempted.

Set when reference is made to a
non-existent memory address.

Set when reference is made to a
non-existent I/O page address.

Set when a yellow zone stack
overflow trap occurs.

Set when a red stack trap occurs.

These bits are unused and are always
read as zeros.

The CPU error register is cleared by any write reference to
itself, by a power-up, or by a console start. The RESET

instruction has no effect on this register.

1.8 STACK PROTECTION

The DCJ11 provides hardware protection for the kernel stack. The
Supervisor and user stacks are not protected by hardware but may
be checked by memory management and appropriate software.

Stack protection in kernel mode is provided by defining yellow and
red stack traps. Kernel stack references are checked against a
fixed limit of 400 (octal). If the virtual address of ai kernel
Stack reference is less than 400 (octal), a yellow stack trap
occurs at the end of the current instruction. A stack trap can
only occur on a kernel stack reference, which is defined as: any
trap or interrupt push on the kernel stack, a JSR instruction in
kernel mode, or a reference in kernel mode using addressing Mode 4

or 5 with R6 as the selected register.

The DCJ11 also checks for kernel stack aborts during interrupt,
trap, or abort sequences. If an abort is caused by a kernel stack
push during an interrupt, a trap, or an abort sequence, the DCJ1l
initiates a red stack trap by creating an emergency Stack at
vector locations 0 and 2, vectoring through location 4, and
setting bit 2 of the CPU error register.

1.9 FLOATING-POINT PROCESSING

The DCJ11 contains an integral floating-point processor which. can
perform single- and double-precision floating-point operations.
User-accessible architecture associated with floating-point
processing includes: Six 64-bit floating-point accumulators
(ACO--ACS5), a floating-point status register (FPS), a
floating-point exception address (FEA) register, and a
floating-point exception code (FEC) register. Chapter 7 describes
these in detail and provides information on programming with
floating-point instructions.

1.10 MEMORY SYSTEM REGISTERS

Memory system registers are used for: (1) cache memory
implementation and (2) memory management.

The memory system registers associated with cache memory are _ the

cache control register (CCR) and the hit/miss register (HMR).
These registers are described in detail in Chapter 5 - Special
Features,

The memory system registers associated with memory management
include page address registers (PARS), page descriptor registers

(PDRs), and memory management registers 0, 1, 2, and 3. 4(MMRO,
MMR1, MMR2, MMR3). These are described in detail in Chapter 4 -
Memory Management.

1.11 DIRECT-MEMORY ACCESS (DMA) MECHANISM

An external device typically performs a DMA transfer by taking

control of a buffered version of the DCJ11°s data/address bus
(DAL<21:00>). A device requests control of the DAL lines by
asserting the DMR input to the DCJl11. This causes the DCJ11 to
place DAL€15:00> in a high impedance state (DAL<21:16> is placed
in a high impedance state via external buffers) and extend the
current microcycle. It is the responsibility of external logic to
end the microcycle by asserting the DCJ11°s CONT input.

The DCJ11 acknowledges a DMA request by asserting its MAP output

at the appropriate time. See Chapter 3 - Bus Cycles for the

specific timing involved. This also causes the current microcycle
to extend until CONT is asserted.

A DMA request may be acknowledged and granted for all types of
microcycles except bus writes and GP writes. The lack of a DMA
grant, however, does not necessarily prevent external logic from
performing a DMA transfer during these cycles. A buffered version
of the DAL for example could be used for a DMA transfer when SCTL
is asserted (the DAL itself would not be used since it carries the
write data during this portion of the cycle).

NOTE
It is possible to acknowledge a DMA
request between the read and write
portions of a bus locked
Read=-Modify-Write cycle (see Paragraph
3.2). If this is not desirable, external
logic should be designed to disable DMA
requests at this time.

CHAPTER 2
PIN DESCRIPTIONS

2.1 INTRODUCTION

This chapter describes the functions performed by each DCJ11 pin.
The pins, and thus the chapter, are divided into nine groups:

Data/address lines (DAL<21:00>)
System control lines (BS<1:0>, AIO<3:0>, BUFCTL, CONT, DV)
Timing signals (ALE, SCTL, STRB, CLK,.CLK2)
Start/stop control (INIT, HALT)
Status Signals (MISS, PARITY, ABORT, MAP, PRDC)

Interrupt and DMA control (IRQ<3: >, DMR, PWRF, FPE, EVENT)
Test pins (TESTI, TEST2)
Oscillator pins (XTLI, XTLO)
Power pins (Vcc, GND) 9o

O0
o0

0
0
0
0
0
0

Figure 2-1 illustrates the pin assignments of the DCJ1l_ and
indicates whether a signal associated with a pin is an input, an
output, or both (bidirectional).

TET 1 60 DALE
Aid 0 — 2 59 ne DAL 7

AiO 1 43 58 jam DAL 8
AIO 2 _— 4 57 oo DALO

AID 3 a4 5 56 poe DAL 9

PWRE —>1 6 55 bow DAL 10

FPE —el 7 54 pow DAL 11

EVENT —1 3 53 jae DAL 12

HALT 9 s2fee (DAL 3
IRO 1 mei 50 bom DAL 15

IRO3 ol 13 48 bow DAL 2

GND —4 15 46 }— Voc
Voc —ig (1) 45-— GND
Be 0 esi 44 bem DAL 4
BS 1 —- 18 43 a e DAL 5

Map + 19 42 }sa— OV

ABORT eq 20 4) be BUFCTL

DAL 21 21 40 > ACE
DAL 20 - 22 39 > ST RB
DAL 19 + 23 38 oe SCTL

DAL 18 24 37 > XTALO
DAL 17 a4 25, 36 ja XTALI

DAL 16 ++ 26 35 ow CLK
DMA | 27 34 be CLK2

PROC @—-| 29 32 he CONT

NOT USED — 30 31 Jo TEST2

MR BBBS

Figure 2-1 DCJ11 Pin Assignments

2-1

2.2 DATA/ADDRESS LINES (DAL<21:00>)

There are 22 pins associated with data and address information.
These are usually referred to as the data/address (or DAL) lines.
The DAL lines are functionally divided into two groups: the upper
data/address lines (DAL<21:16>) which are output only and the
lower data/address lines (DAL<15:00>) which are bidirectional.

2.2.1 Upper Data/Address Lines (DAL<21:16>) - These Six
time-multiplexed output lines constitute the most significant 6
bits of a 22-bit physical address. DAL<21:16> carries valid
information at the beginning of every bus cycle. Internal status
is asserted on these lines during the second part of every bus
cycle for manufacturing test purposes only.

2.2.2 Lower Data/Address Lines (DAL<15:00>) - These
time-multiplexed I/O lines constitute the 16-bit data and address
bus. During the first part of a cycle that involves an I/O
transfer, the DAL lines carry a physical address, an interrupt
acknowledge priority level, or a general-purpose (GP) code,
depending upon the type of cycle being performed (see Chapter 3 -
Bus Cycles for more information on cycle types). During a Bus
Read or Bus Write cycle, DAL<15:00> carries the lower 16 bits of a
physical address. During an Interrupt Acknowledge cycle, DAL<3:0>
carries the priority of the acknowledged level. During a
General~Purpose Read or General-Purpose Write cycle, DAL<7:0>
carries the GP code,

During the second part of a cycle that involves an I/0 transfer,
the DAL lines carry 8 or 16 bits of data. During read cycles,
external logic places data onto the DAL. If the DCJ11 only
requires a byte of information, it reads a full word but ignores
either the upper of lower byte. For write cycles, the DAL carries
8 or 16 bits of data, depending upon whether the cycle involves
the writing of a byte or a word.

2.3 SYSTEM CONTROL LINES,

There are nine pins associated with system control: BS<1:0>,
AIO<3:0>, BUFCTL, CONT, and DV.

2.3.1 Bank Select (BS<1:0>) - These time-multiplexed output
Signals transmit bank select and cache access information. At the
beginning of a Bus Read or Bus Write cycle, the BS signals define
the type of device being accessed by the physical address on the
DAL as shown in Table 2-1.

Table 2-1 BS Device Selection

BS1 BSO DESCRIPTION

1 1 Internal register -
| A memory-addressable register that resides

within the DCJ11. Included are the
processor status word, all MMU registers,
the PIRQ register, the CPU error register
and the cache hit/miss register. Excluded
are the general-purpose registers, which
are not memory addressable.

1 0 External I/O device -
Any device or register external to the
DCJ11 that is referenced by a bus
address in the upper 8K bytes of the
physical address range (17760000 to
17777777). Excluded are system registers
(BS code 01) and internal registers (BS
code ll).

0 1 System register -
A memory-addressable register in the
address range 17777740 to 17777750.
Always included as a system register is
the DCJ11°“s internal cache control
register (CCR).

NOTE

The CCR is the only system register
implemented in the DCJ11. Accesses to
the CCR generate the same BS code as for
the other system registers mentioned
above. This facilitates the creation of
"shadow" read-only copies of the CCR on
cache based systems.

0 0 Memory -
_ A reference to any location in physical

address space in the range 00000000 to
17757777.

During the second part of an I/O cycle, BS1 is asserted when the
cache memory (if present) is to be bypassed. In the second part
of the cycle, BSO is asserted whenever a cache memory force miss
is required.

2.3.2 Address Input/Output (AIO<3:0>) - The AIO outputs identify
the type of cycle currently being executed. External logic
typically latches and decodes these signals. Table 2-2 specifies
the AIO code associated with each cycle type. See Chapter 3 - Bus
Cycles for detailed information on the various cycle types.

Table 2-2 AIO Decode

AIO3 AIO2 AIOlL AIOO CYCLE TYPE

NIO (internal operation only, no I/O)
GP (General-Purpose) read
Interrupt acknowledge, vector read
Instruction-stream request read
Read/Modify/write - no bus lock
Read/Modify/Write - bus lock
Data-stream read
Instruction-stream demand read
GP word write
Bus byte write
Bus word write C

O
O
K

R
P
E

RP
R
P
E
 R
E

P
O
r
F
D
O
O
O
R
P
F
R
E
P
H

S
F
P

O
C
O
O
R
P
F
O
C
H
F
H

H
R
r
H
O
r
F
M
O
r
F
O
r
F
O
F

2.3.3 Buffer Control (BUFCTL) - The BUFCTL output defines whether
the .DCJ11 is driving or receiving data on the DAL. BUFCTL is
typically used by external logic to control the direction of data
passing through buffers that send data to the DCJ1l1. When
asserted, BUFCTL indicates that the DCJ11 is not driving dat& on
the DAL. This occurs: (1) during the portion of a read cycle
when data is being driven on the DAL, and (2) during the stretched
portion of any nonwrite cycle. BUFCTL is deasserted when the
DCJ1l is driving data or an address on the DAL.

2.3.4 Continue (CONT) - The CONT input is asserted by external
logic to _terminate a stretched cycle after it has finished using
the DAL. CONT is so named because it enables the DCJ1l to
continue on to the next cycle.

2.3.5 Data Valid (DV) - The DV input is typically asserted by

external logic to latch data into the DCJ11 from the DAL. When
asserted, DV causes the DCJ1l to latch data when BUFCTL and SCTL
are asserted, that is, during stretched non-write cycles.
External logic must ensure that DV is not asserted during DMA
transactions, Since this would cause the latching of unpredictable
ata.

2.4 TIMING SIGNALS

There are five pins associated with timing and synchronization:
ALE, SCTE, STRE, CLK, and CLK2.

2.4.1 Address Latch Enable (ALE) - ALE when asserted indicates
that DAL<21:00>, AIO<3:0>, BS<1:0>, and MAP all contain valid
data. The leading edge of ALE is typically used by external logic
to latch_addresses, AIO codes, bank select (BS) codes, and the map
enable (MAP) control signal. |

2.4.2 Stretch Control (SCTL) - The SCTL output, when asserted,
identifies the stretched portion of a cycle. During write cycles,
the leading or trailing edge of SCTL can be used for latching
data. During read cycles, the trailing edge of SCTL can be used
for latching data. SCTL can also be used to determine when
externally generated aborts may occur.

2.4.3 Strobe (STRB) - The assertion of the STRB output occurs one
clock period after the assertion of ALE. The deassertion of STRB
identifies the end of one microcycle and the beginning of another.
STRB is a general-purpose strobe signal and is typically used for
system bus control.

2.4.4 Clock 1 (CLK) - CLK is usually a clock output for
diagnostic use only. When used as an output, CLK reflects the
State of the DCJ11°s internal clock. The frequency of CLK equals
the frequency of the external crystal oscillator circuit connected
to the XTALI and XTALO pins. If TESTZ is asserted, the DCJ1l’s
internal clock is disabled and CLK is placed in the high-impedance
state. In this case, CLK can serve as a MOS input (V7, = .3Vcc,
VrH = .7Vcc, try = ty, = 7 ns) driven by an external clock.

2.4.5 Clock 2 (CLK2) - The CLK2 output has the same frequency as
CLK. Like CLK, CLK2 reflects the state of the DCJ11°s internal
clock and is disabled by the assertion of TEST2. Unlike CLK, CLK2
is typically used as a system clock or master clock for external
logic. CLK and CLK2 have minimal skew when loaded equally.

2.5 START/STOP CONTROL

There are two pins associated with starting and stopping the
operation of the DCJ1l: INIT and HALT.

2.5.1 Initialize (INIT) - The INIT input, when asserted,
initializes (resets) the DCJ11 by forcing it through a power-up
procedure. The power-up sequence is described in detail in
Paragraph 8.3.2.

2.5.2 Halt (HALT) ~ The HALT input, when asserted, forces the

DCJ11 into console mode (i.e., initiates console ODT). HALT is

the lowest priority nonmaskable interrupt except during vector

read cycles. During vector read cycles, HALT becomes the highest

priority non-maskable interrupt. This allows escape from

potential infinite looping which could result from programming

errors. Since it is non-maskable, HALT is unaffected by the CPU

priority specified by PS<7:5>. See Chapter 1 - Architecture for a

list of the non-maskable interrupts and their relative priorities.

See Chapter 5 - Special Features for a description of console ODT.

2.6 STATUS SIGNALS

There are five pins associated with indicating DCJ1l status:
MYSS, PARITY, ABORT, MAP, and PRDC.

2.6.1 Cache Miss (MISS) - The MISS input is generated by external
logic in DCJ1l based systems incorporating cache memory. The
assertion of MISS typically indicates that the current memory
reference resulted in a cache memory miss. If MISS is asserted
during the first part of a bus read cycle, the cycle is stretched.

2.6.2 Parity Error (PARITY) - The assertion of the PARITY input
indicates the occurrence of a memory parity error. PARITY is used
to generate parity aborts and parity interrupts. If PARITY is
asserted and ABORT is also asserted, then a parity error abort is
generated. The DCJ11 immediately traps through a vector located
at virtual address 114 without completing the current instruction.
If PARITY is asserted but ABORT is not asserted, then a parity
error interrupt is generated. At the end of the current
instruction, the interrupt is serviced through the vector located
at virtual address 114. Note that PARITY is sampled only during
the stretched portion of a cycle.

2.6.3 Abort (ABORT) - ABGRT can serve as an input or an output of
the DCJll. ABORT is typically configured in an open-collector
driver circuit such that aborts generated by either external logic
or the DCJ11 can cause ABORT to be asserted (i.e., a wired OR
arrangement). Note that the DCJ11 pulls ABORT high internally.

The DCJ11 asserts ABORT during the first part of an I/O cycle if a
Memory management error or address error occurs. For a memory
management error, the DCJ1l traps through a vector located at
virtual address 250 in kernel data space. For an address error,
the DCJ11 traps through a vector located at virtual address 4 in
kernel data space. The DCJ11 sets the appropriate bit in the CPU
error register.

ABORT can also be asserted by external logic in the event of such
conditions as a bus timeout, non-existent memory reference, parity

2-6

error, etc. External logic must ensure that: (1) the cycle is
Stretched and that AB is asserted during the stretched portion
(i.e., when SCTL is asserted) and (2) ABORT is not asserted during
a non-I/O cycle. tf PARTTY is not asserted, the assertion of

T by external logic causes a trap through a vector located at
virtual address 4 in kernel data space. The CPU error register
specifies the cause of the abort. If PARTTY and are
asserted, the DCJ11 immediately performs a trap through a vector
located at virtual address 114 in virtual address space.

2.6.4 Map Enable (MAP) - MAP is a time-multiplexed output. The
assertion of MAP during the first part of a cycle indicates that
the I/O map has been enabled (the I/O map_is enabled by setting
bit 5 of MMR3 to 1). The assertion of MAP during the second part
of a cycle acknowledges the assertion of the DMR input.

NOTE
The I/O map, if needed, is implemented in
Circuitry external to the DCJ1ll.

2.6.5 Predecode (PRDC) - The PRDC output, when asserted,
indicates that the contents of the prefetch buffer (PB) are being
decoded as the next macroinstruction. This implies that the
contents of the PB are valid. The PB is part of the DCJ11
prefetch pipeline, the operation of which is explained in Chapter
5 - Special Features.

2.7 INTERRUPT AND DMA CONTROL

There are eight pins associated with the control of program
interrupts and DMA transfers: IRQ<3:0>, BMR, PWRE, FRE, and
EVENT.

2.7.1 Interrupt Request (IRQ<3:0>) - IRQ<3:0> are four input
lines that correspond to four different levels of external
interrupt requests. Interrupt requests at any of these four
levels can be masked by PS<7:5>. In order to be serviced, the
requesting device must have an interrupt priority higher than the
priority indicated by PS<7:5>. Interrupt requests on IRQ<3:0> are
blocked or allowed as summarized in Table 2-3:

2-7

Table 2-3 Interrrupt Requests on IRQ<3:0>

CPU

Priority
PS<73:5> Level IRQ3 IRQ2 IRQ1 IRQO

111 7 Blocked Blocked Blocked Blocked
110 6 Allowed Blocked Blocked Blocked
101 5 Allowed Allowed Blocked Blocked
100 4 Allowed Allowed Allowed Blocked
Oxx 3-0 Allowed Allowed Allowed Allowed

x = Irrelevant

From Table 2-3, it is seen that each IRQ line is associated with a
different interrupt level, as summarized in Table 2-4.

Table 2-4 IRQ<3:0> Interrupt Request Levels

Interrupt
IRQ Line Request Level

IRQ3 7
IRQ2 6

IRQ1 5
IRQO 4

2.7.2 Direct Memory Access Request (DMR) - The DMR input to the
DCJ11 when asserted typically means that an external device wants
to perform a DMA transaction. DMR is sampled by the DCJ11 at the
Start of all cycles. If the cycle does not involve a write
operation, the DCJ11 responds to the assertion of DMR by: (1)
stretching the cycle, (2) placing DAL<15:00> in the high-impedance
state, and (3) acknowledging the DMA request by asserting MAB
during the second part of the cycle. If the cycle involves a
write operation, the cycle is stretched but DAL<15:00> is not
placed in the high-impedance state and MAP is not asserted.

2.7.3 Power Fail (BWRF) ~ PWRF is a
interrupt input that, when asserted, forces a trap through a
vector located at virtual address 24 in kernel data _ space.
External logic typically asserts PWRF to indicate the occurrence

high-priority nonmaskable

of an AC power failure. The trap vector points to an appropriate
user-defined power fail service routine.

2.7.4 Floating-Point Exception (FPE) - FPE is a high-priority
nonmaskable interrupt input that, when asserted, forces a trap
through a vector located at virtual address 244 in kernel data
space. FPE would be asserted by an external FPA coprocessor to
indicate the occurrence of a floating-point exception. The trap
vector would point to an appropriate user-defined floating-point
exception service routine.

2-8

2.7.5 Ewent (EVENT) - The EVENT input is a maskable priority
level 6 interrupt (i.e., it is acknowledged if PS<7:5> is less
than 6). When EVENT is asserted (and not masked), the DCJ1l
performs a trap throes a vector located at virtual address 100 in
kernel data space. is typically used by external logic as a
line time clock (LTC) interrupt input. °

2.8 TEST PINS”

There are two pins associated with testing, TESTI and TEST2.
These signals disable DCJ1l functions and are are used in
connection with board-level testing.

2.8.1 Test 1 (TESTI) - The FESTI input (when asserted by external
logic) Gisables all DCJ11 outputs by placing them in the
high-impedance state. This permits external logic to operate on
the data and control lines connected to the DCJ1l1 without
interference from the DCJ1l.

2.8.2 Test 2 ("EST2) - The TESTS input, when asserted, disables
the DCJ11°s internal clock. The CLK and CLK2 pins are placed in
the high-impedance state. Board level in-circuit testing logic
can be designed such that when TEST2 is asserted, an external
clock drives the DCJ11 clock circuitry through the CLK pin.

2.9 OSCILLATOR PINS (XTALI, XTALO)

The XTALI and XTALO pins are used to connect an external crystal
circuit to the DCJ11. The recommended crystal circuit is shown in
Figure 2-2.

 YI —— rau

CRYSTAL CL) 1M

_|

 XTALO
- 680F

MR 9I79

Figure 2-2 Typical XTALI and XTALO Generation

2.10 POWER PINS

There are four pins associated with power: two for +5VDC (Vcc)
and two for ground (GND).

2-9

2.10.1 Power (Vcc) - There are two pins, both called Vcc, which
are used to input +5VDC to the DCJ1l. +5VDC is supplied by
external circuitry and is typically maintained to within zx 5%.

2.10.2 Ground (GND) - The two GND pins provide a ground reference
for the DCJ1l. Typically, these pins are connected to the ground
reference of external logic.

2.11 PIN DESCRIPTION SUMMARY

INPUT
OR

PIN NO. PIN NAME DEFINITION OUTPUT FUNCTION

1 TEST] Test 1 Input Disables all DCJ11l
outputs.

2-5 AIO<3:0> Address Output Indicate the type of
Input/Output cycle currently béing

executed (e.g., bus
read, GP write, IACK,
etc.)

6 PWRF Power Fail Input A high-priority non-
maskable interrupt
that forces a trap
through vector
location 24.
Indicates an AC power
failure.

7 PE Floating-Point Input A high-priority non-
Exception maskable interrupt

that forces a trap
through vector
location 244,
Typically generated
by a floating-point
coprocessor to

indicate an exception
condition.

8 EVENT Event Input A maskable interrupt
that forces a trap
through vector
location 100.
Typically used as a
line time clock.

10-13

14

L5

16

17-18

19

20

21-26

27

HALT

IRQ<3:0>

PARITY

GND

Vec

BS<1:0>

DAL<21:16>

DMR

Halt

Interrupt
Request

Parity Error

Ground

Power

Bank Select

Map Enable

Abort

Data/Address
Lines

Direct Memor
Access Reque

Input

Input

Input

Input

Input

Output

Output

I/O

Output

y Input
st

A low-priority non-
maskable interrupt
that forces the
DCJ11 into console
ODT.

Four maskable

interrupt request
Lines.

Indicates a memory
parity error.

Ground reference.

+5 VDC power input.

Multiplexed. Either
define the type of
physical address on
the DAL or indicate
if a cache memory
bypass or force miss
should occur.

Multiplexed,
indicates that either
the I/O map is
enabled or a DMA
request has been
granted.

Indicates the

occurrence of an
abort condition,
i.e.; a memory
management or address
error, bus timeout,
non-existent memory,
or parity error.

Most significant six
bits of the time
multiplexed data and

address bus.

Forces the current
cycle to be extended
and causes MAP to be
asserted during the
second part of the
cycle.

28

29

30

31

32

33

34

35

36

37

38

39

40

MISS

PRDC

Not Used

TEST2

CONT

INIT

CLK2

CLK

XTALI

-XTALO.

SCTL

fi

Cache Miss

Predecode

Test 2

Continue

Initialize

Clock 2

Clock 1

Crystal Input

Crystal Output

Stretch

Control

Strobe

Address Latch

Enable

Input

Output

Input

Input

Input

Output

Output

Input

Output

Output

Output

Output

Indicates whether the
current memory
reference resulted in
a cache hit or miss.

Indicates when the
contents of the
prefetch buffer are
being decoded as the
next macroinstruction.

Disables the clock
outputs. Permits
external logic to
drive the DCJ1l“s
internal clock
circuitry through the
CLK pin.

Terminates a stretched
cycle.

Initializes or resets
the system by forcing
it through a power-up

procedure.

Clock output with the
same frequency as CLK.
Typically used as a
system clock.

Clock output for
diagnostic use
only.

Oscillator input line.

Oscillator output
line.

Indicates that a cycle
is being stretched.
The edges can be used
to strobe data.

General-purpose
strobe.

Typically used to
latch addresses, AIO
codes, and the map
enable and BS control
signals.

41.

42

43-44 ?

47-60

45

46

BUFCTL

DV

Buffer Control

Data Valid

DAL<15:00> Data/Address

Vec

Lines

Ground

Power

2-13

Output

Input

I/O

Input

Input

Indicates the
direction of data on
the DAL. Asserted when
the DCJ1l is not
driving the DAL.

Causes the DCJ1ll to
to latch data from the
DAL.

Lower 16 bits of the
time multiplexed
data and address bus.

Ground reference.

+5 VDC power input.

CHAPTER 3
BUS CYCLES

3.1 INTRODUCTION

This chapter describes the various types of DCJ11l bus’ cycles. A
bus cycle is a sequence of events which defines the activity on
the DCJ11°s I/O bus. Bus cycles are also sometimes referred to as
"microcycles", since each bus cycle is associated with the
execution of one microinstruction. The execution of a DCJll
Macroinstruction such as ADD, JMP, etc., can involve the execution
of several bus cycles. The type of bus cycle that the DCJll
performs depends upon the type of bus activity (if any) required
to complete the execution of a microinstruction.

Sometimes the DCJ11 performs an internal operation which requires
no bus. activity. If this is the case, the DCJ11 executes a
non-I/O (NIO) cycle. An NIO bus cycle (described in detail in
Paragraph 3.4) is the only type of bus cycle that does not involve
the transfer of information over the DCJ1ll%s I/O bus.

DCJ11 bus cycles fall into six broad categories:

1. Non-I/0

2. Bus Read

3. Bus Write

4. General-Purpose Read

5. General-Purpose Write

6. Interrupt Acknowledge

The deassertion of the signal STRB marks the beginning (and the
end) of a bus cycle. ALE (asserted shortly after STRB is
deasserted) can be used by external logic to latch AIO<3:0>. The
information on AIO<3:0> specifies the type of bus cycle being
performed according to Table 3-1:

Table 3-1 AIO Codes for Bus Cycles

AIO<3:0> Description Bus Cycle Type

1111 Non-I/0O operation Non-1I/0
1110 GP read General-Purpose Read
1101 Interrupt acknowledge/ Interrupt Acknowledge

vector read
1100 Instruction stream Bus Read

request read
1011 Read-Modify-Write, Bus Read*

no bus lock
1010 #$Read-Modify-Write, Bus Read*

bus lock
1001 Data stream read Bus Read
1000 Instruction stream Bus Read

demand read
0101 GP word write General-Purpose Write
0011 Bus byte write Bus Write
0001 Bus word write Bus Write

* Note that the AIO codes for read-modify-write cycles are

identified as Bus Read cycles. This refers to the first part
of the cycle (i.e., the "read" part). The second part of the
cycle (i.e., the "write" part) will be a Bus Write cycle with
a different AIO code,

3.2 DURATION OF BUS CYCLES

The length of a bus cycle is usually expressed as a number of
periods of the DCJ11°s master clock (CLK). All bus cycles last
for a minimum of four clock periods. However, cycles may be
extended or "stretched" beyond this minimum by an internal event
or by external logic. When a cycle is stretched, it is always
stretched for a minimum of four additional clock periods. A cycle
can continue to be stretched in increments of two periods and can
remain stretched indefinitely. Stretched cycles are ended by the
assertion of the signal CONT. CONT is sampled by the DCJ11 on the
first falling edge of T4 and on every other succeeding falling
edge of T4.

A bus cycle will be stretched unless either of the following two
groups of conditions exists:

1. A Bus Read cycle is executed and BS<1:0> = 00 throughout’ the
cycle (i.e., the cycle involves a memory read and does not
involve a cache bypass or force miss) and DMR and MISS are not
asserted during the cycle (no DMA grant or cache miss).
Furthermore, ABORT must not be asserted if the cycle involves
an instruction stream demand read.

2. A Non-I/0 cycle is executed and DMR is not asserted during the
cycle.

Timing diagrams for both stretched and non-stretched cycles are
provided in the paragraphs that follow.

3.3 Bus Cycle Parts.

Reference is sometimes made to the "first" (or “early") part and
the "second" (or "later") part of a bus cycle. The first part of
a bus cycle is defined as the duration of the first two clock
periods, shown as TO and Tl in the bus cycle timing diagrams. The
second part of a bus cycle is defined as the duration of the
remaining clock periods in the cycle. A non-stretched cycle has
only two clock periods in its second part. These are shown as T2
and T3 in the bus cycle timing diagrams. A stretched cycle has at
least six clock periods in its second part. These are shown as T2
through T7 in the bus cycle timing diagrams. Note that if a cycle
is stretched for more than six clock periods in its second part,
T4 is repeated in pairs.

3.4 NON-I/O (NIO) CYCLE

When the DCJ1l executes a microinstruction which involves no
interaction with external logic (i.e., requires no I/0 bus
activity), it performs a Non-I/O (or NIO) cycle. Non-stretched
and stretched Non-I/O cycles are illustrated in Figures 3-1 and
3-2, respectively. |

' TO T1 +72 T3

AlO | 10 CODE

MAP DMA GRANT

MA-19864

Figure 3-1 Non-Stretched Non-I/0 Cycle

3-3

TO TI T2 T3 T4 T4 1T4 74 T4 T5 T6 ‘17?

ax SVS VIL AVS VS VS NVI AVS NVI VS VS NSN
ACE DRIVES DAL

Dat TK i yy“ : IC

c~c QW
mm MM W ,
aro NN : wy
OW Rove S ; OX
MAP AW O88 SRANT ! . Z

aUFCTT W — NT

SCT | WM ___
—< | _ . | CONTINUE i

MA 11456

Figure 3-2 Stretched Non-I/O Cycle

The deassertion of STRB marks the beginning of the cycle, which_is
followed shortly afterwards by the assertion of ALE. ALE
typically latches the AIO code which identifies the cycle as
non-I/0. The DAL, BS<1:0>, MAP, and ABORT outputs are undefined
and should be ignored by external logic. External logic must not
assert ABORT during an NIO cycle. If a direct memory access
request (DMR) is granted, the cycle is stretched and L and
BUFCTL are asserted.

As shown in Figure 3-l, a non-stretched NIO cycle is four clock
periods in duration. If a DMA request is received during the
first part of the cycle the cycle is stretched to eight or more
clock periods (note the assertion of DMR during the first part of
the cycle in Figure 3-2). Otherwise, the cycle does not stretch.
If the NIO cycle is stretched, BUFCTL and SCTL are asserted during
the stretched part of the cycle. The time-multiplexed Signal MAP
asserted during the second part of the stretched cycle indicates
the granting of the DMA request. The cycle continues to be
stretched in increments of two clock periods (T4) until CONT is
asserted,

3.5 BUS READ CYCLE

The different types of bus read cycles which the DCJ11 can perform
include instruction-Stream request or demand reads, data-stream
reads, and the read portion of a read/modify/write cycle. The AIO
code defines which -of these is selected. The types of devices
from which information can be read include memory, I/O devices,
and explicitly addressable registers. During the first part of
the cycle, BS<1:0> defines which of these is selected. All read
cycles involve the reading of a full word. If the DCJ11 needs

only a byte, it reads a word and ignores the unused byte.

3-4

Note the distinction between request reads and demand reads. A
request read occurs when the DCJ11 is prefetching information. If
an abort occurs at this time, it does not affect macroinstruction
flow (i.e., aborts are ignored). All other types of reads are
demand reads, during which aborts are recognized and serviced via
the service vectors shown in Table 1-8.

Non--stretched and stretched Bus Read cycles are illustrated in
Figure 3-3 and 3-4, respectively.

To TI T T3

CLK H

EM

A DRIV
DAL PHYSICAL ADDRESS | DAL

ALE

OMA
BMRA REQUEST EQUEST

Tae DMA GRANT

1/0 MAP ENABLE
L

1/0 BANK SELECT CACHE STATUS
BS CACHE HIT

eee VANAAN Vette
MISs ABAD Lo

MMU ABORT STATUS | ABORT 8

BUFCTL | |
MA.O910

Figure 3-3 Non-Stretched Bus Read Cycle.

| ‘TO 11 T2 13 ‘Ta 'T4

CLK P\S VSS VS NS
SYSTEM INTERFACE

PHYSICAL ADDRESS CACHE SUBSYSTEM , |

oo A DAL DAL N DRIVES DAL;

ALE |
DMA REQUEST

DMR
1/0 MAP ENABLE

—— MA GRANT MAB OMAG
1/0 BANK SELECT

BS CACHE STATUS

CACHE HIT

Miss |
|CACHE MISS

MMU AND SYSTEM ABORT STATUS KBORT MMU ABORT STATUS U s 8 Ss

|
BUFCTL

i
SCTL

CONTINUE

CONT

OV

MH HUT)

Figure 3-4 Stretched Bus Read Cycle

ALE can be used to latch the AIO code, the physical address on the
data/address lines (DAL), the Bank Select (BS) information, and
I/O Map Enable (MAP) information.

A Bus Read cycle will stretch if any of the following conditions
exist:

o BS<1:0> does not equal 00 during the first part of the cycle
(anything other than a memory reference)

o BS<1:0> does not equal 00 during the second part of the cycle
(a cache memory force miss or a cache bypass)

o MAP is asserted during the second part of the cycle (a DMA
grant)

o MISS is asserted during the second part of the cycle (a cache
miss)

o ABORT is asserted by the DCJ11 during an instruction stream
demand read, data stream read, or read-modify-write cycle

Otherwise, a Bus Read cycle will execute in four clock periods.

For non-stretched Bus Read cycles, the read data is synchronously
latched into the DCJ11 only on the rising edge of T3, as shown in
Figure 3-3.

For stretched Bus Read cycles, data is latched into the DCJ1l both
at the rising edge of T3 and when DV is asserted during the
stretched portion of the cycle (see Figure 3-4). Thus if read
data is valid at the rising edge of T3, it is latched at that time
and DV is not required. If the read data is not valid at the
rising edge of T3, DV is required to latch the valid data. Note
that DV should be inhibited if the stretched Bus Read is due only
to a DMA grant.

A stretched cycle lasts at least eight clock periods. A cycle is
stretched in increments of two clock periods (T4) and is ended by
the assertion of CONT.

If an internally generated abort condition such as an MMU error or
address error exists, the DCJ11 asserts ABORT during the first
part of the cycle. If this type of abort occurs, the DAL, BS, and
MAP information should be ignored for the remainder of the cycle.
If an abort is externally generated (such as bus’ timeout,
non-existent memory reference, etc.), it must occur during the
stretched portion of the cycle.

3.6 BUS WRITE CYCLE

There are two different types of bus write cycles: Bus Word Write
cycles and Bus Byte Write cycles. The AIO code defines which of
these is selected. The types of devices to which information can
be written include memory, I/0 devices, and bus addressable
registers. During the first part of the cycle, BS<1:0> defines

3-6

i

which of these is selected.

Bus Write cycle timing is illustrated in Figure 3-5. Note that
Bus Write cycles are always stretched cycles.

(TO Ti 86iT2 06 LT3 ETA {Ta = | Ta 174 'T4 1TH THOT

pac —— TT ora oT - Wy
CPHYSICAL ADDRESS

t

t

|

{

|

t

T

MAP DK LL], OMA GRANT i
L 1/0 MAP ENABLE | |

8S WC gg.) CACHE STATUS |
1/0 BANK SELECT \

ABORT y MMU ABORT STATUS A\\\ MMU AND SYSTEM ABORTSTATUS
: . : . t : : qy is : '

BUFCTL ' — +—+
: : i ‘ \ { —

CONTINUE
° : { CONT ! | |

i | | |
MA BR?

Figure 3-5 Bus Write Cycle

ALE typically latches the AIO code, the physical memory address on
the DAL, the BS information, and the I/O map enable signal (MAP).

SCTL is asserted during the stretched portion of the cycle. The
write data is valid when SCTL is asserted and the leading and
trailing edges of SCTL can be used by external logic to latch this
data. BUFCTL is not asserted during Bus Write cycles.

If an MMU error or address error abort occurs, the DCJ1l asserts
ABORT during the first part of the cycle. Externally generated
aborts must cause ABORT to be asserted during the stretched
portion of the cycle.

NOTE

If an abort occurs during the first part
of the cycle, the DAL, BS, and MAP
information should be ignored for the
remainder of the cycle.

During Bus Byte Write cycles, all 16 bits of DAL<15:0> are driven.
If the address is even, the correct data is on the low byte. If
the address is odd, the correct data is on the high byte. The
data on the unused byte is unspecified.

Since a Bus Write cycle is always stretched, CONT must be asserted
to end the cycle.

3-7

3.7 GENERAL-PURPOSE (GP) READ CYCLE

General-purpose read cycles allow the DCJ1l to read data from
non-PDP-ll addressable external logic. A general-purpose read
cycle involves the driving of an address on DAL<7:0> (called the
general-purpose or GP code) which external logic must decode and
respond to. General-purpose read cycles involve the reading of a
full word. If the DCJ11 requires only a byte, it reads a word and
ignores the unneeded byte. Timing for General-Purpose Read cycles
is shown in Figure 3-6.

TO 80 T 12 13 14 T4 T4 | FA T4 iTS 1767
cLK [\SJS\VSVIVINSNVINS AVS NVSNSNV I NV NS N

ca SOBEL) , ~prives sa
ALE — Qi ££ : I " |

SUFCTL WH WW WW | | : | 2 Ww

| mo
 SCT WA

CONTINUE |

1 . {
i
: . t

t : ‘ . ‘ . : 1 (i 1 4

MAR HOA

Figure 3-6 General-Purpose Read Cycle

ALE is typically used to latch the AIO code and_ the
general-purpose code on the DAL. A GP Read is always stretched
and thus always lasts a minimum of eight clock periods. The GP
code (which specifies the source of the read data) is driven onto
DAL<7:0> during the first part of the cycle. At this time,
DAL<21:8> should be ignored. The general-purpose read codes are
summarized in Table 3-2.

Table 3-2 General-Purpose Read Codes

Code Function

000 Reads the power-up mode, HALT
option, FPA option, POK, and
boot address. See Chapter 8
- Interfacing for further
details.

001 Reads FPA data (if FPA exists).

002 Reads the power-up mode, HALT
option, FPA option, POK, and
boot address, and. clears FPA“s
rPS ° :

003 Acknowledges FPE and reads FEC
(floating exception code)
register (if FPA exists).

‘ Note that GP Read data is latched into the DCJ11 both at the

3-8

rising edge of T3 and when DV is asserted during the stretched
portion of the cycle (see Figure 3-6). Thus if the data is valid
at the rising edge of T3, it is latched at that time and DV is not
required. If the data is not valid at the rising edge of 13, DV
is required to latch the valid data. Since a GP Read cycle is
stretched, it must be ended by the assertion of CONT.

NOTE
General-Purpose Read cycles can not be
aborted by the DCJ11 and should not be
aborted by external logic.

3.8 GENERAL-PURPOSE (GP) WRITE CYCLE

General-Purpose Write cycles allow the DCJ1l to write data to
non-PDP-11l external logic. A General-Purpose Write cycle involves
the driving of an address on DAL<7:0> (called the general-purpose
or GP code) which external logic must decode and respond to. GP
write cycles involve the writing of either a word or a byte.
Timing for General-Purpose Write cycles is shown in Figure 3-7.

| ‘TO 111 12 13 T4 | T4 |T4 T4 T4 {75 T6 17

. : . . : : \ ‘ :

DaL 4 {(((AC GP CODE _)))) RAO ((((oT A OUT | 4
, i : 1 '

mT TT —T
_

|
|

|
|
|

BUFCTL

scr Wi: 3
CONTINUE

 |
. \ |

Figure 3-7 General-Purpose Write Cycle
 | MR BOIS

ALE is typically used to latch the AIO code’ and_ the
general-purpose code on the DAL. A GP Write is always stretched
and thus always lasts a minimum of eight clock periods. The GP
code (which specifies the destination of the write data) is driven
onto DAL<7:0> during the first part of the cycle. At this time,
DAL<21:8> should be ignored. Table 3-3 provides a summary of the
GP Write codes. See Chapter 8 - Interfacing for further details.

3-9

Table 3~3 General-Purpose Write Codes

Code Function

003 Writes FPA 16-bit data
014 Asserts bus reset signal
034 Indicates exit from console ODT
040 Reserved for future use
100 Acknowledges assertion of EVENT
140 Acknowledges Power Fail
214 Negates bus reset signal
220 Microdiagnostic test 1 passed
224 Microdiagnostic test 2 passed
230 _ Microdiagnostic test 3 passed
234 Indicates entry into console ODT

SCTL is asserted during the stretched portion of the GP Write
cycle. The write data is valid (and can be latched) on the rising
or falling edges of SCTE. The write data is driven onto
DAL<15:00>. Since a GP Write cycle is always stretched, it must
be ended by the assertion of CONT.

| NOTE
General-Purpose Write cycles can not be
aborted by the DCJ11 and should not be
aborted by external logic.

3.9 INTERRUPT ACKNOWLEDGE BUS CYCLE

An Interrupt Acknowledge cycle (also called an Interrupt Vector
Read cycle) is performed to service an interrupt request from
IRQ<3:0>. Interrupt Acknowledge timing is illustrated in Figure
3-8. Note that the interrupt request on IRQ<3:0> must _ be
deasserted by the end of the cycle.

co PAPA PD DDD PIN
DAL evSTEM INTERFACE

: _ORIVES DAL
INTERRUPT LEVEL |

_— | _
ALE i : Hf i |

: , \

I

! | ot | i |
ABORT Hf \\\\\ SYSTEM ABORT STATUS |

—_ : ~ t t —_

— |

BUFCTL W 7 W 4 L Mi
__ | ot |
ScTL : | WW : ot i

CONTINUE
CONT | Wi |

DV

MR O9t3

Figure 3-8 Interrupt Acknowledge Cycle

3-10

ALE is typically used by external logic to latch the AIO code and
the acknowledged interrupt level. The interrupt level
acknowledged is driven onto DAL<3:0> at the beginning of the cycle
as shown in the table below.

Table 3-4 Interrupt Acknowledgement

DAL<3:0> IRQ level acknowledged
0001 . 4

0010 5
0100 6
1000 7

At this time DAL<21]1:4>=0.

As shown in Figure 3-8, the interrupt vector ‘address is placed on
the DAL by the interrupting device during the second part of the
cycle. An Interrupt Acknowledge cycle is always stretched and
consists of at least eight clock periods. It is stretched in
increments of two clock periods (T4) until the CONT input is
asserted, at which time the cycle is ended.

Note that the interrupt vector is latched into the DCJ11l both at
the rising edge of T3 and when DV is asserted during the stretched
portion of the cycle. Thus if the interrupt vector is valid at
the rising edge of T3, it is latched at that time and DV is not
required. If the interrupt vector is not valid at the rising edge
of T3, DV is required to latch it.

An Interrupt Acknowledge cycle can be aborted during the stretched

portion of the cycle if ABORT is asserted by external logic. The
DCJ11 does not assert ABORT during the first part of an Interrupt
Acknowledge cycle. If an abort occurs, the DCJ11 ignores the

interrupt request and continues execution. .

3.10 DMA REQUESTS AND GRANTS

If external logic needs to use the DAL to transfer data, it must:
(1) cause the DCJ11 to put the DAL in the high-impedance state,
and (2) stretch the cycle currently in progress while external
logic makes use of the DAL. This is accomplished by asserting the
DMR input during the first part of a cycle. In response, the DMA
request will be acknowledged and granted for all cycle types
except Bus Write and GP Write cycles. During Write cycles (which
are always stretched), the DAL carries write data during the
second part of a cycle, during which time the DAL is not placed in
the high-impedance state. External logic could be designed such
that DMA transfers could occur during Write cycles as long as’ the
DMA transfer did not use the DAL coming directly from the DCJ1ll (a
buffered version of the DAL could be used _ instead). In other
words, external logic is not prevented from performing a DMA

Operation simply because a DMA grant does not occur.

A DMA request is acknowledged by asserting MAP during the second
part of a cycle. A cycle involving a DMA transfer is stretched
and thus lasts a minimum of eight clock periods. It will continue

3-11

to be stretched in increments of two clock periods until the CONT
input is asserted. Note that the deassertion of BMR does not end
the cycle.

3-12

CHAPTER 4
MEMORY MANAGEMENT

4.1 INTRODUCTION

The DCJ11 contains a memory management unit (MMU) which provides
the user with the hardware necessary to effect complete memory
Management and protection. The MMU is designed to provide access
to all of physical memory and is an important part of multi-user,
multiprogramming systems where memory protection and relocation
facilities are necessary.

The MMU is used to assign segments of memory called pages to a
user program and prevent that user from making unauthorized
accesses to pages outside his assigned area. A user is’ thus
prevented from accidental or willful destruction of any other user

program or the system executive program.

The MMU is usually used in conjunction with a supervisory program
which determines how the MMU is to operate. In multiprogramming
environments this supervisory program controls the execution of
the various user programs, manages the allocation of memory and
peripheral device resources, and safeguards the integrity of the
system as a whole by careful control of each user program.

The basic characteristics of the DCJ11 memory management unit are:
16 kernel mode memory pages
16 supervisor mode memory pages
16 user mode memory pages
8 pages in each mode for instructions

8 pages in each mode for data
Page lengths from 64 to 8192 bytes
Each page provided with full protection and relocation
Transparent operation ©
Memory access to 4 million bytes o

0
o
0
o
0
o

0
0
0
0
0

The remainder of this chapter explains these characteristics in
detail.

4.2 ADDRESSING

When the MMU is active, a 16-bit address referenced in a program
is interpreted as a virtual address (VA) containing information to
be used in constructing a new 22-bit physical address (PA). The
information contained in the virtual address is combined with
relocation information contained in a register called the page
address register (PAR) to yield the 22-bit physical address.
Using the MMU, memory can be dynamically allocated in pages
composed of from 1 to 128 contiguous blocks of 64 bytes each .
Figure 4-1 illustrates the relocation of virtual addresses to

physical addresses via page address registers.

PHYSICAL
ADDRESS SPACE

 17777777 PAGES

VIRTUAL
INSTRUCTION/DATA
ADDRESS SPACE

177777 PAR?

PAR 6

PAR §

PAR 4

PAR 3

PAR 2

PAR 1

PAR O

VIRTUAL ADDRESS PAGE ADORESS REGISTERS PHYSICAL ADDRESS

(16 BITS) (22 81TS)

PAR = PAGE ADDRESS REGISTER

MR-11462

Figure 4-1 Virtual Address Mapping Into Physical Address

The starting physical address for each page is an integral
multiple of 64 bytes, and each page has a maximum size of 8192
bytes. Pages may be located anywhere within the 22-bit physical
address space.

Only one set of eight page address registers are illustrated in
Figure 4-1. Actually, six such sets of page address registers are
used by the MMU. The determination of which set of page registers
is enabled at any given time depends on the current CPU mode of.
operation (i.e., kernel, supervisor, or user mode) and whether the
MMU is mapping instructions (into I space) or data (into D ‘space).
Refer to Paragraph 4.5 for further details.

4.3 I SPACE AND D SPACE

When the MMU is active, all addresses are mapped into either
instruction (I) space or data (D) space. I space is used for all
instruction fetches, index words, absolute addresses and immediate
operands. D space is used for all other references. I space and
D space each have 8 PARS in each mode of CPU operation (kernel,

Supervisor, and user). Using memory management register #3
(MMR3), D space can be disabled such that all references
(instruction and data) are mapped through I space.

Table 4-1 defines how memory references are mapped into the I. and
D spaces. Note that the determination of whether a memory
reference gets mapped into I space or D space depends on: the
type of instruction, the addressing mode, and the register
selected.

Table 4-1 I and D Space Referencing
(first/second/third memory references)

Address Mode Normal MTPI, MTPD,MFPD,
and Reg Select Instruction MF PI MF PI

(not MTPI, MFPI (PS<15:12> (PS<15:12>
MTPD, or MFPD) not 1111) = 1111)

00 - 07 na na na
10 - 16 D I D
17 I I D
20-- 26 D I D
27 I I D
30 - 36 D/D D/I D/D
37 I/D I/I I/D
40 - 46 D I D
47 I TI D

50 - 56 D/D D/I D/D

57 I/D I/1 I/D

60 - 67 I/D I/I - I/D

70 = 77 I/D/D I/D/I I/D/D

4.4 CONSTRUCTION OF A PHYSICAL ADDRESS

The basic information needed for the construction of a physical
address comes from the virtual address (illustrated in Figure 4-2)
and the appropriate PAR set.

ACTIVE PAGE DISPLACEMENT FIELD
FIELD

MR 11088

Figure 4-2 Interpretation of a Virtual Address

The virtual address consists of:

1. The active page field’ (APF). This 3-bit field determines
which of eight page address registers (PARO through PAR7) will
be used to form the physical address.

2. The displacement field (DF). This 13-bit field contains an
address relative to the beginning of a page. This permits
page lengths up to 8K bytes. The DF
into two fields as shown in Figure 4-3.

is further subdivided

t OF ! g , J v q qT Ls v

BN O18

i { i i ! 1 1 J L J j

ue ~y- AN. ~~

BLOCK NUMBER DISPLACEMENT IN BLOCK
MA-11080

Figure 4-3 Displacement Field of Virtual Address

The displacement field (DF) consists of:

1. The block number (BN). This 7-bit field is interpreted as the
block number within the current page.

2. The displacement in block (DIB). This 6-bit field ‘contains
the displacement of the address within the block specified by
the block number.

The remainder of the information needed to construct the physical
address comes from the 16-bit page address field (PAF) (i.e. the
contents of the page address register (PAR)) that specifies the
Starting address of a particular memory page. The PAF is actually
a block number in physical memory, e.g., PAF = 3 indicates a
Starting address of 192 (3 x 64 bytes per block) decimal or 300
octal in physical memory.

The formation of the physical address is illustrated in Figure
4-4, .

15 13:12 06 OS 00

VIRTUAL

ADDRESS

“er ft

PAR

—Y “~\

21 06 05 00

PHYSICAL

ADDRESS

Tn -4494

Figure 4-4 Construction of a Physical Address

The logical sequence involved in constructing a physical address
is as follows:

1. Select a set of page address registers depending on the CPU
mode (kernel, supervisor, or user) and the type of memory
reference (I or D space).

2. Use the active page field (APF) from the virtual address to
select one of eight page address registers (PARO through
PAR7).

3. The page address field (PAF) of the selected page address
register (PAR) contains the starting address of the currently
active page as a block number in physical memory.

4. The block number (BN) from the virtual address is added to the
page address field to yield the number of the block in
physical memory which will contain the physical address being
constructed.

5. The displacement in block (DIB) from the displacement field of
the virtual address is appended to the physical block number
to yield a true 22-bit DCJ1l physical address.

4.5 MANAGEMENT REGISTERS

The DCJ1l1 MMU implements three sets of 32 16-bit registers as
shown in Figure 4-5. One set of registers is used in kernel mode,
another in supervisor mode, and the other in user. mode. The
choice of which set to be used is determined by the current CPU
mode contained in the processor status register (PS). Each set
consists of ‘two groups of 16 registers. One group is used for
references to instruction (I):space and one to data (D) space.
The I Space group is used for all instruction fetches, index
words, absolute addresses, and immediate operands. The D_ space
group is used for all other references, providing D space has not
been disabled by memory management register #3. Each group
contains 8 pairs of 16-bit registers. Half of the registers in
each group are page address registers, which operate as explained
previously. The other registers are page descriptor registers
(PDRs). PARS and PDRs are always selected in pairs. A PAR/PDR
pair contains all the information needed to describe and locate a
currently active memory page. |

Each of the memory management registers described above are
located in the uppermost 8K bytes of the physical address space
(see Paragraph 4.9).

PROCESS STATUS WORD Q

' ¢ 1
KERNEL (00) SUPERVISOR (01) USER (11)

PARO | PDRO PARO | PORO PARO | PORO

t SPACE

D SPACE
MA ee

Figure 4-5 Active Page Registers

(4.5.1 Page Address Registers (PARs) - As shown in Figure 4-6,
each page address register contains a 16-bit page address field
(PAF) which specifies the starting address of a page as ae block
number in physical memory.

= J q q T t J q 1 q qT qT T T t ' =

PAF
L 1 1 L l] j l l 1] | l J]

Figure 4-6 Page Address Register mn s0s3

The page address register which contains the page address’ field
may be thought of as a relocation register containing a relocation
constant, or as a base register containing a base address.

4.5.2 Page Descriptor Registers (PDRs) = Page descriptor
registers (PDRs) contain information on page expansion direction,
page length, and access control. Refer to Figure 4-7.

4-6

1514 13 12 1 «10 026-09—t:—é«iti“‘<i‘iPttiHti(i‘i SK SCD 02 +01 +00

PAGE LENGTH FIELD (PLF) 0 Ww 0 0 ED ACF 0

! l i I J 1

ft r —
BYPASS CACHE

PAGE LENGTH FIELO .

PAGE WRITTEN

EXPANSION DIRECTION

ACCESS CONTROL FIELD —

MR -B920

Figure 4-7 Page Descriptor Register (PDR)

4.5.2.1 Bypass Cache - Bit 15 implements a conditional cache
bypass mechanism. If set, references to the selected virtual page
can bypass cache memory if a cache is present in the system.

4.5.2.2 Page Length Field (PLF) - This 7-bit field occupying bits
<14:8> of the PDR specifies the block number, which defines the
boundary of that page. The block number of the virtual address is
compared against the page length field to detect length errors.
An error occurs when expanding upwards if the block number is
greater than the page length field and when expanding downwards if
the block number is less than the page length field.

4.5.2.3 Page Written - Bit 6 (the W bit) indicates whether or not
this page has been modified (i.e., written into) since either the
PAR or PDR was loaded (W = 1 means the page has been modified).
The W bit is useful in applications which involve disk Swapping
and memory overlavs. It is used to determine which pages have
been modified and hence must be saved in their new form and which
pages have not been modified and can simply be overlaid.

Note that the W bit is reset to 0 whenever either PAR or PDR is
modified (written into).

4.5.2.4 Expansion Direction (ED) - Bit 3 specifies in which
direction the page expands. If ED = 0 the page expands upwards
from block number 0 to include blocks with higher addresses; if
ED = 1 the page expands downwards from block number 127 to include
blocks with lower addresses. Upward expansion is usually used for
program space while downward expansion is usually used for stack
space. :

4.5.2.5 Access Control Field - This 2-bit field, occupying bits

<2:1l> of the page descriptor register contains the access rights

of a particular page. The access codes or "keys" specify the
manner in which a page may be accessed and whether or not a given
access should result in an abort of the current operation. A
memory reference which causes an abort must not be completed by
the system interface. Aborts are used to catch "missing page
faults", prevent illegal accesses, etc.

In the context of access control the term "“write"™ is used to
indicate the action of any instruction which modifies the contents
of any addressable byte. "Write" is synonymous with what is
sometimes called a "store" or "modify" in many computer systems.

The modes of access are as follows:

00 non-resident abort all accesses
Ol read~only abort on write attempt
10 unused abort all accesses
ll read/write access

4.5.2.6 Reserved Bits - Bits 7, 5, 4, and 0 are spare and are
always read as 0. These bits are reserved for possible future
expansion.

4.6 INTERRUPT CONDITIONS UNDER MEMORY MANAGEMENT CONTROL

With the MMU enabled, all trap, abort, and interrupt vectors are

considered to be in kernel mode virtual address space. When a
trap, abort, or interrupt occurs, control is transferred according
to a new program counter (PC) and processor status word (PS)
contained in a two-word vector that is relocated through the
kernel page address register set. The old PC and PS is pushed
onto the R6 stack specified by bits <15:14> of the new PS (00 =
kernel, O1 = supervisor, 11 = user). Bits <15:14> also determine
the new PAR set. In this manner it is possible for a kernel mode
program to have complete control over service assignments for all
interrupt conditions since the interrupt vector is located in
kernel space. The kernel program may assign the service of a
trap, abort, or interrupt condition to a supervisor or user mode
program by simply setting bits <15:14> of the new PS.

4.7 FAULT RECOVERY REGISTERS

Aborts generated by the MMU are vectored through kernel virtual
location 250. Memory management registers #0, #1, #2, and #3 are
used to determine why the abort occurred, and allow for easy
program restarting. Note “that an abort to a location which is
itself an invalid address will cause another abort. Thus the
kernel program must insure that kernel virtual address 250 is
mapped to a valid address, otherwise a loop will occur which will

4-8

require console intervention.

4.7.1 Memory Management Register #0 (MMRO) - MMRO contains error
flags, the page number whose reference caused the abort, and
various other status flags. The register is organized as shown in
Figure 4-8.

15 14 13 12 1" 1c (0: 0? ~=—- 06 05 0— KiB 02 Oo:

ABORT J i) \ J

NON-RESIDENT
.

ABORT PAGE
LENGTH ERROR
ABORT READ-ONLY PAGE MODE PAGE NUMBER
ACCESS VIOLATION

PAGE ADDRESS
SPACE 1/0 ENABLE RELOCATION

Figure 4-8 Memory Management Register #0 (MMRO)

4.7.1.1 Error Flags - Bits <15:13> are error flags. They may be
considered to be in a “priority queue" in that flags to the right
are less significant and should be ignored if a higher bit is set.
That is, a non-resident fault service routine would ignore length
and access control faults. A page length fault service routine
would ignore access control faults.

Bits <15:13> when set (error conditions) cause the MMU to freeze
the contents of MMRO bits <6:1>, MMR1, and MMR2. This is to

facilitate error recovery.

Bits <15:13> may be written under program control. No abort will
occur, but the contents of the memory management registers will be
frozen as in an abort.

Bits <15:13> are cleared at power-up, by a console start, or by a
RESET instruction.

4.7.1.1.1 Abort -- Non-Resident - Bit 15 is set by attempting to
access a page with an access control field key equal to 0 or 2.
It is also set by attempting to use memory relocation with a
processor mode of 2 (i.e., the illegal processor mode).

4.7.1.1.2 Abort -- Page Length - Bit 14 is set by attempting to
access a location in a page with a block number (virtual address
bits <12:6>) that is outside the area authorized by the page
length field of the PDR for that page. Bits 14 and 15 may be set
simultaneously by the same access attempt. Bit 14 may also be set
by attempting to use memory relocation with a processor mode of 2.

4-9

4.7.1.1.3 Abort -~- Read Only - Bit 13 is set by attempting to

write ina "read-only" page. Read-only pages have access keys of
Ol.

4.7.1.2 Reserved Bits ~ Bits <12:7> are spare and are always read
as 0. These bits are reserved for possible future expansion.

4.7.1.3 Processor Mode - Bits <6:5> indicate the CPU mode
(kernel, supervisor, or user) associated with the page causing an
abort (kernel = 00, supervisor = 01, user = 11, illegal mode =
10). If an illegal mode is specified, bit 15 is set.

4.7.1.4 Page Address Space ~- Bit 4 indicates the type of mapping
(I or D) the MMU attempted when an abort occurred (0 = I space, 1
= D space). It is used in conjunction with bits <3:1>, page
number.

4.7.1.5 Page Number - Bits <3:1> contain the page number of a
reference causing an MMU abort. Note that pages, like blocks, are
numbered from 0 upwards.

4.7.1.6 Enable Relocation - When bit 0 is set to al, the MMU is
enabled and performs address relocation. When bit 0 is cleared,
the MMU is inoperative and addresses are not relocated or
protected. Bit 0 is cleared at power-up, by a console start, or
by a RESET instruction. |

4.7.2 Memory Management Register #1 (MMR1) - MMR1 (see Figure
4-9) records any autoincrement/autodecrement of the
general-purpose registers, including references through the PC.
This information is necessary to recover from an error resulting
in an abort. MMR1 is cleared at the beginning of each instruction
fetch. Whenever a general-purpose register is autoincremented or
autodecremented, the register number and the amount (in 2’%s
complement notation) by which the register was modified is written
into MMR1l. The low order byte of MMR] is written first. It is
not possible for a DCJ11 instruction to autoincrement/decrement
more than two general-purpose registers per instruction before an
"abort-causing” reference.

It is up to the software to determine which set of registers
(kernel/supervisor/user -- general set 0O/general set 1) was
modified, by determining the CPU and register modes as _ contained
in the PS at the time of the abort.

1 es | i !] | | ! l L

CL - A - a ~ A —- J

AMOUNT CHANGED REGISTER AMOUNT CHANGED REGISTER
(2‘S COMPLEMENT) NUMBER (2°S COMPLEMENT} NUMBER

MR 8924

Figure 4-9 Memory Management Register #1. (MMR1)

4.7.3 Memory Management Register #2 (MMR2) - MMR2 is loaded with
the current 16-bit virtual address at the beginning of each
instruction fetch. MMR2 is read-only; it can not be written.
MMR2 is the virtual program counter.

4.7.4 Memory Management Register #3 (MMR3) - As shown in Figure
4-10, MMR3 enables or disables the use of D space PARs and PDRs
and 22-bit mapping and controls data on the time-multiplexed
Output MAP (pin 19 of the DCJ11).

16 14 #413 «+12 ~«+491 «+10 08 08 0? 06 05 O04 +03 02 OF 00
— T

0 0 0 0 0 oo] o 0 0 0 MODE

mal, de
ENABLE 1'O MAP

ENABLE 22-B1T MAPPING

ENABLE CSM INSTRUCTION

KERNEL

SUPERVISOR

USER
. MA-BO25

Figure 4-10 Memory Management Register #3 (MMR3)

4.7.4.1 Reserved Bits - Bits <15:6> are spare and are always read
as 0. These bits are reserved for possible future expansion.

4.7.4.2 Enable I/O Map - Bit 5 is set to assert the MAP output of
the DCJll. If bit 5 = 1 MAP is asserted. If bit 5 = 0 MAP is
unasserted. On initialization, MMR3 is cleared.

4.7.4.3 Enable 22-Bit Mapping - If bit 4 = 0 and the MMU is
enabled (bit 0 of MMRO = 1), the DCJ11 uses 18-bit mapping. If
bit 4 = 1 and the MMU is enabled, the DCJ1l uses 22-bit mapping.
If the MMU is disabled, bit 4 is ignored and 16-bit mapping is
used. Figures 4-11, 4-12, and 4-13 illustrates the three mapping
alternatives available. :

17777777

vo
PAGE

17760000

177777

160000, COU _ YY

197277 00157777

oo00c0 ___ 00000000

INCOMING VIRTUAL PHYSICAL
ADDRESS (16 BITS) ADDRESS SPACE

(22 BITS)

————e RELOCATION

NOT ACCESSIBLE IN THIS MODE

 ~ ew core NO ADDRESS FELOCATION

wm 11d

Figure 4-l1l 16-Bit Mapping

17977777

/0
PAGE

17760000

_

00757777

177077

vemonve- |
MANAGEMENT

000000 00000000
INCOMING VIRTUAL PHYSICAL

ADORESS 16 BITS) ADORESS SPACE
(22 BITS)

———— a RELOCATION

NOT ACCESSIBLE IN THIS MODE
am 11480

Figure 4-12 18-Bit Mapping

19777777
1/0
PAGE

17760000

17787777

a

MEMORY
MANAGEMENT

_~
000000 00000000

INCOMING VIRTUAL PHYSICAL
ADDRESS (16 BITS) ADDRESS SPACE

(22 BITS)

177797

————e RELOCATION
RSPR Veet

Figure 4-13 22-Bit Mapping

4.7.4.4 Enable Call To Supervisor Mode (CSM) Instruction - Bit 3
is used to enable a CSM instruction. If bit 3 is set toal,a
CSM instruction will execute. If bit 3 = 0, a CSM instruction
will cause a trap through vector location 10. .

4.7.4.5 Kernel, Supervisor, And User Mode D Space Bits - Bits 2,
1, and 0O are the kernel, supervisor, and user mode D space bits,
respectively. These bits determine whether D space mapping is
enabled or disabled for each CPU mode. When D space is disabled,
all memory references use the I space registers; when D space is
enabled, both the I space and the D space registers are used.
When a mode bit is set, D space is enabled; when a mode bit is
clear, D space is disabled (see Table 4-2).

Table 4-2 Mode Bit Operations

BIT STATE OPERATION

2 0 Disable kernel D space
1 Enable kernel D space

1 0 Disable supervisor D space
1 Enable supervisor D space

0 0 Disable user D space
1 Enable user D space

4-13

4.7.5 Instruction Back-Up/Restart Recovery - The process’ of
"backing-up" and restarting a partially completed instruction
involves:

1. Performing the appropriate memory Management tasks to
alleviate the cause of the abort (e.g., loading a missing
page).

2. Restoring the general-purpose registers indicated in MMR1 to
their original contents at the start of the instruction by
subtracting the "modify value" specified in MMR1.

3. Restoring the PC to the "abort time" PC by loading R/? with the
contents of MMR2, which contains the value of the virtual PC
at the time the instruction generating the abort was fetched.

Note that this back-up/restart procedure assumes that the
general-purpose register used in the aborted program segment will
not be used by the abort recovery routine. This is automatically
the case if the recovery program uses a different general register
set.

4.7.6 Clearing Status Registers Following Abort - At the end of
an abort service routine, bits <15:13> of MMRO must be set to 0 to
resume error checking. On the next memory reference following the
clearing of these bits, the various memory management registers
will resume monitoring the status of the addressing operations.
MMR2 will be loaded with the next instruction address, MMR1 will
store register change information, and MMRO will log MMU. status
information.

4.7.7 Multiple Faults - Once an abort has occurred, any
subsequent errors that occur will not affect the state of the
memory management status registers, The information saved in
MMRO, MMR1, MMR2, and MMR3 will always refer to the first abort
that was detected,

4.8 MMU. IMPLEMENTATION

The MMU is a very general purpose memory management tool. It can
be used in a manner as simple or as intricate as desired. It can
be anything from a simple memory expansion device to a very
complete memory management facility.

In most normal applications, it is assumed that control over
memory page assignments and their protection resides in a
supervisory type program which operates at the nucleus of a CPU’s
executive (i.e. in kernel mode). It is further assumed that this
kernel mode program would set access keys in such a way as_ to
protect itself from willful or accidental destruction by
supervisor mode or user mode programs. Facilities are also
provided so that the nucleus can dynamically assign memory pages

4-14

of varying sizes in response to system needs.

4.8.1 Typical Memory Page - When the MMU is enabled, the _ kernel
mode program, a supervisor mode program, and a user mode program
each have eight active pages (described by the appropriate PARs
and PDRs) for data, and eight for instructions. Each page is made
up of from 1 to 128 blocks and is pointed to by the page address
field of the corresponding PAR as illustrated in Figure 4-14.

VA 157777
Y BLOCK 177g (12710) | Y

YY BLOCK 176g (11210)

VT
LT
Ly
—
TV
_
V7
7/7
VM

VA 144777 PA 316777
BLOCK 47g (3919)

 PA 331777

BLOCK 1
 BLOCK 0

PA 312000

 PAR G 3120

PAF
3910

PDRG6 B27 AGE Abe

PLF Ww

VA 140000

| Figure 4-14 Typical Memory Page

The memory segment illustrated in Figure 4-14 has the following
attributes:

1. Page length: 40 blocks.

Virtual address range: 140000 - 144777.

WwW e Physical address range: 312000 - 316777.

>

* Nothing has been modified (i.e., written) in this page.

5. Read-only protection.

6. Upward expansion.

7. Cache (if present in the system) is not bypassed.

These attributes were determined according to the _ following
scheme:

1. PAR6 and PDR6 were selected by the active page field of the
virtual address. (Bits <15:13> of the virtual address = 110)

2. The initial address of the page was determined from the page
address field of PAR6. (312000 (octal) = 3120 (octal) blocks
x 64 (octal) bytes). Note that the PAR which contains the PAF
constitutes what is often referred to as a base register
containing a base address or a relocation register containing

a relocation constant.

3. The page length (47 (octal) + 1= 40 (decimal) blocks) was
determined from the page length field contained in PDR6. Any
attempts to reference beyond the 40 blocks in this page will
cause a page length error which will result in an abort,
vectored through kernel virtual address 250.

4. The physical addresses were constructed according to the
scheme illustrated in Figure 4-4.

5. The W bit (W = 0) indicates that no locations in this page
have been modified (i.e., written). If an attempt is made to
modify any location in this particular page, an access control
violation abort will occur. If this page were involved ina
disk swapping or memory overlay scheme, the W bit would be
used to determine whether it had been modified and thus
required saving before overlay.

6. This page is read-only protected, i.e. no locations in this
page may be modified. The mode of protection is specified by
the access control field of PDR6.

7. ‘(The direction of expansion is upward (ED = 0). If more blocks
are required in this segment, they will be added by assigning
blocks with higher relative addresses.

8. The Bypass Cache bit (bit 15) = 0 which means that cache
memory is not bypassed during this relocation operation.

Note that the various attributes which describe this page can all
be determined under software control. The parameters describing
the page are all loaded into the appropriate PAR and PDR under
program control. In a normal application it is assumed that the
particular page which itself contains these registers would be
assigned to the control of a supervisory type program operating in
kernel mode. °

4-16

4.8.2 Won-Consecutive Memory Pages - It should be noted that
although the correspondance between virtual addresses and PAR/PDR
pairs is such that higher VAs have higher PAR/PDRs, this does not
mean that higher virtual addresses necessarily correspond to
higher physical addresses. It is quite simple to set up the PAFs
of the PARs so that higher virtual address blocks may be located
in lower physical address blocks as illustrated in Figure 4-15.

VA 037777

PA 467777

VA 020000 PA 460000
PAR?

VA 017777 PA 560777

PAR 1

PAR O PA 541000

WMA-TIOSS

Figure 4-15 Non-Consecutive Memory Pages

Note that although a single memory page must consist of a block of
contiguous locations, memory pages do not have to be located in
consecutive physical address locations. Also note that the
assignment. _ of memory pages is not limited to consecutive
non-overlapping physical address locations.

4.8.3 Stack Memory Pages - When constructing DCJ11 programs, it
is often desirable to isolate all program variables from program
instructions by placing them on a register-indexed stack. These
variables can then be pushed or popped from the stack as needed.
DCJ11 stacks expand linearly downward to lower addresses when data
is pushed onto them. Thus, when a memory page which contains a
stack needs more room, it must expand downward. Blocks with lower
addresses relative to the current page must be added. This mode
Of operation is specified .by setting the expansion direction (ED)
bit of the appropriate PDR to al. Figure 4-16 illustrates a
typical stack memory page.

VA 157777 PA 331777

BLOCK 1778 (12719)

BLOCK 176g (12619)

BLOCK 175g (1 5a (12510) PA 331500 VA 157500
VA 140000

PAR 6 PAF

 PDR 6 {BC PLF w EDI ACF

MR 11458

Figure 4-16 Typical Stack Memory Page

This page will have the following parameters:
Oo PAR6: PAF = 3120

Oo PDR6: PLF = 175 (octal) or 125 (decimal) (128 - 3).
o ED=1
o W= 0orl
o ACF = n (to be determined by the programmer as_ the _ need

dictates)

Note: the W bit is set by internal chip hardware.

In this case the stack begins 128 blocks above the relative origin

of this memory page and extends downward for a length of three
blocks. A page length error abort vectored through kernel virtual
address 250 will be generated by the MMU when an attempt is made
to reference any location below the assigned area, i.e. when the
block number from the virtual address is less than the page length
field of the appropriate PDR.

4.8.4 Transparency - In a multiprogramming application memory
pages can be allocated such that a particular program seems to
have a complete 64K memory configuration. Using relocation, a
kernel mode supervisory type program can easily perform all memory
management tasks in a manner entirely transparent to a_ supervisor
mode or user mode program. In effect, a DCJ11 system can be
configured to provide maximum throughput and response to a variety
of users each of which seems to have a powerful system all to
imself.

4.9 MEMORY MANAGEMENT UNIT -- REGISTER MAP
ADDRESS REGISTER

Memory Management Register #0 (MMRO) 17777572
Memory Management Register #1 (MMR1) 17777574
Memory Management Register #2 (MMR2) " 17777576
Memory Management Register #3 (MMR3) | | 17772516

User I Space PDRO 17777600

User I Space PDR7 17777616

User D Space PDRO 17777620

User D Space PDR7 17777636

User I Space PARO 17777640

User I Space PAR? 17777656

User D Space PARO 17777660

User D Space PAR7 17777676

Supervisor I Space PDRO 17772200

Supervisor I Space PDR7 17772216

Supervisor D Space PDRO 17772220

Supervisor D Space PDR7 17772236

Supervisor I Space PARO 17772240

Supervisor I Space PAR7 17772256

Supervisor D Space PARO

Supervisor D Space PAR7

Kernel I Space PDRO

Kefnel I Space PDR7

Kernel D Space PDRO

Kernel D Space PDR7

Kernel I Space PARO

Kernel I Space PAR7

Kernel D Space PARO

Kernel D Space PAR?

17772260

17772276

17772300

17772316

17772320

17772336

17772340

17772356

17772360

17772376

CHAPTER 5
SPECIAL FEATURES

5.1 INTRODUCTION

This chapter discusses three special features incorporated into
the DCJ1ll: cache memory status and control registers, console
ODT, and pipeline processing hardware.

5.2 CACHE MEMORY STATUS AND CONTROL REGISTERS

The DCJ11 contains hardware that allows the user to incorporate
cache memory into his system. This hardware consists of the cache
control register and the hit/miss register. This hardware allows
for a broad spectrum of cache implementations and the user has
considerable flexibility in designing a cache memory scheme to fit
his application. The paragraphs that follow not only describe the
cache memory status and control registers in detail but also
present some general considerations involved in designing cache
memory into a DCJ1l based system. A sample cache memory
implementation is ° also. presented to illustrate a typical
application of the cache memory status and control registers.

5.2.1 Cache Control Register - The cache control register (CCR)
contains information which is used to control the operation of
cache memory. It is accessed by referencing location 17777746.
Only bits 9 and. <3:2> of the CCR are interpreted by the DCJ1l.
Bits <10:0> are read/write bits. Bits <15:11,8> are always’ read
as zeroes.

In order for the uninterpreted read/write bits (bits 10, <8:4>,
and <1:0> to be used by external logic, the user must include a
"shadow register" (write only) in his DCJ11 design. The shadow
register simply retains a hardware accessible copy of the CCR
information. Although thé DCJ11 allows the reading and writing of
CCR<10:0> and the writing of CCR<15:11>, changing bits <15:1l>, 8,
<7:4>, and <1:0> will have no hardware effect on the DCJ1l.

CCR bits <15:11> are uninterpreted and always read as zeroes by
the DCJ1l1 (see sample implementation in Paragraph 5.2.5). The
user typically designs an external register for these bits if they
must be interpreted. The format of the CCR is shown in Figure
5-1. |

15 11 10 09 08 Q7 04 03 02 01 00

- Loy
uninterpreted

{READ AS ZEROES)

UNINTERPRETED

(READ/WRITE)

UNCONDITIONAL
CACHE BYPASS

 UNINTERPRETED

(READ AS ZERO)"
 UNINTERPRETED

(READ/WRITE)

FORCE CACHE MISS

UNINTERPRETEO

(READ/WRITE}

MA 146

*Written as a logic 1 at power-up or when console ODT is started

Figure 5-1 Cache Control Register

5.2.1.1 Unconditional Cache Bypass (R/W) - When bit 9 is set to
l, all memory references access main memory, and all cache hits
are invalidated. |

5.2.1.2 Force Cache Miss (R/W) - When either of bits <3:2> is set
to 1, all references are forced to main memory and all cache
activity is suspended. This in effect disables the cache system.

5.2.1.3 Uninterpreted Bits - Bits <15:10>, <8:4>, and <1l:0> are
uninterpreted by the DCJll. Bits 10, <8:4>, and <1:0> are
read/write bits and bits <15:11> are always read as zeroes.

5.2.2 Hit/Miss Register - The Hit/Miss Register (HMR) indicates
whether the six most recent CPU memory references resulted in
cache hits or cache misses. It is accessed by referencing
location 17777752. Refer to Figure 5-2. Bits <15:6> are always
read as zeroes. Bits <5:0> are read-only bits. Bits enter from
the right (at bit 0) and are shifted leftward. A logical one
indicates a cache hit, and a zero indicates a cache miss. This
register is used to help diagnose the cache system.

15 14 13 12 11 10 09 08 07 06 05 00

0 0 0 0 0 0 0 0 0 0 FLOW

mR 8899

Figure 5-2 Hit/Miss Register

5-2

3.2.3 General Operation - Cache memory is typically a high-speed
memory that buffers data between the CPU and main memory. When a
memory access occurs, the system looks for data in the fast cache
memory first. If found (a hit), the data is read or written to or
from the cache and execution proceeds at the fastest rate. If not
found (a miss), the data must be read from or written to main
memory.

In a write-through cache system a CPU request to write data into
memory causes data to be written to both the cache and to main
memory. This is to insure that both stores are always updated
immediately. PDP-11 systems with cache normally use the
write-through technique.

Typical hit/miss operations in a write-through cache system are
summarized in Table 5-1.

Table 5-1: Typical Hit/Miss Operations

What Happens In
om een ae one OF ae o@ ay om a8) am a af =P ot ow a oe oD ow emp a WP a OP Ge OF om © Ob ww a a ee OD oe OP ee on om an 6 Ow ow oe oe

CACHE — MAIN MEMORY

READ
hit | no change no change
miss updated no change

WRITE

hit updated updated
miss no change updated

In a typical program, WRITEs occur only 10-15% of the time = and
READS occur 85-90% of the time. Thus, READ misSes cause the cache
to be updated.

The I/O page of physical memory (the top 8K bytes) is not
typically cached. This is because the I/O page contains device
Status registers which, when read, must always convey the latest
information.

When a DMA device writes to a cached location, the overwritten

cache entry is typically invalidated. The cache system monitors
DMA transactions to determine if this action is needed.

There are several design parameters that must be considered when
constructing a cache memory, cache size and block size to name but
two. A detailed discussion of cache design is beyond the scope of
this document, but an introduction to the subject is found in
Section VI of the KB11-C Processor Manual (EK-KB11C-TM). An 8 KB
direct mapped cache is presented as an implementation example in
Paragraph 5.2.5.

5-3

§,2.4 Cache Memory In A Multiprocessor Environment - In a
Multiprocessor system where each processor has its own cache
Memory, care must be taken to avoid caching data that was
invalidated by another processor ("Stale" data). A simple
software method can prevent this situation. Any shared address
must bypass the cache, i.e., the reference must go to main memory,

and if the address was previously cached, the entry must be
invalidated. The DCJ11 provides three bypass mechanisms: an
unconditional bypass in which every reference is bypassed; a
conditional bypass in which bypassing is on a page-by-page basis;
and finally, a selective bypass in which the bypassing is done
during operand references. The unconditional bypass is selected

by setting bit 9 of the Cache Control Register (see Paragraph
5.2.1). The -conditional bypass is selected when bit 15 of the
currently selected Page Descriptor Register PDR is set (see

Paragraph 4.5.2). The selective bypass occurs during the operand
references of the instructions used in multiprocessing functions
(TSTSET, WRTLCK and ASRB).

5.2.5 Sample Implementation - The following is a description of
the operation of an 8 Kb direct mapped cache with a block size of
two bytes as implemented on a DCJ11 based system. This is only
one of many possible implementations.

A direct mapped cache is organized such that each physical memory
address is associated with a particular "block" of memory in the
cache. In this case we have an 8 KB cache with a block size of
two bytes. This means’ there are 4K blocks in the cache. Each
word in physical memory is associated with one of these 4K blocks.

Consider each physical address as being made up of -three parts
(see Figure 5-3). The first part is bit zero. Bit zero specifies
which of the two bytes in a two-byte block is to be accessed. The
next part, bits <l2:1>, is called the cache index and specifies
which of the 4K blocks in the cache is to be accessed. The third
part, bits <21:13>, is called the cache tag. One cache tag per
block is stored in the cache to uniquely identify physical memory
locations.

21 13.12 0100

TOT TG Pr rT FOF rp rT

 ceeerudincrsiarthrerene Honan Sbesermaman eatin do eereemnerediencenbaaimer-thenerearensertheromerabhenen exhemerelvessssele

XN JX. ,

CACHE sot |

CACHE INDEX

BYTE WITHIN BLOCK

mA aay

Figure 5-3 Physical Address Partitioning for Cache Memory

For example, if the DCJ1l1 accesses location 10002477, cache
control logic (designed by the user) looks’ at the cache tag

“associated with the information currently in cache block number
1237 (bits <1l2:1>). If this cache tag is 400 (bits <21:13>), the
cache control logic sends both bytes in that block to the DCJll.
Since bit 0 is al, the DCJ11 automatically selects the high byte

5-4

(the low byte is ignored). If the stored cache tag is not 400,
the control logic fetches two bytes from memory (10002476 and
10002477), sends 10002477 to the DCJ11, loads the two bytes into
cache block 1237, and changes the cache tag of that block to 400.

Any location whose cache index is 1237 will be loaded into block
1237 of cache memory. This is the only place the cache control
logic has to look if the DCJ1l accesses the data from a location
whose cache-index is 1237.

Figure 5-4 illustrates a format for each cache block. The 9-bit
cache tag is stored in bits <24:16> and the two bytes of data
which comprise the block are stored in bits <15:0>. Bit 25 is a
Valid Bit which indicates whether or not this cache block contains
valid data. Data would be invalid for example immediately after
power-up, and the cache control logic would clear the valid bit in
this case.

2524 16 15 08 07 00
ne a ee ee a ee | Tor Tr rt FF rFroreodoskhmFrmhm 8

 dh erenebrernrecbeesemeiiervemnall i i A. 4. AL i i. i L i A. 4 i Bee eellrreeendbere

ee Nee J. A

VALID BIT |

TAG FIELD

DATA BLOCK - BYTE 1

DATA BLOCK - BYTE 0

MR 19498

Figure 5-4 Cache Entry

Notice that only the cache tag of a location need be stored in a
cache entry because only the cache tag is required to uniquely
identify a location. The cache index need not be compared because
anything stored in block 1237 (for example) is known to have bits
<12:1> of its address set to 1237.

If desired, cache entries can also include parity information as
shown in Figure 5-5.

28 2726 181716 0908 07 00
1 TF T T 7 TT T roo Y F ¢ v FT FY TUF TUE

te bo pe

Xv JU J A J

PARITY 2 ——J t
VALID BIT
TAG FIELD
PARITY 1
DATA BLOCK - BYTE 1
 PARITY 0

DATA BLOCK - BYTE O

Figure 5-5 Cache Entry With Parity

The Parity 0 Bit stores parity information for byte 0, the Parity
1 Bit stores parity information for byte 1, and the Parity 2 Bit
stores parity information for the cache tag/valid bit combination.

The Cache Control Register for this example is configured as shown

5-5

in Figure 5-6.

BIT

07 06 05 04 03 02 01 oo

 Sp) | Y/;

 WRITE WRONG TAG PARITY ——~—

BYPASS CACHE

 FLUSH CACHE

WRITE WRONG DATA PARITY

 FORCE MISS

DISABLE CACHE TRAPS

MR 11440

Figure 5-6 Sample Cache Control Register

NAME

<15:11> Not Used

10

(read as zeroes)

Write Wrong Tag.
Parity (read/write)

Bypass Cache
(read/write)

Flush Cache

(read as zero)

Not Used
(read/write)

Write Wrong
Data Parity
(read/write)

FUNCTION

These bits are not used in this
example. The DCJ11 will ignore
any data written to these bits and
will always read these bits as
zeroes.

This bit, when set, causes the
cache tag parity bit (Parity 2) to
be written with wrong parity when
a cache entry is updated (i.e.
upon CPU read misses and write

hits). This causes a cache tag
parity error on the next access to
a location referenced by the
entry.

This bit, when set, forces all CPU
memory references to go directly
to main memory. Read or write hits
will result in invalidation of
accessed locations in the cache.

Setting this bit causes the entire
contents of the cache to be
declared invalid. Writing a "0"
into this bit will have no effect.

This bit is not used in this
example.

This bit, when set, causes the
parity bits of the two data bytes
(Parity 0 and Parity 1) to be
written with wrong parity when

5-6

updated (i.e. upon CPU read misses
and write hits). This causes a
cache parity error to occur on the
next access to a location
referenced by the entry.

<5:34> Not Used These bits are not used in this

(read/write) example.

<3:2> Force Miss | These bits, when either is set,
(read/write) force all DCJ1l memory references

to go directly to main memory.
Unlike cache bypasses, force
misses have no effect on cache
entries. Enabling force miss
effectively removes cache memory
from the system.

1 Not Used | These bits are not used in this
(read/write) . example.

0 Disable Cache Traps This bit, when set, disables cache
(read/write) parity interrupts. When this bit

is cleared, an interrupt occurs
when a parity error is
encountered.

All words read from the cache are checked for parity. A parity

error in the accessed word causes the following CPU responses:

CCR<0> Action

0 Interrupt through vector 114 and force miss.
1 Force miss only.

The CCR is cleared on power-up or by a console start. It is
unaffected by a RESET instruction.

The cache response matrix for this example would be:

5-7

Read

Write

Read bypass

Write bypass

Read forced

miss

Write forced
miss

na =

Read cached

data

Write thru
cache to

memory

Invalidate

cache &

read mem

Invalidate
cache &

write mem

Read

memory

Write
memory

not applicable

Read memory
& allocate
cache

Write
memory

Read
memory

Write

memory

Read
memory

Write
memory

5-8

Read

Invalidate
cache &
write mem

Read

Write

5.3 CONSOLE ODT

The console octal debugging technique or console ODT allows’ the

DCJ11 to respond to commands and information entered via a
user-designed console terminal interface. The interface bus’ uses
addresses 17777560 through 17777566 to communicate with console
ODT. These addresses are generated in the DCJ1l and cannot be
changed. Console ODT is a very useful aid in running and
debugging programs. Communication between the user and DCJ1l is
via a stream of ASCII characters which are interpreted by the
DCJ11 as console commands. These commands are a subset of the
commands used in DIGITAL’s ODT-1l1 software for minicomputers.

§.3.1 Terminal Interface - The minimum optional hardware
requirements for an interface permitting communication with
console ODT are outlined in the paragraphs that follow (these
requirements are met by the DLART DL-compatible asynchronous
receiver/transceiver peripheral chip - DIGITAL Part No.
DC319-AA). |

§.3.1.1 Receiver Control/Status Register (RCSR) - The RCSR
(Figure 5-7) must exist at address 17777560 for character input to
console ODT. Console ODT does not execute output bus cycles to
this address; therefore the RCSR only needs to respond to input
bus cycles. System software may affect certain bits, such as
Interrupt Enable (bit 6), but console ODT ignores this.

MA 8902

Figure 5-7 Receiver Control/Status Register (RCSR) - Address 17777560

Bit Description

<15:8> Unused. These bits may be in any state since console ODT
does not use them.

<7> Done flag. After a character is received and exists in
the receiver buffer register (RBUF), the Done flag must
be set to al. When the character is read from RBUF
Done flag must be cleared by hardware.

<6:0> Unused. These bits may be in any state since console ODT
does not use them.

5-9

§,.3.1.2 Receiver Buffer Register (RBUF) ~ The RBUF (Figure 5-8)
must exist at address 17777562 for character input to console ODT.
This register only needs to respond to input bus cycles’ since
console ODT does not execute output bus cycles to this address.
System software operates similarly, but DIGITAL diagnostics may
cause output cycles and thus may not operate properly.

Figure 5-8 Receiver Buffer Register (RBUF) - Address 17777562

Q7 00

Bit | Description

<15:8> Unused. These bits can be in any state since console
ODT does not use them.

<7:0> ASCII character. These eight bits are read by the
processor and interpreted as a console ODT command.
When bit 7 of RCSR is al, the processor reads data
from the RBUF. After the input cycle, the hardware
must clear bit 7 of RCSR to 0.

§.3.1.3 Transmitter Control And Status Register (XCSR) - The XCSR
(Figure 5-9) must exist at address 17777564 for character output
from console ODT. ODT does not execute output bus cycles to this
address; therefore, the XCSR only needs to respond to input bus
cycles. System software may cause output cycles to affect certain
bits, such as Interrupt Enable, but console ODT ignores this.

0a

MR -B900

08

Figure 5-9 Transmitter Control/Status Register (XCSR) - Address 17777564

Bit | Description

<15:8> Unused. These bits may be in any state since console ODT
does not use them.

<7> Done flag. In the idle state, this bit is a 1 indicating
that the XBUF is ready to receive a character. After an
Output cycle to the transmitter buffer register (XBUF) by
the processor, this bit-must be cleared to 0 by the
hardware. When the XBUF is ready to receive another
character, the hardware sets this bit to l.

<6:0> Unused. These bits may be in any state since console ODT
does not use them. Note that these bits may be
meaningful to other DIGITAL interfaces.

5.3.1.4 Transmitter Buffer Register (XBUF) - The XBUF (Figure
5-10) must exist at address 17777566 for character output from
console ODT. This register only needs to respond to output bus

cycles since console ODT does not execute input bus cycles to this
address. System software operates similarly but DIGITAL
diagnostics may cause an input cycle and thus may not operate
properly. .

08 0)? 00

Figure 5-10 Transmitter Buffer Register (XBUF) - Address 17777566

Bit Description

<15:8> Unused. These bits may be in any state since console
ODT does not use them.

<7:0> ASCII character. These eight bits are written by the
processor with the ASCII character output by ODT. When
bit 7 of XCSR is al, the processor may perform an
Output cycle to XBUF.

§.3.2 Console ODT Operation - Console ODT operates the console
terminal interface in half-duplex mode. Communication between
console ODT and the interface is accomplished via programmed 1/0
techniques rather than interrupts. When console ODT is outputting
characters using the transmit side of the interface, the receive
side of the interface is not monitored for incoming characters.
Any characters coming in at this time are lost. Console ODT does
not check for error bits in the interface. If another processor
is at the other end of the interface, that processor must operate
within the format of half-duplex transmission. No input
characters should be sent until console ODT has finished
outputting.

5.3.2.1 Console ODT Initialization - Console ODT operation is
initiated by any of the following:

l. Execution of a HALT instruction in kernel mode (if kernel HALT

is enabled).

2. Assertion of the HALT signal on the system bus. The signal
must be asserted long enough so that it is seen by the
processor at the end of the current macroinstruction

3. At power-up, if the appropriate power-up option is selected.

Console ODT Input Sequence

The Console ODT entry sequence is as follows:

1. Output <CR><LF> to XBUF.
2. Output the contents of PC in six digits to XBUF.
3. Read and ignore character in RBUF. (May be a program

character.)
4. Output <CR><LF> to XBUF.
5. Output the prompt character, @, to XBUF.
6. Enter a wait loop for input. The Done flag, bit 7 in RCSR, is

tested. If it is 0, the test continues.
7. If RCSR bit 7 is al, then the low byte of RBUF is read.

§.3.2.2 Console ODT Output Sequence -

Console ODT does the following when it has a character ready for
output:

1. Test XCSR bit 7 (Done flag) and if a 0, continue testing.

2. If XCSR bit 7 is al, write character to low byte of XBUF
(high byte should be ignored by interface).

§.3.3 Console ODT Command Set - The console ODT command set is a
subset of ODT-1ll and uses the same command characters. Only
specific characters are recognized as valid inputs; other inputs
invoke a "?" response. The commands are summarized in Table 5-2.

The word "location," as used in the paragraphs that follow refers
to a memory location, an I/0 device register, an internal
processor register, or the processor status word (PS).

5-12

Table 5-2 Console ODT Commands

Command Symbol — Function

Slash n/ Opens the specified
location (n) and outputs
its contents. n is an
octal number.

Carriage Return <CR> Closes an open location.

Line Feed <LF > Closes an open location
and then opens the next
contiguous location.

Internal Register $n or Rn . Opens a specific processor
Designator , register (n). n is an

integer from 0 to 7 or the
character S.

Processor Status S Opens the PS - must follow
Word Designator an $ or R command.

Go G Starts program execution.

Proceed P Resumes execution of a
program.

Binary Dump Control-Shift-S | Manufacturing use only.

The parity bit (bit 7) on all input characters is ignored (i.e.,
not stripped) by console ODT. If an input character is echoed,
the state of the parity bit is copied to the output buffer (XBUF).
Output characters internally generated (e.g., <CR>) by ODT have
the parity bit equal to 0. All commands are echoed except for
ASCII codes in the range 0-17 (octal). Where applicable, the
upper- and lowercases of command characters are recognized.

NOTE

In the examples that follow, the response
from the processor is underlined, while
the user*s entry is not. When the user
inputs an address or data, leading zeroes
are not required. The DCJ1l, however,
outputs 8 digit octal addresses and 6
digit octal data words.

§.3.3.1 / (ASCII 057) Slash - This command is used to open a
memory location, I/O device register, internal processor register,
Or processor status word and must be preceded by other characters
which specify a location. In response to /, console ODT prints
the contents of the location (i.e., six characters) and then a
Space (ASCII 40). After printing is complete, console ODT waits
for either new data for that location or a valid close command. .

5-13

Example: @001000/012525<SPACE>

where:

@ = console ODT prompt character.

001000 = octal location desired by the user
(leading Os are not required).

/ = command to open and print contents of
location.

012525 = contents of octal location 1000.

<SPACE> = space character generated by console
ODT.

5.3.3.2 <CR> (ASCII 015) Carriage Return - This command is used
to close an open location. If a location’s contents are to be
changed, the user should precede the <CR> with the new data. If
no change is desired, <CR> closes the location without altering
its contents.

Example: @R1/004321<SPACE> <CR> <CR><LF>

. @

Processor register Rl was opened and no change was desired so the
user issued<CR>. In response to the <CR>, console ODT printed
<CR><LF>@.

Example: @R1/004321<SPACE> 1234 <CR> <CR><LF>
@

In this case the user desired to change Rl, so new data, 1234, was
entered before issuing the <CR>. Console ODT deposited the new
data in the open location and then printed <CR><LF>@€.

Console ODT does not directly echo the <CR> entered by the user
but instead prints a <CR>, followed by an <LF>, and @.

§.3.3.3 <LF> (ASCII 012) Line Feed - This command is used _ to
close an open location and then open the next contiguous. location.
Memory locations and processor registers are incremented by 2 and
1 respectively. If the PS is open when a <LF> is issued, it is
Closed and a <CR><LF>@ is printed; no new location is opened. If
the open location*’s contents are to be changed, the new data
should precede the <LF>. If no data is entered, the location is
closed without being altered.

Example: @R2/123456<SPACE> <LF> <CR><LF>
R3/054321<SPACE>

In this case, the user entered <LF> with no data preceding it. In

5-14

response, console ODT closed R2 and then opened R3. When a user
has the last register, R7, open, and issues <LF>, console ODT
Opens the beginning register, RO. |

Example: — @R7/Q00000<SPACE> <LF> <CR><LF>
R0/123456<SPACE>

Unlike with most other commands, console ODT does not echo the
<LF>. Instead it prints <CR>, then <LF>, so that terminal
printers operate properly. In order to make this easier to
decode, console ODT does not echo ASCII characters in the range 0

- 17 (octal).

§.3.3.4 $ (ASCII 044) Or R (ASCII 122) Internal Register
Designator - Either character when followed by a register

number, 0 to 7, or PS designator, S, will open that specific
processor register.

The $ character is recognized to be compatible with ODT-1ll. The R
character was introduced because it can be conveniently typed with
one key stroke and because it is an easily remembered symbol for a
register.

Example: @$0/000123<SPACE>

or

@R7/000123<SPACE> <LF>
RO/054321<SPACE>

If more than one character is typed after the R or $, console ODT
uses the last character typed as the register designator.

§.3.3.5 S (ASCII 123) Processor Status Word - This designator is
for opening the PS (processor status word) and may be employed

only after the user has entered an R or $ register designator.

Example: @RS/100377< > 0 <CR> <CR><LF>

NOTE
The trace bit (bit <4>) of the PS cannot
be modified by the user. This is done so
that PDP-1l program debugging utilities
(e.g., ODT-11), which use the T bit for
single-stepping, are not accidentally
harmed by the user.

If the user issues a <LF> while the PS is open, the PS is closed
and ODT prints <CR><LF>@. No new location is opened in this case.

5-15

§,3.3.6 G (ASCII 107) Go - This command is used to start program
execution at a location entered immediately before the G. This
function is equivalent to the LOAD ADDRESS and START switch
sequence on other PDP-1l consoles.

Example: @200G<NULL> <NULL>

The console ODT sequence for a G, after echoing the command
character, is as follows.

1. Print two nulls (ASCII 0). This is intended to prevent the G
character from getting flushed during the bus initialization
sequence that follows, assuming a double-buffered UART chip is
used in the console terminal interface.

2. Load R7 (PC) with the entered data. If no data is entered, 0
is used. (In the above example, R7 is set to 200, and that is
where program execution begins.)

3. The PS, MMRO<15:13,0>, MMR3, PIROQ, CPU Error Register, Memory
System Error Register, Cache Control Register, and Floating
Point Status Register are cleared to zero.

4. The cache, if present, is flushed (if so implemented).

5. The system bus is initialized by the processor.

6. The service state is entered by the DCJll. Any outstanding
Service requests are processed. If the bus HALT signal is
asserted, the processor reenters the console ODT state. This
feature is used to initialize a system without starting a
program (R7 is altered).

5.3.3.7 P (ASCII 120) Proceed - This command is used to resume
execution of a program and corresponds to the CONTINUE switch on
other PDP-11 consoles. No programmer-visible machine state is
altered using this command.

Example: @P

Program execution resumes at the address pointed to by R7. After
the P is echoed, the DCJ1l immediately fetches the next
instruction. After the instruction is executed, outstanding
interrupts, if any, are serviced. If the HALT bus signal is
asserted, it is recognized at the end of the instruction, and the
DCJ11l enters the console ODT state. Upon entry, the content of
the PC (R7) is (printed, In this fashion, the user can
Single-instruction step through a program and obtain a PC "trace"
on the terminal.

§.3.3.8 Control-Shift-S (ASCII 023) Binary Dump - This command is
used for manufacturing test purposes and is not a normal user
command. It is described here to explain the processor’s response
if accidentally invoked. It is intended to more efficiently
display a portion of memory compared to using the "/" and <LF>
commands. The protocol is as follows.

1. After a prompt character, console ODT receives a

control-shift-S command and echoes it.

2. The host system at the other end of the serial line must send
two 8 bit bytes which console ODT interprets as a starting
address. These two bytes are not echoed...

The first byte specifies starting address <15:08> and_ the
second byte specifies starting address <07:00>. Address bits
<21:16> are always forced to be 0; the dump command is
restricted to the first 32K words of address space.

'3. After the second address byte has been received, console ODT
Outputs ten bytes to the serial line starting at the address
previously specified. When the output is finished, console
ODT prints <CR><LF>@€.

If a user accidentally enters this command, it is recommended
in order to exit from the command that two @ characters (ASCII
100) be entered as a starting address. After the binary dump,
an @ prompt character is printed.

5.3.4 Address Specification - All I/O addresses (17760000 to
17777777) must be entered by the user with all 22 bits specified.
For example, if a user desires to open the RCSR of the _ console
serial interface he must enter 17777560, not 177560, or 777560.

§.3.4.1 General Registers - Whenever RO-R5 are referenced in
console ODT, they access the general register set currently

specified by PS bit ll (PS<ll>). If a program operating in
general register set zero (PS<l1l> = 0) is halted and a general
register is opened, register set zero is accessed. Similarily, if
a program is operating in register set one, references to RO-RS
access register set one.

If a specific register set is desired, PS<ll> must be set by the
user to the appropriate value, and then the RO through R5 commands
can be used. If an operating program has been halted, the
Original value of PS<ll> must be restored in order to continue

execution. :

Example: PS = 000000

@R4/052525<SPACE> <CR> <CR><LF>

R4 in register set zero has been opened.

5-17

@RS/000000<SPACE> 4000 <CR> <CR><LF>
@R4/177777<SPACE> <CR> <CR><LF>
@RS/004000<SPACE> 0 <CR> > <CR><LF>
ep

In this case, R4 in register set one was desired. The PS was
opened, and PS<ll> was set to 1 (register set one). Then R4 was

examined and closed. The original value of PS<ll> was restored,
and the program was continued using the P command.

§.3.4.2 Stack Pointers - Whenever R6 is referenced in console
ODT, it accesses the stack pointer specified by the PS current
mode bits (PS<15:14>). If a program operating in kernel mode
(PS<15:14> = 00) is halted and R6 is opened, the kernel stack
pointer is accessed. Similarly, if a program is operating in
Supervisor or user mode, R6 accesses the supervisor or user stack
pointers.

If a specific stack pointer is desired, PS<15:14> must be set by
the user to the appropriate value and then the R6 command can be
used. If an operating program has been halted, the original value
of PS<15:14> must be restored in order to continue execution.

Example: PS = 140000

@R6/123456<SPACE> <CR> <CR><LF>

The user mode stack pointer has been opened.

@RS/140000<SPACE> 0 <CR> <CR><LF>

@R6/1 123456<SPACE> <CR> <CR><LF>
@RS/000000<SPACE> 140000<CR> <CR><LF>
@P

In this case, the kernel mode stack pointer was desired. The PS
was opened, and PS<15:14> were set to 00 (kernel mode). Then R6
was examined and closed. The original value of PS<15:14> was
restored, and then the program was continued using the P command.

§.3.4.3 Floating Point Accumulators - The floating point
accumulators cannot be accessed from console ODT. Only floating
point instructions can access these registers.

§.3.5 Entering Octal Digits - When the user is specifying an
address, console ODT will use the last eight octal digits if more
than eight have been entered. When the user is specifying data,
console ODT will use the last six octal digits if more than six
have been entered. The user need not enter leading 0s for either
address or data; console ODT forces Os as the default. If an odd
address is entered, console ODT responds to the error by printing
?<CR><LF>@.

5.3.6 OD? Timeout - If the user specifies a nonexistent address
Or causes a parity error, console ODT responds to the error by
printing ?<CR><LF>@.

5.3.7 Invalid Characters - Console ODT will recognize upper- or
lowercase characters as commands. Any character that console ODT
does not recognize during a particular sequence is echoed (except
for ASCII characters in the range 0 - 17 foctal)), and console ODT
prints ?<CR><LF>@.

5.4 DCJ11 PIPELINE PROCESSING

The DCJ11 gets much of its performance from its prefetch and
predecode mechanisms. The primary benefit of prefetch and
predecode is that memory references are overlapped with internal
operations, and the need for explicit instruction fetch and decode
cycles is minimized. The prefetch and predecode operations are
performed automatically by the DCJ11 chip and cannot be altered by
the user.

A primary function of the prefetch mechanism is to fill four

registers with information and replenish thé registers as
required. These four registers, the virtual program counter
(VPC), the physical program counter (PPC), the prefetch buffer
(PB), and the instruction register (IR) are collectively referred

.to as the prefetch pipeline. The contents of registers in the
beginning of the pipeline are used to determine the contents of
registers further down the pipeline. When the pipeline is filled,
the prefetch mechanism is said to be in steady state. Four
microcycles are required to fill an empty pipeline. Figure 5-11

illustrates the process of filling the pipeline.

Microcycle l Microcycle 2 Microcycle 3 Microcycle 4

VPC <-- PC PPC <~- MMU(VPC) PB <-- M[PPC] IR <-- PB
VPC <-- VPC + 2 PPC <-~ MMU (VPC) PB <-- M[PPC]

VPC <-= VPC + 2 PPC <-- MMU (VPC)
VPC <-- VPC + 2

PC <-- PC + 2

MMR2 <-=- PC

Figure 5-l1l Pipeline Filling Process

In microcycle 1, the VPC is is simply set to the same value as the
PC. In microcycle 2, the VPC is sent through the MMU and the
resulting physical address is loaded into the PPC. The VPC is
then incremented by 2. At this point we have a valid VPC and PPC
and the pipeline is said to be = synchronized. Sometimes while
executing a macroinstruction, the pipeline is synchronized but not
filled. In that case, only microcycles 3 and 4 need be performed
for the next macroinstruction.

In microcycle 3, the word in memory addressed by the PPC is
fetched into the PB. The PPC is updated with the relocated
(mapped) VPC and the vPc is incremented again. In microcycle 4,
the PB is sent to the IR and is decoded as the next
Macroinstruction (note that the DCJ1l1 asserts PDRC at this time). .
The new contents of the PB are fetched from the memory location
referenced by the PPC. The PPC is again updated with the
relocated (mapped) VPC and the VPC is updated (incremented) once
again. Also during microcycle 4, the original PC is loaded into
MMR2 (if MMRO<15:13> = 000) and is incremented by 2.

In steady state (i.e., when microcycle 4 is complete), the IR
contains the macroinstruction being executed, the PB contains the

data from the memory location pointed to by the PC, the PPC
contains the physical address of the next word to be prefetched,

5-20

and the VPC contains the incremented value of the PC.

Once in steady state, a stream of macroinstructions that operate
only on registers may be executed at the rate of one per
microcycle (i.e., microcycle 4). While one instruction is being
executed, the next one is being decoded, and the following one is
being prefetched into the PB. As illustrated in Figure 5-11
during microcycle 4: the contents of the prefetch buffer are
loaded into the IR, the word addressed by the PPC is loaded into
the PB, the VPC is relocated and loaded into the PPC, and the VPC
is incremented by 2. This maintains the steady state, allowing
the next macroinstruction to be executed in the next microcycle.
Note also that the DCJ11 bus is kept busy 100% of the time.

The instructions that operate on immediate data and aé_ register
also make maximum use of the prefetch mechanism. At steady state,
a stream of these macroinstructions execute in two microcycles
(microcycles 3 and 4). During microcycle 3, the data in the PB is
moved to a scratch register. During microcycle 4, the operation
is performed. In both cycles, the steady state of the prefetch
mechanism is maintained by prefetching the next instruction stream
word. The DCJ1l bus is again kept busy 100% of the time.

The prefetch pipeline is refilled after a power-up sequence or if
a prefetch fault occurs. Prefetch faults occur when the PS,°CCR,
PC, or any of the memory management registers are written. A
prefetch fault invalidates only the PB. This means that the
pipeline remains synchronized and can be refilled in two
microcycles.-

§.4.1 Pipeline Flow Example - Consider the following example
program:

Virtual ~ Symbolic Octal
Address Representation Code

1000 MOV R2,R3 010203
1002 BIS #1,R3 052703

000001
1004 ADD R1,R3 060105
1006 CLR RO. 005000
1012 ADD R3,R0 060300

The flow of information through the pipeline occurs as shown in
Table 5-3.

Table 5-3 Pipeline Flow

Pipeline
Register Microcycle

n | n+1 n+2 n+3 n+4 n+5

PC 1002 1004 1006 1010 1012 1014

IR MOV BIS BIS ADD CLR ADD

(010203) (052703) (052703) (060105) (005000) (060300)

PB BIS 000001 ADD CLR ADD *
(052703) (060105) (005000) (060300)

PPC MMU (1004) MMU(1006) MMU(1010) MMU(1012) MMU(1014) MMU(1016)

vec 1006 1010 1012 1014 1016 1020

* Instruction at location 1014

Note that the example starts at microcycle n, by which time’ the
prefetch pipeline has been filled (i.e., the pipeline is in steady
state). All the instructions in the example execute in one
microcycle except the BIS instruction, which executes in two
microcycles.

| CHAPTER 6
ADDRESSING MODES AND BASE INSTRUCTION SET

6.1 INTRODUCTION
aa

The first part of this chapter is divided into six major sections:

o Single-Operand Addressing -- One part of the instruction word
specifies the registers; the other part provides information
for locating the operand. |

oO Double-Operand Addressing -- One part of the instruction word
specifies the registers; the remaining parts provide
information for locating two operands.

Oo Direct Addressing -- The operand is the content of the
selected register.

Oo Deferred (Indirect) Addressing -- The contents of the selected
register is the address of the operand.

o Use of the PC as a General-Purpose Register -- The PC is
different from other general-purpose registers in one
important respect. Whenever the processor retrieves an
instruction, it automatically advances the PC by 2. By
combining this automatic advancement of the PC with four of
the basic addressing modes, we produce the four special PC
modes -- immediate, absolute, relative, and relative-deferred.

o Use of the Stack Pointer as a General-Purpose Register --
General-purpose registers can be used for stack operations.

The second part of this chapter describes each of the instructions
in the DCJ1l instruction set.

6.2 ADDRESSING MODES

Data stored in memory must be accessed and manipulated. Data
handling is specified by a DCJ11 instruction (MOV, ADD, etc.),
which usually specifies the:

© Function to be performed (operation code).

o General-purpose register to be used when locating the source
operand, and/or destination operand (where required).

o Addressing mode, which specifies how the selected registers
are to be used.

A large portion of the data handled by a computer is’ structured

6-1

(in character strings, arrays, lists, etc.). The DCJ1l addressing
modes provide for efficient and flexible handling of structured
data. ,

A general-purpose register may be used with an instruction in any
of the following ways.

1. As an accumulator -- The data to be manipulated resides in the
register.

2. As a pointer -- The contents of the register is the address of
an operand, rather than the operand itself. .

3. As a pointer that automatically steps through memory locations
-- Automatically stepping forward through consecutive

locations is known as autoincrement addressing; automatically
stepping backwards is known as autodecrement addressing.
These modes are particularly useful for processing tabular. or

array data.

4. As an index register -- In this instance, the contents of the
register and the word following the instruction are summed to
produce the address of the operand. This allows easy access
to variable entries in a list.

An important DCJ1l1 feature, which should be considered with the
addressing modes, is the register arrangement.

Oo Two sets of six general-purpose registers (RO~-RS and
RO*--R5“)

oO A hardware stack pointer (SP) register (R6) for each processor
mode (kernel, supervisor, user)

oO A program counter (PC) register (R7)

Registers RO--R5 and R0O*--RS5* are not dedicated to any specific
function; their use is determined by the instruction that is
decoded.

o They can be used for operand storage. For example, the
contents of two registers can be added and stored in another
register.

o They can contain the address of an operand or serve as

pointers to the address of an operand,

© They can be used for the autoincrement or autodecrement
features.

o They can be used as index registers for convenient data and
program access.

The DCJ1l also has instruction addressing mode combinations that
facilitate temporary data storage structures. These can be used
for convenient handling of data that must be accessed frequently.
This is known as stack manipulation. The register that keeps

track of stack manipulation is known as the stack pointer (SP).

6-2

Any register can be used as a stack pointer under program control;
however, certain instructions associated with subroutine linkage
and interrupt service automatically use register R6 as a “hardware
stack pointer." For this reason, R6 is frequently referred to as
the SP.

o The stack pointer (SP) keeps track of the latest entry on the
stack. :

o The stack pointer moves down as items are added to the stack
and moves up as items are removed. Therefore, the stack
pointer always points to the top of the stack.

o The hardware stack is used during trap or interrupt handling
to store information, allowing an orderly return to the
interrupted program.

Register R7 is used by the processor as itS program counter (PC).
It is recommended that R7 not be used as a Stack pointer or
accumulator. Whenever an instruction is fetched from memory, the
program counter is automatically incremented by two to point to
the next instruction word.

6.2.1 Single-Operand Addressing - The instruction format for all
single-operand instructions (such as CLR, INC, TST) is shown in
Figure 6-1.

15 06 05 04 03 Q2 00
T T T Tr T “T T T T " T T T T

MODE Rn

i _— Nl ft L 2 \ J 1

XQ cenmervenntt

OP CODE DESTINATION ADDRESS

MA 8458

Figure 6-1 Single-Operand Addressing

Bits <15:6> specify the operation code that defines the type of
instruction to be executed.

Bits <5:0> form a 6-bit field called the destination address
field. The destination address field consists of two subfields:

© Bits <5:3> specify the destination mode. Bit 3 is set to
indicate deferred (indirect) addressing.

o Bits <2:0> specify which of the 8 general-purpose registers is
to be referenced by this instruction word.

6.2.2 Double-Operand Addressing - Operations that imply two
operands (such as ADD, SUB, MOV, and CMP) are handled by
instructions that specify two addresses. The first operand is
called the source operand; the second is called the destination
operand. Bit assignments in the source and destination address
fields may specify different modes and different registers. The

instruction format for the double operand instruction is shown in

6-3

Figure 6-2.

15 12 im 10 09 08 06 0S 04 03 02 00
, qv ' FF qT v t y mI T v

OP COOE MODE . Rn MODE Rn
ale L { 5 7 ‘ I l L 1

La =|)

SOURCE ADDRESS DESTINATION ADORESS

MR 5459

Figure 6-2 Double-Operand Addressing

The source address field is used to select the source operand (the
first operand). The destination is used similarly, and locates
the second operand and the result. For example, the instruction
ADD A, 8B adds the contents (Source operand) of location A to the
contents (destination operand) of location B. After execution, B
will contain the result of the addition and the contents of A will
be unchanged.

Examples in this paragraph and the rest of the chapter use the
following sample DCJ11l instructions. (A complete listing of the
DCJ11 instructions appears in Paragraph 6.3.)

Mnemonic Description | Octal Code

CLR Clear. (Zero the specified destination.) 0050DD

CLRB Clear byte. (Zero the byte in the specified 1050DD
destination.)

INC Increment. (Add one to contents of the 0052DD

destination.)

INCB Increment byte. (Add one to the contents of 1052DD
the destination byte.)

COM Complement. (Replace the contents of the 0051DD
destination by its logical complement;

each 0 bit is set and each one bit is
cleared.)

COMB Complement byte. (Replace the contents of 1051DD
the destination byte by its logical
complement; each 0 bit is set and each

1 bit is cleared.)

ADD Add. (Add the source operand to the 06SSDD

destination operand and store the result
at the destination address.)

DD = destination field (six bits)
SS = source field (six bits)
() = contents of

6.2.3 Direct Addressing - The following summarizes the four basic
modes used with direct addressing.

Direct Modes (Figures 6-3 to 6-6)

Mode

0

Mode

Mode

Mode

Register contains operand.

Autoincrement (Rn)+

Assembler
Name Syntax Function

Register Rn

INSTRUCTION OPERAND

wR -6460

Figure 6-3 Mode 0 Register

Assembler
Name Syntax Function

Register is used as a pointer
to sequential data and then

6-5

incremented.

INSTRUCTION ADDRESS OPERAND

+2 FOR WORD,
+1 FOR BYTE

Figure 6-4 Mode 2 Autoincrement

Assembler
Name Syntax Function

Autodecrement -(Rn) Register is decremented and
then used as a pointer.

INSTRUCTION “| ADDRESS -2 FOR WORD OPERAND
-1 FOR BYTE

Figure 6-5 Mode 4 Autodecrement

Assembler
Name Syntax Function

Index X (Rn) Value X is added to (Rn) to
produce address of operand.
Neither X nor (Rn) is modified.

INSTRUCTION ADDRESS

—O- OFERAND
x

Figure 6-6 Mode 6 Index

6.2.3.1 Register Mode - With register mode any of the general
registers may be used as simple accumulators, with the operand
contained in the selected register. Since they are hardware
registers (within the processor), the general registers operate at
high speeds and provide speed advantages when used for operating
on frequently accessed variables. The assembler interprets and

assembles instructions of the form OPR Rn as register mode
operations. Rn represents a general register name or number and
OPR is used to represent a general instruction mnemonic.
Assembler syntax requires that a general register be defined as
follows.

RO = $0 (% sign indicates register definition)
Rl = $1
R2 = %2, etc.

Registers are typically referred to by name as RO, Rl, R2, R3, R4,
R5, R6, and R7. However, R6 and R7 are also referred to as SP and

PC, respectively.

OPR Rn

Register Mode Examples (Figures 6-7 to 6-9)

l. Symbolic Octal Code Instruction Name

INC R3 005203 Increment

Operation: Add one to the contents of general-purpose register
R3.

15 06 O05 04 03 02 00
T t T T T t J ¥ OF oF q T qT

I i i Dene i i i L At i REGISTER

|

OP CODE (INC(0052)) DESTINATION FIELD |
|

|

RO |
|

R1 |

R2 |

R3 le J

R4 |

RS

R6 (SP)

R7 (PC)

Figure 6-7 INC R3 Increment MA.646?

2. Symbolic Octal Code Instruction Name

ADD R2, R4 060204 Add

Operation: Add the contents of R2 to the contents of R4.

6-6

BEFORE AFTER

R2 000002 R2 000002

 R4 | 000004 R4 000006

WR 5468

Figure 6-8 ADD kK2,R4 Add

3. Symbolic Octal Code Instruction Name

COMB R4 105104 Complement byte
Operation: 1°s complement bits <7:0> (byte) in R4. (When general
registers are used, byte instructions operate only on bits <7:0>;
i.e., byte 0 of the register.)

BEFORE AFTER

R4 022222 R4 022155

MA 6469

Figure 6-9 COMB R4 Complement Byte

6.2.3.2 Autoincrement Mode [OPR (Rn)+] - This mode (mode 2)
provides for automatic stepping of a pointer through sequential
elements of a table of operands. It assumes the contents of the
selected general-purpose register to be the address of the
operand. Contents of registers are stepped (by one for byte
instructions, by two for word instructions, always hy two for R6
and R7) to address the next sequential location. The
autoincrement mode is especially useful for array processing and
Stack processing. It will access an element of a table and _ then
step the pointer to address the next operand in the table.
Although most useful for table handling, this mode is completely
general and may be used for a variety of purposes.

OPR (Rn)+

Autoincrement Mode Examples (Figures 6-10 to 6-12)

l. Symbolic Octal Code Instruction Name

CLR (R5)+ | 005025 Clear

Operation: Use contents of R5 as the address of the operand.
Clear selected operand and then increment the contents of R5 by

two. BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESSSPACE —_——REGISTER

20000 } 005025 rs5 | 030000 20000 | 005025 rs | 030002

f }

30000 | 1111116 30000 | 00000

WR -6464

Figure 6-10 CLR {(R5)+ Clear

2. Symbolic Octal Code Instruction Name

CLRB (R5)+ 105025 Clear byte

6-7

of

Operation: Use contents of R5 as the address the operand.
Clear selected byte operand and then increment the contents of R5

by one. BEFORE AFTER
ADORESS SPACE REGISTER ADDRESS SPACE REGISTER

20000 105025 R5 030000 20000 105025 R5 030001

__J
T t T

30000 } 111 | 116 30000 | 111 ; 000

30002 | 30002 ;

MR.5465

Figure 6-11 CLRB (R5)+ Clear Byte

3. Symbolic Octal Code Instruction Name

ADD (R2)+,R4 062204 Add

Operation: The contents of R2 are used as the address of the
operand, which is added to the contents of R4. R2 is then
incremented by two.

BEFORE AFTER
AODRESS SPACE REGISTERS ADDRESS SPACES REGISTERS

10000 | 062204 R2 100002 10000 | 062204 R2 100004

J

R4 | 010000 R4 | 020000

100002 | 010000 100002 | 010000

Figure 6-12 ADD (R2)+,R4 Add

6.2.3.3 Autodecrement Mode [OPR-(Rn)] - This mode (mode 4) is
useful for processing data in a list in reverse direction. The
contents of the selected general-purpose register are decremented
(by one for byte instructions, by two for word instructions) and

then used as the address of the operand. The choice of
postincrement, predecrement features for the DCJ1l1 were not
arbitrary decisions, but were intended to facilitate
hardware/software stack operations.

OPR- (Rn)

Autodecrement Mode Examples (Figures 6-13 to 6-15)

l. Symbolic Octal Code Instruction Name

INC - (RO) 005240 Increment

Operation: The contents of RO are decremented by two and used as
the address of the operand. The operand is incremented by one.

6-8

BEFORE AFTER

ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER

1000 005240 RO 017776 1000 005240 RO 017774

| _|

17774 000000 17774 000001

MR 5466

Figure 6-13 INC -(RO) Increment

2.. Symbolic Octal Code Instruction Name

INCB - (RO) 105240 Increment byte

Operation: The contents of RO are decremented by one and then
used as the address of the operand. The operand byte is increased

by one. BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1000 105240 RO 017776 1000 105240 RO 017775

J
oF Y v

17774 | 000 [| 000 17774 001 | 000

17776 | 17776

Figure 6-14 INCB -(RO) Increment Byte waeen

3. Symbolic Octal Code Instruction Name

ADD -(R3) ,RO 064300 Add

Operation: The contents of R3 are decremented by two and then
used as a pointer to an operand (source), which is added to the
contents of RO (destination operand).

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

10020 064300 RO 000020 10020 064300 RO 0000070

R3 077776 R3 077774

77774 000050 77774 000050

77776 77776

Figure 6-15 ADD -(R3),RO Add ua sara

6.2.3.4 Index Mode [OPR X(Rn)] - In this mode (mode 6) the
contents of the selected general-purpose register, and an index
word following the instruction word, are summed to form the
address of the operand. The contents of the selected register may
be used as a base for calculating a series of addresses, thus
allowing random access to elements of data structures. The
selected register can then be modified by program to access data
in the table. Index addressing instructions are of the form OPR

6-9

X(Rn), where X is the indexed word located in the memory location
following the instruction word and Rn is the. selected
general-purpose register.

OPR X (Rn)

Index Mode Examples (Figures 6-16 to 6-18)

1. Symbolic Octal Code Instruction Name

CLR 200 (R4) 005064 Clear
000200

Operation: The address of the operand is determined by adding 200
to the contents of R4. The operand location is then cleared.

BEFORE AFTER

ADDRESS SPACE REGISTER ADORESS SPACE REGISTER

1020 | 005064 Ra [201000 | 1020 | 005064 Ra

1022 000200 1622 G00200

1024 1000 1024
*200
1200

1200 177777 1200 000000

1202

mA-$ar)

Figure 6-16 CLR 200(R4) Clear

2. ° Symbolic Octal Code Instruction Name ©

COMB 200(R1) 105161 Complement byte
000200

Operation: The contents of a location, which are determined by
adding 200 to the contents of Rl, are 1*°s complemented (i.e.,
logically complemented).

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

\

1022 000200 1022 000200

017777
+200

020177

7

20176 o11 | ooo 20176 166 |! O00

20200 t 20200 A
i. i

ua Gate

Figure 6-17 COMB 200(R1) Complement Byte

3. Symbolic Octal Code Instruction Name

ADD 30(R2) ,20(R5) 066265 Add

000030
000020

Operation: The contents of a location, which are determined by

6-10

adding 30 to the contents of R2, are added to the contents of a

location that is determined by adding 20 to the contents of R5.
The result is stored at the destination address, that 1s, 20(R5).

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 066265 R2 001100 1020 066265 R2 001100

1022 000030 1022 000030

1024 000020 R5 002000 1024 000020 R5 002000

1130 000001 1130 000001

2020 000001 2020 000002

1100 2000

+30 +20

4130 2020

MA 5475

Figure 6-18 ADD 30(R2),20(R5) Add

6.2.4 Deferred (Indirect) Addressing - The four basic modes may
also be used with deferred addressing. Whereas in register mode
the operand is the contents of the selected register, in
register-deferred mode the contents of the selected register is
the address of the operand.

In the three other deferred modes, the contents of the register
select the address of the operand rather than the operand itself.
These modes are therefore used when a table consists of addresses
rather than operands. The assembler syntax for indicating
deferred addressing is @ [or () when this is not ambiguous]. The
following summarizes the deferred versions of the basic modes.

Deferred Modes (Figures 6-19 to 6-22)

Assembler
Mode Name Syntax Function

lL Register-
deferred @Rn or (Rn) Register contains the address

of the operand.

INSTRUCTION ADDRESS OPE RAND

MR 5476

Figure 6-19 Mode 1 Register-Deferred

Assembler

Mode Name Syntax Function

3 Autoincrement-
Deferred @(Rn)+ Register is first used as a

6-11

pointer to a word containing
the address of the operand and
then incremented (always by
two, even for byte
instructions).

 ADDRESS > ADDRESS OPERAND

—
MAR.547?

 INSTRUCTION {

Figure 6-20 Mode 3 Autoincrement-Deferred

Assembler
Mode Name Syntax Function

5 Autodecrement-
deferred @- (Rn) Register is decremented (always

by two, even for byte
instructions) and then used as
a pointer to a word containing
the address of the operand.

INSTRUCTION ADDRESS -2 ADDRESS OPERAND

t

MA 5478

Figure 6-21 Mode 5 Autodecrement-Deferred

Assembler

Mode Name Syntax Function

7 Index-deferred @X (Rn) Value X (stored in a word
following the instruction) and
(Rn) are added; the sum is used
as a pointer to a word
containing the address of the
operand. Neither X nor (Rn) is

modified.

INSTRUCTION ADORESS

ADDRESS OPE RAND

MAR-S479

Figure 6-22 Mode 7 Index-Deferred

The following examples illustrate the deferred modes.

Register-Deferred Mode Example (Figure 6-23)

Symbolic Octal Code Instruction Name

CLR @R5 | 005015 Clear

6-12

Operation: The contents of location specified in RS are cleared.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1677 R5 001700 1677 R5 001700

1700 000100 1700 000000

MR -5480

Figure 6-23 CLR @R5 Clear

Autoincrement-Deferred Mode Example (Mode 3) (Figure 6-24)

Symbolic Octal Code Instruction Name

INC @(R2)+ 005232 Increment

Operation: The contents of R2 are used as the address of the

address of the operand. The operand is increased by one; the
contents of R2 are incremented by two.

BEFORE AFTER

AODRESS SPACE REGISTER ADORESS SPACE REGISTER

R2 010300 R2 010302

1010 000025 1010 000026

1012 1012 .

obo 001010 10300 001010

Figure 6-24 INC @(R2)+ Increment

Autodecrement-Deferred Mode Example (Mode 5) (Figure 6-25)

Symbolic Octal Code

COM @- (RO) | 005150

Operation: The contents of RO are decremented by two and then
used as the address of the address of the operand. The operand is
l°s complemented (i.e., logically complemented).

BEFORE AFTER

ADDRESS SPACE REGISTER ADORESS SPACE REGISTER

10100 012345 RO 010776 10100 165432 RO 010774

10102 {| 10102

10774 010100 10774 | 010100

10776 10776"

MR 6482

Figure 6-25 COM @-(R0) Complement

6-13

Index-Deferred Mode Example (Mode 7) (Figure 6-26)

Symbolic Octal Code Instruction Name

ADD @1000(R2) ,R1 067201 Add
001000

Operation: 1000 and the contents of R2 are summed to produce the
address of the address of the source operand, the contents of
which are added to the contents of Rl; the result is stored in
Rl.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 067201 Al 001234 1020 067201 Rl 001236

1 1022 001000
1022 001000 R2 000100 R2 000100

1024 1024

1050 000002 1050 000002

1100 001050 1100 001050

1000
+100

| 1100

MR S482

Figure 6-26 ADD @1000(R2),R1 Add

6.2.5 Use Of The PC As A _ General-Purpose Register - Although
register 7 is a general-purpose register, it doubles in function
as the program counter for the DCJ11. Whenever the processor uses
the program counter to acquire a word from memory, the program
counter is automatically incremented by two to contain the address
of the next word of the instruction being executed or the address
of the next instruction to be executed. (When the program uses
the PC to locate byte data, the PC is still incremented by two.)

The PC responds to all the standard DCJ1l1 addressing modes.
However, with four of these modes the PC can provide advantages
for handling position-independent code and unstructured data.
When utilizing the PC, these modes are termed immediate, absolute

(or immediate-deferred), relative, and relative-deferred. The
modes are summarized below.

Assembler
Mode Name Syntax Function

2 Immediate #n Operand follows instruction.

3 Absolute @#A Absolute address of operand
follows instruction.

6-14

6 Relative A Relative address (index value)
| follows the instruction.

7 Relative-
deferred @A Index value (stored in the word

after the instruction) is the
relative address for the
address of the operand.

When a standard program is available for different users, it is
often helpful to be able to load it into different areas of memory
and run it in those areas. The DCJ1l1 can accomplish the
relocation of a program very efficiently through the use of
position-independent code (PIC), which is written by using the PC
addressing modes. If an instruction and its operands are moved in
such a way that the relative distance between them is not altered,
the same offset relative to the PC can be used in all positions in
memory. Thus, PIC usually references locations relative to _ the
current location.

The PC also greatly facilitates the handling of unstructured data.
This is particularly true of the immediate and relative modes.

6.2.5.1 Immediate Mode [OPR N,DD] - Immediate mode (mode 2) is
equivalent in use to the autoincrement mode with the PC. It
provides time improvements for accessing constant operands by
including the constant in the memory location immediately
following the instruction word.

QPR #n,DD

Immediate Mode Example (Figure 6-27)

Symbolic Octal Code Instruction Name

ADD #10,R0 062700 Add
000010

Operation: The value 10 is located in the second word of the
instruction and is added to the contents of RO. Just before this
instruction is fetched and executed, the PC points to the first
word of the instruction. The processor fetches the first word and
increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus, the PC is used as a pointer to
fetch the operand (the second word of the instruction) before it
is incremented by two to point to the next instruction.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 062700 we 000020 1020 062700 RO 000030

1022 000010 PC 1022 000010

1024 1024 YY

Figure 6-27 ADD #10,R0 Add

PC

MAR -5454

6-15

6.2.5.2 Absolute Addressing (OPR @ A] - This mode (mode 3) is the
equivalent of immediate-deferred or autoincrement-deferred using
the PC. The contents of the location following the instruction
are taken as the address of the operand. Immediate data is
interpreted as an absolute address (i.e., an address that remains
constant no matter where in memory the assembled instruction is
executed).

OPR @#A

Absolute Mode Examples (Figures 6-28 and 6-29)

1. Symbolic Octal Code Instruction Name

CLR @#1100 005037 Clear
001100

Operation: Clear the contents of location 1100.

BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE

20 005037 20 005037

22 001100 PC 22 | 001100 PC

24

1100 177777 1100 000000

1102 4102

04-5486

Figure 6-28 CLR @#1100 Clear

2. Symbolic Octal Code Instruction Name

ADD @#2000,R3 | 063703 Add
002000

Operation: Add contents of location 2000 to R3.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

20 063703 R3 000500 20 063703 R3 001000

22 002000 PC 22 002000 PC

x 2 /
—

2000 000300 2000 | 000300

WA .8486

Figure 6-29 ADD @#2000 Add

6.2.5.3 Relative Addressing [OPR A Or OPR xX(PC)) - This mode
(mode 6) is assembled as index mode using R7. The base of the
address calculation, which is stored in the second or third word
of the instruction, is not the address of the operand, but the
number which, when added to the (PC), becomes the address of the
operand. This mode is useful for writing position-independent
code since the location referenced is always fixed relative to the
PC. When instructions are to be relocated, the operand is moved
by the same amount.

OPR A or OPR X(PC) (X is the location of A relative to the
instruction)

Relative Addressing Example (Figure 6-30)

Symbolic - Octal Code Instruction Name

INC A 005267 Increment
000054

Operation: To increment location A, contents of memory location
immediately following instruction word are added to (PC) to
produce address A. Contents of A are increased by one.

BEFORE AFTER .
ADDRESS SPACE

1020 005267 1020

0005267

1022 000054 PC 1022 000054

"1024 1024 Cc

1026 1026

1100 000000 1024 1100 000001

t os 1100

MA.5487

Figure 6-30 INC A Increment

6.2.5.4 Relative-Deferred Addressing [OPR @A Or OPR @X(PC)] -
This mode (mode 7) is similar to relative mode, except that the
second word of the instruction, when added to the PC, contains the

address of the address of the operand, rather than the address of
the operand.

OPR @A or OPR @X(PC) (X is the location containing the address of
A, relative to the instruction)

Relative-Deferred Mode Example (Figure 6-31)

Symbolic Octal Code Instruction Name

CLR @A 005077 Clear
. 000020

Operation: Add second word of instruction to updated PC to.
produce address of address of operand. Clear operand.

BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE -

{PC = 1020) 1020 005077 \ 1020 005077

1022 000020 PC 1022 000020 PC

(PC = 1022) 1024 1024 1024
+20 ’

r 1044

1044 010100 1044 | 010100

10100 100001 10100 000000

Figure 6-31 CLR @A Clear

6.2.6 Use Of The Stack Pointer As A General-Purpose Register -
The processor stack pointer (SP, register 6) is in most cases the
general register used for the stack operations related to program
nesting. Autodecrement with register 6 “pushes" data onto the
stack and autoincrement with register 6 "pops" data off the stack.
Since the SP is used by the processor for interrupt handling, it
has a special attribute: autoincrements and autodecrementsS are
always done in steps of two. Byte operations using the SP in this
way leave odd addresses unmodified.

6.3 INSTRUCTION SET

The rest of this chapter describes the DCJ1l1°s instruction set.
Each instruction’s explanation includes the instruction’s
mnemonic, octal code, binary code, a diagram showing the format of
the instruction, a symbolic notation describing its execution and.
effect on the condition codes, a description, special comments,
and examples.

Each instruction’s explanation is headed by its mnemonic. When
the word instruction has a byte equivalent, the byte mnemonic also

appears.

The diagram that accompanies each instruction shows the octal op
code, binary op code, and bit assignments. [Note that in byte
instructions the most significant bit (bit 15) is always a one.]

Symbols:

() = contents of

source address SS or src

DD or dst destination address

loc = location

A [i ul becomes |

= "is popped from stack"

= "is pushed onto stack"

*

4‘) = boolean AND

V boolean OR

nv a = exclusive OR

boolean not

REG or R = register

w " Byte

0 for word, 1 for byte

, = concatenated

6.3.1 Instruction Formats - The following formats include all
instructions used in the DCJ11. Refer to individual instructions

for more detailed information.

l. Single-Operand Group: CLR, CLRB, COM, COMB, INC, INCB,
(Figure 6-32) DEC, DECB, NEG, NEGB, ADC, ADCB,

SBC, SBCB, TST, TSTB, ROR, RORB,
ROL, ROLB, ASR, ASRB, ASL, ASLB,

JMP, SWAB, MFPS, MTPS, SXT,

TSTSET, WRTLCK, XOR

15 06 05 00
v oT q 7 qv T T qT T Li TF ' q 5

OP CODE OO(SS)
i 1 ai i fp i i. i ‘ ft i L. i all

MA 5191

Figure 6-32 Single-Operand Group

2. Double-Operand Group:

a. Group 1: BIT, BITB, BIC, BICB, BIS, BISB,
(Figure 6-33) ADD, SUB, MOV, MOVB, CMP, CMPB

6-19

00

OP CODE

ol

Figure 6-33 Double-Operand Group l

b. Group 2:

15

(Figure 6-34)
ASH, ASHC, DIV, MUL

05

MR $192

00

3.

| q #4 q q | - i q q T

OP CODE R ss
t i } a] t t t } Le i 1]

MR FtS54

Figure 6-34 Double-Operand Group 2

Program Control Group:

Branch (all branch instructions) (Figure 6-35)

a.

15 08 07 00

OP CODE OFFSET

Figure 6-35 Program Control Group Branch

b. Jump to Subroutine (JSR) (Figure 6-36)

1§ : , + 7 + 09 08 05 00

0 0 4 R DD

Figure 6-36 Program Control Group JSR

c. Subroutine Return (RTS) (Figure 6-37)

1S —_——_- -03 02 00

Figure 6-37 Program Control Group RTS

MA-519S

d. Traps (breakpoint, IOT, EMT, TRAP, BPT) (Figure 6-38)

13 T 7 ’
00

OP CODE

se h al L 1 hen 1 l 1 hes nN

Figure 6-38

e. Subtract 1 and Branch (if (SOB)

Program Control Group Traps

MA-5196

(Figure 6-39)

MR.5197

Figure 6-39 Program Control Group Subtract

f. Mark (Figure 6-40)

15 06 05 00

0 0 6 4 NN

Figure 6-40 Mark

g. Call to Supervisor Mode (CSM) (Figure 6-41)

MA.11549

Figure 6-41 Call to Supervisor Mode

h. Set Priority Level (SPL) (Figure 6-42)

MR-11860

Figure 6-42 Set Priority Level

4. Operate Group: HALT, WAIT, RTI, RESET, RTT, NOP, MFPT

(Figure 6-43)

3 T oF mi ¥ T qv v v 4 v v v 20

OP CODE

MA.5198

Figure 6-43 Operate Group

5. Condition Code Operators (all condition code instructions)

(Figure 6-44)

15 06 05 04 03 02 01 00

WR $199

Figure 6-44 Condition Group

6. Move To/From
Previous
Instruction/Data

Space Group: MTPD, MTPI, MFPD, MFPI

6-21

(Figure 6-45)

 y To q ty q q ' ! q { L t '

OP CODE OD(SS}
| | iL 1 { L L_ 1 i { rT L |} l

MA-1156)

Figure 6-45 Move To And From Previous Instruction/Data Space Group

6.3.2 Byte Instructions — The DCJ11 includes a full complement of

instructions that manipulate byte operands. Since all DCJ11
addressing is byte-oriented, byte manipulation addressing
straightforward. Byte instructions with autoincrement

is

or
autodecrement direct addressing cause the specified register to be
modified by one to point to the next byte of data. Byte
operations in register mode access the low-order byte of the
specified register. These provisions enable the DCJ11 to perform
as either a word or byte processor. The numbering scheme for word
and byte addresses in memory is shown in Figure 6-46.

HIGH BYTE WORD OR BYTE

ADDRESS AODRESS

002001 BYTE 1 BYTE O 002000

002003 BYTE 3 BYTE 2 002002

MR 5201

Figure 6-46 Byte Instructions

The most significant bit (bit 15) of the instruction word is
to indicate a byte instruction.

Example:

Symbolic Octal Code Instruction Name

CLR 0050DD Clear word

CLRB 1050DD Clear byte

6-22

set

6.3.3 List Of Instructions - The following is a list of the DCJ11
instruction set. ;

SINGLE-OPERAND

General

Mnemonic Instruction Op Code

CLR (B) Clear destination @ OSODD
COM (B) Complement destination @ 051DD
INC (B) Increment destination @ 052DD

DEC (B) Decrement destination @ 053DD
NEG (B) Negate destination @ 054pDpD
TST (B) Test destination @057DD

WRTLCK Read/lock destination,
write/unlock RO into
destination 0073DD

TSTSET Test destination, set low bit 0072DD

Shift and Rotate

Mnemonic Instruction Op Code

ASR (B) Arithmetic shift right WM 062DD
ASL (B) Arithmetic shift left @ 063DD

ROR (B) Rotate right B O60DD
ROL (B) Rotate left . B® 061DD
SWAB Swap bytes 0003DD

Multiple-Precision

Mnemonic Instruction | Op Code

ADC (B) Add carry @ OSS5DD
SBC (B) Subtract carry W OSé6DD
SXT Sign extend | 0067DD

PS Word Operators

Mnemonic Instruction Op Code

MFPS Move byte from PS 1067DD
MTPS Move byte to PS 1064SS

DOUBLE-OPERAND

General

Mnemonic Instruction Op Code

MOV (B) Move source to destination BW 1SSDD
CMP (B) Compare source to destination B 2SSDD
ADD Add source to destination O06SSDD

6-23

SUB
ASH
ASHC

MUL
DIV

Logical

Mnemonic

BIT (B)
BIC (B)
BIS (B)
XOR

Subtract source from destination
Arithmetic shift
Arithmetic shift combined

Multiply
Divide

Instruction

Bit test
Bit clear
Bit set
Exclusive OR

PROGRAM CONTROL

Mnemonic

Branch

BR
BNE
BEQ
BPL
BMI
BVC
BVS
BCC
BCS

Instruction

Branch (unconditional)
Branch if not equal (to zero)
Branch if equal (to zero)
Branch if plus
Branch if minus
Branch if overflow is clear
Branch if overflow is set
Branch if carry is clear
Branch if carry is set

Signed Conditional Branch

Mnemonic

BGE

BLT
BGT
BLE

Instruction

Branch if greater than or equal
(to zero)

Branch if less than (zero)
Branch if greater than (zero)
Branch if less than or equal
(to zero)

Unsigned Conditional Branch

Mnemonic

BHI
BLOS
BHIS
BLO

Instruction

Branch if higher
Branch if lower or same

Branch if higher or same
Branch if lower

16SSDD
072RSS
073RSS
070RSS
071RSS

Op Code

B® 3SSDD
Ww 4SSDD
@ SSSDD
074RDD

Op Code
Or

Base Code

000400
001000
001400
100000
100400
102000
102400
103000
103400

Op Code
or

Base Code

002000

002400
003000
003400

Op Code
or

Base Code

101000
101400
103000
103400

Jump and Subroutine
Op Code

or
Mnemonic Instruction Base Code

JMP Jump 0001DD
JSR Jump to subroutine 004RDD
RTS Return from subroutine 00020R
SOB Subtract one and branch (if # 0) 077R00

Trap and Interrupt
Op Code

or
Mnemonic Instruction Base Code

EMT Emulator trap 104000 - 104377
TRAP Trap 104400 - 104777
BPT Breakpoint trap 000003
IOT Input/output trap 000004
RTI Return from interrupt 000002
RTT Return from interrupt 000006

Miscellaneous Program Control
Op Code

. or
Mnemonic Instruction Base Code

CSM Call to supervisor mode 0070DD
MARK Mark 006 4NN
SPL Set Priority Level 00023N

MISCELLANEOUS
Op Code

or
Mnemonic Instruction Base Code

HALT Halt 000000
WAIT Wait for interrupt 000001
RESET Reset external bus 000005
MFPT Move processor type | 000007
MTPD Move to previous data space 1066SS

MTPI Move to previous instruction
space 0066SS

MFPD Move from previous data space 0065SS

MFPI Move from previous instruction
Space 1065SS

CONDITION CODE OPERATORS
Op Code

or
Mnemonic Instruction Base Code

CLC Clear C 000241
CLV Clear V 000242
CL2 Clear 2 000244
CLN Clear N 000250

ccc Clear all CC bits 000257
SEC Set C 000261
SEV Set V 000262
SEZ Set 2 000264
SEN Set N 000270
SCC Set all CC bits 000277
NOP No operation 000240

6.3.4 Single-Operand Instructions - The DCJ11 instructions that
involve only one operand are described in the paragraphs that
follow.

6.3.4.1 General ~

CLR

CLRB

CLEAR DESTINATION #05000

15 06 _0S | 00
T Y T tT T T T T T T v qv 7 y

o/1 0 0 0 1 0 1 0 0 0 0D

d, L l i 1 L

MAR 41904

Operation: (dst) <-- 0

Condition Codes: Ns: cleared
Z: set

V: cleared
C: cleared

Description: Word: The contents of the specified destination
are replaced with Os. |
Byte: Same.

Example: CLR Rl

Before After

(RL) = 177777 (R1) = 000000

NZVC Nzvc
L1lll 0100

CoM
COMB

COMPLEMENT OST 605100

15 ~ ; , 06 05 00

0/1 oO 0 0 1 0 1 Q 0 1 OD

Operation: (dst) <-- ~ (dst)

Condition Codes: N: set if most significant bit of result is set;

6-26

cleared otherwise
set if result is 0; cleared otherwise
cleared

set

23

Vs:

C:

Word: Replaces the contents of the destination

Description:)
address by their logical complement. (Each bit
equal to 0 is set and each bit equal tol is
cleared.)

Byte: Same.

Example: COM RO

Before After’

(RO) = 013333 (RO) = 164444

NZVC NZVC
0110 1001

INC

INCB

INCREMENT OST 8052DD

15 : : - . : _ 06 05 00

011 0 0 1 0 1 0 j 0 OD

Operation: (dst) <-- (dst) + 1 _

Condition Codes: N: set if result is < 0; cleared otherwise

Z: set if result is 0; cleared otherwise
Vs: set if (dst) held 077777; cleared otherwise

Description:

C: not affected

Word: Add 1 to the contents of the destination.

Byte: Same.

Example: INC R2

Before After

(R2) = 000333 (R2) = 000334

NZVC NZVC

0000 0000

DEC

DECB
DECREMENT DST ®053DD

TE : ~ _ , _ : - 06 0s 00

011 0 0 0 1 0 1 0 1 1 - bo

Operation: (dst) <-- (dst) - l

Condition Codes: N: set if result is < 0; cleared otherwise

6-27

2: set if result is 0; cleared otherwise
V; set if (dst) was 100000; cleared otherwise
C: not affected

Description: Word: Subtract 1 from the contents of the
destination.
Byte: Same.

Example: DEC RS

Before After

(R5) = 000001 (R5) = 000000

NzvC NZVC
1000 0100

NEG

NEGB

NEGATE DST #05400

15 : ~ - - ' , 06 05 00

o/1 0 0 0 1 0 1 1 0 0 oO :

Operation: (dst) <-- - (dst)

Condition Codes: WN: set if result is < 0; cleared otherwise
Z: set if result is 0; cleared otherwise

V: set if result is 100000; cleared otherwise
C: cleared if result is 0; set otherwise

Description: Word: Replaces the contents of the destination
address by its 2°s complement. Note that 100000
is replaced by itself. (In 2°s complement
notation the most negative number has no

positive counterpart.)
Byte: Same.

Example: NEG RO

Before After

(RO) = 000010 (RO) = 177770

NZVC NZVC
0000 1001

TST
TSTB

TEST DST #05700

15 ; + 06 os 00

o/1 0 0 0 1 0 1 1 1 1 DD

Operation: (dst) <-- (dst)

6-28

Condition Codes:

Description:

N: set if result is < 0; cleared otherwise
Zz: set if result is 0; cleared otherwise
V: cleared

C: cleared

Word: Sets the condition codes N and 2 according
to the contents of the destination address; the
contents of dst remain unmodified.

Byte: Same.

Example: TST Rl

Before After

(Rl) = 012340 (Rl) = 012340

NZVC NZVC
0011 0000

WRTLCK

READ/LOCK DESTINATION
WRITE/UNLOCK RO INTO DESTINATION 0073DD

15 06 05 00
q { q 7 q } J y y J qT T 4d T

0 0 0 0 1 1 1 1 1 0 ‘OD
Laem , t ! | a , l a le \ }

Operation: (dst) <-- (RO)

Condition Codes:

Description:

N:

23

Ve:

C:

set if RO < 0
set if RO = 0
cleared
unchanged

Writes contents of RO into destination using

bus lock. If mode is 0, traps to 10.

TSTSET

TEST DESTINATION AND SET LOW BIT 0072DD

15 06 05 a0

q Ty T T | qT J i q | | J q oy

0 0 0 1 1 0 1 0 OD
len ab 1 \ | ! I L L ! 1 L J J

Operation: (RO) <-- (dst), (dst) <-- (dst) V 000001 (octal)

Condition Codes: N: set if RO < 0

Description:

Z3

Vs

C:

set if RO = 0

cleared
gets contents of destination bit 0.

Reads/locks destination word and stores it
in RO.

destination.
Writes/unlocks (RO) V1 into

If mode is 0, traps to 10.

6-29

6.3.4.2 Shifts And Rotates - Scaling data by factors of two is
accomplished by the shift instructions:

ASR -~ Arithmetic shift right

ASL -- Arithmetic shift left

The sign bit (bit 15) of the operand is reproduced in shifts to
the right. The low-order bit is filled with Os in shifts to the
left. Bits shifted out of the C bit, as shown in the _ following
instructions, are lost.

The rotate instructions operate on the destination word and the C
bit as though they formed a 17-bit "circular buffer." These
instructions facilitate sequential bit testing and detailed bit
manipulation.

ASR

ASRB

ARITHMETIC SHIFT RIGHT #06200

15 06 05 00

O/t 0 0 0 1 1 0 0 1 0 OD

L, at. 1 i) i coal

MA 11502

Operation: (dst) <-- (dst) shifted one place to the right

Condition Codes: N: set if high-order bit of result is set
(result < 0); cleared otherwise

Z: set if result = 0; cleared otherwise

V: loaded from exclusive OR of N bit and C bit
(as set by the completion of the shift
operation)

C: loaded from low-order bit of destination

Description: Word: Shifts all bits of the destination right
one place. Bit 15 is reproduced. The cC bit is
loaded from bit 0 of the destination. ASR
performs signed division of the destination by
2.
Byte: Same.

Example:

15
00 Tv ¥ qv T v TT T ¥ v F t T ,

a he _t i heemeeem a i 1 ben

BYTE:

16 O00 ADDRESS 08 07 EVEN AODRESS 00 TT T Tt vr Tt ¥ T ¥ T ¥ ¥ t T ¥

i 4 I i .. 1 1 tL t , ri i

wa S208

ASL

ASLB

ARITHMETIC SHIFT LEFT #06300

06 05 . 00

Operation:

Condition Codes:

Description:

MA 115190

(dst) <-- (dst) shifted one place to the left

N: set if high-order bit of result is set
(result < 0); cleared otherwise

Z: set if result = 0; cleared otherwise
V: loaded with exclusive OR of N bit and C bit

(as set by the completion of the shift
operation) ,

C: loaded with high-order bit of destination

Word: Shifts all bits of the destination left
one place. Bit 0 is loaded with a 0. The C bit
of the status word is loaded from the most
significant bit of the destination. ASL
performs a signed multiplication of the
destination by 2 with overflow indication.
Byte: Same.

Example:

WORD.
15 00

T “Te ms T —T T Y “T T T T “T" — T

¢ o— * 0

i. i ob i ft a!

BYTE:

16 O00 ADDRESS 08 07 EVEN ADDRESS 00
“T —~ —"— _ T T . Oe OE T y OE Tv q

co -_ rt 0 C a0
de L 1 bn ‘ 1 1 : I 1 dL a

MA O71)

ROR

RORB

ROTATE RIGHT O60DD
15 06 05 00

T T T T “T T T T T T T Tt T
O01 60 0 0 1 4 0 0 0 0 DD

jpemensem L J i Je 4 ! ! | LL i '

MA 116500

Operation: (dst) <-- (dst) rotate right one place

Condition Codes:

Description:

N: set if high-order bit of result is set
(result < 0); cleared otherwise

Z: set if all bits of result = 0; cleared
otherwise

V: loaded with exclusive OR of N bit and C bit

(as set by the completion of the rotate
Operation)

C: loaded with low-order bit of destination

Word: Rotates all bits of the destination right
one place. Bit 0 is loaded into the C bit and

the previous contents of the C bit are loaded

6-31

into bit 15 of the destination.
Byte: Same.

Example:

worRoD:

|
15 00

T Vv ¥ ¥ v qv oF qv v qT v v T q q

cf
de 1 _£ i 1 a . J td i i oi i

BYTE:

$ - \ _JS 7
15 08 07 00

OE 7 YT TT t ov OE "T ¥ T T T T om |

ObDDd EVEN

—_ Js aol i iS i A i _f. | L 4 i

MR 5213

ROL
ROLB

ROTATE LEFT 806100

15 06 OS 00
7 T r T J r T ¥ Vw r v vv qT as

o/1 0 0 0 1 4 0 0 0 1 0D

1 rv ; i i é 4 al a!

MA.11509

Operation: (dst) <-- (dst) rotate left one place

Condition Codes: N: set if high-order bit of result word is set
: | (result < 0); cleared otherwise

Z: set if all bits of result word = 0; cleared
otherwise

V: loaded with exclusive OR of the N bit and C
bit (as set by the completion of the rotate
operation)

C: loaded with high-order bit of destination

Description: Word: Rotates all bits of the destination left
one place. Bit 15 is loaded into the C bit of
the status word and the previous contents of the

C bit are loaded into bit 0 of the destination.
Byte: Same.

Example:

WORD:

15 DST 00
‘ Of ‘ TO 7 T r T —T "T —T 7 —“T T —=T

Cc he

doom ah — i I Il 1 a al t 1 a i i

BYTE:

C] C >

15 08 07 00
T “T T T "Y T "T Y 7 T ' Tt ‘ '

ODD EVEN

he L.. 1 ih _ L L t i dk

MA.5215

SWAB

SWAP BYTES 000300

15 06 05 00
q T TO” et ¥ t r ' t v x + qv y

0 0 0 0 0 0 0 0 1 1 00

on i i ah 4 Je " —" ‘ —~). r = r

MA-11508

Operation: byte l/byte 0 <-- byte O0/byte 1

Condition Codes: N: set if high-order bit of low-order byte (bit
7) of result is set; cleared otherwise

Z: set if low-order byte of result = 0; cleared

otherwise
V: cleared

C: cleared

Description: Exchanges high-order byte and low-order byte of

| the destination word. (The destination must be a
word address.)

Example: SWAB Rl

Before After

(Rl) = 077777 (Rl) = 177577

NZVC NZVC
1111 0000

6.3.4.3 Multiple-Precision - It is sometimes necessary to do

arithmetic operations on operands considered as multiple words or

bytes. The DCJ1l1 makes special provision for such operations with

the instructions ADC (add carry) and SBC (subtract carry) and

their byte equivalents.

For example, two 16-bit words may be combined into a 32-bit
double-precision word and added or subtracted as shown below.

6-33

32-BIT WORD

eee Ny

(— 7
31 16 «15 0

OPERAND Al AO

eae

{)
31 16 «15 0

OPERAND BI ‘ 80

31 16 «15 0

_ RESULT

MA-SQV7

Example:

The addition of -1 and -1 could be performed as follows.

-1 = 37777777777

(RL) = 177777. (R2) = 177777. (R3) = 177777 (R4) =
177777

ADD R1,R2
ADC R3
ADD R4,R3

After (Rl) and (R2) are added, 1 is loaded into the C bit.

The (R3) and (R4) are added.

l.
2. The ADC instruction adds the C bit to (R3); (R3) = 0.
3
4 The result is 37777777776, or -2.

ADC

ADCB

ADD CARRY ®055D0

15 T T T T er "T 06 Os 00

0.1 0 0 0 1 0 1 1 0 1 OD

i d 1 4 Jenene i ‘ i l | t

MA-11676

Operation: (dst) <-- (dst) + (C bit)

Condition Codes: N: set if result < 0; cleared otherwise
Z: set if result = 0: cleared otherwise
V: set if (dst) was 077777 and (C) was 1;

cleared otherwise
Cs: set if (dst) was 177777 and (C) was 1;

cleared otherwise

6-34

Description: Word: Adds the contents of the C bit to the
destination. This permits the carry from the
addition of the low-order words to be carried to
the high-order result. .
Byte: Same.

Example: Double-precision addition may be done with the
following instruction sequence.

ADD AO ,BO :add low-order parts
ADC Bl sadd carry into high-order
ADD Al,Bl ;add high-order parts

SBC
SBCB

SUBTRACT CARRY ®05600

15 , : - + 06 05 + + 00

o/1 0 0 0 1 0 1 1 1 0 DD

Operation: (dst) <-- (dst) - (C)

Condition Codes:

Description:

Example:

SXT

SIGN EXTEND

N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if (dst) was 100000; cleared otherwise
C: set if (dst) was 0 and C was 1; cleared

otherwise

Word: Subtracts the contents of the C bit from
the destination. This permits the carry from
the subtraction of two low-order words to be
subtracted from the high-order part of the
result.
Byte: Same.

Double-precision subtraction is done by:

SUB A0 ,BO
SBC Bl
SUB Al,Bl

006700

06 05 00

t T qT T T wv vT T wv ¥ T

 i L — 4, i _L i L 1 i

Operation:

Condition Codes:

Description:

MR.11574

(dst) <-- 0 if N bit is clear
(dst) <-- 1 if N bit is set

N: not affected
Z: set if N bit is clear

V: cleared

Cs: not affected

If the condition code bit N is set, a -1 is

6-35

Example:

placed in the destination operand; if the N bit
is clear, a 0 is placed in the destination
operand. This instruction is particularly
useful in multiple-precision arithmetic because
it permits the sign to be extended through
multiple words.

SXT A

Before After

(A) = 012345 (A) = 177777

NZVC NZVC

1000 1000

6.3.4.4 PS Word Operators -

MF PS

MOVE BYTE FROM PROCESSOR STATUS WORD 106700

15 08 07 00

{ 0 0 1 1 6 1 j 1 DD

Operation: (dst) <-- PS
dst lower 8 bits

Condition Codes: WN: set if PS <7> = 1; cleared otherwise
Zz: set if PS <7:0> = 0; cleared otherwise

Description:

Example:

MTPS

MOVE BYTE TO PROCESSOR STATUS WORD

V: cleared
C: not affected

The 8-bit contents of the PS are moved to the
effective destination. If the destination is
mode 0, PS bit 7 is sign-extended through the
upper byte of the register. The destination
operand address is treated as a byte address.

MFPS RO

Before After

RO [0] RO [000014]
PS [000014] PS [000000]

Operation:
MA.11496

PS <-- (src)

Condition Codes: Set according to effective SRC operand bits
<3:0>

Description: The eight bits of the effective operand replace
the current contents of the lower byte of the
PS. The source operand address is treated as a
byte address, Note: The T bit (PS bit 4)
cannot be set with this instruction. The SRC
operand remains unchanged. This instruction can
be used to change the priority bits (PS bits
<7:5>) in the PS only in kernel mode. If not in
kernel mode, PS bits <7:5> cannot be changed.

Example: MTPS Rl

Before After

(Rl) = 000777 (Rl) = 000777
(PS) = XxXxo00 (PS) = XXX357

NZVC NZVC

0000 1111

6.3.5 Double-Operand Instructions - Double-operand instructions
save instructions (and time) since they eliminate the need for
"load" and "save" sequences such as those used in

accumulator-oriented machines.

MOV
MOVB

MOVE SOURCE TO DESTINATION ®1SSOD

15 12 ia) 06 05 oo r T ™ rT r T “Tr “YT “Y Tv 3 ' ‘
o/1 0 0 1 SS DD

—- i 1 i i b L 1 L hes des

MR-99407

Operation: (dst) <-- (src)

cleared otherwise
cleared otherwise

Condition Codes: N: set if (Src)
Z: set if (src)

V: cleared
C: not affected

tl
A

o
o

=
e

Oe

Description: Word: Moves the source operand to the
destination location. The previous contents of
the destination are lost. Contents of the
source address are not affected.
Byte: Same as MOV. The MOVB to a register
(unique among byte instructions) extends the
most significant bit of the low-order byte (sign

6-37

Example:

CMP
CMPB

COMPARE SRC TO OST

15

extension). Otherwise, MOVB operates on bytes
exactly as MOV operates on words.

MOV XXX,R1 sloads register l
with the contents of
memory location; XXX
represents a
programmer-defined
mnemonic used to

represent a memory
location

MOV #20,R0 sloads the number 20
, into register 0; #
indicates that the
value 20 is the
operand

MOV @#20,-(R6) spushes the operand

MOV (R6)+,@#177566

contained in location
20 onto the stack

;pops the operand off
a stack and moves it
into memory location
177566 (terminal
print buffer)

MOV R1,R3 ;performs an
inter-register
transfer

MOVB @#177562,@#177566 smoves a character

from the terminal
keyboard buffer to
the terminal printer
buffer

#2SSDD

WW 06 05 00

T T

of 0 1

L.

qT

T wv qT - oF t ' y me v

 i I L L L 1 lL L i ft

Operation:

Condition Codes:

MR.11562

(src) - (dst)

Ns:

Z:

Vi:

set if result < 0; cleared otherwise
set if result = 0; cleared otherwise
set if there was arithmetic overflow; that
is, operands were of opposite signs and the
sign of the destination was the same as the
sign of the result; cleared otherwise
cleared if there was a carry from the
result’s most significant bit; set otherwise

6-38

Description:

ADD

AOD SRC TO DST ©

Compares the source and destination operands and
sets the condition codes, which may then be used
for arithmetic and logical conditional branches.
Both operands are not affected. The only action
is to set the condition codes. The compare is
customarily followed by a conditional branch
instruction. Note: Unlike the subtract
instruction, the order of operation is
(src) - (dst), not (dst) - (sre).

Operation:

Condition Codes:

Description:

MR.11663

(dst) <-- (src) + (dst)

N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow as a

result of the operation; that is, both
operands were of the same sign and the result
was of the opposite sign; cleared otherwise

C: set if there was a carry from the result’s
most significant bit; cleared otherwise

Adds the source operand to the destination
operand and stores the result at the destination
address. The original contents of the
destination are lost. The contents of the
source are not affected. Two’s complement
addition is performed. Note: There is no
equivalent byte mode.

Example: Add to register: ADD 20,R0

Add to memory: ADD R1,XXX

Add register to register: ADD R1,R2

Add memory to memory: ADD @#17750,XXxX

XXX is a programmer-defined mnemonic for a
memory location,

SUB

SUBTRACT SRC FROM DST . 16SS00

15 12 1 : : + 06 05 00

1 1 1 0 ss DOD

Operation: (dst) <-- (dst) - (src)

6-39

Condition Codes: set if result < 0; cleared otherwise
set if result = 0; cleared otherwise
set if there was arithmetic overflow as a
result of the operation; that is, if operands
were of opposite signs and the sign of the
source was the same as the sign of the
result; cleared otherwise

C: cleared if there was a carry from the
result”’s most significant bit; set otherwise

<
N
Z

Description: Subtracts the source operand from the
destination operand and leaves the result at
the destination address. The original
contents of the destination are lost. The
contents of the source are not affected. In
double-precision arithmetic the C bit, when
set, indicates a "borrow." Note: There is no
equivalent byte mode.

Example: SUB R1,R2

Before After

(R1) = 011111 (Rl) = 011111
(R2) = 012345 (R2) = 001234

NZVC NZVC
1111 0000

ASH
ARITHMETIC SHIFT 072RSS

15 09 08 06 05 00
T T T t f T t T T T ul oT

0 1 1 1 0 1 0 R SS
L i a! j | i sh { i have ak

Operation:

Condition Codes:

Description:

ASHC

HAAR.11660

R <-- R shifted arithmetically NN places to
the right or left where NN = (src)

N: set if result < 0
Z: set if result = 0

V: set if sign of register changed during shift
C: loaded from last bit shifted out of register

The contents of the register are shifted right
or left the number of times specified by the
source operand. The shift count is taken as the
low-order six bits of the source operand. This
number ranges from -32 to +31. Negative is a
right shift and positive is a left shift.

6-40

ARITHMETIC SHIFT COMBINED B073ASS

09 08 06 05 00

Operation:.

Condition Codes:

Description:

MA-11661

R, R V 1 <-- Ry RV 1

The double word is shifted NN places to the
right or left where NN = (src)

N: set if result < 0
set if result = 0
set if sign bit changes during shift
loaded with high-order’ bit when left shift;
loaded with low-order bit when right shift
(loaded with the last bit shifted out of
the 32-bit operand)

a
a
n

The contents of the register and the register
ORed with 1 are treated as one 32-bit word.
Rvl (bits<15:0>) and R (bits<31:16>) are
shifted right or left the number of times
specified by the shift count. The shift count
is taken as the low-order six bits of the
source operand. This number ranges from -32
to +31. Negative is a right shift and positive
is a left shift.

When the register chosen is an odd number, the
register and the register ORed with 1 are the
same. In this case, the right shift becomes a
rotate. The 16-bit word is rotated right the
number of times specified by the shift count.

MUL

MULTIPLY O70RSS

th 99 o8 06 0S 00

“T T T T 7 T T T T —T T T
0 1 1 1 0 0 0 R ss

el 1 i _

Operation: R, RV ll <-- Rx (src)

Condition Codes:

Description:

N: set if product < 0
Z: set if product = 0
V3: cleared
C: set if the result is less than -2 ** 15

Or greater than or equal to 2 **15 - l.

The contents of the destination register and
source taken as 2°s complement integers are
multiplied and stored in the destination
register and the succeeding register, if R is

even. If R is odd, only the low-order product
is stored. Assembler syntax is: MUL S,R.
(Note that the actual destination is R, Rv l,
which reduces to just R when R is odd.

6-41

DIV

071RSS

DIVIDE

Ss 09 08 06 05 00
qT ¥ q a t } y q ' q ' T

0 1 1 1 0 0 1 R ss
i aaa! I | { LL i

Operation: R, RV1l <-- R, RV 1/(src)

Condition Codes: N: set if quotient < 0
Z: set if quotient = 0
V: set if source = 0 or if the absolute value

of the register is larger than the absolute

Description:

value of the instruction in the source. (In

this case the instruction is aborted because
the quotient would exceed 15 bits.)

C: set if divide by zero is attempted.

The 32-bit 2°s complement integer in R and
Rv lis divided by the source operand. The
quotient is left in R; the remainder is of the
same sign as the dividend. R must be even.

6.3.5.2 Logical - These instructions have the same format a
those in the double-operand arithmetic group. They permi
operations on data at the bit level.

BIT

BITB

BIT TEST . a3SS0D

15 12 11 06 05 oo

oO” 0 1 1 SS OD

Operation: (src) /\ (dst) |

Condition Codes:

Description:

N: set if high-order bit of result set; cleared

otherwise
Z2: set if result = 0;
V: cleared

C: not affected

cleared otherwise

Performs logical AND comparison of the source

and destination operands and modifies condition
codes accordingly. Neither the source nor the
destination is affected. The BIT instruction
May be used to test whether any of the |
corresponding bits set in the destination are
also set in the source, or whether all
corresponding bits set in the destination are
clear in the source.

Example: BIT #30,R3 stest bits three and four of R3
to see if both are off.

R3 = 0 000 000 000 011 000

Before After

NZVC NZVC
1111 0001

BIC
BICB

BIT CLEAR 84SS0D

15 12 u 06 08 , ¥ T T 0

O14) 0 ss DD

Operation: (dst) <-- ~(sre) A (dst)

Condition Codes: N: set if high-order bit of result set; cleared
otherwise

Z: set if result = 0; cleared otherwise
V: cleared
C: not affected

Description: Clears each bit in the destination that
corresponds to a set bit in the source. The
original contents of the destination are lost.
The contents of the source are not affected.

Example: BIC R3,R4

Before After

(R3) = 001234 (R3) = 001234
(R4) = 001111 (R4) = 000101

NZVC NZVC

1111 0001

Before: (R3).= 0 000 001 010 011 100
(R4) = 0 000 001 001 001 O01

After: (R4) = 0 000 000 001 000 001

BIS

BISB

BIT SET e5SSDD

15 12 11 . _ 06 05 : ; : ~ : 00

0.1 1 0 SS OD

Operation: (dst) <-- (src) \V/ (dst)

6-43

Condition Codes:

Description:

Example:

XOR

EXCLUSIVE OR

N: set if high-order bit of result set; cleared
otherwise

Z: set if result = 0; cleared otherwise
V: cleared
C: not affected

Performs an inclusive OR operation between the
source and destination operands and leaves the
result at the destination address; that is,
corresponding bits set in the source are set in
the destination. The contents of the
destination are lost.

BIS RO,R1

Before After

(RO) = 001234 (RO) = 001234

(R1) = 001111 (R1) = 001335

NZVC NZVC

0000 0000

Before: (RO)

(R1)
0 000 001 010 011 100
0 000 001 001 001 001

After: (R1) 0 000 001 O11 011 101

074RDO

09 08 06 05 00

qv T T qT T v r r OF oT

 1 1 4 4 4 4 t i 1

Operation:

Condition Codes:

Description:

Example:

MAR.11659

(dst) <-- (reg) 4‘ (dst)

N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: not affected

The exclusive OR of the register and destination
operand is stored in the destination address.
The contents of the register are not affected.
The assembler format is XOR R,D.

XOR RO,R2

Before After

(RO) = 001234 (RO) = 001234
(R2) = 001111 (R2) = 000325

NZVC | , Nzvc
1111 0001

0 000 001 010 011 100
0 000 001 001 001 001

Before: (RO)

(R2)

After: (R2) = 0 000 000 011 010 101

6.3.6 Program Control Instructions - The following paragraphs
describe the DCJ11 instructions that affect program control.

6.3.6.1 Branches - These instructions cause a branch to a
location defined by the sum of the offset (multiplied by 2) and
the current contents of the program counter if:

l. The branch instruction is unconditional.

2. It is conditional and the conditions are met after
testing the condition codes (NZVC).

The offset is the number of words from the current contents of the

PC, forward or backward. Note that the current contents of the PC

point to the word following the branch instruction.

Although the offset expresses a byte address, the PC is expressed
in words. The offset is automatically multiplied by 2 and
Sign-extended to express words before it is added to the PC. Bit
7 is the sign of the offset. If it is set, the offset is negative
and the branch is done in the backward direction. If it is not
set, the offset is positive and the branch is done in the forward
direction.

The 8-bit offset allows branching in the backward direction by 200
(octal) words (400 octal bytes) from the current PC, and in the
forward direction by 177 (octal) words (376 octal bytes) from the
current PC.

The DCJ11 assembler typically handles address arithmetic for the
user and computes and assembles the proper offset field for branch
instructions in the form:

Bxx loc

Bxx is the branch instruction and loc is the address to which the
branch is to be made. The assembler gives an error indication in
the instruction if the permissible branch range is exceeded.
Branch instructions have no effect on condition codes.
Conditional branch instructions where the branch condition is not
met are treated as NOPs.

BR

BRANCH (UNCONDITIONAL) 000400 PLUS OF FSET

0 0 0 0 0 0 0 \ OFFSET
be ok 1 J i j L. i i td fi La i and

MR 523)

Operation:

Condition Codes:

PC <-- PC + (2 X offset)

Not affected

Description: Provides a way of transferring program control
within a range of -128 to +127 words with a
one word instruction.

New PC address = updated PC + (2 X offset)

Updated PC = address of branch instruction +2

Example: With the branch instruction at location 500, the
following offsets apply.-

New PC Address Offset Code Offset (decimal)

474 375 93
476 376 -2
500 377 -l
502 000 0
504 001 +1]
506 002 +2

BNE
BRANCH IF NOT EQUAL (TO ZERO) 001000 PLUS OFFSET

15 08 07 00

oO 9 0 oO 1 0 OFFSET oe

Operation: PC <-- PC + (2 x offset) if Z = 0

Condition Codes:

Description:

Example:

Not affected

Tests the state of the Z bit and causes a branch
if the Z bit is clear. BNE is the complementary
operation of BEQ. It is used to test: (1)
inequality following a CMP, (2) that some bits
set in the destination were also in the source
following a BIT operation, and (3) generally,
that the result of the previous operation was
not Q.

Branch to C if A # B

CMP A,B ;compare A and B
BNE C ;branch if they are not equal

Branch to C if A +B #0

ADD A,B sadd A to B

BNE C sbranch if the result is not
equal to 0

BEQ

BRANCH JF EQUAL (TO ZERO) 001400 PLUS OFFSET

15 08 07 00
oT v 7 TT J 1 T OF ¥ TT v T a q

0 0 0 0 0 1 1 OFFSET

LL od d rl 1 i 1 1 4 l l i ob

Operation:

Condition Codes:

Description:

MR §233

PC <-- PC + (2 X offset) if 2 = 1

Not affected |

Tests the state of the Z bit and causes a branch
if Z is set. It is used to test: (1) equality
following a CMP operation, (2) that no bits set
in the destination were also set in the source

following a BIT operation, and (3) generally,
that the result of the previous operation was 0.

Example: Branch to C if A = B (A - B = 0)

CMP A,B ;compare A and B

BEQ C sbranch if they are equal

Branch to C if A +B = 0

ADD A,B / sadd A to B

BEQ C branch if the result = 0

BPL

BRANCH IF PLUS 100000 PLUS OFFSET

15 08 or; 00

1 0 0 0 0 0 0 0 , OFFSET

Operation: PC <-- PC + (2 X offset) if N = 0 _—

Condition Codes:

Description:

Not affected

Tests the state of the N bit and causes a branch
if N is clear (positive result). BPL is the
complementary operation of BMI.

BMI

BRANCH IF MINUS 100400 PLUS OF FSET

15 08 07 00
T Tv tr - T q TT mi v qv ma ¥ v oF

1 0 0 0 0 0 0 1 OFFSET

i I he a a | i I L 4 A

MR $235

Operation: PC <== PC + (2 X offset) if N=1

Condition Codes:

Description:

Not affected

Tests the state of the N bit and causes a branch
if N is set. It is used to test the sign (most

6-47

Significant bit) of the result of the previous

operation), branching if negative. BMI is the
complementary function of BPL.

BVC

BRANCH IF OVERFLOW IS CLEAR 102000 PLUS OF FSET

15 08.0? 00

1 0 0 a) 1 0 0 OFFSET

MR-5236

Operation: PC <-~ PC + (2 X offset) if V = 0

Condition Codes:

Description:

BVS

BRANCH IF OVERFLOW 'S

Not affected

Tests the state of the V bit and causes a branch
if the V bit is clear. BVC is complementary
operation to BVS.

SET 102400 PLUS OFFSET

08 07 00
' ——

OFFSET

J i i i

Operation:

Condition Codes:

Description:

BCC

MR 523?

PC <-- PC + (2 X offset) if V=l

Not affected

Tests the state of the V bit (overflow) and

causes a branch if V is set. BVS is used to

detect arithmetic overflow in the previous
operation.

103000 PLUS OFFSET BRANCH if CARRY IS CLEAR

08 07 00

1 0 0 0 0 } 1

0

T

of

T

ed

v

4.

J

OFFSET

a"

oF t q

 onl

Operation:

Condition Codes:

Description:
if C is clear.

Not affected

BCC is

operation of BCS.

BCS
BRANCH IF CARRY [5 SET

PC <-- PC + (2 x offset) if C
MA 5236

= 0

Tests the state of the C bit and causes a branch

the complementary

103400 PLUS OF FSET

“00

T

ad,

T

OFFSET

ak

+ T T

 i

MR 5239

Operation: PC <-- PC + (2 X offset) if C= 1

Condition Codes: Not affected

Description: Tests the state of the C bit and causes a branch
if C is set. It is used to test for a carry in

the result of a previous operation.

6.3.6.2 Signed Conditional Branches - Particular combinations of
the condition code bits are tested with the signed conditional
branches. These instructions are used to test the results of
instructions in which the operands were considered as signed (2°s
complement) values.

Note that the sense of signed comparisons differs from that of
unsigned comparisons in that in signed, 16-bit, 2°s complement
arithmetic the sequence of values is as follows.
largest . 077777
positive 077776

000001
000000
177777
177776

smallest 100001

negative 100000

Whereas, in unsigned, 16-bit arithmetic, the sequence is

considered to be:

highest — 177777

000002
000001

lowest 000000

BGE

BRANCH IF GREATER THAN OR EQUAL 002000 PLUS OF FSET
(TO ZERO)

15 0807 | 00
T “T “"T — T T T t ¥ y qv q oT

0 oO 0 0 1 0 Oo OFFSET
ad ab. b 4 _~d. I I 7 1

MAR5240

Operation: PC <-- PC + (2 X offset) if NAA V = 0

Condition Codes:

Description:

BLT

BRANCH IF LESS THAN (ZERO)

Not affected

Causes a branch if N and V are either both clear
or both set. BGE is the complementary operation
of BLT. Thus, BGE will always cause a branch
when it follows an operation that caused
addition of two positive numbers. BGE will also
cause a branch on a0 result.

002400 PLUS OFFSET

08 0? 00

T T 7 T T Y —T T T —T Y

OFFSET

a _} } . i ‘ aah

Operation:

Condition Codes:

Description:

MAR S2a)

PC <=- PC + (2 x offset) if NAZV=1

Not affected

Causes a branch if the exclusive OR of the N and
V bits is one. Thus, BLT will always branch

following an operation that added two negative
numbers, even if overflow occurred. In
particular, BLT will always cause a branch if it
follows a CMP instruction operating on a
negative source and a positive destination (even
if overflow occurred). Further, BLT will never
cause a branch when it follows a CMP instruction
operating on a positive source and negative
destination. BLT will not cause a branch if the

result of the previous operation was 0 (without
overflow).

BGT

BRANCH IF GREATER THAN (ZERO) 003000 PLUS OFFSET

15 08 07 00
—— T T T T “T T T “T" T “—“T’ tT “tT “"T

0. 0 0 0 0 1 1 0 OFFSET

= rl ae ft _{ tL ek J 5 i L i i

e
MR 5242

Operation: PC <-- PC + (2 X offset) if 2 \V/ (N XJ V)

Condition Codes:

Description:

= 0

Not affected

Operation of BGT is similar to BGE, except that
BGT will not cause a branch on a0 result.

6-50

BLE
BRANCH IF LESS THAN OR EQUAL (TO ZERO) 003400 PLUS OFFSET

08 07 00

18

oO 0 OOO OFFSET
a L i lL 1 1 4 4 . . 1

Operation: PC <-- PC + (2 X offset) if 2 \/ (NAfv)"

Condition Codes:

Description:

6.3.6.3 Unsigned Conditional Branches - The unsigned

=]

Not affected

Operation is similar to BLT, but in addition
will cause a branch if the result of the
previous operation was 0.

conditional

branches provide a means for testing the result of comparison

operations in which the operands are considered as unsigned

values,

BHI
BRANCH IF HIGHER 101000 PLUS OFFSET

15 , 08 07 00
T T ——T Tt T T T ~T T Tv ul T ——7 T

1 0 0 0 0 0 } 0 OFFSET

auadon 1 1 jh m 4 J ft i a 1

Operation:

Condition Codes:

Description:

MA 8244

PC <-- PC + (2 XK offset) if C = 0 and Z2 = U

Not affected

Causes a branch if the previous operation caused
neither a carry nor a0 result. This will
happen in comparison (CMP) operations as long as
the source has a higher unsigned value than the
destination.

BLOS
BRANCH IF LOWER OR SAME 101400 PLUS OFFSET

15 os 07, 00
qv v “T- “T T T T T Y ~ 7 mn rT

1 0 0 0 0 0 1 1 OFFSET
ah ah i i L ah i 1 a | . ra i

. . MA 8245

Operation: PC <-- PC + (2 X offset) if C \/f/2Z2=1

Condition Codes:

Description:

Not affected

Causes a branch if the previous operation caused
either a carry or aO result. BLOS is the
complementary operation of BHI. The branch will
occur in comparison operations as long as the
source is equal to or has a lower unsigned value
than the destination.

6-51

BHIS

BRANCH IF HIGHER OR SAME 103000 PLUS OFFSET

15 08 07? 00
T 7 T oT T 1 q FT T Tv t ¥ v |

1 0 0 0 0 1 1 0 OFFSET

4 -_ i i al i it L - 1 ool

SAR 59246

Operation: PC <-—- PC + (2 x offset) if C = 0

Condition Codes: Not affected

Description: , BHIS is the same instruction as BCC. This
mnemonic is included for convenience caly.

BLO

BRANCH IF LOWER 103400 PLUS OFFSET

15 08 07 00
oT ¥ Tt ov qT oF T t t T T ¥ 7 J

1 0 0 0 6 7 1 1 OFFSET

de aah mal lL I i we al i t i ake 7s

MR 5247

Operation: PC <-- PC + (2 X offset) if C = 1

Condition Codes: Not affected

Description: BLO is the same instruction as BCS. This
mnemonic is included for convenience only.

6.3.6.4 Jump And Subroutine Instructions - The subroutine call in
the DCJ11 provides for automatic nesting of subroutines,
reentrancy, and multiple entry points. Subroutines may call other
subroutines (or indeed themselves) to any level of nesting without
making special provision for storage of return addresses at each
level of subroutine call. The subroutine calling mechanism does
not modify any fixed location in memory, and thus’ provides for
reentrancy. This allows one copy of a subroutine to be shared
among several interrupting processes.

JMP

JUMP 0001DD

15 06 05 00
7 of v T 7 + T T Tv ¥ 7 T T T

0) 0) 0) 0 0 0 1 DD
a 4 L L i i L i 1

MR £1555

Operation: PC <-- (dst)

Condition Codes: Not affected

Description: JMP provides more flexible program branching
than the branch instructions do. Control may be
transferred to any location in memory (no range
limitation) and can be accomplished with the
full flexibility of the addressing modes, with
the exception of register mode 0. Execution of

6-52

a jump with mode 0 will cause an "illegal
instruction" condition, and will cause the CPU
to trap to vector address four. (Program

control cannot be transferred to a register.)
Register-deferred mode is legal and will cause
program control to be transferred to the address
held in the specified register. Note that
instructions are word data and must therefore be
fetched from an even-numbered address.

Deferred-index mode JMP instructions permit
transfer of control to the address contained in

a selectable element of a table of dispatch
vectors.

Example: | First:

JMP FIRST transfers to FIRST

JMP @LIST stransfers to location
pointed to at LIST

List:

FIRST ;pointer to FIRST

JMP @(SP)+ ;transfer to location
pointed to by the top of

the stack, and remove the
pointer from the stack

JSR
JUMP TO SUBROUTINE 004R0D

15 ; : 09 08 06 0s 00

0 0 0 0 1 0 0 R DD

Operation: (tmp) <-- (dst) (tmp is an internal processor
register)

(SP) <-- reg (Push reg contents onto processor
stack)

reg <-- PC (PC holds location following JSR; this
address now put in reg)

PC <-- (dst) (PC now points to subroutine
destination) :

Description: In execution of the JSR, the old contents of the
specified register (the "linkage pointer") are
automatically pushed onto the processor stack
and new linkage information is placed in the
register. Thus, subroutines nested within
Subroutines to any depth may all be called with

6-53

Example:

SBCALL:
SBCALL+4:

SBCALL+2+2M:

CONT:

SBR:

the same linkage register. There is no need
either to plan the maximum depth at which any
particular subroutine will be called or to
include instructions in each routine to save and
restore the linkage pointer. Further, since all
linkages are saved in a reentrant manner on the

processor stack, execution of a subroutine may
be interrupted. The same subroutine may be
reentered and executed by an interrupt service
routine. Execution of the initial subroutine
can then be resumed when other requests are
satisfied. This process (called "nesting") can
proceed to any level. |

‘A subroutine called with a JSR reg,dst
instruction can access the arguments following
the call with either autoincrement addressing,
(reg) +, if arguments are accessed sequentially,
or by indexed addressing, X(reg), if accessed in
random order. These addressing modes may also
be deferred, @(reg)+ and @X(reg), if the
parameters are operand addresses rather than the
operands themselves.

JSR PC, dst is a special case of the DCJ1l
subroutine call suitable for subroutine calls
that transmit parameters through the general
registers. The SP and the PC are the only
registers that may be modified by this call.

Another special case of the JSR instruction is
JSR PC,@(SP) +, which exchanges the top element
of the processor stack with the contents of the
program counter. This instruction allows two
routines to swap program control and resume
Operation from where they left off when they are

recalled. Such routines are called "coroutines."

Return from a subroutine is done by the RTS
instruction. RTS reg loads the contents of reg
into the PC and pops the top element of the
processor stack into the specified register.

. R5 R6 R7
JSR R5,SBR #1 n SBCALL

ARG 1l

ARG 2

ARG M

Next Instruction #1 n CONT

MOV (R5)+,dst 1 SBCALL+4 n-2 SBR
MOV (R5)+,dst 2

MOV (R5)+,dst M SBCALL+ 2+ 2M
Other Instructions CONT

EXIT: RTS R5 CONT n-2 EXIT

JSR R5, SBR

JEFORE. (PC) RR? PC STACK

JSR PC, SBR

(SP} RE n DATAO BEFORE: (PC) R7 PC | STACK

(SP)

R5 #1

METER: R7 SBR AFTER: R7 | SBR

DATAO DATAO

R6 n-2 21 R6 n-2 PC+2

MA.B260

R5 PC+2

RTS

RETURN FROM SUBROUTINE . 00020R

15 - ' , + . . 03 02 00

0 0 0 0 0 0 0 0 1 0 0 0 0 R

Operation: PC <-- (reg)
(reg) <-- (SP)

Description: Loads the contents of the register into PC and
pops the top element of the processor stack into
the specified register.

Return from a nonreentrant subroutine is
typically made through. the same register that
was used in its call. Thus, a Subroutine called
with a JSR PC, dst exits with a RTS PC and a
subroutine called with a JSR RS, dst, may pick
up parameters with addressing modes (R5) +,

X(R5), or @X(R5) and finally exits, with an RTS
R5 e

Example: RTS R5

6-55

RTS R5

STACK

BEFORE: (PC) R7 SBR

DATAO

(SP) R6 n #1

R5 PC

AFTER. R? PC

R6 n+2 DATAO

R§ #1

MAR-82852

SOB
SUBTRACT ONE AND BRANCH (IF # 0) 077ANN

15 : 09 08 06 05 00

0 ' 1 1 1 ! 1 R OFFSET
Je ‘i 1 aj 1 i 1 1 1 lL | L i

MWA 11562

Operation: (R) <-- (R) - 1; if this result # 0, then PC
<-- PC - (2 x offset); if (R) = 0 then PC <--

PC

Condition Codes: Not affected

Description: The register is decremented. If the contents
does not equal 0, twice the offset is subtracted
from the PC (now pointing to the following
word). The offset is interpreted as a 6-bit
positive number. This instruction provides a
fast, efficient method of loop control. The
assembler syntax is SOB R,A where A is the
address to which transfer is to be made if the
decremented R is not equal to 0. Note: the SOB
instruction cannot be used to transfer control
in the forward direction.

6.3.6.5 Traps - Trap instructions provide for calls to emulators,
I/O monitors, debugging packages, and user-defined interpreters.
A trap is effectively an interrupt generated by software. When a
trap occurs, the contents of the current program counter (PC) and
processor status word (PS) are pushed onto the processor stack and
replaced by the contents of a 2-word trap vector containing a new
PC and new PS. The return sequence from a trap involves executing
an RTI or RTT instruction, which restores the old PC and old PS by
popping them from the stack. Trap instruction vectors are located

6-56

at permanently assigned fixed addresses.

EMT

EMULATOR TRAP
104000104377

2, - — 08.07
00

1 0 0 0 1 0 0 0

Operation: (SP) <-- PS
MA.5254

(SP) <-- PC
PC <=-- (30)

PS <-- (32)

Condition Codes:

Description:

BEFORE:

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

All operation codes from 104000 to 104377 are
EMT instructions and may be used to transmit
information to the emulating routine (e.g.,
function to be performed). The trap vector for
EMT is at address 30. The new PC is taken from
the word at address 30; the new processor status
(PS) is taken from the word at address 32.

CAUTION: EMT is used frequently by DIGITAL
system software and is therefore not recommended
for general uSe.

PS PS 1

PC PCT STACK

AFTER. PS (32)

PC (30) DATA 1

PS 1

 SP n-4 PC 1
MA-8255

TRAP
TRAP

104400- 104777

00

qv T

Operation:

Condition Codes:

Description:

'
PC
PS

Ns:

Z:

tom

~-—

<-- PS
<-- PC
(34)
(36)

loaded from trap
loaded from trap

vector

vector

vector

vector

V: loaded from trap
C: loaded from trap

Operation codes from 104400 to 104777 are TRAP

instructions. TRAPs and EMTs are identical in
operation, except that the trap vector for TRAP

is at address 34.

NOTE: Since DIGITAL software makes frequent use
of EMT, the TRAP instruction is recommended for
general use.

BPT

BREAKPOINT TRAP 000003

15 00

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

he b l tL a 1 i r" 1

Operation: (SP) <-- PS
(SP) <-- PC

PC <-- (14)
PS <-- (16)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Performs a trap sequence with a trap vector
address of 14. Used to call debugging aids.
The user is cautioned against employing code
000003 in programs run under these debugging

aids. (No information is transmitted in the low
byte.)

IoT

INPUT/OUTPUT TRAP 000004

15 00
T T T 7 ft qt Tv mi 7 v Tv y T J q

0 0 0 0 0 0 0 0 0 4) 0 0 0 1 0 0
h és d st i i S i 4 . 1 1

.
MAR 5256

Operation: (SP) <-- PS
(SP) <-- PC

6-58

PC <=~ (20)
PS <-- (22)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Performs a trap sequence with a trap vector
address of 20. (No information is transmitted in
the low byte.)

RTI

RETURN FROM INTERRUPT 000002

16 00
T oF F TT TT TT oF T T ¥ T FT OF T v

0 0 0 0 0 0 0) 0 0) 0 0) 1 0
he aT 1 J ab i i L a a

Operation: PC <-=+ (SP) mineees
PS <-- (SP)

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: Used to exit from an interrupt or TRAP service
. routine. The PC and PS are restored (popped)

from the processor stack. If the RTI sets the
T bit in the PS, a trace trap will occur prior
to executing the next instruction. When
executed in supervisor mode, the current and
previous mode bits in the restored PS cannot
be kernel. When executed in user mode, the
current and previous mode bits in the restored

PS can only be user. RTI cannot clear PS bit
ll if it was already set.

RTT

RETURN FROM TRAP 000006

15 00
rT v t VO T qT qT T J v t | 4g bs oy

Q 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0

t t L L at of 4 i i 1 i 1

AA-8760

Operation: PC <-- (SP)

PS <-- (SP)

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
Cs: loaded from processor stack

Description: Operation is the same as RTI except that it
inhibits a trace trap whereas RTI permits a
trace trap. If the new PS has the T bit set,

6-59

a trap will occur after execution of the first
instruction after RTT. When executed in
Supervisor mode, the current and previous mode
bits in the restored PS cannot be kernel.
When executed in user mode, the current and
previous mode bits in the restored PS can only
be user. RTT cannot clear PS bit 11 if it was
already set.

6.3.6.6 Miscellaneous Program Control -

MARK

O064NN

06 05 00

Operation:

Condition Codes:

Description:

Example:

MA11566

SP <-- PC + 2 x NN
PC <=- R5
RS <-- (SP)+

NN = number of parameters

N: unaffected

2: unaffected
V: unaffected
C: unaffected

Used as part of the standard subroutine return
convention. MARK facilitates the stack clean-up
procedures involved in subroutine exit.
Assembler format is: MARK N.

MOV R5,-(SP) ;place old R5 on stack
MOV P1,-(SP) ;place N parameters on
MOV P2,-(SP) the stack to be used

;there by the subroutine
MOV PN,- (SP)

MOV =MARKN,-(SP) ;place the instruction
;MARK N on the stack

MOV SP,R5 :set up address at MARK N
zinstruction

JSR PC,SUB ;jump to subroutine

At this point the stack is as follows:

OLD R5

Pi

PN

MARK N

OLD PC MR-11869

And the program is at the address SUB which

is the beginning of the subroutine.

6-60

SUB: execution of the
;Subroutine itself

RTS RS sthe return begins:
this causes the contents
;0f R5 to be placed in the
*PC which then results in
sthe execution of the

sinstruction MARK N. The
scontents of the old PC
sare placed in RS.

MARK N causes: (1) the stack pointer to be
adjusted to point to the old R5 value; (2) the
value now in R5 (the old PC) to be placed in
the PC; and (3) contents of the old R5 to be
popped into R5 thus completing the return from
subroutine.

NOTE
If memory management is in use, the stack
must be mapped through both I and D space
to execute the MARK instruction.

SPL

SET PRIORITY LEVEL 00023N

15 ~ 03 02 00
q ' t qT t t q T oT t qT q q q

0 0 0 0 0 0 0 0 1 0 0 1 1 N
= \) ! L | — i i | { { 1 r

MR 11967

Operation: PS bits <7:5> <-- priority
(priority = N)

Condition Codes: N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: In kernel mode, the least significant

three bits of the instruction are loaded
into the processor status word (PS) bits
<7:5>, thus causing a changed priority.
The old priority is lost. In user or
Supervisor modes, SPL executes as a NOP.

Assembler syntax is: SPL N

CSM

CALL TO SUPERVISOR MODE . 0070D0

15 06 05 00
t 7 T T T T T T T | T 7 T

0 0. a) 0 1 1 1 0 0 0 DD
L | { | | | i 1 1 { f L \ J

wR 11668

6-61

Operation: | If MMR3 bit 3 = 1 and current
mode = kernel then
Supervisor SP <-- current mode SP

temp<15:4> <-- PS<15:4>
temp<3:0> <-- 0
PS<13:12> <-- PS<15:14>
PS<15:14> <-- O01
PS 4 <-- 0
-~(SP) <-- temp
-~(SP) <~=- PC

-(SP) <-- (dst)

PC <=- (10)

otherwise, traps to 10 in kernel mode.

Condition Codes: N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: CSM may be executed in user or supervisor
mode, but is an illegal instruction in kernel
mode. CSM copies the current stack pointer
(SP) to the supervisor mode, switches to
Supervisor mode, stacks three words on the
Supervisor stack (the PS with the condition
codes cleared, the PC, and the argument word
addressed by the operand), and sets the PC to

the contents of location 10 (in supervisor
Space). The called program in supervisor
space may return to the calling program by
popping the argument word from the stack and
executing RTI. On return, the condition codes
are determined by the PS word on the stack.
Hence, the called program in supervisor space
May control the condition code values following
return.

6.3.6.7 Reserved Instruction Traps - These are caused by attempts
to execute instruction codes reserved for future processor
expansion (reserved instructions) or instructions with illegal
addressing modes (illegal instructions). Order codes not
corresponding to any of the instructions described are considered

to be reserved instructions. JMP and JSR with register mode
destinations are illegal instructions; they trap to virtual
address 4 in kernel data space. Reserved instructions trap to

vector address 10 in kernel data space.

6.3.6.8 Trace Trap - Trace trap is enabled by bit 4 of the PS and
causes processor traps at the end of instruction execution. The
instruction that is executed after the instruction that set the T
bit will proceed to completion and then trap through the trap
vector at address 14. Wote that the trace trap is a system

debugging aid and is transparent to the general programmer.

6-62

, NOTE
Bit 4 of the PS can only be set
indirectly by executing a RTI or RTT
instruction with the desired PS on the
stack.

6.3.6.8.1 Special Cases Of The T Bit - The following are _ special
cases of the T bit.

NOTE
The traced instruction is the instruction

after the one that set the T bit.

‘An instruction that cleared the T bit -- Upon fetching
the traced instruction, an internal flag, the trace flag,
was set. The trap will still occur at the end of this
instruction’s execution. The status word on the stack,
however, will have a clear T bit.

An instruction that set the T bit -- Since the T bit was
already set, setting it again has no effect. The trap
will occur.

An instruction that caused an instruction trap -- The
instruction trap is performed and the entire routine for
the service trap is executed. If the service routine
exits with an RTI, or in any other way restores the
stacked status word, the T bit is set again, the
instruction following the traced instruction is executed,
and, unless it is one of the special cases noted
previously, a trace trap occurs.

An instruction that caused a stack overflow -- The

instruction completes execution aS usual. The stack
overflow does not cause a trap. The trace trap vector
is loaded into the PC and PS and the old PC and PS are
pushed onto the stack. Stack overflow occurs again,
and this time the trap is made.

An interrupt between setting of the T-bit and fetch
of the traced instruction -- The entire interrupt
service routine is executed and then the T-bit is
set again by the exiting RTI. The traced instruction
is executed (if there have been no other interrupts)
and, unless it is a special case noted above, causes
a trace trap.

Interrupt trap priorities -- See Table 1-8.

6~63

6.3.7 Miscellaneous Instructions -

HALT

HALT
000000

15
00

0 0 0 0 0 0 0 0 oO oO 0 (OO . . 0

ai. al i l i m 1 4 1 1 '

Operation: (SP) <-- PS ma 5261

. (SP) <-- PC
PC <-- restart address
PS <-- 340

Condition Codes:

Description:

WAIT

WAIT FOR INTERRUPT

Not affected

The effect of HALT depends upon the CPU
operating mode and the halt option ©
currently selected. See Chapter 8 -
Interfacing for more details on halt
options. In kernel mode, a halt option of
1 (external logic driving a 1 on DAL3 in
response to a GP Read with a GP code of 000)
causes a trap through location 4 and sets
bit 7 of the CPU error register when HALT is
executed. If the halt option is 0 in kernel

mode, execution of the HALT instruction
causes the DCJ11 into console ODT.
Execution of the HALT instruction in user or
supervisor mode causes a trap through

location 4 and sets bit 7 of the CPU error

register.

Condition Codes:

Description:

MA 5262

Not affected

In WAIT, as in all instructions, the PC points

to the next instruction following the WAIT

instruction. Thus, when an interrupt causes the

PC and PS to be pushed onto the processor stack,

the address of the next instruction following

the WAIT is saved. The exit from the interrupt

routine (i.e., execution of an RTI instruction)

will cause resumption of the interrupted process
at the instruction following the WAIT. If not

in kernel mode, WAIT executes as a NOP.

RESET

RESET EXTERNAL BUS

Condition Codes:

Description:

MF PT

MOVE FROM PROCESSOR TYPE WORD

MA-6263

Not affected

The following sequence of events occurs: (1)

a GP Write cycle is performed and a GP code
of 014 is generated, (2) operation is delayed

for 69 microcycles, (3) a GP Write is
performed and a GP code of 214 is generated,

(4) operation is delayed for 600 microcycles

delay. If not in kernel mode, RESET operates

as a NOP.

Operation:

Condition Codes:

Description:

MTPD/MTPI

MA 7198

RO <-- 5

Not affected

The number 5 is placed in RO, indicating to the

system software that the processor type is

pCJll.

MOVE TO PREVIOUS DATA SPACE
MOVE TO PREVIOUS INSTRUCTION SPACE

15

#06600

06 05 00

1
0/1 0

te

0

Operation:

Condition Codes:

(temp)
(dst)

N:
Z:

Vs

Z3

MA 41571

~m—

< ao

(SP)+

(temp)

set if the source < 0
set if the source = 0

cleared

unaffected

Description:

MF PD/MFPI

The instruction pops a word off the current
stack determined by PS bits <15:14> and stores
that word into an address in the previous space
(PS bits <13:12>). The destination address is
computed using the current registers and memory

map.

6-65

MOVE FROM PREVIOUS DATA SPACE

MOVE FROM PREVIOUS INSTRUCTION SPACE #8 065SS

15 06 05 00

0v1 0 0 0 1 1 0 1 0 1 ss

. i named f } Le aaa L. l — =

MA-19670

Operation: (temp) <-- (src)
-~(SP) <-- (temp)

Condition Codes: WN: set if the source < Q
Z: set if the source = 0
V: cleared

Z: unaffected

Description: Pushes a word onto the current stack from an
address in the previous space determined by
PS<13:12>. The source address is computed
using the current registers and memory map.
When MFPS is executed and both previous mode
current mode are user, the instruction functions
as though it were MFPD.

6.3.8 Condition Code Operators -

CLN SEN
CLZ SEZ
CLV SEV

CLC SEC
ccc Sscc

CONDITION CODE OPERATORS 0002 X X

15 05 04 03 02 01 00

0 0 0 0 0 0 0 0 1 0 1 ort N 2 Vv Cc

MAR-5266

Description: Set and clear condition code bits. Selectable
combinations of these bits may be cleared or se!
together. Condition code bits corresponding to
bits in the condition code operator (bits <3:0>
are modified according to the sense of bit 4,
the set/clear bit of the operator; i.e., set th
bit specified by bit 0, l, 2, or 3, if bit 4 =
1. Clear corresponding bits if bit 4 = Q.

Mnemonic Operation OP Code

CLC Clear C 000241
CLV Clear V 000242
CLZ Clear 2 000244
CLN Clear N 000250
SEC Set C 000261
SEV Set V 000262
SEZ Set Z 000264
SEN Set N 000270
scc Set all CCs 000277

6-66

ccc Clear all CCs 000257
Clear V and cC 000243

NOP No operation 000240

Combinations of the above set or clear
operations may be ORed together to form combined
instructions. :

6-67

CHAPTER 7
FPLOATING-POINT ARITHMETIC

7.1 INTRODUCTION

The DCJ1l1 executes forty-six floating-point instructions. The
floating-point instruction set is compatible with the FPll
instruction set for PDP-1ll computers. Both single- and
double-precision floating-point capabilities are available with
other features, including floating-to-integer and
integer-to-floating conversion.

7.2 FLOATING-POINT DATA FORMATS

Mathematically, a floating-point number may be defined as having
the form (2 ** K) * £, where K is an integer and f is a fraction.
For a nonvanishing number, K and f are uniquely determined by
imposing the condition 1/2 ¢ £f < 1. The fractional part (f) of
the number is then said to be normalized. For the number 0, f is
assigned the value 0, and the value of K is indeterminate.

The floating-point data formats are derived from this mathematical
representation for floating-point numbers. Two types of
floating-point data are provided. In single-precision, or
floating mode, the data is 32 bits long. In double-precision, or
double mode, the data is 64 bits long. Sign magnitude notation is
used.

7.2.1 Nonvanishing Floating-Point Numbers - The fractional part
(f) is assumed normalized, so that its most significant bit must
be 1. This 1 is the "hidden" bit: it is not stored explicitly in
the data word, but the microcode restores it before carrying out

arithmetic operations. The floating and double modes’ reserve 23
and 55 bits, respectively, for f. These bits, with the hidden
bit, imply effective word lengths of 24 bits and 56 bits.

Eight bits are reserved for storage of the exponent K in excess
200 notation (i.e., as K + 200 (octal)), giving a biased exponent.
Thus, exponents from -128 to +127 could be represented by 0 to 377
(base 8), or 0 to 255 (base 10). For reasons given below, a
biased exponent of 0 (the true exponent of ~200 (octal)), is
reserved for floating-point 0. Therefore, exponents are
restricted to the range -127 to +127 inclusive (-177 to +177
octal) or, in excess 200 notation, 1 to 377.

The remaining bit of the floating- point word is the sign bit. The
number is negative if the sign bit is al.

7,2.2 Floating-Point Zero - Because of the hidden bit, the
fractional part is not available to distinguish between 0 and
nonvanishing numbers whose fractional part is exactly 1/2.
Therefore, the DCJll reserves a biased exponent of 0 for this
purpose, and any floating-point number with a biased exponent of 0
either traps or is treated as if it were an exact 0 in arithmetic
operations. An exact or "clean" 0 is represented by a word whose
bits are all Os. A "dirty" 0 is a floating-point number with a
biased exponent of 0 and a nonzero fractional part. An arithmetic
operation for which the resulting true exponent exceeds 277
(octal) is regarded as producing a floating overflow; if the true
exponent is less than -177 (octal), the operation is regarded as
producing a floating underflow. A biased exponent of 0 can thus
arise from arithmetic operations as a special case of overflow
(true exponent = -200 octal). (Recall that only eight bits are
reserved for the biased exponent.) The fractional part of results
obtained from such overflow and underflow is correct.

7.2.3 Undefined Variables - An undefined variable is any bit
pattern with a sign bit of 1 and a biased exponent of 0. The term
"undefined variable" is used, for historical reasons, to indicate
that these bit patterns are not assigned a corresponding
floating-point arithmetic value. Note that the undefined variable
is frequently referred to as -0 elsewhere in this chapter.

A design objective was to assure that the undefined variable would
not be stored as the result of any floating-point operation ina
program run with the overflow and underflow interrupts disabled.
This is achieved by storing an exact 0 on overflow and underflow,
if the corresponding interrupt is disabled. This feature,
together with an ability to detect reference to the undefined
variable (implemented by the FIUV bit discussed later), is
intended to provide the user with a debugging aid: if -0 occurs,
it did not result from a previous floating-point arithmetic
instruction.

7.2.4 Floating-Point Data - Floating-point data is stored in
words of memory as illustrated in Figures 7-1 and 7-2.

F FORMAT FLOATING POINT SINGLE PREC'SION

+2 FRACTION 150+

4 4 hn i 1, i i i de i 1 1 4

MEMORY +0 S EXP FRACT 22 16>

1 — 4 1 Ll i ‘ need i j L L

AR 3604

Figure 7-1 Single-Precision Format

7-2

D FORMAT, FLOATING POINT DOUBLE PRECISION

15 00

+6 FRACTION <15 0>
m 1 i L 1 1 L 1 a wel 1 1 1 _L L.

15 oO

+4 FRACTION <31 16>

1 L i l j ae L rt 1 aah. i l l eh a

15 a

+2 FRACTION <47 32>

Lh. i i l i 1 1 i whe. 1 ij l L iL.

16 0? 06 00

MEMORY +0 S EXP FRACT <54:48>

1. iL l _ i L 4 i L rt i Zi. A.

S = SIGN OF FRACTION

EXP = EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL

FOR NON-VANISHING NUMBERS

FRACTION = 23 BITS IN F FORMAT, 55 BITS IN D FORMAT + ONE HIODEN

BIT (NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT.

MA .3808

Figure 7-2 Double-Precision Format

The DCJ1l1l provides for conversion of floating-point to integer
format and vice-versa. The processor recognizes single-precision
integer (I) and double-precision integer long (L) numbers, which
are stored in standard 2°s complement form. (See Figure 7-3.)

| FORMAT, INTEGER SINGLE PRECISION

15 14 00

S NUMBER <1$:0>

ade i 1 1 4 1 i i awh oa ob i and mode

L FORMAT, DOUBLE PRECISION INTEGER LONG

1§ 14 00

MEMORY +0 | S NUMBER <30:16>
i oa 4 JL _t i A van a al i i i i _ ft

15 00

+2 NUMBER <15:0>
i 1 i i i 4 i I i A i i - i a | i

WHERE S = SIGN OF NUMBER

NUMBER = 15 BITS IN! FORMAT, 31 BITS IN L FORMAT.

Figure 7-3 2°s Complement Format

7.3. FLOATING-POINT STATUS REGISTER (FPS)

This register provides mode and interrupt control for the
Currently executing floating-point instruction and also reflects
conditions resulting from the execution of the previous
instruction. (See Figure 7-4.) In this discussion a set bit = 1
and a reset bit = 0. Three bits of the FPS register control the
modes of operation.

7-3

1. Single/Double -- Floating-point numbers can be either single-
or double~-precision.

2. Long/Short -- Integer numbers can be 16 bits or 32 bits.

3. Chop/Round -- The result of a floating-point operation can be
either "chopped" or "rounded." The term "chop" is used instead
of "truncate" in order to avoid confusion with truncation of
series used in approximations for function subroutines.

1§ 14 13 12 " 10 o9 08 0? 06 05 03.02 01 00
ry >

FER |] FID YY FIUV] FIU | FIV | FIC FO FL FT

RESERVED RESERVED

FN | Fz | Fv | Fe

—
W
s

MAR.3807

Figure 7-4 Floating-Point Status Register

The FPS register contains an error flag and four condition codes
(5 bits): carry, overflow, zero, and negative, which are
analogous to the CPU condition codes.

The DCJ1l recognizes six floating-point exceptions:

o Detection of the presence of the undefined variable in memory

o Floating overflow

©o Floating underflow

o Failure of floating-to-integer conversion

o Attempt to divide by 0

o Illegal floating op code

For the first four of these exceptions, bits in the FPS register
are available to individually enable and disable interrupts. An
interrupt on the occurrence of either of the last two exceptions
can be disabled only by setting a bit that disables interrupts on
all six of the exceptions, as a group.

Of the 13 FPS bits, 5 are set as part of the output of a
floating-point instruction: the error flag and condition codes.
Any of the mode and interrupt control bits may be set by the user;
the LDFPS instruction is available for this purpose. These
thirteen bits are stored in the FPS register as shown in Figure
7-4. The FPS register bits are described in Table 7-1.

Table 7-1 FPS Register Bits

Bit Name Description

15 Floating Error (FER) The FER bit is set by the DCJ11l
if:

7-4

14 Interrupt Disable
(FID)

13

12

11 Interrupt on
Undefined Variable
(FIUV)

1. division by zero occurs.

2. an illegal op code occurs.

3. any one of the remaining floating
point exceptions occurs and the
corresponding interrupt is enabled.

Note that the above action is
independent of whether the FID bit
is set or clear.

Note also that the DCJ11 never
resets the FER bit. Once the FER bit
is set by the DCJ1l1, it can be
cleared only by an LDFPS instruction
(note the RESET instruction does not
clear the FER bit). This means that
the FER bit is up-to-date only if
the most recent floating-point
instruction produced a floating-point
exception.

If the FID bit is set, all floating-
point interrupts are disabled.

NOTE

l. The FID bit is primarily a
maintenance feature. It should
normally be clear. In particular,
it must be clear is one wishes to
assure that storage of -0 by the
DCJ11 is always accompanied by
an interrupt.

2. Throughout the rest of the chapter
assume that the FID bit is clear
in all discussions involving
overflow, underflow, occurrence of
-0, and integer conversion errors.

Reserved for future DIGITAL use.

Reserved for future DIGITAL use.

An interrupt occurs if FIUV is set
and a -0 is obtained from memory as
an operand of ADD, SUB, MUL, DIV,
CMP, MOD, NEG, ABS, TST, or any LOAD
instruction. The interrupt occurs
before execution on all instructions.
When FIUV is reset, -0 can be loaded
and used in any floating-point
operation. Note that the interupt is
not activated by the presence of -0
in an AC operand of an arithmetic
instruction; in particular, trap on

7-5

10 Interrupt on
Underflow (FIU)

9 Interrupt on
Overflow (FIV)

8 Interrupt on
Integer Conversion
Error (FIC)

7 Floating Double-
Precision Mode (FD)

-0 never occurs in mode 0.

A result of -0 will not be stored
without the simultaneous occurrence
of an interrupt.

When the FIU bit is set, floating
underflow will cause an interrupt.
The fractional part of the result
of the operation causing the
interrupt will be correct. The
biased exponent will be too large
by 400, except for the special case
of 0, which is correct. An exception
is discussed later in the detailed
description of the LDEXP instruction.

When the FIV bit is set, floating
overflow will cause an interrupt.
The fractional part of the result
of the operation causing the overflow
will be correct. The biased exponent
will be too small by 400.

If the FIV bit is reset and overflow
occurs, there is no interrupt. The
DCJ11 returns exact 0.

Special cases of overflow are
discussed in the detailed
descriptions of the MOD and LDEXP
instructions.

When the FIC bit is set anda
conversion to integer instruction
fails, an interrupt will occur. If
the interrupt occurs, the destination
is set to 0, and all other registers
are left untouched.

If the FIC bit is reset, the result
of the operation will be the same as
detailed above, but no interrupt will
occur,

The conversion instruction fails if
it generates an integer with more
bits than can fit in the short or
long integer word specified by the
FL bit.

The FD bit determines the precision
that is used for floating-point
calculations. When set, double-
precision is assumed; when reset,
Single-precision is used.

7-6

Floating Long-
Integer Mode (FL)

Floating Chop Mode
(FT)

Floating Negative
(FN) .

Floating Zero

(FZ)

Floating Overflow

(FV)

Floating Carry.

(FC)

When reset,

The FL bit is active in conversion
between integer and floating-point
formats. When set, the integer
format assumed is double-precision
2°s complement (i.e., 32 bits).

the integer format is
assumed to be single-precision 2°s
complement (i.e.,7 16 bits).

When the FT bit is set, the result
of any arithmetic operation is
chopped (truncated). When reset,
the result is rounded.

Reserved for future DIGITAL use.

FN is set if the result of the
last floating-point operation
was negative; otherwise it is
reset.

FZ is set if the result of the
last floating-point operation was
0; otherwise it is reset.

FV is set if the last floating-
point operation resulted in an
exponent overflow; otherwise it
is reset.

FC is set if the last floating-
point operation resulted in a
carry of the most significant
bit. This can only occur in
floating double-to-integer

conversions.

7.4 FLOATING EXCEPTION CODE AND ADDRESS REGISTERS

One interrupt assigned to
floating-point exceptions (location 244).

vector is ‘take care of
The six possible errors

are coded in the 4-bit floating exception code (FEC) register
follows.

2 Floating op-code error
4 Floating divide by zero
6 Floating-to-integer or double-to-i integer conversion error
8 Floating overflow

10 Floating underflow
12 Floating undefined variable

The address of the instruction producing the exception is stored
in the floating exception address (FEA) register.

The FEC and FEA registers are updated only when one of the

T~7

following occurs.

1. Division by zero.

2. Illegal op code.

3. Any of the other four exceptions with the corresponding
interrupt enabled.

This implies that only when the FER bit is set are the FEC and PEA
registers updated.

NOTE

1. If one of the last four exceptions occurs with the
corresponding interrupt disabled, the FEC and FEA are
not updated.

2. If an exception occurs, inhibition of interrupts by
the FID bit does not inhibit updating of the FEC and
FEA.

3. The FEC and FEA are not updated if no exception
occurs. This means that the STST (store status)
instruction will return current information only if
the most recent floating-point instruction produced an
exception.

4. Unlike the FPS, no instructions are provided for
storage into the FEC and FEA registers.

7.5 FLOATING-POINT INSTRUCTION ADDRESSING

Floating-point instructions use the same type of addressing as the
central processor instructions. A source or destination operand
is specified by designating one of eight addressing modes and one

-Of eight central processor general registers to be used in the
specified mode. The modes of addressing are the same as those of
the central processor, except in mode 0. In mode 0 the operand is
located in the designated floating-point processor accumulator
rather than in a central processor general register. The modes of
addressing are as follows.

Floating-point accumulator
Deferred

Autoincrement
Autoincrement-deferred
Autodecrement
Autodecrement-deferred
Indexed
Indexed-deferred S

D
R

W
N
H
R

OC
Autoincrement and autodecrement operate on increments and
decrements of 4 for F format and 10 (octal) for D format.

In mode 0 users can make use of all six floating-point
accumulators (ACO - AC5) as their source or destination.
Specifying floating-point accumulators AC6 or AC7 will result in
an illegal op code trap. In all other modes, which involve
transfer of data to or from memory or the general registers, users
are restricted to the first four floating-point accumulators (ACO
- AC3). When reading or writing a floating-point number from or
to memory, the low memory word contains the most significant word
of the floating-point number, and the high memory word the least
Significant word.

7.6 ACCURACY

General comments on the accuracy of the DCJ11 floating-point
instructions are presented here. The descriptions of the
individual instructions include the accuracy at which they
operate. An instruction or operation is regarded as "exact" if
the result is identical to an infinite precision calculation
involving the same operands. The a priori accuracy of the
operands is thus ignored. All arithmetic instructions treat an
Operand whose biased exponent is 0 as an exact 0 (unless FIUV is
enabled and the operand is -0, in which case an interrupt occurs).
For all arithmetic operations, except DIV, a 0 operand implies
that the instruction is exact. The same statement holds for DIV
if the 0 operand is the dividend. But if it is the divisor,
division is undefined and an interrupt occurs.

For nonvanishing floating+point operands, the fractional part is
binary normalized. It contains 24 bits or 56 bits for floating
mode and double mode, respectively. For ADD, SUB, MUL, and DIV,
two guard bits are necessary and sufficient for the general case
to guarantee return of a chopped or rounded result identical to
the corresponding infinite precision operation chopped or rounded
to the specified word length. Thus, with two guard bits, a
chopped result has an error bound of one least significant bit
(LSB); a rounded result has an error bound of 1/2 LSB. These
error bounds are realized by the DCJ11 of all instructions.

In the rest of this chapter, an arithmetic result is called exact
if no nonvanishing bits would be lost by chopping. The first bit
lost in chopping is referred to as the "rounding" bit. The value
of a rounded result is related to the chopped result as follows.

7=9

1. If the rounding bit is 1, the rounded result is the chopped
result incremented by an LSB.

2. If the rounding bit is 0, the rounded and chopped results are
identical.

It follows that:

1. If the result is exact: rounded value = chopped value = exact
value.

2. If the result is not exact, its magnitude is:

Oo always decreased by chopping.

o decreased by rounding if the rounding bit is 0.

o increased by rounding if the rounding bit is l.

Occurrence of floating-point overflow and underflow is an _ error
condition: the result of the calculation cannot be correctly
stored because the exponent is too large to fit into the eight
bits reserved for it. However, the internal hardware has produced
the correct answer. For the case of underflow, replacement of the
correct answer by 0 is a reasonable resolution of the problem for
many applications. This is done by the DCJ1l1 if the underflow
interrupt is disabled. The error incurred by this action is an
absolute rather than a relative error; it is bounded (in absolute
value) by 2 ** -128. There is no such simple resolution for the
case of overflow. The action taken, if the overflow interrupt is
disabled, is described under FIV (bit 9) in Table 7-1.

The FIV and FIU bits (of the floating-point status word) provide
users with an opportunity to implement their own correction of an
overflow or underflow condition. If such a condition occurs’ and
the corresponding interrupt is enabled, the microcode stores the
fractional part and the low eight bits of the biased exponent.
The interrupt will take place and users can identify the cause by
examination of the FV (floating overflow) bit or the FEC (floating
exception) register. The reader can readily verify that (for the
Standard arithmetic operations ADD, SUB, MUL, and DIV) the biased
exponent returned by the instruction bears the following relation
to the correct exponent.

l. On overflow, it is too small by 400 (octal)

2. On underflow, if the biased exponent is 0, it is correct. If
the biased exponent is not 0, it is too large by 400 (octal).

Thus, with the interrupt enable, enough information is available
to determine the correct answer. Users may, for example, rescale
their variables (via STEXP and LDEXP) to continue a calculation.
Note that the accuracy of the fractional part is unaffected by the
occurrence of underflow or overflow.

7-10

7.27 FLOATING-POINT INSTRUCTIONS

Each instruction that references a floating-point number’ can
Operate on either single- or double-precision numbers, depending
on the state of the FD mode bit.
FL that determines whether a 32-bit integer (FL = 1) or a 16-bit
integer (FL = 0) is used in conversion between
floating-point representations. FSRC and FDST operands
floating-point addressing modes (see Figure 7-5);
operands use CPU addressing modes.

DOUBLE-OPERAND ADDRESSING

15 12 im o5 00

oc
a. J ade

FOC

AC

FSRC,FDST,SRC,OST

 oh A al. od. oa

SINGLE-OPERAND ADDRESSING

1§ 12 W 05 00

FSRC, FOST. SRC, OST

 ashen i A 4 1

OC = OPCODE = 17

FOC = FLOATING OPCODE

AC = FLOATING POINT ACCUMULATOR (ACO-AC3})

FSRC AND FOST USE FPP ADDRESSING MODES

SRC AND DST USE CPU ADDRESSING MODES

Figure 7-5

MA 3608

Floating-Point Addressing Modes

Terms Used in Instruction Definitions

oc = opcode = 17

FOC = floating opcode

AC = contents of accumulator, as specified by AC
field of instruction,

fsrce = address of floating-point source operand

fdst = address of floating-point destination operand

f = fraction

XL = largest fraction that can be represented:

1 - 2 ** (-24), FD = 0; single-precision
1 - 2 ** (-56), FD = i; double-precision

XLL = smallest number that is not identically zero

2 ** (-128)

XUL = largest number that can be represented =

2 ** (127) * XL

JL = largest integer that can be represented:

Je-1l

integer

Similarly, there is a mode bit

and

use
and DST

2 ** (15) - 1; FL
2 ** (31) - 1; FL

ABS (address)

EXP (address)

0; short integer
l; long integer

absolute value of (address)

biased exponent of (address)

-LT. = “less than"

-LE. = "less than or equal to"

QO 4 it "greater than"

.GE. = "greater than or equal to"

LSB least significant bit

Boolean Symbols

/\ = AND

V

A

~ = NOT

ABSF/ABSD

inclusive OR

exclusive OR

MAKE ABSOLUTE FLOATING/OOUBLE ' 1706 FOST

12 | 06 05 00

Format:

Operation:

Condition Codes:

Description: |

Interrupts:

Accuracy:

WR.11467

ABSF FDST

If (FDST) < 0, (FDST) <-- -(FDST).

If EXP(FDST) = 0, (FDST) <-- exact 0.

For all other cases, (FDST) <-- (FDST).

FC <-- 0
FV <-- 0

FZ <-- 1 if (FDST) = 0, else FZ <-- 0
FN <-- 0

Set the contents of FDST to its absolute value.

If FIUV is enabled, trap on -0 occurs before
execution. Overflow and underflow cannot occur.

These instructions are exact.

7-12

ADDF /ADDD

ADD FLOATING/DOUBLE VW72(AC)FSRC

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR 114608

ADDF FSRC,AC

Let SUM = (AC) + (FSRC)

If underflow occurs and FIU is not enabled, AC

<-- exact 0.

If overflow occurs and FIV is not enabled, AC

<=- exact 0.

For all others cases, AC <-- SUM.

FC <-- 0
FV <-- 1 if overflow occurs, else FV <-- 0
FZ <-- 1 if (AC) = 0, else FZ <-- 0
FN <-- 1 if (AC) < 0, else FN <-- 0

Add the contents of FSRC to the contents of AC.
The addition is carried out in single- or
double-precision and is rounded or chopped in
accordance with the values of the FD and FT bits
in the FPS register. The result is stored in AC
except for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is
stored in AC.

If FIUV is enabled, trap on -0O in FSRC occurs
before execution. If overflow or underflow
occurs, and if the corresponding interrupt is
enabled, the trap occurs with the faulty result
in AC. The fractional parts are correctly
stored. The exponent part is too.small by 400
for overflow. It is too large by 400 for
underflow, except for the special case of 0,
which is correct.

Errors due to overflow and underflow are
described above. If neither occurs, then: for
oppositely signed operands with exponent
difference of 0 or 1, the answer returned is
exact if a loss of significance of one or more
bits can occur. Note that these are the only
cases for which loss of significance of- more
than one bit can occur. For all other cases the

7-13

Special Comment:

result is inexact with error bounds of:

1. LSB in chopping mode with either single- or
double-precision.

2. 1/2 LSB in rounding mode with either single-
or double-precision.

The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will
be stored in AC only if the corresponding
interrupt is enabled.

Condition Codes:

Description:

Interrupts:

Accuracy:

CFCC

COPY FLOATING CONDITION CODES 170000

15 12 11 00

T y T T aa 1 T T Foe q t | t

\ 1 0 0 0 0 0 0 0 0 0 0 0 0

Format: CFCC

Operation: C <-- FC
V <-- FV

Z <-—- FZ

N <-- FN

Description: Copy the floating-point condition codes into
the CPU“s condition codes.

CLRF/CLRD

CLEAR FLOATING/DOUBLE 1704 FOST

15 12 11 06 05 00
Tr i t q J ' q t U qT

1 1 0 0 0 1 0 0 FOST

1 LL leewvemmemeeds oh L rl L. L

Format: CLRF FDST

Operation: (FDST) <-- exact 0

FC <--
FV <--
FZ <--
FN <-- O

r

O
O

Set FDST to 0. Set FZ condition code and clear
other condition code bits.

No interrupts will occur. Overflow and underflow
Cannot occur.

These instructions are exact.

7-14

CMPF /CMPD

COMPARE FLOATING/DOUBLE 173(AC+4)FSRC

12 1" 08 0? 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR. Tta7t

CMPF FSRC,AC

(FSRC) - (AC)

FC <-- 0
FV <-- 0
FZ <-- 1 if (FSRC) = 0, else FZ <-- 0

FN <-- 1 if (FSRC) < 0, else FN <== 0

Compare the contents of FSRC with the
accumulator. Set the appropriate floating-point
condition codes. PSRC and the accumulator are
left unchanged except as noted below.

If FIUV is enabled, trap on -0 occurs before
execution. .

These instructions are exact.

An operand that has a biased exponent of 0 is
treated as if it were an exact 0. In this case,
where both operands are 0, the DCJ11 will
store an exact 0 in AC.

DIVF/DIVD

DIVIDE FLOATING/DOUBLE 174(AC+4)FSRC

15 12 11 08 0? 06 0s 00
q q ot] q (t q ‘ T qT

1 1 1 1 1 0 0 1 AC FSRC
ke f L 1 4 i= L 1 t

Format: DIVF FSRC,AC

Operation: If EXP(FSRC) = 0, (AC) <-- (AC) and the
instruction is aborted.

If EXP(AC) = 0, (AC) <-=- exact OQ.

For all other cases, let QUOT = (AC)/(FSRC).

If underflow occurs and FIU is not enabled, AC
<-- exact 0.

If overflow occurs and FIV is not enabled, AC

<-- exact 0.

For all others cases, AC <=-- QUOT.

Condition Codes: FC <-- 0
FV <-- 1 if overflow occurs, else FV <-- 0
FZ <-- 1 if (AC) = 0, else FZ <=-- 0
FN <-- 1 if (AC) < 0, else FN <-- 0

Description: If either operand has a biased exponent of 0, it
is treated as an exact 0. For FSRC this would
imply division by 0; in this case the
instruction is aborted, the FEC register is set
to 4, and an interrupt occurs. Otherwise, the
quotient is developed to single- or
double-precision with two guard bits for correct
rounding. The quotient is rounded or chopped in
accordance with the values of the FD and FT bits
in the FPS register. The result is stored in
the AC except for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is
stored in AC.

Interrupts: If FIUV is enabled, trap on -0 in FSRC occurs

Accuracy:

before execution. If (FSRC) = 0, interrupt traps
on an attempt to divide by 0. If overflow or
underflow occurs, and if the corresponding
interrupt is enabled, the trap occurs with the
faulty result in AC. The fractional parts are
correctly stored. The exponent part is too
small by 400 for overflow. It is too large by
400 for underflow, except for the special case
of 0, which is correct.

Errors due to overflow and underflow are
described above. If none of these occurs, the
error in the quotient will be bounded by 1 LSB
in chopping mode and by 1/2 LSB in rounding
mode.

Special Comment: The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will
be stored in AC only if the corresponding
interrupt is enabled.

LDCDF/LDCFD

LOAD AND CONVERT FROM DOUBLE-TO-FLOATING
AND FROM FLOATING-TO-DOUBLE 177(AC+4) FSRC

1§ 12 it 08 Q? 06 05 00

r r — T T “tT T T r t a,
1 1 1 1 1 1 1 1 AC FSRC

AA-19473

~
 { 16

Format: . LDCDF FSRC,AC

Operation: | If EXP(FSRC) = 0, AC <-- exact 0.

If FD = 1, FT = 0, FIV = 0 and rounding causes
overflow, AC <=-- exact 0.

In all other cases, AC <=- Cxy(FSRC), where Cxy
specifies conversion from floating mode x to
floating mode y.

x =D, y = F if FD = 0 (single) LDCDF
y = F, y = D if FD = 1 (double) LDCFD

Condition Codes: FC <-- 0 |
FV <-- if conversion produces overflow, else 1
FV <-- 0
FZ <-- 1 if (AC) = 0, else FZ <-- 0
FN <-- 1 if (AC) < 0, else FN <-- 0

Description: If the current mode is floating mode (FD = 0),
the source is assumed to be a double-precision
number and is converted to single-precision. If
the floating chop bit (FT) is set, the number is
chopped; otherwise, the number is rounded.

If the current mode is double mode (FD = 1), the
source is assumed to be a single-precision
number and is loaded left-justified in AC. The
lower half of AC is cleared.

Interrupts: If FIUV is enabled, trap on -0 occurs before
execution. Overflow cannot occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding
with LDCDF causes overflow. AC <-- overflowed
result. This result must be +0 or -0. Underflow
cannot occur.

Accuracy: LDCFD is an exact instruction. Except for
overflow, described above, LDCDF incurs an error
bounded by 1 LSB in chopping mode and by 1/2 LSB
in rounding mode.

LDCIF/LDCID/LDCLF/LDCLD

LOAD AND CONVERT INTEGER OR LONG INTEGER

TO FLOATING OR DOUBLE-PRECISION 177(AC)SRC

15 12 11 08 07 06 05 00
J J | q t tT T q TT v q T

1 1 1 1 1 1 1 0 AC SRC

1 l bes i i i _ r

Format: LDCIF SRC,AC

Operation: AC <-- Cjx(SRC), where Cjx specifies conversion
from integer mode j to floating mode y.

7-17

Condition Codes:

Description:

Interrupts:

Accuracy:

LDEXP

LOAD EXPONENT

L if FL
D if FD

if FL
if FD "o

u

o
o

- o¢
U4
.

to
u

"
o
n

FV <--

FZ <--

FN <--

I

F

FC <-- 0
0
1 if (AC) = 0, else FZ <-- 0
1 if (Ac) < 0, else FN <-- 0

Conversion is performed on the contents of SRC
from a 2°s complement integer with precision j
to a floating-point number of precision x. Note
that j and x are determined by the state of the
mode bits FL and FD.

If a 32-bit integer is specified (L mode) and
(SRC) has an addressing mode of 0 or immediate
addressing mode is specified, the 16 bits of the
source register are left-justified and the
remaining 16 bits loaded with Os before
conversion,

In the case of LDCLF, the fractional part of the
floating-point representation is chopped or
rounded to 24 bits for FT = 1 or 0,
respectively.

None; SRC is not floating-point, so trap on -0
cannot occur.

LDCIF, LDCID, and LDCLD are exact instructions.
The error incurred by LDCLF is bounded by 1 LSB
in chopping mode and by 1/2 LSB in rounding
mode,

176(AC+4)SAC

12 1 08 07 06 05 00

1 1 1 0 1 AC SRC

Format:

Operation:

MAR-11475

LDEXP SRC,AR

NOTE: 177 and 200, appearing below, are octal
numbers.

If -200 < SRC < 200, EXP(AC) <-- SRC + 200 and
the rest of AC is unchanged.

If (SRC) > 177 and FIV is enabled, EXP(AC) <--
[(SRC) + 200]<7:0>.

If (SRC) > 177 and FIV is disabled, AC <-- exact
0.

Condition Codes:

Description:

Interrupts:

Accuracy:

LDF /LDD

If (SRC) < -177 and FIU is enabled, EXP(AC) <--
((SRC) + 200]<7:0>.

If (SRC) < -177 and FIU is disabled, AC <--
exact 0.

~

FC <-- 0
FV <-- 1 if (SRC) > 177, else FV <-- 0
FZ <-- 1 if (AC) = 0, else FZ <-- 0
FN <-- 1] if (AC) < 0, else FN <-- 0

Change AC so that its unbiased exponent = (SRC).
That is, convert (SRC) from 2°s complement to
excess 200 notation and insert it into the EXP
field of AC. This is a meaningful operation
only if ABS(SRC) LE 177.

If SRC > 177, the result is treated as overflow.
If SRC < -177, the result is treated as
underflow.

No trap on -0 in AC occurs, even if FIUV is
enabled. If SRC > 177 and FIV is enabled, trap
on overflow will occur. If SRC < -177 and FIU is
enabled, trap on underflow will occur.

Errors due to overflow and underflow are
described above. If EXP(AC) = 0 and (SRC) =
-200, AC changes from a floating-point number
treated as 0 by all floating arithmetic
operations to a non-0 number. This happens
because the insertion of the “hidden” bit in the
microcode implementation of arithmetic
instructions is triggered by a nonvanishing
value of EXP.

For all other cases, LDEXP implements exactly
the transformation of a floating-point number (2
** K) * £ into (2 ** (SRC)) * £ where 1/2 .LE.
ABS(f) .LT. 1.

LOAD FLOATING/DOUBLE 172(AC+4) FSRC

Format:

Operation:

Condition Codes:

MR 11476

LDF FSRC,AC

AC <-- (FSRC)

FC <-- 0
FV <-- 0

Description:

Interrupts:

Accuracy:

Special Comment:

FZ <-- 1 if (AC) = 0, else FZ <-- 0
FN <-- 1 if (AC) < 0, else FN <-- 0

Load single- or double-precision number into AC.

If FIUV is enabled, trap on -0 occurs before AC
is loaded. Overflow and underflow cannot occur.

These instructions are exact.

These instructions permit use of -0 ina
Subsequent floating-point instruction if FIUV is
not enabled and (FSRC) = -0.

LDFPS

LOAD FLOATING-POINT PROGRAM STATUS 1701 SRC

15 12 1 06 Os 00
Y T T T ' T T r T , I

\ 1 0 0 0 0 0 1 SRC

Format: LDFPS SRC

Operation: FPS <-- (SRC)

Description: Load floating-point status register from SRC.

Special Comment:

MODF /MODD

Users are cautioned not to use bits 13, 12, and
4 for their own purposes, since these bits are
not recoverable by-.the STFPS instruction.

MULT'PLY AND SEPARATE INTEGER

AND FRACTION FLOATING DOUBLE T7V(AC+4) FSRCE

12 WW 08 0? 06 05 : 00

1 0 0 1 1 AC FSRC

Format:

Description
and Operation:

MA11478

MODF FSRC,AC

This instruction generates the product of its
two floating-point operands, separates the
product into integer and fractional parts, and
then stores one or both parts as floating-point
numbers.

Let PROD = (AC) * (FSRC) so that in

Floating-point: ABS(PROD) = (2 ** K) * £, where

7-20

1/2 .LE. £ .LT. 1, and
EXP (PROD) = (200 + K)

Fixed-point binary: PROD = N + g, where

N = INT(PROD) = integer part of PROD, and

g = PROD - INT (PROD) = fractional part of
PROD with 0 eLE. g LT. l.

Both N and g have the same sign aS PROD. They
are returned as follows:

If AC is an even-numbered accumulator (0 or

2), N is stored in AC+l (1 or 3), and g is
stored in AC.

If AC is an odd-numbered accumulator, N is

not stored and g is stored in AC.

The two statements above can be combined as

follows:

N is returned to AC \/ 1 and g is returned
to AC.

Five special cases occur, as indicated in the
following formal description with L = 24 for
floating mode and L = 56 for double mode.

1. If PROD overflows and FIV is enabled, AC \/
1 <-- N, chopped to L bits, AC <-- exact 0.

Note that EXP (N) is too small by 400 and
that -0 can be stored in AC V/ l.

If FIV is not enabled, AC \V/ 1 <-- exact 0,
AC <-- exact 0, and -0 will never be stored.

2. If 2 ** L .LE. ABS(PROD) and no overflow,
AC \/ 1 <-- N, chopped to L bits, AC <-- exact
0.

The sign and EXP of N are correct, but
low-order bit information is lost.

3. If 1 .LE. ABS(PROD) .LT. 2 ** L, AC \V/ 1 <--
N, AC <-=- GO.

The integer part N is exact. The fractional
part g is normalized, and chopped or rounded
in accordance with FT. Rounding may cause a
return of + unity for the fractional part.
For L = 24, the error in g is bounded by l
LSB in chopping mode and by 1/2 LSB in
rounding mode. For L = 56, the error in g
increases from the above limits as ABS (N)
increases above 8 because only 59 bits of

7-21

Condition Codes:

Interrupts:

Accuracy:

Applications:

FC
FV
FZ
FN

Tf

PROD are generated.

If 2 ** p .LE. ABS(N) .LT. 2 ** (p + 1), with
p > 2, the low order p - 2 bits of g may be
in error.

If ABS(PROD) .LT. 1 and no underflow, AC \V/
1 <-- exact 0 and AC <-- g.

There is no error in the integer part. The
error in the fractional part is bounded by 1
LSB in chopping mode and 1/2 LSB in rounding
mode. Rounding may cause a return of + unity
for the fractional part.

If PROD underflows and FIU is enabled, AC

\/ 1 <-- exact 0 and AC <-- g.

Errors are aS in case 4, except that EXP (AC)
will be too large by 4008 (if EXP = 0, it is
correct). Intercupt will occur and -0 can be
stored in AC.

If FIU is not enabled, AC \/ 1 <-- exact 0
and AC <-- exact 0.

For this case the error in the fractional

part is less than 2 ** (-128).

<-- 0
<-- 1 if PROD overflows, else FV <-- 0
<-- 1 if (AC) = 0, else FZ <-- 0
<--] if (AC) < 0, else FN <-- 0

FIUV is enabled, trap on -0 in FSRC occurs
before execution. Overflow and underflow are

discussed above.

Discussed above.

l. Binary-to-decimal conversion of a proper
Fraction. The following algorithm, using
MOD, will generate decimal digits D(l), D(2)

- « . from left to right.

Initialize: I <-- 0;
X <-- number to be converted;
ABS (X) < 1;

While x # 0 do
Begin PROD <-~ X * 10;
I <-- I +1;
D(I) <-~ INT (PROD);
X <-=- PROD - INT (PROD);
End;

This algorithm is exact. It is case 3 in the
description because the number of
nonvanishing bits in the fractional part of

7-22

PROD never exceeds L, and hence neither
chopping nor rounding can introduce error.

2. To reduce the argument of a trigonometric
function.

ARG * 2/PI = N +g. The low two bits of N
identify the quadrant, and g is the argument
reduced to the first quadrant. The accuracy
of N +g is limited to L bits because of the
factor 2/PI. The accuracy of the reduced
argument thus depends on the size of N.

3. To evaluate the exponential function e ** x,
obtain x * (log e base 2) = N+ 4g,
then e ** x = (2 ** N) * (e ** (g * ln 2)).

The reduced argument is g * ln2 < 1 and the
factor 2 ** N is an exact power of 2, which
may be scaled in at the end via STEXP, ADD N
to EXP and LDEXP. The accuracy of N + g is
limited to L bits because of the factor (log
e base 2). The accuracy of the reduced
argument thus depends on the size of N.

MULF /MULD

MULTIPLY FLOATING/DOUBLE . V71(AC)FSRC

15 12 4 08 07 06 05 ' 00
' q oy Ty q | q] T v T T

1 } 1 1 0 0 1 0 AC FSRC

- aL mn ee | Le i l 4 } aie

Format: . MULF FSRC,AC

Operation: Let PROD = (AC) * (FSRC)

If underflow occurs and FIU is not enabled, AC

<-- exact 0.

If overflow occurs and FIV is not enabled, AC
<-- exact 0.

For all others cases, AC <-- PROD.

Condition Codes: FC <=-- 0 |
FV <-- 1 if overflow occurs, else FV <-- 0
FZ <-- 1 if (AC) = 0, else FZ <-- 0
FN <-- 1 if (AC) < 0, else FN <-- 0

Description: If the biased exponent of either operand is 0,
(AC) <-- exact 0. For all other cases PROD is
generated to 48 bits for floating mode and 59
bits for double mode. The product is rounded or
chopped for FT = 0 or 1, respectively, and is
stored in AC except for:

7-23

Interrupts:

Accuracy:

Special Comment:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is
stored in AC.

If FIUV is enabled, trap on -0 in FSRC occurs
before execution. If overflow or underflow
occurs, and if the corresponding interrupt is
enabled, the trap occurs with the faulty result
in AC. The fractional parts are correctly
Stored. The exponent part is too small by 400
for overflow. It is too large by 400 for
underflow, except for the special case of 0,
which is correct.

Errors due to overflow and underflow are
described above. If neither occurs, the error
incurred is bounded by 1 LSB in chopping mode
and 1/2 LSB in rounding mode.

The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will
be stored in AC only if the corresponding
interrupt is enabled.

NEGF /NEGD

NEGATE FLOATING/DOUBLE 1707 FOST

is 12 WwW 06 05 00

} T T 7 Ts t { qT ¥ q t qT

1 1 1 0 0 0 1 { 1 FOST

hn { { _— so wl 1 i L at i

Format: NEGF FDST

Operation: (FDST) <-- - (FDST) if (FDST) = 0, else
(FDST) <-- exact 0

Condition Codes: FC <== Q

FV <-- 0

Description:

Interrupts:

Accuracy:

SETD

FZ <-~ 1 if (FDST) = 0, else FZ <-- 0
FN <-- 1 if (FDST) < 0, else FN <-=- 0

Negate the single- or double-precision number ;
store result in same location (FDST).

If FIUV is enabled, trap on -0 occurs before
execution. Overflow and underflow cannot occur.

These instructions are exact.

SET FLOATING DOUBLE MODE 170011

15 12 VW 00

MR.11481

Format: SETD

Operation: FD <-- 1

Description: Set the DCJ1l1 in double precision mode.

SETF

SET FLOATING MODE 170001

15 12 11 00
q r ' q qT 7 t q i { q { q a

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

ben wh l 1. }, i L z l l i l r

Format: SETF

Operation: FD <-- 0

Description: Set the DCJ11 in single-precision mode.

SETI |

SET INTEGER MODE | 177002

15 12 1 00

q Ty q q Ty q J q OE q Tq qT q y

1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
en i ol 4 le ‘ i ol 4 { I i 4

Format: SETI

Operation: FL <-- 0

Description: Set the DCJ1l for short-integer data.

SETL

SET LONG-INTEGER MODE 177012

16 12 i 00
T T “T T i ! T t dT I if T q t

1 1 1 i 0 0 0 Q 0 0 0 0 1 0 1)
L i 1 j L L i 1 } { t L i 1

Format: SETL

Operation: FL <-- 1

Description: Set the DCJ11 for long-integer data.

STCFD/STCDF

STORE AND CONVERT FROM FLOATING. TO DOUBLE

AND FROM DOUBLE-TO-FLOATING V6IAC)FDST

15 12 i 08 0? 06 05 00
{ aa] T T T 7 T —~T T “y T

1 1 ! 1 1 1 0 0 AC FOST
i. dem 4 t j J { I heer 1

MA.11485

Formats: STCFD AC,FDST

Operation: If (AC) = 0, (FDST) <-- exact QO.

If FD = 1, FT = 0, FIV = O and rounding causes
overflow, (FDST) <-- exact 0.

In all other cases, (FDST) <-- Cxy(AC), where
Cxy specifies conversion from floating mode x to
floating mode y.

x = F, y = Dif FD = 0 (single) STCFD
x =D, y = F if FD = 1 (double) STCDF

Condition Codes: FC <-- 0
FV <-- 1 if conversion produces overflow, else
FV <-- 0

FZ <-- 1 if (AC) = 0, else FZ <-- 0
FN <-- 1 if (AC) < 0, else FN <-- 0

Description: If the current mode is single-precision, the
accumulator is stored left-justified in FDST and
the lower half is cleared.

If the current mode is double-precision, the
contents of the accumulator are converted to
single-precision, chopped or rounded depending
on the state of FT, and stored in FDST.

Interrupts: Trap on -0 will not occur even if FIUV is
enabled because FSRC is an accumulator.
Underflow cannot occur. Overflow cannot occur
for STCFD.

A trap occurs if FIV is enabled, and if rounding
with STCDF causes overflow. (FDST) <--
overflowed result. This must be +0 or <-0.

Accuracy: STCFD is an exact instruction. Except for
overflow, described above, STCDF incurs an error
bounded by 1 LSB in chopping mode and by 1/2 LSB
in rounding mode.

STCFI/STCFL/STCDI/STCDL

STORE AND CONVERT FROM FLOATING OR DOUBLE
TO INTEGER OR LONG INTEGER 175(AC+4) DST

15 12 1 08 0? 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MA.11486

STCFI AC,DST

(DST) <-- Cxj(AC) if -JL - 1 < Cxj(AC) < JL +1,
else (DST) <-- 0, where Cjx specifies conversion
from floating mode x to integer mode }j.

1
1

Lif FL
D if FD

I if FL = 0, 3
F if FD = 0, x

j
x

‘JL is the largest integer.

0
1

2 ** 15 - 1 for FL
2 ** 32 - 1 for FL

C, FC <-- 0 if -JL - 1 < Cxj (AC) < JL + 1, else
C, FC <-- 1
V, FV <-- 0

Z, FZ <-- 1 if (DST) = 0, else 2, FZ <-- 0Q
N, FN <-- 1 if (DST) < 0, else N, FN <-- 0

Conversion is performed from a floating-point
representation of the data in the accumulator to
an integer representation.

If the conversion is to a 32-bit word (L mode),
and an addressing mode of 0 or immediate
addressing mode is specified, only the most
Significant 16 bits are stored in the
destination register.

If the operation is out of the integer range
selected by FL, FC is set to 1 and the contents
of the DST are set to 0.

Numbers to be converted are always chopped
(rather than rounded) before they are converted.
This is true even when the chop mode bit FT is
cleared in the FPS register.

These instructions do not interrupt if FIUV is
enabled, because the -0, if present, is in AC,
not in memory. If FIC is enabled, trap on
conversion failure will occur.

These instructions store the integer part of the
floating-point operand, which may not be the
integer most closely approximating the operand.
They are exact if the integer part is within the
range implied by FL.

7-27

STEXP

STORE EXPONENT 175(AC) DST

00

T T T

OST
L al, wt

Format:

Operation:

Condition Codes:

Description:

STEXP

(DST)

C, FC
V, FV
Z, F2
N, FN

AC ,DST

<=- EXP (AC)

Com

i--

to—

<om

0
0
1 if (DST) = 0, else Z, FZ
1 if (DST) < 0, else N, FN

200

MR.11467

<-- 0
<-- 0

Convert AC’s exponent from excess 200 notation
to 2°s complement and store the result in DST.

Interrupts: This instruction will not trap on -0. Overflow
and underflow cannot occur.

Accuracy: This instruction is exact.

STF/STD

STORE FLOATING/DOUBLE 174(AC)FOST

15 12 11 08 07 06 0s 00
T qT t y a q t (T T

1 1 1 1 1 0 Q 0 Ac FOST

han —_b L ba a _f ft a eb

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MA.11488

STF AC,FDST

(FDST) <-- AC

FC <=-—- FC

FV <-- FV

FZ <-- PZ
FN <=-- FN

Store single- or double-precision number from
AC.

These instructions do not interrupt if FIUV is
enabled, because the -0, if present, is in AC,
not in memory. Overflow and underflow cannot
occur.

-

These instructions are exact.

These instructions permit storage of a -0 in

memory from AC. There are two conditions in
which -0 can be stored in an AC of the DCJ1l1.
One occurs when underflow or overflow is present
and the corresponding interrupt is enabled. A
second occurs when an LDF or LDD instruction is
executed and the FIUV bit is disabled.

STFPS

STORE FLOATING-POINT PROGRAM STATUS 1702 DST

15 12 a - 06 05 00
1 1 q 4 q | q t ' q of T

1 1 1 1 0 0 0 0 1 0 OST
j j{ a al he 1 L = 1 1

Format: STFPS DST

Operation: (DST) <-- FPS

Description: Store the floating-point status register in DST.

Special Comment: Bits 13, 12, and 4 are loaded with 0. All other
bits are the corresponding bits in the FPS.

STST

STORE FPP’S STATUS 1703 DST

15 12 fe 06 05 00
OE 7 7 of TO tT oF t t TT t J 1

i 1 1 1 0 0) 0 0 1 1 DST
d. L i i j 1 L I 1

Format: STST DST

Operation: (DST) <=-- FEC
(DST + 2) <=-- FEA

Description: Store the FEC and FEA in DST and DST+2. Note the

following.

1. If the destination mode specifies a general
register or immediate addressing, only the
FEC is saved.

2. The information in these registers is current
only if the most recently executed
floating-point instruction caused a
floating-point exception.

SUBF/SUBD

SUBTRACT FLOATING/DOUBLE ‘ I7Z(ACIFSRC

12 1 08 07 06 05 00

1 0 1 1 0 AC FSRC

Ss ban

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR 11agt

SUBF FSRC,AC

Let DIFF = (AC) - (FSRC)

If underflow occurs and FIU is not enabled, AC

<-- exact OQ.

If overflow occurs and FIV is not enabled, AC

<-- exact 0.

For all others cases, AC <=-- DIFF.

FC <-- 0
FV <-- 1 if overflow occurs, else FV <-- 0
FZ <-- 1 if (AC) = 0, else FZ <-- 0
FN <-- 1 if (AC) < 0, else FN <-- 0

Subtract the contents of FSRC from the contents
of AC. The subtraction is carried out in
single- or double-precision and is rounded or
chopped in accordance with the values of the FD
and FT bits in the FPS register. The result is
stored in AC except for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is

stored in AC.

If FIUV is enabled, trap on -0 in FSRC occurs
before execution. If overflow or underflow
occurs, and if the corresponding interrupt is
enabled, the trap occurs with the faulty result
in AC. The fractional parts are correctly |
stored. The exponent part is too small by 400
for overflow. It is too large by 400 for
underflow, except for the special case of 0,
which is correct.

Errors due to overflow and underflow are
described above. If neither occurs: for
like-signed operands with exponent difference of
0 or 1, the answer returned is exact if a loss
of significance of one or more bits can occur.
Note that these are the only cases for which
loss of significance of more than one bit can
occur. For all other cases the result is
inexact with error bounds of:

1. LSB in chopping mode with either single- or
double-precision.

7-30

Special Comment:

2. 1/2 LSB in rounding mode with either single-
or double-precision.

The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will
be stored in AC only if the corresponding
interrupt is enabled. .

TSTF/TSTD

TEST FLOATING/DOUBLE 1705 FOST

5 12 | 06 05 00
' q q qT q q qT T tT i ' }

1 1 1 j 0 0 0 1 Ci 1 FOST

ah a 1 ba i _f. i i

Format: TSTF FDST

Operation: (FDST)

Condition Codes: FC <-- 0
FV <-- 0

Description:

Interrupts:

Accuracy:

FZ <-- 1 if (FDST)
FN <-- 1 if (FDST)

0, else FZ <-- 0
0, else FN <-- 0 A

Set the floating-point condition codes according
to the contents of FDST.

If FIUV is set, trap on -0 occurs before
execution. Overflow and underflow cannot occur.

These instructions are exact.

7=31

CHAPTER 8
INTERFACING

8.1 INTRODUCTION

This chapter covers topics related to the interfacing of external
logic to the DCJll.

8.2 GENERAL-PURPOSE (GP) CODES

An important means of communicating with external logic is through
the use of GP Reads and Writes (see Chapter 3 - Bus Cycles). GP
Reads and Writes are associated with codes that specify the
function performed during the GP Read or Write cycle. External
logic interprets these codes to implement system functions. Table
8-1 summarizes the GP codes.

Table 8-1 GP Codes and Functions

GP Code GP Read
(octal) or Write Function

000 Read Reads the power-up mode, HALT
option, FPA option, POK, and
boot address.

001 Read Reads FPA data (if FPA exists)
002 Read Reads the power-up mode, HALT

option, FPA option, POK, and
boot address, and (if an FPA
exists) clears the FPA’s FPS.

003 Read Acknowledges FPE and reads the FEC
(floating exception code) register

003 Write Writes FPA 16-bit data (if FPA exists)
014 Write Asserts bus reset signal
034 Write Signals exit from console ODT
040 Write Reserved for future use
100 Write Acknowledges EVENT
140 Write Acknowledges power fail
214 Write Negates bus reset signal
220 Write Microdiagnostic test 1 passed
224 Write Microdiagnostic test 2 passed
230 Write Microdiagnostic test 3 passed
234 Write Signals entry into console ODT

Specific external logic designs may need to interpret only
Subset of the GP codes. For example, a minimal system with no FPA
and no need for POK or a bus’ reset signal would only have
identify GP associated with the reading of power-up
configuration data during the DCJ11“s initializtion sequence.
shown in the flowchart in Paragraph 8.3.2, this is GP code 002.

CLK

UNO —*

SCTL ' 'SCTLLH |

(OF FSET) SJ \S-

t - INIT \-—— INITW

8.3 POWER-UP AND INITIALIZATION

The DCJ11 performs a specific sequence of eventS at power-up or

when it is initialized. These initialization microroutines are
described in this paragraph, Also, during power-up the DCJ1I
reads the contents of a configuration register to determine its
initial mode of operation. This configuration register is also
described. A typical power-up circuit is also provided.

8.3.1 Initialization Timing - Initialization timing is shown in
Figure 8-1. When external logic asserts INIT for a minimum of 25
clock periods, the DCJ1l1 is forced into a power-up initialization
sequence. As shown in Figure 8-1, the DCJ11 asserts SCTL shortly
after the assertion of INIT. SCTL is deasserted approximately
five clock periods after INIT is deasserted.

1 2 3 4 5 TO

A 'MCLKO
L DNINS-

 kt

Figure 8-1 Initialization

8.3.2 Initialization Microroutine - The microroutine that is

executed when the DCJ11 is powered up or initialized is shown in
Figure 8-2. Note that GP codes that indicate some event (such as
the passing of a microdiagnostic test) can be used by external
logic to light LEDs for a visual indication of the event.

8-2

MR 9380

BUS CYCLE

GP WRITE

GP WRITE

~

NIO

GP WRITE

NIO

NiO

NIO

BUS WRITE

NIO

Figure 8-2

DCJ11-AA
OPERATION

EXTERNAL LOGIC
ASSERTS INIT FOR
A MINIMUM OF
25 CLK PERIODS

:

GENERATE
GP CODE OF

i

GENERATE GP
CODE OF

014

4

DELAY OPERATION
FOR 69
MICROCYCLES

:

GENERATE
GP CODE OF

214
‘

CLEAR MMRO

i

CLEAR MMRAQ

:

DELAY OPERATION
FOR 600
MICROCYCLES

f

CLEAR
PIRQ REGISTER
(LOC. 17777772)

t
 CLEAR FPS

NOTES

SYSTEM IS NOT
IN CONSOLE ODT
MODE

SET SYSTEM RESET
FLIP-FLOP

CLEAR SYSTEM RESET
FLIP-FLOP

MA.11446

Initialization Sequence

BUS CYCLE

GP READ

NIO

BUS WRITE

BUS WRITE

NIO

BUS READ

NIC)

Figure 8-2

OCJ-11 AA
OPERATION

GENERATE
GP CODE OF
002

CLEAR CPU
ERROR REGISTER
(LOC 17777766)

POK
ASSERTED

WRITE 400 TO
THE CCR
(LOC 17777746)

i
WRITE ZEROES TO
THE MSER
(LOC 17777744)

if
WRITE 177766
TO THE CPU
ERROR REGISTER
(LOC 17777766)

i
READ THE CPU
ERROR REGISTER
(LOC 17777766)

_t
WRITE ZEROES
TO THE CPU
ERROR REGISTER
(LOC 17777766}

NOTES

READ POWER-UP CONFIGURATION
DATA THAT IS ORIVEN ON DAL
BY EXTERNAL LOGIC.

SET BIT 8 OF THE CCR, WHICH 1S
TYPICALLY IMPLEMENTED BY
THE USER AS THE FLUSH CACHE
BIT (IN CACHE SYSTEMS). CLEAR
THE OTHER CCR BITS.

CLEAR THE MEMORY SYSTEM
ERROR REGISTER, WHICH MAY
OR MAY NOT BE IMPLEMENTED
BY THE USER.

MAR 14a)

Initialization Sequence (Continued)

BUS CYCLE

GP WRITE

BUS READ

‘BUS READ

GP WRITE

BUS READ

Figure 8-2

DCJ-11-AA
OPERATION

DATA
READ FROM

CPU ERROR REG ©
177766

GENERATE
GP CODE OF 220

mn

READ MEMORY
LOCATION
00000000

NXM YES
ABORT

NO

READ MEMORY
LOCATION
17777700

NXM NO
ABORT

YES

GENERATE GP CODE
OF 224

READ MEMORY
LOCATION
17777560

NOTES

TEST 1 PASSED. CPU ERROR REGISTER
WRITTEN AND READ CORRECTLY.

DETERMINE IF EXTERNAL LOGIC THINKS
LOCATION 01S IN NONEXISTENT MEMORY
(IT SHOULD NOT). IF (T DOES, EXTERNAL
LOGIC TYPICALLY GENERATES AN ABORT.

DETERMINE IF EXTERNAL LOGIC THINKS
LOCATION 17777700 IS IN NONEXISTENT
MEMORY (IT SHOULD). IF IT DOES,
EXTERNAL LOGIC TYPICALLY GENERATES
AN ABORT.

TEST 2 PASSED, NXM ABORT NOT
GENERATED BY REFERENCE TO
LOCATION 0 BUT WAS GENERATED
BY REFERENCE TO LOCATION
17777700.

READ RECEIVER CONTROL
AND STATUS REGISTER (RCSR)

Ma. 13488

Initialization Sequence (Continued)

BUS CYCLE OCJ-11-AA NOTES

~~ ~~ OPERATION —_—_~

DETERMINE JF EXTERNAL LOGIC
THINKS LOCATION 17777560 (THE
RCSA) 1S IN NONEXISTENT MEMORY
(t1T SHOULD NOT). IF 1T DOES,
EXTERNAL LOGIC TYPICALLY
GENERATES AN ABORT.

MN GENERATE GP CODE TEST 3 PASSED. NXM ABORT NOT

GP WRITE OF 230 GENERATED BY REFERENCE TO RCSR.

POWER-UP

OPTION

0

PC + M([24] TRAP THROUGH
PS — M[26] LOCATION 24

BEGIN EXECUTING CODE

POWER-UP
OPTION

1

ENTER CONSOLE ODT
PS +O

POWER-UP

OPTION

2
PC + 173000

NO PS + 340

PC<15:9> - USER BEGIN EXECUTING CODE
BOOT

PC<8:0> - 0
PS - 340

BEGIN EXECUTING CODE

MA 11466

Figure 8-2 Initialization Sequence (Continued)

$,.3.3 Power-Up Configuration - The power-up configuration is
specified by setting bits in an external register which is read
(via the DAL) during the DCJ1ll’s initialization sequence. It
specifies various user-defined initial conditions. The register
is shown in Figure 8-3.

Bit(s)

<1539>

<734>

<23:1>

09 08 07 06 05 04 03 02 01 00

 BOOT ADDRESS FPA HERE

 UNUSED -
 HALT OPTION
 POWER UP MODE
 POK

MR.11460

Figure 8-3 Power-Up Conf iguraton Register

Name

Boot Address

FPA Here

Unused

Halt Option

Power-Up Mode

- POK

Description

Contains the most significant
seven bits (bits <15:9>) of a
user-defined boot address used
in power-up mode 3. The lower
bits of the boot address (bits
<8:0>) are zeroes.

Indicates the presence of an
optional floating-point
accelerator (FPA) when set.
When cleared, the FPA is
not present.

These bits are not interpreted
by the DCJ1ll.

Indicates how a HALT instruction
will execute in kernel mode. If
set, the DCJ1l traps through
location 4 and sets bit 7 of the
CPU error register when HALT is
executed. If cleared, the
DCJ11 enters console ODT when
HALT is executed.

Indicates one of four power-
up mode options.

Bits
21 Mode

0 0 Trap through location 24
0 ol Enter console ODT
1 0 Power-up to 17773000
1 1 Power-up to the

user-defined address
specified by bits <15:9>

Indicates whether the power supply

8-7

is operating within its normal range.
Set when power is at an acceptable
value,

8.3.4 Power-Up Circuit - A circuit such as that shown in Figure
8-4 can be used to power-up the DCJ11.

INIT is provided to the DCJ11 by power-up logic and the AIO code
is latched by the assertion of ALE. The decoder indicates whether
a GP Read of 000 or 002 is being executed.

In this simple application, only DAL<8,3:0> are affected by the
power-up configuration register. The register is configured to
indicate that no FPA is present, power-up mode 0 (trap through
location 24) is selected, and power is always OK. The DAL is
driven with configuration data when BUFCTL is asserted and a GP
Read with a code of 000 or 002 occurs.

POWER UP
REGISTER
74LS2444

DAL
OP <8>

Vv —o —o—+—_>-—_ <3>

GNO--o— ° > <2>
nn enfanf Sn <1>

DCN L———9-—+__[>_——-+———._ <0>

4 Z AIO GP READ

uP iNiT FF wo #iGP CODE [| >}—
8 |DECODER LOGIC CONT ae c ; BUFCTL

—P Dv DAL<7:0>
MR-19489

Figure 8-4 Power-Up Circuit

8.4 OTHER MICROROUTINES

Figures 8-5 and 8-6 illustrate two other microroutines whose
operation can be monitored by external logic: the power-down
microroutine and the console ODT response to entering the "go"
command.

OCJ11-AA

BUS CYCLE OPERATION

POWER [DOWN

GENERATE
GP WRITE GP CODE OF

140

2 BUS READS TRAP THROUGH
2 BUS WRITES LOCATION 24

_|
EXECUTE

ma NO NEXT POWER
NSE ON >——"| (DOWN SERVICE

| ROUTINE
INSTRUCTION

GENERATE
GP READ GP CODE OF

000

SET BIT?
NO OF CPU ERROR

CoE. >— REGISTER AND
~ TRAP THROUGH

LOC 4

POK ves | START
ASSERTED INITIALIZATION

SEQUENCE

SET BIT 7
HALT YES OF CPU ERROR

OPTION >—*+| _ REGISTER AND
BIT SET ~ TRAP THROUGH

LOC 4

ENTER
CONSOLE
OoT

Figure 8-5 Power-Down Sequence

8-9

OAM.11451

BUS CYCLE

GP WRITE

GP WRITE

NIO

GP WRITE

NIO

NIO

NIQ

BUS WRITE

Nia

DCJ11-AA
OPERATION

TYPE IN G WHILE
IN CONSOLE ODT

MODE

'

GENERATE
GP CODE OF
034

!

GENERATE GP
COOE OF

O14

i

DELAY OPERATION
FOR 69
MICROCYCLES

i

GENERATE
GP CODE OF
214 —

CLEAR MMRO

CLEAR MMR3

!

DELAY OPERATION
FOR 600
MICROCYCLES

i

CLEAR
PIRQ REGISTER
(LOC 17777772)

i

CLEAR
FPS

NOTES

SYSTEM IS NOT
IN CONSOLE ODT
MODE

SET SYSTEM RESET
FLIP-FLOP

CLEAR SYSTEM RESET
FLIP-FLOP

MAR.11452

Figure 8-6 Console Start Sequence

BUS CYCLE DCJ-11-AA NOTES

OPERATION |

V)
GENERATE READ POWER-UP CONFIGURATION
GP CODE OF DATA THAT IS DRIVEN ON DAL
002 BY EXTERNAL LOGIC r

CLEAR CPU
ERROR REGISTER
(LOC 17777766)

 POK
ASSERTED NO |

Y ES y
 SET BIT 8 OF THE CCR, WHICH

BUS WRITE THE CCR re IS TYPICALLY IMPLEMENTED BY

BIT (IN CACHE SYSTEMS). CLEAR

| THE OTHER CCR BITS.

WRITE ZEROES TO CLEAR THE MEMORY SYSTEM
BUS WRITE THE MSER ERROR REGISTER, WHICH MAY OR.

(LOC 17777744) MAY NOT BE IMPLEMENTED BY
THE USER.

WRITE ZEROES TO
BUS WRITE ~ LOC 17777744

i
NIO CLEAR PS

BEGIN EXECUTING CODE

MR 11453

Figure 8-6 Console Start Sequence (Continued)

Absolute Maximum Rating

Storage Temperature Range:
Active Temperature Range:
Supply Voltage:
Input or Output Voltage Applied:

Electrical Characteristics

Specified Temperature Range
Specified Voltage Range
Test Conditions

Symbol Parameter Min.

vi High level 70% V
TH MOS input ce

V Low level
IL MOS input

Vv High level 2.2
IHT TTL input

V Low level
ILT TTL input

I Input leakage -10.0
I Current except

TEST inputs
(note 1)

I Input current 0.1
ILL TEST inputs

(note 1)

T on Output current -2.0
at high level

I OL Output current 2.0
at low level

APPENDIX A

DC CHARACTERISTICS

-65 C to +150 C
-55 C to +125 C
+7.0V
Vss -0.3V
Veco +0.3V

0 C to +70 C
+4.75V to +5.25V

Temperature = +70 C
Vss = OV
Vec = +4.75V (except as noted)

Max. Units Test Condition

Vv

30% Vee V

Vv

0.8 Vv

10.0 uA OV <V,y £ Voc

5.0 mA Vy = OV

mA Vo = Voc - 0.4V

mA Vo = 0.4V

Symbol Parameter

T ont

OSH

OSL

02

T ocsp

l. Tested at Vec = 5.25V.

Output current
at high TTL
level

High level
sustainer
current
(note 1)

Low level
sustainer
current
(note 1)

Output leakage
current

(notes 1,2)

Static power
Supply current
(notes 1,3)

Input
capacitance
(note 4)

Input/output
capacitance
(note 4)

Output
capacitance
(note 4)

DCJ11 capacitance
plus external

capacitance

Min.

-2.0

0.2

-10.0

NOTES

Max.

0.6

10.0

30

15

15

50

Units

mA

pF

pF

pF

pF

2. Only applies in the high impedance condition.

3. With TEST1 and TEST2 asserted, all outputs
circuit, and all other inputs equal to Vcc.

4. Sampled and guaranteed, but not tested.
apply to TEST1 or TEST2.

Does not

open

Test Condition

Vo = 2.4vV

Vo = Vue - 1-0V

Vo = 1.0V

OV < Vo £ Vee

SIGNAL SUMMARY

TYPE

TTL INPUT

TTL OUTPUT

MOS INPUT

MOS OUTPUT

TTL I/0

TTL I/0

Power

NAME

IRQ<3:0>, HALT, PWRF,
EVENT, PARITY, DV,
MISS, CONT, '
INIT, FPP

DAL<21:16>, AIO<3:0>,
ALE, BUFCTL, SCTL,
STRE, BS<1:0>, MAP,
PRDC

TEST1, TEST2

CLK, CLK2

ABORT*

DAL<15:00>

Vec

APPLICABLE DC TEST

Vint Virr tr

Ton’ lonr ’ log

Vine V I
IL ’ ILL

Ton’ lon’ loz

T osH

OHT ’ Tog

I Virte Tons lonr’s F627"

Vente Vipre tote !

T ccss

* ABORT must be driven with an open collector driver because the
DCJ11 has a pull-up device that supplies osu °

Vin Vint

REFERENCE
CLK (MOSi OUTPUT
DV (TTL)

VoL Vie Viet

nn (OUTPUT) om t emet (OUTPUT)

4 Ving Yi“ a

MOS, TTL

Vou fi Viet

VOH Se Vin Vint

7 Yin Miut Vou
. cee eaten el

ety be INPUT) eth fem (INPUT!

VonVouT — ts pm (INPUT) oon t, baja (INPUT)

Vin Vint
os m7 | Vou * Vee ~.04

MOS, TTL . VoL 0.4V

Vin Mut ty o DELAY TIME

t * HOLD TIME

Vou Vout 1, SETUP TIME
Vin Vint ten” ENABLE TIME

tgis% DISABLE TIME

Vou KY! Vict
MA 8400

Figure A-1 Voltage Waveforms

a APPENDIX B
AC CHARACTERISTICS

Test Conditions:
Temperature = +70 C
Vss = QV .
Veco = +4.75V (except as noted)
CMAX = 50 pF

Timing Requirements

Symbol

© onietw

t SCTLLH

t ps

DH

DVDS

DVDH

DVW

DVF

t DVH

t DVS

Parameter Min Max Units

INIT pulse width 10 clock
periods

Initialization 225 ns
interval

DAL<15:00> setup, 35 ns
with respect to
T3

DAL<15:00> hold, 20 ns
with respect to
T3

-DAL<15:00> setup, 35 ns
with respect to
DV

DAL<15:00> hold, 35 ns
with respect to
DV

DV Pulse width 35 ns

DV Fall time 15 ns

DV deassertion 0 ns
with respect to
T6. :

DV deassertion 0 | ns
with respect to
T4.

MISS setup 30 ns

MISS hold 10 ns

IRQ<3:0>, HALT, 20 ns

PWREF, FPE,

VENT setup
(see note)

Symbol Parameter Min Max Units

t 4. IRQ<3:0>, HALT, 20 ns

SVCH WRF, FPE,
EVENT hold

(see note)

t PARITY setup 20 ns
PARS (see note)

t PARITY hold 20 _ ns
PARH (see note)

t aps ABORT drive 30 ns

t ABD ABORT delay 0 ns

t ABW ABORT width 40 + t oLKH ns

t CONT setup 30 ns
CNTS (see note)

t CONT hold 20 ns

CNTH (see note)

t DMR setup 30 ns
DMRS (see note)

t DMR hold 20 ns

DMRH (see note)

Note:

Setup and hold requirements are only to guarantee recognition at
next sample point.

Timing Responses

Figure
Symbol Parameter Min Max Units References

© avcLE CLK cycle time 67 ns B-l, B=4

t onKH CLK high width 28 ns B-1, B-4

© one, CLK low width 28 ns B-1, B=4

te. CLK rise time 7 ns B-1, B-4

ty CLK fall time 7 ns B-l, B-4

t seve CLK2 cycle time 67 ne B-1, B=-3

t CLK2 high width 28 ns Bel, B=3 PCLEH 3-9

Figure

Symbol Parameter Min Max Units References

t porgr, CLK2 low width 28 ns B-l, B-3

t pp CLK2 rise time 7 ns B-1, B-3

t pr CLK2 fall time 7 ns B-1, B-3

t pcreD CLK2 valid delay tbs ns B-l, B-3

t Mapp MAP delay 45 ns B-1, B-3

t sp Strobe active 0 ‘ ns B=3
delay

t orp Strobe inactive 0 ns B-3
delay

t prs DAL output disable 35 ns ~B-2

t pap DAL valid delay 65 ns B-3

t pALH DAL valid hold 0 ns B-3

t pn PRDC valid delay 50 ns B-3

© orp PRDC invalid 50 ns B-3
delay

t arop AIO<3:0> delay 75 ns B-3

 — ‘aa PCLKL

MA-11499

Figure B-] Clock Timing

OUTPUT
UNDER o—
TEST

vcc

 ——O TEST POINT

Mma 9423

Figure B-2

Three State

Disable Test Circuit

TEST vec
POINT R, 1S SELECTED TO PROVIDE

R, ‘lo. OF 2MA AT O4 VOLTS

OUTPUT
UNDER
TEST

ALL DIODES ARE EITHER
CLoaD IN916 OR IN3064 .

= CLoap * Cmax 2-1! PIN CAPACITANCE

wa é

Figure B-3 _

TTL Output Test Circuit

OUTPUT
UNDER o- + © TEST TEST POINT

CLoap TT

Croan * Cmax ~ 511 PIN CAPACITANCE
fa 9S

Figure B-4

MOS Output Test Circuit

CLK

J
a

ge

3

DAL

DV

T2/T6 9 F3/T7 TO TI T2 T3 TO

THMH

‘so

BYP/FORC

‘so

BS<1:0>

tos
tors

'DALH

ADDRESS

MA.11678

Figure B-5 Non-Stretched Bus Read Timing

B-4

T2.7 377 TO TT T2 73 TA TA T4 T4 T4 T4 TS T6 17 TO
CLK AS NS NVI NIN INI NI NI NI NI NI NS NS NG J

—'AloD TAlQD (1) ¢—— ee =o
AIO oe 2 tt

a i PID | |
PRDC ~» at HME

: | | tp -> i —~ “e— tHMsS : ' ' j

ISS Poo _- |
top me—e so —» ro ; : : |

AP <: ‘MAP aa DMG Li -

TOMRS -» "Pe “TOMAR | fo

Di << aa
—» ma— (SD —m «a 160 .

BS Bs <0 BYP/FORCE i
'SD-- ke, Iso oo

ALE ---~—” | ;
SID ene tS STR , | t —“—— r

TsO—~ ‘SID |
SCTL ' Ww |

—> be tsp —e «+ 'ago ‘Ans = ‘ABD “| [*—
ABORT ><a “NS ; /

wt = lente Aaw SS >
CONT isID-e 'CNTH

tso—~ —— a me— 'SD — sip

BUFCTL ia NO OTO™ ;
-—-— : --

, | ee tos READ
'DALD © —— on 'SALH a tos DATA

DAL ; x<

BV 'DVH —

. MA TTBE?

Figure B-6 Stretched Bus Read Timing

T2/T6 = 13/77 14 Ts 16 1 TO

CLK ot OW ry r\.. I ALI
se TA1OD mee et 'AIOD (1) on

AIO o<T) t } —- }

PID 1 4
PROC a

_IDALD—™ ke | ee ‘DAL —~ te tpaLn aa 'DALH
DAL et ADDRESS >< ' BUS WRITE DATA _

- tgp | — = Is1D _.
ALE ”. ' { |

oo ee ee oe” ’ - | ‘

— —_— {so i ‘sio—>

STAB / NS | |
: } |

BUFCTL 7 " 77
7 { : __ ! | tsp» — fe tsi!

SCTL ~ | |
'SO—— —~ we tsp |

BS FX BS: 10: BYP/FORCE

'so—e oe wt
MAP MAP > DMG ~~

ee ! : 1
'SO—- = aw SD TABD— > _. —— fe taBS mies ABD

ABORT SS __ _l¢
_ “ABW” ~ INTs _

CONT NOP * tent

Figure B-7
MCL V5 le

Bus Write Timing

B-5

CLK

i
oO
 = x

CONT

BUFCTL

DAL

DV

AIO

PRDBC

DAL

|
> m

STRB

BUFCTL

SCTL

a

o

= > v0

ABORT

CONT

T2/T6 T3/T? TO TI

TAIOD

‘sp

TOALH

GP CODE
—_—— ow om oe oe

‘DIS

Figure B-

T2'7T6 -13/T7 TO T1

T2

T3 T4 T4 T4 v4 T4 T4 T5 T6 7? TO

taron 1)

he—'SD

SLOW
GP DATA

tovos
FAST 'ois ere |

GP DATA OVH

tovw
m— tove

‘ove

MA 115H0

8 General-Purpose Read Timing

4 T3 T4 T4 T4 T4 T4 TS T6 T7 TO

tps

Le tpn

: GPCODE +

‘pH

'DALD —™

'SO me

> aa
fStpiom
~~ —- - on

an
—eketpALH ‘—e & toALo

~~ 'OALH

GP WRITE DATA

'siD—™

tenTS-o] i |
—e jw SCNTH

Figure B-9

1

MA 13608 General-Purpose Write Timing

B-6

T2/T6 13/T7
CLK

AlO

i 7
 x Oo
 a

= n

n

= >
 a)

Oo
 = D

oa
 $

BUFCTL

DAL

OV

T2

talOD (1)

tps

‘PID

INTERRUPT

VECTOR

(SLOW) ‘ols
'DALH

INTERRUPT VECTOR

(FAST)

INTERRUPT

LEVEL

PAH PISA.

Figure B-10 Interrupt Acknowledge Timing

TO T1 72/76 T3/T? TO v1 T2 3 T4 T4 T4 TS 6 TO

LAI TO.
t ~ ot | Svcs 'SVCH isvcs Prec tsvcs teycnsves *{ 'svcs SVCS SVCH

>< l a 'SVCH 'SVCH
T T T tq(. t

'PARH = 'PaRS/'paRH = tPARS | PARH
'PARS

ee ueeewcceber pe ep owe ce ep ne te abe moscemoe -"

Figure B-ll Interrupt Timing

B-7

MAR 11494

APPENDIX C

DCJ11 HARDWARE AND SOFTWARE DIFFERENCES

C.1 HARDWARE DIFFERENCES BETWEEN THE DCJ11 AND THE PDP-11/44

The DCJ1l may replace the PDP-11/44 in certain applications;
however, it does not contain the following PDP-11/44 hardware
features:

© Cache Data and Maintenance Registers (17777750, 17777754)

Oo Memory System Error Register (17777744)

o Switch Register (17777570).

The DCJ11 does contain additional functionality not present in the
11/44:

o Dual general register set

oO SPL, MTPS, MFPS, TSTSET, WRTLCK instructions.

The following list summarizes the hardware differences between the
11/44 and the DCJ11:

Address Function Differences

17777776 PS | Added register set select
bit<ll>.

17777772 PIROQ No difference.

17777766 CPU Error Unibus monitoring bits
not implemented.

17777754 Cache Data Not implemented.

17777752 Hit/Miss . No difference.

17777750

17777746

17777744

17777676
to

17777660

17777656
to

17777640

17777636
to

17777620

17777616
to

17777600

17777576

17777574

17777572

17777570

17772516

17772376
to

17772360

17772356
to

17772340

17772336
to

17772320

17772316
to

17772300

17772276
to

17772260

Maintenance

Cache Control

Memory Error

User Data PAR

User Instruction
PAR

User Data PDR

User Instruction’

PDR

MMR2

MMR1

MMRO

Switch Register

MMR 3

Kernel Data PAR

Kernel Instruction

PAR

Kernel Data PDR

Kernel Instruction

PDR

Supervisor Data PAR

Not implemented.

Hardware specific changes
(see Paragraph 5.2.1).

Not implemented.

No difference.

No difference.

No difference.

No difference.

No difference.

No difference.

Eliminated maintenance

mode.

Not implemented.

No difference.

No difference.

No difference.

No difference.

No difference,

No difference.

17772256
to Supervisor No difference.

17772240 Instruction PAR .

17772236
to Supervisor Data PDR No difference,

17772220

17772216
to Supervisor No difference.

17772200 Instruction PDR

C.2 HARDWARE DIFFERENCES BETWEEN THE DCJ11 AND THE PDP11/70

The DCJll may replace the PDP-11/70 in certain applications;
however, it does not contain the following PDP-11/70 hardware
features:

o Stack Limit Register (17777774)

© Micro Break Register (17777770)

o System ID Register (17777764)

o System Size Registers (17777760, 17777762)

Oo Maintenance Register (17777750)

o Memory System Error Register (17777744)

o Physical Error Address Registers (17777740, 17777742)

o Switch Register (17777570).

The DCJ11 does contain additional functionality not present in the
11/70:

© MTPS, MFPS, MFPT, CSM, TSTSET, WRTLCK instructions

©o Bypass cache bit in PDRs.

The following list summarizes the hardware differences between the
11/70 and the DCJ11:

Address

17777776

17777774

17777772

17777770

17777766

17777764

17777762

17777760

17777752

17777750

17777746

17777744

17777742

17777740

17777676
to

17777660

17777656
to

17777640

17777636
to

17777620

17777616
to

17777600

17777576

17777574

Function

PS

Stack Limit

PIRQ

Micro Break

CPU Error

System ID

System Size

System Size

Hit/Miss

Maintenance

Cache Control

Memory Error

High Error Address

Low Error Address

User Data PAR

User Instruction PAR

User Data PDR

User Instruction PDR

MMR 2

MMR1

Differences

Added suspended instruction
bit <8>.

Not implemented.

No difference.

Not implemented.

No difference.

Not implemented.

Not implemented.

Not implemented.

No difference.

Not implemented.

Hardware specific changes
(see section 5.2.1).

Not implemented.

Not implemented.

Not implemented.

No difference.

No difference.

Added bypass cache,
eliminated access flags
and access modes other
than 0, 2, and 6.

Added bypass cache,
eliminated access flags
and access modes other
than 0, 2, and 6.

No difference.

No difference.

17777572 MMRO Eliminated traps,
Maintenance mode, and
instruction complete.

17777570 Switch Register Not implemented.

17772516 MMR 3 Added CSM enable bit <3>.

17772376
to Kernel Data PAR No difference.

17772360

17772356 | ,
to Kernel Instruction PAR No difference.

17772340 .

17772336
to Kernel Data PDR Added bypass cache,

17772320 eliminated access flag
and access modes other

than 0, 2, and 6.

17772316
to Kernel Instruction PDR Added bypass cache,

17772300 eliminated access flag
and access modes other
than 0, 2, and 6.

17772276 .
to Supervisor Data PAR No difference.

17772260 ,

17772256
on Supervisor Instruction No difference.

17772240 PAR

17772236
to Supervisor Data PDR Added bypass cache,

17772220 eliminated access flag
and access modes other
than 0, 2, and 6.

17772216
to Supervisor Instruction Added bypass cache,

17772200 PDR eliminated access flag
and access modes other

than 0, 2, and 6.

C.3 SOFTWARE DIFFERENCES

Table C-1 summarizes the programming differences (at the assembly
language level) between the DCJ11 and other processors in the
PDP-1l1 family. .

Cc-5

PROCESSORS

ITEM 23/24 44 04 34 LSH1 05/10 15/20 35/40 45 70 60 VAX

1. OPR %R, (R) +; OPR %R, — (R) using
the same register as both source and
destination: contents of R are incre-
mented (decremented) by 2 before being
used as the source operand.

OPR %R, (R) +; OPR %R, — (R) using the
same register as both register and des-
tination: initial contents of R are used as
the source operand.

2. OPR %R, @ (R) +; OPR %R, @ — (R)
using the same register as both source
and destination: contents of R are incre-
mented (decremented) by 2 before being
used as the source operand.

OPR %R, @ (R) +; OPR %R, @ — (R)
using the same register as both source
and destination: initial contents of R are
used as the source operand.

3. OPR PC, X (R); OPR PC, @ X (R); OPR
PC, @ A; OPR PC, A: location A will con-
tain the PC of OPR +4.

OPR PC, X (R); OPR PC, @ X (R), OPR
PC, A; OPR PC, @ A: location A will con-
tain the PC of OPR +2.
 4. JMP (R) + or JSR reg, (R) +: contents

of R are incremented by 2, then used as
the new PC address.

JMP (R) + or JSR reg, (R) +: initial con-
tents of R are used as the new PC.

Table C-1 DCJ11 Programming Diffenences

L
O

ITEM 23/24 44 04 34 LSIN1 05/10 15/20 35/40 45 70 60 J-11 T-11 VAX

5. JMP %R or JSR reg, %R traps to 10
(illegal instruction).

JMP %R or JSR reg, %R traps to 4 (illegal
instruction).

NA

NA

6. SWAB does not change V.

SWAB clears V.

7. Register addresses (177700-177717)
are valid program addresses when used
by CPU.

Register addresses (177700-177717)
time out when used as a program
address by the CPU. Can be addressed
under console operation.

Register addresses (177700-177717)
_time out when used as an address by
CPU or console.

NA

8. Basic instructions noted in PDP-11
processor handbook.

‘SOB, MARK, RTT, SXT instructions*

ASH, ASHC, DIV, MUL, XOR

Floating Point instructions in bas
machine.

MFPT Instruction.

The external option KE11-A provides
MUL, DIV, SHIFT operation in the same
data format.

x

x

as

x<

 x<

*RTT instruction is available in 11/04 but is different than other implementations.

' Register addresses (177700-177717) are handled as regular memory addresses in the 1/O page.
2 All but MARK.

ITEM 23/24 44 04 34 LSH1 05/10 15/20 35/40 45 70 60. VAX

The KE11-E (Expansion Instruction Set)
provides the instructions MUL, DIV, ASH,
and ASHC. These new instructions are
11/45 compatible.

The KE11-F (Floating Instruction Set)
adds unique stack ordered oriented point

instructions: FADD, FSUB, FMUL, FDIV.

The KEV-11 adds EIS/FIS instructions

MFP, MTP instructions

SPL |nstruction

CSM Instruction

x<
><

»

MK

9. Power fail during RESET instruction is
not recognized until after the instruction
is finished (70 milliseconds). RESET
instruction consists of 70 millisecond
pause with INIT occurring during first
20 milliseconds.

Power fail immediately ends the RESET
instruction and traps if an INIT is in
progress. A minimum INIT of 1 micro-
second occurs if instruction aborted.

PDP11-04/34/44 are similar with no
minimum INIT time.

Power fail acts the same as 11/45
(22 milliseconds with about 300 nano-
seconds minimum). Power fail during
RESET fetch is fatal with no power
down sequence.

6—
-O

ITEM 23/24 44 04 34 LSI11 05/10 15/20 35/40 45 70 60 J-11 T-11 VAX

RESET instruction consists of 10 micro-
seconds of INIT followed by a 90 micro-
second pause. Reset instruction con-
sists of a minimum 8.4 microseconds
followed by a minimum 100 nanosecond
pause. Power fail not recognized until
the instruction completes.

10. No RTT instruction

if RTT sets the “T” bit, the “T” bit trap
occurs after the instruction following RTT.

11. lf RT| sets “T” bit, “T” bit trap is
acknowledged after instruction following
RTI.

If RT| sets “T” bit, “T” bit trap is
acknowledged immediately following RTI.

12. lf an interrupt occurs during an
instruction that has the “T” bit set. the

“T”" bit trap is acknowledged before the
interrupt.

If an interrupt occurs during an instruc-
tion and the “T” bit is set, the interrupt is
acknowledged before “T” bit trap.

NA!

NA

 13. “T” bit trap will sequence out of WAIT
instruction.

“T” bit trap will not sequence out of WAIT
instruction. Waits until an interrupt. NA

"interrupts not visible to VAX compatibility mode.

O
T
-
O

ITEM 23/24 44 04 34 LSI11 05/10 15/20 35/40 45 70 60 J-11 T-11 VAX

14. Explicit reference (direct access) to
PS can load “T” bit. Console can also
load “T” bit.

Only implicit references (RTI, RTT, traps
and interrupts) can load “T” bit. Console
cannot load “T” bit.

15. Odd address/non-existent references
using the SP cause a HALT. This is a
case of double bus error with the second
error occurring in the trap servicing the
first error. Odd address trap not imple-
mented in LSI-11, 11/23 or 11/24.

Odd address/non-existent references
using the stack pointer cause a fatal trap.
On bus error in trap service, new stack
created at 0/2.

16. The first instruction in an interrupt
routine will not be executed if another
interrupt occurs at a higher priority level
than assumed by the first interrupt.

The first interrupt in an interrupt service
is guaranteed to be executed.

17. Single general purpose register set
implemented.

Dual general purpose register set
implemented.

' Odd address/non-existent references using SP do not trap.
2 Odd address aborts to native mode.

TT
=-

o

ITEM 23/24 44 04 34 LSI11 05/10 15/20 45 70 60 T-11 VAX

18. PSW address, 177776, not imple-
mented; must use instructions MTPS
(move to PS) and MFPS (move from PS).

PSW address implemented, MTPS and
MFPS not implemented.

PSW address and MTPS and MFPS
implemented.

35/40

19. Only one interrupt level (BR4) exists.

Four interrupt levels exist. NA

20. Stack overflow not implemented.

Some sort of stack overflow implemented.

21. Odd address trap not implemented.

Odd address trap implemented.

22. FMUL and FDIV instructions implicity
use R6 (one push and pop); hence R6
must be set up correctly.

FMUL and FDIV instructions do not
implicitly use R6.

NA

23. Due to their execution time, EIS
instructions can abort because of a
device interrupt.

EIS instructions do not abort because of
a device interrupt.

NA

24. Due to their execution time, FIS
instructions can abort because of a device interrupt. NA

3 Can reference PSW only from native mode.

C
T
O

ITEM 23/24 44 04 34 LSI11 05/10 15/20 35/40 45 70 60 VAX

25. Due to their execution time, FP11
instructions can abort because of a

device interrupt*

FP11 instructions do not abort because

of a device interrupt.

NA

26. EIS instructions do a DATIP and
DATO bus sequence when fetching
source operand.

EIS instructions do a DATI bus sequence
when fetching source operand.

NA

27. MOV instruction does just a DATO
bus sequence for the last memory cycle.

MOV instruction does a DATIP and DATO
bus sequence for the last memory cycle.

28. If PC contains non-existent memory
and a bus error occurs, PC will have

been incremented.

lf PC contains non-existent memory

address and a bus error occurs, PC will
be unchanged.

29. If register contains non-existent
memory address in mode 2 and a bus Same as above but register is unchanged.

error occurs, register will be incremented. X X X

* Integral floating point assumed on 11/23 and 11/24; FP11E assumed for 11/60.
' implementation dependent.
2 MOV instruction does a DAT! and a DATO bus sequence for last memory cycle.
3 Does not support bus errors.

eT
:

ITEM 23/24 44 04 34 LSi11 05/10 15/20 35/40 45 70 60 J-11 T-11 VAX

30. If register contains an odd value in
mode 2 and a bus error occurs, register
will be incremented.

If register contains an odd value in mode
2 and a bus error occurs, register will be
unchanged.

31. Condition codes restored to original
values after FIS interrupt abort (EIS
doesn’t abort on 35/40). .

Condition codes that are restored after
EIS/FIS interrupt abort are indeterminate.

NA

32. Opcodes 075040 through 075377
unconditionally trap to 10 as reserved
opcodes.

lf KEV-11 option is present, opcodes
75040 through 07533 perform a memory
read using the register specified by the
low order 3 bits as a pointer. If the
register contents are a non-existent
address, a trap to 4 occurs. If the
register contents are an existent address,
a trap to 10 occurs.

33. Opcodes 210 thru 217 trap to 10 as
reserved instructions.

Opcodes 210 thru 217 are used as a maintenance instruction.

3 Does not support bus errors.
4 Unpredictable.
' Traps to native mode.

¥
I
-
O

ITEM 23/24 44 04 34 LSH1 05/10 15/20 35/40 45 70 60 J-11 T-11 VAX

34. Opcodes 75040 thru 75777 trap to
10 as reserved instructions.

If KEV-11 options is present, opcodes
75040 thru 75577 can be used as
escapes to user microcode. If no user
microcode exists, a trap to 10 occurs.

X

35. Opcodes 170000 thru 177777 trap to
10 as reserved instructions.

Opcodes 170000 thru 177777 are
implemented as floating point instructions.

Opcodes 170000 thru 177777 can be
used as escapes to user microcode. If
no user microcode exists, a trap to 10
occurs. .

Opcode 076600 used for maintenance.

36. CLR and SXT do just a DATO
sequence for the last bus cycle.

CLR and SXT do DATIP-DATO sequence
for the last bus cycle.

37. MEM MGT maintenance mode MMRQ
bit 8 is implemented.

MEM MGT maintenance mode MMRO bit
8 is not implemented.

NA

38. PS<15:12>, non-kernel mode, non-
kernel stack pointer and MTPx and
MFPx instructions exist even when MEM
MGT is not configured.

1 Traps to native mode.

1 Unpredictable.
2CLR and SXT do DATI-DATO.

S
T
-
0

ITEM 23/24 44 04 34 LSI11 05/10 15/20 35/40 45 70 60 J-11, T-14 VAX

PS<15:12>, non-kernel mode, non-
kernel stack pointer, and MTPx and —
MFPx instructions exist only when MEM
MGT is configured.

NA

39. Current mode PS bits <15:14> set
to 01 or 10 will cause a MEM MGT trap
upon any memory reference.

Current mode PS bits <15:14> set to 10
will be treated as kernel mode (00) and
not cause a MEM MGT trap.

Current mode PS bits <15:14> set to 10
will cause a MEM MGT trap upon any
memory reference.

NA

40. MTPS in user mode will cause MEM
MGT trap if PS address 177776 not
mapped. If mapped, PS <7:5> and
<3:0> affected.

MIPS in non-user Mode will Not Cause
MEM MGT trap and will only affect
PS <3:0> regardless of whether PS
address 177776 is mapped.

>
 NA

41. MFPS in user mode will cause MEM
MGT if PS address 177776 not mapped.
If mapped, PS <7:0> are accessed.

MTPS in user mode will not trap regard-
less of whether PS address 177776 is
mapped. NA

1 Unpredictable.
2CLR and SXT do DATI-DATO.

9
T
-
O

ITEM 23/24 44 04 34 LS!11 05/10 15/20 35/40 45 70 60 T-11 VAX

42. Programs cannot execute out of
internal processor registers.

Programs can execute out of internal
processor registers.

43. A HALT instruction in user or super-
visor mode will trap thru location 4.

A HALT instruction in user or supervisor
mode will trap thru location 10.

44. PDR bit <0> implemented.

PDR bit <0O> not implemented.

45. PDR bit <7> (any access)
implemented.

PDR bit <7> (any access) not
implemented.

46. Full PAR <15:0> implemented.

Only PAR <11:0> implemented.

47. MMRO<12>—trap-memory
management— implemented.

MMRO<12> not implemented.

48. MMR3< 2:0>—D space enable—

implemented.

MMR3< 2:0> not implemented.

49. MMR3<5:4>—IOMAP, 22-bit
mapping enabled— implemented.

MMR3<5:4> not implemented. X

1 HALT pushes PC & PSW to stack, loads PS with 340 and PC with < powerup address> + 40.
2 Traps to native mode.

L
T
~
o

ITEM 23/24 44 04 34 LS!1 05/10 15/20 35/40 45 70 60 T-11 VAX

50. MMR3<3>—CSM enable—
implemented.

MMR3<3> not implemented.

51. MMR2 tracks instruction fetches and
interrupt vectors.

MMR2 tracks only instruction fetches. NA NA

52. MFPx %6, MTPx when PS<13:12> =
10 gives unpredictable results.

MTPx %6, MT Px %6 when PS<13:12> =
10 uses user stack pointer. NA NA

THALT pushes PC & PSW to stack, loads PS with 340 and PC with < powerup address> + 40.
? Traps to native mode.

APPENDIX D
INSTRUCTION TIMING

The execution time for an instruction depends on: (1) the type of
instruction executed, (2) the the mode of addressing used, and (3)
the type of memory being referenced. In general, the total
execution time is the sum of the base instruction fetch/execute
time plus the operand(s) address calculation/fetch time.

The tables in this appendix can be used to calculate the length of
an instruction in terms of microcycles (MC). In the first group
of tables, the first column specifies the number of microcycles
required to fetch/execute the base instruction. The R/W column
specifies how many of these microcycles are read microcycles'9 and
how many are write microcycles (any remaining microcycles are
NIO). If the instruction involves the calculation/fetch of one or
more operands, a reference to a separate table (a source or
destination table) is made in the last column(s). The
source/destination tables reveal how many microcycles' the
source/destination calculation/fetch takes and also specifies how
many of these are read or write microcycles (again, any remaining
microcycles are NIO).

The numbers in the tables are. based on the assumption that a
memory read must last a eminimum of four CLK periods, a memory
write must last a minimum of eight CLK periods, and an NIO lasts
four CLK periods (no DMA). Any wait states caused by slower
memory or a DMA transfer must be added to the total instruction
time. If wait states are required, the first wait state of a
non-stretched read or NIO cycle will last four clock periods, and
can continue in increments of two clock periods. Further wait
states for stretched cycles occur in increments of two clock
periods.

Floating-point instruction execution times are given aS ae range.
The actual execution time will vary depending on the type of data
being operated on.

Here are two examples of how to use the tables:

Example 1:

How long does a MOV RO,@#2044 instruction last?

Step 1: From the tables, the execution time for the MOV base
instruction is found to be 1 microcycle (MC), or four
CLK periods. This consists of one read and no write

microcycles. Depending upon the type of memory in the
system, the microcycle may be stretched. If so, the
microcycle lasts at least eight CLK periods and may be
stretched thereafter in increments of two CLK periods.

Step 2: To find the operand calculation/fetch time for the
source operand (RO), refer to Table Sl. From Table
Sl, it is seen that a mode 0 register 0 calculate/fetch
takes 0 microcycles. Note that the operand is already
available to the DCJ11 (in the register file).

Step 3: To find the operand calculation/fetch time for the
destination operand (the contents of memory location
2044), refer to Table D3. From Table D3, it is seen
that a mode 3 register 7 calculate/fetch takes 3
microcycles, one of which is a read microcycle and
one of which is a write microcycle. Note that the
remaining microcycle is an NIO microcycle. Once
again, the type of memory in the system must be taken
into account. If the read cycle is stretched, the
stretched cycle lasts at least eight CLK periods and
may be stretched thereafter in increments of two CLK
periods. The write microcycle lasts at least eight
CLK periods and may be stretched in increments of two
CLK periods.

Step 4: For a determination of the minimum time required, total
up the microcycles. In this example, It is 1+ 0 + 3,
or 4 microcycles (which is 16 CLK periods if no microcycle
stretching occurs).

Example 2:

The source and destination tables for floating point instructions
show a negative number in the MC column for certain mode 2
register 7 operations. This example shows a timing calculation
for one of these.

How long does an CLRD #2000 instruction last?

Step 1: The base instruction time for the CLRD instruction is
14 microcycles.

Step 2:

Step 3:

From Table F2, the calculation/fetch time for the
Operand (a mode 2 register 7 reference) is Shown as
(-1). This means that one microcycle should be subtracted
from the base instruction time. However, add one microcycle
for the memory write operation. There are no memory read
cycles to account for.

Total up the microcycles: 14 - 1+ 1 = 14 microcycles
minimum (assumes no cycle stretching).

SINGLE OPERAND

Mnemonic Instruction

General

CLR (B) Clear

COM (B) Complement (1's)
INC (B) Increment

DEC (B) Decrement

NEG (B) Negate (2's complement)

TST (B) Test

Rotate and Shift

ROR (B) Rotate right

ROL (B) Rotate left

ASR (B) Arithmetic shift right

SWAB Swap bytes

Multiple-Precision

ADC (B) Add carry

SBC (B) Subtract carry

SXT Sign extend

Multiprocessing

TSTSET Test and set

(low bit interlocked)

WRTLCK Write interlocked

DOUBLE OPERAND

Mnemonic Instruction

General

MOV (B) Move

CMP (5) Compare
ADD Add
SUB Subtract

Logical

BIT (B) Bit test (AND)

BIC(B) Bit clear

BIS (B) Bit set (OR)

Execution
MC OR/W

1 1/0
1 1/0

1 1/0
l 1/0
1 1/0
1 1/0

1 1/0
1 1/0

1 1/0
1 1/0

l 1/0
1 1/0

lL 1/0

5 l/l

4 1/1

Execution
MC R/W

l 1/0
1 1/0

1 1/0
1 1/0

1 1/0
1 1/0

1 1/0

TIMING

Source
Table

TIMING

Source

Table

Sl
Sl
Sl

Sl
Sl

Sl

Dest

Table

D3
D4
D4
D4
‘D4
D4

D4
D4
D4
D4

D4
D4
D3

D4

D4

Dest
Table

D3
D2
D4
D4

D2
D4

D4

Register

MUL Multiply 22 1f0 — Dl (Notes 5,11)
DIV Divide 34 1/0 — Dl (Notes 6,7,12)
ASH Shift automatically 4° 1/0 — Dl
ASHC Arith shift combined 5 1/70 — Dl (Note 13)

XOR Exclusive (OR) 1 u40o— D4

BRANCH TIMING

Branch Branch
. Not Taken Taken

Mnemonic Instruction MC R/W MC RAW

Branches

BR Branch (unconditional) 2 1/0 4 2/0
BNE Br if not equal (to 0) 2 1fo 4 2/0

BEQ Br if equal (to 0) 2 1/o 4 2/0
BPL Br if plus 2 1/o 4 2/0
BMI Br if minus 2 1/o 4 2/0
BVC Br if overflow is clear 2 1/0 4 2/0
BVS Br if overflow is set 2 1/fo 4 2/0
BCC Br if carry is clear | 2 1/fo 4 2/0

BCS Br if carry is set 2 1/o 4 2/0

Signed Conditional Branches

BGE Br if greater or equal (to 0) 2 1/o 4 2/0

BLT ' Br if less than (0) 2 1/o 4 °2/0
BGT Br if greater than (0) 2 1/0 4 2/0
BLE Br if less or equal (to 0) 2 1/0 4 2/C

Branch Branch
. . Not Taken Taken

Mnemonic Instruction mC R/W MC RW

Unsigned Conditional Branches

BHI Branch if higher 2 1/0 4 2/0
BLOS Branch if lower or same 2 1/0 4 2/0
BHIS Branch if higher or same 2 1/0 4 2/0
BLO Branch if lower 2 1/o 4 2/0

SOB Subtract 1 and branch 3 1/0 5 2/0
(if # 0)

JUMP and SUBROUTINE TIMING

Execution
Mnemonic Instruction MC 8 RWW DST Table

JMP Jump _-_ — DS
JSR Jump to subroutine —_ = D6 (Note 4)

RTS Return from subroutine 5 3/0 — (Note 14)
MARK Stack cleanup 10 3/0

TRAP and INTERRUPT | TIMING

Execution
Mnemonic Instruction MC RWW

EMT Emulator trap 20 4/2
TRAP Trap 20 4/2
BPT Breakpoint trap 20 4/2
IOT Input/output trap 20 4/2
RTI Return from interrupt 9 4/0
RTT Return from interrupt 9 4/0

CONDITION CODE OPERATORS TIMING

. Execution
Mnemonic Instruction MC RAW

CLL Clear C 3 1/0
CLV Clear V 3 1/0
CLZ Clear 2) 3 1/0
CLN Clear N 3 1/0
ccc Clear all CC bits 3 1/0
SEC Set C 3 1/0
SEV Set V 3 1/0
SEZ Set Z 3 1/0
SEN set N 3 1/0
SCC Set all CC bits 3 1/0

MISCELLANEOUS TIMING

Execution Dest
Mnemonic Instruction MC R/W_ Table

HALT Halt - —_
WAIT Wait for interrupt - —

RESET Reset external bus -. —
NOP (No operation) 3 1/0 —

SPL Set priority level to N 7 1/fo —
MF PI Move from previous instr space 5 l/l pi
MTPI Move to previous instr space 3 2/0 D3
MFPD Move from previous data space 5 l/l Di

MTPD Move to previous data space 3 2/0 D3
MTPS Move byte to PSW PS < (Svc) 8 1/0 pl
MFPS Move byte from PSW (dst) < PS <7:0> 1 1/0 D3
MF PT Move from processor (R0<7:0><€proc code 92 1/0 —
CSM Call to supervisor mode 28 3/3 «Di

FLOATING POINT

Mnemonic Instruction

ABSD
ABSF
ADDD
ADDF
CFCC
CLRD
CLRF
CMPD
CMPF
DIVD
DIVF
LDCDF
LDCFD
LDCID
LOCIF
LDCLD
LDCLF
LDD
LDEXP
LDF
LDF PS
MODD
MODF
MULD
MULF
NEGD
NEGE
SETD
SETF
SETI
SETL
STCDF
STCDI
STCDL
STCFD
STCFI
STCFL
STD
STECP
STF
STFPD
STST
SUBD
SUBF
TSTD
TSTF

Make Absolute
Make Absolute
Add
Add
Copy Floating Condition Codes
Clear
Clear
Compare
Compare
Divide
Divide
Ld & C from D to F
Ld & C from F to D
Ld & C Integer to D
Ld & C Integer to F
Ld & C Long Integer to D
Ld & C Long Integer to F
Load
Load Exponent
Load
Load FPP Program Status
Multiply and Separate
Integer and Fraction
Multiply
Multiply
Negate

' Negate
Set Floating Double Mode
Set Floating Mode
Set Integer Mode
Set Long Integer Mode
St & C from D to F
St & C from D to Integer
St & C from D to Long Integer
St & C from F to D
St & C from F to Integer
St & C from F to Long Integer
Store
Store Exponent
Store
Store FPP Program Status
Store FPP Status
Subtract
Subtract
Test
Test

TIMING

Execution (MC)
Min

23
19
4)
31
5
14
12
24
18
160
59
24
20
31
26
31
26
16
17
12
6
202
82
165
56
22
18
6
6
6
6
17
26
26
19
23
23
12
16
8
9 7

47
37
ll
9

48
35

217
94

55
41

“Typ Max

24
20
119
102
5
14
12
25
19
167
63
26
21
42.
36
52
44
17
18
13
6
268
115
173
61
23
19

122
104
12
10

Non

Mode 0
Table

Fl

SOURCE AND DESTINATION TABLES:

Table Sl Source Address Time: All Double Operand

Read
Source Source Microcode Memory
Mode Register Cycles Cycles

0 0-7 0 0

1 0-7 2 1
2 0-6 2 1
2 7 1 1
3 0-6 4 2
3 7 3 2
4 0-6 3 1
4 7 6 2 (Note 1)
5 0-6 5 2
5 7 8 3 (Note 1)
6 0-7 4 2
7 0-7 6 3

Table Dl Destination Address Time: Read Only Single Operand

Read

Destination Destination Microcode Memory
Mode Register Cycles Cycles

0 0-7 0 0
1 0-7 2 1
2 0-6 2 1
2 7 l 1
3 0-6 4 2
3 7 3 2
4 0-6 3 1

4 7 7 2 (Note 2)
S 0-6 5 2
5 7 9 3 (Note 3)
6 0-7 4 2
7 0-7 6 3

Table D2 Destination Address Time: Read Only Double Operand

Read

Destination Destination Microcode Memory
Mode Register Cycles Cycles

0 0-7 0 0
1 0-7 3 1
2 0-6 3 1
2 7 2 1
3 0-6 5 2
3 7 4 2
4 0-6 4 1
4 7 8 2 (Note 2)
5 0-6 6 2
5 7 10 3 (Note 3)
6 0-7 5 2
7 0-7 7 3

Table D3 Destination Address Time: Write Only

Destination Destination Microcode Memory Cycles
Mode — Register Cycles Read Write

oO. 0-6 0 0 0
0 7 5 1 0
1 0-6 2 0 1
1 7 6 1 1
2 0-6 2 0 1
2. 7 6 1 1
3 0-6 4 1 1
3 7 3 1. 1
4 0-6 3 0 1
4 7 7 1 1
5 0-6 5 1 1
5 7 9 2 1
6 0-7 4 1 l
7 0-7 6 2 1

Table D4 Destination Address Time: Read Modify Write

Destination Desténation Microcode Memory Cycles

Mode Register Cycles Read Write

0 0-6 0 0 0

0 7 5 1 0
1 0-6 3 1 1
1 7 7 2 1
2 0-6 3 1 1
2 7 7 2 1
3 0-6 5 2 1
3 7 4 2 1
4 0-6 4 1 1
4 7 8 2 1 (Note 2)
5 0-6 6 2 1
5 7 10 3 1 (Note 3)
6 0-7 5 2 1
7 0-7 7 3 1

Table DS Destination Address Time: JMP

Destination Destination Microcode Memory Cycles
Mode Register Cycles Read Write

1 0-7 4 2 0
2 0-7 6 2 0
3 0-7 5 3 0
4 0-7 5 2 0
5 0-7 6 3 0
6 0-6 6 3 4)
6 7 5 3 0
7 0-7 7 4 0

Table D6 Destination Address Time: JSR

Destination Destination Microcode Memory Cycles
Mode Register Cycles Read Write

1 0-7 9 2 1
2 0-7 10 2 1
3 0-6 10 3 1
3 7 9 3 1
4 0-7 10 2 1
5 0-7 ll 3 1
6 0-6 10 3 1

6 7 9 3 1,
7 0-7 12 4 “

Table Fl Floating Source Modes 1-7

Single Precision

Microcode Memory Memory
Mode Register Cycles Read Write

0-7 3 2 0
2 0-6 3 2 0
2 7 1 1 0
3 0-6 4 3 0
3 7 3 3 0
4 0-7 4 2 0

5 0-7 5 3 0
6 0-7 4 3 0
7 0-7 6 4 0

Double Precision

Microcode Memory Memory
Mode Register Cycles Read Write

l 0-7 5 4 ¢)
2 0-6 5 4 0
2 7 O (Note 15) 1 0
3 0-6 6 5 0
3 7 5 5 0
4 0-7 6 4 0
5 0-7 7 5 0
6 0-7 6 5 0
7 0-7 8 6 0

Table F2 Floating Destination Modes i-7

Single Precision

Microcode Memory Memory
Mode Register Cycles Read Write

1 0-7 3 0 2
2 0-6 3 0 2.
2 7 1 0 1
3 0-6 4 1 2
3 7 3 1 2
4 0-7 4 0 2
5 0-7 5 1 ' 2
6 0-7 4 1 2
7 0-7 6 2 2

Double Precision

Microcode Memory Memory
Mode Register Cycles Read Write

1 0-7 5 0 4
2 0-6 5 0 4
2 7 (-1) (Note 15) 0 1:
3 0-6 6 1 4
3 7 5 1 4
4 0-7 6 0 4
5 0-7 7 1 4
6 0-7 6 1 4
7 0-7 8 2 4

Table F3 Floating Read Modify Write Modes 1-7

Single Precision

Microcode Memory Memory
Mode Register Cycles Read Write

1 0-7 5 2 2
2 0-6 5 2 2
2 7 1 (Note 15) 1 1
3 0-6 6 3 2
3 7 5 3 2
4 0-7 6 2 2
5 0-7 7 3 2
6 0-7 6 3 2
7 0-7 8 4 2

D-11.

Table F3 Floating Read Modify Write Modes 1-7

Double Precision

Microcode Memory Memory
Mode Register Cycles Read Write

1 0-7 9 4 4

2 0-6 9 | 4 4
2 7 (-2) (Note 15) 1 1

3 0-6 10 . 5 4
3 7 9 5 4
4 0-7 10 4 4
5 0-7 11 5 4
6 0-7 10 5 4
7 0-7 12 6 4

Table F4 Integer Source Modes 1-7

Integer

Microcode Memory Memory
Mode Register Cycles Read Write

1 0-7 2 l 0
2 0-6 2 1 0
2 7 O (Note 15) l 0
3 0-6 3 2 0
3 7 2 2 0
4 0-7 3 1 0
5 0-7 4 2 0
6 0-7 3 2 0
7 0-7 5 3 0

Long Integer

Microcode Memory Memory
Mode Register Cycles Read Write

1 0-7 4 2 0
2 0-6 4 2 0
2 7 O (Note 15) 1 0
3 0-6 5 3 0
3 7 4 3 0
4 0-7 5 2 0
5 0-7 6 3 0
6 0-7 5 3 0
7 0-7 7 4 0

D-12

Table F5 Integer Destination Modes 1-7

Integer

Microcode Memory Memory
Mode Register cycles Read Write

1 0-7 2 0 1
2 0-6 2 0 1
2 7 2 0 1
3 0-6 3 1 1
3 7 2 1 1
4 0-7 3 0 1
5 0-7 4 1 1
6 0-7 3 1 1
7 0-7 5. 2 1

Long Integer

Microcode Memory Memory
Mode Register Cycles Read Write

1 0-7 4 0 2
2 0-6 4 0 2
2 7 2 0 1
3 0-6 5 1 2
3 7 4 1 2
4 0-7 5 0 2
5 0-7 6 1 2
6 0-7 5 1 2
7 0-7 7. 2 2

D-13

12.

13.

14,

15.

NOTES

Subtract 2 microcycles (MC) and one read if both source and
destination modes autodecrement PC, or if WRITE-ONLY or
READ-MODIFY-WRITE mode 07 or 17 is used.

READ-ONLY and READ-MODIFY-WRITE destination mode 47

references actually perform 3 READ operations. For book-
keeping purposes, one of the READS is accounted ‘or in the
EXECUTE, FETCH TIMING.

READ-ONLY and READ-MODIFY-WRITE destination mode 57
references actually perform 4 READ operations. For book-
keeping purposes, one of the READS is accounted for in the
EXECUTE, FETCHING TIMING.

Subtract 1 MC if the link register is PC.

Add 1 MC if the source operand is negative.

Subtract 1 MC if the source mode is not Zero.

Add 1 MC if the quotient is even.
Add 2 MC if overflow occurs.
Add 5 MC and 1 read if the PC is used as a destination
register, but only if source mode 47 or 57 is not used. |

Add 1 MC per shift.

Add 1 MC if source operand <15:6> is not zero.

Subtract 1 MC if one shift only.

Add 4 MC and 1 read if the PC is used as a destination
register, but only if source mode 47 or 57 is not used.

Divide by zero executes in 5 MC (see note 6).

Timing for no shift. Add 1 MC if a left shift. (Notes 8, 9,

ll apply.) Add 2 MC for a right shift. (Notes 8, 10, 11
apply.)

Add one MC if a register other than R7 is used,

Mode 27 references only access single word operands. The

execution time listed has been compensated in order to
accurately compute the total execution time.

D~14

APPENDIX E

GLOSSARY

Bus lock -
An indication to memory to prevent or "lock" out other accesses to
that location until it is unlocked. This occurs during an RMW
read bus microcycle with the bus lock control bit asserted. Memory
is automatically unlocked by the following Bus Write microcycle by
that processor.

Cache bypass -
Unconditionally bypass cache and access main memory directly. If
the cache entry is valid, typically invalidate it.

Cache force miss -
Unconditionally bypass cache and access main memory directly. If
the cache entry is valid, typically do not invalidate it but
ignore it.

Data stream bus cycle -
Any microcycle which is a Read, Read/Modify/Write or Write
microcycle.

Demand abort -
An abort during a demand bus microcycle.

Instruction stream bus cycle -_.
Any microcycle which is a prefetch microcycle.

Internal registers -
These explicitly addressable registers are the PS, PIRQ, MMRO,

MMR1, MMR2, MMR3, Hit/Miss, CPU Error, PARs, and PDRs.

Predecode -
An indication to decode the next PDP-11 instruction. This occurs
during a microcycle in which the DCJ11 asserts PRDC and decodes
the prefetch buffer contents as the next PDP11 instruction.

Read/Modify/write (RMW) operation -
Two consecutive microcycles in which the first is a Bus Read
microcycle and the second is a Bus Write microcycle. Both
microcycles access the same location.

Request abort -
An abort during a request bus microcycle. If it is a memory
management or address abort, it will not stretch the microcycle.

INDEX

Abort (ABORT) line,
Aborts, 1-12, 1-13
AC characteristics, B-l

through B-7
Address input/output (AIO) line,

2-3, 2-10
Address latch enable (ALE)

2-5, 2-12
Addressing modes

direct register, 6-6
direct autoincrement, 6-7
direct autodecrement, 6-8
direct index, 6-9 through

6-11
deferred, 6-11 through 6-14
double-operand, 6-3 through

6-4
general,

2-6, 2-11

line, .

6-1 through 6-3
PC relative, 6-14 through

6-18
Single-operand, 6-3

Bank select (BS) lines, 2-2,
2-11 .

Buffer control (BUFCTL) lines,
2-4, 2-13

Bus cycles
AIO codes for, 3-2
bus read, 3-4 through 3-6
bus write, 3-6 through 3-7

duration of, 3-2
general-purpose read, 3-8
general-purpose write, 3-9
interrupt acknowledge, 3-10
non-1I/O (NIO), 3-3
parts of, 3-3

Bus read cycle, 3-4 through 3-6
non-sStretched, 3-5
stretched, 3-5

Bus write cycle, 3-6 through 3-7

Cache control register

force cache miss bit, 5-2
unconditional cache bypass

bit, 5-2

uninterpreted bits, 5-2
Cache memory

cache control register
5-1 through 5-2

general operation, 5-3
in multiprocesing

environment, 5-4

(CCR) ,

‘Index-1

Cache memory (continued)
Sample implementation, 5-4

through 5-8
Cache miss (MISS) line,

2-12
Clock 1 (CLK) line, 2-5, 2-12
Clock 2 (CLK2) line, 2-5, 2-12
Console start microroutine,

8-10 through 8-11
Console ODT, 5-9 through 5-19

address specification, 5-17
Carriage return command, 5-14
command set, 5-12 through

5-17
control-shift-S command, 5-17
floating-point accumulators

and, 5-18
general register references,

5-17

go command, 5-16
initialization, 5-11
invalid characters, 5-19
internal register designator,

5-15

line feed command, 5-14
octal notation for, 5-18
output sequence, 5-12
proceed command, 5-16
processor status word

designator, 5-15
receiver control/status

register (RCSR), 5-9
receiver buffer register

(RBUF), 5-10
slash command, 5-13
stack pointer references,

5-18
terminal interface, 5-9
timeout, 5-19
transmitter control/status

register (XSCR), 5-10
transmitter buffer register

(XBUF), 5-11
Continue (CONT) line,
Control chip, 1-1
CPU error register,

1-16

2-6,

2-4, 2-12

1-15 throug!

Data/address
2-11,

lower, 2-2

upper, 2-2

Data chip, 1-1
Data valid (DV)

(DAL) lines,

2-13
2-2,

line, 2-4, 2-13

DC characteristics, A-1l through
A-4

DCJ11 block diagram, 1-1

DCJ11 pin assignments, 2-1
Direct memory access (DMA)

mechanism, 1-17
Direct memory access (DMA)

requests and grants,
3-11

Direct memory access request
(DMR) line, 2-8, 2-ll

Event (EVENT) line, 2-9, 2-10

Floating-point arithmetic
Gata formats, 7-2 through

7-3
nonvanishing numbers, 7-1
zero, 7-2

undefined variables, 7-2
Floating-point exception code

(FEC) register, 7-7

Floating-point exception (FPE
line, 2-8, 2-10
point instructions
7-12
7-12
7-13
7-13
7-14
7-14
7-14
7-15
7-15
7-15
7-15
7-16
7-16
7-17
7-17
7-17

Floating

ABSF,

ABSD,

ADDF,

ADDD,

CFCC,
CLRF,

CLRD,
CMPF,
CMPD,

DIVF,

DIVD,

LDCDF,

LDCFD,

LDCIF,

LDCID,

LDCLF,

LDCLD, 7-17

LDEXP, 7-18

LDF, 7-19

LDD, 7-19
LDFPS, 7-20
MODF, 7-20
MODD, 7-20
MULF, 7-23

MULD, 7-23

NEGF, 7-24.

NEGD, 7-24

SETF, 7-25

SETI, 7-25
SETL, 7-25
STCFD, 7-26

STCDF, 7-26

)

Index-2

Floating point instructions

(continued)

STCFI, 7-26

STCFL, 7-26

STCDI, 7-26

STCDL, 7-26

STEXP, 7-28

STF, 7-28
STD, 7-28

STFPS, 7-29 ©
STST,
SUBF,

SUBD,
TSTF,
TSTD,

7-29
7-29
7-29
7-31
7-31

General-purpose

accuracy, 7-9 through 7-10
addressing, 7-8 through 7-9

Floating-point status (FPS)
register, 7-3 through
7-7

Floating-point processing, 1-17

General-purpose 8-1
General-purpose

(GP) codes,
read cycle, 3-8
registers, 1-2

General-purpose write cycle, 3-9
Ground (GND) pins, 2-10, 2-11,

2-13 |

Halt line, 2-6, 2-11
Halting DCJ11 operation, 2-24

I space and D space, 4-2

through 4-3
Initialization microroutine,

through 8-6
Initialize (INIT) line,

2-12
Instruction set

ADC, 6-34
ADCB, 6-34
ADD, 6-39
ASH, 6-40
ASHC, 6-41
ASL, 6-31
ASLB, 6-31
ASR, 6-30
ASRB, 6-30

BCC, 6-48

BCS, 6-48
BEQ, 6-47
BGE, 6-50
BGT, 6-50
BHI, 6-51
BHIS, 6-52
BIC, 6-43
BICB, 6-43

BIS, 6-43

8-2

2-5,

BISB, 6-43
BIT, 6-42
BITB, 6-42
BLE, 6-51

BLO, 6-52

BLOS, 6-51
BLT, 6-50
BMI, 6-47
BNE, 6-46
BPL, 6-47

BPT, 6-58

BR, 6-45
BVC, 6-48
BVS, 6-48
CCC, 6-66
CLC. 6-66
CLN, 6-66
CLV, 6-66
CLZ, 6-66
CLR, 6-26
CLRB, 6-26
COM, 6-26
COMB, 6-26
CMP, 6-38
CMPB, 6-38

CSM, 6-61

DEC, 6-27
DECB, 6-27
DIV, 6-42

EMT, 6-57
HALT, 6-64
IOT, 6-58
INC, 6-27
INCB, 6-27
JMP, 6-52
JSR, 6-53
MARK, 6-60
MFPS, 6-36
MFPT, 6-65
MOV, 6-37
MOVB, 6-37

MFPD, 6-65
MFPI, 6-65
MTPD, 6-65
MTPI, 6-65
MTPS, 6-36
MUL, 6-41

NEG, 6-28
NEGB, 6-28
NOP, 6-67

RESET, 6-65
ROL, 6-32
ROLB, 6-32
ROR, 6-31
RORB, 6-31
RTI, 6-59

RTS, 6-55
RTT, 6-59

Index-3

SOB, 6-56
SBC, 6-35
SBCB, 6-35
SEC, 6-66
SEN, 6-66
SEV, 6-66
SEZ, 6-66
SCC, 6-66
SPL, 6-61
SUB, 6-39
SWAB 6-33
SXT, 6-35
TRAP, 6-58
TST, 6-28
TSTB, 6-28
TSTSET, 6-29
WAIT, 6-64
WRTLCK, 6-29
XOR, 6-44
byte instructions, 6-22
formats, 6-19 through 6-22
list, 6-23 through 6-26
symbols, 6-18 through 6-19

Interrupt acknowledge cycle, 3-16
Interrupt and DMA control lines,

2-7
interrupt request (IRQ) lines,

2-7, 2-11
direct memory access request

(DMR), 2-8, 2-11
power fail (PWRF), 2-8,

floating-point exception
(FPE), 2-8, 2-10

event (EVENT), 2-9, 2-10
Interrupt request (IRQ) lines,

2-7,
Interrupts and traps,

through 1-14

2-10

1-11

Map enable (MAP) line, 2-7, 2-l1l
Memory management

addressing, 4-1
fault recovery, 4-8
I space and D space, 4-2

through 4-3
implementation, 4-14 through

4-18
instruction back-up/restart

with, 4-14

interrupt conditions, 4-8
multiple faults, 4-14
page address registers

(PARS), 4-6
page descriptor registers

— (PDRs), 4-6
physical address construction

4-3 through 4-5
register #0 (MMRO),

register #1 (MMR1),
register #2 (MMR2),

4-9
4-10
4-11

Memory management (continued)

register #3 (MMR3), 4-11
register map, 4-19 through

4-20

registers, 4-5
Memory management register #0

(MMRO), 4-9

enable relocation bits, 4-10
error flags, 4-9
page address space bits, 4-10
page number bits, 4-10
processor mode bits, 4-10
reserved bits, 4-10

Memory management register #1
(MMR1), 4-10

Memory management register #2
(MMR2), 4-11

Memory management register #3
(MMR3), 4-11

enable 22-bit mapping bit,
4-11

enable CSM instruction bit,
4-13

enable I/O map bits, 4-11
kernel, supervisor, and user

mode D space bits, 4-13
reserved bits, 4-ll

Memory system registers, 1-17

Non-I/O (NIO) bus cycle, 3-3

Oscillator pins, 2-9
XTALI, 2-9, 2-12
XTALO, 2-9, 2-12

Page address registers, 4-6

Page descriptor registers

access control field, 4-8
bypass cache bit, 4-7
expansion direction bit, 4-7
page length field, 4-7
page written bit, 4-7
reserved bits, 4-8.

Parity error (PARITY) line, 2-6,

2-11
Pin description summary, 2-10

through 2-13
Pipeline processing, 5-20

through 5-22

Power-down microroutine, 8-9
Power fail (PWRF) line, 2-8,

2~10

Power pins, 2-9
ground (GND), 2-10, 2-11,

2-13

power (Vcc), 2-10, 2-11, 2-13
Power-up Circuit, 8-8

Index-4

Power-up configuration, 8-6

through 8-8
Predecode (PRDC) line, 2-7, 2-1:
Processor status word (PS), 1-3

through 1-11
condition code bits, 1-6
initialization, 1-11

processor mode bits, 1-5
protection, 1-7 through 1-10
priority level bits, 1-5
trace/trap bit, 1-6

Program ‘interrupt request
register, (PIRQ), 1-15

Receiver buffer register (RBUF)
5-10

Receiver control/status
register (RCSR), 5-9

Stack protection, 1-16
Start/stop control lines, 2-5

halt (HALT), 2-6, 2-11
initialize (INIT), 2-5, 2-12

Status signals, 2-6
abort (ABORT), 2-6, 2-11
cache miss (MISS), 2-6, 2-12
map enable (MAP), 2-7, 2-11
parity error (PARITY), 2-6,

2-11
predecode (PRDC), 2-7, 2-12

Stretch control (SCTL) line,
2-5, 2-12

Strobe (STRB) line, 2-5, 2-12
System control lines, 2-2

address input/output (AIO),
2-3, 2-10

bank Select (BS), 2-2, 2-11
buffer control (BUFCTL), 2-4

2-13
continue (CONT), 2-4, 2-12
data valid (DV), 2-4, 2-13

Test 1 (TEST1) line, 2-9, 2-10
Test 2 (TEST2) line, 2-9, 2-12
Test pins, 2-9

test 1 (TEST1), 2-9, 2-10
test 2 (TEST2), 2-9, 2-12

Timing signals, 2-4
address latch enable (ALE),

2-5, 2-12
Clock 1 (CLK), 2-5, 2-12
Clock 2 (CLK2), 2-5, 2-12
Stretch control (SCTL), 2-5,

2-12
strobe (STRB), 2-5, 2-12

Transmitter buffer register
(XBUF), 5-ll

Transmitter control/status
register (XSCR), 5-10

Digital Equipment Corporation e Bedford, MA 01730

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	E-01
	E-02
	index-1
	index-2
	index-3
	index-4
	xBack

