EK-DCJ11-UG-PRE

DCJ11
Microprocessor
User’'s Guide

PRELIMINARY

EK-DCJ11-UG-PRE

DCJ11
Microprocessor
User’s Guide

PRELIMINARY

Prepared by Educational Services
of
Digital Equipment Corporation

Preliminary, October 1983

Copyright © 1983 by Digital Equipment Corporation
All Rights Reserved

The material in this manual is for informational purposes and is
subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any

errors which may appear in this manual.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem RSTS
DECnet IAS RSX
DECUS MASSBUS TOPS-10
DECsystem-10 MI 'C-11 TOPS-20
DECSYSTEM-20 OM. 1US UNIBUS
DECwriter 05/8 VAX
DIBOL PDP VMS

20050 PDT VT

CONTENTS

Page
PREFACE -

CHAPTER 1 ARCHITECTURE

el INTRODUCTION. .vveoeostessvasosososscasssssscsssnossasesnsse

GENERAL-PURPOSE REGISTERS. . ¢t ceecessesvcsscacssoscsscnssoaca

PROCESSOR STATUS WORD . . cteeeesteocssoorsvsssssscsosscssscaes
.1 ProcessOr MOAES.:ceessetesocssssssssosnssssssosncnonss
.2 Priority LevelsS..eeeeesesessecsscoscsososecssnncsosssses
.3 The Trace/Trap Bit..eeeeeesesoesscososcsssosonsssssnsoe
.4
.5

condition Codes.t00oQQl.'0!.0....-.00.000.000000.00

2
3
3
3
3
3
3 Processor Status (PS) Protection.....ccceeecoeccnns
4 INTERRUPTS AND TRAPS...vccesesssssscssscssonsnssssnsans
5
6
7
8
9
1

HHHHTHHHH
POV WNH

HALTING DCJ1]l OPERATION. .t veeeseeceecsascoscssassonsenes 1-14
PROGRAM INTERRUPT REQUEST REGISTER...s.ccooeeeesecssssss 1-15
CPU ERROR REGISTER. . ceeeseeecsecsssosssscssssssnssocsssssss 1-15
STACK PROTECTION..::ceeeeeeoescoccncsccssssncsscsssnssssee 1=-16
FLOATING-POINT PROCESSING..:.eeteeeeccscocosssssassssses 1=17
0 MEMORY SYSTEM REGISTERS....seeesescecosscssnscsssscsssse 1-17
11 DIRECT-MEMORY ACCESS (DMA) MECHANISM.....ecceeeessesses 1-17

1

CHAPTER 2 PIN DESCRIPTION

2.1 INTRODUCTION. .. veeeveaosovscsssssosstsscsossssnssnssssssossas
2.2 DATA/ADDRESS LINES (DAL<21:00>) ccveeecoocsssnsscsconsos
1 Upper Data/Address Lines (DAL<21:16>).cccvecccccnns
2 Lower Data/Address Lines (DAL<15:00>).ccceccconcces
SYSTEM CONTROL LINES .. :ceeocsosacosessssscossssssscsosaes
Bank Select (BS<1l:0>) cciesvsvesvescscssesosassesscas
Address Input/Output (AJO<3:0>) .cceesccsccoocsconsas
Buffer Control (BUFCTL) ccetvococsosssocscsscsscssoeses
Continue (CONT) ¢veeeeercsonosssosssesosssosnasssoscsscsss
Data Valid (DV) ceveeeoscoossscosoosssssnsncscsssossssss
TIMING SIGNALS . ¢t eevesteeecnsososonsesssossssssoscscscscsecsass
Address Latch Enable (ALE) ¢t veeevoconcosossossnscseas
Stretch ContrOl (SCTL) tveeeeesescocccscsasansnssasnnsse
Strobe (STRB) ¢ecesoeensnsesossossssessscsscssascscsss
CloCKk 1 (CLK) eeceeeecoonsosossasasossessscosossonsssssecs

. . .
!

e« o o o o o
e o ® o o o o
Nd W UV W N
[T I O T A

L) .]

Clock 2 (CLK2) tetieeeoensonsssesssansnnssssncssnsss
START/STOP CONTROL . ¢t ceeooonsessssssssosoccssosssacacssss
Initialize (INIT) ceeeeoresccscsreasarsnosnsscsoscoasnnsns
Halt (HALT) ¢t e voetonsonsossossosansossssosnanscssnsassoes
STATUS SIGNALS .t eseeetsvesosssessssssssnsassscssnsesascsss
Cache Miss (MISS) .eueeesvossoesssossccsosonnsconncsss
Parity Error (PARITY) ccueevsoescsosooccocccosoncess
AbOrt (ABORT) vt veveeesrsosaosssoscsasscoscosssncscascsas
Map Enable (MAP) cuveeeerosnoosssssnosascseossascenass
Predecode (PRDC) .icieeesssososnscescscconssssssonsas
INTERRUPT AND DMA CONTROL . ::ootoveessosssncosssssscsnces
Interrupt Request (IRQ<3:0>) iuutvcsncessnnscscnsnns
Direct-Memory Access RequesSt (DMR) vveveeeeeeooeoess
Power Fail (PWRF) .useeseeesecsorososnosnconosaasssns

e o o o o o
. o
N -

[I D R B |

« o o o o
bW N

e ¢ e & o o

EIN PR NDNNN OO DD NN DD DN

NNNUARARARN NN BB EBEEDEWWWWWWINN

NN NDODRODONNONDNONDNDNDNONDNNDNNDNON
OOV I VDAV NN EBEBRWNDNNDMODNODE

o« e o
w o

5
-

iii

7.4 Floating-Point Exception (FPE)..ciceeietenrenncnnnn
7.5 Event (EVENT) coves et seveoesossosscsoscsscssssscssccascse
.8 TEST PINS..eetcetsestscssscscssosnssssscsoscsscssssscsscsssscsescs
.8.1 Test 1 (TESTLl) .i.eeeeeeesrennononsssosssosnsssnsonscses
.8.2 Test 2 (TEST2) i veeeeoseseessonesnssssosssssssscssses
9 OSCILLATOR PINS ..t cteeesecoassssnsosssososssocsssossccscocacs
9.1 XTALT and XTALO GenerationN.:.cececsessssnsncssccscose
10 POWER PINS..tesveeocn st s ecescseasscs e et s st e ne
.10.1 Power (VCC).ieeseveeneoosrsosssonnnaonssas

.10.2 Ground (GND) v e v vt vsoossoscsssoncsnssansaes
11 PIN DESCRIPTION SUMMARY..:0eos0s0- e rceesas s

NN DD NN

*« e o

CHAPTER 3 BUS CYCLES

3.1 INTRODUCTION. et v vevnneenonnesenssoeansesansesnnsesensses
3.2 DURATION OF BUS CYCLES ... vuseernoesennssennseenansennns
3.3 BUS CYCLE PARTS .. vruseneeenennsnonsancensennoennennsens
3.4 NON=I/O (NIO) CYCLE .. :u'usennonneenseeaooensensenanonnss
3.5 BUS READ CYCLE ..+t vvrneeennnsosenonenenssennnenoensenenns
3.6 BUS WRITE CYCLE...... C e e ettt et
3.7 GENERAL-PURPOSE (GP) READ CYCLE. .+« oevsnnsnnsnnnnnnnnns
3.8 GENERAL-PURPOSE (GP) WRITE CYCLE. . :vusveenoreennneennns
3.9 INTERRUPT ACKNOWLEDGE CYCLE. . :veeeeenooeenoeesenneennns
3,10 DMA REQUESTS AND GRANTSvereverennnnonnnnan e

CHAPTER 4 MEMORY MANAGEMENT

INTRODUCTION . .t v vessvaoessas s a e s s e s s ees et s s e e s an e
ADDRESSING . et ssenscosossoens ch s et et et s st eaa s
I SPACE AND D SPACE . it teeterosserasnsaosssonsssn
CONSTRUCTION OF A PHYSICAL ADDRESS..vetetesvsotvocossas
MANAGEMENT REGISTERS .4 .t vt it eenassesssscssesossssas

Page Address Registers (PARS) ...eereevesosccononnss
Page Descriptor Registers (PDRS)....... Cee st eeenan
1 Bypass Cache. ..t eeeisnsnnnnnons et
2 Page Length Field (PLF) teesevsrenans e
3 Page Written........ Cest s esene

4 Expansion Direction (ED)...........

.5 Access Control Field...vevvve.onn s h et eses e
)

N

A

e e o
.
o e
.
.
.
.
.
.

Reserved BitS.iiiivevennns Gttt e et eessenan e
TERRUPT CONDITIONS UNDER MEMORY MANAGEMENT CONTROL.,..
ULT RECOVERY REGISTERS. e st e et s e et et e e et s s
Memory Management Register #0 (MMRO) ..t vineeennes

Error Flags....... s et e et i et s s e et
Abort -- Non-Resident........cco0ivnvenonnas
Abort -— Page Length...vieee venerseonsnses
Abort == Read ONnly..ieeieeeoeesnosnnooseaans
Reserved BitS..iieieeetieeeseoconoooans
Processor MO ..t v vvseeotossoeenoneenens
Page AddresSsS SpPaACe..seevieersresssnsnsncnsos
Page NUMbEr ...t ienereensonnssnnesacs
Enable Relocation....eiiiitrieeeeeeeennnonnas
Memory Management Register #1 (MMRl).......
Memory Management Register #2 (MMR2)¢eveceeeenn
Memory Management Register #3 (MMR3).......
Reserved BitS..iieeeessessesecocnoososonsonnans
Enable T/0 MapP::tteeroserosostosocsssosoosnannsess

.« o
« o e
w N~

. o

.
v BDWN

. . L] . .
NNSNN NN N NN N NN SN NN NSO N VNN N W N
. . . .

N N N N N N N N N N N S N N S N C N SO I I T N N N N N
.
. .
BB W N e e e
. . « o e « . e e

N~

iv

NNNNN:}JMNNMN
= OO OO OO YD

OO0

wwwu\fwwwww
HHEOOADWWN -

= O

| L T I D B O A |
HHEOOOVOVWODODOINIIIDAITNNWN

| I O N T O O
o

o

bhbbhhhbbbbb?bbbbbbhbbhhb

1
i
o000

4-10
4-11
4-11
4-11
4-11

o »
o o o
W N QAU D
o« o ®
[N - O3]

N O - -)

CHAPTER 5

e o o o &
. o o
* e

w N~

. -
VB W N
.

. e
BB WWWWWWWWWwWwWwWWWWwWwwWwWwWwwW WWwwwhdhooNnoDND NN
. L] . . L] L]
. . Ll -
oW N

NAVHHE D DWW WWWWWWWONNDHEF
. L]
N

ooty noanm
a o 8 & o o & o & & o & o o s o s s o o e »
e ® o o & ®© o ¢ o o o o ¢ o o
e o o e e e e o o o .
wNo e [< BEN BNe WU, B SRVS I\ 2 o

3
-

CHAPTER 6

6.
6

2

Enable 22-Bit Mapping..cceeeeeeeeecesccosacecse
Enable Call To Supervisor Mode Instruction.....
Kernel, Supervisor, and User Mode D Space Bits,
Instruction Back-Up/Restart ReCOVerY..eeceeeeosossce
Clearing Status Registers Following Abort..........

Multiple Faults...
IMPLEMENTATION., .
Typical Memory Page....

© 4 0 9 0 0 0 00 0 ° S 0 0GOS PO E PO OO

® ¢ 0 0 6 % 0 0 0 05 006 5 008 S 9 SO0 0SSO 0N

® 4 8 @8 65 06000000000 000000008000

Non—consecutive Memory Plagesol....‘...“'."...'..l
Stack Memory Pages.‘.'00....l‘...l.'ll......".‘l.l

Transparencv....

SPECIAL FEATURES

INTRODUCTION.

® 8 5 6 5 06 0 0 05 0 5 OO LSS LGN ES eI

MEMORY MANAGEMENT UNIT ~- REGISTER MAP...cceeccoccsssns

® & 2 0 ® 0.8 5 0 9 S 0 G L P B 0SS G L O L E GOV OO E e NSt

CACHE MEMORY STATUS AND CONTROL REGISTERS.....cecoessss

Cache Control RegisSter..ivesecacasssescocssvsasosnnesss
Unconditional Cache Bypass (R/W).eeseeosooccoss

Force Cache Miss
Uninterpreted Bits.
Hit/Miss Register.....
General Overation....

(R/W) eevvennn

© ® ® e 6 0 0 00 s 0 s e e e et o

© 8 8 # 0 0 e 0 0 0 0 6 00 000 000 e

® 8 ¢ T e & SO G O 0 e 0 ENS L s e O e e o

Cache Memory In A Multiprocessor Environment..

Sample ImplementatioN..iivececcocsosess
CONSOLE ODT...vvvee

Terminal Interface..

s e 0 6 00 0 00

® 6 6. 0 8 5 06 00 08 000 s 0 e s o

Receiver Control/Status Register

Receiver Buffer Register
Transmitter Control and Status Register
Transmitter Buffer Register
Console ODT OperationN.. . ceieeeessccsscccssas
Console ODT Initialization......
Console ODT Outpu

(RBUF) ...

(XBUF)

e 0 00

® 0 6 ¥ 5 0 5 0 0 0 5 060 08080 0600 00 0000

@ e 0 0 0 0 0 0 0

(RCSR)..-.-.--

(XSCR) .

LI R S N R ICINE N I I

SegUeNCe. ccveraersonsssesons

Console ODT Command Set.ceeeseecosesscocssscnosscsssca

(ASCTII 057)

<CR>
<LF>

(ASCII 012)
$ (ASCII 044)

S (ASCII 123) Processor Status Word......

G (ASCII 107) Go..
P (ASCII 120)
Control-Shift-S
Address Specification.
General Registers..
Stack Pointers...

proce'ed.............-....-.
(ASCII 023)ceevvecenaccns

® ® ¢ ® 9 0 0 00000080 s e e

® o s 0 00

L I I I L I K B B Y B N BT R S Y I L)

Slash."lC'..'l.'l..'..‘..l...
(ASCII 015) Carriage Return.........
Line Feed..

.

Or R (ASCTII 122).uceeveensn

Floating-Point AccumulatorS...eeeeeeeesens

Entering Octal Digits.....
ODT Timeout
Invalid Characters...

@ o 0 0 0 000 00000

2 8 6 00606 0 60000 959000

e e 9 e 0 0 00 000 0

e e e s 0

® o o o oo

® s 0 o 0

e s 0 00

e e 0o s

L A LR R Y R B B K I BN I A S I Y A I B N A B B I 2K)

DCJll PIPELINE PROCESSING'..'....I.........Q.......I..l

Pipeline Flow EXampPle..ceeeseseeccssacesessssosnnne

ADDRESSING MODES AND BASE INSTRUCTION SET

1 INTRODUCTION..
.2 ADDRESSING MODES..

s o 0 0 0000 00

LR R B A A I IR I I R A R I I R A B)

@ © 0 6 © 0 9 6 0 00 9 0 00 O e 0Ol e N s

4-11
4-13
4-13
4-14
4-14
4-14
4-14
4-15
4-17
4-17
4-18
4-19

Single-Operand AdAresSinNgeccecececcceseseccecscsnanns
Double-Operand AddressSing...ccceecececscesstccsacnns
Direct AQAressSing...ccceececescsessctsccossassscocnasaa
Register MOA@...ceevoesccscscsoscssscscscscccscs
Autoincrement MOde...cveeesscessessccccccoccess
Autodecrement MOd@..cseeeetsessssscscsossssansas
Index ModeUQCOOOOOC0.00.00".'........OOC.0.0.Q
Deferred (Indirect) AddressSing..cceecececcccccccces
Use of the PC As a General-Purpose Register........
Immediate MOAE€.::eeeeoeeeososssssssssssssssssnnsce
Absolute AddressSing..ccccessccsssescsccccccececss 6-16
Relative AddreSSing.....-...................... 6-17
Relative-Deferred AddresSing.cccescsessesecssss 6=17

Use of the Stack Pointer As a General-Purpose
Register................--....-.................... 6"18
INSTRUCTION SET..qooooooovcoooooo.o..occon.aoo--.onu-o- 6-18
Instruction FOrmMatsS..ceeeseesccscossscoscoscssccsaes 6=-19
Byte INStruCctionS..cccessesssnccccccosscsssasssssssss 6=22
List of InstructionsS....ceseecesscccecsscecssssccssss 6=23
Single-Operand InstructionNS..ccccececesccccsscnsses 6=26
General.....-................-................. 6-26
Shifts and ROtateS............................. 6-30
Multiple-PrecisSion...cceeececcsncescessccsacsse 6=23
PS WOL‘d OperatOIS.............................. 6-36
Double-Operand InstructionS..ceececcecoscososceosnsscsss 6=37
General...coeseececsssecssssssosssssncsssssnsssssecs 6-37
LOgiCal.iiiereeeiensonosscaosssssosscssossessesecese 6—42
Program Control InstructionS....ecccecceescccccecces 6-45
Branches.............-o........................ 6-45
Signed Conditional Branches....eceecesccecccsees 6-49
Unsigned Conditional BrancheS.....cceceeecesees 6=51
Jump and Subroutine InstructionsS.....cceecceeee 6=-52
TrapS ------- © ¢ 0 0 060060068 0006000 I00OCGOOEOLLOGEOEDIOEOLIOIEOBSIEECEE 6-56
Miscellaneous Program Control....ccees0000c000ee 6=60
Reserved Instruction TrapS..e.scecscesessssscees 6=-62
Trace TraAPescecoessosocossssssonasnans ceesenene ees 6-62
.1 Special Cases Of The T=Bit.eeeseeececassases 6=63
Miscellaneous INStructionNS...ceeescevecesccoacesess 6-64
Condition Code OperatoOrS..csecceesoccssoccsossscs «s 6-66

. * L] L] . . L] .
AV BWWWWW N
L) .] o .
oW N
[

L] L]
030\0&0\0\0'\0100\0\
= OONOOODWW

e & e o e ® @& & e e e o ¢ o & & o o
e o ® e o e o * o
e e o
oW N -

o ¢ o o o o

* o o
e e o o o o« o ¢ o o @
ROV W N - S WN

e o e o o e o o
e ¢ o o o o e e o

O NN NUE BB EWN

AR AANATAAAAAANANNANANN AR OV (o W W W e We Mo W, I W e Mo W e W) o R o))
L]
WWWWWWWwWWWwWwWwWwWwWwwwWwWwwuwuwwww DO NONND DN

CHAPTER 7 FLOATING-POINT ARITHMETIC

1 INTRODUCTION ooooooooooooooooo ® 6 0.0 08008 00 000060 000000008009 000

. FLOATING-POINT DATA FORMATS . .ccrecesvocrsossscscscsnsscns -
1 Non-Vanishing Floating-Point Numbers.....ccceeeeeess -

2,2 Floating-Point ZerO...ieececosscossse sassssssscccnsnse -

2.3 Undefined Variables..... Ceees st eseesresessesesess e -
.4 Floating-Point Data@....vceeveoescosssosscscssssansscs

FLOATING EXCEPTION CODE AND ADDRESS REGISTERS.:.:eeccsee
FLOATING-POINT INSTRUCTION ADDRESSING..:eoccocooscccnses
ACCURACY . .vecevceocnnncs I S S S PN e
FLOATING-POINT INSTRUCTIONS............................

NN NN uNN NS
L]

qqqqq?qqqqq

OO IWN DN

2
2
2
2
2
3 FLOATING-POINT STATUS REGISTER..:eesveseesecsscsscacssse
4
5
6
7

CHAPTER 8 INTERFACING

801 INTRODUCTION ooooooo L B A I R R A I B O B I I I I B B I B BN B I I I BB B O 8_1

vi

GENERAL-PURPOSE (GP) CODES.u..-coocooo.-oooooo.ooo.ooooo

POWER-UP AND INITIALIZATION © e 000 ess00 0000000000000
Initialization Timing'.».....'.‘..O.............O.Q.
Initialization Microroutine....eeoveecesccesssanssse

1
2
3 Power-Up Configuration.....coeeseesescsccsscsccsonss
4

POWer“Up Circuit.oo-ooo».ta.oco'ooo-o..noan....c..o
OTHER MICROROUTINES.-.OO...li..l..000.00.0.0.....'.0....

APPENDIX A DC CHARACTERISTICS

APPENDIX B AC CHARACTERISTICS

APPENDIX C HARDWARE AND SOFTWARE DIFFERENCES

APPENDIX D INSTRUCTION TIMING

APPENDIX E GLOSSARY

INDEX

FIGURES

o]
-
«Q
[+
"~
o

e
[|

1
RPHREYVONONLHL WNHFONOAOVBWNDRENEOS WM

[

o

DEDBELOOLDLEDBDWWWWWWWWN N
| |

P

w N

4-14
4-15
4-1¢

DCJ1]l Block DiAgraAm.cceeeeecescesasecccoossososeanscssosss
DCJ1l General-Purpose RegiSterS..iceeeccessrsvcasscssonsca
Processor Status WOrd.....ceiesessvsssossnossnsssnssnss
PIRQ RegisSter..cieeeeeeasssovsossoscoosssssosssssssonssassnse
CPU Error RegisSter.ceeeseeevcessesssscenoscsssacecssnsnonss
DCJ1l Pin ASSignmentS..cieiuessescossssssosssssnssssssnse
Typical XTALI and XTALO GeneratiON..c...cescscscsccscsscs
Non-Stretched Non-I/0 CYCle..veceeecesossosssssssssssssss
Stretched NOD-I/O CYC].e--o.o.o--o.oooooooo'oooouooo'ooo
Non-Stretched Bus Read CyYCle..coeseeessessccosccscsssccsne
Stretched Bus Read CycCle...ueeoerecesosscsccossssscnnass
Bus Write CyCle.ieeceeeaossnesosessscsccsssssssccscnsonse
General-Purpose (GP) Read CyCle..viseicesecsccsccnsnsas
General-Purpose (GP) Write CyCle.ieeeesececoeesccnonsns
Interrupt Acknowleddge CYCle..eeeseecessssscessossonssoss
Virtual Address Mapping Into Physical AddresS...ceceeee
Interpretation Of A Virtual AddresS....ccececscacessses
Displacement Field Of Virtual AddresSS...ecvecesceccsone
Construction Of A Physical AdAresS....ceesescssssncscos
Active Page RegisStersS...ceieieecersscsossssssssosnsssansces
Page Address Register......cuveieseecscosseesscscssnnsons
Page Descriptor Register (PDR)...ievececoovccoscosanccscse
Memory Management Register #0 (MMRO)..esoesevecocnncocss
Memory Management Register #1 (MMR1l)...veeeoccssocossns
Memory Management Register #3 (MMR3)....c000cecconcosscs
16-Bit MappPing..ueeoeeeeescovesososceorsossssenssnsssssassas
18-Bit MapPPIiNg.eeeoeeevvosssvoscssssssossssssenosssssscss
22-Bit MappPing..ceeieeiretevooerteeocosssssoscoscsssanonsons
Typical MemOILY Page....eeceoesoceeeesoesssccsosnsosnssassce
Non=-Consecutive MemoOry PageS..cceeeecccscsscscsccosssss
Typical Stack MemoOry Page....ceeeeesccccsscscsesacccnsss

vii

QOO?QOQ
XA N

Page

1-1

UL L L I T I [I I I |
HHEOJOADB_EWNDFODIVUL D

&Abbhbbb?hbwwwwww

| F TR T T TR T T T A I T O B B
o

i
H= OOV L W OO WD

1
|
V= O

R Rk R TN R RO NT, BTN TR N N R
1

=

> w

6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46

Cache Control RegisSter..iveesessesccsacccssscosossscossas
Hit/Miss Register...ceveeieeeones Cheerseeassesessssn e
Physical Address Partitioning For Cache Memory.........
Cache EnNEry.eeeeeeeeeestsetoosssiosssssesosscsssacssnnans
Cache Entry With Parityeesssesssetossosocesccossocoocsos
Sample Cache Control Register.....veeeeeeesesssoccsnnsne
Receiver Control/Status Register (RCSR).eveeseecrocooss
Receiver Buffer Register (RBUF) .:.ceecececcosscnssonccns
Transmitter Control/Status Register (XCSR).:::vevovasas
Transmitter Buffer Register (XBUF)....cieveericncncnnss
Pipeline Filling ProCeSS...ieeiertessessceesssseoscsncnns
Single-Operand Addressing...eeeesecoeas

Double-Operand Addressing.......... e s esiesas e esen
Mode O Register..iiieieeseotioeesoensssonsscansssnnonsaes
Mode 2 AutoinCrement. ..o vieeeeeerssossrsoccsoscssosossasonos
Mode 4 Autodecrement...cioeeeecceasssansos s seess o s es e
MOde 6 TNAeX.o:eweeeotesetoostsessosesersessssossasnsssecscsses
INC R3 Increment...ececeeos c e e s e s s s s s e s e s e s ssses e
ADD R2,R4 Add....ivvieveorennansns I
COMB R4 Complement Byte........ seesscdesan Ceecosesaesane
CLR (R5)+ Cledar.cieeieesosossossnssocsnssasssssoscasssnsos
CLRB (R5)+ Clear Byte..iieiverenrtenrenonse cessre s
ADD (R2)+ R4 Add. ..t ittt ertonsesrsessnsassnsces ceeseens

INC ~(RO) IncCrement.. .. veeeeecasesooesasososnssssnsosass
INCB - (RO) Increment ByYte. ... cieeesosesoncsesossscscsas
ADD -(R3),R0 Add...vtveeetannsnnns Cree e Cr s e serean
CLR 200(R4) Clear...uovevesosonsnscoansss .o

COMB 200 (R1l) Complement Byte........ tesee s s essnas oo
ADD 30(R2),20(RS) Add.. ..o tev et tssotosessonssnoessssaasnse
Mode 1 Register-Deferred........c.ce.. tessecssen e

Mode 3 Autoincrement-Deferred......iceeeveresnsesnossse
Mode 5 Autodecrement-Deferred........ st e s et esreen e

Mode 7 Index=-Deferred.... v iveviitnsvseossssrsensnaisonsaanse
CLR @RS Cleareieeeeresanvarosons N Cee e ce st e e e
INC @(R2)+ Increment...veeeucnos C et ee e ce s e .o
COM @-(R0O) Complement....oveeveeneennns sereseceranauans
ADD @1000(R2),R1 Add....... s e s e st e e ase et s er sttt es s
ADD #10,RO Add...eveeeeereeresneensnensns c s e e nne

CLR Q#1100 Clearl.ceeeresoososnosasasassons ce e s e enaan
ADD Q#2000 Add. ...ttt eeeeersosnnnncosannns ch e
INC A Increment......... e ettt s et et e e e e ns e
CLR @A Clear....... tree e e v eenes teeerrsanen seen e
Single-0perand GrOUP .. .veess ot sssescssssssssasesnssnsas
Double-Operand Group l....... e eeecssecosass st noaen s e
Double-Operand Group 2.......... Chetesseeas sasareesacea
Program Control Group BranCh...ceeeieeeeos cer e e
Program Control Group JSR.......... C et s et e et es s ee e
Program Control Group RTS........ ce e s et e eans .o
Program Control Group TrapS..... Cectessesesssssnesas e
Program Control Group Subtract.....ciieeieineeeeeonceenns

Mark......-...........'...-.-..-......o....

Call To Supervisor Mode..vveeveeeonss
Set Priority Level....iuieieeeioserotoosonononnsosonnass
Operate GrOUD. ..ot sessesssssssssosnesoossssssnenss
Condition GrOUP ..o vvevestosevssonssensses ceseanee che e e
Move To And From Previous Instruction/Data Space Group.
Byte INStrucCtionS..cveeeirtroesssnersoncaes

e ® o 0 0 00 000 0

® 6 0 & 00 0 0 00 00 00

viii

| LI R I R T L T T |
OO OWOERIILIANNNUVBWNIDHREFEOMOVS DN
O~ OO

o

[|
o

AANANIANAIINIATAATIINANANIANATANTAITIANNNNN OV TNy

1
—
N

h=-12
h=12
6-23
h-24
6-13
h-14
6-15
h-16
6-16
6=-17
h-18
6-19
6-20
6-20
6-20
6-20
6-20
6-20
6-21
h=-21
6-21
6-21
6-21
6-21
6-22
6-22

7-1 Single-Precision Format.....eceee..
Double-Precision Format.....eeeeee.
2°s Complement FOIMAt..veveeecessncocosnas
Floating-Point Status Register......ceee.
Floating-Point Addressing ModeS....seceevsn
Initialization..ieeeeeeeeseersosvenecnonss

o 0 08 0 0

2

3

4

5

1

2

3 Power-Up Configuration Register.......ce..
4 Power-Up Circuit..iiivieeeeensscoconsonnss
S Power-DOWn SeqUeNCe...cceeeevocsssoscscosss
6 Console ODT Start SequUeNCe..oceoevoososscss
1 Voltage Waveforms..... ceesisreessesssensne
-1 Clock TimMinNgeeeseeeeesoesscenocssosososnsns
2 Three State Dlsable Test Cilrcuit.eseeseenee
3 TTL Output Test Circuit....eoesecocevccsss
4 MOS Output Test CircUit.i.ieeenecossccooocnnss
5 Non-Stretched Bus Read Timing...sececceees
6 Stretched Bus Read Timing..eseeevevcconsss
7 Bus Write Timing...sieeeeeeeovoesscecossonse
8 General-Purpose Read Timing....eceeeeveees
9 General-Purpose Write Timing...ceeeeeovoes
-10 Interrupt Acknowledge Timing...ceeeeeeeees
-11 Interrupt Timing........ cesens

TABLES

Table

—
|

NNV B DWWWWNNNDND N T
i

Priority Levels..ieieeesoesssssssoasscnsone
PS Protection For Exp11c1t Accesses se s e
PS Protection For Traps And Interrupts....
PS Protectinn For RTI, RTT Instructions...
PS Protection For MTPS Instruction........
PS Initialization During Power-Up.....cee
Interrupts, Traps, and Aborts......eeee...
BS Device Selection..... Ch e ea s ee s s cee s
AIO Decode. e T
Interrupt Requests on IRQ<3:0>....... .
IRQ<3:0> Interrupt Request LevelS....osese
AIO Codes for Bus Cycles..... seessassvenns
General-Purpose Read Codes...... setes e
General-Purpose Write CodesS..evesveeesnnns
Interrupt Acknowledgement...ceeeeseessonss
I and D Space Referencing.................
Mode Bit Operations...... cesenen
Typical Hit/Miss Operatlons Y
Console ODT Commands. ceeceseresen
Pipeline Flow........ ce s e e eecane s
FPS Register BitS...ieeesoeeosoeoacnnas
GP Codes and FunctionS..eeeeeeossevess
DCJ1l Programming Differences..........

| AN T S A N A B |

.
.
.
.
.

[TR T T TR T AR O BN | 1
HFHEREWNDH NDHE S W WOV S W

ix

Initialization SequUencCe.....cveeencsecccsces

e e 0 0 0 0 00

® o 0 s 00
* o ® 0 00
o e e 0 0 0
e o o 0 0 0

¢ o 0 00
0 0 0 0 o

Instructions Influenced By Processor Modes......

e e s 0 0 o

o 000 0 0 0

1 11
> wwN

DONNNIILI I
!
=

o ®©
[T I I I
o

[I R N I I 1
NNV NDDLEDBWEHEOONWN

wmmmmmw&?wmuuycooom

o
i+
(e}
o

e
R T T R T T O I A |
AHDBDNNHFWHWRHEEFFOMNDO®H WHHHWO AW,
WO

LI O T R S S A |
MW W O

NIV NEDWWWW NN NN -
|

PREFACE

This user”s guide is intended to familiarize the reader with the
hardware and software characteristics of the DCJ1ll microprocessor
CPU chip. It is assumed that the reader has had some experience
with microprocessor design. Readers should also have some
familiarity with PDP-11 architecture.

The book is organized as follows:
Chapter 1 provides an architectural overview of the DCJ1ll.
Chapter 2 describes the function of each DCJ1ll pin.

Chapter 3 describes the various types of DCJ1ll bus cycles and
provides an overview of the timing relationships among DCJ1l1l
inputs and outputs during these cycles.

Chapter 4 describes the architecture and operation of the DCJ1ll’s
integral memory management unit.

Chapter 5 provides information on three special features integral
to the DCJ1ll: cache memory registers (this description also
includes cache memory design considerations), console ODT (also
called micro-ODT), and pipeline processing.

Chapter 6 describes the DCJ1ll base inétruction set.

Chapter 7 describes the integral floating-point unit and its
instruction set.

Chapter 8 provides some introductory information on interfacing
external logic to the DCJ1ll. Power-up and initialization circuits
are provided.

Appendix A contains a summary of the DCJ1l DC characteristics.
Appendix B contains a summary of the DCJ1ll AC characteristics.
Appendix C summarizes the hardware differences between: (1) the
DCJ11 and the PDP-11/44 and (2) the DCJ1l and the PDP-11/70.

Appendix C also contains g summary of the software differences
between the DCJ1l and other processors in the PDP-11 family.

Appendix D describes how to determine the duration of a DCJ1ll
instruction. Timings for both the base instruction set and the

floating-point instruction set are provided.

Appendix E contains a brief glossary of some DCJ1ll terms.

X1

CHAPTER 1
ARCHITECTURE

1.1 INTRODUCTION

This chapter provides a brief introduction to the architecture of
the DCJ1ll microprocessor. The DCJ1ll 1is organized as shown in
Figure 1-1.

r- r DATA CHIP

ABORT
L ABOAY |——»

FAR ©\] —e acE ' CARRY
1GR-*
e — l—e $TRA RS R oAt

TENG T
Ao ——el g

TATE p— <C't e
.__._3 COMPAHATOR {pap
aRE" o SECUENCER BIFCTY VA 1260

PAR PR REGISTER
Ul NCLUDES
FLUATING PO

MULTPLEY

N I 27 817 >

SPECIAL RO -STENN

MMRG ChrLML U7 e \N“u:..
MMRY [TIAN U . OuTPL
MEMORY ! MME3 poHz CATCHES

MANAGEMENT

NAINREGISTE® BEUs 1287 FHO3 3R)
. - SHIFTER NPT
FrLE 1ICONTAING ARITHMETIC ——_—l——|5 . > Arit “hnm 2287

GENERAL PURPOSE LOGIC $8uUS328 ouTruT

Niaartne ! TWAPPL R :> MULIPLEXER bav 21

ABUSIDRT

]

SHIFY EXFCUTION

SHIFT | CONTROL CONTHOL
REGISTER

COND'TION
Crof

5
oo
o
%
-2
r
. 7
50
>
lo
<
— e - - —— — —— ——— —— —

EXECUTION A BUS 32617
L s D T e L L L L T .__—_.._.—_—-.-1_._—1
—— m— o e e S o—— — —— —— o— — e e o e m—— - o— o— | —
| < 1DAL BUS 16 8. |
1DAL
EPE —tn] {} LATCH <
' PWAF m—t l
- ABNRY
HALE TS rERRuPT SEAVICE
Sam vy _.J SEE\ICE Lo
I EVEnT —af LE0IC Pia NEXT
o ADDRESS WA
ans =— B STER 196IC
koLt
l NA —e 4100 I
BT —
b Al
R e A
o cnni) '
MITROSTORE

0 GF' RATOR a0l
o RO —
|_ CONTROL s L:'> CONTROL CHIiJ

Figure 1-1 DCJ11 Block Diagram

As shown in Figure 1-1, the DCJ11 microprocessor consists of a
data chip and a control chip.

The data chip performs all arithmetic and logic functions, handles
all data and address transfers, and generates most of the signals
used for system timing. 1In addition to the primary execution data
path, the data chip contains memory management logic, an I/0 state
sequencer, and floating-point and cache control registers.

The control chip directs the operation of the data chip with
microinstructions. The major components of the control chip are
the microprogram control store and the microprogram sequencing
logic.

A detailed description of the data chip and control chip and the
interface between them is beyond the scope of this book. We will
consider the data chip and control chip as one functional unit and
will describe only those portions of this unit that are
architecturally significant to the design engineer.

The remainder of this chapter briefly describes each of the major
components of the DCJ1ll architecture. The chapter covers six
major topics:

General-purpose registers
Processor status word
Traps and interrupts
Floating point processing
Memory system registers
DMA mechanism

000000O0

1.2 GENERAL-PURPOSE REGISTERS

As shown in Figure 1-2, the DCJ1ll has a dual set of six registers
RO through R5 and R0“ through RS5“, three stack pointers (R6)
corresponding to the three processor modes (see Paragraph 1.3.1),
and a program counter (R7). RO through R5 is also referred to as
register set 0 and R0” through R5° is also called register set 1.

These registers are called general-purpose because they can be
used in a variety of ways. General-purpose registers serve as
accumulators, index registers, autoincrement registers,
autodecrement registers, or as stack pointers for temporary
storage of data. Arithmetic operations can be performed between
one general-purpose register and another or between a
general-purpose register and memory or an I1/0 device register.

RO RO’ KSP
R1 R’ sSSP
R2 R2 usP
R3 R3’

R4 R4’ PC

RS RS’ PSW

Figure 1-2 DCJ11l General-Purpose Registers

At any given time, either register set RO through R5 1is used or
register set R0“ through R5” is used. The two sets can not be
used simultaneously. These general-purpose registers are
organized as two sets to increase the speed of context switching
and some types of real-time data handling.

1-2

Register R6 is used as the hardware stack pointer (SP), which
indicates the last entry in the appropriate stack (the stacks are
common temporary areas with LIFO - 1last 1in, first out -
characteristics). There are three stack pointers: a kernel stack
pointer (KSP), a supervisor stack pointer (SSP), and a user stack
pointer (USP). Each stack pointer is associated with a different
processor mode (see Paragraph 1.3.1). When an interrupt or trap
occurs, the current CPU state (PC and PS) is automatically pushed
on the stack indicated by the interrupt or trap vector (see
Paragraph 1.4 for more information on interrupts and traps). The
stack-based architecture also facilitates reentrant programming.

Register R7 is used as the program counter: (PC). The PC contains
the address of the next instruction to be executed; thereby
controlling the order of execution of instructions. The PC is a
general-purpose register in the sense that it is directly
accessible by all single- and double-operand instructions. Much
of the power of the DCJ1ll instruction set is achieved by utilizing
the PC in conjunction with various addressing modes. The PC is
not normally used as an accumulator for arithmetic operations.

1.3 PROCESSOR STATUS WORD

As shown in Figure 1-3, the processor status word (PS) contains
the condition codes describing the arithmetic or logical results
of the last instruction, a trace bit that forces a trap at the end
of an instruction (used for program debugging), the current
processor priority, and the current and previous processor modes.
The PS is located at physical address 17777776.

5 14 13 12 N 0. 03 o8 O 05 04 03 00
H 1 1 N
o] o T w2z}t v]ec
! 1 % 1 |
- S\ J “ v r) [- J - J
)]
CURRENT CONDITION
MODE CODES
PREVIOU
i s TRACE BIT

REGISTER SET ' PRIORITY

UNUSED

MR 11042

Figure 1-3 Processor Status Word

BIT NAME FUNCTION
15:14 Current Mode Current processor mode:
(RW, protected)
Bits Mode
15 14
0 O Kernel
0 1 Supervisor
1 0 Illegal
1 1 User

13:12

11

10:9

3:0

Previous Mode
(RW, protected)

Register Set
(RW, protected)

Unused
(Read only)

Reserved
(RW)

Priority
(RW, protected)

Trace Trap
(RW, protected)

Condition Codes
(RW)

OCOCOOHKHF

Previous processor mode; same
encoding as for bits <15:14>,

General register set select:

0 = register set 0 (RO0--RS).

1l = register set 1 (RO”“--R57).
The bits are unused and are aiways
read as zeroes.

This bit is reserved for future
DIGITAL use.

Processor interrupt priority level:

Bits Priority Level
6 5

1 1 7

1 0 6

0 1 5

0 0 4

1 1 3

1 0 2

0 1 1

0 0 0

Also called the T-bit. When set,
the processor traps to location 14
at the end of the current
instruction. This bit cannot be
set directly by writing data to the
PS. This bit is typically set by the
RTI/RTT instruction. Trace trap is

disabled when this bit is zero.

Processor condition codes:

N: Set if the result of the
previous operation was negative.

Z: Set if the result of the
previous operation was zero.

V: Set if the previous operation
resulted in an ar_thmetic
overflow.

C: Set if the previous operation
resulted in a carry of its most
significant bit.

1.3.1 Processor Modes - Three processor modes (user, supervisor,
and kernel) permit a fully protected environment for a
multiprogramming system by providing the programmer with three
distinct sets of processor stacks and memory management registers
for memory mapping. In addition, certain PDP-11 instructions are
privileged in that their operation is inhibited in supervisor and
user modes. For example, 1in supervisor or user mode, the
processor will 1ignore the RESET and SPL (Set Priority Level)
instructions and the HALT instruction will cause a trap through
the vector at virtual address 4 in kernel data space. In kernel
mode, the processor will execute all instructions. A summary of
the effects of processor modes on various instruction types is
provided in Table 1-1. .

Table 1-1 Instructions Influenced by Processor Modes

Instruction

or Instruction Operation in Operation in

Type Kernel Mode Supervisor/User Mode

HALT Depends on Traps through a vector
halt option at location 4 in kernel
selected (see data space.
Paragraph 1.5)

WAIT, RESET, Executes as Executes as a NOP.

SPL specified

RTI, RTT, Can alter Can not alter PS<7:5>

MPTS PS<7:5>

Stack Checked for Not checked for stack

Reference stack overflow.

overflow.

1.3.2 Priority Levels ~-‘The priority level (mask bits) is
contained in bits <7:5> of the PS and is used by software to
determine which interrupts will be processed, as indicated in
Table 1-2.

Table 1-2 Priority Levels

Octal Value Interrupt Level
of PS<7:5> Acknowledged
""" 7 None
6 7
5 7, 6
4 7, 6, 5
3 7, 6, 5, 4
2 7, 6, 5, 4, 3
1 7, 6, 5, 4, 3, 2
0 7, 6, 5, 4, 3, 2, 1

1.3.3 The Trace/Trap Bit - The trace/trap bit (bit 4) is used for
program debugging, enabling single-step execution of instructions

for step-by-step monitoring.

1.3.4 Condition Codes - The four condition codes N, 2, V, and C
contain information about the result of the last CPU operation.

These bits are set as described in Paragraph 1.3.

1.3.5 Processor Status (PS) Protection - Tables 1-3, 1-4, 1-5,
1-6, and 1-7 summarize how the PS is protected under a variety of
conditions. The PS is initialized at power-up (the value to which
it 1is 1initialized depends on power-up options) and is cleared at
console start. The RESET instruction does not affect the PS.

1-6

Table 1-3 PS Protection For Explicit Accesses

B e B

EXPLICIT PS ACCESS
PS Bit(s) User Super Kernel
Condition loaded| loaded loaded
Codes from from from
PS <3:0> source| source source
Trap Bit un- un- un-
PS <4> changed| changed| changed
Processor loaded| loaded loaded
Priority from from from
PS <7:5> source| source source
Register loaded| loaded | loaded
Select from from from
PS «<11> source| source source
Previous loaded|{ loaded loaded
Mode from from from
PS «13:12> source| source source
Current loaded| loaded loaded
Mode from from from
PS <15:14> source| source source

Table 1-4 PS Protection For Traps and Interrupts

TRAPS & INTERRUPTS

PS Bit(s) User Super Kernel
Condition loaded loaded loaded
Codes from from from

PS <3:0> [|vector vector vector

loaded loaded loaded

Trap Bit from from from
PS <4> vector vector vector
Processor loaded loaded loaded
Priority from from from
PS <7:5> vector vector vector
Register loaded loaded loaded
Select from from from
PS «1ll> vector vector vector
Previous copied copied copied
Mode from from from
PS <13:12> PS PS PS
<15:14>} <15:14>| <15:14>
Current loaded loaded loaded
Mode from from from
PS <15:14> vector vector vector

1-8

Table 1-5 PS Protection For RTI, RTT Instructions
________ | - e e ‘ -
RTI, RTT
PS Bit (s) User Super Kernel
Condition loaded loaded loaded
Codes from from from
PS <3:0> stack stack stack
loaded loaded loaded
Trap Bit from from from
PS <4> stack stack stack
Processor un- uh- loaded
Priority changed| changed| from
PS <7:5> stack
Register ORed ORed loaded
Select from from from
PS <1ll»> stack* stack* stack
Previous ORed ORed loaded
Mode from from from
PS <13:12> stack* stack* stack
Current ORed ORed loaded
Mode from from from
PS <15:14> stack* stack* stack

* "ORed from stack"”™ means that when the old
PS is popped from the stack (restored),
it cannot clear PS<15:11> in the current
PS if these bits have been set.

1-9

Table 1-6 PS Protection for MTPS Instruction

_______ |___.._...... l e —————
MTPS

PS Bit(s) User Super Kernel

Condition loaded| loaded loaded

Codes from from from

PS <3:0> source| source source

Trap Bit un- un- un-

PS <4> changed| changed| changed

Processor un- un- loaded

Priority changed| changed| from

PS <7:5> source

Register un- un- un-

Select changed|{changed |changed

PS «11»>

Previous un- un- un-

Mode changed|changed |changed

PS <13:12>

Current un- un- un-

Mode changed|changed |[changed -

PS <15:14>

Table 1-7 PS Initialization During Power-Up

POWER-UP
PS Bit(s)
Condition
Codes cleared
PS <3:0>
Trap Bit
PS <4> cleared
Processor depends
Priority on power-
PS <7:5> up option
Register
Select cleared
PS «1l»>
Previous
Mode cleared
PS <13:12>
Current cleared
Mode i.e.,
PS <15:14> kernel

mode

1.4 INTERRUPTS AND TRAPS

This paragraph provides a brief overview of DCJ1l interrupts and
traps and describes user-visible registers related to interrupts
and traps. Abort conditions are also covered. For detailed
timing and bus information, see Chapter 3 - Bus Cycles.

Interrupts and traps are requests that cause the DCJ1ll to
temporarily suspend the execution of the current program and
provide service for the device or condition that caused the
interrupt or trap. Interrupts differ from ¢traps in that
interrupts are initiated by some external event, while traps are
caused by conditions internal to the DCJ1l.

The DCJ11l operates at any of 8 levels of priority. 1In general, an
interrupt or trap affects the DCJ1l if its priority is greater
than the DCJ11°s priority as indicated by PS<7:5>. The exception
to this 1is a non-maskable interrupt or trap, which occurs
independently of the processor priority. Note that non-maskable

interrupts and traps have a priority structure amongst themselves.

When an interrupt or trap occurs, the current PS and PC are
preserved in order to allow a return to the interrupted program.
The new contents of the PC and the PS are fetched from two
consecutive memory words called a vector., The first word of the
vector contains the interrupt or trap service routine starting
address (the new PC), and the second word contains the new PS.
Vectors are either predefined by the DCJ1l or are user defined.
User defined vectors are vectors associated with interrupts
occuring on IRQ<3:0>. The predefined vectors are shown in Table
1-8. : ’

Specifically, for an interrupt or trap, the following sequence of
events occurs:

PS --> templ ;save PS, PC in temporary
PC --> temp?2 ;scratchpad locations
0 =--> PS<15:14> ;force kernel mode
M[V] --> PC ;fetch PC from vector, data space
M[Vv+2] --> PS ;fetch PS from vector, data space
templ<15:14> --> PS<13:12> ;set previous mode
SpP-2 --> SP ipushed stack selected by new PS
templ --> M([SP] ;push old PS on stack, data space
Sp-2 --> 5P
temp2 --> M[SP] ;push old PC on stack, data space
: ; then execute interrupt service
;routine :

After the interrupt or trap service routine has been completed, an
RTI (Return From Interrupt) or RTT (Return From Trap) instruction
is typically executed. The top two words of the stack are
automatically popped off the stack and placed in the PC and PS,
respectively, thereby restoring the state of the interrupted
program.

The DCJ1l also responds to a variety of conditions which can abort
the current operation. An abort is similar to an interrupt or
trap in that a vector is used to point to a service routine.
Aborts differ from traps and interrupts in that the DCJ1ll services
an abort immediately rather than waiting until the end of the
current macroinstruction. Aborts generated by the DCJ1ll itself
include memory management and address errors. Aborts which must
be generated by external logic include bus timeouts, non-existent
memory accesses, and parity aborts. The signal ABORT is asserted
to indicate the presence of an abort condition.

DCJ11 interrupts, traps, and aborts (with their associated
priorities) are summarized in Table 1-8. For interrupts and
aborts, the name of the signal which initiates the interrupt or
abort (if any) appears in .the last column. For completeness,
Table 1-8 also lists several instructions that result 1in traps.
These instructions are mutually exclusive and have no priority
structure,

Table 1-8 Interrupts, Traps, and Aborts

Description

Red stack violation
(CPU error register,
bit 2)

Address error
(CPU error register,
bit 6)
Memory management
violation (MMRO,
bits <15:13>)
Timeout/non-existent
memory (CPU error
register, bits <5:4>)

Parity error

Trace (T bit) set
(PSW, bit 4)

Yellow stack violation
(CPU error register,
bit 3)

Power fail (PWRF)

Floating point
exception (FPA
present)

Floating point
exception (no
FPA)

PIR 7 (PIRQ, bit 15)

Interrupt level 7

EVENT

PIR 6 (PIRQ, bit 14)

Interrupt level 6

PIR 5 (PIRQ, bit 13)

Interrupt,

Trap, or Vector Priority

Abort Address Level Signal
Abort 4 NM --
Abort 4 NM -
Abort 250 NM -
Abort 4 NM ABORT
Interrupt 114 NM PARITY,
or Abort . ABORT
Trap 14 NM -—
Trap 4 NM -
Interrupt 24 NM PWRF
Interrupt 244 NM FPE
Trap 244 NM -
Trap 240 7 -
Interrupt uD 7 IRQ7
Interrupt 100 6 EVENT
Trap 240 6 -
Interrupt uD 6 IRQ6
Trap 240 5 -

Interrupt level 5 Interrupt " UD

5 IRQ5
PIR 4 (PIRQ, bit 12) Trap 240 4 -

Interrupt level 4 Interrupt uD 4 IRQ4
PIR 3 (PIRQ, bit 1l1) Trap 240 3 -
PIR 2 (PIRQ, bit 10) Trap 240 2 -
PIR 1 (PIRQ, bit 9) Trap 240 1 -
TRAP Instruction Trap 34 ‘ - -_—
>EMT Instruction Trap 30 - -
IOT Instruction Trap 20 - -
Illegal Instruction Trap 10 - --

NM = Non-maskable
UD = User-defined
-=- = None

1.5 HALTING DCJ1l OPERATION

A halt operation differs from a interrupt, trap, or abort in that
there is no vector associated with it, It is similar, however, in
the sense that it interrupts the usual operation of the DCJ1l.
The two main means of halting the operation of the DCJ1ll are to:
(1) assert the HALT line or (2) execute a HALT instruction.

The HALT line has a lower priority than any interrupt, trap, or
abort. However, it has the highest priority during vector reads.
This is to allow the user to break out of potential infinite
loops. An infinite 1loop could occur for example if a vector is
not properly mapped during a memory management operation.

Execution of the HALT instruction performs different operations
depending upon the CPU operating mode and the halt option
currently selected. See Chapter 8 - Interfacing for more details
on halt options. 1In kernel mode, a halt option of 1 causes a trap
through lecation 4 and sets bit 7 of the CPU e ror register when:
HALT 1is executed. If the halt option is 0 in kernel mode,
execution of the HALT instruction causes the DCJ1l into console
ODT. Execution of the HALT instruction in user or supervisor mode
causes a trap through location 4 and sets bit 7 of the CPU error
register.

1-14

1.6 PROGRAM INTERRUPT REQUEST REGISTER

The program interrupt request register (PIRQ) provides seven
levels of software interrupt (i.e., trap) capability. An
interrupt request is queued by setting one of bits <15:9>, which
correspond to interrupt priority levels 7 through 1
(respectively). Bits <7:5> and «<3:1> are set-by the DCJ1ll to the
encoded value of the highest pending request. When the program
interrupt request is granted, the processor traps through a vector
at wvirtual 1location 240. It 1is the responsibility of the
interrupt service routine to clear the appropriate bit in the PIRQ
before exiting. The format of the PIRQ is as shown in figure 1-4.

15 14 13 12 1 10 03 08 07 05 04 03 01 00

PIR7|PIR6IPIRS|PIR4|PIR3[PIR2|PIR 0- 0 0

3 4

REQUEST LEVELS ——d

PRIORITY ENCODED VALUE OF BITS <15:9>

Figure 1-4 PIRQ Register mnoon

Bits <15:9> can be read or written. Bits <«7:5> and <3:1> are
read-only. The remaining bits are always read as zeros. PIRQ is
cleared by a console start, by a RESET instruction, and at
power-up time. The PIRQ resides at physical address 17777772.

1.7 CPU ERROR REGISTER

The CPU error register assists the operating system by identifying
the source of a trap through location 4. The CPU error register
is located at physical address 17777766. The format of the CPU
error register is as shown in Figure 1-5,

ILLEGAL HALT
ADDRESS ERROR
NON-EXISTENT MEMORY
1/0 BUS TIMEOUT
YELLOW STACK VIOLATION
RED STACK VIOLATION

MR$326

Figure 1-5 CPU Error Register

[am
]

~-15

Bit

<15:8>

<l:0>

The CPU error register
itself,

Name

Unused

Illegal HALT
(Read only)

Address Error
{Read only)

Non-Existent
Memory
(Read only)

I/0 Bus
Timeout
(Read only)

Yellow Stack
Trap
{Read only)

Red Stack Trap
(Read only)

Unused

by a

power-up, or by a

Description

These bits are unused and are always
read as zeros,

Set when execution of a HALT instruction

is attempted in user or supervisor mode,

or in kernel mode when the HALT option is
enabled (refer to the power-up options in
Paragraph 8.3.3).

Set when a word access is made to an odd
byte address, or when an instruction
fetch from an internal register is
attempted.

Set when reference is made to a
non-existent memory address.

Set when reference is made to a
non-existent I/0 page address.

Set when a yellow zone stack
overflow trap occurs.

Set when a red stack trap occurs.,

These bits are unused and are always
read as zeros.

instruction has no effect on this register.

1.8 STACK PROTECTION

The DCJ1l provides hardware protection for the kernel stack.

supervisor user stacks are not protected by hardware but may

and

is cleared by any write reference to
console start, The RESET
The

be checked by memory management and appropriate software.

Stack protection in kernel mode is provided by defining yellow and

red
stack

only

stack
fixed 1limdt of 400

traps.

reference 1is

Kernel stack references are checked against a
(octal).
less
occurs at the end of the current instruction. A
occur on a kernel stack reference,
trap or interrupt push on the kernel stack, a JSR

If the virtual address of a kernel
than 400 (octal), a yellow stack trap
stack trap can

which is defined as: any

instruction in

kernel mode, or a reference in kernel mode using addressing Mode 4

1-16

or 5 with R6 as the selected register,

The DCJ11l also checks for kernel stack aborts during interrupt,
trap, or abort sequences. If an abort is caused by a kernel stack
push during an interrupt, a trap, or an abort sequence, the DCJ1l1l
initiates a red stack ¢trap by creating an emergency stack at
vector locations 0 and 2, vectoring through 1location 4, and
setting bit 2 of the CPU error register,

1.9 FLOATING~-POINT PROCESSING

The DCJ1l contains an integral floating-point processor which can
perform single- and double-precision floating-point operations.
User-accessible architecture associated with floating-point

processing includes: six 64-bit floating-point accumulators
(AC0=--ACS), a floating-point status register (FPS), a
floating-point exception address (FEA) register, and a

floating-point exception code (FEC) register. Chapter 7 describes
these in detail and provides information on programming with
floating-point instructions.

1.10 " MEMORY SYSTEM REGISTERS

Memory system registers are wused for: (1) cache memory
implementation and (2) memory management.

The memory system registers associated with cache memory are the
cache control register (CCR) and the hit/miss register (HMR).
These registers are described in detail in Chapter 5 - Special
Features,

The memory system registers associated with memory management
include page address registers (PARs), page descriptor registers
(PDRs), and memory management registers 0, 1, 2, and 3 (MMRO,
MMR1, MMR2, MMR3). These are described in detail in Chapter 4 -
Memory Management.

1,11 DIRECT-MEMORY ACCESS (DMA) MECHANISM

An external device typically performs a DMA transfer by taking
control of a buffered version of the DCJ1l1°s data/address bus
(DAL<21:00>). A device requests control of the DAL 1lines by
asserting the DMR input to the DCJ1ll. This causes the DCJ1l to
place DAL«15:00> in a high impedance state (DAL<21:16> 1is ©placed
in a high impedance state via external buffers) and extend the
current microcycle. It is the responsibility of external logic to
end the microcycle by asserting the DCJ11”°s CONT input.

The DCJ1l acknowledges a DMA request by asserting its MAP output

at the appropriate time. See Chapter 3 - Bus Cycles for the
specific timing involved. This also causes the current microcycle
to extend until CONT is asserted.

A DMA request may be acknowledged and granted for all types of
microcycles except bus writes and GP writes. The lack of a DMA
grant, however, does not necessarily prevent external 1logic from
performing a DMA transfer during these cycles. A buffered version
of the DAL for example could be used for a DMA transfer when SCTL
is asserted (the DAL itself would not be used since it carries the

write data during this portion of the cycle).

NOTE

It is possible to acknowledge a DMA
request between the read and write
portions of a bus locked
Read-Modify-Write cycle (see Paragraph
3.2). If this is not desirable, external
logic should be designed to disable DMA
requests at this time.

CHAPTER 2
PIN DESCRIPTIONS

2.1 INTRODUCTION

This chapter describes the functions performed by each DCJ1ll pin.
The pins, and thus the chapter, are divided into nine groups:
Data/address lines (DAL<21:00>)

System control lines (BS<1:0>, AIO<3:0>, BUFCTL, CONT, DV)
Timing signals (ALE,_SCTL, STRB, CLK, CLK2)

Start/stop control (INIT, HALT)

Status signals (MISS, PARITY, ABORT, MAP PRDC)

Interrupt and DMA control (IRQ<3 0>, BMR, FPWRF, FPE, EVENT)
Test pins (TEST1l, TEST2)

Oscillator pins (XTLI, XTLO)

Power pins (Vcc, GND)

000000000

Figure 2-1 illustrates the pin assignments of the DCJ1l and
indicates whether a signal associated with a pin is an input, an
output, or both (bidirectional).

TESTH 3 60 DAL 6
AIO O -2 59 m DAL ?
AIO 1 -y 3 58 o DAL 8
AlO 2 - 4 57 fme DALO
PWET —»i 5 55 jee DAL 10
FPE —] 7 54 o DAL 11
EVENT —i g 53 lee DAL 12
HALT —t o 52 po DAL 13
IRQ O —e{ 10 51 jee DAL 14
RQ 1 —] 11 50 jas DAL 15
{RQ 2 - 12 49 Lo DAL 1
IRQ 3 —13 48les DAL2
FRRTTY — 12 47 lon DAL 3
GND — 15 46 p— Vee
v — 16 J1 a5 GND
€% - 17 44 len DAL 4
85 1 -{ 18 43 lee DAL S
VAP - 19 42 pa— 22
2BORT @ 20 41 | BUFCTL
DAL 21 {21 40 - ALE
DAL 20 . -—j22 39 > RLL
DAL 19 23 38 | SeTe
DAL 18 24 37 b XTALO
DAL 17 - 25 36 tu— XTAL
DAL 16 -2 35 jae cLx

; — 27 34 b CLK?2
= i Ble w
NOT USED —30 31 e TEST2

MR BBAS

Figure 2-1 DCJ1ll Pin Assignments

2.2 DATA/ADDRESS LINES (DAL<21:00>)

There are 22 pins associated with data and address information.
These are usually referred to as the data/address (or DAL) lines.
The DAL lines are functionally divided into two groups: the upper
data/address 1lines (DAL<21:16>) which are output only and the
lower data/address lines (DAL<15:00>) which are bidirectional.

2.2.1 Upper Data/Address Lines (DAL<21:16>) - These six
time-multiplexed output 1lines constitute the most significant 6
bits of a 22-bit physical address. DAL<21:16> carries wvalid
information at the beginning of every bus cycle. Internal status
is asserted on these lines during the second part of every bus
cycle for manufacturing test purposes only.

2.2.2 Lower Data/Address Lines (DAL<15:00>) - These
time-multiplexed I/0 lines constitute the 16-bit data and address
bus. During the first part of a c¢ycle that involves an 1I/0
transfer, the DAL 1lines <carry a physical address, an interrupt
acknowledge priority 1level, or a general-purpose (GP) code,
depending upon the type of cycle being performed (see Chapter 3 -~
Bus Cycles for more information on cycle types). During a Bus
Read or Bus Write cycle, DAL<15:00> carries the lower 16 bits of a
physical address. During an Interrupt Acknowledge cycle, DAL<3:0>
carries the priority of the acknowledged 1level. During a
General-Purpose Read or General-Purpose Write «cycle, DAL<7:0>
carries the GP code.

During the second part of a cycle that involves an I/0 transfer,
the DAL 1lines carry 8 or 16 bits of data. During read cycles,
external logic places data onto the DAL. If the DCJ11 only
requires a byte of information, it reads a full word but ignores
either the upper of lower byte. For write cycles, the DAL carries
8 or 16 bits of data, depending upon whether the cycle involves
the writing of a byte or a word.

2.3 SYSTEM CONTROL LINES,

There are nine pins associated with system control: BS<1:0>,

AI0<3:0>, BUFCTL, CONT, and DV.

2,3.1 Bank Select (BS<1l:0>) - These time-multiplexed output
signals transmit bank select and cache access information. At the
beginning of a Bus Read or Bus Write cycle, the BS signals define
the type of device being accessed by the physical address on the
DAL as shown in Table 2-1.

2-2

Table 2-1 BS Device Selection

BS1 BSO DESCRIPTION
1 1 Internal register -

' A memory-addressable register that resides
within the DCJ1l. Included are the
processor status word, all MMU registers,
the PIRQ register, the CPU error register
and the cache hit/miss register. Excluded
are the general-purpose registers, which
are not memory addressable.

1 0 External I/0 device -
Any device or register external to the
DCJ1l that is referenced by a bus
address in the upper 8K bytes of the
physical address range (17760000 to
17777777). Excluded are system registers
(BS code 0l1) and internal registers (BS
code 11).

0 1 System register -
A memory-addressable register in the
address range 17777740 to 17777750.
Always included as a system register is
the DCJ11”°s internal cache control
register (CCR).

NOTE
The CCR is the only system register
implemented in the DCJ1ll. Accesses to
the CCR generate the same BS code as for
the other system registers mentioned
above. This facilitates the creation of
"shadow" read-only copies of the CCR on
cache based systems.

0 0 Memory -
- A reference to any location in physical
address space in the range 00000000 to

17757777.

During the second part of an I/0 cycle, BS1l is asserted when the
cache memory (if present) is to be bypassed. In the second part
of the cycle, BS0 is asserted whenever a cache memory force miss
is required.

2.3.2 Address Input/Output (AIO<«3:0>) - The AIO outputs identify
the type of «cycle currently being executed. External logic
typically latches and decodes these signals. Table 2-2 specifies
the AIO code associated with each cycle type. See Chapter 3 - Bus
Cycles for detailed information on the various cycle types.

Table 2-2 AIO Decode
AIO3 AIO2 AIO1l AIO0 CYCLE TYPE

NIO (internal operation only, no I/0)
GP (General-Purpose) read
Interrupt acknowledge, vector read
Instruction-stream request read
Read/Modify/Write - no bus lock
Read/Modify/Write - bus lock
Data-stream read)
Instruction-stream demand read

GP word write

Bus byte write

Bus word write

C OO o st 1= | = o
COHOOOO KM
OHOOOKHHOOK
HERHOMHOMOMO N

2,.3.3 Buffer Control (BUFCTL) - The BUFCTL output defines whether
the DCJ1l is driving or receiving data on the DAL. BUFCTL is
typically used by external logic to control the direction of data
passing through buffers that send data to the DCJ1l. When
asserted, BUFCTL indicates that the DCJ1l is not driving data on
the DAL. This occurs: (1) dAuring the portion of a read cycle
when data is being driven on the DAL, and (2) during the stretched
portion of any nonwrite cycle. BUFCTL is deasserted when the
DCJ1l is driving data or an address on the DAL.

2.3.4 Continue (CONT) - The CONT input is asserted by external
logic to terminate a stretched cycle after it has finished using
the DAL. OC&ONT is so named because it enables the DCJ11 to
continue on to the next cycle.

2.3,5 Data valid (DV) - The DV input is typically asserted by

external logic to 1latch data into the DCJ1l from the DAL. When

asserted, DV causes the DCJ1ll to latch data when BUFCTL and SCTL

are asserted, that is, during stretched non-write cycles.

External logic must ensure that DV is not asserted during DMA

gransactions, since this would cause the latching of unpredictable
ata.

2.4 TIMING SIGNALS

There are five pins associated with timing and synchronization:
ALE, 5CTL, 5TRB, CLK, and CLK2.

2.4.1 Address Latch Enable (ALE) - ATE when asserted indicates
that DAL<21:00>, AIO<3:0>, BS<1l:0>, and MAP all contain valid
data. The leading edge of ALE is typically used by external logic
to latch_addresses, AIO codes, bank select (BS) codes, and the map
enable (MAP) control signal.

2.4.2 Stretch Control (5CTL) - The SCTL output, when asserted,
identifies the stretched portion of a cycle. During write cycles,
the leading or trailing edge of SCTL can be used for 1latching
data. During read cycles, the trailing edge of SCTL can be used
for latching data. CTL can also be used to determine when
externally generated aborts may occur.

2.4.3 Strobe (STRB) - The assertion of the STRB output occurs one
clock period after the assertion of ALE. The deassertion of STRB
identifies the end of one microcycle and the beginning of another.
STRE is a general-purpose strobe signal and is typically used for
system bus control.

2.4.4 Clock 1 (CLK) - CLK is wusually a clock output for
diagnostic wuse only. When used as an output, CLK reflects the
state of the DCJ1l”s internal clock. The frequency of CLK equals
the frequency of the external crystal oscillator circuit connected
to the XTALI and XTALO pins. If TESTZ is asserted, the DCJ1ll’s
internal clock is disabled and CLK is placed in the high-impedance
state. In this case, CLK can serve as a MOS input (Vo = .3Vecc,
Vpg = .7Vec, tpy= tyy = 7 ns) driven by an external clock.

2.4.5 Clock 2 (CLR2) - The CLK2 output has the same frequency as
CLK. Like CLK, CLK2 reflects the state of the DCJ11”°s internal
clock and is disabled by the assertion of TEST2. Unlike CLK, CLK2
is typically used as a system clock or master clock for external
logic. CLK and CLK2 have minimal skew when loaded equally.

2.5 START/STOP CONTROL

There are two pins associated with starting and stopping the
operation of the DCJ1l: INIT and HALT.

2.5.1 1Initialize (INIT) - The INIT input, when asserted,
initializes (resets) the DCJ1l by forcing it through a power-up
procedure. The power-up sequence is described in detail in
Paragraph 8.3.2.

2,5.2 Halt (HALT) - The HALT input, when asserted, forces the
DCJ11 into console mode (i.e., initiates console ODT). HALT is
the lowest priority nonmaskable interrupt except during vector
read cycles. During vector read cycles, HALT becomes the highest
priority non-maskable interrupt. This allows escape fgom
potential infinite 1looping which could result from programming
errors. Since it is non-maskable, HALT is unaffected by the CPU
priority specified by PS<7:5>. See Chapter 1 - Architectgre.EQr a
list of the non-maskable interrupts and their relative priorities.
See Chapter 5 - Special Features for a description of console ODT.

2.6 S8TATUS SIGNALS

There are five ins associated with indicating DCJ1l1 status:
WI3S, PERITY, ABORT, MAP, and PRDC.

2.6.1 Cache Miss (MISS) - The MISS input is generated by external
logic in DCJ1ll based systems incorporating cache memory. The
assertion of MISS typically indicates that the current memory
reference resulted in a cache memory miss. If MISS is asserted
during the first part of a bus read cycle, the cycle is stretched.

2.6.2 Parity Error (PARITY) - The assertion of the PARITY = input
indicates the occurrence of a memory parity error. PARITY is used
to generate parity aborts and parity interrupts. If PARITY is
asserted and ABORT is also asserted, then a parity error abort is
generated. The DCJ1l immediately traps through a vector located
at virtual address 114 without completing the current instruction.
I1f PARITY is asserted but ABORT is not asserted, then a parity
error interrupt 1is generated. At the end of the current
instruction, the interrupt is serviced through the vector 1located
at wvirtual address 114. Note that PARITY is sampled only during
the stretched portion of a cycle.

2.6.3 Abort (ABORT) =~ ABGORT can serve as an input or an output of
the DCJ1l. ABORT is typically configured in an open-collector
driver circuit such that aborts generated by either external logic
or the DCJ1l1 can cause ABORT to be asserted (i.e., a wired OR
arrangement). Note that the DCJ1ll pulls ABORT high internally.

The DCJ1l asserts ABORT during the first part of an I/0 cycle if a
memory management error or address error occurs, For a memory
management error, the DCJ1l traps through a vector 1located at
virtual address 250 in kernel data space. For an address error,
the DCJ11l traps through a vector located at virtual address 4 in
kernel data space. The DCJ1ll sets the appropriate bit in the CPU
error register.

ABORT can also be asserted by external logic in the event of such
conditions as a bus timeout, non-existent memory reference, parity

2-6

error, etc. External logic must ensure that: (1) the cycle |is
stretched and that AB is asserted during the stretched portion
(i.e., when SCTL is asserted) and (2) EKBORT is not asserted during
a non-1/0 cycle. If PERIMY is not asserted, the assertion of

T by external logic causes a trap through a vector located at
virtual address 4 in kernel data space. The CPU error register
specifies the cause of the abort. 1f PARITY and are
asserted, the DCJ1l immediately performs a trap through a vector
located at virtual address 114 in virtual address space.

2.6.4 Map Enable (MAP) - MAP is a time-multiplexed output. The
assertion of MAP during the first part of a cycle indicates that
the I/0 map has been enabled (the I/O map is enabled by setting
bit 5 of MMR3 to 1). The assertion of MAP during the second part
of a cycle acknowledges the assertion of the DMR input.

NOTE
The I/0 map, if needed, is implemented in
circuitry external to the DCJll.

2.6.5 Predecode (PRDC) - The PRDC output, when asserted,
indicates that the contents of the prefetch buffer (PB) are being
decoded as the next macroinstruction. This implies that the
contents of the PB are valid. The PB 1is part of the DCJ11l
prefetch pipeline, the operation of which is explained in Chapter
5 - Special Features.

2.7 INTERRUPT AND DMA CONTROL

There are eight pins associated with the control of program
interrupts and DMA transfers: IRQ<3:0>, DBMR, PWRF, FPE, and
EVENT.

2.7.1 Interrupt Request (IRQ<3:0>) - IRQ<3:0> are four input
lines that correspond to four different 1levels of external
interrupt requests. Interrupt requests at any of these four
levels can be masked by PS«7:5>. 1In order to be serviced, the
requesting device must have an interrupt priority higher than the
priority indicated by PS<7:5>. Interrupt requests on IRQ<3:0> are
blocked or allowed as summarized in Table 2-3:

2-7

Table 2-3 Interrrupt Requests on IRQ<3:0>

CPU
Priority
PS<7:5> Level IRQ3 IRQ2 IRQ1 IRQO
111 7 Blocked Blocked Blocked Blocked
110 6 Allowed Blocked Blocked Blocked
101 5 Allowed Allowed Blocked Blocked
100 4 Allowed Allowed Allowed Blocked
Oxx 3-0 Allowed Allowed Allowed

Allowed

x = Irrelevant

From Table 2-3, it is seen that each IRQ line is associated with a
different interrupt level, as summarized in Table 2-4.

Table 2-4 IRQ<3:0> Interrupt Request Levels

Interrupt
IRQ Line Request Level
IRQ3 7
IRQ2 6
IRQ1l 5
IRQO 4

2.7.2 Direct Memory Access Request (DMR) - The DMR input to the
DCJ11l when asserted typically means that an external device wants
to perform a DMA transaction. DMR is sampled by the DCJ1l at the
start of all cycles. If the cycle does not involve a write
operation, the DCJ1l responds to the assertion of DBMR by: (1)
stretching the cycle, (2) placing DAL<15:00> in the high-impedance
state, and (3) acknowledging the DMA request by asserting MAP
during the second part of the cycle. If the cycle involves a

write operation, the cycle is stretched but DAL<15:00> 1is not
placed in the high-impedance state and MAP is not asserted.
2.7.3 Power Pail (PWRF) ~ PWRF is a high-priority nonmaskable

interrupt input that, when asserted, forces a trap through a
vector located at wvirtual address 24 in kernel data space.
External logic typically asserts PWRF to indicate the occurrence
of an AC power failure. The trap vector points to an appropriate
user-defined power fail service routine.

2.7.4 Ploating-Point Exception (FPE) - FPE is a high-priority
nonmaskable interrupt input that, when asserted, forces a trap
through a vector located at virtual address 244 in kernel data
space. FPE would be asserted by an external FPA coprocessor to
indicate the occurrence of a floating-point exception. The trap
vector would point to an appropriate user-defined floating-point
exception service routine.

2-8

2.7.5 Bvent (EVENT) - The EVENT input is a maskable priority
level 6 interrupt (i.e., it is acknowledged if PS<7:5> is less
than 6). When EVENT is asserted (and not masked), the DCJ1ll
performs a trap through a vector located at virtual address 100 in
kernel data space. E%Eﬁ? is typically used by external logic as a
line time clock (LTC) interrupt input. -

2.8 TEST PINS

 There are two pins associated with testing, TEBTI and TESTZ.
These signals disable DCJ1l1 functions and are are used in
connection with board-level testing.

2.8.1 Test 1 (TEST1) - The TESTI input (when asserted by external
logic) disables all DCJ1l1 outputs by placing them in the
high-impedance state. This permits external logic to operate on
the data and control 1lines connected to the DCJ11l without
interference from the DCJ1l.

2.8.2 Test 2 (TEST2) - The TESTZ input, when asserted, disables
the DCJ11”s internal clock. The CLK and CLK2 pins are placed in
the high-impedance state. Board level in-circuit testing 1logic
can be designed such that when TEST2 is asserted, an external

clock drives the DCJ1ll clock circuitry through the CLK pin.

2.9 OSCILLATOR PINS (XTALI, XTALO)

The XTALI and XTALO pins are used to connect an external crystal
circuit to the DCJ1ll. The recommended crystal circuit is shown in
Figure 2-2.

68pF

)} XTAL!

CRYSTAL T ™
ﬂ— 2

XTALO

AY!
1
-4 68pF

MR 9270

Figure 2-2 Typical XTALI and XTALO Generation

2.10 POWER PINS

There are four pins associated with power: two for +5VDC (Vcc)
and two for ground (GND).

2~9

2.10.1 Power (Vcc) - There are two pins, both called Vece, which
are used to input +5VDC to the DCJ1l. +5VDC is supplied by
external circuitry and is typically maintained to within = 5%.

2.10.2 Ground (GND) - The two GND pins provide a ground reference
for the DCJ1ll. Typically, these pins are connected to the ground
reference of external logic.

2.11 PIN DESCRIPTION SUMMARY

INPUT
OR

PIN NO. PIN NAME DEFINITION OUTPUT FUNCTION

- — . " ———— — - — ———— - D D W W S T W G) W G TE . WD G Ghy W D . S D W T T G - - - - D D =D - -

1 TEST1 Test 1 Input Disables all DCJ1l1l
outputs.

2-5 AIO<3:0> Address Output 1Indicate the type of
Input/Output cycle currently beéing
executed (e.g., bus
read, GP write, IACK,
etc.)

6 PWRF Power Fail Input A high-priority non-
maskable interrupt
that forces a trap
through vector
location 24.
Indicates an AC power
failure.

7 PE Floating-Point Input A high-priority non-
Exception maskable interrupt

that forces a trap
through vector
location 244.
Typically generated
by a floating-point
coprocessor to
indicate an exception
condition.

8 EVENT Event Input A maskable interrupt
that forces a trap
through vector
location 100.
Typically used as a
line time clock.

10-13

14

15
16
17-18

19

20

21-26

27

HALT

IRQ<3:0>

PARITY

GND
Vece

BS<1:0>

DAL<21:16>

DMR

Balt

Interrupt
Request

Parity Error

Ground
Power

Bank Select

Map Enable

Abort

Data/Address
Lines

Direct Memory
Access Request

Input

Input

Input

Input
Input

Output

Output

I/0

Output

Input

A low-priority non-
maskable interrupt
that forces the
DCJ1ll into console
ODT.

Four maskable
interrupt request
lines.

Indicates a memory
parity error.

Ground reference.
+5 VDC power input.

Multiplexed. Either
define the type of
physical address on
the DAL or indicate
if a cache memory
bypass or force miss
should occur.

Multiplexed,
indicates that either
the I1/0 map is
enabled or a DMA
request has been
granted.

Indicates the
occurrence of an
abort condition,
i.e.; a memory
management or address
error, bus timeout,
non-existent memory,
or parity error.

Most significant six
bits of the time
multiplexed data and
address bus.

Forces the current
cycle to be extended
and causes MAP to be
asserted during the
second part of the
cycle.

28

29

30

31

32

33

34

35

36
37

38

39

40

MISS

PRDC

Not Used

TEST2

CLK2

CLK

XTALI

XTALO

SCTL

Cache Miss

Predecode

Test 2

Continue

Initialize

Clock 2

Clock 1

Crystal Input

Crystal Output

Stretch
Control

Strobe

Address Latch

Enable

Input

Output

Input

Input

Input

Output

Output

Input

Output

Output

Output

Output

Indicates whether the
current memory
reference resulted in
a cache hit or miss.

Indicates when the
contents of the
prefetch buffer are
being decoded as the
next macroinstruction.

Disables the clock
outputs. Permits
external logic to
drive the DCJ1ll’s
internal clock
circuitry through the
CLK pin.

Terminates a stretched
cycle.

Initializes or resets
the system by forcing
it through a power-up
procedure.

Clock output with the
same frequency as CLK.
Typically used as a
system clock.

Clock output for
diagnostic use
only.

Oscillator input line.

Oscillator output
line.

Indicates that a cycle
is being stretched.
The edges can be used
to strobe data.

General-purpose
strobe.

Typically used to
latch addresses, AIO
codes, and the map
enable and BS control
signals.

41

42

43-44 I}
47-60

45
46

BUFCTL

DV

DAL<15:00>

Vce

Buffer Control

Data Valid

Data/Address
Lines

Ground

Power

2-13

Output

Input

I/0

Input

Input

Indicates the
direction of data on
the DAL. Asserted when
the DCJ1l is not
driving the DAL.

Causes the DCJ1ll to

to latch data from the
DAL.

Lower 16 bits of the
time multiplexed

data and address bus.
Ground reference,

+5 VDC power input.

CHAPTER 3
BUS CYCLES

3.1 INTRODUCTION

This chapter describes the various types of DCJ1ll bus cycles. A
bus cycle 1is a sequence of events which defines the activity on
the DCJ11”s I/0 bus. Bus cycles are also sometimes referred to as
"microcycles", since each bus <cycle 1is associated with the
execution of one microinstruction. The execution of a DCJ1l1
macroinstruction such as ADD, JMP, etc., can involve the execution
of several bus cycles. The type of bus cycle that the DCJ11
performs depends upon the type of bus activity (if any) required
to complete the execution of a microinstruction.

Sometimes the DCJ1l performs an internal operation which requires
no bus activity. If this 1is the case, the DCJ1ll executes a
non-I1/0 (NIO) cycle. An NIO bus cycle (described in detail in
Paragraph 3.4) is the only type of bus cycle that does not involve
the transfer of information over the DCJ1l1“s I/O bus.

DCJ11 bus cycles fall into six broad categories:

1. Non-I/0

2. Bus Read

3. Bus Write

4. General-Purpose Read

5. General-Purpose Write

6. Interrupt Acknowledge

The deassertion of the signal STRE marks the beginning (and the
end) of a bus cycle. ALE (asserted shortly after 8TRB is
deasserted) can be used by external logic to latch ATIO0<3:0>. The

information on AIO<3:0> specifies the type of bus cycle being
performed according to Table 3-1:

Table 3-1 AIO Codes for Bus Cycles

AIO<3:0> Description Bus Cycle Type
1111 Non-I/0 operation Non-1/0
1110 GP read General-Purpose Read
1101 Interrupt acknowledge/ Interrupt Acknowledge
vector read
1100 Instruction stream Bus Read
request read
1011 Read-Modify-Write, Bus Read*
no bus lock '
1010 Read-Modify-Write, Bus Read*
bus lock
1001 Data stream read Bus Read
1000 Instruction stream Bus Read
demand read
0101 GP word write General-Purpose Write
0011 Bus byte write Bus Write
0001 Bus word write Bus Write

* Note that the AIO codes for read-modify-write cycles are
identified as Bus Read cycles. This refers to the first part
of the cycle (i.e., the "read" part). The second part of the
cycle (i.e., the "write" part) will be a Bus Write cycle with
a different AIO code.

3.2 DURATION OF BUS CYCLES

The length of a bus cycle is usually expressed as a number of
periods of the DCJ11”s master clock (CLK). All bus cycles last
for a minimum of four <clock periods. However, cycles may be
extended or "stretched" beyond this minimum by an internal event
or by external logic. When a cycle is stretched, it 1is always
stretched for a minimum of four additional clock periods. A cycle
can continue to be stretched in increments of two periods and can
remain stretched indefinitely. Stretched cycles are ended by the
assertion of the signal CONT. CONT is sampled by the DCJ1ll on the
first falling edge of T4 and on every other succeeding falling
edge of T4.

A bus cycle will be stretched unless either of the following ¢two
groups of conditions exists:

1. A Bus Read cycle is executed and BS<1l:0> = 00 throughout the
cycle (i.e., the cycle involves a memory read and does not
involve a cache bypass or force miss) and DMR and MISS are not
asserted durin the cycle (no DMA grant or cache miss).
Furthermore, ABORT must not be asserted if the cycle involves
an instruction stream demand read.

2. A Non-I/0 cycle is executed and DMR is not asserted during the
cycle.

Timing diagrams for both stretched and non-stretched cycles are
provided in the paragraphs that follow.

3.3 Bus Cycle Parts

Reference is sometimes made to the "first" (or "early") part and
the "second" (or "later") part of a bus cycle. The first part of
a bus cycle is defined as the duration of the first two clock
periods, shown as T0O and Tl in the bus cycle timing diagrams. The
second part of a bus cycle is defined as the duration of the
remaining clock periods in the cycle. A non-stretched cycle has
only two clock periods in its second part. These are shown as T2
and T3 in the bus cycle timing diagrams. A stretched cycle has at
least six clock periods in its second part. These are shown as T2
through T7 in the bus cycle timing diagrams. Note that if a cycle
is stretched for more than six clock periods in its second part,
T4 is repeated in pairs.

3.4 NON-I/O (NIO) CYCLE

When the DCJ11 executes a microinstruction which involves no
interaction with external 1logic (i.e., requires no I/0 bus
activity), it performs a Non-I/0 (or NIO) cycle. Non-stretched
and stretched Non-I1/0 cycles are illustrated in Figures 3-1 and
3-2, respectively. ‘

oAt TR, IR I
e | '_'—L_E T
w0 /T R \\\

v TN

MAP »X@ L1lf oma crant A\

MR-114564

Figure 3-1 Non-Stretched Non-1/0 Cycle

3-3

70 T T2 73 T4 T4 ITA T4 T4 5 6 7

S (R Vi VAV W A VO U U VD A VAV VAV UV A UV A WV A U0

vat P WX - SYSTEM n\‘nsnmcs DRIVES DAL («KC_
ALE ™ Vi
$TRB /RN
all ______W A10 CODE T

DMA
REQUEST
WA ////i

AP R W\ O3 A SRANT

ﬁ#aT AN
Y/

=TT : AN —
' CONTINUE *

conT ; R\ =

)
)

4+ 4 44— —~ - |

a7

f — o — o —

S SUREEU TR

MK 1145

Figure 3-2 Stretched Non-I/O Cycle

The deassertion of STRB marks the beginning of the cycle, which_ig
followed shortly afterwards by the assertion of ALE. ALE
typically latches the AIO code which identifies the cycle as
non-I1/0. The DAL, BS<1:0>, MAP, and ABORT outputs are undefined
and should be ignored by external logic. External logic must not

assert ABORT during an NIO cycle. If a direct memory access
request (DMR) is granted, the cycle 1is stretched and L and
BUFCTL are asserted.

As shown in Figure 3-1, a non-stretched NIO cycle 1is four clock
periods in duration. If a DMA request is received during the
first part of the cycle the cycle is stretched to eight or more
clock periods (note the assertion of DMR during the first part of
the cycle in Figure 3-2). Otherwise, the cycle does not stretch.
If the NIO cycle is stretched, BUFCTL and SCTL are asserted duri&g
the stretched part of the cycle. The time-multiplexed signal MAP
asserted during the second part of the stretched cycle indicates
the granting of the DMA request. The cycle continues to be
stretched in increments of two clock periods (T4) until CONT is
asserted.

3.5 BUS READ CYCLE

The different types of bus read cycles which the DCJ1l can perform
include instruction-stream request or demand reads, data-stream
reads, and the read portion of a read/modify/write cycle. The AIO
code defines which -of these is selected. The types of devices
from which information can be read include memory, I/0 devices,
and explicitly addressable registers. During the first part of
the cycle, BS<1l:0> defines which of these is selected. All read
cycles involve the reading of a full word. If the DCJ1ll needs
only a byte, it reads a word and ignores the unused byte.

3-4

Note the distinction between request reads and demand reads. A
request read occurs when the DCJ1l is prefetching information. 1If
an abort occurs at this time, it does not affect macroinstruction
flow (i.e., aborts are ignored). All other types of reads are

demand reads, during which aborts are recognized and serviced via
the service vectors shown in Table 1-8.

Non--stretched and stretched Bus Read cycles

Figure 3-3 and 3-4, respectively.

VTJ T0 T T2 T3 ’—\J
ax NSNS S -
SUBSYSTEM
DAL (L A 5rEs
PHYSICAL ADDRESS | DAL
ALE A
1 OMA N\
BMR REQUEST DMA REQUEST
Y DAL s /)] oma GRANT
1/0 MAP ENABLE ,
7 T \\\/O BANK SELECT CACHE STATUS /77
8 ' i : CACHE HIT
s { R
WXL MMU ABORT STATUS | NX{
ABORT } ’{ .
R i ! |
BUFCTL ’ | | \\\&_ i

MA-8910

Figure 3-3 Non-Stretched Bus Read Cycle

T1 T2 T3

are illustrated in

| : ‘10 ‘T4 ‘T4
cLK S\ \J
PHYSICAL ADDRESS CACHE SUBSYSTEM SvSTEM NTERFACE !
. DRIV iy
DAL —({@ Sj»om_ ('m DRIVES DAL - ««C
[
- m Vi | ;
DMA REQUEST o \ ;
oA D00 A]
1/0 MAP ENABLE - R \
ViF W v N{(oma crant }
1/0 BANK SELECT X
BS W v W cacHE sTaTUS 4
CACHE HIT R
; W X
wiss ICACHE MISS f :
AEORT »X« MMU ABORT STATUS \\\\\ MMU AND SYSTEM ABORT STATUS
BORT - —
|
goFCTT AN/ ¥ ; W] 7
' S
§cTLC AN Py
; C(ONTINUE I
1
CONT _ M]
| i
Figure 3-4 Stretched Bus Read Cycle

ALE can be used to latch the AIO code, the physical address on the
data/address lines (DAL), the Bank Select (BS) information, and
I1/0 Map Enable (MEP) information.

A Bus Read cycle will stretch if any of the following conditions
exist:

o BS<1l:0> does not equal 00 during the first part of the cycle
(anything other than a memory reference)

o BS<1l:0> does not equal 00 during the second part of the cycle
(a cache memory force miss or a cache bypass)

o MAP is asserted during the second part of the cycle (a DMA
grant)

o MISS is asserted during the second part of the cycle (a cache
miss)

o ABORT is asserted by the DCJ1ll during an instruction stream
demand read, data stream read, or read-modify-write cycle

Otherwise, a Bus Read cycle will execute in four clock periods.

For non-stretched Bus Read cycles, the read data is synchronously
latched into the DCJ1l only on the rising edge of T3, as shown in
Figure 3-3.

For stretched Bus Read cycles, data is latched into the DCJ1ll both
at the rising edge of T3 and when DV is asserted during the
stretched portion of the cycle (see Figure 3-4). Thus 1if read
data is valid at the rising edge of T3, it is latched at that time
and DV is not required. If the read data is not wvalid at the
rising edge of T3, DV is required to latch the valid data. Note
that DV should be inhibited if the stretched Bus Read is due only
to a DMA grant.

A stretched cycle lasts at least eight clock periods. A cycle is
stretched in increments of two clock periods (T4) and is ended by
the assertion of CONT.

If an internally generated abort condition such as an MMU error or
address error exists, 6he DCJ1ll asserts ABORT during the first
part of the cycle. 1If this type of abort occurs, the DAL, BS, and
MAP information should be ignored for the remainder of the cycle.
If an abort is externally generated (such as bus timeout,
non-existent memory reference, etc.), it must occur during the
stretched portion of the cycle.

3.6 BUS WRITE CYCLE

There are two different types of bus write cycles: Bus Word Write
cycles and Bus Byte Write cycles. The AIO code defines which of
these is selected. The types of devices to which information can
be written include memory, I/0 devices, and bus addressable
registers. During the first part of the c¢ycle, BS<1l:0> defines

3-6

which of these is selected.

Bus Write cycle timing is illustrated in Figure 3-5. Note that
Bus Write cycles are always stretched cycles.
{70 T1 iT2 {73 T4 | T4 |14 174 ‘T4 ‘T8 ' T6 77

o (s I RCRRROORRR(o taour !

f _)
. LPHYSICAL ADDRESS j
ALE RV il I {
. P
MAP) (G [l oma GrRanT L !
L 1/0 MAP ENABLE | , L |
os W0+ I cacne stavws” — .
i /0 BANK SELECT ; . ™\ 1
ABORT M MMU ABORT STATUS AW MMU AND SYSTEM ABORT\STATUS i
; : : g T 1 ™ " T
BUFCTL : ‘ ; ' . — . '
SCTL . i ; : ‘\\\ : [H ’W : -

| : QONTlNUE

T Y H | ' |

Figure 3-5 Bus Write Cycle

ALE typically latches the AIO code, the physical memory address on
the DAL, the BS information, and the I/0 map enable signal (MAP).

SCTL is asserted during the stretched portion of the cycle. The
write data is valid when S8CTL is asserted and the leading and
trailing edges of 5CTL can be used by external logic to latch this
data. EUFCTL is not asserted during Bus Write cycles.

If an MMU error or address error abort occurs, the DCJ11 asserts
ABORT during the first part of the cycle. Externally generated
aborts must cause ABORT to be asserted during the stretched
portion of the cycle.

NOTE
If an abort occurs during the first part
of the «cycle, the DAL, BS, and MAP
information should be ignored for the
remainder of the cycle.

During Bus Byte Write cycles, all 16 bits of DAL<15:0> are driven.
If the address is even, the correct data is on the low byte. 1If
the address is odd, the correct data is on the high byte. The
data on the unused byte is unspecified.

Since a Bus Write cycle is always stretched, CONT must be asserted
to end the cycle. ‘

3-7

3,7 GENERAL-PURPOSE (GP) READ CYCLE

General-purpose read cycles allow the DCJ1l1 to read data from
non-PDP-11 addressable external 1logic. A general-purpose read
cycle involves the driving of an address on DAL<7:0> (called the
general-purpose or GP code) which external logic must decode and
respond to. General-purpose read cycles involve the reading of a
full word. If the DCJ1ll requires only a byte, it reads a word and
ignores the unneeded byte. Timing for General-Purpose Read cycles
is shown in Figure 3-6.

T0 T T2 T3 T4 T4 T4 T4 T4 TS 1T ‘17
LK SN\ N\ S\ S\ S\ S S

on (K creon M- —mveraa K
1
AtE AW /i T i
| P i i
BUFCTT A Y///BR\\\ i | L
. I ' "
ik | m 4 , m—
' ‘ CONTINUE .
bV v/ : W

| . ' . ' . . ' i i il 1}
MH #D 14

Figure 3-6 General-Purpose Read Cycle

ALE is typically used to latch the AIO <code and the
general-purpose code on the DAL, A GP Read is always stretched
and thus always lasts a minimum of eight clock periods. The GP
code (which specifies the source of the read data) is driven onto
DAL<7:0> during the first part of the cycle. At this time,
DAL<21:8> should be ignored. The general-purpose read codes are
summarized in Table 3-2.

Table 3-2 General-Purpose Read Codes
Code Function
000 ' Reads the power-up mode, HALT
option, FPA option, POK, and

boot address. See Chapter 8
- Interfacing for further

details.
001 : Reads FPA data (if FPA exists).
002 Reads the power-up mode, HALT

option, FPA option, POK, and
boot address, and clears FPA”s
FPS.

003 Acknowledges FPE and reads FEC

(floating exception code)
register (if FPA exists).

Note that GP Read data is latched into the DCJ1l1l both at the

3-8

rising edge of T3 and when DV is asserted during the stretched
portion of the cycle (see Figure 3-6). Thus if the data is valid
at the rising edge of T3, it is latched at that time and DV is not
required. 1If the data is not valid at the rising edge of T3, DV
is required to latch the valid data. Since a GP Read cycle is
stretched, it must be ended by the assertion of CONT.

NOTE
General-Purpose Read cycles can not be
aborted by the DCJ11l and should not be
aborted by external logic.

3.8 GENERAL-PURPOSE (GP) WRITE CYCLE

General-Purpose Write cycles allow the DCJ1l to write data to
non-PDP-11 external logic. A General-Purpose Write cycle involves
the driving of an address on DAL<7:0> (called the general-purpose
or GP code) which external logic must decode and respond to. GP
write cycles involve the writing of either a word or a byte.
Timing for General-Purpose Write cycles is shown in Figure 3-7.

‘10 LT T2 T3 T4 | T4 |74 T4 T4 |75 T6 T7
D AWAWAW WA aWaw , AVaWa
. : - . ' | : ’
ort (e cooe JRRHRHHHRIL oarour T —
' - ! i , N !
| H L
ALE AN uy i o E i
. . , | ! !
BUFCTL : ‘ : | | : I
' ' I
— A
st WY f [
. ; CONTINUE
CONT i
| MR 8915

. | |
Figure 3-7 General-Purpose Write Cycle

ALE is typically used to latch the AIO code and the
general-purpose code on the DAL. A GP Write is always stretched
and thus always lasts a minimum of eight clock periods. The GP
code (which specifies the destination of the write data) is driven
onto DAL<7:0> during the first part of the cycle. At this time,
DAL<21:8> should be ignored. Table 3-3 provides a summary of the
GP Write codes. See Chapter 8 - Interfacing for further details.

3-9

Table 3-3 General-Purpose Write Codes

Code Function

003 Writes FPA 16-bit data

014 Asserts bus reset signal

034 Indicates exit from console ODT
040 Reserved for future use

100 Acknowledges assertion of EVENT
140 Acknowledges Power Fail

214 Negates bus reset signal

220 Microdiagnostic test 1 passed
224 Microdiagnostic test 2 passed
230 . Microdiagnostic test 3 passed
234 Indicates entry into console ODT

SCTL is asserted during the stretched portion of the GP Write
cycle. The write data is valid (and can be latched) on the rising
or falling edges of &8CTL. The write data is driven onto
DAL<15:00>. Since a GP Write cycle is always stretched, it must
be ended by the assertion of CONT.

, NOTE
General-Purpose Write cycles can not be
aborted by the DCJ11 and should not be
aborted by external logic.

3.9 INTERRUPT ACKNOWLEDGE BUS CYCLE

An Interrupt Acknowledge cycle (also called an Interrupt Vector
Read cycle) 1is performed to service an interrupt request from
IRQ<3:0>. Interrupt Acknowleddge timing is illustrated in Figure
3-8. Note that the ' interrupt request on 1IRQ<3:0> must be
deasserted by the end of the cycle.

ru—u—mw_r‘\fu—_h

- SYSTEM NTERFACE
oac —(3 I—{C-
L»INTERRUPTLEVEL l _
_— (I
e W ; , ,
i : : I 1 i | | |
ABORT My ! ' \\\\ SYSTEM ABORT sTATUS | N
- T T N
_ f i !
gFCTL /A \Y . L ' Vil
. : o
ST i ; A\ : T !ﬂIW ,
' 1 CONTINUE ;
ConT | 5 : i ! . ! ' '
, : ! ;
DV _ ‘ i : i o /// ;
. X | ' . 1 i i 1 i T l

MR 8913

Figure 3-8 Interrupt Acknowledge Cycle

3-10

ALE is typically used by external logic to latch the AIO code and
the acknowledged interrupt level. The interrupt level
acknowledged is driven onto DAL<3:0> at the beginning of the cycle
as shown in the table below.

Table 3-4 Interrupt Acknowledgement

DAL<3:0> IRQ level acknowledged
0001 . 4 :
0010 5
0100 6
1000 7

At this time DAL<21l:4>=0.

As shown in Figure 3-8, the interrupt vector -address is placed on
the DAL by the interrupting device during the second part of the
cycle. An Interrupt Acknowledge cycle 1is always stretched and
consists of at 1least eight clock periods. It is stretched in
increments of two clock periods (T4) until the CONT input is
asserted, at which time the cycle is ended.

Note that the interrupt vector is latched into the DCJ1l both at
the rising edge of T3 and when DV is asserted during the stretched
portion of the cycle. Thus if the interrupt vector is valid at
the rising edge of T3, it is latched at that time and DV is not
required. If the interrupt vector is not valid at the rising edge
of T3, DV is required to latch it.

An Interrupt.Acknowledge cycle can be aborted during the stretched
portion of the cycle if ABORT is asserted by external logic. The
DCJ1l does not assert ABORT during the first part of an Interrupt
Acknowledge cycle. If an abort occurs, the DCJ1l ignores the
interrupt request and continues execution.

3.10 DMA REQUESTS AND GRANTS

If external logic needs to use the DAL to transfer data, it must:
(1) cause the DCJ1l to put the DAL in the high-impedance state,
and (2) stretch the cycle currently in progress while external
logic makes use of the DAL. This is accomplished by asserting the
DMR input during the first part of a cycle. 1In response, the DMA
request will be acknowledged and granted for all cycle types
except Bus Write and GP Write cycles. During Write cycles (which
are always stretched), the DAL carries write data during the
second part of a cycle, during which time the DAL is not placed in
the high-impedance state. External logic could be designed such
that DMA transfers could occur during Write cycles as long as the
DMA transfer did not use the DAL coming directly from the DCJ1ll (a
buffered version of the DAL could be wused instead). In other
words, external 1logic 1is not prevented from performing a DMA
operation simply because a DMA grant does not occur.

A DMA request is acknowledged by asserting MAP during the second

part of a «cycle. A cycle involving a DMA transfer is stretched
and thus lasts a minimum of eight clock periods. It will continue

3-11

to be stretched in increments of two clock periods until the CONT
input is asserted. Note that the deassertion of DMR does not end
the cycle.

3-12

CHAPTER 4
MEMORY MANAGEMENT

4.1 INTRODUCTION

The DCJ1l contains a memory management unit (MMU) which provides
the user with the hardware necessary to effect complete memory
management and protection. The MMU is designed to provide access
to all of physical memory and is an important part of multi-user,
multiprogramming systems where memory protectlon and relocation
facilities are necessary.

The MMU is used to assign segments of memory called pages to a
user program and prevent that user from making unauthorized
accesses to pages outside his assigned area. A user is thus
prevented from accidental or willful destruction of any other user

program or the system executive program.

The MMU is usually used in conjunction with a supervisory program
which determines how the MMU is to operate. 1In multiprogramming
environments this supervisory program controls the execution of
the various wuser programs, manages the allocation of memory and
peripheral device resources, and safeguards the integrity of the
system as a whole by careful control of each user program.

The basic characteristics of the DCJ1l memory management unit are:
16 kernel mode memory pages

16 supervisor mode memory pages

16 user mode memory pages

8 pages in each mode for instructions

8 pages in each mode for data

Page lengths from 64 to 8192 bytes

Each page provided with full protection and relocation
Transparent operation

Memory access to 4 million bytes

000000000

The remainder of this chapter explains these characteristics in
detail.

4.2 ADDRESSING

When the MMU is active, a 16-bit address referenced in a program
is interpreted as a virtual address (VA) containing information to
be used in constructing a new 22-bit physical address (PA). The
information contained in the wirtual address is combined with
relocation information contained in a register called the page
address register (PAR) to vyield the 22-bit physical address.
Using the MMU, memory can be dynamically allocated in pages
composed of from 1 to 128 contiguous blocks of 64 bytes each .
Figure 4-1 illustrates the relocation of wvirtual addresses to

physical addresses via page address registers.
PHYSICAL

ADDRESS SPACE
12772777 PAGE 5
VIRTUAL
INSTRUCTION/DATA
ADDRESS SPACE PAGE 6
177777 PAR 7
PAR 6
PAR S PAGE 7
> PAR 4
PAR 3
PAR 2 PAGE 4
PAR 1
0 PAR O 0
VIRTUAL ADDRESS PAGE ADDRESS REGISTERS PHYSICAL ADDRESS
(16 BITS) (22 8ITS)

PAR = PAGE ADDRESS REGISTER

MR.11462

Figure 4-1 Virtual Address Mapping Into Physical Address

The starting physical address for each page 1is an integral
multiple of 64 bytes, and each page has a maximum size of 8192
bytes. Pages may be located anywhere within the 22-bit physical
address space.

Only one set of eight page address registers are illustrated in
Figure 4-1, Actually, six such sets of page address registers are
used by the MMU. The determination of which set of page registers
is enabled at any given time depends on the current CPU mode of
operation (i.e., kernel, supervisor, or user mode) and whether the
MMU is mapping instructions (into I space) or data (into D space).
Refer to Paragraph 4.5 for further details.

4.3 I SPACE AND D SPACE

When the MMU is active, all addresses are mapped into either
instruction (I) space or data (D) space. I space is used for all
instruction fetches, index words, absolute addresses and immediate
operands. D space is used for all other references. 1 space and
D space each have 8 PARs in each mode of CPU operation (kernel,
supervisor, and user). Using memory management register #3
(MMR3), D space can be disabled such that all references
(instruction and data) are mapped through I space.

Table 4-1 defines how memory references are mapped into the I and
D spaces. Note that the determination of whether a memory
reference gets mapped into I space or D space depends on: the
type of instruction, the addressing mode, and the register
selected.

Table 4-1 I and D Space Referencing
(first/second/third memory references)

Address Mode Normal MTPI, MTPD,MFPD,

and Reg Select Instruction MFPI MFPI
(not MTPI, MFPI (PS<15:12> (PS<15:12>
MTPD, or MFPD) not 1111) = 1111)

00 - 07 na na na

10 16 D 1 D

17 I I D

20-- 26 D 1 D

27 I A I : D

30 - 36 D/D D/1 D/D

37 I/D 1/1 I1/D

40 46 D I D

47 I I D

50 -~ 56 ' D/D D/1 D/D

57 : I/D /1 1/D

60 - 67 1/D 1/1 - 1/D

70 17 1/D/D 1/D/1 I1/D/D

4.4 CONSTRUCTION OF A PHYSICAL ADDRESS

The basic information needed for the construction of a physical
address comes from the virtual address (illustrated in Figure 4-2)
and the appropriate PAR set.

15 14 13 12 00
1 r i I | T 1 i r T 1 1 T T
APF DF
[R 1 1.1 1 !]] 1]]] !
| WE— J
v Y
ACTIVE PAGE DISPLACEMENT FIELD

FIELD
MR 11049

Figure 4-2 Interpretation of a Virtual Address

The virtual address consists of:

1'

The active page field' (APF). This 3-bit field determines
which of eight page address registers (PARO through PAR7) will
be used to form the physical address.

The displacement field (DF). This 13-bit field contains an
address relative to the beginning of a page. This permits
page lengths up to 8K bytes. The DF is further subdivided
into two fields as shown in Figure 4-3.

T T T T T T T T T T T
BN [ol]:}
1 i i 1 1 1] 1 1 1 I
« ~- A\ ~v"
B8LOCK NUMBER DISPLACEMENT IN BLOCK

Figure 4-3 Displacement Field of Virtual Address
The displacement field (DF) consists of:

1. The block number (BN). This 7-bit field i$ interpreted as the
block number within the current page.

2. The displacement in block (DIB). This 6-bit field contains
the displacement of the address within the block specified by
the block number.

The remainder of the information needed to construct the physical
address comes from the 16-bit page address field (PAF) (i.e. the
contents of the page address register (PAR)) that specifies the
starting address of a particular memory page. The PAF is actually
a block number in physical memory, e.g., PAF = 3 indicates a
starting address of 192 (3 x 64 bytes per block) decimal or 300
octal in physical memory.

The formation of the physical address 1is illustrated in Figure
4_4 .

16 13 12 06 05 00
VIRTUAL
A P F
ADDRESS
\ A ~ A w
f lm.us—J
SELECTS I
r ul =
i 15 00
PAR
- —— J
|
EQUALS
v
p A - e \
21 06 05 00

PHYSICAL
ADDRESS

Tx.4494

Figure 4-4 Construction of a Physical Address

The logical sequence involved in constructing a physical address
is as follows:

l. Select a set of page address registers depending on the CPU
mode (kernel, supervisor, or user) and the type of memory
reference (I or D space).

2. Use the active page field (APF) from the virtual address to
select one of eight page address registers (PARO through
PAR7) .

3. The page address field (PAF) of the selected page address
register (PAR) contains the starting address of the currently
active page as a block number in physical memory.

4, The block number (BN) from the virtual address is added to the
page address field to yield the number of the block in
physical memory which will contain the physical address being
constructed.

5. The displacement in block (DIB) from the displacement field of
the virtual address is appended to the physical block number
to yield a true 22-bit DCJ1ll physical address.

4.5 MANAGEMENT REGISTERS

The DCJ1l MMU implements three sets of 32 16-bit registers as
shown in Figure 4-5. One set of registers is used in kernel mode,
another in supervisor mode, and the other in user mode. The
choice of which set to be used is determined by the current CPU
mode contained in the processor status register (PS). Each set
consists of "two groups of 16 registers. One group is used for
references to instruction (I) space and one to data (D) space.
The I space group is wused for all instruction fetches, index
words, absolute addresses, and immediate operands. The D space
group is used for all other references, providing D space has not
been disabled by memory management register #3. Each group
contains 8 pairs of 1l6-bit registers. Half of the registers in
each group are page address registers, which operate as explained
previously. The other registers are page descriptor registers
(PDRs). PARs and PDRs are always selected in pairs. A PAR/PDR
pair contains all the information needed to describe and locate a
currently active memory page.

Each of the memory management registers described above are
located in the uppermost 8K bytes of the physical address space
(see Paragraph 4.9).

PROCESS STATUS WORD ;

' ' '

KERNEL (00} SUPERVISOR (01) USER {11)

PARG | PDRO PARD | PORC PARO | PDRO

1t SPACE

PAR? POR? PARY POR7 PAR) PDR7

PARO | PDRO PARQ | PORO PARO | PDRO

D SPACE

PAR7 POR7Y PARY | PDR7 PAR? | POR?

LRIt

Figure 4-5 Active Page Registers

4.5.1 Page Address Registers (PARs) - As shown in Figure 4-6,
each page address register contains a 16-bit page address field

(PAF) which specifies the starting address of a page as a block
number in physical memory.
15

T I 1 i T ¥ 1 T 1 1 T I T 14 1
PAF
] 1 ! L !] 1] L 1] 1 1] 1

Figure 4-6 Page Address Register wA 11053

LY
The page address register which contains the page address field
may be thought of as a relocation register containing a relocation
constant, or as a base register containing a base address.

4,5.2 Page Descriptor Registers (PDR8) -~ Page descriptor
registers (PDRs) contain information on page expansion direction,
page length, and access control. Refer to Figure 4-7.

4-6

15 14 13 12 1" 10 09 08 Q7 06 05 04 03 02 01 00

PAGE LENGTH FIELD (PLF) 0 w 0 0 ED ACF 0
! 1 i | ! 1 1

B r | —
BYPASS CACHE
PAGE LENGTH FIELD

PAGE WRITTEN
EXPANSICON DIRECTION
ACCESS CONTROL FIELD —

MR.BI20

Figure 4-7 Page Descriptor Register (PDR)

4.5.2.1 Bypass Cache - Bit 15 implements a conditional cache
bypass mechanism. If set, references to the selected virtual page
can bypass cache memory if a cache is present in the system.

4.5.2.2 Page Length Field (PLF) - This 7-bit field occupying bits
<14:8> of the PDR specifies the block number, which defines the
boundary of that page. The block number of the virtual address is
compared against the page length field to detect length errors.
An error occurs when expanding upwards if the block number |is
greater than the page length field and when expanding downwards if
the block number is less than the page length field.

4.5.2.3 Page Written - Bit 6 (the W bit) indicates whether or not
this page has been modified (i.e., written into) since either the
PAR or PDR was loaded (W = 1 means the page has been modified).
The W bit is useful in applications which involve disk swapping
and memory overlavs. It is used to determine which pages have
been modified and hence must be saved in their new form and which
pages have not been modified and can simply be overlaid.

Note that the W bit is reset to 0 whenever either PAR or PDR is
modified (written into).

4.5.2.4 Rxpansion Direction (ED) - Bit 3 specifies in which
direction the page expands. If ED = 0 the page expands upwards
from block number 0 to include blocks with higher addresses; if
ED = 1 the page expands downwards from block number 127 to include
blocks with lower addresses. Upward expansion is usually used for
program space while downward expansion is usually used for stack
space.

4.5.2.5 Access Control Field - This 2-bit field, occupying bits
<2:1> of the page descriptor register contains the access rights
of a particular page. The access codes or "keys" specify the
manner in which a page may be accessed and whether or not a given
access should result in an abort of the current operation. A
memory reference which causes an abort must not be completed by
the system interface. Aborts are used to catch "missing page
faults", prevent illegal accesses, etc.

In the context of access control the term "write™ 1is wused to
indicate the action of any instruction which modifies the contents
of any addressable byte. "Write" is synonymous with what |is
sometimes called a "store" or "modify" in many computer systems.

The modes of access are as follows:

00 non-resident abort all accesses

01 read~only abort on write attempt
10 unused abort all accesses

11 read/write access

4,5.2.6 Reserved Bits - Bits 7, 5, 4, and 0 are spare and are
always read as 0. These bits are reserved for possible future

expansion.

4,6 INTERRUPT CONDITIONS UNDER MEMORY MANAGEMENT CONTROL

With the MMU enabled, all trap, abort, and interrupt vectors are
considered to be in kernel mode virtual address space. When a
trap, abort, or interrupt occurs, control is transferred according
to a new program counter (PC) and processor status word (PS)
contained in a two-word vector that is relocated through the
kernel page address register set. The old PC and PS is pushed
onto the R6 stack specified by bits <15:14> of the new PS (00 =
kernel, 0l = supervisor, 1l = user). Bits <15:14> also determine
the new PAR set. In this manner it is possible for a kernel mode
program to have complete control over service assignments for all
interrupt conditions since the interrupt vector 1is 1located in
kernel space. The kernel program may assign the service of a
trap, abort, or interrupt condition to a supervisor or user mode
program by simply setting bits <15:14> of the new PS.

4.7 FAULT RECOVERY REGISTERS

Aborts generated by the MMU are vectored through kernel wvirtual
location 250. Memory management registers #0, #1, #2, and #3 are
used to determine why the abort occurred, and allow for easy
program restarting. Note " that an abort to a location which is
itself an invalid address will cause another abort. Thus the
kernel program must insure that Kkernel virtual address 250 is
mapped to a valid address, otherwise a loop will occur which will

4-8

require console intervention.

4.7.1 Memory Management Register #0 (MMRO) - MMRO contains error
flags, the page number whose reference caused the abort, and
various other status flags. The register is organized as shown in
Figure 4-8.

15 14 13 12 1N 1C 09 08 07 06 05 04 03 02 01 0C

ABORT j ‘ .) . v
NON-RESIDENT :
ABORT PAGE :
LENGTH ERROR
ABORT READ-ONLY PAGE MODE PAGE NUMBER
ACCESS VIOLATION

PAGE ADDRESS

SPACE 1/0 ENABLE RELOCATION

Figure 4-8 Memory Management Register #0 (MMRO)

4.7.1.1 Error Flags - Bits <15:13» are error flags. They may be
considered to be in a "priority gqueue”"™ in that flags to the right
are less significant and should be ‘ignored if a higher bit is set.
That 1is, a non-resident fault service routine would ignore length
and access control faults. A page length fault service routine
would ignore access control faults.

Bits <15:13> when set (error conditions) cause the MMU to freeze
the contents of MMRO bits <6:1>, MMR1l, and MMR2. This is to
facilitate error recovery.

Bits <15:13> may be written under program control. No abort will
occur, but the contents of the memory management registers will be
frozen as in an abort,

Bits <15:13> are cleared at power-up, by a console start, or by a
RESET instruction. :

4.7.1.1.1 Abort -- Non-Resident - Bit 15 is set by attempting to
access a page with an access control field key equal to 0 or 2.
It is also set by attempting to wuse memory relocation with a
processor mode of 2 (i.e., the illegal processor mode).

4,.7.1.1.2 Abort -- Page Length - Bit 14 is set by attempting to
access a location in a page with a block number (virtual address
bits <12:6>) that is outside the area authorized by the page
length field of the PDR for that page. Bits 14 and 15 may be set
simultaneously by the same access attempt. Bit 14 may also be set
by attempting to use memory relocation with a processor mode of 2.

4-9

4.7.1.1.3 Abort -- Read Only - Bit 13 is set by attempting to
write 1in a "read-only" page. Read-only pages have access keys of
0l.

4.7.1.2 Reserved Bits -~ Bits <12:7> are spare and are always read
as 0. These bits are reserved for possible future expansion.

4.7.1.3 Processor Mode - Bits <6:5> indicate the CPU mode
(kernel, supervisor, or user) associated with the page causing an
abort (kernel = 00, supervisor = 0l, user = 11, 1illegal mode =
10). If an illegal mode is specified, bit 15 is set.

4,7.1.4 Page Address Space - Bit 4 indicates the type of mapping
(I or D) the MMU attempted when an abort occurred (0 = I space, 1
= D space). It is used in conjunction with bits <«3:1>, page
number.

4.7.1.5 Page Number - Bits <3:1> contain the page number of a
reference causing an MMU abort. Note that pages, like blocks, are
numbered from 0 upwards.

4.7.1.6 Enable Relocation - When bit 0 is set to a 1, the MMU is
enabled and performs address relocation. When bit 0 is cleared,
the MMU is inoperative and addresses are not relocated or
protected. Bit 0 is cleared at power-up, by a console start, or
by a RESET instruction.

4.7.2 Memory Management Register #1 (MMRl) - MMR1 (see Figure
4-9) records any autoincrement/autodecrement of the
general-purpose registers, including references through the PC.
This information 1is necessary to recover from an error resulting
in an abort. MMR1l is cleared at the beginning of each instruction
fetch. Whenever a general-purpose register is autoincremented or
autodecremented, the register number and the amount (in 2”s
complement notation) by which the register was modified is written
into MMR1. The low order byte of MMRl is written first. It is
not possible for a DCJ1l instruction to autoincrement/decrement
more than two general-purpose registers per instruction before an
"abort-causing™” reference.

It is up to the software to determine which set of registers
(kernel/supervisor/user =-- deneral set O0/general set 1) was
modified, by determining the CPU and register modes as contained
in the PS at the time of the abort.

1 [T |] 1 | [I i 1 i
- ~ A - A - A _— J
AMOUNT CHANGED REGISTER AMOUNT CHANGED REGISTER
{2'S COMPLEMENT) NUMBER (2'S COMPLEMENT) NUMBER

MR 8924

Figure 4-9 Memory Management Register #1 (MMR1)

4.7.3 Memory Management Register #2 (MMR2) - MMR2 is loaded with
the current 16-bit wvirtual address at the beginning of each
instruction fetch. MMR2 is read-only; it can not be written.
MMR2 is the virtual program counter.

4.7.4 Memory Management Register #3 (MMR3) - As shown in Figure
4-10, MMR3 enables or disables the use of D space PARs and PDRs
and 22-bit mapping and controls data on the time-multiplexed
output MAP (pin 19 of the DCJ1ll).

1 14 13 12 1110 09. 08 07 06 05 ©04 03 02 OV 00

T

0 0 0 0 0 o] o 0 0 0 MODE

l 4

ENABLE I/O MAP

ENABLE 22-BIT MAPPING

ENABLE CSM INSTRUCTION

KERNEL

SUPERVISOR

USER ’ MA-802%
Figure 4-10 Memory Management Register #3 (MMR3)

4.7.4.1 Reserved Bits - Bits <15:6> are spare and are always read
as 0. These bits are reserved for possible future expansion.

4.7.4.2 Enable I1/0 Map - Bit 5 is set to assert the MAP output of
the DCJ1l. If bit 5 = 1 MAP is asserted. 1If bit 5 = 0 MAP is
unasserted. On initialization, MMR3 is cleared.

4.7.4.3 Enable 22-Bit Mapping - If bit 4 = 0 and the MMU is
enabled (bit 0 of MMRO = 1), the DCJ1l uses 18-bit mapping. 1If
bit 4 = 1 and the MMU is enabled, the DCJ1ll uses 22-bit mapping.
If the MMU is disabled, bit 4 is ignored and 16-bit mapping is
used. Figures 4-11, 4-12, and 4-13 illustrates the three mapping
alternatives available. '

1171717

110
PAGE
17760000
wnmm
160000 o o
151777 00157777
o000 | _ _ _ __| 00000000
INCOMING VIRTUAL PHYSICAL
ADDRESS (16 B1TS) ADDRESS SPACE
(22 8ITS)

——— RELQCATION
NOT ACCESSIBLE IN THIS MODE

------ NO ADDRESS RELOCATION .
Figure 4-11 16-Bit Mapping
17717771
i/0
PAGE
17760000
00757777
1IN
MEMORY
MANAGEMENT
000000 00000000
INCOMING VIRTUAL PHYSICAL
ADORESS (16 B1TS] ADORESS SPACE
122 BITS)
————— RELOCATION
NOT ACCESSIBLE (N THIS MODE
CLEET Y]

Figure 4-12 18-Bit Mapping

1”777
10
PAGE

17760000

17782717

//
MEMORY

MANAGEMENT

7

000000 00000000

INCOMING VIRTUAL PHYSICAL
ADDRESS (16 81TS) ADDRESS SPACE
(22 81TS)

1771777

~———— RELOCATION
LT

Figure 4-13 22-Bit Mapping

4.7.4.4 Enable Call To Supervisor Mode (CSM) Instruction - Bit 3
is used to enable a CSM instruction. If bit 3 is set toa 1, a
CSM instruction will execute. 1If bit 3 = 0, a CSM instruction
will cause a trap through vector location 10. :

4.7.4.5 Kernel, Supervisor, And User Mode D Space Bits - Bits 2,
l, and 0 are the kernel, supervisor, and user mode D space bits,
respectively. These bits determine whether D space mapping is
enabled or disabled for each CPU mode. When D space is disabled,
all memory references use the I space registers; when D space is
enabled, both the I space and the D space registers are used.
When a mode bit is set, D space is enabled; when a mode bit is
clear, D space is disabled (see Table 4-2).

Table 4-2 Mode Bit Operations

BIT STATE OPERATION
2 0 Disable kernel D space
1 Enable kernel D space
1 0 Disable supervisor D space
1 Enable supervisor D space
0 0 Disable user D space
1 Enable user D space

4-13

4,7,9 Instruction Back-Up/Restart Recovery - The process of
"backing-up" and restarting a partially completed instruction
involves:

1. Performing the appropriate memory management tasks to
alleviate the cause of the abort (e.g., loading a missing

page) .

2. Restoring the general-purpose registers indicated in MMR1l to
their original contents at the start of the instruction by
subtracting the "modify value" specified in MMRI1.

3. Restoring the PC to the "abort time" PC by loading R/ with the
contents of MMR2, which contains the value of the virtual PC
at the time the instruction generating the abort was fetched.

Note that this back-up/restart procedure assumes that the
general-purpose register used in the aborted program segment will
not be used by the abort recovery routine. This is " automatically
the case if the recovery program uses a different general register
set,

4.7.6 Clearing Status Registers Following Abort - At the end of
an abort service routine, bits <15:13> of MMRO must be set to 0 to
resume error checking. On the next memory reference following the
clearing of these bits, the various memory management registers
will resume monitoring the status of the addressing operations.
MMR2 will be loaded with the next instruction address, MMR1l will
store register change information, and MMRO will 1log MMU status
information.

4.7.7 Multiple Faults - Once an abort has occurred, any
subsequent errors that occur will not affect the state of the
memory management status registers, The information saved in
MMRO, MMR1l, MMR2, and MMR3 will always refer to the first abort
that was detected.

4.8 MMU IMPLEMENTATION

The MMU is a very general purpose memory management tool. It can
be used in a manner as simple or as intricate as desired. It can
be anything from a simple memory expansion device to a very
complete memory management facility.

In most normal applications, it 1is assumed that control over
memory page assignments and their protection resides in a
supervisory type program which operates at the nucleus of a CPU’s
executive (i.e. 1in kernel mode). It is further assumed that this
kernel mode program would set access keys in such a way as to
protect itself from willful or accidental destruction by
supervisor mode or user mode programs. Facilities are also
provided so that the nucleus can dynamically assign memory pages

4-14

of varying sizes in response to system needs.

4.8.1 Typical Memory Page - When the MMU is enabled, the kernel
mode program, a supervisor mode program, and a user mode program
each have eight active pages (described by the appropriate PARs
and PDRs) for data, and eight for instructions. Each page is made
up of from 1 to 128 blocks and is pointed to by the page address
field of the corresponding PAR as illustrated in Figure 4-14.

PA 331777

VA 157777 o

VA 144777 4 pPA 316777

BLOCK 47g (391g)

BLOCK 1

BLOCK O

PA 312000

PAR 6 3120

PAF

VA 140000
3910 ACF

PDR 6 n¢///¢ 7k ///ﬂm%’,

PLF w

Figure 4-14 Typical Memory Pagé

The memory segment illustrated in Figure 4-14 has the following
attributes:

1. Page length: 40 blocks.
Virtual address range: 140000 - 144777,
Physical address range: 312000 - 316777.

Nothing has been modified (i.e., written) in this page.

w > w N
. . . .

Read-only protection.

6. Upward expansion.
7. Cache (if present in the system) is not bypassed.

These attributes were determined according to the following
scheme:

1. PAR6 and PDR6 were selected by the active page field of the
virtual address. (Bits <15:13> of the virtual address = 110)

2., The initial address of the page was determined from the page
address field of PAR6. (312000 (octal) = 3120 (octal) blocks
X 64 (octal) bytes). Note that the PAR which contains the PAF
constitutes what is often referred to as a base register
containing a base address or a relocation register containing
a relocation constant.

3. The page length (47 (octal) + 1 = 40 (decimal) blocks) was
determined from the page length field contained in PDR6. Any
attempts to reference beyond the 40 blocks in this page will
cause a page 1length error which will result in an abort,
vectored through kernel virtual address 250.

4. The physical addresses were constructed according to the
scheme illustrated in Figure 4-4.

5. The W bit (W = 0) indicates that no 1locations in this page
have been modified (i.e., written). If an attempt is made to
modify any location in this particular page, an access control
violation abort will occur. If this page were involved in a
disk swapping or memory overlay scheme, the W bit would be
used to determine whether it had been modified and thus
required saving before overlay.

6. This page is read-only protected, i.e. no locations in this
page may be modified. The mode of protection is specified by
the access control field of PDR6.

7. The direction of expansion is upward (ED = 0). If more blocks
are required in this segment, they will be added by assigning
blocks with higher relative addresses.

8. The Bypass Cache bit (bit 15) = 0 which means that cache
memory is not bypassed during this relocation operation.

Note that the various attributes which describe this page can all
be determined wunder software control. The parameters describing
the page are all loaded into the appropriate PAR and PDR under
program control. In a normal application it is assumed that the
particular page which itself contains these registers would be
assigned to the control of a supervisory type program operating in
kernel mode. .

4

16

4.8.2 MNon-Consecutive Memory Pages - It should be noted that
although the correspondance between virtual addresses and PAR/PDR
pairs is such that higher VAs have higher PAR/PDRs, this does not
mean that higher wvirtual addresses necessarily correspond to
higher physical addresses. It is quite simple to set up the PAFs
of the PARs so that higher virtual address blocks may be located
in lower physical address blocks as illustrated in Figure 4-15.

VA 037717 PA 467777

b ca e

VA 020000 PA 460000

PAR 7 PAF

VA 017777 PA 560777

PAR 1 PAF

PAR O PAF wx’ PA 541000

MA. 11088

Figure 4-15 Non-Consecutive Memory Pages

Note that although a single memory page must consist of a block of
contiguous locations, memory pages do not have to be located in
consecutive physical address locations. Also note that the
assignment . of memory pages is not 1limited to consecutive
non-overlapping physical address locations.

4.8.3 Stack Memory Pages - When constructing DCJ1l programs, it
is often desirable to isolate all program variables from program
instructions by placing them on a register-indexed stack. These
variables can then be pushed or popped from the stack as needed.
DCJ1l stacks expand linearly downward to lower addresses when data
is pushed onto them. Thus, when a memory page which contains a
stack needs more room, it must expand downward. Blocks with lower
addresses relative to the current page must be added. This mode
of operation is specified . by setting the expansion direction (ED)
bit of the appropriate PDR to a 1. Figure 4-16 illustrates a
typical stack memory page.

4-17

VA 157777 PA 331777
BLOCK 177g (1274

BLOCK 176g (1261)

BLOCK 175g (1254}

o

Y /,'. on 1200

VA 157500 PA 331500

VA 140000

PAR 6
PDR 6 |BC //%%l,////d ED

Figure 4-16 Typical Stack Memory Page

»

CF

MR 11458

This page will have the following parameters:

o PAR6: PAF = 3120

o PDR6: PLF = 175 (octal) or 125 (decimal) (128 - 3).

o ED =1

O W=0or1l

O ACF = n (to be determined by the programmer as the need
dictates)

Note: the W bit is set by internal chip hardware.

In this case the stack begins 128 blocks above the relative origin
of this memory page and extends downward for a length of three
blocks. A page length error abort vectored through kernel virtual
address 250 will be generated by the MMU when an attempt is made
to reference any location below the assigned area, i.e. when the
block number from the virtual address is less than the page length
field of the appropriate PDR.

4,8.4 Transparency - In a multiprogramming application memory
pages can be allocated such that a particular program seems to
have a complete 64K memory configuration. Using relocation, a
kernel mode supervisory type program can easily perform all memory
management tasks in a manner entirely transparent to a supervisor
mode or user mode program. In effect, a DCJ1l system can be
configured to provide maximum throughput and response to a variety
gf usgrs each of which seems to have a powerful system all to
imself.

4.9 MEMORY MANAGEMENT UNIT -~ REGISTER MAP

REGISTER ADDRESS
Memory Management Register $#0 (MMRO) 17777572
Memory Management Register #1 (MMR1) 17777574
Memory Management Register #2 (MMR2) } 17777576
Memory Management Register $3 (MMR3) » 17772516
User I Space PDRO 17777600
User I Space PDR7 ' 17777616
User D Space PDRO : 17777620
User D Space PDR7 17777636
User I Space PARO 17777640
User I Space PAR7 | 17777656
User D Space PARO 17777660
User D Séace PAR7 17777676
Supervisor I Space PDRO 17772200
Supervisor I Space PDR7 17772216
Supervisor D Space PDRO 17772220
Supervisor D Space PDR7 17772236
Supervisor I Space PARO ' 17772240
Supervisor I Space PAR7 | 17772256

Supervisor D Space PARO

Supervisor D Space PAR7

Kernel I Space PDRO

Kernel I Space PDR7?

Kernel D Space PDRO

Kernel D Space PDR7

Kernel I Space PARO

Kernel I.Space PAR7?7

Kernel D Space PARO

Kernel D Space PAR?

4-20

17772260

17772276

17772300

17772316

17772320

17772336

17772340

17772356

17772360

17772376

CHAPTER 5
SPECIAL FEATURES

5.1 INTRODUCTION

This chapter discusses three special features incorporated into
the DCJ1ll: cache memory status and control registers, console
ODT, and pipeline processing hardware.

5.2 CACHE MEMORY STATUS AND CONTROL REGISTERS

The DCJ1ll contains hardware that allows the user to incorporate
cache memory into his system. This hardware consists of the cache
control register and the hit/miss register. This hardware allows
for a broad spectrum of cache implementations and the user has
considerable flexibility in designing a cache memory scheme to fit
his application. The paragraphs that follow not only describe the
cache memory status and control registers in detail but also
present some general considerations involved in designing cache
memory into a DCJ1ll based system. A sample cache memory
implementation is - also presented ¢to illustrate a typical
application of the cache memory status and control registers.

5.2.1 Cache Control Register - The cache control register (CCR)
contains information which 1is wused to control the operation of
cache memory. It is accessed by referencing 1location 17777746.
Only bits 9 and <3:2> of the CCR are interpreted by the DCJ11l.
Bits <10:0> are read/write bits. Bits <15:11,8> are always read
as zeroes. ,

In order for the uninterpreted read/write bits (bits 10, <8:4>,
and <1:0> to be used by external logic, the user must include a
"shadow register" (write only) in his DCJ1ll design. The shadow
register simply retains a hardware accessible copy of the CCR
information. Although thé DCJ1l allows the reading and writing of
CCR<10:0> and the writing of CCR<15:11>, changing bits <15:11>, 8,
<7:4>, and <1:0> will have no hardware effect on the DCJ1l.

CCR bits <15:11> are uninterpreted and always read as =zeroes by
the DCJ1l1 (see sample implementation in Paragraph 5.2.5). The
user typically designs an external register for these bits if they
must be interpreted. The format of the CCR is shown in Figure
5-1.

5-1

=Y Y
[[[
UNINTERPRETED _}

(READ AS ZEROES)

UNINTERPRETED
(READ/WRITE)

UNCONDITIONAL
CACHE BYPASS

UNINTERPRETED
(READ AS ZERO"

UNINTERPRETED
(READ/WRITE)

FORCE CACHE MISS

UNINTERPRETED
(READ/WRITE)

MRA 11436

*Written as a logic 1 at power-up or when console ODT is started

Figure 5-1 Cache Control Register

5.2.1.1 Unconditional Cache Bypass (R/W) - When bit 9 is set to
1, all memory references access main memory, and all cache hits
are invalidated.

5.2.1.2 Force Cache Miss (R/W) - When either of bits <3:2> is set
to 1, all references are forced to main memory and all cache
activity is suspended. This in effect disables the cache system.

5.2.1.3 Uninterpreted Bits - Bits <15:10>, <8:4>, and <1:0> are
uninterpreted by the DCJ11l. Bits 10, <8:4>, and <1:0> are
read/write bits and bits <15:11> are always read as zeroes.

5.2.2 Hit/Miss Register - The Hit/Miss Register (HMR) indicates
whether the six most recent CPU memory references resulted in
cache hits or cache misses. It is accessed by referencing
location 17777752. Refer to Figure 5-2. Bits <15:6> are always
read as zeroes. Bits <5:0> are read-only bits. Bits enter from
the right (at bit 0) and are shifted leftward. A logical one
indicates a cache hit, and a zero indicates a cache miss. This
register is used to help diagnose the cache system.

15 14 13 12 11 10 09 08 a7 06 05 00

0 0 0 0 0 0 0 0 0 0 e F LOW

MR 8899

Figure 5-2 Hit/Miss Register

5-2

5.2.3 General Operation - Cache memory is typically a high-speed
memory that buffers data between the CPU and main memory. When a
memory access occurs, the system looks for data in the fast cache
memory first. If found (a hit), the data is read or written to or
from the cache and execution proceeds at the fastest rate. If not
found (a miss), the data must be read from or written to main

memory.

In a write-through cache system a CPU request to write data into
memory causes data to be written to both the cache and to main
memory. This is to insure that both stores are always updated
immediately. PDP-11 systems with cache normally use the
write-through technique. .

Typical hit/miss operations in a write-through cache system are
summarized in Table 5-1.

Table 5-1: Typical Hit/Miss Operations
What Happens In

S T - - — - - - E — - G - - G RS G D - - —— -

CACHE MAIN MEMORY

READ .
hit no change no change
miss updated no change
WRITE
" hit : updated updated
miss no change updated

In a typical program, WRITEs occur only 10-15% of the time and
READs occur 85-90% of the time. Thus, READ misses cause the cache
to be updated.

The I/0 page of physical memory (the ¢top 8K bytes) 1is not
typically cached. This 1is because the I/0 page contains device
status registers which, when read, must always convey the latest
information.

When a DMA device writes to a cached 1location, the overwritten
cache entry is typically invalidated. The cache system monitors
DMA transactions to determine if this action is needed.

There are several design parameters that must be considered when
constructing a cache memory, cache size and block size to name but
two. A detailed discussion of cache design is beyond the scope of
this document, but an introduction to the subject is found in
Section VI of the KBll-C Processor Manual (EK-KBllC-TM). An 8 KB
direct mapped cache is presented as an implementation example in
Paragraph 5.2.5.

5-3

5.2.,4 Cache Memory In A Multiprocessor Environment - In a
multiprocessor system where each processor has 1its own cache
memory, care must be taken to avoid caching data that was
invalidated by another processor ("stale" data). A simple
software method can prevent this situation. Any shared address
must bypass the cache, i.e., the reference must go to main memory,
and if the address was previously cached, the entry must be
invalidated. The DCJ1ll provides three bypass mechanisms: an
unconditional bypass in which every reference 1is bypassed; a
conditional bypass in which bypassing is on a page-by-page basis;
and finally, a selective bypass in which the bypassing 1is done
during operand references. The unconditional bypass is selected
by setting bit 9 of the Cache Control Register (see Paragraph
5.2.1). The . conditional bypass is selected when bit 15 of the
currently selected Page Descriptor Register PDR 1is set (see
Paragraph 4.5.2). The selective bypass occurs during the operand
references of the instructions used in multiprocessing functions
(TSTSET, WRTLCK and ASRB).

5.2.5 Sample Implementation - The following is a description of
the operation of an 8 Kb direct mapped cache with a block size of
two bytes as implemented on a DCJ1l based system. This is only
one of many possible implementations.

A direct mapped cache is organized such that each physical memory
address 1is associated with a particular "block" of memory in the
cache. 1In this case we have an 8 KB cache with a block size of
two bytes. This means there are 4K blocks in the cache. Each
word in physical memory is associated with one of these 4K blocks.

Consider each physical address as being made up of three parts
(see Figure 5-3), The first part is bit zero. Bit zero specifies
which of the two bytes in a two-byte block is to be accessed. The
next part, bits <12:1>, is called the cache index and specifies
which of the 4K blocks in the cache is to be accessed. The third
part, bits <21:13>, 1is called the cache tag. One cache tag per
block is stored in the cache to uniquely identify physical memory

locations.
21 1312 0100

T v T T 1 v 1T v rrrrT

U S S SR G | PR S S T SUNY A W S N W §

- J \ J

CACHE TAG——f I

CACHE INDEX
BYTE WITHIN BLOCK

MA 11437

Figure 5-3 Physical Address Partitioning for Cache Memory

For example, if the DCJ1ll accesses location 10002477, cache
control 1logic (designed by the wuser) 1looks at the cache tag
associated with the information currently in cache block number
1237 (bits <12:1>). 1If this cache tag is 400 (bits <21:13>), the
cache control logic sends both bytes in that block to the DCJ1l.
Since bit 0 is a 1, the DCJ1l automatically selects the high byte

5-4

(the low byte is ignored). 1If the stored cache tag is not 400,
the control logic fetches two bytes from memory (10002476 and
10002477), sends 10002477 to the DCJll, loads the two bytes into
cache block 1237, and changes the cache tag of that block to 400.

Any location whose cache index is 1237 will be loaded into block
1237 of cache memory. This is the only place the cache control
logic has to look if the DCJ1ll accesses the data from a location
whose cache™index is 1237.

Figure 5-4 illustrates a format for each cache block. The 9-bit
cache tag 1is stored in bits <24:16> and the two bytes of data
which comprise the block are stored in bits <15:0>. Bit 25 is a
Valid Bit which indicates whether or not this cache block contains
valid data. Data would be invalid for example immediately after
power-up, and the cache control logic would clear the valid bit in
this case.

2524 16 15 0807 00

LR R AR LR L L LR V11T vy

U G S S U WO W 1 U N G S N T W'Y MU N B S N

IL J J\ V)
VALID BIT I

TAG FIELD
DATA BLOCK - BYTE 1
DATA BLOCK - BYTEO

MR 11438

Figure 5-4 Cache Entry

Notice that only the cache tag of a location need be stored in a
cache entry because only the cache tag is required to uniquely
identify a location. The cache index need not be compared because
anything stored in block 1237 (for example) is known to have bits
<12:1> of its address set to 1237.

If desired, cache entries can also include parity information as
shown in Figure 5-5.

282726 181716 0908 07 00

T 17 rvr v r vt T r 11 rrr T 1 rrrr

F I T T S S S N | | S WS VN S B G B G WY VR WU TR N W |

¥

b

PARITY 2 —
VALID BIT
TAG FIELD
PARITY 1
DATA BLOCK - BYTE 1
PARITY O
DATA BLOCK - BYTE O

Figure 5-5 Cache Entry With Parity
The Parity 0 Bit stores parity information for byte 0, the Parity
1 Bit stores parity information for byte 1, and the Parity 2 Bit
stores parity information for the cache tag/valid bit combination.

The Cache Control Register for this example is configured as shown

5-5

in Figure 5-6.

BIT

WRITE WRONG TAG PARITY
BYPASS CACHE

FLUSH CACHE
WRITE WRONG DATA PARITY

FORCE MISS
DISABLE CACHE TRAPS

MR 11440

Figure 5-6 Sample Cache Control Register

NAME

<15:11> Not Used

10

(read as zeroes)

Write Wrong Tag
Parity (read/write)

Bypass Cache
(read/write)

Flush Cache
(read as zero)

Not Used
(read/write)

Write Wrong
Data Parity

(read/write)

FUNCTION

These bits are not used in this
example. The DCJ11l will ignore

any data written to these bits and
will always read these bits as
zeroes.

This bit, when set, causes the
cache tag parity bit (Parity 2) to
be written with wrong parity when
a cache entry is updated (i.e.
upon CPU read misses and write
hits). This causes a cache tag
parity error on the next access to
a location referenced by the
entry.

This bit, when set, forces all CPU
memory references to go directly
to main memory. Read or write hits
will result in invalidation of
accessed locations in the cache.

Setting this bit causes the entire
contents of the cache to be
declared invalid. Writing a "O"
into this bit will have no effect.

This bit is not used in this
example.

This bit, when set, causes the
parity bits of the two data bytes
(Parity 0 and Parity 1) to be
written with wrong parity when

5-6

updated (i.e. upon CPU read misses
and write hits). This causes a
cache parity error to occur on the
next access to a location
referenced by the entry.

<5:4> Not Used These bits are not used in this
(read/write) example.

<3:2> Force Miss | These bits, when either is set,
(read/write) force all DCJ1l memory references

to go directly to main memory.
Unlike cache bypasses, force
misses have no effect on cache
entries. Enabling force miss
effectively removes cache memory
from the system.

1 Not Used These bits are not used in this
(read/write) , example,

0 Disable Cache Traps This bit, when set, disables cache
(read/write) parity interrupts. When this bit

is cleared, an interrupt occurs
when a parity error is
encountered.

All words read from the cache are checked for parity. A parity
error in the accessed word causes the following CPU responses:

CCR<0> Action

0 Interrupt through vector 114 and force miss.
1 Force miss only.

The CCR is cleared on power-up or by a console start. It is
unaffected by a RESET instruction.

The cache response matrix for this example would be:

Read

Write

Read bypass

Write bypass

Read forced
miss

Write forced
miss

CPU
Hit | Miss
Read cached|Read memory
data & allocate
cache
Write thru Write
cache to memory
memory
Invalidate Read
cache & memory
read mem
Invalidate Write
cache & memory
write mem
Read Read
memory memory
Write Write
memory memory

na = not applicable

5-8

Hit | Miss
Read Read
memory memory

Invalidate Write
cache & memory
write mem

na na
na na
na na
na na

5.3 CONSOLE ODT

The console octal debugging technique or console ODT ‘allows the
DCJ11l to respond to commands and information entered via a
user-designed console terminal interface. The interface bus uses
addresses 17777560 through 17777566 to communicate with console
ODT. These addresses are generated in the DCJ1ll and cannot be
changed. Console ODT is a very useful aid in running and
debugging programs. Communication between the user and DCJ1ll is
via a stream of ASCII characters which are interpreted by the
DCJ11 as console commands. These commands are a subset of the
commands used in DIGITAL”s ODT-1l software for minicomputers.

5.3.1 Terminal Interface - The minimum optional hardware
requirements for an interface permitting communication with
console ODT are outlined in the paragraphs that follow (these
requirements are met by the DLART DL~-compatible asynchronous
receiver/transceiver peripheral chip - DIGITAL Part No.
DC319-aA).

5.3.1.1 Receiver Control/Status Register (RCSR) - The RCSR
(Figure 5-7) must exist at address 17777560 for character input to
console ODT. Console ODT does not execute output bus cycles to
this address; therefore the RCSR only needs to respond to input
bus cycles. System software may affect certain bits, such as

Figure 5-7 Receiver Control/Status Register (RCSR) - Address 17777560

00

Bit Description

<15:8> Unused. These bits may be in any state since console ODT
does not use them.

<7> Done flag. After a character is received and exists in
the receiver buffer register (RBUF), the Done flag must
be set to a 1. When the character is read from RBUF
Done flag must be cleared by hardware.

<6:0> Unused. These bits may be in any state since console ODT
does not use them.

5=-9

%,3,1.2 Receiver Buffer Register (RBUF) - The RBUF (Figure 5-8)
must exist at address 17777562 for character input to console ODT.
This register only needs to respond to input bus cycles since
console ODT does not execute output bus cycles to this address.
System software operates similarly, but DIGITAL diagnostics may
cause output cycles and thus may not operate properly.

Figure 5-8 Receiver Buffer Register (RBUF) - Address 17777562

Bit Description

07 00

<15:8> Unused. These bits can be in any state since console
ODT does not use them,

<7:0> ASCII character. These eight bits are read by the
processor and interpreted as a console ODT command.
When bit 7 of RCSR is a 1, the processor reads data
from the RBUF. After the input cycle, the hardware
must clear bit 7 of RCSR to 0.

5.3.1.3 Transmitter Control And Status Register (XCSR) - The XCSR
(Figure 5-9) must exist at address 17777564 for character output
from console ODT. ODT does not execute output bus cycles to this
address; therefore, the XCSR only needs to respond to input bus
cycles. System software may cause output cycles to affect certain
bits, such as Interrupt Enable, but console ODT ignores this.,

08 " o00

MR 89500

Figure 5-9 Transmitter Control/Status Register (XCSR) - Address 17777564

L

Bit | Description

<15:8> Unused. These bits may be in any state since console ODT
does not use them.

<7> Done flag. 1In the idle state, this bit is a 1 indicating
that the XBUF is ready to receive a character. After an
output cycle to the transmitter buffer register (XBUF) by
the processor, this bit-must be cleared to 0 by the
hardware. When the XBUF is ready to receive another
character, the hardware sets this bit to 1.

<6:0> Unused. These bits may be in any state since console ODT
does not use them. Note that these bits may be
meaningful to other DIGITAL interfaces.

5.3.1.4 Transmitter Buffer Register (XBUF) - The XBUF (Figure
5-10) must exist at address 17777566 for character output from
console ODT. This register only needs to respond to output bus
cycles since console ODT does not execute input bus cycles to this
address. System software operates similarly but DIGITAL
diagnostics may cause an input cycle and thus may not operate
properly. g

Figure 5-10 Transmitter Buffer Register (XBUF) - Address 17777566

07 00

Bit Description

<15:8> Unused. These bits may be in any state since console
: ODT does not use them. '

<7:0> ASCII character. These eight bits are written by the
processor with the ASCII character output by ODT. When
bit 7 of XCSR is a 1, the processor may perform an
output cycle to XBUF.

5.3.2 Console ODT Operation -~ Console ODT operates the console
terminal interface in half-duplex mode. Communication between
console ODT and the interface is accomplished via programmed 1I/0
techniques rather than interrupts. When console ODT is outputting
characters using the transmit side of the interface, the receive
side of the interface is not monitored for incoming characters.
Any characters coming in at this time are lost. Console ODT does
not check for error bits in the interface. If another processor
is at the other end of the interface, that processor must operate
within the format of half-duplex transmission. ~No input
characters should be sent until console ODT has finished
outputting.

5.3.2.1 Console ODT 1Initialization - Console ODT operation is
initiated by any of the following:

l. Execution of a HALT instruction in kernel mode (if kernel HALT
is enabled).

2. Assertion of the HALT signal on the system bus. The signal
must be asserted 1long enough so that it is seen by the
processor at the end of the current macroinstruction

3. At‘power—up, if the appropriate power-up option is selected.

Console ODT Input Sequence

The Console ODT entry sequence is as follows:

Output <CR><LF> to XBUF.

Output the contents of PC in six digits to XBUF.

Read and ignore character in RBUF. (May be a program

character.)

4. Output <CR><LF> to XBUF.

5. Output the prompt character, @, to XBUF.

6. Enter a wait loop for input. The Done flag, bit 7 in RCSR, is
tested. 1If it is 0, the test continues.

7. If RCSR bit 7 is a 1, then the low byte of RBUF is read.

1
2
3

5.3.2.2 Console ODT Output Sequence -

Console ODT does the following when it has a character ready for
output:

1. Test XCSR bit 7 (Done flag) and if a 0, continue testing.

2. If XCSR bit 7 is a 1, write character to 1low byte of XBUF
(high byte should be ignored by interface).

5.3.3 Console ODT Command Set - The console ODT command set is a
subset of ODT-11 and uses the same command characters. Only
specific characters are recognized as valid inputs; other inputs
invoke a "?" response. The commands are summarized in Table 5-2.

The word "location," as used in the paragraphs that follow refers

to a memory 1location, an 1I/0 device register, an internal
processor register, or the processor status word (PS).

5-12

Table 5-2 Console ODT Commands
Command Symbol - Function

Slash n/ Opens the specified
location (n) and outputs
its contents. n is an
octal number.

Carriage Return <CR> Closes an open location.

Line Feed <LF> Closes an open location
and then opens the next
contiguous location.

Internal Register $n or Rn ' Opens a specific processor

Designator register (n). n is an
integer from 0 to 7 or the
character S.

Processor Status S Opens the PS - must follow

Word Designator an $ or R command.

Go G Starts program execution.

Proceed P Resumes execution of a
program.

Binary Dump Control-Shift-S Manufacturing use only.

The parity bit (bit 7) on all input characters is ignored (i.e.,
not stripped) by console ODT. If an input character is echoed,
the state of the parity bit is copied to the output buffer (XBUF).
Output characters internally generated (e.g., <CR>) by ODT have
the parity bit equal to 0. All commands are echoed except for
ASCII codes in the range 0-17 (octal). Where applicable, the
upper- and lowercases of command characters are recognized.

NOTE

In the examples that follow, the response
from the processor is underlined, while
the user”’s entry is not. When the user
inputs an address or data, leading zeroes
are not required. The DCJ1l, however,
outputs 8 digit octal addresses and 6
digit octal data words.

$.,3.3,1 / (ASCII 057) Slash - This command is used to open a
memory location, I1/0 device register, internal processor register,
or processor status word and must be preceded by other characters
which specify a location. 1In response to /, console ODT prints
~the contents of the location (i.e., six characters) and then a
space (ASCII 40). After printing is complete, console ODT waits
for either new data for that location or a valid close command.

5-13

Example: €001000/012525<SPACE>

where:
e = console ODT prompt character.
001000 = octal location desired by the user
(leading 0s are not required).
/ = command to open and print contents of
location. .
012525 = contents of octal location 1000.
<SPACE> = space character generated by console

oDT.

5.3.3.2 <CR> (ASCII 01l5) Carriage Return - This command 1is wused
to close an open location. If a location”s contents are to be
changed, the user should precede the <CR> with the new data. If
no change 1is desired, <CR> closes the location without altering

its contents.

Example: @R1/004321<SPACE> <CR> <CR><LF>
' €

Processor register Rl was opened and no change was desired so the
user 1issued<CR>. In response to the <CR>, console ODT printed
<CR><LF>@.

Example: 8R1/004321<SPACE> 1234 <CR> <CR><LF>
@

In this case the user desired to change R1l, so new data, 1234, was
entered before issuing the <CR>. Console ODT deposited the new
data in the open location and then printed <CR><LF>@.

Console ODT does not directly echo the <CR> entered by the user
but instead prints a <CR>, followed by an <LF>, and @.

5,3.3.3 <LF> (ASCII 012) Line Feed - This command is used to
close an open location and then open the next contiguous location.
Memory locations and processor registers are incremented by 2 and
1 respectively. If the PS is open when a <LF> is issued, it is
closed and a <CR><LF>@ is printed; no new location is opened. If
the open 1location”“s contents are to be changed, the new data
should precede the <LF>. If no data is entered, the 1location is
closed without being altered.

Example: BR2/123456<SPACE> <LF> <CR><LF>
R3/054321<SPACE>

In this case, the user entered <LF> with no data preceding it. 1In

5-14

response, console ODT closed R2 and then opened R3. When a user
has the last register, R7, open, and issues <LF>, console ODT
opens the beginning register, R0. '

Example: @R7/000000<SPACE> <LF> <CR><LF>
R0O/123456<SPACE>

Unlike with most other commands, console ODT does not echo the
<LF>. Instead it prints <CR>, then <LF>, so that terminal
printers operate properly. In order to make this easier to
decode, console ODT does not echo ASCII characters in the range 0
- 17 (octal).

5.3.3.4 $§ (ASCII 044) Or R (ASCII 122) 1Internal Register

Designator - Either character when followed by a register
number, 0 to 7, or PS designator, S, will open that specific
processor register.

The $ character is recognized to be compatible with ODT-11l. The R
character was introduced because it can be conveniently typed with
one key stroke and because 1t is an easily remembered symbol for a
register.

Example: @$0/000123<SPACE>

or

@R7/000123<SPACE> <LF>
R0/054321<SPACE>

If more than one character is typed after the R or $§, console ODT
uses the last character typed as the register designator.

5.3.3.5 8 (ASCII 123) Processor Status Word - This designator |is
for opening the PS (processor status word) and may be employed
only after the user has entered an R or $ register designator.

Example: @RS/100377< > 0 <CR> <CR><LF>

NOTE
The trace bit (bit <4>) of the PS cannot
be modified by the user. This is done so
that PDP-11 program debugging utilities
(e.g., ODT-11l), which use the T bit for
single-stepping, are not accidentally
harmed by the user.

If the user issues a <LF> while the PS is open, the PS is closed
and ODT prints <CR><LF>@. No new location is opened in tQis case.

5-15

§,3,3.6 G (ASCII 107) Go - This command is used to start program
execution at a location entered immediately before the G. This
function is equivalent to the LOAD ADDRESS and START switch
sequence on other PDP-11 consoles.

Example: 8200G<NULL><NULL>

The console ODT sequence for a G, after echoing the command
character, is as follows.

1. Print two nulls (ASCII 0). This is intended to prevent the G
character from getting flushed during the bus initialization
sequence that follows, assuming a double-buffered UART chip is
used in the console terminal interface.

2. Load R7 (PC) with the entered data. If no data is entered, O
is used. (In the above example, R7 is set to 200, and that is
where program execution begins.)

3. The PS, MMRO0<15:13,0>, MMR3, PIRQ, CPU Error Register, Memory
System Error Register, Cache Control Register, and Floating
Point Status Register are cleared to zero.

4. The cache, if present, is flushed (if so implemented).
5. The system bus is initialized by the processor.

6. The service state is entered by the DCJ11l. Any outstanding
service requests are processed, If the bus HALT signal is
asserted, the processor reenters the console ODT state. This
feature 1is used to 1initialize a system without starting a
program (R7 is altered).

5,3.3.7 P (ASCII 120) Proceed - This command is wused to resume
execution of a program and corresponds to the CONTINUE switch on
other PDP-11 consoles. No programmer-visible machine state is
altered using this command.

Example: ap

Program execution resumes at the address pointed to by R7. After
the P is echoed, the DCJ1l immediately fetches the next
instruction. After the instruction 1is executed, outstanding
interrupts, if any, are serviced. If the HALT bus signal is
asserted, it is recognized at the end of the instruction, and the
DCJ1l enters the console ODT state. Upon entry, the content of
the PC (R7) 1is printed. In this fashion, the user can
single-instruction step through a program and obtain a PC "trace"
on the terminal.

5.3.3.8 Control-Shift-S (ASCII 023) Binary Dump - This command is
used for manufacturing test purposes and is not a normal user
command. It is described here to explain the processor”s response
if accidentally invoked. It 1is intended to more efficiently
display a portion of memory compared to using the "/" and <LF>
commands. The protocol is as follows.

l. After a prompt character, console oDT receives a
control-shift-S5 command and echoes it.

2, The host system at the other end of the serial line must send
two 8 bit bytes which console ODT interprets as a starting
address. These two bytes are not echoed.,

The first byte specifies starting address <15:08> and the
second byte specifies starting address <07:00>, Address bits
<2l:16> are always forced to be O0; the dump command is
restricted to the first 32K words of address space.

3. After the second address byte has been received, console ODT
outputs ten bytes to the serial line starting at the address
previously specified. When the output is finished, console
ODT prints <CR><LF>Q.

If a user accidentally enters this command, it is recommended
in order to exit from the command that two @ characters (ASCII
100) be entered as a starting address. After the binary dump,
an @ prompt character is printed. '

5.3.4 Address Specification - All 1I/O addresses (17760000 to
17777777) must be entered by the user with all 22 bits specified.
For example, if a user desires to open the RCSR of the console
serial interface he must enter 17777560, not 177560, or 777560.

5.3.4.1 General Registers - Whenever RO-R5 are referenced in
console ODT, they access the general register set currently
specified by PS bit 11 (PS<1ll»>). If a program operating in
general register set zero (PS<ll> = 0) is halted and a general
register is opened, register set zero is accessed. Similarily, if
a program 1is operating in register set one, references to R0O-R5
access register set one.

If a specific register set is desired, PS<1l1l> must be set by the
user to the appropriate value, and then the RO through R5 commands
can be used. If an operating program has been halted, the
original wvalue of PS<ll> must be restored in order to continue
execution. '

Example: PS = 000000

@R4/052525<SPACE> <CR> <CR><LF>

R4 in register set zero has been opened.

5-17

@RS/000000<SPACE> 4000 <CR> <CR><LF>
@R4/177777<SPACE> <CR> <CR><LF>
@RrRs/0 04000<§PAQE 0 <CR> gg><L£

@p

In this case, R4 in register set one was desired. The PS was
opened, and PS<ll> was set to 1 (register set one). Then R4 was
examined and closed. The original value of PS<ll> was restored,
and the program was continued using the P command.

5.3.4.2 8Stack Pointers - Whenever R6 1is referenced 1in console
ODT, it accesses the stack pointer specified by the PS current
mode bits (PS<15:14>). 1If a program operating in kernel mode
(PS<15:14> = 00) 1is halted and R6 is opened, the kernel stack
pointer is accessed. Similarly, if a program is operating in
supervisor or user mode, R6 accesses the supervisor or user stack
pointers. '

If a specific stack pointer is desired, PS<15:14> must be set by
the user to the appropriate value and then the R6 command can be

used. If an operating program has been halted, the original value
of PS<15:14> must be restored in order to continue execution.

Example: PS = 140000
@R6/123456<SPACE> <CR> <CR><LF>
The user mode stack pointer has been opened.

€RS/140000<SPACE> 0 <CR> <CR><LF>

@R6/123456<SPACE> <CR> <CR><LF>
@RS/000000<SPACE> 140000<CR> <CR><LF>
ep .

In this case, the kernel mode stack pointer was desired. The PS
was opened, and PS<15:14> were set to 00 (kernel mode). Then R6
was examined and closed. The original wvalue of PS<15:14> was
restored, and then the program was continued using the P command.

5.3.4.3 Floating Point Accumulators - The floating point
accumulators cannot be accessed from console ODT. Only floating
point instructions can access these registers.

5.3.5 Entering Octal Digits - When the wuser 1is specifying an
address, console ODT will use the last eight octal digits if more
than eight have been entered. When the user is specifying data,
console ODT will use the last six octal digits if more than six
have been entered. The user need not enter leading 0s for either
address or data; console ODT forces 0Os as the default. If an odd
address is entered, console ODT responds to the error by printing
?<CR><LF>@.

5.3.6 ODT Timeout - If the user specifies a nonexistent address
or causes a parity error, console ODT responds to the error by

printing ?<CR><LF>e@.

5.3.7 1Invalid Characters - Console ODT will recognize upper- or
lowercase characters as commands. Any character that console ODT
does not recognize during a particular sequence is echved (except
for ASCII characters in the range 0 - 17 (octal)), and console ODT
prints ?<CR><LF>@.

5-19

S.4 DCJ11 PIPELINE PROCESSING

The DCJ11 gets much of its performance from its prefetch and
predecode mechanisms. The primary benefit of prefetch and
predecode is that memory references are overlapped with internal
operations, and the need for explicit instruction fetch and decode
cycles is minimized. The prefetch and predecode operations are
performed automatically by the DCJ1ll chip and cannot be altered by
the user.

A primary function of the prefetch mechanism 1is to €£ill four
registers with information and replenish theé registers as
required. These four registers, the virtual program counter
(VPC), the physical program counter (PPC), the prefetch buffer
(PB), and the instruction register (IR) are collectively referred
.to as the prefetch pipeline. The contents of registers in the
beginning of the pipeline are used to determine the contents of
registers further down the pipeline. When the pipeline is filled,
the prefetch mechanism is said to be 1in steady state. Four
microcycles are required to fill an empty pipeline. Figure 5-11
illustrates the process of filling the pipeline.

Microcycle 1 Microcycle 2 Microcycle 3 Microcycle 4

VPC <-- PC PPC <-- MMU(VPC) PB <-- M[PPC] IR <-- PB
VPC <-= VPC + 2 PPC <-- MMU(VPC) PB <=-- M[PPC]
VPC <-- VPC + 2 PPC <-- MMU(VPC)
VPC <-- VPC + 2

PC <== PC + 2
MMR2 <-- PC

Figure 5-11 Pipeline Filling Process

In microcycle 1, the VPC is is simply set to the same value as the
PC. In microcycle 2, the VPC is sent through the MMU and the
resulting physical address is loaded into the PPC. The VPC is
then incremented by 2. At this point we have a valid VPC and PPC
and the pipeline is said ¢to be synchronized. Sometimes while
executing a macroinstruction, the pipeline is synchronized but not
filled. 1In that case, only microcycles 3 and 4 need be performed
for the next macroinstruction.

In microcycle 3, the word in memory addressed by the PPC is
fetched 1into the PB. The PPC 1is updated with the relocated
(mapped) VPC and the VPC is incremented again. In microcycle 4,
the PB is sent to the IR and is decoded as the next
macroinstruction (note that the DCJ1l asserts PDRC at this time). .
The new contents of the PB are fetched from the memory location
referenced by the PPC. The PPC 1is again wupdated with the
relocated (mapped) VPC and the VPC is updated (incremented) once
again. Also during microcycle 4, the original PC is loaded into
MMR2 (if MMRO<15:13> = 000) and is incremented by 2.

In steady state (i.e., when microcycle 4 1is complete), the IR
contains the macroinstruction being executed, the PB contains the
data from the memory location pointed to by the PC, the PPC
contains the physical address of the next word to be prefetched,

5-20

and the VPC contains the incremented value of the PC.

Once in steady state, a stream of macroinstructions that operate
only on registers may be executed at the rate of one per
microcycle (i.e., microcycle 4). While one instruction 1is being
executed, the next one is being decoded, and the following one is
being prefetched into the PB. As 1illustrated in Figure 5-11
during microcycle 4: the contents of the prefetch buffer are
loaded into the IR, the word addressed by the PPC is 1loaded 1into
the PB, the VPC is relocated and loaded into the PPC, and the VPC
is incremented by 2. This maintains the steady state, allowing
the next macroinstruction to be executed in the next microcycle.
Note also that the DCJ1l bus is kept busy 100% of the time.

The instructions that operate on immediate data and a register
also make maximum use of the prefetch mechanism. At steady state,
a stream of these macroinstructions execute in two microcycles
(microcycles 3 and 4). During microcycle 3, the data in the PB is
moved to a scratch register. During microcycle 4, the operation
is performed. In both cycles, the steady state of the prefetch
mechanism is maintained by prefetching the next instruction stream
word. The DCJ11l bus is again kept busy 100% of the time.

The prefetch pipeline is refilled after a power~-up sequence or if
a prefetch fault occurs. Prefetch faults occur when the PS, CCR,
PC, or any of the memory management registers are written. A
prefetch fault invalidates only the PB, This means that the
pipeline remains synchronized and can be refilled in two
microcycles. -

5.4.1 Pipeline Plow Example - Consider the following example
program:

Virtual Symbolic Octal

‘Address Representation Code
1000 MOV R2,R3 010203
1002 BIS #1,R3 052703
000001
1004 ADD R1,R3 060105
1006 CLR RO . 005000
1012 ADD R3,RO 060300

The flow of information through the pipeline occurs as shown in

Table 5-3 Pipeline Flow

Pipeline

Register Microcycle
n ‘ n+l n+2 n+3 n+4 n+5
PC 1002 1004 1006 1010 1012 1014
IR MOV BIS BIS ADD CLR ADD
(010203) (052703) (052703) (060105) (005000) (060300)
PB BIS 000001 ADD CLR ADD *
(052703) (060105) (005000) (060300)

PPC MMU (1004) MMU (1006) MMU (1010) MMU(1012) MMU(1014) MMU(1016)
VPC 1006 1010 1012 1014 1016 1020

* Tnstruction at location 1014

Note that the example starts at microcycle n, by which time the
prefetch pipeline has been filled (i.e., the pipeline is in steady
state). All the instructions in the example execute in one
microcycle except the BIS instruction, which executes in two

microcycles.

5-22

. CHAPTER 6
ADDRESSING MODES AND BASE INSTRUCTION SET

6.1 INTRODUCTION

-

The first part of this chapter is divided into six major sections:

o0 Single-Operand Addressing -- One part of the instruction word
specifies the registers; the other part provides information
for locating the operand.

o Double-Operahd Addressing -- One part of the instruction word
specifies the registers; the remaining parts provide
information for locating two operands.

o Direct Addressing =-- The operand is the content of the
selected register. '

0 Deferred (Indirect) Addressing -- The contents of the selected
register is the address of the operand.

o Use of the PC as a General-Purpose Register -- The PC 1is
different from other general-purpose registers in one
important respect. Whenever the processor retrieves an
instruction, it automatically advances the PC by 2. By
combining this automatic advancement of the PC with four of
the basic addressing modes, we produce the four special PC
modes -- immediate, absolute, relative, and relative-deferred.

0 Use of the Stack Pointer as a General-Purpose Register --
General-purpose registers can be used for stack operations.

The second part of this chapter describes each of the instructions
in the DCJ11l instruction set.

6.2 ADDRESSING MODES
Data stored in memory must be accessed and manipulated. Data
handling is specified by a DCJ1l instruction (MOV, ADD, etc.),
which usually specifies the:

o Function to be performed (operation code).

o0 General-purpose register to be used when locating the source
operand, and/or destination operand (where required).

o0 Addressing mode, which specifies how the selected registers
are to be used. :

A large portion of the data handled by a computer 1is structured

6-1

(in character strings, arrays, lists, etc.). The DCJ11l addressing
modes provide for efficient and flexible handling of structured
data. .

A general-purpose register may be used with an instruction in any
of the following ways.

1. As an accumulator -- The data to be manipulated resides in the
register.

2. As a pointer -- The contents of the register is the address of
an operand, rather than the operand itself. .

3. As a pointer that automatically steps through memory locations
- Automatically stepping forward through consecutive
locations is known as autoincrement addressing; automatically
stepping backwards 1is known as autodecrement addressing.
These modes are particularly useful for processing tabular or

array data.

4. As an index register -- In this instance, the contents of the
register and the word following the instruction are summed to
produce the address of the operand. This allows easy access
to variable entries in a list.

An important DCJ1l feature, which should be considered with the
addressing modes, is the register arrangement.

o Two sets of six general-purpose registers (RO--RS and
RO“==R57)

o A hardware stack pointer (SP) register (R6) for each processor
mode (kernel, supervisor, user)

o 'A program counter (PC) register (R7)

Registers R0O--R5 and R0“--R5° are not dedicated to any specific
function; their use 1is determined by the instruction that is
decoded.

o They can be used for operand storage. For example, the
contents of ¢two registers can be added and stored in another

register.

o They can contain the address of an operand or serve as
pointers to the address of an operand.

o They can be wused for the autoincrement or autodecrement
features.

o They can be used as index registers for convenient data and
program access.

The DCJ1l also has instruction addressing mode combinations that
facilitate temporary data storage structures. These can be used
for convenient handling of data that must be accessed frequently.
This 1is known as stack manipulation. The register that keeps
track of stack manipulation is known as the stack pointer (SP).

6-2

Any register can be used as a stack pointer under program control;
however, certain instructions associated with subroutine linkage
and interrupt service automatically use register R6 as a "hardware
stack pointer." For this reason, R6 is frequently referred to as
the SP.

o The stack pointer (SP) keeps track of the latest entry on the
stack. i

o The stack pointer moves down as items are added to the stack
and moves up as items are removed. Therefore, the stack
pointer always points to the top of the stack.

o The hardware stack is used during trap or interrupt handling
to store information, allowing an orderly return to the
interrupted program.

Register R7 is used by the processor as its program counter (PC).
It 1is recommended that R7 not be used as a stack pointer or
accumulator. Whenever an instruction is fetched from memory, the
program counter is automatically incremented by two to point to
the next instruction word.

6.2.1 Single-Operand Addressing - The instruction format for all
single-operand instructions (such as CLR, INC, TST) is shown in
Figure 6-1.

15 06 05 04 03 02 00
T T Y T T T T T T - Y Y T Y
MODE Rn
I g i Il S) " 1 1 n I
\ A J
OP CODE DESTINATION ADDRESS

MR 8458

Figure 6-1 Single-Operand Addressing

Bits <15:6> specify the operation code that defines the type of
instruction to be executed.

Bits <5:0> form a 6-bit field called the destination address
field. The destination address field consists of two subfields:

o Bits <5:3> specify the destination mode. Bit 3 is set to
indicate deferred (indirect) addressing.

o Bits <2:0> specify which of the 8 general-purpose registers is
to be referenced by this instruction word.

6.2.2 Double-Operand Addressing - Operations that imply two
operands (such as ADD, SUB, MOV, and CMP) are handled by
instructions that specify two addresses. The first operand is
called the source operand; the second is called the destination
operand. Bit assignments in the source and destination address
fields may specify different modes and different registers. The
instruction format for the double operand instruction is shown in

6-3

Figure 6-2.

15

12

L)

L]

OP COOE

e & { n ho " 1 1

SOURCE ADDRESS DESTINATION ADDRESS

Figure 6-2 Double-Operand Addressing K

The source address field is used to select the source operand (the
first operand). The destination is used similarly, and locates
the second operand and the result. For example, "the instruction
ADD A, B adds the contents (source operand) of location A to the
contents (destination operand) of location B. After execution, B
will contain the result of the addition and the contents of A will
be unchanged.

Examples in this paragraph and the rest of the chapter use the

following sample DCJ1ll instructions. (A complete listing of the
DCJ11l instructions appears in Paragraph 6.3.)
Mnemonic Description Octal Code
CLR Clear. (Zero the specified destination.) 0050DD
CLRB Clear byte. (Zero the byte in the specified 1050DD
destination.)
INC Increment. (Add one to contents of the 0052DD
destination.)
INCB Increment byte. (Add one to the contents of 1052DD
the destination byte.)
COM Complement. (Replace the contents of the 0051DD
destination by its logical complement;
each 0 bit is set and each one bit is
cleared.)
COMB Complement byte. (Replace the contents of 1051DD
the destination byte by its logical
complement; each 0 bit is set and each
1l bit is cleared.)
ADD Add. (Add the source operand to the 06SSDD
destination operand and store the result
at the destination address.)
DD = destination field (six bits)

SS = source field (six bits)
() = contents of

6.2.3 Direct Addressing - The following summarizes the four basic
modes used with direct addressing.

Direct Modes (Figures 6-3 to 6-6)

Assembler
Mode Name Syntax Function
0 Register Rn Register contains operand.
INSTRUCTION COPERAND

LR YT

Figure 6-3 Mode (Register

: Assembler
Mode Name Syntax Function
2 Autoincrement (Rn)+ Register is used as a pointer
to sequential data and then
incremented.
INSTRUCTION ADDRESS OPERAND

+2 FOR WORD,
+1 FOR BYTE

MRA.5461

Figure 6-4 Mode 2 Autoincrement

Assembler
Mode Name Syntax Function
4 Autodecrement = (Rn) Register is decremented and
then used as a pointer.
INSTRUCTION - ADDRESS -2 FOR WORD o OPERAND
-1 FORBYTE

MR 5462

Figure 6-5 Mode 4 Autodecrement

: Assembler
Mode Name Syntax Function
6 Index X (Rn) Value X is added to (Rn) to

produce address of operand.
Neither X nor (Rn) is modified.

INSTRUCTION ADDRESS
_L,;@— orenanD
X

MR 5463

Figure 6-6 Mode 6 Index

6-5

6.2.3.1 Register Mode - With register mode any of the general
registers may be used as simple accumulators, with the operand
contained in the selected register. Since they are hardware
registers (within the processor), the general registers operate at
high speeds and provide speed advantages when used for operating
on frequently accessed variables. The assembler interprets and
assembles instructions of the form OPR Rn as register mode
operations. Rn represents a general register name or number and
OPR is used to represent a general instruction mnemonic.
Assembler syntax requires that a general register be defined as
follows.

RO = %0 (% sign indicates register definition)
Rl = 81
R2 = %2, etc.

Registers are typically referred to by name as RO, Rl, R2, R3, R4,
R5, R6, and R7. However, R6 and R7 are also referred to as SP and
PC, respectively.
OPR Rn
Register Mode Examples (Figures 6-7 to 6-9)
1. Symbolic Octal Code Instruction Name

INC R3 005203 Increment

Operation: Add one to the contents of general-purpose register
R3'

15 06 05 04 03 02 00
T T T T T L Ll ¥ T T j‘ L T
0 0 0 0 1 0 1 0 1 0 0 0 : 0 0 1 1 — SELECT
, \ A N . 1 H A o | REGISTER
- A - _—
} I
OP CODE (INC(0052)) DESTINATION FIELD |
I
|
RO !
|
R1 |
|
R2
|
R3 o
R4
RS
R6 (SP)
R7 (PC)
Figure 6~7 1INC R3 Increment MA-5467
2. Symbolic Octal Code Instruction Name
ADD R2, R4 060204 Add

Operation: Add the contents of R2 to the contents of R4.

6-6

BEFORE AFTER

R2 000002 R2 000002

R4 000004 R4 000006

MR 5468

Figure 6-8 ADD R2,R4 Add
3. Symbolic Octal Code Instruction Name

COMB R4 105104 Complement byte
Operation: 1“s complement bits <7:0> (byte) in R4. (When general
registers are used, byte instructions operate only on bits <7:0>;
i.e., byte 0 of the register.)
BEFORE AFTER

R4 022222 R4 022155

MA-5469

Figure 6-9 COMB R4 Complement Byte

6.2.3.2 Autoincrement Mode [OPR (Rn)+] - This mode (mode 2)
provides for automatic stepping of a pointer through sequential
elements of a table of operands. It assumes the contents of the
selected general-purpose register to be the address of the
operand. Contents of registers are stepped (by one for byte
instructions, by two for word instructions, always hy two for R6
and R7) to address the next sequential location. The
autoincrement mode 1is especially useful for array processing and
stack processing. It will access an element of a table and then
step the pointer to address the next operand 1in the table.
Although most useful for table handling, this mode 1is completely
general and may be used for a variety of purposes.

OPR (Rn)+

Autoincrement Mode Examples (Figures 6-10 to 6-12)

1. Symbolic Octal Code Instruction Name
CLR (RS5)+ 005025 Clear

Operation: Use contents of R5 as the address of the operand.
Clear selected operand and then increment the contents of R5 by

two. BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE ~ REGISTER
20000 | 005025 R5 | 030000 20000 | 005025 R5 030002
[J
30000 LARIART 30000 000000

MR.8464

Figure 6-10 CLR (R5)+ Clear
2. Symbolic Octal Code Instruction Name

CLRB (R5)+ 105025 Clear byte
6-7

Operation: Use contents of R5 as the address of the operand.
Clear selected byte operand and then increment the contents of RS

by one.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 | 105025 RS | 030000 20000 | 105025 R5 | 030001

]
Y
T

30000 | 111 | 116 30000 | 111 | 000
30002 ' 30002 :

MR 5465

Figure 6-11 CLRB (RS5)+ Clear Byte
3. Symbolic Octal Code Instruction Name
ADD (R2)+,R4 062204 Add
Operation: The contents of R2 are used as the address of the

operand, which 1is added to the contents of R4. R2 is then
incremented by two.

BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACES REGISTERS
10000 062204 R2 100002 10000 062204 R2 100004
J
R4 010000 R4 020000
100002 010000 100002 010000

MR 5470

Figure 6-12 ADD (R2)+,R4 Add

6.2.3.3 Autodecrement Mode [OPR-(Rn)] - This mode (mode 4) |is
useful for processing data in a list in reverse direction. The
contents of the selected general-purpose register are decremented
(by one for byte instructions, by two for word instructions) and
then used as the address of the operand. The choice of
postincrement, predecrement features for the DCJ1ll were not
arbitrary decisions, but were intended = to facilitate
hardware/software stack operations.

OPR- (Rn)

Autodecrement Mode Examples (Figures 6-13 to 6-15)

1. Symbolic Octal Code Instruction Name
INC - (RO) 005240 Increment

Operation: The contents of RO are decremented by two and used as
the address of the operand. The operand is incremented by one.

6-8

BEFORE AFTER

ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER
1000 005240 RO 017776 1000 005240 RO 017774
|
17774 000000 17774 000001

MR 5466

Figure 6-13 INC -(R0O) Increment
2.. Symbolic Octal Code Instruction Name
INCB - (RO) 105240 Increment byte

Operation: The contents of RO are decremented by one and then
used as the address of the operand. The operand byte is increased

by one. BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1000 105240 RO 017776 1000 105240 RO 017775
]
LA j v
17774 | 000 | 000 17774 { 001 | 000
17776 ; 17776 ‘!
Figure 6-14 1INCB - (R0O) Increment Byte e
3. Symbolic Octal Code Instruction Name
ADD -(R3),RO 064300 ‘Add

Operation: The contents of R3 are decremented by ¢two and then
used as a pointer to an operand (source), which is added to the
contents of RO (destination operand).

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
10020 | 064300 RO | 000020 10020 | 064300 RO | 0000070
RI | 077776 R3| 077774
]
77774 | 000050 77774 | 000050
77776 77776
Figure 6-15 ADD -(R3),R0 Add uesanz

6.2.3.4 1Index Mode [OPR X(Rn)] - In this mode (mode 6) the
contents of the selected general-purpose register, and an index
word following the instruction word, are summed to form the
address of the operand. The contents of the selected register may
be used as a base for calculating a series of addresses, thus
allowing random access to elements of data structures. The
selected register can then be modified by program to access data
in the table. 1Index addressing instructions are of the form OPR

6--9

X (Rn), where X is the indexed word located in the memory
following the instruction word and Rn 1is the
general-purpose register.

OPR X (Rn)

Index Mode Examples (Figures 6-16 to 6-18)

1. Symbolic Octal Code Instruction Name
CLR 200 (R4) 005064 Clear
000200

location
selected

Operation: The address of the operand is determined by adding 200
to the contents of R4. The operand location is then cleared.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 005064 R4 [001000 J 1020 005064 A4 001000
1022 000200 1022 000200
1024 1000 1024

+200

7260

v

1200 1777177 1200 000000
1202

CLEYIH

Figure 6-16 CLR 200(R4) Clear

2. Symbolic Octal Code Instruction Name
COMB 200 (R1) 105161 Complement byte
000200

Operation: The contents of a location, which are determined by
adding 200 to the contents of Rl, are 1°s complemented (i.e.,

logically complemented).

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 105161 R l 0172777 I 1020 105161} RI
1022 000200 1022 000200
017277
+200
620177
v s
20176 on | ¢oo 20176 166 | 000
20200 ! 20200 A
H

LY AL

Figure 6-17 COMB 200 (Rl) Complement Byte

3. Symbolic Octal Code Instruction Name
ADD 30(R2),20(RS5) 066265 Add
000030
000020

Operation: The contents of a location, which are determined by

6-10

adding 30 to the contents of R2, are added to the contents of a
location that is determined by adding 20 to the contents of RS5.
The result is stored at the destination address, that is, 20 (RS5) .

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 066265 R2 001100 1020 066265 R2 001100
1022 000030 1022 000030
1024 000020 RS 002000 1024 000020 RS 002000
1130 000001 1130 000001
2020 000001 2020 000002
1100 2000
+30 +20
1130 2020

MR 5475

Figure 6-18 ADD 30(R2) ,20(R5) Add

6.2.4 Deferred (Indirect) Addressing - The four basic modes may
also be wused with deferred addressing. Whereas in register mode
the operand 1is the contents of the selected register, in
register-deferred mode the contents of the selected register is
the address of the operand.

In the three other deferred modes, the contents of the register
select the address of the operand rather than the operand itself.
These modes are therefore used when a table consists of addresses
rather than operands. The assembler syntax for indicating
deferred addressing is @ [or () when this is not ambiguous]. The
following summarizes the deferred versions of the basic modes.

Deferred Modes (Figures 6-19 to 6-22)

Assembler
Mode Name Syntax Function
1 Register-
deferred @Rn or (Rn) Register contains the address
of the operand.
INSTRUCTION ADDRESS OPERAND

MR 5476

Figure 6-19 Mode 1 Register-Deferred

Assembler
Mode Name v Syntax Function
3 Autoincrement-
Deferred ~ @(Rn)+ Register is first used as a

6-11

pointer to a word containing
the address of the operand and
then incremented (always by
two, even for byte
instructions).

1

ADDRESS ADDRESS OPERAND

INSTRUCTION

+2 P

MR.5477

Figure 6~20 Mode 3 Autoincrement-Deferred

Assembler
Mode Name Syntax Function
5 Autodecrement-
deferred @- (Rn) Register is decremented (always
by two, even for byte
instructions) and then used as
a pointer to a word containing
the address of the operand.
INSTRUCTION ADDRESS -2 ADDRESS OPERAND
t

MR 5478

Figure 6-21 Mode 5 Autodecrement-Deferred

Assembler
Mode Name Syntax Function
7 Index-deferred @X(Rn) Value X (stored in a word

following the instruction) and
(Rn) are added; the sum is used
as a pointer to a word
containing the address of the
operand. Neither X nor (Rn) is

modified.

INSTRUCTION ADDRESS
i::@—— ADDRESS OPERAND

MR-5478

Figure 6-22 Mode 7 Index-~Deferred

The following examples illustrate the deferred modes.
Register-Deferred Mode Example (Figure 6-23)
Symbolic Octal Code Instruction Name
CLR @RS 005015 Clear
6-12

Operation:

BEFORE
ADDRESS SPACE

AFTER

REGISTER ADDRESS SPACE

REGISTER

1677 RS 001700 1677 R5 001700

1700 000100 1700 000000

MA.5480

Figure 6-23 CLR @R5 Clear

Autoincrement-Deferred Mode Example (Mode 3) (Figure 6-24)

Symbolic Octal Code Instruction Name
INC @(R2)+ 005232 Increment
Operation: The contents of R2 are used as the address of

address of the operand. The operand is increased by one;
contents of R2 are incremented by two.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
R2 010300 R2 010302
1010 000025 1010 000026
1012 1012 \
10500 001010 10300 001010

LLE.2 A

Figure 6-24 1INC @(R2)+ Increment

Autodecrement-Deferred Mode Example (Mode 5) (Figure 6-25)

Symbolic Octal Code
COM @- (RO) 005150
Operation: The contents of RO are decremented by two and

u§ed as the address of the address of the operand.
1°s complemented (i.e., logically complemented).

10100

10102

10774

10776

BEFORE

ADDRESS SPACE

012345

RO

010100

Figure 6-25

REGISTER

010776

AFTER
ADDRESS SPACE REGISTER
10100 165432 RO 010774
10102
10774 010100
10776

COM @-(R0) Complement

6-13

MR 5482

The contents of location specified in R5 are cleared.

the
the

then
The operand is

Index-Deferred Mode Example (Mode 7) (Figure 6-26)

Symbolic Octal Code Instruction Name
ADD €1000(R2),R1 067201 Add
001000

Operation: 1000 and the contents of R2 are summed to produce the
address of the address of the source operand, the contents of
which are added to the contents of Rl; the result 1is stored in
R1.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 067201 A1 001234 1020 067201 R1 001236
1 1022 001000
1022 001000 R2 000100 R2 000100
1024 1024
1050 000002 1050 000002
1100 001050 1100 001050
1000
+100
1100

MR 3482

Figure 6-26 ADD @1000(R2),Rl Add

6.2.5 Use Of The PC As A General-Purpose Register - Although
register 7 1is a general-purpose register, it doubles in function
as the program counter for the DCJ1l. Whenever the processor uses
the program counter to acquire a word from memory, the program
counter is automatically incremented by two to contain the address
of the next word of the instruction being executed or the address
of the next instruction to be executed. (When the program uses
the PC to locate byte data, the PC is still incremented by two.)

The PC responds to all the standard DCJ1ll addressing modes.
However, with four of these modes the PC can provide advantages
for handling position-independent c¢ode and unstructured data.
When wutilizing the PC, these modes are termed immediate, absolute
(or immediate-deferred), relative, and relative-deferred. The
modes are summarized below.

Assembler
Mode Name Syntax Function
2 Immediate #n Operand follows instruction.
3 Absolute e#A Absolute address of operand

follows instruction.

6 Relative A Relative address (index value)
' follows the instruction.

7 Relative-
deferred ea Index value (stored in the word
after the instruction) is the
relative address for the
address of the operand.

When a standard program is available for different users, it |is
often helpful to be able to load it into different areas of memory
and run it in those areas. The DCJ1l can accomplish the
relocation of a program very efficiently through the use of
position-independent code (PIC), which is written by using the PC
addressing modes. If an instruction and its operands are moved in
such a way that the relative distance between them is not altered,
the same offset relative to the PC can be used in all positions in
memory. Thus, PIC usually references locations relative to the
current location.

The PC also greatly facilitates the handling of unstructured data.
This is particularly true of the immediate and relative modes.

6.2.5.1 Immediate Mode [OPR N,DD] - Immediate mode (mode 2) |is
equivalent in wuse to the autoincrement mode with the PC. It
provides time improvements for accessing constant operands by
including the constant in the memory 1location immediately
following the instruction word.

Q?R #n,DD

Immediate Mode Example (Figure 6-27)

Symbolic Octal Code Instruction Name
ADD #10,R0 062700 Add
000010

Operation: The value 10 is located in the second word of the
instruction and is added to the contents of RO. Just before this
instruction is fetched and executed, the PC points to the first
word of the instruction. The processor fetches the first word and
increments the PC by two. The source operand mode 1is 27
(autoincrement the PC). Thus, the PC is used as a pointer to
fetch the operand (the second word of the instruction) before it
is incremented by two to point to the next instruction.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 062700 \RO 000020 1020 062700 RO 000030
1022 000010 PC 1022 000010 PC

1024 1024 ’//f

Figure 6-27 ADD 410,R0 Add

MR.-5484

6-15

6.2.5.2 Absolute Addressing [OPR @ A] - This mode (mode 3) is the
equivalent of immediate-deferred or autoincrement-deferred using
the PC. The contents of the location €following the instruction
are taken as the address of the operand. Immediate data is

interpreted as an absolute address (i.e., an address that remains
constant no matter where in memory the assembled instruction is

executed).

OPR @#A
Absolute Mode Examples (Figures 6-28 and 6-29)

1. Symbolic Octal Code Instruction Name
CLR €%#1100 005037 Clear
001100
Operation: Clear the contents of location 1100.
BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
20 005037 20 005037
22 001100 PC 22 001100 PC
24
1100 177777 1100 000000
1102 1102

Figure 6-28 CLR @41100 Clear

2. Symbolic Octal Code Instruction Name
ADD @$2000,R3 063703 Add
002000
Operation: Add contents of location 2000 to R3.
BEFORE AFTER
‘ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20 063703 R3 000500 20 063703 R3 001000
22 002000 PC 22 002000 PC
24 24
2000 000300 2000 000300

LLE 2" 1]

Figure 6-29 ADD @4#2000 Add

6.2,5.3 Relative Addressing [OPR A Or OPR X(PC)] - This mode
(mode 6) is assembled as index mode using R7. The base of the
address calculation, which is stored in the second or third word
of the instruction, 1is not the address of the operand, but the
number which, when added to the (PC), becomes the address of the
operand. This mode 1is wuseful for writing position-independent
code since the location referenced is always fixed relative to the
PC. When instructions are to be relocated, the operand is moved
by the same amount.

OPR A or OPR X(PC) (X 1is the location of A relative ¢to the
instruction)

Relative Addressing Example (Figure 6-30)

Symbolic - Octal Code Instruction Name
INC A 005267 Increment
000054

Operation: To increment location A, contents of memory 1location
immediately following instruction word are added to (PC) to
produce address A. Contents of A are increased by one.

BEFORE " AFTER .
ADDRESS SPACE ADDRESS SPACE
1020 005267 \ 1020 0005267
1022 000054 PC 1022 000054
1024 1024 r—pPC
1026 1026
1100 000000 1024 1100 000001
$ _+54
1100

MRA-5487

Figure 6-30 INC A Increment

6.,2.5.4 Relative-Deferred Addressing [OPR @A Or OPR @&X(pC)] -
This mode (mode 7) is similar to relative mode, except that the
second word of the instruction, when added to the PC, contains the
address of the address of the operand, rather than the address of
the operand.

OPR @A or OPR @X(PC) (X is the location containing the address of
A, relative to the instruction)

Relative-Deferred Mode Example (Figure 6-31)

6-17

Symbolic Octal Code Instruction Name

CLR €A 005077 Clear
000020

Operation: Add second word of instruction to updated PC to
produce address of address of operand. Clear operand.

BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE -
{PC = 1020) 1020 005077 \ 1020 005077
1022 000020 PC 1022 000020 PC
(PC = 1022) 1024 1024 1024
+20 .
{ 1044
1044 010100 1044 010100
10100 100001 10100 000000

Figure 6-31 CLR @A Clear

€.2.6 Use Of The Stack Pointer As A General-Purpose Register -
The processor stack pointer (SP, register 6) is in most cases the
general register used for the stack operations related to program
nesting. Autodecrement with register 6 "pushes" data onto the
stack and autoincrement with register 6 "pops" data off the stack.
Since the S8SP is used by the processor for interrupt handling, it
has a special attribute: autoincrements and autodecrements are
always done in steps of two. Byte operations using the SP in this
way leave odd addresses unmodified.

6.3 INSTRUCTION SET

The rest of this chapter describes the DCJ11”“s instruction set.
Each instruction’s explanation includes the instruction’s
mnemonic, octal code, binary code, a diagram showing the format of
the instruction, a symbolic notation describing its execution and.
effect on the condition codes, a description, special comments,
and examples.

Each instruction”s explanation is headed by its mnemonic. When
the word instruction has a byte equivalent, the byte mnemonic also

appears.

The diagram that accompanies each instruction shows the octal op
code, binary op code, and bit assignments. [Note that in byte
instructions the most significant bit (bit 15) is always a one.]

Symbols:

() = contents of
8S or src = source address
DD or dst = destination address
loc = location
<-- = becomes
= "is popped from stack"

= "is pushed onto stack"

lr

/A = boolean AND
\V4 boolean OR
-v-

= exclusive OR

boolean not

REG or R = register

(s}
n

Byte

0 for word, 1 for byte

, = concatenated

6.3.1 1Instruction Formats - The following formats include all
instructions wused in the DCJ1l. Refer to individual instructions
for more detailed information.

1. Single-Operand Group: CLR, CLRB, COM, COMB, INC, INCB,
(Figure 6-32) DEC, DECB, NEG, NEGB, ADC, ADCB,
SBC, SBCB, TST, TSTB, ROR, RORB,
ROL, ROLB, ASR, ASRB, ASL, ASLB,
JMP, SWAB, MFPS, MTPS, SXT,
TSTSET, WRTLCK, XOR

OP CODE DD(SS)

3 I} n | i b A 1 1 ju- 4 -

MA 5191

Figure 6-32 Single-Operand Group

2. Double-Operand Group:

a. Group 1: BIT, BITB, BIC, BICB, BIS, BISB,

6-19

OP CODE

I | 1 L n n 1 1

MR 5192

Figure 6-33 Double-Operand Group 1l

b. Group 2: ASH, ASHC, DIV, MUL

(Figure 6-34)

15 09 08 06 05 00
1 1 R 1 1 i 1 1 1 i 1 1 T
OP CODE R . S§S
{ I S| ! L 1 Il 1 1 L { |
MR 11554
Figure 6-34 Double-Operand Group 2

Program Control Group:

a. Branch (all branch instructions) (Figure 6-35)

15 08 07 00

T T T T T T T L] A T A B ¥ T

OP CODE OFFSET

—— — y . i £ 4 1 1 N | "

MR 519

Figure 6-35 Program Control Group Branch

b. Jump tc Subroutine (JSR) (Figure 6-36)

MR 5194

Figure 6-36 Program Control Group JSR

c. Subroutine Return (RTS) (Figure 6-37)

MRA.5195

Figure 6-37 Program Control Group RTS

d. Traps (breakpoint, IOT, EMT, TRAP, BPT) (Figure 6-38)

15

00

T

OP CODE

-

L]

3

Figure 6-38

e.

Subtract 1 and Branch (if = 0)

(sOB)

Program Control Group Traps

MR.5196

(Figure 6-39)

MR.5197

Figure 6-39 Program Control Group Subtract

f. Mark (Figure 6-40)

19 06 05 00

0 0 6 4 NN

MR 11548

Figure 6-40 Mark

g. Call to Supervisor Mode (CSM) (Figure 6-41)

MR.11549

Figure 6-41 Call to Supervisor Mode

h. Set Priority Level (SPL) (Figure 6-42)
1 03 02 00
T T T T T T ¥ T 1 L L R]] L
0 o] 0 2 3 N
A L - -l 1 1 ! L 4 4 1 1 N 3

MR 11880

Figure 6-42 Set Priority Level

Operate Group: HALT, WAIT, RTI, RESET, RTT, NOP, MFPT

(Figure 6-43)

OP CODE

" L 4 i | L o 4 g 3 1 p L °1

MR $198

Figure 6-43 Operate Group

Condition Code Operators (all condition code instructions)
(Figure 6-44)

1 5 L) Al R T T T T T 1 06 05 04 03 02 01 00
0 0 0 2 4 on N 2 \" C
- - 4 1 e 4 I
MR 5199
Figure 6-44 Condition Group

Move To/From
Previous
Instruction/Data

Space Group: MTPD, MTPI, MFPD, MFPI

6-21

(Figure 6-45)

T T T T T T T T I T T T T T
DD(sS)

1 1 |)

MAR-1158)

Figure 6-45 Move To And From Previous Instruction/Data Space Group

6.3.2 Byte Instructions - The DCJ11l includes a full complement of

instructions that manipulate byte operands. Since all DCJ11}

addressing is byte-oriented, byte manipulation addressing
straightforward. Byte instructions with autoincrement

is
or

autodecrement direct addressing cause the specified register to be
modified by one to point to the next byte of data. Byte

operations in register mode access the low-order byte of

the

specified register. These provisions enable the DCJ1ll to perform
as either a word or byte processor. The numbering scheme for word

and byte addresses in memory is shown in Figure 6-46.

HIGH BYTE WORO OR BYTE
ADDRESS ADDRESS
002001 BYTE 1 BYTE O 002000
002003 BYTE 3 BYTE 2 002002

MR 5201

Figure 6-46 Byte Instructions

The most significant bit (bit 15) of the instruction word is
to indicate a byte instruction.

Example:
Symbolic Octal Code Instruction Name
CLR 0050DD Clear word
CLRB 1050DD Clear byte

6-22

set

6.3.3 List Of Instructlons - ‘The follow1ng is a list of the DCJ1ll
instruction set. ‘

SINGLE-OPERAND

General
Mnemonic Instruction Op Code

CLR (B) Clear destination B 050DD
COM (B) Complement destination W 051DD
INC (B) Increment destination B 052DD
DEC (B) Decrement destination B 053DD
NEG (B) Negate destination B 054DD
TST (B) Test destination g 057DD
WRTLCK Read/lock destination,

write/unlock RO into

destination 0073DD
TSTSET Test destination, set low bit 0072DD

Shift and Rotate

Mnemonic Instruction Op Code
ASR (B) Arithmetic shift right W 062DD
ASL (B) Arithmetic shift left W 063DD
ROR (B) Rotate right B 060DD
ROL (B) Rotate left g 061DD
SWAB Swap bytes 0003DD

Multiple-Precision

Mnemonic Instruction ' Op Code
ADC (B) Add carry W 055DD
SBC (B) Subtract carry B 056DD

SXT Sign extend 0067DD

PS Word Operators

Mnemonic Instruction Op Code
MFPS Move byte from PS 1067DD
MTPS Move byte to PS 1064SS

DOUBLE-OPERAND

General

Mnemonic Instruction Op Code
MOV (B) Move source to destination B 1SSDD
CMP (B) Compare source to destination B 2SSDD
ADD Add source to destination 06SSDD

6-23

SuUB
ASH
ASHC

MUL
DIV

Logical
Mnemonic
BIT (B)
BIC (B)

BIS (B)
XOR

Subtract source from destination
Arithmetic shift

Arithmetic shift combined
Multiply

Divide

Instruction

Bit test

Bit clear
Bit set
Exclusive OR

PROGRAM CONTROL

Mnemonic
Branch

BR

BNE
BEQ
BPL
BMI
BVC
BVS
BCC
BCS

Instruction

Branch (unconditional)

Branch if not equal (to zero)
Branch if equal (to zero)
Branch if plus
Branch if minus
Branch if overflow
Branch if overflow
Branch if carry is
Branch if carry is

is clear
is set
clear
set

Signed Conditional Branch

Mnemonic
BGE
BLT

BGT
BLE

Unsigned Conditional

Mnemonic

BHI
BLOS
BHIS
BLO

Instruction
Branch if greater than or equal
(to zero)
Branch if
Branch if
Branch if
(to zero)

less than (zero)
greater than (zero)
less than or equal

Branch

Instruction

Branch if higher

Branch if lower or same
Branch if higher or same
Branch if lower

16SSDD
072RSS
073RSS
070RSS
071RSS

Op Code

@ 3SSDD
B 4SSDD
Bl 5SSDD

074RDD

Op Code
or
Base Code

000400
001000
001400
100000
100400
102000
102400
103000
103400

Op Code
or
Base Code

002000

002400
003000
003400

Op Code
or
Base Code

101000
101400
103000
103400

Jump and Subroutine

Op Code
or
Mnemonic Instruction Base Code
JMP Jump 0001DD
JSR Jump to subroutine 004RDD
RTS Return from subroutine 00020R
SOB Subtract one and branch (if # 0) 077R00
Trap and Interrupt
Op Code
or
Mnemonic Instruction Base Code
EMT Emulator trap 104000 - 104377
TRAP Trap 104400 - 104777
BPT Breakpoint trap 000003
I0T Input/output trap 000004
RTI Return from interrupt 000002
RTT Return from interrupt 000006
Miscellaneous Program Control
Op Code
: or
Mnemonic Instruction Base Code
CSM Call to supervisor mode 0070DD
MARK Mark 006 4NN
SPL Set Priority Level 00023N
MISCELLANEOQUS
Op Code
or
Mnemonic Instruction Base Code
HALT Halt 000000
WAIT Wait for interrupt 000001
RESET Reset external bus 000005
MFPT Move processor type . 000007
MTPD Move to previous data space 1066SS
MTPI Move to previous instruction
space 0066SS
MFPD Move from previous data space 0065SS
MFPI Move from previous instruction
space 1065SS
CONDITION CODE OPERATORS
Op Code
or

Mnemonic Instruction

CLC Clear C
CLV Clear V
CL2 Clear 2
CLN Clear N

6-25

Base Code

000241
000242
000244
000250

CCC Clear all CC bits 000257

SEC Set C 000261
SEV Set V 000262
SEZ Set 2 000264
SEN Set N 000270
scCC Set all CC bits 000277
NOP No operation 000240

6.3.4 Single-Operand Instructions - The DCJ1l" instructions that
involve only one operand are described in the paragraphs that
follow.

6.3.4.1 General -

CLR
CLRB
CLEAR DESTINATION 805000
15 06 05 00
T Y T T 1 T T T T 1 T T T L]
on o 0 0 1 0] 1 0 0 0 [a]0]
. L 1 It 1 1 5
MA 11504
Operation: (@st) <-- 0

Condition Codes: N: cleared
Z: set
V: cleared
C: cleared

Description: Word: The contents of the specified destination
are replaced with 0s.
Byte: Same.

Example: CLR R1

Before After
(R1) = 177777 (R1) = 000000
NZVC NZVC
1111 0100
COM
COMB
COMPLEMERNT DST #05100
15 RS T T T T T il % %
01 O' 0 [1 0 1 0 0 1 oD ’
Operation: (dst) <-=- " (dst)

Condition Codes: N: set if most significant bit of result is set;

6-26

cleared otherwise ‘
2: set if result is 0; cleared otherwise
V: cleared _
C: set

Description: Word: Replaces the contents of the destination
address by their logical complement. (Each bit
equal to 0 is set and each bit equal to 1 is
cleared.)

Byte: Same.

Example: COM RO
Before After
(RO) = 013333 (RO) = 164444

NZVC NZVC
0110 1001
INC
INCB
INCREMENT DST n052DD
15 . . : . . - - 06 05 00
01 o} 0 0 1 0 1 0 1 0 [s]0]

Operation: (dst) <-- (dst) + 1 e

Condition Codes: N: set if result is < 0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: set if (dst) held 077777; cleared otherwise
C: not affected

Description:

Word: Add 1 to the contents of the destination.

Byte: Same.
Example: INC R2
Before After
(R2) = 000333 (R2) = 000334
NzVC NzVC
0000 0000
DEC
DECB
DECREMENT DST 05300
L ¥ N A T Y T T T 08 05 00
01 0 0 0 1 0 0 1 1 ' M :O ‘ l
Operation: (dst) <=-- (dst) -1

Condition Codes:

N: set if result is < 0;

6-27

cleared otherwise

2: set if result is 0; cleared otherwise
V: set if (dst) was 100000; cleared otherwise
C: not affected

Description: Word: Subtract 1 from the contents of the
destination.
Byte: Same.
Example: DEC RS
Before After
(RS5) = 000001 (RS) = 000000
NZVC NZVC
1000 0100
NEG
NEGB
NEGATE DST =054DD
15 , . - r ' . 06 05 00
0/1 0 0 0 1 o] 1 1 0 0 ' DD ' i
Operation: (dst) <-- - (dst)

Condition Codes:

N: set if result is < 0; cleared otherwise

Z: set if result is 0; cleared otherwise

V: set if result is 100000; cleared otherwise
C: cleared if result is 0; set otherwise

Description: Word: Replaces the contents of the destination
address by its 2°s complement. Note that 100000
is replaced by itself. (In 2°s complement
notation the most negative number has no
positive counterpart.)

Byte: Same.

Example: NEG RO
Before | After
(RO) = 000010 (RO) = 177770
NZVC NzVC
0000 1001

TST

TSTB

TEST DST *05700
15 i — 06 05 00
0N 0 0 0 1 0 1 1 1 1 . DD
Operation: (dst) <-- (dst)

6-28

Condition Codes:

Description:

N: set if result is < 0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: cleared

C: cleared

Word: Sets the condition codes N and Z according
to the contents of the destination address; the
contents of dst remain unmodified.

Byte: Same.

Example: TST Rl
Before Afte;
(R1) = 012340 (R1) = 012340
NzZVC NZVC
0011 0000
WRTLCK
READ/LOCK DESTINATION
WRITE/UNLOCK RO INTO DESTINATION 0073DD
15 06 05 00
1 1 1 T T 1 1 T T 1 T T I T
0 0 0 1 1 1 1 1 4] DD
[| { 1 1 1 L | } 1 | L))

Operation:

Condition Codes:

MR 11498

(dst) <-- (RO)

N: set if RO < O
Z: set if RO = 0
V: cleared

C: unchanged

Description: Writes contents of RO into destination using
bus lock. If mode is 0, traps to 10.
TSTSET
TEST DESTINATION AND SET LOW BIT 0072DD
15 06 05 Qoo
¥ T T 1 T T T T 1 1 T T 1 T
0 0 0 1 1 1 0 1 0 [»])
| L Nl | |] L 1 1 1 1 L 1 1
Operation: (RO) <-- (dst), (dst) <-- (dst) V 000001 (octal)

Condition Codes:

Description:

N: set if RO < O

Z: set if RO = O

V: cleared

C: gets contents of destination bit 0.

Reads/locks destination word and stores it
in RO. Writes/unlocks (R0O) V 1 into
destination. If mode is 0, traps to 10.

6-29

6.3.4.2 Shifts And Rotates - Scaling data by factors of ¢two |is
accomplished by the shift instructions:

ASR -- Arithmetic shift right
ASL -- Arithmetic shift left

The sign bit (bit 15) of the operand is reproduced in shifts to
the right. The low-order bit is filled with 0s in shifts to the

left. Bits shifted out of the C bit, as shown 1in the following
instructions, are lost.

The rotate instructions operate on the destination word and the C
bit as though they formed a 17-bit "circular buffer." These
instructions facilitate sequential bit testing and detailed bit
manipulation.

ASR
ASRB
ARITHMETIC SHIFT RIGHT 206200
15 06 05 . 00
O/TO‘O,O'IKIIOIOIIIO 'O'Dr '
Operation: (dst) <-- (dst) shifted one place to the right

Condition Codes: N: set if high-order bit of result is set
(result < 0); cleared otherwise
Z: set if result = 0; cleared otherwise
V: loaded from exclusive OR of N bit and C bit
(as set by the completion of the shift
operation)
C: loaded from low-order bit of destination

Description: Word: Shifts all bits of the destination right
one place. Bit 15 is reproduced. The C bit is
loaded from bit 0 of the destination, ASR
performs signed division of the destination by
2.

Byte: Same.

Example:

BYTE

l 15 00D ALIDRESS 08 l 07 EVEN ADDRESS 00
Y T T T T T Y \ g Y Y Y T T

b 4 il 1 L A | | 3 A 4 e

A 5200

ASL
ASLB

ARITHMETIC SHIFT LEFT 06300

15 06 05 00

v LS v T T T T ¥ ¥ L) L] T T T

MR 11510

Operation: (dst) <-- (dst) shifted one place to the left

Condition Codes: N: set if high-order bit of result is set
(result < 0); cleared otherwise
Z: set if result = 0; cleared otherwise
V: loaded with exclusive OR of N bit and C bit
(as set by the completion of the shift
operation) .
C: loaded with high-order bit of destination

Description: Word: Shifts all bits of the destination left
one place. Bit 0 is loaded with a 0. The C bit
of the status word is loaded from the most
significant bit of the destination. ASL
performs a signed multiplication of the
destination by 2 with overflow indication.

Byte: Same.

Example:
WORD
15) 00
T ~T Y - T T T T ~T T T T T - T
C o 0
’e i ke ' . p—
BYTE:
18 QDD ADDRESS 08 07 EVEN ADDRESS 00
v A Al T T T T g g o T L] T T L]
C po— je-0{ C jo—| -0
" d L 5 . n 4 n 1 L n e
MR 521
ROR
RORB
ROTATE RIGHT 060DD
15 06 05 00
T T T ! I T T ! i T ! T IR T
01 0 0 0 1 1 0 0 o] 0 DD
h : d | i ! ! | . 1] R !
MR 11500
Operation: (dst) <-- (dst) rotate right one place

Condition Codes: N: set if high-order bit of result is set

(result < 0); cleared otherwise

Z: set if all bits of result = 0; cleared
otherwise

V: loaded with exclusive OR of N bit and C bit
(as set by the completion of the rotate
operation)

C: loaded with low-order bit of destination

Description: Word: Rotates all bits of the destination right

one place. Bit 0 is loaded into the C bit and
the previous contents of the C bit are loaded

6-31

into bit 15 of the destination.
Byte: Same.

Example:
WORD:
|
15 00
T \J L A L) \J L Ll T 1 LS L4 L] Ll LJ
c |—o
PE— 4 . . I 1 3 g 1 1 1 { I
BYTE:
{ i | i
15 08 07 00
L4 L] T v T S RS LJ ¥ L] AJ Bl \])
oDOD EVEN
b . A I A i L g q Y 1 4 4
MR 5213
ROL
ROLB
ROTATE LEFT #0610D
15 06 05 00
L T T L4 T Ll T T T T L] Bl L] L
0/1 0 0 0 1 1 0 0 0 1 0D
| A 1 'l .
MR.11509
Operation: (dst) <=-- (dst) rotate left one place

Condition Codes: N: set if high-order bit of result word is set
' (result < 0); cleared otherwise
Z: set if all bits of result word = 0; cleared
otherwise
V: loaded with exclusive OR of the N bit and C
bit (as set by the completion of the rotate
operation)
C: loaded with high-order bit of destination

Description: Word: Rotates all bits of the destination left
one place. Bit 15 is loaded into the C bit of
the status word and the previous contents of the
C bit are loaded into bit 0 of the destination.

Byte: Same.

Example:

WORD:

15 DST : 00
1 T T T T Al] T i T T T L] T T
C jo—
f— "l — } | L 1 1 1 1 A 4 e
BYTE:
: 1 [i l
15 08 07 00
1 T L) v T Li T T T T L] T T 1
oDD EVEN
& ' L 1 A n I p _
MR.5215
SWAB
SWAP BYTES 0003DD
15 06 05 00
T T L e T T T ¥ T L4 T T AS A
0 0 0 0 0 0 (¢} 0 1 1 DD
L 1 1 1 1 [1 L 4 1 4 _ 4
MR-11508
Operation: byte 1/byte 0 <-- byte 0/byte 1

Condition Codes: N: set if high-order bit of low-order byte (bit
7) of result is set; cleared otherwise
Z: set if low-order byte of result = 0; cleared
otherwise _
V: cleared
C: cleared

Description: Exchanges high-order byte and low-order byte of
the destination word. (The destination must be a
word address.)

Example: SWAB R1
Before After
(R1) = 077777 (RL) = 177577
NZVC NZVC
1111 0000

6.3.4.3 Multiple-Precision - It 1is sometimes necessary to do
arithmetic operations on operands considered as multiple words or

bytes. The DCJ1ll makes special provision for such operations with
the instructions ADC (add carry) and SBC (subtract carry) and
their byte equivalents.

For example, two 16-bit words may be combined into a 32-bit
double-precision word and added or subtracted as shown below.

6-33

32-BIT WORD

it
r 1
3 16 15 0
OPERAND Al A0
e,
(')
31 16 15 0
OPERAND B1 80
31 16 15 0
RESULT
MR 5217
Example:

The addition of -1 and -1 could be performed as follows.

-1 = 37777717711

(RL) = 177777 (R2) = 177777 (R3) = 177777 (R4) =
177777

ADD R1,R2
ADC R3
ADD R4,R3

1. After (R1l) and (R2) are added, 1 is loaded into the C bit.
2. The ADC instruction adds the C bit to (R3); (R3) = 0.
3. The (R3) and (R4) are added.

4. The result is 37777777776, or -2.

ADC
ADCB
ADD CARRY «0550D
15 T Ll T T [}] 1 % 05 m
01 0 o} 0 1 o} 1 1 0 1 DD
MR-11878
Operation: (dst) <-- (dst) + (C bit)

Condition Codes: N: set if result < 0; cleared otherwise
Z: set if result = 0: cleared otherwise
V: set if (dst) was 077777 and (C) was 1;
cleared otherwise
C: set if (dst) was 177777 and (C) was 1;
cleared otherwise

6-34

Description: Word: Adds the contents of the C bit to the

: destination. This permits the carry from the
addition of the low-order words to be carried to
the high-order result.
Byte: Same.,

Example: Double-precision addition may be done with the
following instruction sequence.
ADD AQ0,BO ;add low-order parts
ADC Bl ;add carry into high-order
ADD Al,B1 ;add high-order parts
SBC
SBCB
SUBTRACT CARRY 805600
15 ' - - 06 05 v 00
on 0 0] 1 V] 1 1 1 0 DD
Operation: (dst) <-- (dst) - (C)

Condition Codes: N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if (dst) was 100000; cleared otherwise
C: set if (dst) was 0 and C was 1l; cleared
otherwise

Description: Word: Subtracts the contents of the C bit from
- the destination. This permits the carry from
the subtraction of two low-order words to be
subtracted from the high-order part of the
result.
Byte: Same.

Example: Double-precision subtraction is done by:

SUB AQ0,BO
SBC Bl
SUB Al,Bl

SXT
SIGN EXTEND 006700
15 06 05 00
T T T T R T 1 T T T T T A T
0 0 0 0 1 i 0 1 1 1 DD
St 1 | 1 1 A _—]
MR.11574
Operation: (dst) <-- 0 if N bit is clear

(dst) <-- 1 if N bit is set
Condition Codes: N: not affected

Z: set if N bit is clear

V: cleared

C: not affected

Description: If the condition code bit N is set, a -1 is

6-35

Example:

placed in the destination operand; if the N bit
1s clear, a 0 is placed in the destination
operand. This instruction is particularly
useful in multiple-precision arithmetic because
it permits the sign to be extended through
multiple words.,

SXT A

Before After

(A) = 012345 (AYy = 177777
NZVC NZVC

1000 1000

6.3.4.4 PS Word Operators -

MFPS

MOVE BYTE FROM PROCESSOR STATUS WORD : 106700

Operation:

Condition Codes:

Description:

MA. 11498

(dst) <-- PS
dst lower 8 bits

N: set if PS «<7> = 1; cleared otherwise
Z: set if PS <7:0> = 0; cleared otherwise
V: cleared

C: not affected

The 8-bit contents of the PS are moved to the
effective destination. If the destination is
mode 0, PS bit 7 is sign-extended through the
upper byte of the register. The destination
operand address is treated as a byte address.

Example: MFPS RO
Before After
RO [0] RO [000014]
PS [000014] ‘ PS [000000)
MTPS
MOVE BYTE TO PROCESSOR STATUS WORD 1064SS
15 ' . . r . . 08 07 00
1 0 0 1 1 0 1 0 0 ' ' 5;5 ' '
Operation: PS <-- (src)

6-36

Condition Codes: Set according to effective SRC operand bits
<3:0>

Description: The eight bits of the effective operand replace
the current contents of the lower byte of the
PS. The source operand address is treated as a
byte address. Note: The T bit (PS bit 4)
cannot be set with this instruction. The SRC
operand remains unchanged. This instruction can
be used to change the priority bits (PS bits .
<7:5>) in the PS only in kernel mode. If not in
kernel mode, PS bits <7:5> cannot be changed.

Example: MTPS R1
Before After
(Rl) = 000777 (R1) = 000777
(PS) = XXX000 (PS) = XXX357
NzZVC NzZVvC
0000 1111

6.3.5 Double-Operand Instructions - Double-operand instructions
save instructions (and time) since they eliminate the need for
"load" and "save" sequences such as those used in
accumulator-oriented machines.

6.3.5.1 General -

MOV
MOVB
MOVE SOURCE TO DESTINATION «15SDD
15 r ' - 12 1 06 05 00
01 0 0 1 sS N ' - ' D'D l)
Operation: (dst) <=- (src) ‘
Condition Codes: N: set if (src) < 0; cleared otherwise
2: set if (src) = 0; cleared otherwise
V: cleared
C: not affected
Description: Word: Moves the source operand to the

destination location. The previous contents of
the destination are lost. Contents of the
source address are not affected.

Byte: Same as MOV. The MOVB to a register
(unigue among byte instructions) extends the
most significant bit of the low-order byte (sign

6-37

extension). Otherwise, MOVB operates on bytes
exactly as MOV operates on words.

Example: MOV XXX,R1l :1loads register 1
with the contents of
memory location; XXX
represents a
programmer-defined
mnemonic used to
represent a memory
location

MOV #20,R0 :loads the number 20
. into register 0; #
indicates that the
value 20 is the
operand

MOV @4#20,-(R6) ;pushes the operand
contained in location
20 onto the stack

MOV (R6)+,@%#177566 ;pops the operand off
a stack and moves it
into memory location
177566 (terminal
print buffer)

MOV R1,R3 ;performs an
inter-register
transfer

MOVB @4177562,04177566 tmoves a character

from the terminal
keyboard buffer to
the terminal printer

buffer
CMP
CMPB
COMPARE SRC TO DST 828SDD
15 12 1" 06 0% 00
T Al T T T T R Ll T L] T T L4
0N 0 1 0 sS DD
e " 1 1 . 7 4 1 1 L L 4
MR.11562
Operation: (src) - (dst)

Condition Codes: N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow; that
is, operands were of opposite signs and the
sign of the destination was the same as the
sign of the result; cleared otherwise
C: cleared if there was a carry from the
result”’s most significant bit; set otherwise

6-38

Description:

ADD

ADD SRC TO DST

Compares the source and destination operands and
sets the condition codes, which may then be used
for arithmetic and logical conditional branches.
Both operands are not affected. The only action
is to set the condition codes. The compare is
customarily followed by a conditional branch
instruction. Note: Unlike the subtract
instruction, the order of operation is

(src) - (dst), not (dst) - (src).

il 1 1 T T AJ T Al] T

J 1 A " & Il q L L 4

Operation:

Condition Codes:

Description:

MR-11383

(dst) <-- (src) + (dst)

N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: set if there was arithmetic overflow as a
result of the operation; that is, both
operands were of the same sign and the result
was of the opposite sign; cleared otherwise

C: set if there was a carry from the result’s
most significant bit; cleared otherwise

Adds the source operand to the destination
operand and stores the result at the destination
address. The original contents of the
destination are lost. The contents of the
source are not affected. Two”s complement
addition is performed. Note: There is no
equivalent byte mode,

Example: Add to register: ADD 20,RO
Add to memory: ADD R1,XXX
Add register to register: ADD R1,R2
Add memory to memory: ADD @#17750,XXX
XXX is a programmer-defined mnemonic for a
memory location,
SUB
SUBTRACT SRC FROM DST : 16SSDD
15 § 12 1 , . . , 06 05 00
1 1 1 0 SS DD
Operation: (dst) <-- (dst) - (src)

6-39

Condition Codes:

set if result < 0; cleared otherwise

set if result = 0; cleared otherwise

set if there was arithmetic overflow as a
result of the operation; that is, if operands
were of opposite signs and the sign of the
source was the same as the sign of the
result; cleared otherwise

C: cleared if there was a carry from the
result’s most significant bit; set otherwise

<z

Description: Subtracts the source operand from the
destination operand and leaves the result at
the destination address. The original
contents of the destination are lost. The
contents of the source are not affected. 1In
double-precision arithmetic the C bit, when
set, indicates a "borrow." Note: There is no
equivalent byte mode.

Example: SUB R1,R2
Before After
(R1) = 011111 (R1) = 011111
(R2) = 012345 (R2) = 001234

NzVC NZVC
1111 0000
ASH
ARITHMETIC SHIFT 072RSS
15 09 08 06 05 00
T T T T T T T T T T T T
0 1 1 1 0 1 0 R SS
[« i ol 1 1 Il N 1 1 | S | Kl

Operation:

Condition Codes:

Description:

ASHC

MA. 11660

R <-- R shifted arithmetically NN places to
the right or left where NN = (src)

N: set if result < 0
Z: set if result = 0
V: set if sign of register changed during shift
C: loaded from last bit shifted out of register

The contents of the register are shifted right
or left the number of times specified by the
source operand. The shift count is taken as the
low-order six bits of the source operand. This
number ranges from -32 to +31. Negative is a
right shift and positive is a left shift.

6-40

ARITHMETIC SHIFT COMBINED 8073RSS
15 09 08 06 05 00

MA.11661

Operation: R, RV1<-- R, RV1
The double word is shifted NN places to the
right or left where NN = (src)

Condition Codes: N: set if result < 0
Z: set if result = 0
V: set if sign bit changes during shift
C: loaded with high-order bit when left shift;
loaded with low-order bit when right shift
(loaded with the last bit shifted out of
the 32-bit operand)

Description: The contents of the register and the register
ORed with 1 are treated as one 32-bit word.
R v 1l (bits<l5:0>) and R (bits<31l:16>) are
shifted right or left the number of times
specified by the shift count. The shift count
is taken as the low-order six bits of the
source operand. This number ranges from -32
to +31. Negative is a right shift and positive
is a left shift.

When the register chosen is an odd number, the
register and the register ORed with 1 are the
same. In this case, the right shift becomes a
rotate. The 16-bit word is rotated right the
number of times specified by the shift count.

MUL
MULTIPLY 070RSS
T o] 08 06 05 00
T T I 1 T i T i T I 1 T T
0 1 1 1 0 0 0 R SS
. I —
Operation: R, RV 1l <=-- R x (src)

Condition Codes: N: set if product < 0
Z: set if product = 0
V: cleared
C: set if the result is less than -2 ** 15
or greater than or equal to 2 **]15 - 1,

Description: The contents of the destination register and
source taken as 2°s complement integers are
multiplied and stored in the destination
register and the succeeding register, if R is
even. If R is odd, only the low-order product
is stored. Assembler syntax is: MUL S,R.

(Note that the actual destination is R, R v l,
which reduces to just R when R is odd.

6-41

DIV

071RSS

DIVIDE
15 09 08 06 05 00
T ¥ 1 R 1 1 T 1 l 1 Ll T
0 1 1 1 0 0 1 R S
L i { L 4
Operation: R, RV1 <«<-- R, RV 1/(src)
Condition Codes: N: set if quotient < 0
Z: set if quotient = 0
V: set if source = 0 or if the absolute value
of the register is larger than the absolute

Description:

value of the instruction in the source. (In
this case the instruction is aborted because
the quotient would exceed 15 bits,)

C: set if divide by zero is attempted.

The 32-bit 2°s complement integer in R and

R v 1 is divided by the source operand. The
quotient is left in R; the remainder is of the
same sign as the dividend. R must be even.

6.3.5.2 Logical - These instructions have the same format a
those in the double-operand arithmetic group. They permi
operations on data at the bit level.
BIT
BITB
BIT TEST «3S500

15 12 11 06 05 00

on 0 1 1 SS DD
Operation: (src) /\ (dst)

Condition Codes:

Description:

N: set if high-order bit of result set; cleared
otherwise

2: set if result = 0;

V: cleared

C: not affected

cleared otherwise

Performs logical AND comparison of the source
and destination operands and modifies condition
codes accordingly. Neither the source nor the
destination is affected. The BIT instruction
may be used to test whether any of the '
corresponding bits set in the destination are
also set in the source, or whether all
corresponding bits set in the destination are
clear in the source.

6-43

Example: BIT 430,R3 irtest bits three and four of R3
to see if both are off.
R3 = 0 000 000 000 011 000
Before After
NzZVC NzVC
1111 0001
'BIC
BICB
8IT CLEAR #4S5D0D
15 12 1 06 05 . . ' . ; 00
on 1 0 0 3 DD
Operation: (dst) <-- ~(src) /\ (dst)
Condition Codes: N: set if high-order bit of result set; cleared
otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: not affected
Description: Clears each bit in the destination that
corresponds to a set bit in the source. The
original contents of the destination are lost.
The contents of the source are not affected.
Example: BIC R3,R4
Before After
(R3) = 001234 (R3) = 001234
(R4) = 001111 (R4) = 000101
NzVC NZVC
1111 0001
Before: (R3). = 0 000 001 010 0l1l1 100
(R4) = 0 000 001 001 001 001
After: (R4) = 0 000 000 001 000 001
BIS
BISB
BITSET #5SSDD
15 12 11 . - 06 05 . . , . 00
[1 0 1 SS DD
Operation: (dst) <=-- (src) \/ (dst)

Condition Codes:

Description:

Example:

XOR

EXCLUSIVE OR

N: set if high-order bit of result set; cleared
otherwise '

Z: set if result = 0; cleared otherwise

V: cleared

C: not affected

- Performs an inclusive OR operation between the

source and destination operands and leaves the
result at the destination address; that is,
corresponding bits set in the source are set in
the destination. The contents of the
destination are lost.

BIS RO,R1

Before After

(RO) = 001234 (RO) = 001234
(R1) = 001111 (R1) = 001335
N2ZVC NZVC

0000 0000

Before: (RO) = 0 000 001 010 011l 100
(R1) 0 000 0601 001 001 001

After: (R1) 0 000 001 011 011 101

074RDD
09 08 06 05 00

A T T T T T T T T T

Operation:

Condition Codes:

Description:

Example:

MR 11869

(dst) <-- (reg) X4 (dst)

N: set if result < 0; cleared otherwise
2: set if result = 0; cleared otherwise
V: cleared

C: not affected

The exclusive OR of the register and destination
operand is stored in the destination address.
The contents of the register are not affected.
The assembler format is XOR R,D.

XOR RO,R2

Before After

(RO) = 001234 (RO) = 001234
{R2) = 001111 (R2) = 000325
NZVC ‘ NzZVC

1111 0001

0 000 001 010 011 100
0 000 001 001 001 001

Before: (RO)
(R2)

After: (R2) 0 000 000 011 010 101

6.3.6 Program Control 1Instructions - The following paragraphs
describe the DCJ1l instructions that affect program control.

6.3.6.1 Branches - These instructions cause a branch to a
location defined by the sum of the offset (multiplied by 2) and
the current contents of the program counter if:

1. The branch instruction is unconditional.

2. It is conditional and the conditions are met after
testing the condition codes (NzVC).

The offset is the number of words from the current contents of the
PC, forward or backward. Note that the current contents of the PC
point to the word following the branch instruction.

Although the offset expresses a byte address, the PC is expressed
in words. The offset 1is automatically multiplied by 2 and
sign-extended to express words before it is added to the PC. Bit
7 is the sign of the offset. If it is set, the offset is negative
and the branch is done in the backward direction. If it 1is not
set, the offset is positive and the branch is done in the forward
direction.

The 8-bit offset allows branching in the backward direction by 200
(octal) words (400 octal bytes) from the current PC, and in the
forward direction by 177 (octal) words (376 octal bytes) from the
current PC.

The DCJ11 assembler'typically handles address arithmetic for the
user and computes and assembles the proper offset field for branch
instructions in the form:

Bxx loc

Bxx is the branch instruction and loc is the address to which the
branch 1is to be made. The assembler gives an error indication in
the instruction if the permissible branch range is exceeded.
Branch instructions have no effect on condition codes.
Conditional branch instructions where the branch condition is not
met are treated as NOPs,

BR
BRANCH (UNCONDITIONAL) 000400 PLUS OFFSET

MR 5231

Operation: PC <== PC + (2 X offset)

Condition Codes: Not affected

Description: Provides a way of transferring program control
within a range of -128 to +127 words with a
one word instruction.
New PC address = updated PC + (2 X offset)

Updated PC = address of branch instruction +2

Example: With the branch instruction at location 500, the
following offsets apply.:

New PC Address Offset Code Offset (decimal)

474 375 -3
476 376 -2
500 377 -1
502 000 0
504 001 +1
506 002 +2
BNE
BRANCH IF NOT EQUAL (TO ZERO) 001000 PLUS OFFSET
15 08__ 07 00
4] 0 0 0 0 0 1 0 OFFSET . '
Operation: PC <-- PC + (2 X offset) if 2 = 0

Condition Codes: Not affected

Description: Tests the state of the 2 bit and causes a branch
if the 2 bit is clear. BNE is the complementary
operation of BEQ. It is used to test: (1)
inequality following a CMP, (2) that some bits
set in the destination were also in the source
following a BIT operation, and (3) generally,
that the result of the previous operation was

not 0.
Example: Branch to C if A ¢ B
CMP A,B ;compare A and B
BNE C ;branch if they are not equal

Branch to C if A + B # 0

ADD A,B sadd A to B
BNE C s;branch if the result is not
equal to 0

BEQ

BRANCH IF EQUAL (TO ZERO) 001400 PLUS OFFSET

08 07 . 00

T T T T T \ T T T T Y
0 0 1 1 OFFSET

] 1 i " 4 I 1 L n

Operation:
Condition Codes:

Description:

Example:

BPL
BRANCH IF PLUS

MR 5233

PC <=- PC + (2 X offset) if 2 =1
Not affected

Tests the state of the Z bit and causes a branch
if 2 is set., It is used to test: (1) equality
following a CMP operation, (2) that no bits set
in the destination were also set in the source
following a BIT operation, and (3) generally,
that the result of the previous operation was 0.

Branch to C if A B (A - B = 0)

CMP A,B ;compare A and B
BEQ C sbranch if they are equal

Branch to C if A + B =0

ADD A,B) ;add A to B

BEQ C sbranch if the result = 0

100000 PLUS OFFSET

08 07 00

T —T T hj T Y —T v T T RS

0 0 0 0 0 ' OFFSET

| 1 i n I) § A

Operation:
Condition Codes:

Description:

MR 5234

PC <-- PC + (2 X offset) if N =0
Not affected
Tests the staté of the N bit and causes a branch

if N is clear (positive result). BPL is the
complementary operation of BMI.

BMI
BRANCH IF MINUS 100400 PLUS OFFSET
15 08 07 00
T T LA T 1 1 T T L T L | T T
1 o] 0 0 0 0 0 1 OFFSET
- I b R G—{ 1 1) L 1
MR 52735
Operation: PC <== PC + (2 X offset) if N =1

Condition Codes:

Description:

Not affected

Tests the state of the N bit and causes a branch
if N is set. It is used to test the sign (most

6-47

significant bit) of the result of the previous

operation), branching if negative. BMI is the
complementary function of BPL.
BVC
BRANCH IF OVERFLOW IS CLEAR 102000 PLUS OFFSET
15 08 07 00
AJ =Y = A T T T \ Y T T T Y =T
1 0 0 0 0 1 0 0 OFFSET
n ol | 1 A 1 q . — 3§ £
MR.5236
Operation: PC <=~ PC + (2 X offset) ifV =0

Condition Codes:

Description:

BVS

BRANCH (F OVERFLOW !SSET

Not affected

Tests the state of the V bit and causes a branch
if the V bit is clear. BVC is complementary
operation to BVS.

102400 PLUS OFFSET
00

B

OFFSET

1 1

Operation:
Condition Codes:

Description:

BCC

BRANCH IF CARRY IS CLEAR

MR 5237

if v 1

PC <=-=~ PC + (2 X offset)
Not affected

Tests the state of the V bit (overflow) and
causes a branch if V is set. BVS is used to
detect arithmetic overflow in the previous
operation.

103000 PLUS OFFSET

08 07 00

T L] T 1

OFFSET
A

T

1 0

" § Y

1

Operation:
Condition Codes:

Description:

BCS

BRANCH IF CARRY ISSET

MR 5238

PC <== PC + (2 X offset) if C 0

Not affected

Tests the state of the C bit and causes a branch
if C is clear. BCC is the complementary

operation of BCS.

103400 PLUS OFFSET

00

T 1 1

OFFSET
4

A

MR 5239

Operation: PC <-- PC + (2 X offset) if C =1
Condition Codes: Not affected

Description: Tests the state of the C bit and causes a branch
if C is set. It is used to test for a carry in
the result of a previous operation.

6.3.6,2 B8igned Conditional Branches - Particular combinations of
the condition code bits are tested with the signed conditional
branches. These instructions are used to test the results of
instructions in which the operands were considered as signed (2°s
complement) values.

Note that the sense of signed comparisons differs from that of
unsigned comparisons in that in signed, 16-bit, 2°s complement
arithmetic the seguence of values is as follows.

largest : 0777717
positive 077776
000001
000000
177777
177776
smallest 100001
negative 100000
Whereas, in unsigned, 1l6-bit arithmetic, the sequence is

considered to be:

highest 177777
000002
000001
lowest 000000

BGE

BRANCH IF GREATER THAN OR EQUAL 002000 PLUS OFFSET
{TO ZERO) '
15 08 07 00
1 1 T o T Ll T | AJ v L] T T T
o o o o 1+ 0 0 OFFSET
L N n 1 N L n J 1 1 L 1 1
MR 5240
Operation: PC <-- PC + (2 X offset) if NAL V =0

Condition Codes:

Description:

Not affected

Causes a branch if N and V are either both clear
or both set. BGE is the complementary operation
of BLT. Thus, BGE will always cause a branch
when it follows an operation that caused
addition of two positive numbers. BGE will also
cause a branch on a 0 result.

BLT
BRANCH IF LESS THAN (ZERO) 002400 PLUS OFFSET
15 08 07 00
T L T Al T A T T T RS T 1 | 1
0 0 0 0 1 Q 1 OFFSET
L n | L " g s | . It " _—t
MR 5241
Operation: PC <==- PC + (2 x offset) if N3fL V =1

Condition Codes:

Description:

BGT

BRANCH IF GREATER THAN (ZERO)

Not affected

Causes a branch if the exclusive OR of the N and
V bits is one. Thus, BLT will always branch
following an operation that added two negative
numbers, even if overflow occurred. 1In
particular, BLT will always cause a branch if it
follows a CMP instruction operating on a
negative source and a positive destination (even
if overflow occurred). Further, BLT will never
cause a branch when it follows a CMP instruction
operating on a positive source and negative
destination. BLT will not cause a branch if the
result of the previous operation was 0 (without
overflow).

003000 PLUS OFFSET

OFFSET

4 Az 5 b " e { L { |

Operation:

Condition Codes:

Description:

MR 5242

PC <-- PC + (2 X offset) if 2 \/ (N \#£ V)
=0

Not affected

Operation of BGT is similar to BGE, except that
BGT will not cause a branch on a 0 result,

6-50

BLE

BRANCH IF LESS THAN OR EQUAL (TO ZERO)

003400 PLUS OFFSET
08 07 00

T T T L T T T B T R T

OFFSET

| i h b | A 1 - 2 i

Operation:

Condition Codes:

Description:

6.3.6.,3 Unsigned Conditional Branches - The unsigned

MR 5243

<== PC + (2 X offset) if 2 \/ (N 3. V)
1

PC
Not affected
Operation is similar to BLT, but in addition

will cause a branch if theé result of the
previous operation was 0.

conditional

branches provide a means for testing the result of comparison
operations in which the operands are considered as unsigned
values,
BHI
BRANCH IF HIGHER 101000 PLUS OFFSET
15 08 07 00
T T R T T T T =T T Y Y T ~Y T
1 0 0 0 0 0 1 0 OFFSET
_ L | i J— n) 1 4 L n n

Operation:
Condition Codes:

Description:

MR 5244

PC <-- PC + (2 X offset) if C =0 and 2 =0

Not affected

Causes a branch if the previous operation caused
neither a carry nor a 0 result. This will
happen in comparison (CMP) operations as long as
the source has a higher unsigned value than the
destination.

BLOS
BRANCH IF LOWER OR SAME 101400 PLUS OFFSET
15 08 07 00
T T T S T T T L L ¥ L v L] T
1 o 0o 0o 0 0o 1 1 OFFSET
= b i 1 A e 4 1) L e n
N . MR.B2a8
Operation: PC <-- PC + (2 X offset) if C\/ 2 =1

Condition Codes:

Description:

Not affected

Causes a branch if the previous operation caused
either a carry or a 0 result. BLOS is the
complementary operation of BHI. The branch will
occur in comparison operations as long as the
source is equal to or has a lower unsigned value
than the destination.

6-51

BHIS

BRANCH IF HIGHER OR SAME 103000 PLUS OFFSET

15 08 07 00
Y Y T T 1 T 1 T T L T L] B T
1 0 o] 0 0 1 1 0 OFFSET
I - 1 1 ol L A — A
‘MR 5246
Operation: PC <-- PC + (2 X offset) if C = 0

Condition Codes: Not affected

Description: ' BHIS is the same instruction as BCC. This
mnemonic is included for convenience caly.
BLO .
BRANCH IF LOWER 103400 PLUS OFFSET
15 08 07 00
T A4 T v T B T T L] T T T] T
1 0 0 0 o] 1 1 1 OFFSET
e n— 1 1 i 4 N 1 1 i _p e
MR 5247
Operation: PC <== PC + (2 X offset) if C =1

Condition Codes: Not affected

Description: BLO is the same instruction as BCS. This
mnemonic is included for convenience only.

6.3.6.4 Jump And Subroutine Instructions - The subroutine call in
the DCJ1l1 provides for automatic nesting of subroutines,
reentrancy, and multiple entry points. Subroutines may call other
subroutines (or indeed themselves) to any level of nesting without
making special provision for storage of return addresses at each
level of subroutine call. The subroutine calling mechanism does
not modify any fixed location in memory, and thus provides for
reentrancy. This allows one copy of a subroutine to be shared
among several interrupting processes.

JMP
JumP ‘ 000100
15 06 05 00
T T 1 T T T T T T T T T T T
0 0 0 0 0 0 0 0 0 1 oD
1 L b b 1 1 i AL 1
MR 1155%
Operation: PC <=-- (dst)

Condition Codes: WNot affected

Description: JMP provides more flexible program branching
than the branch instructions do. Control may be
transferred to any location in memory (no range
limitation) and can be accomplished with the
full flexibility of the addressing modes, with
the exception of register mode 0. Execution of

6-52

a jump with mode 0 will cause an "illegal
instruction" condition, and will cause the CPU
to trap to vector address four. (Program
control cannot be transferred to a register.)
Register-deferred mode is legal and will cause
program control to be transferred to the address
held in the specified register. Note that
instructions are word data and must therefore be
fetched from an even-numbered address.

Deferred-index mode JMP instructions permit
transfer of control to the address contained in

a selectable element of a table of dispatch
vectors.

Example: First:
JMP FIRST stransfers to FIRST
JMP @LIST stransfers to location
pointed to at LIST
List:
FIRST ;pointer to FIRST
JMP @ (SP)+ itransfer to location
pointed to by the top of
the stack, and remove the
pointer from the stack
JSR
JUMP TO SUBROUTINE 004RDD
15 , . . , . . 09 08 06 05 00
0 0 0 0 1 0 0 R DD
Operation: (tmp) <-- (dst) (tmp is an internal processor
register)
(SP) <-- reg (Push reg contents onto processor
stack)
reg <-- PC (PC holds location following JSR; this
address now put in reg)
PC <-- (dst) (PC now points to subroutine
destination)
Description: In execution of the JSR, the o0ld contents of the

specified register (the "linkage pointer") are
automatically pushed onto the processor stack
and new linkage information is placed in the
register. Thus, subroutines nested within
subroutines to any depth may all be called with

6-53

Example:

SBCALL:
SBCALL+4:

SBCALL+2+2M:
CONT:

SBR:

the same linkage register. There is no need
either to plan the maximum depth at which any
particular subroutine will be called or to
include instructions in each routine to save and
restore the linkage pointer. Further, since all
linkages are saved in a reentrant manner on the
processor stack, execution of a subroutine may
be interrupted. The same subroutine may be
reentered and executed by an interrupt service
routine. Execution of the initial subroutine
can then be resumed when other requests are
satisfied. This process (called "nesting") can
proceed to any level.

A subroutine called with a JSR reg,dst
instruction can access the arguments following
the call with either autoincrement addressing,
(reg) +, if arguments are accessed sequentially,
or by indexed addressing, X(reg), if accessed in
random order. These addressing modes may also
be deferred, @(reg)+ and @X(reg), if the
parameters are operand addresses rather than the
operands themselves.

JSR PC, dst is a special case of the DCJ1l
subroutine call suitable for subroutine calls
that transmit parameters through the general
registers. The SP and the PC are the only
registers that may be modified by this call.

Another special case of the JSR instruction is
JSR PC,@(SP) +, which exchanges the top element
of the processor stack with the contents of the
program counter. This instruction allows two
routines to swap program control and resume
operation from where they left off when they are
recalled. Such routines are called "coroutines.”

Return from a subroutine is done by the RTS
instruction. RTS reg loads the contents of reg
into the PC and pops the top element of the
processor stack into the specified register.

- RS R6 R7
JSR R5,SBR $1 n SBCALL
ARG 1
ARG 2
ARG M
Next Instruction #1 n CONT
MOV (R5)+,dst 1 SBCALL+4 n-2 SBR

MOV (RS5)+,dst 2

6-54

MOV (RS5)+,dst M SBCALL+2+2M
Other Instructions CONT

EXIT: RTS RS CONT n-2 EXIT
JSR R5, SBR
JEFORE. (PC] R? PC STACK
JSR PC, SBR
(SP) R6 n DATA O BEFORE: (PC) R7 PC ‘ STACK
RS #1 (SP) RP n DATA O
\FTER. R7 SBR AFTER: R7 S8R
DATA O DATA O
R6 n-2 21 R6 n-2 PC+2
MA.6280
RS PC+2
RTS
RETURN FROM SUBROUTINE 4 00020R
15 03 02 00
A T T T T 1 T T L4 T T T T
6 o o o 0o o0 o o 1 6 o o0 0 R
S ul. i 1 1 L
MA 11853
Operation: PC <-- (regq)

(reg) <-- (8P)

Description: Loads the contents of the register into PC and
pops the top element of the processor stack into
the specified register.

Return from a nonreentrant subroutine is
typically made through the same register that
was used in its call. Thus, a subroutine called
with a JSR PC, dst exits with a RTS PC and a
subroutine called with a JSR RS, dst, may pick
up parameters with addressing modes (RS5) +,
X(R5), or @X(R5) and finally exits, with an RTS
RS.

Example: RTS RS

6-55

RTS R5 STACK

BEFORE: (PC) R? SBR
DATAO
(SP) R6 n #1
R5 PC
AFTER: R? PC
Ré n+2 DATA O
RS #1
MR.5282
SOB
SUBTRACT ONE AND BRANCH (IF = 0) 077RNN
15 . . ., 09 08 06 05 00
0 ! 1 L L ! L R OFFSET ')
Operation: ~ (R) <=-- (R) - 1; if this result # 0, then PC
<-- PC - (2 x offset); if (R) = 0 then PC <--
PC
Condition Codes: Not affected
Description: The register is decremented. If the contents

does not equal 0, twice the offset is subtracted
from the PC (now pointing to the following
word). The offset is interpreted as a 6-bit
positive number. This instruction provides a
fast, efficient method of loop control. The
assembler syntax is SOB R,A where A is the
address to which transfer is to be made if the
decremented R is not equal to 0. Note: the SOB
instruction cannot be used to transfer control
in the forward direction.

6.3.6.5 Traps - Trap instructions provide for calls to emulators,
I/0 monitors, debugging packages, and user-defined interpreters.
A trap is effectively an interrupt generated by software. When a
trap occurs, the contents of the current program counter (PC) and
processor status word (PS) are pushed onto the processor stack and
replaced by the contents of a 2-word trap vector containing a new
PC and new PS. The return sequence from a trap involves executing
an RTI or RTT instruction, which restores the o0ld PC and old PS by

popping them from the stack. Trap instruction vectors are located
6-56

at permanently assigned fixed addresses.

EMT
EMULATOR TRAP 104000104377
L R . 0807 00
! 0 0 0 1 o o 0
Operation: (SP) <-- PS w5254
(SP) <-=- PC
PC <-- (30)
PS <-- (32)

Condition Codes:

Description:

BEFORE:

N: loaded from trap vector
2: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

All operation codes from 104000 to 104377 are
EMT instructions and may be used to transmit
information to the emulating routine (e.g.,
function to be performed). The trap vector for
EMT is at address 30. The new PC is taken from
the word at address 30; the new processor status
(PS) is taken from the word at address 32.

CAUTION: EMT is used frequently by DIGITAL
system software and is therefore not recommended
for general use.

PS PS1
PC PC1 STACK
se n DATA 1
AFTER: PS (32)
PC (30) DATA 1
PS1
SP n-4 PC1

MA.5265

TRAP

TRAP 104400104777
15 08 07 v A T Aj L A m
1 0 0 0 1 0 0 1
‘ ' ‘ MR -5256
Operation: (SP) <-- PS
(SP) <-- PC
PC <-- (34)
PS <-- (36)
Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector
Description: Operation codes from 104400 to 104777 are TRAP

instructions. TRAPs and EMTs are identical in
operation, except that the trap vector for TRAP
is at address 34.

NOTE: Since DIGITAL software makes frequent use
of EMT, the TRAP instruction is recommended for
general use,

BPT
BREAKPOINT TRAP 000003
15 r 00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
l AL] 1 1 3 g
Operation: (SP) <-- PS
(8P) <-- PC
PC <-- (14)
PS <-- (16)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Performs a trap sequence with a trap vector
address of 14. Used to call debugging aids.
The user is cautioned against employing code
000003 in programs run under these debugging
aids. (No information is transmitted in the low

byte.)
I0T
INPUT/QUTPUT TRAP 000004
15 00
T T T T Ry T Ll T L] v LS A L§ L) 1
0 ¢ 0 0 0 0 0 0 0 0 0 6 o0 1 0]
I 4 1 n 4 1 I 3 4 I § | S g Nl
. MR 5258
Operation: (SP) <-- PS
(SP) <-- PC

6-58

CPC <-- (20)
PS <-- (22)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Performs a trap sequence with a trap vector
address of 20. (No information is transmitted in
the low byte.)

RTI
RETURN FROM INTERRUPT ' 000002
15 00
T L4 T T 1 A i T L L) T v L 1 L)
0 0 0 0 0 0 0 0 0 0 0] 0 0 1 0
& 4 | ¢ 1 L n 4
Operation: PC <-=- (SP) Mneese
PS <-- (SP)

Condition Codes: N: loaded from processor stack
) Z: loaded from processor stack

V: loaded from processor stack

C: loaded from processor stack

Description: Used to exit from an interrupt or TRAP service
: ‘routine. The PC and PS are restored (popped)

from the processor stack. If the RTI sets the
T bit in the PS, a trace trap will occur prior
to executing the next instruction. When
executed in supervisor mode, the current and
previous mode bits in the restored PS cannot
be kernel. When executed in user mode, the
current and previous mode bits in the restored
PS can only be user. RTI cannot clear PS bit
11 if it was already set.

RTT
RETURN FROM TRAP 000006
15 00
L T A T T T T T ¥ L4 L L] R T aJ
4] 0 19} 0 0 V] 0 0 0 0 0 0 (4] 1] 0
L { 1 L 4 4 1 [\ i 1 I
MA.5260
Operation: PC <-- (SP)
PS <-- (SP)

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: Operation is the same as RTI except that it
’ inhibits a trace trap whereas RTI permits a
trace trap. If the new PS has the T bit set,

6-59

a trap will occur after execution of the first
instruction after RTT. When executed in
supervisor mode, the current and previous mode
bits in the restored PS cannot be kernel.

When executed in user mode, the current and
previous mode bits in the restored PS can only
be user. RTT cannot clear PS bit 11 if it was
already set.

6.3.6.6 Miscellaneous Program Control -

MARK
MARK 0064NN
18 06 05 00
T 1 T T T T T 1 T T T T T T
0 0 0 0 1 1 0 1 (¢} 0 NN
L i) 1 1 1 (- I 1 4 L))
MR- 11566
Operation: SP <=-- PC + 2 x NN
PC <-- RS

RS5 <-- (SP)+
NN = number of parameters

Condition Codes: N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: Used as part of the standard subroutine return
convention. MARK facilitates the stack clean-up
procedures involved in subroutine exit.
Assembler format is: MARK N.

Example: MOV RS5,-(SP) splace 0ld R5 on stack
MOV P1l,-(SP) ;place N parameters on
MOV P2,-(SP) sthe stack to be used

;there by the subroutine
MOV PN, - (SP)
MOV =MARKN,-(SP) ;place the instruction
;MARK N on the stack

MOV SP,R5 ;set up address at MARK N
;instruction
JSR PC,SUB ;jump to subroutine

At this point the stack is as follows:

OLD RS

P1

PN

MARK N

OLDPC

MR.118660

And the program is at the address SUB which
is the beginning of the subroutine.

6-60

SUB: - jexecution of the
;subroutine itself

RTS RS sthe return begins:
:this causes the contents
;0f RS to be placed in the
+PC which then results in
: the execution of the
;instruction MARK N. The
scontents of the old PC
;are placed in RS.

MARK N causes: (1) the stack pointer to be
adjusted to point to the old R5 value; (2) the
value now in RS5 (the old PC) to be placed in
the PC; and (3) contents of the old R5 to be
popped into R5 thus completing the return from
subroutine.

NOTE
If memory management is in use, the stack
must be mapped through both I and D space
to execute the MARK instruction.

SPL
SET PRIORITY LEVEL 00023N
15 03 02 00
1 T H T T t T T T T 1 T 1 L]
0 0 0 0 0 0 0 0 1 0] 1 1 N
1 i L] 1 | L { 1] { | " I
MR 11567
Operation: PS bits <7:5> <-- priority

(priority = N)

Condition Codes: N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: In kernel mode, the least significant
three bits of the instruction are loaded
into the processor status word (PS) bits
<7:5>, thus causing a changed priority.
The o0ld priority is lost. 1In user or
supervisor modes, SPL executes as a NOP.

Assembler syntax is: SPL N

CSM

CALL TO SUPERVISOR MODE v 0070D0
15 06 05 00
I 1 1 i 1 } i 1 1 I T i T !
[¢} 0 0 0 1 1 1 o] 0 0 DD
1 1 | | | I { { 1 .)

MR 11668

6-61

Operation: If MMR3 bit 3 = 1 and current
mode = kernel then
supervisor SP <-- current mode SP
temp<l5:4> <-- PS<15:4>
temp<3:0> <=-- 0
PS<13:12> <-- PS<15:14>
PS«<15:14> <-- 01
PS 4 <-- 0
- (SP) <=-- temp
-(SP) <~-- PC
- (SP) <=-- (dst)
PC <-- (10)
otherwise, traps to 10 in kernel mode.

: unaffected
unaffected
: unaffected
: unaffected

Condition Codes:

Description: CSM may be executed in user or supervisor
mode, but is an illegal instruction in kernel
mode. CSM copies the current stack pointer
(SP) to the supervisor mode, switches to
supervisor mode, stacks three words on the
supervisor stack (the PS with the condition
codes cleared, the PC, and the argument word
addressed by the operand), and sets the PC to
the contents of location 10 (in supervisor
space). The called program in supervisor
space may return to the calling program by
popping the argument word from the stack and
executing RTI. On return, the condition codes
are determined by the PS word on the stack.
Hence, the called program in supervisor space
may control the condition code values following
return.

6.3.6.7 Reserved Instruction Traps - These are caused by attempts
to execute instruction codes reserved for future processor
expansion (reserved instructions) or instructions with 1illegal
addressing modes (illegal instructions). Order codes not
corresponding to any of the .instructions described are considered
to be reserved instructions. JMP and JSR with register mode
destinations are illegal instructions; they ¢trap to wvirtual
address 4 in kernel data space. Reserved instructions trap to
vector address 10 in kernel data space.

6.3.6.8 Trace Trap - Trace trap is enabled by bit 4 of the PS and
causes processor traps at the end of instruction execution. The
instruction that is executed after the instruction that set the T
bit will proceed to completion and then trap through the trap
vector at address 14. ‘lote that the trace ¢trap is a system
debugging aid and is transparent to the general programmer.

6-62

NOTE
Bit 4 of the PS can only be set
indirectly by executing a RTI or RTT
instruction with the desired PS on the
stack.,

6.3.6.8.1 Special Cases Of The T Bit - The following are special
cases of the T bit.

NOTE
The traced instruction is the instruction
after the one that set the T bit.

'An instruction that cleared the T bit -- Upon fetching

the traced instruction, an internal flag, the trace flag,
was set., The trap will still occur at the end of this
instruction”s execution. The status word on the stack,
however, will have a clear T bit.

An instruction that set the T bit -- Since the T bit was
already set, setting it again has no effect. The trap
will occur.

An instruction that caused an instruction trap -- The
instruction trap is performed and the entire routine for
the service trap is executed. 1If the service routine
exits with an RTI, or in any other way restores the
stacked status word, the T bit is set again, the
instruction following the traced instruction is executed,
and, unless it is one of the special cases noted
previously, a trace trap occurs.

An instruction that caused a stack overflow -- The
instruction completes execution as usual. The stack
overflow does not cause a trap. The trace trap vector
is loaded into the PC and PS and the old PC and PS are
pushed onto the stack. Stack overflow occurs again,
and this time the trap is made.

An interrupt between setting of the T-bit and fetch
of the traced instruction -- The entire interrupt
service routine is executed and then the T-bit is

set again by the exiting RTI. The traced instruction
is executed (if there have been no other interrupts)
and, unless it is a special case noted above, causes
a trace trap.

Interrupt trap priorities -- See Table 1-8.

6-63

6.3.7 Miscellaneous Instructions -

HALT
HALT 000000
15 00
L 4 RJ L T T T L] L L L i . A T T
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 g } 1 L 2 I 3 1 1 | 4
Operation: (SP) <-- PS ua s
(SP) <-- PC
PC <-- restart address
PS <-- 340

Condition Codes: Not affected

Description: The effect of HALT depends upon the CPU
operating mode and the halt option
currently selected. See Chapter 8 -
Interfacing for more details on halt
options. In kernel mode, a halt option of
1 (external logic driving a 1 on DAL3 in
response to a GP Read with a GP code of 000)
causes a trap through location 4 and sets
bit 7 of the CPU error register when HALT is
executed. If the halt option is 0 in kernel
mode, execution of the HALT instruction
causes the DCJ1l into console ODT.

Execution of the HALT instruction in user or
supervisor mode causes a trap through
location 4 and sets bit 7 of the CPU error
register.

WAIT
WAIT FOR INTERRUPT 000001
15
T T g L T 1 g T T Al T h T Bl T m
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
4 3 " 2 A d | | A
Condition Codes: Not affected MR Bz62
Description: In WAIT, as in all instructions, the PC points

to the next instruction following the WAIT
instruction. Thus, when an interrupt causes the
PC and PS to be pushed onto the processor stack,
the address of the next instruction following
the WAIT is saved. The exit from the interrupt
routine (i.e., execution of an RTI instruction)
will cause resumption of the interrupted process
at the instruction following the WAIT. If not
in kernel mode, WAIT executes as a NOP.

RESET
RESET EXTERNAL BUS 000005

MR.5263

Condition Codes: Not affected

Description: The following sequence of events occurs: (1)
a GP Write cycle is performed and a GP code
of 014 is generated, (2) operation is delayed
for 69 microcycles, (3) a GP Write is
performed and a GP code of 214 is generated,.
(4) operation is delayed for 600 microcycles
delay. If not in kernel mode, RESET operates

as a NOP,
MFPT
MOVE FROM PROCESSOR TYPE WORD 000007
15 00
T T T R T Il B T I L 1) T IR R
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
i p—y I . I el 1 1 In -
Operation: RO <-- 5 e e

Condition Codes: Not affected

Description: The number 5 is placed in RO, indicating to the
system software that the processor type is
DCJ1l.
MTPD/MTPI
MOVE TO PREVIOUS DATA SPACE
MOVE TO PREVIOUS INSTRUCTION SPACE 80660D
k) 06 05 00
1 R T T T T T T T T T T T T
0N 0 0 0 1 1 0 ! 1 0 DD
Operation: (temp) <=-- (SP)+

(dst) <=-- (temp)

Condition Codes: N: set if the source < 0
Z2: set if the source = 0

V: cleared
Z: unaffected

Description: The instruction pops a word off the current
stack determined by PS bits <15:14> and stores
that word into an address in the previous space
(PS bits <13:12>). The destination address is
computed using the current registers and memory
map.

MFPD/MFPI

6-65

MOVE FROM PREVIOUS DATA SPACE

MOVE FROM PREVIOUS INSTRUCTION SPACE’ 806558
15 06 05 00
[o7a] c 0 0 1 1 ¢} 1 0 1 sS
e _] 1) ju- — 1 L 'y
MA-11670
Operation: (temp) <=-- (src)

- (SP) <-- (temp)

Condition Codes: N: set if the source < 0
Z: set if the source = 0
V: cleared
Z: unaffected

Description: Pushes a word onto the current stack from an
address in the previous space determined by
PS<13:12>, The source address is computed
using the current registers and memory map.
When MFPS is executed and both previous mode
current mode are user, the instruction functions
as though it were MFPD.

6.3.8 Condition Code Operators -

CLN SEN
CLZ SEZ
CLV SEV
CLC SEC
CCC scCC
CONDITION CODE OPERATORS 0002XX
15 05 04 03 02 01 00
©c o ©0o 0 ©0o O O0 0 10 1 on| N {2 | v |c
L | e " e L 1 B
MR 5266
Description: Set and clear condition code bits., Selectable

combinations of these bits may be cleared or se!
together. Condition code bits corresponding to
bits in the condition code operator (bits <3:0>
are modified according to the sense of bit 4,
the set/clear bit of the operator; i.e., set th
bit specified by bit 0, 1, 2, or 3, if bit 4 =
1. Clear corresponding bits if bit 4 = 0.

Mnemonic Operation OP Code
CLC Clear C 000241
CLV Clear Vv 000242
CLZ Clear 2 000244
CLN Clear N 000250
SEC Set C 000261
SEV Set Vv 000262
SEZ Set 2 000264
SEN Set N 000270
SCC Set all CCs 000277

6-66

ccce Clear all CCs - 000257
Clear V and C 000243
NOP No operation 000240

Combinations of the above set or clear
operations may be ORed together to form combined
instructions.

6-67

CHAPTER 7
PLOATING-POINT ARITHMETIC

7.1 INTRODUCTION

The DCJ11l executes forty-six floating-point instructions. The
floating-point instruction set is compatible with the FPll

instruction set for PDP-1l1 computers., Both single- and
double-precision floating-point capabilities are available with

other features, including floating-to-integer and
integer-to-floating conversion. .

7.2 PFLOATING~-POINT DATA FORMATS

Mathematically, a floating-point number may be defined as having
the form (2 ** K) * £, where K is an integer and f is a fraction.
For a nonvanishing number, K and £ are wuniquely determined by
imposing the condition 1/2 < £ < 1. The fractional part (f) of
the number is then said to be normalized. For the number 0, £ |is
assigned the value 0, and the value of K is indeterminate.

The floating-point data formats are derived from this mathematical
representation for floating-point numbers. Two types of
floating-point data are provided. In single-precision, or
floating mode, the data is 32 bits long. In double-precision, or
double mode, the data is 64 bits long. Sign magnitude notation is
used.

7.2.1 Nonvanishing Floating-Point Numbers - The fractional part
(f) 1is assumed normalized, so that its most significant bit must
be 1. This 1 is the "hidden" bit: it is not stored explicitly in
the data word, but the microcode restores it before carrying out
arithmetic operations. The floating and double modes reserve 23
and 55 bits, respectively, for f. These bits, with the hidden
bit, imply effective word lengths of 24 bits and 56 bits.

Eight bits are reserved for storage of the exponent K 1in excess
200 notation (i.e., as K + 200 (octal)), giving a biased exponent.
Thus, exponents from -128 to +127 could be represented by 0 to 377
(base 8), or 0 to 255 (base 10). For reasons given below, a
biased exponent of 0 (the true exponent of =200 (octal)), 1is
reserved for floating-point 0. Therefore, exponents are
restricted to the range -127 to +127 inclusive (-177 ¢to +177
octal) or, in excess 200 notation, 1 to 377.

The remalnlng b1t of the floatlng p01nt word is the 51gn bit. The
number is negative if the sign bit is a 1.

7.2.2 Floating-Point Zero - Because of the hidden bit, the
fractional part is not available to distinguish between 0 and
nonvanishing numbers whose fractional part 1is exactly 1/2.
Therefore, the DCJ1ll reserves a biased exponent of 0 for this
purpose, and any floating-point number with a biased exponent of 0
either traps or is treated as if it were an exact 0 in arithmetic
operations. An exact or "clean" 0 is represented by a word whose
bits are all O0s. A "dirty" 0 is a floating-point number with a
biased exponent of 0 and a nonzero fractional part. An arithmetic
operation for which the resulting true exponent exceeds 277
(octal) is regarded as producing a floating overflow; 1if the true
exponent is less than -177 (octal), the operation is regarded as
producing a floating underflow. A biased exponent of 0 can thus
arise from arithmetic operations as a special case of overflow
(true exponent = -200 octal). (Recall that only eight bits are
reserved for the biased exponent.) The fractional part of results
obtained from such overflow and underflow is correct.

7.2.3 Undefined Variables - An undefined wvariable 1is any bit
pattern with a sign bit of 1 and a biased exponent of 0. The term
"undefined variable" is used, for historical reasons, to indicate
that these bit patterns are not assigned a corresponding
floating-point arithmetic value. Note that the undefined variable
is frequently referred to as -0 elsewhere in this chapter.

A design objective was to assure that the undefined variable would
not be stored as the result of any floating-point operation in a
program run with the overflow and underflow interrupts disabled.
This is achieved by storing an exact 0 on overflow and underflow,
if the corresponding interrupt 1is disabled. This feature,
together with an ability to detect reference to the undefined
variable (implemented by the FIUV bit discussed later), 1is
intended to provide the user with a debugging aid: if -0 occurs,
it did not result from a previous floating-point arithmetic
instruction.

7.2.4 Floating-Point Data - Floating-point data is stored in
words of memory as illustrated in Figures 7-1 and 7-2.

F FORMAT FLOATING POINT SINGLE PREC!SION

-2 FRACTION 15C--
NN -l i I A 1 1 i i A L L . 1 A

MEMORY +0 S EXP FRACT 22 16>
1 " L 1 L L L 1 L L 1 L

MA 1604

Figure 7-1 Single-Precision Format

7-2

D FORMAT, FLOATING POINT DOUBLE PRECISION

15 00
+6 FRACTION <15°0>
1 1 1 1 1 1 i i s -l 1 A 1 1 L.
15 00
+4 FRACTION <31 16>
1 1 1 il Il ol 1 i | . X 1 1 —d A
15 00
+2 FRACTION <47 32>
I L A 1 1 —l s " 4 A 1 i Il . A
15 07 06 00
MEMORY +0 S EXP FRACT <54:48>
de 1o . .l i 1 A A A A 1 1 A

S = SIGN OF FRACTION

EXP = EXPONENT tN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL
FOR NON-VANISHING NUMBERS

FRACTION = 23 BITS INF FORMAT 55 BITS IN D FORMAT + ONE HIDDEN
BIT INORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT.

LLE

Figure 7-2 Double-Precision Format

The DCJ11l provides for conversion of floating-point to integer
format and vice-versa. The processor recognizes single-precision
integer (I) and double-precision integer long (L) numbers, which
are stored in standard 2°s complement form. (See Figure 7-3.)

| FORMAT, INTEGER SINGLE PRECISION

15 14 00
S NUMBER <16:0>
i A i 1 A 1 L i " 4 1 A A 1
L FORMAT, DOUBLE PRECISION INTEGER LONG
15 14 00
MEMORY +0 | S ' NUMBER <30:16>
L A i L 1 1 1 —— <4 1 A L A 1
15 00
+2 NUMBER <15:0>
L i 1 1 L A A 1 i | 1 1 1 k. 4

L)

WHERE S = SIGN OF NUMBER

NUMBER = 15 BITS IN | FORMAT, 31 BITS IN L FORMAT.

Figure 7-3 2°s Complement Format

v7.3 FLOATING-POINT STATUS REGISTER (FPS)

This register provides mode and interrupt control for the
currently executing floating-point instruction and also reflects
conditions resulting from the execution of the previous
instruction. (See Figure 7-4.) In this discussion a set bit = 1
and a reset bit = 0, Three bits of the FPS register control the
modes of operation.

7-3

1. Single/Double -- Floating-point numbers can be either single-
or double-precision.

2. Long/Short -- Integer numbers can be 16 bits or 32 bits.

3. Chop/Round -- The result of a floating-point operation can be
either "chopped" or "rounded." The term "chop" is used instead
of "truncate" in order to avoid confusion with truncation of
series used in approximations for function subroutines.

15 14 13 12 11 10 09 08 0?7 06 05 04 03 = 02 01 00
% 7, % \
FER | FiD //% Fiuv] Fiu| Fiv | eic | fo | FL | P %? N F2 | rv | Fe
’.
N |

RESERVED RESERVED
MR.3807

Figure 7-4 Floating-Point Status Register

The FPS register contains an error flag and four condition codes
(5 bits): carry, overflow, zero, and negative, which are
analogous to the CPU condition codes.

The DCJ11l recognizes six floating-point exceptions:

o Detection of the presence of the undefined variable in memory

o Floating overflow
o Floating underflow

o Failure of floating-to-integer conversion
o Attempt to divide by 0

o Illegal floating op code

For the first four of these exceptions, bits in the FPS register
are available to individually enable and disable interrupts. An
interrupt on the occurrence of either of the last two exceptions
can be disabled only by setting a bit that disables interrupts on
all six of the exceptions, as a group.

Of the 13 FPS bits, 5 are set as part of the output of a
floating-point instruction: the error flag and condition codes.
Any of the mode and interrupt control bits may be set by the user;
the LDFPS instruction is available for this purpose. These
thirteen bits are stored in the FPS register as shown in Figure
7-4. The FPS register bits are described in Table 7-1.

Table 7-1 FPS Register Bits

Bit Name Description
15 Floating Error (FER) The FER bit is set by the DCJ11
» if:

7-4

14

13
12
11

Interrupt Disable
(FID)

Interrupt on
Undefined Variable
(FIUV)

l. division by zero occurs.
2. an illegal op code occurs.

3. any one of the remaining floating
point exceptions occurs and the
corresponding interrupt is enabled.

Note that the above action is
independent of whether the FID bit
is set or clear.

Note also that the DCJ1ll never

resets the FER bit. Once the FER bit
is set by the DCJ1ll, it can be
cleared only by an LDFPS instruction
(note the RESET instruction does not
clear the FER bit). This means that
the FER bit is up-to-date only if

the most recent floating-point
instruction produced a floating-point
exception.

If the FID bit is set, all floating-
point interrupts are disabled.

NOTE

l. The FID bit is primarily a
maintenance feature. It should
normally be clear. 1In particular,
it must be clear is one wishes to
assure that storage of -0 by the
DCJ1l is always accompanied by
an interrupt.

2. Throughout the rest of the chapter
assume that the FID bit is clear
in all discussions involving
overflow, underflow, occurrence of
-0, and integer conversion errors.

Reserved for future DIGITAL use.
Reserved for future DIGITAL use,

An interrupt occurs if FIUV is set
and a -0 is obtained from memory as
an operand of ADD, SUB, MUL, D1V,
CMP, MOD, NEG, ABS, TST, or any LOAD
instruction. The interrupt occurs
before execution on all instructions.
When FIUV is reset, -0 can be loaded
and used in any floating-point
operation., Note that the interupt is
not activated by the presence of -0
in an AC operand of an arithmetic
instruction; in particular, trap on

7-5

10 Interrupt on
Underflow (FIU)

9 Interrupt on
Overflow (FIV)

8 Interrupt on
Integer Conversion
Error (FIC)

7 Floating Double-

Precision Mode (FD)

-0 never occurs in mode 0.

A result of -0 will not be stored
without the simultaneous occurrence
of an interrupt.

When the FIU bit is set, floating
underflow will cause an interrupt.
The fractional part of the result

of the operation causing the
interrupt will be correct. The
biased exponent will be too large

by 400, except for the special case
of 0, which is correct. An exception
is discussed later in the detailed
description of the LDEXP instruction.

When the FIV bit is set, floating
overflow will cause an interrupt.

The fractional part of the result

of the operation causing the overflow
will be correct. The biased exponent
will be too small by 400.

If the FIV bit is reset and overflow
occurs, there is no interrupt. The
DCJ1l1l returns exact 0.

Special cases of overflow are
discussed in the detailed
descriptions of the MOD and LDEXP
instructions.

When the FIC bit is set and a
conversion to integer instruction
fails, an interrupt will occur. 1If
the interrupt occurs, the destination
is set to 0, and all other registers
are left untouched.

If the FIC bit is reset, the result
of the operation will be the same as
detailed above, but no interrupt will
occur.

The conversion instruction fails if
it generates an integer with more
bits than can fit in the short or
long integer word specified by the
FL bit.

The FD bit determines the precision
that is used for floating-point
calculations. When set, double-
precision is assumed; when reset,
single-precision is used.

7-6

6 Floating Long- The FL bit is active in conversion
Integer Mode (FL) between integer and floating-point

formats. When set, the integer
format assumed is double-precision
2°s complement (i.e., 32 bits).
When reset, the integer format is
assumed to be single-precision 2°s
complement (i.e.; 16 bits).

5 Floating Chop Mode When the FT bit is set, the result
(FT) of any arithmetic operation is
‘ chopped (truncated). When reset,
the result is rounded.

4 ' Reserved for future DIGITAL use.
3 Floating Negative FN is set if the result of the
(FN) . last floating-point operation
was negative; otherwise it is
reset.
2 Floating Zero FZ is set if the result of the
(F2) last floating-point operation was
0; otherwise it is reset.
1 Floating Overflow FV is set if the last floating-
(FV) point operation resulted in an

exponent overflow; otherwise it
is reset,

0 Floating Carry FC is set if the last floating-
(FC) point operation resulted in a
carry of the most significant
bit., This can only occur in
floating double-to-integer
conversions.

7.4 FLOATING EXCEPTION CODE AND ADDRESS REGISTERS

One 1interrupt vector 1is assigned to take care of all
floating-point exceptions (location 244). The six possible errors
are coded in the 4-bit floating exception code (FEC) register as
follows.

2 Floating op-code error

4 Floating divide by zero

6 Floating-to-integer or double-to-integer conversion error
8 Floating overflow
10 Floating underflow
12 Floating undefined variable

The address of the instruction producing the exception 1is stored
in the floating exception address (FEA) register.)

The FEC and FEA registers are updated only when one of the

7-7

following occurs.
1. Division by zero.
2. Illegal op code.

3. Any of the other four exceptions with the corresponding
interrupt enabled.

This implies that only when the FER bit is set are the FEC and FEA
registers updated.

NOTE

1. If one of the last four exceptions occurs with the
corresponding interrupt disabled, the FEC and FEA are
not updated.

2. If an exception occurs, inhibition of interrupts by
the FID bit does not inhibit updating of the FEC and

FEA.

3. The FEC and FEA are not updated if no exception
occurs. This means that the STST (store status)
instruction will return current information only if
the most recent floating-point instruction produced an
exception.

4. Unlike the FPS, no instructions are provided for
storage into the FEC and FEA registers.

7.5 FLOATING-POINT INSTRUCTION ADDRESSING

Floating-point instructions use the same type of addressing as the
central processor instruyctions. A source or destination operand
is specified by designating one of eight addressing modes and one
-of eight central processor general registers to be used in the
specified mode. The modes of addressing are the same as those of
the central processor, except in mode 0. In mode 0 the operand is
located in the designated floating-point processor accumulator
rather than in a central processor general register. The modes of
addressing are as follows.

Floating-point accumulator
Deferred

Autoincrement
Autoincrement-deferred
Autodecrement
Autodecrement-deferred
Indexed

Indexed-deferred

NOULWN RO

nnuwwuanmny

Autoincrement and autodecrement operate on increments and
decrements of 4 for F format and 10 (octal) for D format.

In mode 0 users can make use of al) six floating-point
accumulators (ACO - ACS5) as their source or destination.
Specifying floating-point accumulators AC6 or AC7 will result in
an 1illegal op code trap. In all other modes, which involve
transfer of data to or from memory or the general registers, users
are restricted to the first four floating-point accumulators (ACO
- AC3). When reading or writing a floating-point number from or
to memory, the low memory word contains the most significant word
of the floating-point number, and the high memory word the least
significant word.

7.6 ACCURACY

General comments on the accuracy of the DCJ1l floating-point
instructions are presented here. The descriptions of the
individual instructions include the accuracy at which they
operate. An instruction or operation is regarded as "exact" if
the result is identical ¢to an infinite precision calculation
involving the same operands. The a priori accuracy of the
operands is thus ignored. All arithmetic instructions treat an
operand whose biased exponent is 0 as an exact 0 (unless FIUV is
enabled and the operand is -0, in which case an interrupt occurs).
For all arithmetic operations, except DIV, a 0 operand implies
that the instruction is exact. The same statement holds for DIV
if the 0 operand is the dividend. But if it is the divisor,
division is undefined and an interrupt occurs.

For nonvanishing floating-point operands, the fractional part is
binary normalized. It contains 24 bits or 56 bits for floating
mode and double mode, respectively. For ADD, SUB, MUL, and DIV,
two guard bits are necessary and sufficient for the general case
to guarantee return of a chopped or rounded result identical to
the corresponding infinite precision operation chopped or rounded
to the specified word 1length. Thus, with two guard bits, a
chopped result has an error bound of one least significant bit
(LSB); a rounded result has an error bound of 1/2 LSB. These
error bounds are realized by the DCJ1l of all instructions.

In the rest of this chapter, an arithmetic result is called exact
if no nonvanishing bits would be lost by chopping. The first bit
lost in chopping is referred to as the "rounding" bit. The value
of a rounded result is related to the chopped result as follows.

7-9

1. If the rounding bit is 1, the rounded result 1is the chopped
result incremented by an LSB.

2. If the rounding bit is 0, the rounded and chopped results are
identical.

It follows that:

1. If the result is exact: rounded value = chopped value = exact
value.

2. If the result is not exact, its magnitude is:
o always decreased by chopping.
0 decreased by rounding if the rounding bit is 0.

o increased by rounding if the rounding bit is 1.

Occurrence of floating-point overflow and underflow 1is an error
condition: the result of the calculation cannot be correctly
stored because the exponent is too large to fit into the eight
bits reserved for it. However, the internal hardware has produced
the correct answer. For the case of underflow, replacement of the
correct answer by 0 is a reasonable resolution of the problem for
many applications. This is done by the DCJ11 if the wunderflow
interrupt is disabled. The error incurred by this action is an
absolute rather than a relative error; it is bounded (in absolute
value) by 2 ** =128, There is no such simple resolution for the
case of overflow. The action taken, if the overflow interrupt is
disabled, is described under FIV (bit 9) in Table 7-1.

The FIV and FIU bits (of the floating~-point status word) provide
users with an opportunity to implement their own correction of an
overflow or underflow condition. 1If such a condition occurs and
the corresponding interrupt is enabled, the microcode stores the
fractional part and the low eight bits of the biased exponent.
The interrupt will take place and users can identify the cause by
examination of the FV (floating overflow) bit or the FEC (floating
exception) register. The reader can readily verify that (for the
standard arithmetic operations ADD, SUB, MUL, and DIV) the biased
exponent returned by the instruction bears the following relation
to the correct exponent.

1. On overflow, it is too small by 400 (octal)

2. On underflow, if the biased exponent is 0, it is correct. If
the biased exponent is not 0, it is too large by 400 (octal).

Thus, with the interrupt enable, enough information is available
to determine the correct answer. Users may, for example, rescale
their variables (via STEXP and LDEXP) to continue a calculation.
Note that the accuracy of the fractional part is unaffected by the
occurrence of underflow or overflow.

7-10

7.7 FLOATING-POINT INSTRUCTIONS

Each instruction that references a floating-point number can
operate on either single- or double-precision numbers, depending
on the state of the FD mode bit. Similarly, there is a mode bit
FL that determines whether a 32-bit integer (FL = 1) or a 16-bit
integer (FL = 0) 1is wused 1in conversion between integer and
floating-point representations. FSRC and FDST operands use
floating-point addressing modes (see Figure 7-5); SRC and DST
operands use CPU addressing modes.

DOUBLE-OPERAND ADDRESSING
15 12 H 08 07 06 05 00

oc FOC AC FSRC,FDST,SRC,DST

A J L A A J i 4 i ! 4 d

ocC FOC FSRC, FDST, SRC, DST

4 e i A 1 L 1 A - — L A A

OC = OPCODE =17

FOC = FLOATING OPCODE

AC = FLOATING POINT ACCUMULATOR (ACO-AC3)
FSRC AND FDST USE FPP ADDRESSING MODES
SRC AND DST USE CPU ADDRESSING MODES

MR- IO

Figure 7-5 Floating-Point Addressing Modes

Terms Used in Instruction Definitions

ocC = opcode = 17
FOC = floating opcode
AC = contents of accumulator, as specified by AC
field of instruction,
fsrc = address of floating-point source operand
fdst = address of floating-point destination operand
f = fraction
XL = largest fraction that can be represented:
l - 2 ** (=-24), FD = 0; single-precision
l - 2 ** (-56), FD = 1; double-precision:
XLL = smallest number that is not identically zero =
2 ** (-128)
XUL = largest number that can be represented =

2 ** (127) * XL

JL = largest integer that can be represented:

7-11

2 ** (15) - 1; FL
2 ** (31) - 1; FL

ABS (address)

EXP (address)

0; short integer
1l; long integer

absolute value of (address)

biased exponent of (address)

.LT. = "less than"

.LE.

.GT.

.GE,

LSB

"less than or equal to"
"greater than"
"greater than or equal to"

least significant bit

Boolean Symbols

/\ = AND
\/ = inclusive OR
A = exclusive OR
-~ = NOT
ABSF/ABSD
MAKE ABSOLUTE FLOATING/DOUBLE © 1706 FDST
15 12 n 06 05 00
B 1 1 1 hl 1 1 1 1 T H 1 |
1 1 1 1 0 V] 0 1 1 0 FDST
1 1 b - 1] L n
Format: ABSF FDST
Operation: If (FDST) < 0, (FDST) <-- - (FDST).

Condition Codes:

Description:

Interrupts:

Accuracy:

If EXP(EDST) = 0, (FDST) <-- exact 0.
For all other cases, (FDST) <-- (FDST).

FC <=-
FV <=
FZ <--
FN <--

if (FDST) 0, else FZ2 <-- 0

OO0

Sét the contents of FDST to its absolute value.

If FIUV is enabled, trap on -0 occurs before
execution. Overflow and underflow cannot occur.

These instructions are exact.

7-12

ADDF/ADDD

ADD FLOATING/DOUBLE 172(AC)FSRC

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR 11408

ADDF FSRC,AC
Let SUM = (AC) + (FSRC)

If underflow occurs and FIU is not enabled, AC
<=- exact 0.

If overflow occurs and FIV is not enabled, AC
<-- exact 0.

For all others cases, AC <-- SUM.

FC <-- 0

FV <-=- 1 if overflow occurs, else FV <~-=- 0
FZ <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < 0, else FN <-- 0

Add the contents of FSRC to the contents of AC.
The addition is carried out in single- or
double-precision and is rounded or chopped in
accordance with the values of the FD and FT bits
in the FPS register. The result is stored in AC
except for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is
stored in AC.

If FIUV is enabled, trap on -0 in FSRC occurs
before execution. If overflow or underflow
occurs, and if the corresponding interrupt is
enabled, the trap occurs with the faulty result
in AC. The fractional parts are correctly
stored. The exponent part is too small by 400
for overflow. It is too large by 400 for
underflow, except for the special case of 0,
which is correct.

Errors due to overflow and underflow are
described above. 1If neither occurs, then: for
oppositely signed operands with exponent
difference of 0 or 1, the answer returned is
exact if a loss of significance of one or more
bits can occur. Note that these are the only
cases for which loss of significance of more
than one bit can occur. For all other cases the

7-13

Special Comment:

result is inexact with error bounds of:

1. LSB in chopping mode with either single- or

double-precision.
2. 1/2 LSB in rounding mode with either single-

or double-precision.

The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will
be stored in AC only if the corresponding
interrupt is enabled.

Condition Codes:

Description:

Interrupts:

Accuracy:

CFCC
COPY FLOATING CONDITION CODES 170000
15 12 1" 00
T T T T 1 T i T T 1 T I ¥
\ 1 1 1 0 0 0 0 0 0 0 0 0 0 o] o]
— L ! " L . j— 1
Format: CFrCC
Operation: C <-- FC
V <== FV
Z <-- F2Z
N <-- FN
Description: Copy the floating-point condition codes into
the CPU”s condition codes.
CLRF/CLRD
CLEAR FLOATING/DOUBLE 1704 FDST
15 12 11 06 05 00
T T T T T T T T T T T T
1 1 1 1 0 0 o] 1 0 o] FOST
- 1 e j - -l 1 1 [A
Format: CLRF FDST
Operation: (FDST) <-- exact 0

FC <--
FV <--
FZ <--
FN <--

OrHHOO

Set FDST to 0. Set FZ condition code and clear
other condition code bits.

No interrupts will occur. Overflow and underflow
cannot occur.

These instructions are exact.

7-14

CMPF/CMPD

COMPARE FLOATING/DOUBLE

173(AC+4)FSRC
12 1 08 07 06 05 00

Format:
Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

DIVF/DIVD

DIVIDE FLOATING/DOUBLE

MR-11471

CMPF FSRC,AC

(FSRC) - (AC)

FC <-- 0

FV <-=- 0

FZ <-- 1 if (FSRC) = 0, else FZ <-- 0
FN <~~- 1 if (FSRC) < 0, else FN <-= 0

Compare the contents of FSRC with the
accumulator. Set the appropriate floating-point
condition codes. FSRC and the accumulator are
left unchanged except as noted below.

If FIUV is enabled,
execution.

trap on -0 occurs before

These instructions are exact.

An operand that has a biased exponent of 0 is
treated as if it were an exact 0. 1In this case,
where both operands are 0, the DCJ11l will

store an exact 0 in AC.

174(AC+4)FSRC

Format:

Operation:

MR 11472

DIVF FSRC,AC

If EXP(FSRC) = 0, (AC) <--
instruction is aborted.

(AC) and the

If EXP(AC) = 0, (AC) <-- exact 0.

For all other cases, let QUOT = (AC)/(FSRC).

If underflow occcurs and FIU is not enabled, AC
<-- exact 0.

If overflow occurs and FIV is not enabled, AC
<=-- exact 0. '

7-15

For all others cases, AC <-- QUOT.

Condition Codes: FC <-- 0
FV <-- 1 if overflow occurs, else FV <-- 0

Fz <-- 1 if (AC) = 0, else FZ <-- 0
FN <-- 1 if (AC) < 0, else FN <-- 0

Description: If either operand has a biased exponent of 0, it
is treated as an exact 0. For FSRC this would
imply division by 0; in this case the
instruction is aborted, the FEC register is set
to 4, and an interrupt occurs. Otherwise, the
quotient is developed to single- or
double-precision with two guard bits for correct
rounding. The quotient is rounded or chopped in
accordance with the values of the FD and FT bits
in the FPS register. The result is stored in
the AC except for:

l, Overflow with interrupt disabled.
2., Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is
stored in AC.

Interrupts: If FIUV is enabled, trap on -0 in FSRC occurs
before execution. If (FSRC) = 0, interrupt traps
on an attempt to divide by 0. If overflow or
underflow occurs, and if the corresponding
interrupt is enabled, the trap occurs with the
faulty result in AC. The fractional parts are
correctly stored. The exponent part is too
small by 400 for overflow. It is too large by
400 for underflow, except for the special case
of 0, which is correct.

Accuracy: Errors due to overflow and underflow are
described above. If none of these occurs, the
error in the quotient will be bounded by 1 LSB
in chopping mode and by 1/2 LSB in rounding
mode.

Special Comment: The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will
be stored in AC only if the corresponding
interrupt is enabled.

LDCDF/LDCFD

LOAD AND CONVERT FROM DOUBLE-TO-FLOATING
AND FROM FLOATING-TO-DOUBLE 177(AC+4)FSRC

15 12 1 08 07 06 05 00
v T T T T T T T T T LS
1 1 1 1 1 1 1 1 AC FSRC

—" L 5 b : 1 1 j- L

MR-1147]

Format: ‘ LDCDF FSRC,AC
Operation: If EXP(FSRC) = 0, AC <-- exact 0.

If FD = 1, FT = 0, FIV = 0 and rounding causes
overflow, AC <-- exact 0.

In all other cases, AC <-- Cxy(FSRC), where Cxy
specifies conversion from floating mode x to
floating mode y.

F if FD = 0 (single) LDCDF
D if FD = 1 (double) LDCFD

X
y

Condition Codes: FC <-- 0
FV <-- 1 if conversion produces overflow, else
FV <-- 0
F2 <-- 1 if (AC) = 0, else F2 <-- 0

FN <-- 1 if (AC) < 0, else FN <-- 0

D, y
F, v

Description: If the current mode is floating mode (FD = 0),
the source is assumed to be a double-precision
number and is converted to single-precision. 1If
the floating chop bit (FT) is set, the number is
chopped; otherwise, the number is rounded.

If the current mode is double mode (FD = 1), the
source is assumed to be a single-precision
number and is loaded left-justified in AC. The
lower half of AC is cleared.

Interrupts: If FIUV is enabled, trap on -0 occurs before
execution. Overflow cannot occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding
with LDCDF causes overflow. AC <-- overflowed
result, This result must be +0 or -0. Underflow
cannot occur.,

Accuracy: LDCFD is an exact instruction. Except for
overflow, described above, LDCDF incurs an error

bounded by 1 LSB in chopping mode and by 1/2 LSB
in rounding mode.

LDCIF/LDCID/LDCLF/LDCLD

LOAD AND CONVERT INTEGER OR LONG INTEGER

TO FLOATING OR DOUBLE-PRECISION 177(ACISRC
15 12 1 08 07 06 05 00
I 1 il i I T 1 T LD T | T
1 1 1 1 1 1 1 0 AC SRC
1 | 1 1 L " { t | } __
Format: LDCIF SRC,AC
Operation: AC <-- Cjx(SRC), where Cjx specifies conversion

from integer mode j to floating mode vy.

7-17

Condition Codes:

Description:

Interrupts:

Accuracy:

LDEXP

LOAD EXPONENT

0, 3
0, x

if FL
if FD

"o
"o
ol o
b e
o
= o
o
non
e

L W]

FC <--
FV <--
FZ <-~-
FN <=-

if (AC) = 0, else FZ2 <-- 0
if (Ac) < 0, else FN <-- 0

OO

Conversion is performed on the contents of SRC
from a 2°s complement integer with precision j
to a floating-point number of precision x. Note
that j and x are determined by the state of the
mode bits FL and FD.

If a 32-bit integer is specified (L mode) and
(SRC) has an addressing mode of 0 or immediate
addressing mode is specified, the 16 bits of the
source register are left-justified and the
remaining 16 bits loaded with 0s before
conversion.

In the case of LDCLF, the fractional part of the
floating-point representation is chopped or
rounded to 24 bits for FT =1 or 0,
respectively.

None; SRC is not floating-point, so trap on -0
cannot occur.

LDCIF, LDCID, and LDCLD are exact instructions.
The error incurred by LDCLF is bounded by 1 LSB
in chopping mode and by 1/2 LSB in rounding
mode.

176(AC+4)SRC

Format:

Operation:

MR.11475

LDEXP SRC,AR

NOTE: 177 and 200, appearing below, are octal
numbers.

If -200 < SRC < 200, EXP(AC) <-- SRC + 200 and
the rest of AC is unchanged.

If (SRC) > 177 and FIV is enabled, EXP(AC) <--
[(SRC) + 200]<7:0>.

If (SRC) > 177 and FIV is disabled, AC <-- exact
0.

Condition Codes: -

Description:

Interrupts:

Accuracy:

LDF/LDD

If (SRC) < -177 and FIU is enabled, EXP(AC) <--
[(SRC) + 200]<7:0>.

If (SRC) < -177 and FIU is disabled, AC <--
exact 0.

FC <-- 0 i

FV <-- 1 if (SRC) > 177, else FV «<=-=- 0

FZ <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < 0, else FN <-- 0

Change AC so that its unbiased exponent = (SRC).
That is, convert (SRC) from 2°s complement to
excess 200 notation and insert it into the EXP
field of AC. This is a meaningful operation
only if ABS(SRC) LE 177, :

If SRC > 177, the result is treated as overflow.
If SRC < =177, the result is treated as
underflow.

No trap on -0 in AC occurs, even if FIUV is
enabled, If SRC > 177 and FIV is enabled, trap
on overflow will occur. If SRC < =177 and FIU is
enabled, trap on underflow will occur.

Errors due to overflow and underflow are
described above. 1If EXP(AC) = 0 and (SRC) =
-200, AC changes from a floating-point number
treated as 0 by all floating arithmetic
operations to a non-0 number. This happens
because the insertion of the "hidden" bit in the
microcode implementation of arithmetic
instructions is triggered by a nonvanishing
value of EXP.

For all other cases, LDEXP implements exactly
the transformation of a floating-point number (2
** K) * £ into (2 ** (SRC)) * f where 1/2 .LE.
ABS(f) .LT. 1.

LOAD FLOATING/DOUBLE 172(AC+4)FSRC

Format:
Operation:

Condition Codes:

MA 11476

LDF FSRC,AC
AC <-- (FSRC)

FC <-=- 0
FV <-=- 0

Description:

Interrupts:

Accuracy:

Special Comment:

FZ <-- 1 if (AC) = 0, else FZ <-- 0
FN <-- 1 if (AC) < 0, else FN <-- 0

Load single- or double-precision number into AC.

If FIUV is enabled, trap on -0 occurs before AC
is loaded. Overflow and underflow cannot occur.

These instructions are exact.
These instructions permit use of -0 in a

subsequent floating-point instruction if FIUV is
not enabled and (FSRC) = =-0.

LDFPS
LOAD FLOATING-POINT PROGRAM STATUS 1701 SRC
15 12) 06 0% 00
T T T i 4 1 T | 1) T T |
| i 1 o] o} 0 (] 0 1 SRC
L - e i s J L

Format: LDFPS SRC
Operation: FPS <-- (SRC)
Description: Load floating-point status register from SRC.

Special Comment:

MODF /MODD

Users are cautioned not to use bits 13, 12, and
4 for their own purposes, since these bits are
not recoverable by.the STFPS instruction.

MULT'PLY AND SEPARATE INTEGER

AND FRACTION FLOATING 'DOUBLE

15

171(AC+4)FSRC
12 11 08 07 06 05 - 00

1 1

1 0 0 1 1 AC FSRC

Format:

Description
and Operation:

MA 11478

MODF FSRC,AC

This instruction generates the product of its
two floating-point operands, separates the
product into integer and fractional parts, and
then stores one or both parts as floating=-point
numbers.

Let PROD = (AC) * (FSRC) so that in

Floating-point: ABS(PROD) = (2 ** K) * f, where

7-20

1/2 .LE. £ .LT. 1, and
EXP (PROD) = (200 + K)

Fixed~point binary: PROD = N + g, where
N = INT(PROD) = integer part of PROD, and

g = PROD - INT(PROD) = fractional part of
PROD With 0 oLiE. g .LT. lo

Both N and g have the same sign as PROD. They
are returned as follows:

If AC is an even-numbered accumulator (0 or
2), N is stored in AC+1 (1l or 3), and g is
stored in AC.

If AC is an odd-numbered accumulator, N is
not stored and g is stored in AC.

The two statements above can be combined as
follows:

N is returned to AC \/ 1 and g is returned
to AC.

Five special cases occur, as indicated in the
following formal description with L = 24 for
floating mode and L = 56 for double mode.

1. If PROD overflows and FIV is enabled, AC \/
l <-- N, chopped to L bits, AC <-- exact 0.

Note that'EXP(N) is too small by 400 and
that -0 can be stored in AC \/ 1.

If FIV is not enabled, AC \/ 1 <-- exact 0,
AC <-- exact 0, and -0 will never be stored.

2. If 2 ** 1, ,LE, ABS(PROD) and no overflow,
AC \/ 1 <-- N, chopped to L bits, AC <-- exact
0.

The éign and EXP of N are correct, but
low-order bit information is lost.

3. If 1 .LE. ABS(PROD) .LT. 2 ** L, AC \/ 1 <--
N, AC == g.

The integer part N is exact. The fractional
part g is normalized, and chopped or rounded
in accordance with FT. Rounding may cause a
return of + unity for the fractional part.
For L = 24, the error in g is bounded by 1
LSB in chopping mode and by 1/2 LSB in
rounding mode. For L = 56, the error in g
increases from the above limits as ABS (N)
increases above 8 because only 59 bits of

7-21

Condition Codes:

interrupts:

Accuracy:

Applications:

FC
FV
F2Z
FN

If

PROD are generated.

If 2 ** p .LE. ABS(N) .LT. 2 ** (p + 1), with
p > 2, the low order p - 2 bits of g may be
in error.

If ABS(PROD) .LT. 1 and no underflow, AC \/
1l <~- exact 0 and AC <-- g.

There is no error in the integer part. The
error in the fractional part is bounded by 1
LSB in chopping mode and 1/2 LSB in rounding
mode. Rounding may cause a return of + unity
for the fractional part.

If PROD underflows and FIU is enabled, AC
\/ 1 <-- exact 0 and AC <-- g.

Errors are as in case 4, except that EXP (AC)

will be toco large by 4008 (if EXP = 0, it is

correct). Interrupt will occur and -0 can be
stored in AC.

If FIU is not enabled, AC \/ 1 <-- exact 0
and AC <-- exact 0.

For this case the error in the fractional
part is less than 2 ** (-128).

<=-= 0

<=-= 1 if PROD overflows, else FV <-- 0

<==- 1 if (AC) = 0, else FZ <-- 0

<-=- 1 if (AC) < 0, else FN <-=- 0

FIUV is enabled, trap on -0 in FSRC occurs

before execution. Overflow and underflow are
discussed above.

Discussed above,

l.

Binary-to-decimal conversion of a proper
fraction. The following algorithm, using
MOD, will generate decimal digits D(l), D(2)
. « . from left to right.

Initialize: I <-- 0
X <=- number to be converted;
ABS (X) < 1;

While X # 0 do

Begin PROD <-- X * 10;

I <—=- 1 + 1;

D{(I) <--~ INT(PROD);

X <=- PROD - INT(PROD);

End:

This algorithm is exact. It is case 3 in the

description because the number of
nonvanishing bits in the fractional part of

7-22

PROD never exceeds L, and hence neither
chopping nor rounding can introduce error.

2. To reduce the argument of a trigonometric
function.

ARG * 2/PI = N + g. The low two bits of N
identify the quadrant, and g is the argument
reduced to the first quadrant. The accuracy
of N + g is limited to L bits because of the
factor 2/P1. The accuracy of the reduced
argument thus depends on the size of N.

3. To evaluate the exponedtial function e ** x,
obtain x * (log e base 2) = N + g,
then e ** x = (2 ** N) * (e ** (g * 1n 2)).

The reduced argument is g * 1n2 < 1 and the
factor 2 ** N is an exact power of 2, which
may be scaled in at the end via STEXP, ADD N
to EXP and LDEXP. The accuracy of N + g is
limited to L bits because of the factor (log
e base 2). The accuracy of the reduced
arqument thus depends on the size of N.

MULF/MULD
MULTIPLY FLOATING/DOQBLE 171(AC)FSRC
5 12 11 08 Q7 06 05 00
T RE h T 1 T T T T T T
1 1 1 1 0 0 1 0 AC FSRC
L " 1 d A & 1 1 A

Format: MULF FSRC,AC
Operation: Let PROD = (AC) * (FSRC)

Condition Codes:

Description:

If underflow occurs and FIU is not enabled, AC
<=-- exact 0.

If overflow occurs and FIV is not enabled, AC
<=-- exact 0.

For all others cases, AC <-- PROD.

FC <-- 0 ‘

FV <-- 1 if overflow occurs, else FV <-- 0
FZ <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < 0, else FN «<-= 0

If the biased exponent of either operand is 0,
(AC) <=-=- exact 0. For all other cases PROD is
generated to 48 bits for floating mode and 59
bits for double mode. The product is rounded or
chopped for FT = 0 or 1, respectively, and is
stored in AC except for:

7-23

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is
stored in AC.

Interrupts: If FIUV is enabled, trap on -0 in FSRC occurs
before execution. If overflow or underflow
occurs, and if the corresponding interrupt is
enabled, the trap occurs with the faulty result
in AC. The fractional parts are correctly
stored. The exponent part is too small by 400
for overflow. It is too large by 400 for
underflow, except for the special case of 0,
which is correct.

Accuracy: Errors due to overflow and underflow are
described above. If neither occurs, the error
incurred is bounded by 1 LSB in chopping mode
and 1/2 LSB in rounding mode.

Special Comment: The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will
be stored in AC only if the corresponding
interrupt is enabled.

NEGF /NEGD
NEGATE FLOATING/DOUBLE 1707 FDST
15 12 1" 06 05 00
) T 1 T T i 1 { 1 1 1 T T
1 1 1 1 0 0 0 1 1 1 FOST
i L i - o ik 1 i L 1 L
Format: NEGF FDST
Operation: (FDST) <-~ - (FDST) if (FDST) = 0, else

(FDST) <~-- exact O

Condition Codes: FC <-- 0
FV <== 0
FZ <-- 1 if (FDST) = 0, else F2 <-- 0
FN <-- 1 if (FDST) < 0, else FN «<-- 0

Description: Negate the single- or double-precision number;
store result in same location (FDST).

Interrupts: If FIUV is enabled, trap on -0 occurs before
execution. Overflow and underflow cannot occur.

Accuracy: These instructions are exact.

SETD

SET FLOATING DOUBLE MODE

1

MR. 114081

Set the DCJ1l in double precision mode.

15 12 1
T 1 L B
1 1 1 1 0
L N 4 i
Format: SETD
Operation: FD <--
Description:
SETF
SET FLOATING MODE
15 12 1"
1 ¥ ¥ |l
1 1 1 1 0
A . : 1
Format: SETF
Operation: FD <~--

Description:

0

MR.11482

Set the DCJ1l in single-precision mode.

SETI
SET INTEGER MODE 177002
15 12 1" 00
T T T T 1 1 ¥]
1 1 1 1 0 0 0 0 0 1 0
. L { " i s "l
Format: SETI
Operation: FL <=-- 0
Description: Set the DCJ1l for short-integer data.
SETL
SET LONG-INTEGER MODE 177012
15 12 1 00
T T T 1 T 1 1 1
1 1 1 i 0 0 [¢] 0 1 0
i 4 L 1 i ! " oL
Format: SETL
Operation: FL <== 1

Description: Set the DCJ1ll for long-integer data.

STCFD/STCDF

STORE AND CONVERT FROM FLOATING-TC DOUBLE

AND FROM DOUBLE-TO-FLOATING 76IAC)FDST
15 12 11 08 07 06 05 00
i T T T 1S T T T T T 1 T
1 1 1 1 1 1 0 0 AC FDST
- s i J S— A i 1 L |
MA.11488%
Format: STCFD AC,FDST
Operation: If (AC) = 0, (FDST) <-- exact 0.

If FD = 1, FT = 0, FIV = 0 and rounding causes
overflow, (FDST) <-=- exact 0.

In all other cases, (FDST) <-- Cxy(AC), where
Cxy specifies conversion from floating mode x to
floating mode vy.

x =F, y=D if FD = 0 (single) STCFD
X =D, y=F if FD = 1 (double) STCDF
Condition Codes: FC <-- 0
FV <-=- 1 if conversion produces overflow, else
FV <-=- 0
FZ <-- 1 if (AC) = 0, else FZ <=-- 0
FN <-- 1 if (AC) < 0, else FN <-- 0
Description: If the current mode is single-precision, the

accumulator is stored left-justified in FDST and
the lower half is cleared.

If the current mode is double-precision, the
contents of the accumulator are converted to
single-precision, chopped or rounded depending
on the state of FT, and stored in FDST.

Interrupts: Trap on -0 will not occur even if FIUV is
enabled because FSRC is an accumulator.
Underflow cannot occur. Overflow cannot occur
for STCFD.

A trap occurs if FIV is enabled, and if rounding

with STCDF causes overflow. (FDST) <--
overflowed result., This must be +0 or =-0.

Accuracy: STCFD is an exact instruction. Except for
overflow, described above, STCDF incurs an error

bounded by 1 LSB in chopping mode and by 1/2 LSB
in rounding mode.

STCFI/STCFL/STCDI/STCDL

STORE AND CONVERT FRCM FLOATING OR DOUBLE
TO INTEGER OR LONG INTEGER 175(AC+4)DST

15

12 11 08 0?7 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MRA. 11486

STCFI AC,DST

(DST) <-- Cxj(AC) if -JL - 1 < Cxj(AC) < JL + 1,
else (DST) <-- 0, where Cjx specifies conversion
from floating mode x to integer mode j.

L if FL
D if FD

1 if FL = 0, j
F if FD = 0, x

3
x

'JL is the largest integer.

0
1

2 ** 15 - 1 for FL
‘2 ** 32 - 1 for FL

C, FC <-- 0 if -JL - 1 < Cxj(AC) < JL + 1, else
C, FC <-- 1 '
V, FV <== 0

Z, FZ <-- 1 if (DST)
N, FN <-- 1 if (DST)

0, else 2, FZ <-=- ¢
0, else N, FN <-- 0

A

Conversion is performed from a floating-point
representation of the data in the accumulator to
an integer representation.

If the conversion is to a 32-bit word (L mode),
and an addressing mode of 0 or immediate
addressing mode is specified, only the most
significant 16 bits are stored in the
destination register,

If the operation is out of the integer range
selected by FL, FC is set to 1 and the contents
of the DST are set to 0.

Numbers to be converted are always chopped
(rather than rounded) before they are converted.
This is true even when the chop mode bit FT is
cleared in the FPS register.

These instructions do not interrupt if FIUV is
enabled, because the -0, if present, is in AC,
not in memory. If FIC is enabled, trap on
conversion failure will occur.

These instructions store the integer part of the
floating-point operand, which may not be the
integer most closely approximating the operand.
They are exact if the integer part is within the
range implied by FL.

7-27

STEXP

STORE EXPONENT

17S(AC)DST

Format:

Operation:

MR.-11e087

STEXP AC,DST

(DST) <-- EXP(AC) - 200

Condition Codes:

c, FC
vV, FV
Z, F2
N, FN

Commm
o=
oo
o

0
0

1 if (DST) = 0, else Z, FZ <-= 0
1 if (DST) < 0, else N, FN <-- 0

Description:

Interrupts:

Accuracy:

STF/STD

STORE FLOATING/DOUBLE

15

Convert AC”’s exponent from excess 200 notation
to 2°s complement and store the result in DST.

This instruction will not trap on -0. Overflow
and underflow cannot occur.

This instruction is exact.

174(ACIFDST

1

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MRA.11488

STF AC,FDST

(FDST) <-- AC

FC <-=- FC
FV <-- FV
FZ <-- P2
FN <-- FN

Store single- or double-precision number from
AC.

These instructions do not interrupt if FIUV is
enabled, because the -0, if present, is in AC,
not in memory. Overflow and underflow cannot
occur.

These instructions are exact.

These instructions permit storage of a -0 in

memory from AC. There are two conditions in
which -0 can be stored in an AC of the DCJ1l.
One occurs when underflow or overflow is present
and the corresponding interrupt is enabled. A
second occurs when an LDF or LDD instruction is
executed and the FIUV bit is disabled.

STFPS
STORE FLOATING-POINT PROGRAM STATUS 1702 DST
15 12 1" 06 05 00
l 1 1 1 1 1 T I i 1 1 T
1 i 1 1 0 0 0 0 1 0 DSsT
A | 1 b 1 1 - 1

Format: STFPS DST
Operation: (DST) <-- FPS
Description: Store the floating-point status register in DST.

Special Comment:

Bits 13, 12, and 4 are loaded with 0. All other
bits are the corresponding bits in the FPS.

STST
STORE FPP'S STATUS 1703 DST
15 12 1" 06 05 00
1 T T T 1 T il v 4 H i ¥ T
1 1 1 1 0 0 0 0 1 1 DST
J . A A { L A I n
Format: STST DST
Operation: (DST) <=-- FEC
(DST + 2) <-- FEA
Description: Store the FEC and FEA in DST and DST+2. Note the
following.
1. If the destination mode specifies a general
register or immediate addressing, only the
FEC is saved.
2. The information in these registers is current
only if the most recently executed
floating-point instruction caused a
floating~-point exception.
SUBF/SUBD

SUBTRACT FLOATING/DOUBLE . 173(ACIFSRC

15 12 " 08 07 06 05 00
T T T T T T T) 1 T 1 1
1 1 1 1 0 1 1 0 AC FSRC
L { 1 L i 1 i i 4
Format: SUBF FSRC,AC
Operation: Let DIFF = (AC) - (FSRC)

If underflow occurs and FIU is not enabled, AC
<=-= exact 0.

If overflow occurs and FIV is not enabled, AC
<-- exact 0.

For all others cases, AC <-- DIFF.

Condition Codes: FC <-- 0

FV <=-= 1 if overflow occurs, else FV <-- 0
¥Z <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < 0, else FN <-- 0

Description: Subtract the contents of FSRC from the contents
of AC. The subtraction is carried out in
single- or double-precision and is rounded or
chopped in accordance with the values of the FD
and FT bits in the FPS register. The result is
stored in AC except for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is
stored in AC.

Interrupts: If FIUV is enabled, trap on -0 in FSRC occurs
before execution. If overflow or underflow
occurs, and if the corresponding interrupt is
enabled, the trap occurs with the faulty result
in AC. The fractional parts are correctly
stored. The exponent part is too small by 400
for overflow. It is too large by 400 for
underflow, except for the special case of 0,
which is correct.

Accuracy: Errors due to overflow and underflow are
described above. If neither occurs: for
like-signed operands with exponent difference of
0 or 1, the answer returned is exact if a loss
of significance of one or more bits can occur.
Note that these are the only cases for which
loss of significance of more than one bit can
occur. For all other cases the result is
inexact with error bounds of:

1. LSB in chopping mode with either single- or
double-precision.

7-30

Special Comment:

2. 1/2 LSB in rounding mode with either single-
or double-precision.

The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will
be stored in AC only if the corresponding
interrupt is enabled. .

TSTF/TSTD
TEST FLOATING/DOUBLE 1705 FDST
15 12 1 06 05 ' ’ 00
1 1 1 1 0 0 0 1 [1 FDST
h A 1 - Il L ks
Format: TSTF FDST
Operation: (FDST)
Condition Codes: FC <-- 0
FV <-- 0

Description:

Interrupts:

Accuracy:

FZ <-- 1 if (FDST) = 0, else FZ <~-- 0
FN <-=- 1 if (FDST) < 0, else FN <-- 0

Set the floating-point condition codes according
to the contents of FDST.

If FIUV is set, trap on -0 occurs before
execution. Overflow and underflow cannot occur.

These instructions are exact.

7-31

CHAPTER 8
INTERFACING

8.1 INTRODUCTION

This chapter covers topics related to the interfacing of external
logic to the DCJ1ll.

8.2 GENERAL-PURPOSE (GP) CODES

An important means of communicating with external logic is through
the use of GP Reads and Writes (see Chapter 3 - Bus Cycles). GP
Reads and Writes are associated with codes that specify the
function performed during the GP Read or Write cycle. External
logic interprets these codes to implement system functions. Table
8-1 summarizes the GP codes.

Table 8-1 GP Codes and Functions

GP Code GP Read
(octal) or Write Function

000 Read Reads the power-up mode, HALT
option, FPA option, POK, and
boot address.

001 Read Reads FPA data (if FPA exists)

002 Read Reads the power-up mode, HALT
option, FPA option, POK, and
boot address, and (if an FPA
exists) clears the FPA“s FPS.

003 Read Acknowledges FPE and reads the FEC
(floating exception code) register

003 Write Writes FPA 16-bit data (if FPA exists)

014 Write Asserts bus reset signal

034 Write Signals exit from console ODT

040 Write Reserved for future use

100 Write Acknowledges EVENT

140 Write Acknowledges power fail

214 Write Negates bus reset signal

220 Write Microdiagnostic test 1 passed

224 Write Microdiagnostic test 2 passed

230 Write Microdiagnostic test 3 passed

234 Write Signals entry into console ODT

Specific external logic designs may need to interpret only a
subset of the GP codes. For example, a minimal system with no FPA
and no need for POK or a bus reset signal would only have to
identify a GP code associated with the reading of power-up
configuration data during the DCJ1l1”s initializtion sequence. As
shown in the flowchart in Paragraph 8.3.2, this is GP code 002.

CLK

NIT """"\:ﬁ-——-ﬁmrw— /1

tiND —
SCTL \ I SCTLLH “II

8.3 POWER-UP AND INITIALIZATION

The DCJ1l performs a specific sequence of events at power-up or
when it is initialized. These initialization microroutines are
described in this paragraph. Also, during power-up the DCJ11
reads the contents of a configuration register to determine its
initial mode of operation. This configuration register is also
described. A typical power-up circuit is also provided.

8.3.1 1Initialization Timing - Initialization timing is shown in
Figure 8-1. When external logic asserts INIT for a minimum of 25
clock periods, the DCJ1l is forced into a power-up initialization
sequence, As shown in Figure 8-1, the DCJ11l asserts SCTL shortly
after the assertion of INIT. SCTL is deasserted approximately
five clock periods after INIT is deasserted.

(OFFSET)_/——_/— k / \ / \ /—\ ﬂ /_\ /——_/_—

‘MCLKD

T0

tgos —o P—

Figure 8~1 1Initialization

8.3.2 1Initialization Microroutine - The microroutine that is
executed when the DCJ1ll is powered up or initialized is shown in
Figure 8-2. Note that GP codes that indicate some event (such as
the passing of a microdiagnostic test) can be used by external
logic to light LEDs for a visual indication of the event.

8-2

MR 9180

BUS CYCLE

GP WRITE

GP WRITE

NIO

GP WRITE

NIO

NIO

NIO

BUS WRITE

NIO

DCJ11-AA
OPERATION

EXTERNAL LOGIC
ASSERTS TNTT FOR
A MINIMUM OF

25 CLK PERIODS

}

GENERATE
GP CODE OF

034
!

GENERATE GP
CODE OF

014
+

DELAY QPERATION
FOR 69
MICROCYCLES

3

GENERATE
GP CODE OF

214
:

CLEAR MMRO

:

CLEAR MMR3

!

DELAY OPERATION
FOR 600
MICROCYCLES

!

CLEAR
PIRQ REGISTER
(LOC. 177727772)

t

CLEAR FPS

NOTES

SYSTEM IS NOT
IN CONSOLE ODT
MODE

SET SYSTEM RESET
FLIP-FLOP

CLEAR SYSTEM RESET
FLIP-FLOP

MA. 11446

Figure 8-2 Initialization Sequence

BUSCYCLE

GP READ

NIO

BUS WRITE

BUS WRITE

NIO

BUS READ

NiO

DCJ-11 AA
OPERATION

U

GENERATE
GP CODE OF

:

CLEAR CPU
ERROR REGISTER
(LOC 17777766)

POK
ASSERTED

WRITE 400 TO
THE CCR
(LOC 17777746)

i

WRITE ZEROES TO
THE MSER
(LOC 17777744)

b

WRITE 177766

TO THE CPU
ERROR REGISTER
(LOC 17777766)

!

READ THE CPU
ERROR REGISTER
{LOC 17777766}

i

WRITE ZEROES
TO THE CPU
ERROR REGISTER
(LOC 17777166)

READ POWER-UP CONFIGURATION
DATA THAT 1S DRIVEN ON DAL
B8Y EXTEANAL LOGIC.

SET BIT 8 OF THE CCR, WHICH IS
TYPICALLY IMPLEMENTED BY
THE USER AS THE FLUSH CACHE
BIT (IN CACHE SYSTEMS). CLEAR
THE OTHER CCR BITS.

CLEAR THE MEMORY SYSTEM
ERROR REGISTER, WHICH MAY
OR MAY NOT BE IMPLEMENTED
BY THE USER.

MR 1144/

Figure 8-2 Initialization Sequence (Continued)

BUS CYCLE

GP WRITE

BUS READ

BUS READ

GP WRITE

BUS READ

DCJ-11-AA NOTES
OPERATION -

DATA
READ FROM
CPU ERROR REG =
177766

TEST 1 PASSED. CPU ERROR REGISTER
WRITTEN AND READ CORRECTLY.

GENERATE
GP CODE OF 220

READ MEMORY

LOCATION
00000000
DETERMINE IF EXTERNAL LOGIC THINKS
NXM YES LOCATION 0 1S IN NONEXISTENT MEMORY

ABORT (IT SHOULD NOT). IF IT DOES, EXTERNAL
LOGIC TYPICALLY GENERATES AN ABORT.

NO

READ MEMORY

LOCATION

17777700
DETERMINE IF EXTERNAL LOGIC THINKS

NXM NO LOCATION 17777700 IS IN NONEXISTENT
ABORT — MEMORY (IT SHOULD). IF IT DOES,
EXTERNAL LOGIC TYPICALLY GENERATES
AN ABORT.
YES

TEST 2 PASSED. NXM ABORT NOT
GENERATED BY REFERENCE TO
N
SE 2§‘?ATE GP CODE LOCATION 0 BUT WAS GENERATED
8Y REFERENCE TO LOCATION

17777700.

READ MEMORY
LOCATION
17777560 [

READ RECEIVER CONTROL
AND STATUS REGISTER (RCSR)

MA. 11440

Figure 8-2 Initialization Sequence (Continued)

BUSCYCLE OCJ-11-AA NOTES

OPERATION
DETERMINE IF EXTERNAL LOGIC
THINKS LOCATION 17777560 (THE
NXM RCSR) IS tN NONEXISTENT MEMORY
ABORT (tT SHOULD NOT). {F 1T DOES,
EXTERNAL LOGIC TYPICALLY
GENERATES AN ABORT.

GP WRITE GENERATE GP CODE TEST 3 PASSED. NXM ABORT NOT
’ OF 230 GENERATED BY REFERENCE TO RCSR.

POWER-UP
OPTION
0

PC « M(24] TRAP THROUGH
PS — M[26] LOCATION 24

BEGIN EXECUTING CODE

POWER.UP
OPTION
1

ENTER CONSOLE 00T
PS 0

POWER-UP
OPTION

2
PC « 173000
NO PS « 340
PC<L15:9> «— USER BEGIN EXECUTING CODE
BOOT
PC<8:0> ~ 0
PS — 340

BEGIN EXECUTING CODE

MR 11466

Figure 8-2 Initialization Sequence (Continued)

8,3.3 Power-Up Configuration - The power-up configuration is
specified by setting bits in an external register which is read
(via the DAL) during the DCJ1ll”s initialization sequence. It

specifies wvarious user-defined initial conditions. The register
is shown in Figure 8-3.

BOOT ADDRESS

FPA HERE

UNUSED

HALT OPTION

POWER UP MODE

POK

MR.11450

Figure 8-3 Power-Up Cohfiguraton Register

Bit(s) Name

<15:9> Boot Addresé

8 FPA Here
<7:4> Unused

3 Halt Option
<2:1> Power-Up Mode

0 . POK

Description

Contains the most significant

~seven bits (bits <15:9>) of a

user-defined boot address used
in power-up mode 3. The lower
bits of the boot address (bits
<8:0>) are zeroes.

Indicates the presence of an
optional floating-point
accelerator (FPA) when set.
When cleared, the FPA is

not present.

These bits are not interpreted
by the DCJ1l.

Indicates how a HALT instruction
will execute in kernel mode. 1If
set, the DCJ1ll traps through
location 4 and sets bit 7 of the
CPU error register when HALT is
executed. If cleared, the
DCJ1l enters console ODT when
HALT is executed.

Indicates one of four power-
up mode options.

Mode

1

0 Trap through location 24

1 Enter console ODT

0 Power-up to 17773000

1 Power-up to the
user-defined address
specified by bits <15:9>

Indicates whether the power supply
8-7

is operating within its normal range.
Set when power is at an acceptable
value, '

8.3.4 Power-Up Circuit - A circuit such as that shown in Figure
8-4 can be used to power-up the DCJ1ll.

INIT is provided to the DCJ1ll by power-up logic and the AIO code
is latched by the assertion of ALE. The decoder indicates whether

a GP Read of 000 or 002 is being executed.

In this simple application, only DAL<8,3:0> are affected by the
power-up configuration register. The register is configured to
indicate that no FPA is present, power-up mode 0 (trap through
location 24) 1is selected, and power is always OK. The DAL is
driven with configuration data when BUFCTL is asserted and a GP
Read with a code of 000 or 002 occurs.

POWER UP
REGISTER
74152444
DAL
O] <8>
W —o oDt <>
GND —o- DT <
o Pf——— <1>
DCJ1Y -o—4—> <0>
4
AIO GP READ
POWER | pyp AI0<3:0> = P 4 AND (20R 0)
uP It FF - GP CODE D;_—
8 |DECODER
LOGIC oL c c BUFCTL
—slDv DAL<7:0>
MR-11449

Figure 8-4 Power-Up Circuit

8.4 OTHER MICROROUTINES

Figures 8-5 and 8-6 illustrate two other microroutines whose
operation can be monitored by external logic: the power-down
microroutine and the console ODT response to entering the "go"
command.

8-8

DCJ11-AA

BUS CYCLE OPERATION
POWER DOWN
GENERATE
GP WRITE GP CODE OF
140
2 BUS READS TRAP THROUGH
2 BUS WRITES LOCATION 24
EXECUTE
HA[N NO
NEXT POWER
N ed N >——= DOWN SERVICE
ROUTINE
INSTRUCTION
GENERATE
GP READ GP CODE OF
000
SETBIT?
NO OF CPU ERROR
K&ggg‘- ~>——] REGISTER AND
" TRAP THROUGH
LOC 4
POK YES START
ASSERTED INITIALIZATION
SEQUENCE
, SETBIT?
HALT YES QF CPU ERROR
OPTION >+ REGISTER AND
BIT SET TRAP THROUGH
Loc 4
ENTER
CONSOLE
ooT
Figure 8-5 Power-Down Sequence

8-9

MP-1145)

BUS CYCLE

GP WRITE

GP WRITE

NIO

GP WRITE

NIQ

NIO

NIO

BUS WRITE

N1Q

DCJ11.AA
OPERATION

TYPE IN G WHILE
IN CONSOLE ODT

MODE
}

GENERATE
GP CODE OF

034
]

GENERATE GP
CODE OF

014
!

DELAY OPERATION
FOR 69
MICROCYCLES

:

;_1____4

GENERATE
GP CODE OF
214

l CLEAR MMRO]

:

CLEAR MMR3

:

DELAY OPERATION
FOR 600
MICROCYCLES

i

CLEAR
PIRQ REGISTER
(LOC 17777772)

1

CLEAR
FPS

NOTES

SYSTEM IS NOT
IN CONSOLE ODT
MODE

SET SYSTEM RESET
FLIP-FLOP

CLEAR SYSTEM RESET
FLIP-FLOP

MR.11482

Figure 8-6 Console Start Sequence

BUS CYCLE DCJ-11-AA NOTES
QPERATION

{

GENERATE READ POWER-UP CONFIGURATION
GP CODE OF DATA THAT IS DRIVEN ON DAL
002 BY EXTERNAL LOGIC

!

CLEAR CPU
ERROR REGISTER
(LOC 17777766)

POK
ASSERTED

NC)_J

YES |
X
SET BIT 8 OF THE CCR, WHICH
BUS WRITE \mé'rcsc%oo Te IS TYPICALLY IMPLEMENTED BY
(LOC 17777726) THE USER AS THE FLUSH CACHE
BIT (IN CACHE SYSTEMS). CLEAR
l THE OTHER CCR BITS.
WRITE ZEROES TO CLEAR THE MEMORY SYSTEM
BUS WRITE THE MSER ERAOR REGISTER, WHICK MAY OR
(LOC 17777744) MAY NOT BE IMPLEMENTED BY
T THE USER.
WRITE 2EROES TO
BUS WRITE LOC 17777744

!

NIO CLEARPS —]

BEGIN EXECUTING CODE

MH 11453

Figure 8-6 Console Start Sequence (Continued)

Absolute Maximum Rating

Storage Temperature Range:
Active Temperature Range:

Supply Voltage:

Input or Output Voltage Applied:

Electrical Characteristics
Specified Temperature Range

Specified Voltage Range
Test Conditions

Symbol Parameter Min,
v High level 708 v
IH MOS input ce
\Y Low level
IL MOS input
\Y High level 2.2
IHT TTL input
\Y Low level
ILT TTL input
I Input leakage -10.0
1 current except
TEST inputs
(note 1)
I Input current 0.1
ILL 7EST inputs
(note 1)
IOH Output current -2.0
at high level
I oL Output current 2.0

at low level

APPENDIX A
DC CHARACTERISTICS

-65 C to +150 C
-55 C to +125 C
+7.0V

Vss -0.3V

vVee +0.3v

0C to +70 C :

+4.75V to +5.,25V

Temperature = +70 C

Vss = QV

Vce = 44,75V (except as noted)
Test Condition

Max. Units

v

30% Vee \Y

v
0.8 \Y
10.0 uA OV <V, <V,
5.0 mA VI = 0V
mA VO e VCC - 0.4V
mA Vo = 0.4V

Symbol Parameter Min. Max. Units Test Condition

I Output current -2.0 mA Vo = 2.4V
OHT a¢ high TTL
level

High level -0.2 -0.6 mA Vo Vcc - 1l.0V
sustainer

current

(note 1)

OSH

1 Low level 0.2 0.6 mA v = 1.0V
OSL sustainer 0
current
(note 1)

Output leakage -10.0 10.0 uA ov < Vo £ Vec
current
(notes 1,2)

02z

Static power 30 mA
supply current
(notes 1,3)

I ccse

Input 7 pF
capacitance
(note 4)

Input/output 15 pF
capacitance
(note 4)

c Output 15 pF
capacitance
(note 4)

DCJ11l capacitance 50 PF
pPlus external
capacitance

NOTES
l. Tested at Vcc = 5,25V,
2. Only applies in the high impedance condition.

3. With TEST1 and TEST2 asserted, all outputs open
circuit, and all other inputs equal to Vcc.

4., Sampled and guaranteed, but not tested. Does not
apply to TEST1 or TEST2.

SIGNAL SUMMARY
TYPE NAME APPLICABLE DC TEST

TTL INPUT IRQ<3:0>, HALT, PWRF, v , V R
EVENT, PARITY, DV, IHT ¢ 7ILT ' 71
MIS3, CONT, DMR,

iNIT, FPE

TTL OUTPUT DAL<21l:16>, AIO<3:0>, I , I , 1
ALE, BUFCTL, SCTL, OL OHT 0z
STRE, BS<1:0>, MEP,
PRDC

MOS INPUT TEST1, TEST?2 | Vog e Voo v T pp

MOS OUTPUT CLK, CLK2 Ionr Ion+ Iog

TTL 1/0 KBORT* | Vierr Tor ' Tour’ Yoz ' Tosy
TTL 1/0 DAL<15:00> Viar Viur s Tou' Topr’ log
Power Vece I CCSB

* ABORT must be driven with an open collector driver because the
DCJ1l has a pull-up device that supplies Iosy

L—'en
90% YoH
. i 2
[‘dis
10% VoL
jo—r1en
VoH 90%
Hl 2 Ml Z,
Var 10%
Vou VouT ro—"tais
Vib ViHT
Ho REFERENCE
CLK IMOS) OUTPUT
DV (TTL)
Voo ViLVier
b—*a-—] (©OUTPUT) | et med (OUTPUT)
X ViVt VoH
MOS, TTL
VoL Vit VLt
Vou ViH ViuT
~— ViLVier VoiL
|
i tn le= (INPUTI [—ef Th pe=(INPUT)
VornYorT —-l ty po== (INPUT) compl ' e (INPUT)
Vin VINT a Vs & Ve —.08
oH*Vee —
V|L VILT VOL (d'DELAV TIME
th * HOLD TIME
Vow Yot 1, = SETUP TIME
Vin VinT ten” ENABLE TIME
tgis * DISABLE TIME
VoL - ViVier
MR 9420
Figure A-1 Voltage Waveforms

Test Conditions:

Temperature = +70 C
= 0V

Vss

APPENDIX B

' AC CHARACTERISTICS

Vec = +4.75V (ekcept as noted)
CMAX = 50 pF

Timing Requirements

Symbol

toINTTW

t SCTLLH

 ps

DH

DVDS

DVDH

DVwW

DVF
t DVH

t DVS

Parameter

INIT pulse width

Initialization
interval

DAL<15:00> setup,
with respect to
T3

DAL<15:00> hold,
with respect to
T3

DAL<15:00> setup,

‘with respect to

DV

DAL«<15:00> hold,
with respect to
DV

DV Pulse width
DV Fall time
DV deassertion
with respect to
T6. _

DV deassertion

with respect to
T4.

MISS setup

ISS hold
Q

=

IRQ<3:0>, HALT,
PWRF, FPE,

VENT setup
(see note)

Min

10

225

35

35

35
15

30

10
20

Max

Units

clock
periods

ns

ns
ns
ns
ns

ns

ns

ns

ns

ns

ns

Symbol Parameter Min Max Units

t .. IRQ<«3:0>, HALT, 20 ns
SVCH pwRF, FPE,
EVENT hold
{see note)
t PARITY setup 20 ns
PARS (see note)
t PARITY hold 20 . ns
PARH (see note)
t’ABS ABORT drive 30 ns
t ABD ABORT delay 0 ns
t ABW ABORT width 40 + tCLKH ns
t CONT setup 30 ns
CNTS (see note)
t CONT hold 20 ns
CNTH (see note)
t oMRsS DMR setup 30 ns
(see note)
t DMR hold 20 ns
DMRH (see note)
Note:

Setup and hold requirements are only to guarantee recognition at
next sample point. '

Timing Responses

Figure
Symbol Parameter Min Max Units References
tCYCLE CLK cycle time 67 ns B-1, B-4
tCLKH CLK high width 28 ns B-1, B-4
tCLKL CLK low width 28 ns B-1, B-4
tR CLK rise time 7 ns B-1, B-4
t!, CLK fall time 7 ns B=1, B-4
tPCYC CLK2 cycle time 67 ns B-1, B-3
t CLK2 high width 28 ns B-1, B=3

PCLKH B2

Figure

Symbol Parameter Min Max Units References

t PCLKL CLK2 low width 28 ns B-1, B-3

t pr CLK2 rise time 7 ns B-1, B-3

t op CLK2 fall time 7 ns B-1, B-3

t pcLkD CLKZ valid delay tbs ns B-1, B-3

t marp MAP delay 45 ns B-1, B-3

t sp Strobe active 0 © ns B-3
delay

t Strobe inactive 0 ns B-3

SID delay

t b1s DAL output disable 35 ns . B-2

t pALD DAL valid delay 65 ns B-3

t bALH DAL valid h~old 0 ns B-3

tep PRDC valid delay 50 ns B-3

t oD PRDC invalid 50 ns B-3
delay

'tAIOD AIO<3:0> delay 75 ns B-3

o s

90%
CLK
10%
'

— pe- toLke

fe— tpcLKD o thCYC - tPCLKH

CLK2

PR —-—‘ tpF —-*-l t._ tPCLKL

MA-11492

Figure B-1 Clock Timing

vce TEST vce
3 POINT R| IS SELECTED TO PROVIDE
>
P

R, oL OF 2MA AT 0.4 VOLTS
il OUTPUT -
UNDER o PamQ TEST POINT
TEST _L UNDER o ¢
$ TEST
$1K soPF ALL DIODES ARE EITHER
) I CLoaD IN918 OR IN3064 :
MA 942)]
Figure B-2 = CLOAD = Cmax =411 PIN CAPACITANCE
L LR ")
Three State Figure B-3
Disable Test Circuit TTL Output Test Circuit
OuTPUT
TEST
UNDER o- - °
TEST POINT

CLoap T

\CE
CLOAD ™ Cmax = 11 PIN CAPACITM::..H

Figure B-4
MOS Output Test Circuit

T2T6 TITT TO T T2 T3 T0
CLK - L_/_—_.J
tAIQD
AIQ
PD —adl” W= - tPID
PRGC T3
b=
‘HMS_’-{H‘_ HMH
Miss — ~
tSD e -o{ |o-1'sD
MAP WiAP
IDMRS o~ le— [‘DMRH
OMAR -
— q-t$o e~ %505
8S BS<1:0> | BYP/FORCE

tsp — [[tsi0
- ——/’ T
510 1
STRE '4 4:;;=\J”5°
— !

T
—o fe-15p
|
CONT
tos_. i = {510
BUFCTI —7 D
(R —
et tOH
DS e~
- ‘ois READ
tDALD IDALH = o= /10ATA
DAL - == __ [ADDRESS
ov

MA1878

Figure B-5 Non-Stretched Bus Read Timing
B-4

T2T6 TIT? 10 T T2 T3 Ta Ta T4 T4 T4 T4 TS5 6 T7 T0
<—1A10D —> LAIQD (1) re———e ! C
A0 ; - co Lo
TR vy AL ! . ol
PRDC e i 1 i
“tppe’ | —e e typg L
1SS i ><L X o X :
tSpie—e 1SC— e P
AP > wmap DX DMG | i i
IDMRS =~ " 'DMAH | SR
o XX T
— o S0 -+ 15D i i
8s DA da BYP/FORCE . i
5D - -— tgip =+ -— | !
-ATE _//' | H i
ISID—+ ' w50 “ ' bl
STRB - , P
v TSO~ - ‘SlD =
5CTL ! . |
— 15D —» «—1taBD ‘Ass—-i k— tABD — f—
' — ‘CNTS_,)‘ABW >
CONT 1510~ -— . !CNTH
gD | —t — 150 . — 510
BUFCTL Pig ___/_\ :
R . - .
H ""‘"‘“‘DH SLOW
L= =g READ
DALD > — EE«-‘—- {DALH e 1015 9ATA
DAL j ’ p 4
READ '0vDS TH™ e tpvpH '
ov DATA -\ ro- 'DVH i
1
, OV, I- tDVF
-— tovs —-
) MR TTEE2
Figure B-6 Stretched Bus Read Timing
T2T6 TIT? TO T4 T5 76 T7 T0
CLK mj__/__f—\J__/__/ ___/—_/_\ _/‘x_F_F_F\._
w—TAIOD —= | ———e= LAIOD (1) -
AlIC ; | l |
[= -1pD - D o R
PRDC , o i~ : - ;
_JDALD—» | i 'DALH__— fe— tDALD — L IDALH
DAL ——{__ ADDRESS | < > BUS WRITE DATA _
lsp—= “"‘i —+ 15D o
ATE P N\ i v |
- - - ' - | !
— e t5n i tSip—»
LT e N i | : '
. : ' i :
BUFETL pre , =T |
7 { .
i ! 1S —w - —+ |& 5D’
SCTL : O\, | I
1SD ~ re— —» —15D bl
8S > 8510 _ BYP/FORCE
Isp—» e— —» e—l5p : .
MAP X VAP y : DMG .
SD ' a— 5D ’ TABD—a e —» le—'ABS —a e 'ABD
RBORT i N . i L
et 1] >
| lABx-_ ‘ - LCNTS !
&oRT N o
Mit 115

Figure B-7

Bus Write Timing
B-5

T2/76 T3/T? T0 AR T2 T3 T4 T4 T4 T4 T4 T4 T5 T6 T? T0

e PEAYAVAW W aVWala
(s el
AIOD i ALOD (1)
A0 |
PD - _.L te— tpD |
PROC -\r
'SD fe—a "—w e-15p
MAP AP DMG .
tOMRS o T — 'DMRH
DMR
B >
e 'sp — e tsiD
ALE - |
- tS1D - ! sp
STRB yd
' [+ 'so —~e 15D
SCTL
—»)-O—‘SD
ABORT 4 ICNTS \
- ICNTH
CONT 151D~ 5-—
t5p —e 1—* le—tsp —-{ }0-‘5:0
BUFCTL — SLOW VO
IDALD Fewl TDAL - e- GP DATA
DAL <<__| GPCODE N
lDVDS—.{ r—
‘D15~ FAST pI1s L oK
bv GP DATA ~ o
1ovs o 'DVF
MA 11580
Figure B-8 General-Purpose Read Timing
T2T6 THT? TO T T2 T3 T4 T4 T4 T4 T4 5 T6 T7 T0
oLx Y/ A NV A U A W A
tAIOD—+ | — A10D (1)
s _ e—[*lPiD™ i
PRDC N~ e fem oS ,, --
l‘-!po PH"" % I .
IDALD = f#—i" " —e=ju-tpALH =% = 1DALD —>{ = 'DALH
DAL ———z GPCODE .4 GP WRITE DATA >
. 15D o ___ji 15ID"" -— - i
LE e ! i \
- - - i
— =0 | : - 'SiD e
— - -- i
BUFCTL ey . -T !
4 ;
W so ~ bo— 151D
SCTL N l/~
== 1
8s X . >_
1S5S0~ - —.l »‘"—KSD
MAP AP : DMG N ——
ISD—b —
ABORT -
_______"/} enTs—] - | . _..__.
p— jw~ CNTH
CONT

Figure B-9 General-Purpose Write Timing wa e

B-6

T2/T6 T3IT?7 10 T T2 T3 T4 T4 T4 T4 T4 T4 Ts T6 T? T0
cLK AYRYaWa WA WaWal avYe
W A WA W S W (W SN NSNS
- ‘AIOD 1A10D (1)
AIOQ >< -
_j ¢—1sz -T
PRDC tpH‘-q-/— - v
-‘PD: tpIp'e he— THMS
Mmiss -
tsp tgp—e po—
AP WAP DMG
IDMRS 1 ~®le— ™ IpMAH
DER -
B8S --
. tgp — tg)p~o jo— :
AL _ ;
151D~ r—[— 5D '
STRB
' 15— o tSIp—» e
SCTL
—> fesD —+ |- 'ABD taps—» [e— 'ABD —» te—
ABORT AN T /
-‘p———-—-—(CNTS-—-lABW
CONT 50—+ He— < (CNTH
tsD—» — 'sD — 'S1D
BUFCTL . |
__ N
INTERRUPT
VECTOR
pIs 'DIS (SLOW)
{DALD- o —»lje— 'DALH 3< /
DAL Mty 7 --
= D, S X
INTERRUPT INTERRUPT VECTOR : —+ == IpVyDH
3% ; o\ " fDVH
LEVEL {FAST) [~ .
/ tovw i -
" " ipvr
"_—‘DVS——————.-‘
M YINA .
Figure B-10 Interrupt Acknowledge Timing
TO TT T2/Te TI/T?T TO T T2 T3 T4 T4 T4 5 16 77 T0
L O U e Y VY g W o, WV VA W W WY WY M
lsvcs tSVCH 15V CS 1SvCs ~ tgycs Tgves 1 tsvCs tSVCH
sve S —tSVCH tSVCH 1.2 _
IRQ< 30> > 1 SVCH SVCH
HALT FWRF, —1 1 +=- t
FPE, EVENT
'PARH tPARS|tPARH 'PARS|'PARH
PARS
PARTTY = -- -
Mettenvecanacahondentmmconfan --..-..--ﬂ.-.;..-"

Figure B-11

MR 11494

Interrupt Timing

B-7

APPENDIX C
DCJ11 HARDWARE AND SOFTWARE DIFFERENCES

C.l HARDWARE DIFFERENCES BETWEEN THE DCJ1l AND THE PDP-11/44

The DCJ1l may replace the PDP-11/44 in certain applications;
however, it does not contain the following PDP-11/44 hardware
features:

o Cache Data and Maintenance Registers (17777750, 17777754)

0 Memory System Error Register (17777744)

O Switch Register (17777570).
The DCJ11l does contain additional functionality not present in the
11/44:

o Dual general register set

o SPL, MTPS, MFPS, TSTSET, WRTLCK instructions.

The following list summarizes the hardware differences between the
11/44 and the DCJ1l1l:

Address Function Differences

17777776 PS Added register set select
bit<1ll>.

17777772 PIRQ No difference.

17777766 CPU Error Unibus monitoring bits
not implemented.

17777754 Cache Data Not implemented.

17777752 Hit/Miss ‘ No difference.

17777750 Maintenance Not implemented.

17777746 Cache Control Hardware specific changes
(see Paragraph 5.2.1).

17777744 Memory Error Not implemented.
17777676

to User Data PAR " No difference.
17777660
17777656

to User Instruction No difference,
17777640 PAR
17777636

to User Data PDR No difference.
17777620
17777616

to User Instruction’ No difference.
17777600 PDR
17777576 MMR2 ' No difference.
17777574 MMR1 No difference.
17777572 MMRO Eliminated maintenance

mode,

17777570 Switch Register Not implemented.
17772516 MMR3 No difference.
17772376

to Kernel Data PAR No difference.
17772360
17772356

to Kernel Instruction No difference.
17772340 PAR
17772336

to Kernel Data PDR No difference.
17772320
17772316

to Kernel Instruction No difference.
17772300 PDR
17772276

to Supervisor Data PAR No difference.
17772260

17772256

to Supervisor No difference.
17772240 Instruction PAR '
17772236

to Supervisor Data PDR No difference.
17772220
17772216

to Supervisor No difference,
17772200 Instruction PDR

C.2 HARDWARE DIFFERENCES BETWEEN THE DCJ11l AND THE PDP11/70
The DCJ1l may replace the PDP-11/70 in certain applications;
however, it does not contain the following PDP-11/70 hardware
features:

O Stack Limit Register (17777774)

O Micro Break Register (17777770)

o System ID Register (17777764)

O System Size Register$§ (17777760, 17777762)

o0 Maintenance Register (17777750)

o0 Memory System Error Register (17777744)

o Physical Error Address Registers (17777740, 17777742)

O0 Switch Register (17777570).
The DCJ1l does contain additional functionality not present in the
11/70:

o MTPS, MFPS, MFPT, CSM, TSTSET, WRTLCK instructions

o Bypass cache bit in PDRs.

The following list summarizes the hardware differences between the
11/70 and the DCJ11l:

Address

17777776

17777774
17777772
17777770
17777766
17777764
17777762
17777760
17777752
17777750

17777746

17777744
17777742
17777740
17777676
to
17777660
17777656
to
17777640
17777636

to
17777620

17777616
to
17777600

17777576
17777574

Function

PS

Stack Limit
PIRQ

Micro Break
CPU Error
System ID
System Size
System Size
Hit/Miss
Maintenance

Cache Control

Memory Error
High Error Address

Low Error Address

User Data PAR
User Instruction PAR

User Data PDR

User Instruction PDR

MMR2

MMR1

Differences

Added suspended instruction

bit <8>.

Not implemented.
No difference.
Not implemented.
No difference.
Not implemented.
Not implémented.
Not implemented.

No difference.

Not implemented.

Hardware specific changes

(see section 5.2.1).
Not implemented.
Not implemented.

Not implemented.

No difference.

No difference.

Added bypass cache,
eliminated access flags
and access modes other
than 0, 2, and 6.

Added bypass cache,
eliminated access flags
and access modes other
than 0, 2, and 6.

No difference.

No difference.

17777572 MMRO Eliminated traps,
maintenance mode, and
instruction complete.

17777570 Switch Register Not implemented.

17772516 MMR 3 Added CSM enable bit <3>,

17772376

to Kernel Data PAR No difference.
17772360
17772356 _ .

to Kernel Instruction PAR No difference.
17772340 ’
17772336

to Kernel Data PDR Added bypass cache,

17772320 eliminated access flag
and access modes other
than 0, 2, and 6.

17772316

to Kernel Instruction PDR Added bypass cache,

17772300 eliminated access flag
and access modes other
than 0, 2, and 6.

17772276 ,

to Supervisor Data PAR No difference.
17772260

J

17772256 :

to Supervisor Instruction No difference.
17772240 PAR
17772236

to Supervisor Data PDR Added bypass cache,

17772220 eliminated access flag
and access modes other
than 0, 2, and 6.

17772216

to Supervisor Instruction Added bypass cache,
17772200 PDR eliminated access flag

and access modes other
than 0, 2, and 6.

C.3 SOFTWARE DIFFERENCES

Table C-1 summarizes the programming differences (at the assembly
language 1level) between the DCJ1l1 and other processors in the
PDP-11 family. :

PROCESSORS

ITEM 23/24] 44 04 34 | LSI11105/10115/2035/40| 45 70 60 | J-11 | T-11 [VAX

1. OPR %R, (R) +; OPR %R, — (R) using X X X X X X
the same register as both source and
destination: contents of R are incre-
mented (decremented) by 2 before being
used as the source operand.

OPR %R, (R) +; OPR %R, — (R) using the X X X X X X X X
same register as both register and des-
tination: initial contents of R are used as
the source operand.

2.OPR %R, @ (R) +; OPR %R, @ — (R) X X X X X X
using the same register as both source
and destination: contents of R are incre-
mented (decremented) by 2 before being
used as the source operand.

OPR %R, @ (R) +; OPR %R, @ — (R) X X X X X X X X
using the same register as both source
and destination: initial contents of R are
used as the source operand.

3. 0OPRPC, X (R); OPRPC, @ X (R); OPR X X X X X X
PC, @ A; OPR PC, A: location A will con-
tain the PC of OPR +4.

OPR PC, X (R); OPRPC, @ X (R), OPR X X X X X X X X
PC, A; OPR PC, @ A: location A will con-
tain the PC of OPR +2.

4. JMP (R) + or JSR reg, (R) +: contents X X
of R are incremented by 2, then used as
the new PC address. .
JMP (R) + or JSR reg, (R) +: initial con- X X X X X X X X X X X X
tents of R are used as the new PC.

Table C-1 pcJi1l Programming Diffenences

L=D

ITEM

23/24

44

04

34

LSH1

05/10

15/20

35/40

45

70

60

J-11

T-11

VAX

5. JMP %R or JSR reg, %R traps to 10
(ilegal instruction).

JMP %R or JSR reg, %R traps to 4 (illegal
instruction).

NA

NA

6. SWAB does not change V.
SWAB clears V.

7. Register addresses (177700-177717)

are valid program addresses when used

by CPU.

Register addresses (177700-177717)

time out when used as a program

address by the CPU. Can be addressed

under console operation.

Register addresses (177700-177717)
_time out when used as an address by

CPU or console.

NA

8. Basic instrnuctions noted in PDP-11
processor handbook.

-‘S0OB, MARK, RTT, SXT instructions*
ASH, ASHC, DIV, MUL, XOR

Floating Point instructions in bas
machine. :
MFPT Instruction.

The external option KE11-A provides
MUL, DIV, SHIFT operation in the same

data format.

x

>

>

x

* RTT instruction is available in 11/04 but is different than other implementations.

! Register addresses (177700-177717) are handled as regular memory addresses in the 1/0 page.

2 All but MARK.

ITEM

23/24

44

04

34

LSI11

05710

15/20

35/40

45

70

60.

VAX

The KE11-E (Expansion Instruction Set)
provides the instructions MUL, DIV, ASH,
and ASHC. These new instructions are
11745 compatible.

The KE11-F (Floating Instruction Set)
adds unique stack ordered oriented point
instructions: FADD, FSUB, FMUL, FDIV.

The KEV-11 adds EIS/FIS instructions
MFP, MTP instructions

SPL |nstruction

CSM Instruction

>

x

9. Power fail during RESET instruction is
not recognized until after the instruction
is finished (70 milliseconds). RESET
instruction consists of 70 millisecond
pause with INIT occurring during first
20 milliseconds.

Power fail immediately ends the RESET
instruction and traps if an INIT is in
progress. A minimum INIT of 1 micro-
second occurs if instruction aborted.
PDP11-04/34/44 are similar with no
minimum INIT time.

Power fail acts the same as 11/45

(22 milliseconds with about 300 nano-
seconds minimum). Power fail during
RESET fetch is fatal with no power
down sequence.

6--0

ITEM

23/24

44

04

34

LSI11

05/10

15/20

35/40

45

70

60

™1

VAX

RESET instruction consists of 10 micro-
seconds of INIT followed by a 90 micro-
second pause. Reset instruction con-
sists of a minimum 8.4 microseconds
followed by a minimum 100 nanosecond
pause. Power fail not recognized until
the instruction completes.

10. No RTT instruction

if RTT sets the “T" bit, the “T” bit trap
occurs after the instruction following RTT.

11.1f RTI sets “T" bit, “T" bit trap is
acknowledged after instruction following
RTI.

1f RT| sets “T" bit, “T" bittrapis
acknowledged immediately following RTI.

12. if an interrupt occurs during an
instruction that has the “T” bit set, the
“T" bit trap is acknowledged before the
interrupt.

If an interrupt occurs during an instruc-
tion and the “T” bit is set, the interrupt is
acknowledged before “T” bit trap.

NA'

NA

13. “T” bit trap will sequence out of WAIT
instruction.

“T" bit trap will not sequence out of WAIT

instruction. Waits until an interrupt.

NA

'Interrupts not visible to VAX compatibility mode.

0T-0

ITEM

23/24

44

04

34

LS

05710

15/20

35/40

45

70

60

J-11

T-1

VAX

14. Explicit reference (direct access) to
PS can load “T" bit. Console can also
load “T” bit.

Only implicit references (RT1, RTT, traps
and interrupts) can load “T" bit. Console
cannot load “T" bit.

15. Odd address/non-existent references
using the SP cause a HALT. This is a
case of double bus error with the second
error occurring in the trap servicing the
first error. Odd address trap not imple-
mented in LSI-11,11/23 or 11/24.

Odd address/non-existent references
using the stack pointer cause a fatal trap.

On bus error in trap service, new stack
created at 0/2.

-2

16. The first instruction in an interrupt
routine will not be executed if another
interrupt occurs at a higher priority level
than assumed by the first interrupt.

The first interrupt in an interrupt service
is guaranteed to be executed.

17. Single general purpose register set
implemented.

Dual general purpose register set
implemented.

1 0dd address/non-existent references using SP do not trap.

20dd address aborts to native mode.

IT~-2

ITEM

23/24

44

04

34

LS

05/10

15/20

35/40

45

70

60

T-11

VAX

18. PSW address, 177776, not imple-
mented; must use instructions MTPS
(move to PS) and MFPS (move from PS).
PSW address implemented, MTPS and
MFPS not implemented.

PSW address and MTPS and MFPS
implemented.

19. Only one interrupt level (BR4) exists.
Four interrupt levels exist.

NA

20. Stack overflow not implemented.

Some sort of stack overflow implemented.

21. Odd address trap not implemented.
Odd address trap implemented.

22. FMUL and FDIV instructions implicity
use R6 (one push and pop); hence R6
must be set up correctly.

FMUL and FDIV instructions do not
implicitly use R6.

NA

23. Due to their execution time, EIS
instructions can abort because of a
device interrupt.

EIS instructions do not abort because of
a device interrupt.

NA

24. Due to their execution time, FIS
instructions can abort because of a
device interrupt.

NA

3 Can reference PSW only from native mode.

¢1-C

ITEM

23/24

44

04

34

LS

05/10

15/20

35/40

45

70

60

VAX

25. Due to their execution time, FP11
instructions can abort because of a
device interrupt*

FP11 instructions do not abort because
of a device interrupt.

NA

26. EIS instructions do a DATIP and
DATO bus sequence when fetching
source operand.

EIS instructions do a DATI bus sequence
when fetching source operand.

NA

27. MOV instruction does just a DATO
bus sequence for the last memory cycle.

MOV instruction does a DATIP and DATO
bus sequence for the last memory cycle.

28. If PC contains non-existent memory
and a bus error occurs, PC will have
been incremented.

It PC contains non-existent memory
address and a bus error occurs, PC will
be unchanged.

29. If register contains non-existent
memory address in mode 2 and a bus

Same as above but register is unchanged.

error occurs, register will be incremented.

X

X

X

* Integral floating point assumed on 11/23 and 11/24; FP11E assumed for 11/60.

' implementation dependent.

2 MOV instruction does a DATI and a DATO bus sequence for last memory cycle.

3Does not support bus errors.

€T

ITEM

23/24

44

04

34

LS

05/10

15/20

35/40

45

70

60

J-1

T-11

VAX

30. If register contains an odd value in
mode 2 and a bus error occurs, register
will be incremented.

If register contains an odd value in mode
2 and a bus error occurs, register will be
unchanged.

-3

31. Condition codes restored to original
values after FIS interrupt abort (EIS
doesn’t abort on 35/40). '

Condition codes that are restored after
EIS/FIS interrupt abort are indeterminate.

NA

32. Opcodes 075040 through 075377
unconditionally trap to 10 as reserved
opcodes.

If KEV-11 option is present, opcodes
75040 through 07533 perform a memory
read using the register specified by the
low order 3 bits as a pointer. If the
register contents are a non-existent
address, a trap to 4 occurs. If the
register contents are an existent address,
a trap to 10 occurs.

33. Opcodes 210 thru 217 trap to 10 as
reserved instructions.

Opcodes 210 thru 217 are used as a
maintenance instruction.

3 Does not support bus errors.
4 Unpredictable.
! Traps to native mode.

$T-0

ITEM

23/24

44

04

34

LSIN

05/10

15/20

35/40

45

70

60

J-1

T-11

VAX

34. Opcodes 75040 thru 75777 trap to
10 as reserved instructions.

If KEV-11 options is present, opcodes
75040 thru 75577 can be used as
escapes to user microcode. If no user
microcode exists, a trap to 10 occurs.

X

35. Opcodes 170000 thru 177777 trap to
10 as reserved instructions.

Opcodes 170000 thru 177777 are
implemented as floating point instructions.

Opcodes 170000 thru 177777 can be
used as escapes to user microcode. If
no user microcode exists, a trap to 10
occurs.

Opcode 076600 used for maintenance.

36. CLR and SXT do just a DATO
sequence for the last bus cycle.

CLR and SXT do DATIP-DATO sequence
for the last bus cycle.

-2

37. MEM MGT maintenance mode MMRO
bit 8 is implemented.
MEM MGT maintenance mode MMRO bit
8 is not implemented.

NA

38. PS<15:12>, non-kernel mode, non-
kemel stack pointer and MTPx and
MFPx instructions exist even when MEM

MGT is not configured.

1 Traps to native mode.

1 Unpredictable.
2CLR and SXT do DATI-DATO.

ST-O

ITEM

23/24

44

04

34

LSi1

05/10

15/20

35/40

45

70

60

T-11

VAX

PS<15:12>, non-kernel mode, non-
kernel stack pointer, and MTPx and -
MFPx instructions exist only when MEM
MGT is configured.

NA

39. Current mode PS bits <15:14> set
to 01 or 10 will cause a MEM MGT trap
upon any memory reference.

Current mode PS bits <15:14> set to 10
will be treated as kernel mode (00) and
not cause a MEM MGT trap.

Current mode PS bits <15:14> set to 10
will cause a MEM MGT trap upon any
memory reference.

NA

40. MTPS in user mode will cause MEM
MGT trap if PS address 177776 not
mapped. If mapped, PS <7:5> and
<3:0> affected.

MTPS in non-user mode will not cause
MEM MGT trap and will only affect
PS <3:0> regardless of whether PS

address 177776 is mapped.

b4

NA

41. MFPS in user mode will cause MEM
MGT if PS address 177776 not mapped.
if mapped, PS <7:0> are accessed.
MTPS in user mode will not trap regard-
less of whether PS address 177776 is

mapped.

NA

1 Unpredictable.

2CLR and SXT do DATI-DATO.

9T~0

ITEM

23/24

44

04

34

LSI1

05/10

15/20

35/40

45

70

60

J-1

T-11

VAX

42. Programs cannot execute out of
internal processor registers.

Programs can execute out of internal
processor registers.

43. A HALT instruction in user or super-
visor mod_e will trap thru location 4.

A HALT instruction in user or supervisor
mode will trap thru location 10.

44. PDR bit <0> implemented.
PDR bit <0> not implemented.

45. PDR bit <7> (any access)
implemented.

PDR bit <7> (any access) not
implemented.

46. Full PAR <15:0> implemented.
Only PAR <11:0>> implemented.

47. MMR0O <12> —trap-memory
management—implemented.

MMRO0 < 12> not implemented.

48. MMR3 < 2:0> —D space enable—
implemented.

MMR3 < 2:0> not implemented.

49. MMR3<5:4> —IOMAP, 22-bit
mapping enabled—implemented.

MMR3<5:4> not implemented.

X

THALT pushes PC & PSW to stack, loads PS with 340 and PC with < powerup address > + 40.

2Traps to native mode.

LT-O

ITEM

23/24

44

04

34

LS

05/10

15/20

35/40

45

70

60

J-1

T-11

VAX

50. MMR3<3>—-CSM enable—
implemented.

MMR3 < 3> not implemented.

51. MMR?2 tracks instruction fetches and
interrupt vectors.

MMR2 tracks only instruction fetches.

NA

NA

52. MFPx %6, MTPx when PS<13:12> =
10 gives unpredictable results.

MTPx %6, MTPx %6 when PS<13:12> =

10 uses user stack pointer.

NA

NA

T HALT pushes PC & PSW to stack, loads PS with 340 and PC with <powerup address> + 40.

2 Traps to native mode.

APPENDIX D
INSTRUCTION TIMING

The execution time for an instruction depends on: (1) the type of
instruction executed, (2) the the mode of addressing used, and (3)
the type of memory being referenced. In general, the total
execution time 1is the sum of the base instruction fetch/execute
time plus the operand(s) address calculation/fetch time.

The tables in this appendix can be used to calculate the length of
an instruction in terms of microcycles (MC). 1In the first group
of tables, the first column specifies the number of microcycles
required to fetch/execute the base instruction. The R/W column
specifies how many of these microcycles are read microcycles and
how many are write microcycles (any remaining microcycles are
NIO). If the instruction involves the calculation/fetch of one or
more operands, a reference to a separate table (a source or
destination table) 1is made 1in the last column (s). The
source/destination tables reveal how many microcycles the
source/destination calculation/fetch takes and also specifies how
many of these are read or write microcycles (again, any remaining
microcycles are NIO).

The numbers in the tables are based on the assumption that a
memory read must last a minimum of four CLK periods, a memory
write must last a minimum of eight CLK periods, and an NIO lasts
four CLK periods (no DMA). Any wait states caused by slower
memory or a DMA transfer must be added to the total instruction
time. If wait states are required, the first wait state of a
non-stretched read or NIO cycle will last four clock periods, and
can continue in increments of two clock periods. Further wait
states for stretched cycles occur in increments of ¢two clock
periods.

Floating-point instruction execution times are given as a range.
The actual execution time will vary depending on the type of data
being operated on.

Here are two examples of how to use the tables:
Example 1:
How long does a MOV RO,@#2044 instruction last?

Step 1l: From the tables, the execution time for the MOV base
instruction is found to be 1 microcycle (MC), or four
CLK periods. This consists of one read and no write
microcycles. Depending upon the type of memory in the
system, the microcycle may be stretched. If so, the
microcycle lasts at least eight CLK periods and may be
stretched thereafter in increments of two CLK periods.

Step 2: To find the operand calculation/fetch time for the
source operand (R0), refer to Table S1. From Table
S1, it is seen that a mode 0 register 0 calculate/fetch
takes 0 microcycles. Note that the operand is already
available to the DCJ1ll (in the register file).

Step 3: To find the operand calculation/fetch time for the
destination operand (the contents of memory location
2044), refer to Table D3. From Table D3, it is seen
that a mode 3 register 7 calculate/fetch takes 3
microcycles, one of which is a read microcycle and
one of which is a write microcycle. Note that the
remaining microcycle is an NIO microcycle. Once
again, the type of memory in the system must be taken
into account. If the read cycle is stretched, the
stretched cycle lasts at least eight CLK periods and
may be stretched thereafter in increments of two CLK
periods. The write microcycle lasts at least eight
CLK periods and may be stretched in increments of two
CLK periods.

Step 4: For a determination of the minimum time required, total
up the microcycles. In this example, It is 1 + 0 + 3,
or 4 microcycles (which is 16 CLK periods if no microcycle

stretching occurs).

Example 2:

The source and destination tables for floating point instructions
show a negative number in the MC column for certain mode 2
register 7 operations, This example shows a timing calculation
for one of these.

How long does an CLRD #2000 instruction last?

Step 1l: The base instruction time for the CLRD instruction is
14 microcycles.

Step 2:

Step 3:

From Table F2, the calculation/fetch time for the
operand (a mode 2 register 7 reference) is shown as
(-1). This means that one microcycle should be subtracted

from the base instruction time. However, add one microcycle
for the memory write operation. There are no memory read

cycles to account for.

Total up the microcycles: 14 - 1 + 1 = 14 microcycles
minimum (assumes no cycle stretching).

SINGLE OPERAND

Mnemonic Instruction

General

CLR(B) Clear

CoM(B) Complement (l1's)

INC (B) Increment

DEC(B) Decrement

NEG (B) Negate (2's complement)

TST(B) Test
Rotate and Shift

ROR (B) Rotate right
ROL (B) Rotate left
ASR(B) Arithmetic shift right
SWAB Swap bytes
Multiple-Precision
ADC (B) Add carry
SBC(B) Subtract carry
SXT Sign extend
Multiprocessing
TSTSET Test and set

(low bit interlocked)
WRTLCK write interlocked

DOUBLE OPERAND

Mnemonic Instruction

General

MOV (B) Move

Q+¥P (B) Compare

ADD Add

SuB Subtract
lLogical

BIT(B) Bit test (AND)
BIC(B) Bit clear

BIS (B) Bit set (OR)

TIMING

Execution Source Dest

MC R/W Table Table
1l 1/0 — D3
l 1/0 -— D4
l 1/0 — D4
1l 1/0 — D4
1 1/0 — ‘D4
l 1/0 — D4
1 1/0 — D4
l 1/0 — D4
1 1/0 — D4
1l 1/0 — D4
1 10 — D4
1 1/0 — D4
1 1/0 — D3
5 /1] — D4
4 /1 — D4
TIMING

Execution Source Dest

MC R/W Table Table
1l 170 81 D3
1l 1/0 sl D2
1 1/0 Sl D4
1l 1/0 sl D4
1 1/0 sl D2
1 1/0 Sl D4
1 170 sl D4

Register

MUL Multiply 22 1/0 — D1 (Notes 5,11)
DIV Divide 34 1/0 — D1 (Notes 6,7,12)
ASH Shift automatically 4 1/0 — D1
ASHC Arith shift combined 5 1/0 — D1 (Note 13)
XOR Exclusive (OR) 1 10 — D4
BRANCH TIMING
Branch Branch
Not Taken Taken
Mnemonic Instruction MC RMW MC RMW
Branches
BR Branch (unconditional) 2 10 4 2/0
BNE Br if not equal (to 0) 2 1/0 4 2/0
BEQ Br if equal (to 0) 2 1/0 4 2/0
BPL Br if plus 2 1/0 4 2/0
BMI Br if minus 2 10 4 2/0
BVC Br if overflow is clear 2 1/0 4 2/0
BVS Br if overflow is set 2 1/0 4 2/0
BCC Br if carry is clear 2 1/0 - 4 2/0
BCS Br if carry is set 2 10 4 2/0
Signed Conditional Branches
BGE Br if greater or egqual (to 0) 2 1/0 4 2/0
BLT " Br if less than (0) 2 10 4 2/0
BGT Br if greater than (0) 2 10 4 2/0
BLE Br if less or equal (to 0) 2 1/0 4 2/0
Branch Branch
)) Not Taken Taken
Mnemonic Instruction MC RW MC RMW
Unsigned Conditional Branches
BHI Branch if higher 2 10 4 2/0
BLOS Branch if lower or same 2 1/0 4 2/0
BHIS Branch if higher or same 2 1/0 4 2/0
BLO Branch if lower 2 10 4 2/0
soB Subtract 1 and branch 3 1/0 5 2/0
(if # 0)
JUMP and SUBROUTINE TIMING
Execution
Mnemonic Instruction MC R/NW DST Table
JMp Jump -— - DS .
JSR Jump to subroutine -— - D6 (Note 4)
RTS Return from subroutine 5 3/0 — (Note 14)
MARK Stack cleanup 10 3/0

TRAP and INTERRUPT ' TIMING

Execution
Mnemonic Instruction MC RMW
EMT Emulator trap 20 4/2
TRAP Trap 20 4/2
BPT Breakpoint trap 20 4/2
10T Input/output trap 20 4/2
RTI Return from interrupt 9 4/0
RTT Return from interrupt 9 4/0
CONDITION CODE OPERATORS TIMING
Execution
Mnemonic Instruction MC RMW
CLC Clear C 3 1/0
CLv Clear Vv 3 1/0
CLZ Clear Z 3 1/0
CLN Clear N 3 1/0
cce Clear all CC bits 3 1/0
SEC Set C 3 1/0
SEV Set V 3 1/0
SEZ Set Z 3 1/0
SEN Set N 3 1/0
scc Set all CC bits 3 1/0
MISCELLANEOUS TIMING
Execution
Mnemonic Instruction MC RMW
HALT Halt -
WAIT wait for interrupt -
RESET Reset external bus -
NOP (No operation) 3 1/0
SPL Set priority level to N 7 1/0
MFPI Move from previous instr space 5 1/1
MTPI Move to previous instr space 3 2/0
MFPD Move from previous data space 5 1/1
MTPD Move to previous data space 3 2/0
MTPS Move byte to PSW PS € (svc) 8 1/0
MFPS Move byte from PSW (dst) <€ PS <7:0> 1 1/0
MFPT Move from processor (R0<7:0><proc code 2 1/0
caM Call to supervisor mode 28 3/3

FLOATING POINT

Mnemonic Instruction

ABSD
ABSF
ADDD
ADDF
CFCC
CLRD
CLRF
Q4PD
OMPF
DIVD
DIVF
LDCDF
LICFD
LDCID
LCIF
LDCLD
LDCLF
LDD
LDEXP
LDF
LDFPS
MODD
MODF
MULD
MULF
NEGD
NEGE
SETD
SETF
SETI
SETL
STCDF
STCDI
STCDL
STCFD
STCFI
STCFL
STD
STECP
STF
STFrPD
STST
SUBD
SUBF
TSTD
TSTF

Make Absolute

Make Absolute

Add

Add

Copy Floating Condition Codes
Clear

Clear

Compare

Compare

Divide

Divide

Ld & C from D to F

Ld & C from F to D

Ld & C Integer to D

Ld & C Integer to F

Ld & C Long Integer to D
Id & C Long Integer to F
Load

Load Exponent

Load

Load FPP Program Status
Multiply and Separate
Integer and Fraction
Multiply

Multiply

Negate

Negate

Set Floating Double Mode
Set Floating Mode

Set Integer Mode

Set Long Integer Mode

St & C from D to F

St & C from D to Integer
St & C from D to Long Integer
St & C from F to D

St & C from F to Integer
St & C from F to Long Integer
Store

Store Exponent

Store

Store FPP Program Status
Store FPP Status
Subtract

Subtract

Test

Test

TIMING

Execution (MC)

Min

23
19
4l
3l
5
14
12
24
18
160
59
24
20
31
26
31
26
16
17

12

6
202
82
165
56
22
18
6
6
6
6
17
26
26
19
23
23
12
16
8
9
5
47
37
11
9

48
35

217

94

55
41

Typ Max

24
20
119
102
5
14
12
25
19
167
63
26
21
42
36
52
44
17
18
13
6
268
115
173
61
23
19
6

6

6

6
20
38
54
20
35
51
12
16
8

9

3
122
104
12
10

Non

Mode O
Table

SOURCE AND DESTINATION TABLES:
Table Sl Source Address Time: All Double Operand

Read

Source Source Microcode Memory
Mode Register Cycles Cycles

0 0-7 0 0

1 0-7 2 1

2 0-6 2 1

2 7 1 1

3 0-6 4 2

3 7 3 2

4 0-6 3 1

4 7 6 2 (Note 1)
5 0-6 5 2

5 7 8 3 (Note 1)
6 0-7 4 2

7 0-7 6 3

Table D1 Destination Address Time: Read Only Single Operand

Read

Destination Destination Microcode Memory
Mode Register Cycles Cycles

0 0-7 0 0

1 0-7 2 1

2 0-6 2 1

2 7 1 1

3 0-6 4 2

3 7 3 2

4 0-6 3 1

4 7 7 2 (Note 2)
5 0-6 5 2

5 7 9 3 (Note 3)
6 0-7 4 2

7 0-7 6 3

Table D2 Destination Address Time: Read Only Double Operand
Read

Destination Destination Microcode Memory
Mode Register Cycles Cycles

0 0-7 0 0

1 0-7 3 1

2 0-6 3 1

2 7 2 1

3 0-6 5 2

3 7 4 2

4 0-6 4 1

4 7 8 2 (Note 2)
5 0-6 6 2

S 7 10 3 (Note 3)
6 0-7 5 2

7 0-7 7 3

Table D3 Destination Address Time: Write Only

Destination Destination Microcode Memory Cycles
Mode Register Cycles Read Write

1
[+

0

[}
[=)) [e)))] [«

[}
(o)
ADOUNIWWDHBANANUNO

NOUUBEBWWNNHEFO O
CONONONONONONO
NHRNHHFORKHIO O

HH IR PR OO

[}
N

Table D4 Destination Address Time: Read Modify Write

Destination Dest4énation Microcode Memory Cycles

Mode Register Cycles Read Write

0 0-6 0 0 0

0 7 5 1 0

1 0-6 3 1 1

1 7 7 2 1

2 0-6 3 1 1

2 7 7 2 1

3 0-6 5 2 1

3 7 4 2 1

4 0-6 4 1 1

4 7 8 2 1 (Note 2)
5 0-6 6 2 1

5 7 10 3 1 (Note 3)
6 0-7 5 2 1

7 0-7 7 3 1

Table DS Destination Address Time: JMP

Destination Destination Microcode Memory Cycles

Mode Register Cycles : Read Write
1 0-7 4 2 0
2 0-7 6 2 0
3 0-7 5 3 0
4 0-7 5 2 0
5 0-7 6 3 0
6 0-6 6 3 0
6 7 5 3 0
7 0-7 7 4 0

Table D6 Destination Address Time: JSR

Destination Destination Microcode Memory Cycles

Mode Register Cycles Read Write
1 0-7 9 2 1
2 0-7 10 2 1
3 0-6 10 3 1
3 7 9 3 1
4 0-7 10 2 1
5 0-7 11 3 1
6 0-6 10 3 1
6 7 9 3 1
7 0-7 12 4 -

Table F1 Floating Source Modes 1-7
Single Precision

Microcode Memory Memory

Mode Register Cycles Read Write
1 0-7 3 2 0
2 0-6 3 2 0
2 7 1 1 0
3 0-6 4 3 0
3 7 3 3 0
4 0-7 4 2 0
5 0-7 5 3 0
6 0-7 4 3 0
7 0-7 6 4 0
Double Precision
Microcode Memory Memory
Mode Register Cycles Read Write
1 0-7 5 4 0
2 0-6 5 4 0
2 7 0 (Note 15) 1 0
3 0-6 6 5 0
3 7 5 5 0
4 0-7 6 4 0
5 0-7 7 5 0
6 0-7 6 5 0
7 0-7 8 6 0

Table F2 Floating Destination Modes 1-7
Single Precision

Microcode Memory Memory

Mode Register Cycles Read Write
1 0-7 3 0 2
2 0-6 3 0 2
2 7 1 0 1
3 0-6 4 1 2
3 7 3 1 2
4 0-7 4 0 2
5 0=-7 5 1 T2
6 0-7 4 1 2
7 0-7 6 2 2
Double Precision
Microcode Memory Memory
Mode Register Cycles Read Write
1 0-7 5 0 4
2 0-6 5 0 4
2 7 (=1) (Note 15) O 1
3 0-6 6 1 4
3 7 5 1 4
4 0-7 6 0 4
5 0-7 7 1 4
6 0-7 6 1 4
7 0-7 8 2 4

Table F3 Floating Read Modify Write Modes 1-7
Single Precision

Microcode Memory Memory

Mode Register Cycles Read Write
1 0-7 5 2 2
2 0-6 5 2 2
2 7 1 (Note 15) 1 1
3 0-6 6 3 2
3 7 5 3 2
4 0-7 6 2 2
5 0-7 7 3 2
6 0-7 6 3 2
7 0-7 8 4 2

D-11

Table F3 Floating Read Modify Write Modes 1-7

Double Precision

Microcode Memory Memory

Mode Register Cycles Read Write
1 0-7 9 4 4
2 0-6 9 4 4
2 7 (=2) (Note 15) 1 1
3 0-6 10 : 5 4
3 7 9 5 4
4 0=-7 10 4 4
5 0-7 11 5 4
6 0-7 10 5 4
7 0-7 12 6 4

Table F4 Integer Source Modes 1-7

Integer
Microcode Memory Memory
Mode Register Cycles Read Write
1 0-7 2 1 0
2 0-6 2 1 0
2 7 0 (Note 15) 1 0
3 0-6 3 2 0
3 7 2 2 0
4 0-7 3 1 0
5 0-7 4 2 0
6 0-7 3 2 0
7 0-7 5 3 0
Long Integer
Microcode Memory Memory
Mode Register Cycles Read Write
1 0-7 4 2 0
2 0-6 4 2 0
2 7 0 (Note 15) 1 0
3 0-6 5 3 0
3 7 4 3 0
4 0-7 5 2 0
5 - 0=7 6 3 0
6 0-7 5 3 0
7 0-7 7 4 0

D-12

Table F5 Integer Destination Modes 1-7

Integer
Microcode Memory Memory
Mode Register Cycles Read Write
1 0-7 2 0 1
2 0-6 2 0 1
2 7 2 0 1
3 0-6 3 1 1
3 7 2 1 1
4 0-7 3 0 1
5 0-7 4 1 1
6 0-7 3 1 1
7 0-7 5 2 1
Long Integer
Microcode Memory Memory
Mode Register Cycles Read Write
1 0-7 4 0 2
2 0-6 4 0 2
2 7 2 0 1
3 0-6 5 1 2
3 7 4 1 2
4 0-7 5] 2
5 0-7 6 1 2
6 0-7 5 1 2
7 0-7 7 2 2

D-13

5.
6.

7.

12,

13.

14,

15.

NOTES

Subtract 2 microcycles (MC) and one read if both source and
destination modes autodecrement PC, or if WRITE-ONLY or

READ-MODIFY-WRITE mode 07 or 17 is used.

READ-ONLY and READ-MODIFY-WRITE destination mode 47

references actually perform 3 READ operations., For book-
keeping purposes, one of the READs is accounted .‘or in the

EXECUTE, FETCH TIMING.

READ-ONLY and READ-MODIFY-WRITE destination mode 5§57
references actually perform 4 READ operations. For book-
keeping purposes, one of the READs is accounted for in the
EXECUTE, FETCHING TIMING.

Subtract 1 MC if the link register is PC.

Add 1 MC if the source operand is negative.

Subtract 1 MC if the source mode is not zero.

Add 1 MC if the quotient is even.

Add 2 MC if overflow occurs.

Add 5 MC and 1 read if the PC is used as a destination
register, but only if source mode 47 or 57 is not used. '
Add 1 MC per shift,

Add 1 MC if socurce operand <15:6> is not zero.

Subtract 1 MC if one shift only.

Add 4 MC and 1 read if the PC is used as a destination
register, but only if source mode 47 or 57 is not used.

Divide by zero executes in 5 MC (see note 6).

Timing for no shift. Add 1 MC if a left shift. (Notes 8, 9,
11 apply.) Add 2 MC for a right shift, (Notes 8, 10, 11
apply.)

Add one MC if a register other than R7 is used,.
Mode 27 references only access single word operands. The

execution time 1listed has been compensated in order to
accurately compute the total execution time,

D-14

APPENDIX E
GLOSSARY

Bus lock -

An indication to memory to prevent or "lock" out other accesses to
that location until it is unlocked. This occurs during an RMW
read bus microcycle with the bus lock control bit asserted. Memory
is automatically unlocked by the following Bus Write microcycle by
that processor.

Cache bypass -
Unconditionally bypass cache and access main memory directly. If
the cache entry is valid, typically invalidate it,

Cache force miss - :

Unconditionally bypass cache and access main memory directly. 1If
the cache entry is valid, typically do not invalidate it but
ignore it.

Data stream bus cycle -
Any microcycle which is a Read, Read/Modify/Write or Write
microcycle.

Demand abort -
An abort during a demand bus microcycle.

Instruction stream bus cycle -
Any microcycle which is a prefetch microcycle.

Internal registers -
These explicitly addressable registers are the PS, PIRQ, MMRO,
MMR1, MMR2, MMR3, Hit/Miss, CPU Error, PARs, and PDRs.

Predecode -

An indication to decode the next PDP-11l instruction. This occurs
during a microcycle in which the DCJ1l1l asserts PRDC and decodes
the prefetch buffer contents as the next PDPll instruction.

Read/Modify/Write (RMW) operation -

Two consecutive microcycles in which the first is a Bus Read
microcycle and the second is a Bus Write microcycle. Both
microcycles access the same location.

Request abort -~
An abort during a request bus microcycle. If it is a memory
management or address abort, it will not stretch the microcycle.

INDEX

Abort (ABORT) line, 2-6, 2-11
Aborts, 1-12, 1-13
AC characteristics, B-1
through B-7
Address input/output (AIO) line,
2-3, 2-10
Address latch enable (ALE) line,
2-5, 2-12
Addressing modes
direct register, 6-6
direct autoincrement, 6-7
direct autodecrement, 6-8
direct index, 6-9 through
6-11
deferred, 6-11 through 6-14
double-operand, 6-3 through
6-4
general, 6-1 through 6-3
PC relative, 6-14 through
6-18
single-operand, 6-3

Bank select (BS) lines, 2-2,
2-11 :
Buffer control (BUFCTL) lines,
2-4, 2-13
Bus cycles
AIO codes for, 3-2
bus read, 3-4 through 3-6
bus write, 3-6 through 3-7
duration of, 3-2
general-purpose read, 3-8
general-purpose write, 3-9
interrupt acknowledge, 3-10
non-I1/0 (NIO), 3-3
parts of, 3-3
Bus read cycle, 3-4 through 3-6
non-stretched, 3-5
stretched, 3-5
Bus write cycle, 3-6 through 3-7

Cache control register
force cache miss bit, 5-2
unconditional cache bypass
bit, 5-2
uninterpreted bits, 5-2
Cache memory
cache control register (CCR),
5-1 through 5-2
general operation, 5-3
in multiprocesing
environment, 5-4

'Index-l

Cache memory (continued)
sample implementation, 5-4
through 5-8
Cache miss (MISS) line, 2-6,
2-12
Clock 1 (CLK) line, 2-5, 2-12
Clock 2 (CLK2) line, 2-5, 2-12
Console start microroutine,
8-10 through 8-11
Console ODT, 5-9 through 5-19
address specification, 5-17
carriage return command, 5-14
command set, 5-12 through
5-17
control-shift-S command, 5-17
floating-point accumulators
and, 5-18
general register references,
5-17
go command, 5-16
initialization, 5-11
invalid characters, 5-19
internal register designator,
5-=15
line feed command, 5-14
octal notation for, 5-18
output sequence, 5-12
proceed command, 5-16
processor status word
designator, 5-15
receiver control/status
register (RCSR), 5-9
receiver buffer register
(RBUF), 5-10
slash command, 5-13
stack pointer references,
5-18
terminal interface, 5-9
timeout, 5-19
transmitter control/status
register (XSCR), 5-10
transmitter buffer register
(XBUF), 5-11
Continue (CONT) line, 2-4, 2-12
Control chip, 1-1
CPU error register, 1-15 throug!
1-16

Data/address (DAL) lines, 2-2,
2-11, 2-13
lower, 2-2
upper, 2-2
Data chip, 1-1
Data valid (DV) line, 2-4, 2-13

DC characteristics, A-1 through

A-4
DCJ1l block diagram, 1-1

DCJ1l pin assignments, 2-1

Direct memory access (DMA)
mechanism, 1-17

Direct memory access (DMA)

requests and grants,

3-11
Direct memory access request
Event (EVENT) line, 2-9, 2-10

Floating-point arithmetic

data formats, 7-2 through
7-3

nonvanishing numbers, 7-1

zero, 71-2

undefined variables, 7-2
Floating-point exception code
(FEC) register, 7-7
Floating-point exception (FPE
line, 2-8, 2-10
point instructions
7-12
7-12
7-13
7-13
7-14
7-14
7-14
7-15
7-15
7-15
7-15
7-16
7-16
7-17
7-17
7-17

Floating
ABSF,
ABSD,
ADDF,
ADDD,
CFCC,
CLRF,
CLRD,
CMPF,
CMPD,
DIVF,
DIVD,
LDCDF,
LDCFD,
LDCIF,
LDCID,
LDCLF,
LDCLD, 7-17
LDEXP, 7-18
LDF, 7-19
LDD, 7-19
LDFPS, 7-20
MODF, 7-20
MODD, 7-20
MULF, 7-23
MULD, 7-23
NEGF, 7-24.
NEGD, 7-24
SETF, 7-25
SETI, 7-25
SETL, 7-25
STCFD, 7-26
STCDF, 7-26

)

Index~-2

{continued)

STCFI,
STCFL,
STCDI,
STCDL,
STEXP,
STF, 7-
STD, 7-
STFPS,
STST, 7
SUBF,
SUBD, 7
TSTF, 7
TSTD, 7

accuracy, 7-9 through 7-10
7-8 through 7-9

address

7-26
7-26
7-26
7-26
7-28
28

28

7-29

-29
7-29

-29
-31
=31

ing,

Floating point instructions

Floating=-point status (FPS)

register,

7-

Floating-point processing,

3

7-3 through

1-

General-purpose (GP) codes, 8

General-purpose read cycle,
General-purpose registers,

1-

General-purpose write cycle,
Ground (GND) pins, 2-10, 2-11,

2-

Halt line,

13
2"6 [

2-11

Halting DCJ1ll operation,

I space and D space,

4-2

through 4-3
Initialization microroutine,
through 8-6

Initialize
2_
Instructio
ADC, 6-
ADCB, 6
ADD, 6-
ASH, 6-
ASHC, 6
ASL, 6-
ASLB, 6
ASR, 6-
ASRB, 6
BCC, 6-
BCS, 6-
BEQ, 6-
BGE, 6-
BGT, 6-
BHI, 6-
BHIS,
BIC,
BICB,

BIS, 6_

(INIT)
12
n set
34
-34
39
40

-41

31

-31

30

-30

48
48
47
50
50
51

6-52
6-43
6-43

43

line,

2-24

2-5,

17

-1
3-8

2
3-9

8-2

BISB, 6-43
BIT, 6-42
BITB, 6-42
BLE, 6-51
BLO, 6-52
BLOS, 6-51
BLT, 6-50
BMI, 6-47
BNE, 6-46
BPL) 6-47
BPT' 6“58
BR, 6-45
BVC, 6-48
BVS, 6-48
CCC, 6-66
CLC. 6-66
CLN, 6-66
CLV, 6-66
CLZ, 6-66
CLR, 6-26
CLRB, 6-26
COM, 6-26
COMB, 6-26
CMPI 6-38
CMPB, 6-38
CSM, 6-61
DEC, 6-27
DECB, 6-27
DIV, 6-42
EMT, 6-57
I0T, 6-58
INC, 6-27
INCB, 6-27
JMP, 6-52
JSR, 6-53
MARK, 6-60
MFPS, 6-36
MFPT, 6-65
MOV, 6-37
MOVB, 6-37
MFPD, 6-65
MFPI, 6-65
MTPD, 6-65
MTPI, 6-65
MTPS, 6-36
MUL, 6-41
NEG, 6-28
NEGB, 6-28
NOP, 6-67
RESET, 6-65
ROL, 6-32
ROLB, 6-32
ROR, 6-31
RORB, 6-31
RTI, 6-59
RTS, 6-55
RTT, 6-59

Index-3

SOB, 6-56
SBC, 6-35
SBCB, 6-35
SEC, 6-66
SEN, 6-66
SEV, 6-66
SEZ, 6-66
SCC, 6-66
SPL, 6-61
suB, 6-39
SWAB 6-33
SXT, 6-35
TRAP, 6-58
TST, 6-28
TSTB, 6-28
TSTSET, 6-29
WAIT, 6-64
WRTLCK, 6-29
XOR, 6-44
byte instructions, 6-22
formats, 6-19 through 6-22
list, 6-23 through 6-26
symbols, 6-18 through 6-19
Interrupt acknowledge cycle, 3-10
Interrupt and DMA control lines,
2-7
interrupt request (IRQ) lines,
2-7, 2-11
direct memory access request
(DMR), 2-8, 2-11
power fail (PWRF), 2-8, 2-10
floating-point exception
(FPE), 2-8, 2-10
event (EVENT), 2-9, 2-10
Interrupt request (IRQ) 1lines,
2-7, 2-11
Interrupts and traps, 1-11
through 1-14

Map enable (MAP) line, 2-7, 2-11
Memory management
addressing, 4-1
fault recovery, 4-8
I space and D space, 4-2
through 4-3
implementation, 4-14 through

4-18
instruction back-up/restart

interrupt conditions, 4-8

multiple faults, 4-14

page address registers
(PARs), 4-6

page descriptor registers
(PDRs), 4-6

physical address construction
4-3 through 4-5

register #0 (MMRO), 4-9

register #1 (MMR1l), 4-10

register #2 (MMR2), 4-11

Memory management (continued)
register #3 (MMR3), 4-11
register map, 4-19 through

4-20
registers, 4-5
Memory management register #0
(MMRO) , 4-9
enable relocation bits, 4-10
error flags, 4-9
page address space bits, 4-10
page number bits, 4-10
processor mode bits, 4-10
reserved bits, 4-10
Memory management register #1
(MMR1) , 4-10
Memory management register #2
(MMR2) , 4-11
Memory management register #3
(MMR3), 4-11
enable 22-bit mapping bit,
4-11
enable CSM instruction bit,
4-13
enable I/0 map bits, 4-11
kernel, supervisor, and user
mode D space bits, 4-13
reserved bits, 4-11
Memory system registers, 1-17

Non-I/0 (NIO) bus cycle, 3-3

Oscillator pins, 2-9
XTALI, 2-9, 2-12
XTALO, 2-9, 2-12

Page address registers, 4-6
Page descriptor registers
access control field, 4-8
bypass cache bit, 4-7
expansion direction bit, 4-7
page length field, 4-7
page written bit, 4-7
reserved bits, 4-8
Parity error (PARITY) line, 2-6,
2-11
Pin description summary, 2-10
through 2-13
Pipeline processing, 5-20
through 5-22
Power-down microroutine, 8-9
Power fail (PWRF) line, 2-8,
2-10
Power pins, 2-9
ground (GND), 2-10, 2-11,
2-13
power (Vcc), 2-10, 2-11, 2-13
Power-up circuit, 8-8

Index-4

Power-up configuration, 8-6
through 8-8
Predecode (PRDC) line, 2-7, 2-1.
Processor status word (PS), 1-3
through 1-11
condition code bits, 1-6
initialization, 1-11
processor mode bits, 1-5
protection, 1-7 through 1-10
priority level bits, 1-5
trace/trap bit, 1-6
Program ‘interrupt request
register, (PIRQ), 1l-15

Receiver buffer register (RBUF)
5-10

Receiver control/status
register (RCSR), 5-9

Stack protection, 1-16
Start/stop control lines, 2-5
halt (HALT), 2-6, 2-11
initialize (INIT), 2-5, 2-12
Status signals, 2-6
abort (ABORT), 2-6, 2-11
cache miss (MISS), 2-6, 2-12
map enable (MAP), 2-7, 2-11
parity error (PARITY), 2-6,
2-11
predecode (PRDC), 2-7, 2-12
Stretch control (SCTL) line,
2-5, 2-12
Strobe (STRB) line, 2-5, 2-12
System control lines, 2-2
address input/output (AIO),
2-3, 2-10
bank select (BS), 2-2, 2-11
buffer control (BUFCTL), 2-4
2-13
continue (CONT), 2-4, 2-12
2-4

data valid (DV), 2-13
Test 1 (TEST1) line, 2-9, 2-10
Test 2 (TEST2) line, 2-9, 2-12

Test pins, 2-9
test 1 (TEST1l), 2-9, 2-10
test 2 (TEST2), 2-9, 2-12
Timing signals, 2-4
address latch enable (ALE),
2-5, 2-12
clock 1 (CLK), 2-5, 2-12
clock 2 (CLK2), 2-5, 2-12
stretch control (SCTL), 2-5,
2-12
strobe (STRB), 2-5, 2-12
Transmitter buffer register
(XBUF), 5-11

Transmitter control/status
register (XSCR), 5-10

Digital Equipment Corporation Bedford, MA 01730

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	E-01
	E-02
	index-1
	index-2
	index-3
	index-4
	xBack

