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ABSTRACT 

This paper describes a system architecture for realtime display of  shaded 
polygons. Performance of 100,(300 lighted, 4-sided polygons per second is 
achieved. Vectors and points draw at the rate of 400,000 per second. 
High-speed pan and zoom, alpha blending, realtime video input, and 
antialiased lines are supported. The architecture heavily leverages 
parallelism in several forms: pipeline, vector, and array processing. It is 
unique in providing efficient and balanced graphics that support interactive 
design and manipulation of solid models. After an overview of algorithms 
and computational requirements, we describe the details of the 
implementation. Finally, the unique features enabled by the architecture are 
highlighted. 
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1. Introduction 

Traditional 3D graphics workstations have concentrated on the hardware 
that transforms points and lines from object-space to screen-space. As 
users" needs for display of realistic solid objects have increased, demands 
on graphics architectures have changed significantly. New challenges 
include increases in transformation rate, incorporation of realtime 
illumination calculations, and dramatic increases in pixel fill rates. 

Contemporary workstations have attempted to satisfy these new demands 
using a variety of architectures. Swanson and Thayer [11] describe a 
system which incorporates parallel pixel processors in its raster subsystem. 
A parallel geometry system is described by Torborg [12]. The lineage of 
these and other contemporary graphics systems can be traced to works by 
Clark [3], Clark and Hannah [2], and eventually to Fuchs and Johnson [5]. 

Our specific goals for the performance and capability of the new 
architecture were: 

• 100,000 polygons per second. The polygons are RGB, 4-sided, 10xl0 
pixels, lighted, Gouraud shaded [6], arbitrarily rotated, Z-buffered, clip 
tested, projected, and rendered into one of multiple, possibly 
overlapping, windows at an instantaneous rate of 100,000 per second. 

• 10 frames per second. Realtime systems must be able to draw and 
display at rates exceeding 10 Hz. 

• Window support. User productivity is optimized by a system that 
supports multiple fully independent windows. 

First we describe our view of the general algorithmic problem of rendering 
100,000 polygons per second, paying particular attention to the 
computational requirements of each step of the process. Then we describe 
a novel architecture to achieve the goals. Finally we present several unique 
features that were realized from the implementation. 

2. Problem Description 

The floating-point performance and pixel fill rates required for interactive 
display of  solids are both exceptional. By examining each component of 
the problem we show that at least 40 million floating-point operations per 
second, and fill rates exceeding 10 million pixels per second, are required to 
render 100,000 polygons per second. The problem components are: 

1. Transfer vertex data from memory to the graphics subsystem. 

2. Transform vertex coordinates. 

3. Transform vertex normals. 

4. Light each vertex. 

5. Clip each vertex. 

6. Project each vertex. 

7. Map vertex coordinates to the screen. 

8. Fill the resulting screen-space polygons, interpolating color and 
depth. 
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9. Clip all drawing against the visible window boundaries. 

10. Be prepared to quickly swap drawing contexts at any time. 

11. Continually scan the frame buffer at screen refresh rates, interpreting 
each pixel appropriately as a function of  the process to which it 
belongs. 

2.1 Transfer Data 

Achieving our goal of 100,000 4-vertex polygons per second requires that 
400,000 vertex specifications per second be transferred to the graphics 
subsystem. A lighted vertex specification includes 6 floating-point values: 
3 (x,y,z) specify the vertex position, and 3 (nx, ny,nz) specify the vertex 
normal direction. The required data rate is therefore: 

400,000 (xform/sec) x 6 (words/xform) x 4 (bytes~word) ~ 10 Mbytes/sec 

2.2 Transform Vertexes 

Homogeneous 3D vertexes include 4 components, and are transformed by 
multiplication by a 4x4 matrix. This vector operation requires 16 floating- 
point multiplications and 12 floating-point additions. The computation rate 
is therefore: 

400,000 (xform/sec) x (16 + 12) (flop/~form) = 11 Mflops 

If it is known that the w component of  the vertex to be transformed is 1.0 (a 
common case with 3D homogeneous data) then 4 multiplications can be 
eliminated, resulting in a computation rate of: 

400,000 × (12 + 12) .~ 9.5 Mflops 

2.3 Transform Normals 

Plane equations are properly transformed by the inverse-transpose of the 
vertex matrix. This transformation has the same expense as the full vertex 
transformation. It is unnecessary, however, for lighting calculations. 

Vertex normals are plane equations stripped of distance information. 
Because normals are not position sensitive, translation information in the 
vertex matrix need not be included in a normal matrix. Also, because 
vertex normals are normalized to unit length before they are used, uniform 
scale information need not be applied to a normal matrix. Thus only 
rotations and non-uniform scales of  the vertex matrix are applied, by 
inverse-transpose, to the normal matrix. 

A 3 by 3 normal matrix supports all the required information, and is used to 
transform the 3-component lighting normals. This transformation requires 
9 floating-point multiplications and 6 floating-point additions, for a total 
computation rate of: 

400,000 x (9 + 6) = 6 Mflops 

As was indicated above, normals must be unit length before they are used in 
lighting calculations. Although it will in some cases be possible to avoid 
explicit normalization, 1 we compute the expense of this operation. Sum of 
squares requires 3 floating-point multiplications and 2 floating-point 
additions. We conservatively estimate the cost of reciprocal square root 
calculation to be twice that of  simple reciprocal calculation: 8 floating- 
point operations. Finally, each of the three components is multiplied by the 
newly computed factor. The approximate required computation rate for 
normalization is: 

400,000 × (3 + 2 + 16 + 3) = 9.5 Mflops 

2.4 Light Vertexes 

Because the target polygons are Gouraud shaded, lighting calculations are 
required only at the vertexes of  polygons, never in their interiors. 
Transformed vertex and normal information, current light positions and 
colors, surface properties, and specific lighting-model properties for each 
vertex are resolved to a single RGB triple. These triples will be 
interpolated across the interiors of  projected polygons. 

1. Normals spec~ed witk unit tength, no non-uniforrn scales. 

The fighting model that we chose for our performance requirement 
estimates is: 

• A single light - infinitely distant 

• A viewer - infinitely distant 

• Ambient, diffuse, and specular reflection components 

The equation 

Cob jeer = C,ma~i,nt + C~ffus, Cugh,(N.L ) + C,p,cularCtlght(N'H)" 

is executed 3 times, once each for red, green, and blue (all C ' s  are RGB 
vectors). Dot products are evaluated only once. Including tests for 
overflow, each optimized lighting computation requires 12 floating-point 
multiplications, 10 floating-point additions, 5 floating-point comparisons, 
and a table lookup. The total compute power required is: 

400,000 x (12 + 10 + 5 + 1) ~ 11 Mflops 

2.5 Clip 

Polygons are correctly clipped in all cases using the Sutherland-Hodgman 
Algorithm [10]. This algorithm requires one floating-point compare per 
clipping plane, 6 compares per vertex in a 3D system. Additional floating- 
point operations are required only in the event of  actual clipping, i.e. 
infrequently. In either case the algorithm execution time is dominated by 
data movement and branching, not by floating-point operations. 

Using proper optimization to avoid unnecessary clipping, the floating-point 
demands for clipping are: 

400,000 x 6 = 2.5 Mflops 

2.6 Project 

Each vertex is projected in homogeneous space by division of its x, y, and z 
components by its w component. This is accomplished most efficiently by 
first computing l/w, then multiplying each of x, y, and z by this factor. We 
asserted previously that computing a reciprocal requires 8 floating-point 
operations. Thus perspective division requires a total of  11 floating-point 
operations, at an aggregate rate of: 

400,000 x (8 + 3) = 4.5 Mflops 

2.7 Viewport and Fix 

Projected vertexes are mapped to screen coordinates with a simple affine 
calculation. Each of the three vertex components is scaled by an 
independent scale factor, offset by an independent offset, and convened to 
integer screen coordinates. The total floating-point calculation rate is: 

400,000 × (3 + 3 + 3) = 3.5 Mflops 

The total floating-point performance required to convert object-space 
coordinate vertexes and normals to screen-space coordinates and colors is: 

Operation Mflops 
Vertex Transformation 9.5 
Normal Transformation 6 
Normal Normalization 9.5 
Lighting 11 
Clipping 2.5 
Projection 4.5 
Viewport 3.5 
Total 46.5 

2.8 Fill and Smooth Shade Screen Space Polygons 

Screen-space vertexes, now interpreted as polygon vertexes, are used to 
specify the boundaries of  frame buffer regions to be smooth shaded. 
Although the details of  this shade/fill operation are implementation 
dependen4 we can safely describe some of the problems that will be 
encountered. They are: 

• Test for convexity. A substantially more complex algorithm is required 
to fill concave polygons. 

• Decompose to trapezoids. It will almost always be desirable to reduce 
the full polygons to collections of screen-aligned trapezoids, whose 
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parallel edges are in the direction of preferred fill in the frame buffer. 

• Calculate slopes. Slopes for all parameters to be interpolated must be 
computed. Substantial integer precision must be maintained if 
interpolation errors are to be avoided. 

• Write to the frame buffer. A huge memory bandwidth is required to till 
polygons at the rate of  100,000 per second. Our benchmark t0 pixel by 
l0 pixel polygons fill at 10 Million pixels per second. A substantially 
higher fill rate is desirable for larger polygons. Screen clear, really just 
filling a large, screen-aligned polygon, demands the highest fill rate. 

2.9 Clip all Drawing Against Visible Window Boundaries 

The clipping and viewport operations described above will limit polygon 
tilling to a screen-aligned r~tangular  region, or window. They are not 
sufficient, however, if the window is non-rectangular, either because it is 
obscured by another window, or because it wasn ' t  rectangular to begin 
with. In some systems the problem of obscured windows is deferred by 
always rendering into rectangular regions, then assembling the final screen 
image on the fly. While attractive in many respects, this solution does 
nothing to solve the fundamental problem of  non-rectangular windows, and 
is expensive in terms of memory consumption. 

2.10 Change Contexts 

The entire graphics system must  be prepared, at any moment, to save the 
drawing state of  the current context and restore the state of  a previously 
interrupted context. This operation must  happen quickly in most cases, but 
must  also be able to support a huge number, perhaps hundreds, of  
independent contexts. Support for a working set of processes is therefore 
desirable. 

2.11 Scan Frame Buffer 

Although the bandwidth required to scan a high-resolution frame buffer at 
60 Hertz is enormous (pixel rates of  110 to 125 MHz are standard today) 
the availability of  inexpensive Video RAMs allows this bandwidth to be 
supported with little engineering effort. We don't  emphasize this problem 
here. Rather, we concentrate on the issue of multiple windows as it pertains 
to frame buffer output. 

It is desirable that imaging to separate windows be as independent as 
possible. Most important, perhaps, is that windows be able to select and 
alter their buffer modes independently. Single and double buffer images 
must  coexist, and double buffer images must swap buffers independently. 
Further, if pixels can be interpreted in different ways, it is important that the 
interpretation in each window also be independent. 

An important exception is color mapping, the process of  interpreting pixel 
values as indexes into a table of  RGB triples. While it would seem that 
each process should have its own table, it is sometimes desirable to share 
table entries between processes. Thus a single table, large enough to supply 
separate areas to processes that desire independence, yet shared by all 
processes, is an appropriate solution. 

3. Architectural Solution 

Our graphics subsystem is a part of a complete workstation whose host 
processor comprises multiple RISC-based CPUs. The CPUs and the 
graphics interface share a high-speed 64-bit synchronous bus of  proprietary 
design. While the primary design goal of  the bus was multiproeessor 
support, it includes special support for data transfer to the graphics 
subsystem. 

The graphics system itseff is partitioned into four pipelined subsystems. In 
order of  data flow these are: 

1. Geometry subsystem. Supports all floating-point operations. 
Transforms data from object-space coordinates to screen-space 
coordinates. 

2. Scan conversion subsystem. Interprets screen-space coordinate 
vertexes as points, lines, and polygons, and generates appropriate fill 
instructions. Interpolates color and depth data across lines and 
polygons. 

3. Raster subsystem. Maintains a 1280 by 1024 frame buffer of  96-bit 
pixels. Executes pixel algorithms such as replace, depth conditional 
replace (Z-buffer), and blend. 

4. Display subsystem. Continually scans the frame buffer to supply 
video data to the monitor. Each pixel is interpreted individually as a 
function of the window to which it belongs. 

Each of these four subsystems, as well as the host interface, is described in 
detail below. 

3.1 Data Transfer 

As we have seen, the graphics subsystem consumes data at roughly 10 
Mbytes per second. The 64 Mbyte per second synchronous bus that 
connects the host processors to the graphics subsystem is able to handle this 
load. Thus large blocks of geometric data can be transferred across this bus 
to the graphics subsystem. Such transfers, however, are not consistent with 
the programming model desired for the machine. 

The target graphics library includes commands such as vertex(x,y,z) and 
normat(nx,ny,nz). Each command is implemented as a subroutine in the 
language of the calling application program. Each specifies data from an 
arbitrary structure. Graphics programs using commands such as these can 
operate directly from application data bases. Programs need not be 
'compiled' into display lists, and therefore can traverse data under complete 
application control. Finally, because all traversal code and data reside in 
main memory, there is essentially no limit to the size of  either. 

We seek a solution that retains the desired properties of  immediate-mode 
graphics, and supports extremely high-performance graphics. Our answer 
is to create new commands that operate on 2, 3, and 4-component vectors, 
rather than on scalar values. Thus vertex(x,y,z) becomes vertex(xyz), where 
xyz is the address of  three adjacent floating-point values. Hardware support 
allows each host processor to make a single memory reference when 
dealing with such a vector. The memory and synchronous bus deliver the 
data to the graphics subsystem in a single burst, making optimum use of  the 
available bus bandwidth. Vectors that straddle page boundaries are 
detected and handled automatically. 

By providing support for program controlled data transfer to the graphics 
subsystem at rates far in excess of  10 Mbytes per second, we allow for both 
future increases in graphics performance, and for desirable inefficiencies in 
program execution. One such inefficiency is shared graphics libraries. 
While such libraries exact a performance penalty at each call, they greatly 
reduce code size, both on disk and in memory, and also support object code 
compatibility between machines with different graphics subsystems. 

3.2 Geometry Subsystem 

The geometry subsystem comprises a single conversion and FIFO module, 
followed by 5 identical floating-point processors (Geometry Engines®). 
These 6 processors are organized as a single pipeline. Each executes a 
specific subset of  the rendering algorithm, minimizing microcode space 
requirements. 

3.2.1 Conversion and FIFO Module This module accepts coordinate data 
in 4 formats: 16-bit integer, 24-bit integer, 32-bit IEEE floating-point, and 
64-bit IEEE double precision floating-peint. Color data are accepted as 
packed integers as well as in the coordinate formats. All data are converted 
to 32-bit IEEE floating-point format for consumption by the Geometry 
Engines. Hardware format conversion supports direct transfer of  data from 
user structures to the graphics subsystem without performance penalty. 

A 512-word FIFO precedes the conversion module. The hardware 
interrupts when a high water mark is passed, allowing user programs to 
transfer data to the graphics subsystem without concern for flow control. 
On interrupt, the operating system blocks the user program until the FIFO 
empties past a low water mark. Thus transfer rate is adversely affected by 
flow control protocol only when it has already exceeded the ability of  the 
graphics system to accept data. 

3.2.2 Geometry Engine Each of  the five Geometry Engines is an identical 
module capable of  20 million single-precision floating-point operations per 
second (Mflops). Each includes separate high-speed microcode and data 
memories. The engines accept and output commands accompanied by up to 
4 data words. Command interpretation is accomplished by program jump, 
followed by normal program counter operations. Hardware support in each 
engine includes: 
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• Flow control. Microcode ignores the issues of command availability, 
and of the subsequent engine's ability to accept commands. Hardware 
blocking is provided for both cases. 

FIFO input buffer. Each engine includes 4 command buffers at its 
input. Buffers store up to 4 data words and a command address. 

• Pipeline support. Although the Geometry Engine has 6 internal 
pipeline stages, individual microcode instructions specify complete 
operations, including data sources, operations to be performed, and data 
destinations. 

• Concurrent command execution. The flow control and branch hardware 
support concurrent command (as well as insu'uction) execution. 

The above, taken together, allow each engine to operate efficiently. The 
pipeline sustains the required 40-50 Mflops floating-point rate with 5 
modules whose aggregate peak rate is 100 Mflops, an efficiency 
approaching 50 percent. This efficiency is not achieved in more general 
purpose vector processors, especially when the vectors are of  3 to 4 element 
length. 

Graphics tasks are distributed among the 5 Geometry Engines as follows: 

1. Matrix and normal transformation. Matrix and normal stacks. 
Normal normalization. 

2. Lighting calculations. 

3. Clip testing. 

4. Perspective division. Clipping (when required). 

5. Viewport transformation. Color clamping to a maximum value. 
Depthcue calculations. 

3.3 Scan Conversion Subsystem 

Screen coordinates sent from the geometry subsystem to the Scan 
Conversion Subsystem specify the vertexes of points, lines, and polygons. 
The Scan Conversion Subsystem performs the calculations required to 
reduce vertex data to individual pixels. Each pixel is assigned an x, y, and z 
coordinate and an r, g. b, and ¢x color value. Color and z data are always 
interpolated linearly between vertexes and between the edges of polygons. 

The task of scan-converting polygons is partitioned into three separate 
processors within the Scan Conversion Subsystem. The first two of these 
processors, the Polygon and Edge processors, use a pseudo floating-point 
representation to maintain coordinate integrity when calculating slopes. In 
addition, the y coordinates of  polygon edges are computed to 1/8 pixel 
tolerance. All depth and color component iterations are first corrected to 
the nearest pixel center, then iterated in full-pixel steps. As a result, iterated 
color and depth values remain planar across polygonal surfaces, and 
subsequent Z-buffer calculations result in clean intersections. 

Vertex data are not passed directly from the geometry subsystem to the 
Scan Conversion Subsystem, but rather are accumulated in one of two 256- 
vertex buffers. Vertex representations in this buffer are always the same, 
regardless of the operating mode of the system. Hardware on both the 
Geometry and Scan sides of the buffer is optimized to operate on these 
vertexes. Thus, the Polygon Processor receives entire polygons, rather than 
individual vertexes. It operates on vertexes directly from this buffer, 
avoiding unnecessary copying and interpretation. 

The Polygon Processor both sorts vertexes from left to right and checks for 
convexity in one simple, pipelined operation. The sorted vertexes are 
decomposed into trapezoids. Slopes of y, z, r, g, b, and ct are computed 
relative to delta x. Coordinates and slopes for each edge are passed to the 
Edge Processor. Trapezoid edges are handles at the rate of  1 per 
microsecond. 

The Edge Processor iterates along the top and bottom edges of the 
trapezoid, generating at each iteration the top and bottom coordinates of  a 
single span. ~ Spans are always iterated bottom to top. Therefore hardware 

2. We refer to vertical lines o f  pixels as spans, horizontal lines as scans. 
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is provided to swap span ends as necessary, both avoiding a complex test at 
trapezoid decomposition time, and correctly handling bow-tie polygons, 
which occur frequently at surface silhouettes. 

The color, y, and z edge components comprise 2 vectors which are iterated 
in parallel by multiple, proprietary engines. Spans are generated at the rate 
of  2 per microsecond. 

The y components of  span endpoints are computed to 1/8 pixel accuracy. 
Color and depth slopes are computed using delta y to this accuracy. This 
slope is then used to iterate to the nearest pixel center. The final span 
definition comprises the corrected initial color and depth values, the color 
and depth slopes, the integer x and y values of  the bottom pixel, and the 
span length. 

The Edge Processor delivers each span to one of five Span Processors. 
Each Span Processor manages every fifth column of pixels in the frame 
buffer. Since spans generated from a single polygon are always adjacent, 
the span processing load is evenly distributed across the five Span 
Processors. Each Span Processor iterates through its span using the initial 
and slope values provided, treating color and z span components as a 
vector. Pixel specifications are generated at the rate of  8 per microsecond. 
Thus the aggregate fill rate of the 5 Span Processors is 40 million pixels per 
second (Z-buffered). 

3.4 Raster Subsystem 

The Raster Subsystem contains 20 Image Engines TM, each of which is an 
independent state machine that controls 1,r20th of the frame buffer memory. 
Groups of 4 Image Engines are driven by each Span Processor. The array 
of Image Engines tiles the frame buffer in a 5-wide, 4-high, pattern. 

Bitplane memory is organized into 5 banks, comprising a total of  96 bits per 
pixel. The banks are arranged as follows: 

• Image banks. Two banks of 32 bits each, organized as 8 bits each of 
red, green, blue, and alpha data. 
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• Depth  bank. One bank of 24 bits. Stores 24-bit integer depth 
information when used in conjunction with the Image Engine Z-buffer 
pixel algorithm. It is also available for image data. 

• Overlay bank. One bank of 4 bits. Two bits are reserved for the 
window manager. 

• Window ID bank. One bank of 4 bits, used by the window manager to 
tag pixets based on the drawing process to which they belong. 

Image Engines operate as specialized memory controllers, supporting video 
RAM refresh, display refresh, and a handful of  pixel access algorithms. 
These algorithms include: 

• Replace.  Replace the destination color with the source color. 

• Z-buffer. Compare the source and destination z values. If the test 
passes 3 replace the destination color and z with the source color and z, 

• Z-buffer blend. Like Z-buffer, but replace the destination color with a 
linear combination of  the source and destination colors. 

• High-speed clear. Simple replace available only for large, screen- 
aligned rectangles. 

Although the Image Engines are simple machines, their parallel operation 
and multiple algorithms result in extremely powerful pixel fill operation. 
Their aggregate performance for the various pixel algorithms is: 

Pixel Algorithm Fill Rate 
Mpixel/sec 

Replace 80 
Z-buffer 40 
Z-buffer with blending 10 
High-speed clear 160 

3.5 Display Subsystem 

The Display Subsystem receives pixel data from the frame buffer, interprets 
it, and routes the resulting red, green, blue, and alpha data to the Digital-to- 
Analog converters for display. Five Multim~de Graphics Processors 
(MGPs) operate in parallel, one assigned to the pixels controlled by each 
Span Processor. These MGPs receive all 64 image bank bits, the 4 
auxiliary bank bits, and the 4 window ID bits for each pixel. They interpret 
the image and auxiliary bits as a function of the window ID bits, using an 
internal 16-entry table. 

3.6 Context  Switching 

The graphics subsystem is designed to SUPlmrt eorttext switching with 
minimal overhead. Because significant quantifies of  state are accumulated 
in each of the 5 Geometry Engines, each maintains complete context for 16 
independent processes in its local data memory. The Geometry Engines are 
also able to dump and restore context to and from a host processor, 
allowing more than 16 processes to share the hardware. Thus a working set 
of up to 16 processes is supported, with essentially no limit to the total 
number of  processes. 

Because the Edge, Span, and Image Processors are unable to return state 
information, the few states stored in these processors are shadowed by the 
Polygon Processor. The Polygon Processor state, including shadow state, is 
minimal, and is therefore maintained by a host CPU. 

4. Performance 

We achieved our polygon performance and quality objectives, including 
operation in a window environmenL The subsystems used to achieve this 
goal are carefully balanced in performance, resulting in a cost effective 
solution. Vertexes are transformed and lighted at the rate of  400,000 per 
second, just matching the desired rate of  100,000 4-vertex polygons per 
second. The Polygon Processor sorts the vertexes of  4-vertex polygons, and 
computes slopes for 4 edges, in just under 10 microseconds, again just 
meeting the required performance. The edge processor iterates along edges 
and generates spans at the rate of  2 spans per microsecond, slightly faster 
than required to generate 14 spans in 10 microseconds. Spans are iterated 
and pixels generated at the aggregate rate of  40 million per second, four 
times the rate needed to meet the performance objective, but invaluable for 
smoothing the performance transition between small and large polygons. 

Some performance notes for various operations follow: 

s Polygons.  Because the system is balanced to render lighted, smooth 
shaded polygons, there is no performance benefit for not using these 
features. Thus flat shaded, smooth shaded but unlighted, and lighted 4- 
side polygons all render at the target rate of 100,000 per second. Small 
triangles render at 120,000 per second, again regardless of mode. Large 
polygons render at rates limited by the 40 million pixel per second fill 
rate. 

• Vectors. The draw rate of  short vectors is transformation limited, 
resulting in 400,000 connected vectors per second, or 200,000 
unconnected vectors per second. Long vector rates are limited by the 8 
million pixel per second fill rate (16 million with the Z-buffer disabled). 

• Window clear. The  performance of even moderately complex 
animations can be limited by the time required to clear the window. 
The special 160 million pixel per second fill rate, available only for 
window clear, allows a screen-size window to be cleared in 8.2 

3. Any cor~bination of  greater than, equal to, and less than can be spec~ed . 
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milliseconds. Thus full screen animations running at 10 Hz lose only 
8% of their draw time to screen clear. Even 30 Hz animations lose only 
25% of their draw time. 

• Pixel access. An important ancillary function of 3D graphics is high- 
speed host access to the frame buffer. This is useful for image display 
and storage, image convolution, paint programs, and many other 
applications. The new raster architecture supports host read and write 
rates of  5 million pixels per second. 

5. Special Features 

Our design goal achieved, let us now consider some other features of  the 
new graphics architecture. 

5.1 Pan and Zoom 

Typical raster systems handle pan and zoom as a display process by altering 
the fetching of data for the monitor. Frame buffer scan lines are output 
multiple times to achieve vertical zoom, and are output at reduced rates to 
achieve horizontal zoom. Initial pixel addresses are altered to achieve 
horizontal and vertical pan. In all eases the video data rate is either reduced 
or unaffected. Thus, while the implementation is complex, it makes no 
performance demands on the hardware. 

This typical pan and zoom implementation, however, has some undesirable 
properties: 

• It either operates on the entire screen, which is unacceptable in a 
window environment, or it becomes unmanageably complex. 

• The effort and cost expended solving pan and zoom in this manner do 
not contribute to the machine in any other way. 

The second point is of particular interest. We prefer solutions that have a 
synergistic effect on the performance of the entire machine. 

Recall the bus that connects the Edge Processor to the five Span Processors. 
This pixeibus transmits span definitions during polygon fill, but is also 
designed to support pixel transfers during line fill. (The Edge Processor 
fills lines as though each was a single trapezoid edge, generating pixels at 
the rate of  8 (Z-buffered) or 16 million per second.) 

The addition of a small pixel cache on the pixelbus allows pixels to be read 
and written in blocks large enough to achieve performance roughly equal to 
the peak pixelbus rates: 

Operation Mpixel/sec 

read 5.3 
write 16.0 

Because write cycles greatly outnumber read cycles when the zoom factor 
is large, fill rates approach the higher write rate as the zoom factor is 
increased. The fill rates for a variety of  zoom factors are: 

Zoom Factor Mpixel/sec 

1 4.0 
2 9.1 
3 12.0 
4 13.5 
8 15.3 

With this performance it is possible to zoom 1/4 of the screen by a factor of 
2 at the rate of  7 frames per second. Smaller areas, common in window- 
capable systems, easily zoom at 30 frames per second. Because the effects 
of  pan and zoom are limited to a single window, or to multiple windows 
with independent factors if desired, the full screen with all its windows 
remains a useful resource. 

High-speed pixel copy leverages pixelbus th.oughput, which was also 
required for line drawing. By emphasizing high-speed pixel read and write, 
we improve the performance of  transfers between host memory and the 
frame buffer, and also support real-time video input. 

5.2 Window ID Masking 

Each pixel in the frame buffer includes a 4-bit ID field that is unique to the 
process that controls that pixel. Previous architectures [9] have used this 

per-pixel window ID field to control interpretation of pixel contents at 
display time. 4 Such an ID, read out and interpreted as a part of the display 
process, easily supports independent buffer mode specification on a per- 
pixel basis. Windows can independently select single or double buffer 
operation, and double buffer windows can swap buffers independently. 
Colorindex or RGB operation is also selected independently on a per- 
window basis. Thus, while the notion of a pixel ID is not new, its use as a 
drawing mask is. 

The new graphics hardware includes pipelined hardware that tests the ID of  
each pixel against the ID of the current drawing process. If the test fails, 
the draw operation is aborted with no change to the frame buffer contents. 
Otherwise, the drawing operation is completed in the currently specified 
manner. Because the compare operation is truly pipelined, there are no 
drawing order requirements imposed by the test. All drawing operations to 
the frame buffer, including lines, are ID masked with no performance 
penalty. 5 

ID masking supports both partially obscured windows and non-rectangular 
windows (such as round clocks or templates) in a simple and consistent 
manner. It imposes no constrainm on window size or shape, and never 
results in loss of  performance. 

5.3 Realtime Video 

The new graphics architecture is capable of  capturing both NTSC and PAL 
images in real time. These images are transferred to an arbitrary window 
on the screen via the pixelbus at the rate of  16 million pixels per second. 
Once in the frame buffer, they can be operated on just like images from any 
other source. Frame grab rate is controlled by the drawing program, 
allowing the simple program loop: 

while (TRUE) 
grab a frame 
modify the image 
swap buffers 

to operate as expected. Multiple buffers within the grabbing hardware 
insure that no frames are missed as long as the sum of the grab a frame 
period and the modify the image period does not exceed 1/30 of a second. 
The resulting NTSC or PAL image can be output in the same video format, 
allowing the hardware to act as a realtime video filter. Genlock and the 
alpha channel output allow additional video sources to be merged in a 
useful manner. 

5.4 Alpha Blending 

Each of the twenty Image Engines includes both ALU and microeode 
support for an alpha blending algorithm. This blending algorithm, used 
while operating in RGB mode, causes the destination pixel values to be a 
linear combination of the previous destination values and the new source 
values. 

Cun = F,z, Ca, t + F~C,,~ 

F ~ O, 1, alpha, 1-alpha, C~rc, 1-Csrc, fdn, 1-Gun 

The algorithm operates identically on red, green, blue, and alpha color 
components, each of which is stored as an 8-bit value in the frame buffer. 
Algorithm options are specified in table format. All of  the operations 
described by Porter and Duff [8], as well as others, are available. 

The frame buffer provides complete support for image eompositing, 
including output of  the alpha channel for external image merging. In 
addition, such a blending function at the tail end of  a geometric graphics 
system provides capabilities well beyond traditional image compositing. 
Specifically, because blending is supported in conjunction with Z-buffer 
operation, geometrically specified solids can be blended to simulate the 
effects of  transparency. With some attention to the order in which image 
components are specified, useful engineering images earl be created. 

5.5 Antialiased Lines 

While the problem of realtime antialiasing of  geometric images (us 
discussed by Crow [41) has yet to be solved by a workstation, it has become 
possible to solve limited subsets of  this problem. Our specific 

4. Silicon Graphics has applied for patent protection for this technology. 
5. SiliconGraphicsha.rappliedforpatentprotectionforthistechnology. 
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implementation solves the problem of realtime rendering of antialiased lines 
against a constant color background. It is related to the algorithm described 
by Gupta and Sproull [7]. 

We require subpixel position information to properly antialias a line. This 
information is unavailable in graphics systems that rely on the Bresenham 
[1] algorithm for line iteration. It is available in a system that iterates using 
a digital differential analyzer (DDA). The DDA approach has been avoided 
in the past because of the division required. Since hardware has been 
provided to compute both color and depth slopes, the cost of computing line 
slopes, and thus of DDA iteration, has become insignificant. 

Our antialias line algorithm forces line end points to pixel-eentered 
positions, then uses sub-pixel information to smooth interior pixels. Each 
line is drawn twice, the second time offset one pixel position in the 
direction opposite the major line direction. During each pass the 3 most 
significant fraction bits of y, if the line is x major, or x, if the line is y major, 
as well as the pass (first or second) are used to drive a table lookup of pixel 
coverage information (see Picture 1). The table output is a 4-bit colorindex, 
which is concatenated with the 8 most significant bits of the current drawing 
colorindex to form the new pixel value. Thus constant color lines access 1 
of 16 colormap locations as a function of pixel coverage. When appropriate 
values are loaded into the colormap, attractive antialiased lines result. 

Of course the current colorindex, and thus the upper 8 bits of that index, can 
be iterated while the antialiased line is being drawn. When this iteration is 
controlled as a function of depth, and appropriately scaled ramps of 16 
entries are created in the colormap, depthcued antialiased lines are drawn. 
Antialiased lines of different colors can be drawn by simply changing the 
current colorindex between lines, again with appropriate ramp 
specifications. 

Line intersections are handled in one of three ways: 

• Depth B~fered.  Z-buffer conditional pixel fill can be used to force the 
nearest (or farthest) line's color to dominate pixels where lines intersect. 

• Color Buffered. The same Z-buffer hardware can be retargeted to 
branch on colorindex, rather than depth, information. This insures that 
the intensity of a pixel is never diminished. This algorithm works well 
with single-color images that include many intersections. 

• Painter's algorithm. Each pixel takes the last value that is written to it. 

6. Summary 

We have presented a parallel architecture for high speed polygon rendering. 
The system achieved its goal of 100,000 polygons per second through an 
efficient and balanced implementation of a novel architecture. In addition, 
several features new to workstation graphics were introduced. The 
implementation of the graphics subsystem consists of a 5-board set utilizing 
50 copies of 7 proprietary chips and 7 additional commercial 
microprocessors. 

Benchmark testing of a completed system immediately prior to publication 
yielded the following results: 

• 101,000 quadrilaterals per second. I00 pixel, arbitrarily rotated, 
lighted, Z-bnfferezt 

• 137,000 triangles per  second. 50 pixel, arbitrary strip direction, lighted, 
Z-buffered. 

• 394.000 lines per second. 10 pixel, arbitrarily directed, depthcued, Z- 
buffered. 

• 210,000 antialiased lines per second. 10 pixel, arbitrarily directed, Z- 
buffered. 

• 8.3 millisecond full-screen clear. Both color and Z-bnffer banks 
cleared. 
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Figure 5 

Silicon Graphics Superworkstafion windowing system simultaneously 
exhibits high-performance 3D graphics, multi-mode graphics, and 
arbitrarily shaped windows. 
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