
~ Computer Graphics, Volume 22, Number 4, August 1988

High-Performance Polygon Rendering

K u r t A k e l e y
T o m J e r m o l u k

Silicon Graphics, Inc.
2011 North Shoreline Boulevard
Mountain View, CA 94039-7311

ABSTRACT

This paper describes a system architecture for realtime display of shaded
polygons. Performance of 100,(300 lighted, 4-sided polygons per second is
achieved. Vectors and points draw at the rate of 400,000 per second.
High-speed pan and zoom, alpha blending, realtime video input, and
antialiased lines are supported. The architecture heavily leverages
parallelism in several forms: pipeline, vector, and array processing. It is
unique in providing efficient and balanced graphics that support interactive
design and manipulation of solid models. After an overview of algorithms
and computational requirements, we describe the details of the
implementation. Finally, the unique features enabled by the architecture are
highlighted.

CR Categories and Subject Descriptors: B.2.1 [Arithmetic and Logic
Structures]: Design Styles Parallel, Pipeline; C.1.2 [Processor
Architectures]: Multiprocessorrs - Parallel processors, Pipeline processors;
1.3.1 [Computer Graphics]: Hardware Architecture - Raster Display
Devices.

Additional Key Words and Phrases: Graphics Systems.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1988 ACM-O-89791-275-6/88/O08/0239 $00.75

1. Introduction

Traditional 3D graphics workstations have concentrated on the hardware
that transforms points and lines from object-space to screen-space. As
users" needs for display of realistic solid objects have increased, demands
on graphics architectures have changed significantly. New challenges
include increases in transformation rate, incorporation of realtime
illumination calculations, and dramatic increases in pixel fill rates.

Contemporary workstations have attempted to satisfy these new demands
using a variety of architectures. Swanson and Thayer [11] describe a
system which incorporates parallel pixel processors in its raster subsystem.
A parallel geometry system is described by Torborg [12]. The lineage of
these and other contemporary graphics systems can be traced to works by
Clark [3], Clark and Hannah [2], and eventually to Fuchs and Johnson [5].

Our specific goals for the performance and capability of the new
architecture were:

• 100,000 polygons per second. The polygons are RGB, 4-sided, 10xl0
pixels, lighted, Gouraud shaded [6], arbitrarily rotated, Z-buffered, clip
tested, projected, and rendered into one of multiple, possibly
overlapping, windows at an instantaneous rate of 100,000 per second.

• 10 frames per second. Realtime systems must be able to draw and
display at rates exceeding 10 Hz.

• Window support. User productivity is optimized by a system that
supports multiple fully independent windows.

First we describe our view of the general algorithmic problem of rendering
100,000 polygons per second, paying particular attention to the
computational requirements of each step of the process. Then we describe
a novel architecture to achieve the goals. Finally we present several unique
features that were realized from the implementation.

2. Problem Description

The floating-point performance and pixel fill rates required for interactive
display of solids are both exceptional. By examining each component of
the problem we show that at least 40 million floating-point operations per
second, and fill rates exceeding 10 million pixels per second, are required to
render 100,000 polygons per second. The problem components are:

1. Transfer vertex data from memory to the graphics subsystem.

2. Transform vertex coordinates.

3. Transform vertex normals.

4. Light each vertex.

5. Clip each vertex.

6. Project each vertex.

7. Map vertex coordinates to the screen.

8. Fill the resulting screen-space polygons, interpolating color and
depth.

239

SIGGRAPH '88, Atlanta, August 1-5, 1988

9. Clip all drawing against the visible window boundaries.

10. Be prepared to quickly swap drawing contexts at any time.

11. Continually scan the frame buffer at screen refresh rates, interpreting
each pixel appropriately as a function of the process to which it
belongs.

2.1 Transfer Data

Achieving our goal of 100,000 4-vertex polygons per second requires that
400,000 vertex specifications per second be transferred to the graphics
subsystem. A lighted vertex specification includes 6 floating-point values:
3 (x,y,z) specify the vertex position, and 3 (nx, ny,nz) specify the vertex
normal direction. The required data rate is therefore:

400,000 (xform/sec) x 6 (words/xform) x 4 (bytes~word) ~ 10 Mbytes/sec

2.2 Transform Vertexes

Homogeneous 3D vertexes include 4 components, and are transformed by
multiplication by a 4x4 matrix. This vector operation requires 16 floating-
point multiplications and 12 floating-point additions. The computation rate
is therefore:

400,000 (xform/sec) x (16 + 12) (flop/~form) = 11 Mflops

If it is known that the w component of the vertex to be transformed is 1.0 (a
common case with 3D homogeneous data) then 4 multiplications can be
eliminated, resulting in a computation rate of:

400,000 × (12 + 12) .~ 9.5 Mflops

2.3 Transform Normals

Plane equations are properly transformed by the inverse-transpose of the
vertex matrix. This transformation has the same expense as the full vertex
transformation. It is unnecessary, however, for lighting calculations.

Vertex normals are plane equations stripped of distance information.
Because normals are not position sensitive, translation information in the
vertex matrix need not be included in a normal matrix. Also, because
vertex normals are normalized to unit length before they are used, uniform
scale information need not be applied to a normal matrix. Thus only
rotations and non-uniform scales of the vertex matrix are applied, by
inverse-transpose, to the normal matrix.

A 3 by 3 normal matrix supports all the required information, and is used to
transform the 3-component lighting normals. This transformation requires
9 floating-point multiplications and 6 floating-point additions, for a total
computation rate of:

400,000 x (9 + 6) = 6 Mflops

As was indicated above, normals must be unit length before they are used in
lighting calculations. Although it will in some cases be possible to avoid
explicit normalization, 1 we compute the expense of this operation. Sum of
squares requires 3 floating-point multiplications and 2 floating-point
additions. We conservatively estimate the cost of reciprocal square root
calculation to be twice that of simple reciprocal calculation: 8 floating-
point operations. Finally, each of the three components is multiplied by the
newly computed factor. The approximate required computation rate for
normalization is:

400,000 × (3 + 2 + 16 + 3) = 9.5 Mflops

2.4 Light Vertexes

Because the target polygons are Gouraud shaded, lighting calculations are
required only at the vertexes of polygons, never in their interiors.
Transformed vertex and normal information, current light positions and
colors, surface properties, and specific lighting-model properties for each
vertex are resolved to a single RGB triple. These triples will be
interpolated across the interiors of projected polygons.

1. Normals spec~ed witk unit tength, no non-uniforrn scales.

The fighting model that we chose for our performance requirement
estimates is:

• A single light - infinitely distant

• A viewer - infinitely distant

• Ambient, diffuse, and specular reflection components

The equation

Cob jeer = C,ma~i,nt + C~ffus, Cugh,(N.L) + C,p,cularCtlght(N'H)"

is executed 3 times, once each for red, green, and blue (all C ' s are RGB
vectors). Dot products are evaluated only once. Including tests for
overflow, each optimized lighting computation requires 12 floating-point
multiplications, 10 floating-point additions, 5 floating-point comparisons,
and a table lookup. The total compute power required is:

400,000 x (12 + 10 + 5 + 1) ~ 11 Mflops

2.5 Clip

Polygons are correctly clipped in all cases using the Sutherland-Hodgman
Algorithm [10]. This algorithm requires one floating-point compare per
clipping plane, 6 compares per vertex in a 3D system. Additional floating-
point operations are required only in the event of actual clipping, i.e.
infrequently. In either case the algorithm execution time is dominated by
data movement and branching, not by floating-point operations.

Using proper optimization to avoid unnecessary clipping, the floating-point
demands for clipping are:

400,000 x 6 = 2.5 Mflops

2.6 Project

Each vertex is projected in homogeneous space by division of its x, y, and z
components by its w component. This is accomplished most efficiently by
first computing l/w, then multiplying each of x, y, and z by this factor. We
asserted previously that computing a reciprocal requires 8 floating-point
operations. Thus perspective division requires a total of 11 floating-point
operations, at an aggregate rate of:

400,000 x (8 + 3) = 4.5 Mflops

2.7 Viewport and Fix

Projected vertexes are mapped to screen coordinates with a simple affine
calculation. Each of the three vertex components is scaled by an
independent scale factor, offset by an independent offset, and convened to
integer screen coordinates. The total floating-point calculation rate is:

400,000 × (3 + 3 + 3) = 3.5 Mflops

The total floating-point performance required to convert object-space
coordinate vertexes and normals to screen-space coordinates and colors is:

Operation Mflops
Vertex Transformation 9.5
Normal Transformation 6
Normal Normalization 9.5
Lighting 11
Clipping 2.5
Projection 4.5
Viewport 3.5
Total 46.5

2.8 Fill and Smooth Shade Screen Space Polygons

Screen-space vertexes, now interpreted as polygon vertexes, are used to
specify the boundaries of frame buffer regions to be smooth shaded.
Although the details of this shade/fill operation are implementation
dependen4 we can safely describe some of the problems that will be
encountered. They are:

• Test for convexity. A substantially more complex algorithm is required
to fill concave polygons.

• Decompose to trapezoids. It will almost always be desirable to reduce
the full polygons to collections of screen-aligned trapezoids, whose

240

~ Computer Graphics, Volume 22, Number 4, August 1988

parallel edges are in the direction of preferred fill in the frame buffer.

• Calculate slopes. Slopes for all parameters to be interpolated must be
computed. Substantial integer precision must be maintained if
interpolation errors are to be avoided.

• Write to the frame buffer. A huge memory bandwidth is required to till
polygons at the rate of 100,000 per second. Our benchmark t0 pixel by
l0 pixel polygons fill at 10 Million pixels per second. A substantially
higher fill rate is desirable for larger polygons. Screen clear, really just
filling a large, screen-aligned polygon, demands the highest fill rate.

2.9 Clip all Drawing Against Visible Window Boundaries

The clipping and viewport operations described above will limit polygon
tilling to a screen-aligned r~tangular region, or window. They are not
sufficient, however, if the window is non-rectangular, either because it is
obscured by another window, or because it wasn ' t rectangular to begin
with. In some systems the problem of obscured windows is deferred by
always rendering into rectangular regions, then assembling the final screen
image on the fly. While attractive in many respects, this solution does
nothing to solve the fundamental problem of non-rectangular windows, and
is expensive in terms of memory consumption.

2.10 Change Contexts

The entire graphics system must be prepared, at any moment, to save the
drawing state of the current context and restore the state of a previously
interrupted context. This operation must happen quickly in most cases, but
must also be able to support a huge number, perhaps hundreds, of
independent contexts. Support for a working set of processes is therefore
desirable.

2.11 Scan Frame Buffer

Although the bandwidth required to scan a high-resolution frame buffer at
60 Hertz is enormous (pixel rates of 110 to 125 MHz are standard today)
the availability of inexpensive Video RAMs allows this bandwidth to be
supported with little engineering effort. We don't emphasize this problem
here. Rather, we concentrate on the issue of multiple windows as it pertains
to frame buffer output.

It is desirable that imaging to separate windows be as independent as
possible. Most important, perhaps, is that windows be able to select and
alter their buffer modes independently. Single and double buffer images
must coexist, and double buffer images must swap buffers independently.
Further, if pixels can be interpreted in different ways, it is important that the
interpretation in each window also be independent.

An important exception is color mapping, the process of interpreting pixel
values as indexes into a table of RGB triples. While it would seem that
each process should have its own table, it is sometimes desirable to share
table entries between processes. Thus a single table, large enough to supply
separate areas to processes that desire independence, yet shared by all
processes, is an appropriate solution.

3. Architectural Solution

Our graphics subsystem is a part of a complete workstation whose host
processor comprises multiple RISC-based CPUs. The CPUs and the
graphics interface share a high-speed 64-bit synchronous bus of proprietary
design. While the primary design goal of the bus was multiproeessor
support, it includes special support for data transfer to the graphics
subsystem.

The graphics system itseff is partitioned into four pipelined subsystems. In
order of data flow these are:

1. Geometry subsystem. Supports all floating-point operations.
Transforms data from object-space coordinates to screen-space
coordinates.

2. Scan conversion subsystem. Interprets screen-space coordinate
vertexes as points, lines, and polygons, and generates appropriate fill
instructions. Interpolates color and depth data across lines and
polygons.

3. Raster subsystem. Maintains a 1280 by 1024 frame buffer of 96-bit
pixels. Executes pixel algorithms such as replace, depth conditional
replace (Z-buffer), and blend.

4. Display subsystem. Continually scans the frame buffer to supply
video data to the monitor. Each pixel is interpreted individually as a
function of the window to which it belongs.

Each of these four subsystems, as well as the host interface, is described in
detail below.

3.1 Data Transfer

As we have seen, the graphics subsystem consumes data at roughly 10
Mbytes per second. The 64 Mbyte per second synchronous bus that
connects the host processors to the graphics subsystem is able to handle this
load. Thus large blocks of geometric data can be transferred across this bus
to the graphics subsystem. Such transfers, however, are not consistent with
the programming model desired for the machine.

The target graphics library includes commands such as vertex(x,y,z) and
normat(nx,ny,nz). Each command is implemented as a subroutine in the
language of the calling application program. Each specifies data from an
arbitrary structure. Graphics programs using commands such as these can
operate directly from application data bases. Programs need not be
'compiled' into display lists, and therefore can traverse data under complete
application control. Finally, because all traversal code and data reside in
main memory, there is essentially no limit to the size of either.

We seek a solution that retains the desired properties of immediate-mode
graphics, and supports extremely high-performance graphics. Our answer
is to create new commands that operate on 2, 3, and 4-component vectors,
rather than on scalar values. Thus vertex(x,y,z) becomes vertex(xyz), where
xyz is the address of three adjacent floating-point values. Hardware support
allows each host processor to make a single memory reference when
dealing with such a vector. The memory and synchronous bus deliver the
data to the graphics subsystem in a single burst, making optimum use of the
available bus bandwidth. Vectors that straddle page boundaries are
detected and handled automatically.

By providing support for program controlled data transfer to the graphics
subsystem at rates far in excess of 10 Mbytes per second, we allow for both
future increases in graphics performance, and for desirable inefficiencies in
program execution. One such inefficiency is shared graphics libraries.
While such libraries exact a performance penalty at each call, they greatly
reduce code size, both on disk and in memory, and also support object code
compatibility between machines with different graphics subsystems.

3.2 Geometry Subsystem

The geometry subsystem comprises a single conversion and FIFO module,
followed by 5 identical floating-point processors (Geometry Engines®).
These 6 processors are organized as a single pipeline. Each executes a
specific subset of the rendering algorithm, minimizing microcode space
requirements.

3.2.1 Conversion and FIFO Module This module accepts coordinate data
in 4 formats: 16-bit integer, 24-bit integer, 32-bit IEEE floating-point, and
64-bit IEEE double precision floating-peint. Color data are accepted as
packed integers as well as in the coordinate formats. All data are converted
to 32-bit IEEE floating-point format for consumption by the Geometry
Engines. Hardware format conversion supports direct transfer of data from
user structures to the graphics subsystem without performance penalty.

A 512-word FIFO precedes the conversion module. The hardware
interrupts when a high water mark is passed, allowing user programs to
transfer data to the graphics subsystem without concern for flow control.
On interrupt, the operating system blocks the user program until the FIFO
empties past a low water mark. Thus transfer rate is adversely affected by
flow control protocol only when it has already exceeded the ability of the
graphics system to accept data.

3.2.2 Geometry Engine Each of the five Geometry Engines is an identical
module capable of 20 million single-precision floating-point operations per
second (Mflops). Each includes separate high-speed microcode and data
memories. The engines accept and output commands accompanied by up to
4 data words. Command interpretation is accomplished by program jump,
followed by normal program counter operations. Hardware support in each
engine includes:

241

~ Computer Graphics, Volume 22, Number 4, August 1988
i

• Flow control. Microcode ignores the issues of command availability,
and of the subsequent engine's ability to accept commands. Hardware
blocking is provided for both cases.

FIFO input buffer. Each engine includes 4 command buffers at its
input. Buffers store up to 4 data words and a command address.

• Pipeline support. Although the Geometry Engine has 6 internal
pipeline stages, individual microcode instructions specify complete
operations, including data sources, operations to be performed, and data
destinations.

• Concurrent command execution. The flow control and branch hardware
support concurrent command (as well as insu'uction) execution.

The above, taken together, allow each engine to operate efficiently. The
pipeline sustains the required 40-50 Mflops floating-point rate with 5
modules whose aggregate peak rate is 100 Mflops, an efficiency
approaching 50 percent. This efficiency is not achieved in more general
purpose vector processors, especially when the vectors are of 3 to 4 element
length.

Graphics tasks are distributed among the 5 Geometry Engines as follows:

1. Matrix and normal transformation. Matrix and normal stacks.
Normal normalization.

2. Lighting calculations.

3. Clip testing.

4. Perspective division. Clipping (when required).

5. Viewport transformation. Color clamping to a maximum value.
Depthcue calculations.

3.3 Scan Conversion Subsystem

Screen coordinates sent from the geometry subsystem to the Scan
Conversion Subsystem specify the vertexes of points, lines, and polygons.
The Scan Conversion Subsystem performs the calculations required to
reduce vertex data to individual pixels. Each pixel is assigned an x, y, and z
coordinate and an r, g. b, and ¢x color value. Color and z data are always
interpolated linearly between vertexes and between the edges of polygons.

The task of scan-converting polygons is partitioned into three separate
processors within the Scan Conversion Subsystem. The first two of these
processors, the Polygon and Edge processors, use a pseudo floating-point
representation to maintain coordinate integrity when calculating slopes. In
addition, the y coordinates of polygon edges are computed to 1/8 pixel
tolerance. All depth and color component iterations are first corrected to
the nearest pixel center, then iterated in full-pixel steps. As a result, iterated
color and depth values remain planar across polygonal surfaces, and
subsequent Z-buffer calculations result in clean intersections.

Vertex data are not passed directly from the geometry subsystem to the
Scan Conversion Subsystem, but rather are accumulated in one of two 256-
vertex buffers. Vertex representations in this buffer are always the same,
regardless of the operating mode of the system. Hardware on both the
Geometry and Scan sides of the buffer is optimized to operate on these
vertexes. Thus, the Polygon Processor receives entire polygons, rather than
individual vertexes. It operates on vertexes directly from this buffer,
avoiding unnecessary copying and interpretation.

The Polygon Processor both sorts vertexes from left to right and checks for
convexity in one simple, pipelined operation. The sorted vertexes are
decomposed into trapezoids. Slopes of y, z, r, g, b, and ct are computed
relative to delta x. Coordinates and slopes for each edge are passed to the
Edge Processor. Trapezoid edges are handles at the rate of 1 per
microsecond.

The Edge Processor iterates along the top and bottom edges of the
trapezoid, generating at each iteration the top and bottom coordinates of a
single span. ~ Spans are always iterated bottom to top. Therefore hardware

2. We refer to vertical lines o f pixels as spans, horizontal lines as scans.

SCAN CONVERSION SUBSYSTEM

:::~:, Polyg on ::
:ii:i: ::::::::::::::::::::::::::::::: :::::::::::::::::::::::: ::: :ii::i :16: :::i::::::i:~?:~i~!i:~::i:il i !i G':::::i::::::

::::::::::::::::::::::::::::::::::::;~;::::;: :::::i~:::~:~!,F:::::::::i ::::::~:.:::!:: ~::~i::::::i i:.i :: i isi~i~ ;:: i::. i~;::::::::i~i: i:i: ::i:~ !::i:~!:!i i::i:!:: i: : : :~ i !:::: ~!:: ::: :: :: :: :: :: t ::: ~:is~opo ::::i::i::i::iiii ~2~:~Ii)))iiii::: ~:::::i~::::~:,i::i iii~,~,tW~:il;il)::iiii::::i::::i:,iii~i~::ii~;: ::::::::::::::::::::::::: ii~:i:,iiiiii!
l::,::!::calculators :::i~:~!~::̀ ~.~:i ~::::-:~ ::iii~!!:!iii!::il [:: :(Y Z,R G,B A)

:::~::::~h:ii:ii::~iiii:iiiiiiiii[i~!!!ij!i~;~E~:i~iiii£iiiiiiiiiiiii~iiiiiiiiiiiiiiii ii~i~:!!!i! !!i!!!i!!E!~iE~ !!!!ii 1

::: ::::::::::::::::::::::::::::::::

F I G U R E 2

is provided to swap span ends as necessary, both avoiding a complex test at
trapezoid decomposition time, and correctly handling bow-tie polygons,
which occur frequently at surface silhouettes.

The color, y, and z edge components comprise 2 vectors which are iterated
in parallel by multiple, proprietary engines. Spans are generated at the rate
of 2 per microsecond.

The y components of span endpoints are computed to 1/8 pixel accuracy.
Color and depth slopes are computed using delta y to this accuracy. This
slope is then used to iterate to the nearest pixel center. The final span
definition comprises the corrected initial color and depth values, the color
and depth slopes, the integer x and y values of the bottom pixel, and the
span length.

The Edge Processor delivers each span to one of five Span Processors.
Each Span Processor manages every fifth column of pixels in the frame
buffer. Since spans generated from a single polygon are always adjacent,
the span processing load is evenly distributed across the five Span
Processors. Each Span Processor iterates through its span using the initial
and slope values provided, treating color and z span components as a
vector. Pixel specifications are generated at the rate of 8 per microsecond.
Thus the aggregate fill rate of the 5 Span Processors is 40 million pixels per
second (Z-buffered).

3.4 Raster Subsystem

The Raster Subsystem contains 20 Image Engines TM, each of which is an
independent state machine that controls 1,r20th of the frame buffer memory.
Groups of 4 Image Engines are driven by each Span Processor. The array
of Image Engines tiles the frame buffer in a 5-wide, 4-high, pattern.

Bitplane memory is organized into 5 banks, comprising a total of 96 bits per
pixel. The banks are arranged as follows:

• Image banks. Two banks of 32 bits each, organized as 8 bits each of
red, green, blue, and alpha data.

243

f SIGGRAPH '88, Atlanta, August 1-5, 1988
l l l l I I II

Interleaved Image Engines
Array 0t 20 Image Eng ines

FIGUR E 3

Per Pixel

Alpha
I 8 bits
I

'Blue
8 bits

Green
8 bits

Image Bit-planes Z-Buffer Overlay Window ID
Bit-planes or Bit-planes

Underlay (not access-
Bit-planes able to users)

96 Bits

Alpha]
8 bits

Blue
8 bits

Green .~4 bits
8 bits

Red
8 bits

F I G U R E 4

• Depth bank. One bank of 24 bits. Stores 24-bit integer depth
information when used in conjunction with the Image Engine Z-buffer
pixel algorithm. It is also available for image data.

• Overlay bank. One bank of 4 bits. Two bits are reserved for the
window manager.

• Window ID bank. One bank of 4 bits, used by the window manager to
tag pixets based on the drawing process to which they belong.

Image Engines operate as specialized memory controllers, supporting video
RAM refresh, display refresh, and a handful of pixel access algorithms.
These algorithms include:

• Replace. Replace the destination color with the source color.

• Z-buffer. Compare the source and destination z values. If the test
passes 3 replace the destination color and z with the source color and z,

• Z-buffer blend. Like Z-buffer, but replace the destination color with a
linear combination of the source and destination colors.

• High-speed clear. Simple replace available only for large, screen-
aligned rectangles.

Although the Image Engines are simple machines, their parallel operation
and multiple algorithms result in extremely powerful pixel fill operation.
Their aggregate performance for the various pixel algorithms is:

Pixel Algorithm Fill Rate
Mpixel/sec

Replace 80
Z-buffer 40
Z-buffer with blending 10
High-speed clear 160

3.5 Display Subsystem

The Display Subsystem receives pixel data from the frame buffer, interprets
it, and routes the resulting red, green, blue, and alpha data to the Digital-to-
Analog converters for display. Five Multim~de Graphics Processors
(MGPs) operate in parallel, one assigned to the pixels controlled by each
Span Processor. These MGPs receive all 64 image bank bits, the 4
auxiliary bank bits, and the 4 window ID bits for each pixel. They interpret
the image and auxiliary bits as a function of the window ID bits, using an
internal 16-entry table.

3.6 Context Switching

The graphics subsystem is designed to SUPlmrt eorttext switching with
minimal overhead. Because significant quantifies of state are accumulated
in each of the 5 Geometry Engines, each maintains complete context for 16
independent processes in its local data memory. The Geometry Engines are
also able to dump and restore context to and from a host processor,
allowing more than 16 processes to share the hardware. Thus a working set
of up to 16 processes is supported, with essentially no limit to the total
number of processes.

Because the Edge, Span, and Image Processors are unable to return state
information, the few states stored in these processors are shadowed by the
Polygon Processor. The Polygon Processor state, including shadow state, is
minimal, and is therefore maintained by a host CPU.

4. Performance

We achieved our polygon performance and quality objectives, including
operation in a window environmenL The subsystems used to achieve this
goal are carefully balanced in performance, resulting in a cost effective
solution. Vertexes are transformed and lighted at the rate of 400,000 per
second, just matching the desired rate of 100,000 4-vertex polygons per
second. The Polygon Processor sorts the vertexes of 4-vertex polygons, and
computes slopes for 4 edges, in just under 10 microseconds, again just
meeting the required performance. The edge processor iterates along edges
and generates spans at the rate of 2 spans per microsecond, slightly faster
than required to generate 14 spans in 10 microseconds. Spans are iterated
and pixels generated at the aggregate rate of 40 million per second, four
times the rate needed to meet the performance objective, but invaluable for
smoothing the performance transition between small and large polygons.

Some performance notes for various operations follow:

s Polygons. Because the system is balanced to render lighted, smooth
shaded polygons, there is no performance benefit for not using these
features. Thus flat shaded, smooth shaded but unlighted, and lighted 4-
side polygons all render at the target rate of 100,000 per second. Small
triangles render at 120,000 per second, again regardless of mode. Large
polygons render at rates limited by the 40 million pixel per second fill
rate.

• Vectors. The draw rate of short vectors is transformation limited,
resulting in 400,000 connected vectors per second, or 200,000
unconnected vectors per second. Long vector rates are limited by the 8
million pixel per second fill rate (16 million with the Z-buffer disabled).

• Window clear. The performance of even moderately complex
animations can be limited by the time required to clear the window.
The special 160 million pixel per second fill rate, available only for
window clear, allows a screen-size window to be cleared in 8.2

3. Any cor~bination of greater than, equal to, and less than can be spec~ed .

244

~)~ Computer Graphics, Volume 22, Number 4, August 1988
|

milliseconds. Thus full screen animations running at 10 Hz lose only
8% of their draw time to screen clear. Even 30 Hz animations lose only
25% of their draw time.

• Pixel access. An important ancillary function of 3D graphics is high-
speed host access to the frame buffer. This is useful for image display
and storage, image convolution, paint programs, and many other
applications. The new raster architecture supports host read and write
rates of 5 million pixels per second.

5. Special Features

Our design goal achieved, let us now consider some other features of the
new graphics architecture.

5.1 Pan and Zoom

Typical raster systems handle pan and zoom as a display process by altering
the fetching of data for the monitor. Frame buffer scan lines are output
multiple times to achieve vertical zoom, and are output at reduced rates to
achieve horizontal zoom. Initial pixel addresses are altered to achieve
horizontal and vertical pan. In all eases the video data rate is either reduced
or unaffected. Thus, while the implementation is complex, it makes no
performance demands on the hardware.

This typical pan and zoom implementation, however, has some undesirable
properties:

• It either operates on the entire screen, which is unacceptable in a
window environment, or it becomes unmanageably complex.

• The effort and cost expended solving pan and zoom in this manner do
not contribute to the machine in any other way.

The second point is of particular interest. We prefer solutions that have a
synergistic effect on the performance of the entire machine.

Recall the bus that connects the Edge Processor to the five Span Processors.
This pixeibus transmits span definitions during polygon fill, but is also
designed to support pixel transfers during line fill. (The Edge Processor
fills lines as though each was a single trapezoid edge, generating pixels at
the rate of 8 (Z-buffered) or 16 million per second.)

The addition of a small pixel cache on the pixelbus allows pixels to be read
and written in blocks large enough to achieve performance roughly equal to
the peak pixelbus rates:

Operation Mpixel/sec

read 5.3
write 16.0

Because write cycles greatly outnumber read cycles when the zoom factor
is large, fill rates approach the higher write rate as the zoom factor is
increased. The fill rates for a variety of zoom factors are:

Zoom Factor Mpixel/sec

1 4.0
2 9.1
3 12.0
4 13.5
8 15.3

With this performance it is possible to zoom 1/4 of the screen by a factor of
2 at the rate of 7 frames per second. Smaller areas, common in window-
capable systems, easily zoom at 30 frames per second. Because the effects
of pan and zoom are limited to a single window, or to multiple windows
with independent factors if desired, the full screen with all its windows
remains a useful resource.

High-speed pixel copy leverages pixelbus th.oughput, which was also
required for line drawing. By emphasizing high-speed pixel read and write,
we improve the performance of transfers between host memory and the
frame buffer, and also support real-time video input.

5.2 Window ID Masking

Each pixel in the frame buffer includes a 4-bit ID field that is unique to the
process that controls that pixel. Previous architectures [9] have used this

per-pixel window ID field to control interpretation of pixel contents at
display time. 4 Such an ID, read out and interpreted as a part of the display
process, easily supports independent buffer mode specification on a per-
pixel basis. Windows can independently select single or double buffer
operation, and double buffer windows can swap buffers independently.
Colorindex or RGB operation is also selected independently on a per-
window basis. Thus, while the notion of a pixel ID is not new, its use as a
drawing mask is.

The new graphics hardware includes pipelined hardware that tests the ID of
each pixel against the ID of the current drawing process. If the test fails,
the draw operation is aborted with no change to the frame buffer contents.
Otherwise, the drawing operation is completed in the currently specified
manner. Because the compare operation is truly pipelined, there are no
drawing order requirements imposed by the test. All drawing operations to
the frame buffer, including lines, are ID masked with no performance
penalty. 5

ID masking supports both partially obscured windows and non-rectangular
windows (such as round clocks or templates) in a simple and consistent
manner. It imposes no constrainm on window size or shape, and never
results in loss of performance.

5.3 Realtime Video

The new graphics architecture is capable of capturing both NTSC and PAL
images in real time. These images are transferred to an arbitrary window
on the screen via the pixelbus at the rate of 16 million pixels per second.
Once in the frame buffer, they can be operated on just like images from any
other source. Frame grab rate is controlled by the drawing program,
allowing the simple program loop:

while (TRUE)
grab a frame
modify the image
swap buffers

to operate as expected. Multiple buffers within the grabbing hardware
insure that no frames are missed as long as the sum of the grab a frame
period and the modify the image period does not exceed 1/30 of a second.
The resulting NTSC or PAL image can be output in the same video format,
allowing the hardware to act as a realtime video filter. Genlock and the
alpha channel output allow additional video sources to be merged in a
useful manner.

5.4 Alpha Blending

Each of the twenty Image Engines includes both ALU and microeode
support for an alpha blending algorithm. This blending algorithm, used
while operating in RGB mode, causes the destination pixel values to be a
linear combination of the previous destination values and the new source
values.

Cun = F,z, Ca, t + F~C,,~

F ~ O, 1, alpha, 1-alpha, C~rc, 1-Csrc, fdn, 1-Gun

The algorithm operates identically on red, green, blue, and alpha color
components, each of which is stored as an 8-bit value in the frame buffer.
Algorithm options are specified in table format. All of the operations
described by Porter and Duff [8], as well as others, are available.

The frame buffer provides complete support for image eompositing,
including output of the alpha channel for external image merging. In
addition, such a blending function at the tail end of a geometric graphics
system provides capabilities well beyond traditional image compositing.
Specifically, because blending is supported in conjunction with Z-buffer
operation, geometrically specified solids can be blended to simulate the
effects of transparency. With some attention to the order in which image
components are specified, useful engineering images earl be created.

5.5 Antialiased Lines

While the problem of realtime antialiasing of geometric images (us
discussed by Crow [41) has yet to be solved by a workstation, it has become
possible to solve limited subsets of this problem. Our specific

4. Silicon Graphics has applied for patent protection for this technology.
5. SiliconGraphicsha.rappliedforpatentprotectionforthistechnology.

245

¢ SIGGRAPH '88, Atlanta, August 1-5, 1988

implementation solves the problem of realtime rendering of antialiased lines
against a constant color background. It is related to the algorithm described
by Gupta and Sproull [7].

We require subpixel position information to properly antialias a line. This
information is unavailable in graphics systems that rely on the Bresenham
[1] algorithm for line iteration. It is available in a system that iterates using
a digital differential analyzer (DDA). The DDA approach has been avoided
in the past because of the division required. Since hardware has been
provided to compute both color and depth slopes, the cost of computing line
slopes, and thus of DDA iteration, has become insignificant.

Our antialias line algorithm forces line end points to pixel-eentered
positions, then uses sub-pixel information to smooth interior pixels. Each
line is drawn twice, the second time offset one pixel position in the
direction opposite the major line direction. During each pass the 3 most
significant fraction bits of y, if the line is x major, or x, if the line is y major,
as well as the pass (first or second) are used to drive a table lookup of pixel
coverage information (see Picture 1). The table output is a 4-bit colorindex,
which is concatenated with the 8 most significant bits of the current drawing
colorindex to form the new pixel value. Thus constant color lines access 1
of 16 colormap locations as a function of pixel coverage. When appropriate
values are loaded into the colormap, attractive antialiased lines result.

Of course the current colorindex, and thus the upper 8 bits of that index, can
be iterated while the antialiased line is being drawn. When this iteration is
controlled as a function of depth, and appropriately scaled ramps of 16
entries are created in the colormap, depthcued antialiased lines are drawn.
Antialiased lines of different colors can be drawn by simply changing the
current colorindex between lines, again with appropriate ramp
specifications.

Line intersections are handled in one of three ways:

• Depth B~fered. Z-buffer conditional pixel fill can be used to force the
nearest (or farthest) line's color to dominate pixels where lines intersect.

• Color Buffered. The same Z-buffer hardware can be retargeted to
branch on colorindex, rather than depth, information. This insures that
the intensity of a pixel is never diminished. This algorithm works well
with single-color images that include many intersections.

• Painter's algorithm. Each pixel takes the last value that is written to it.

6. Summary

We have presented a parallel architecture for high speed polygon rendering.
The system achieved its goal of 100,000 polygons per second through an
efficient and balanced implementation of a novel architecture. In addition,
several features new to workstation graphics were introduced. The
implementation of the graphics subsystem consists of a 5-board set utilizing
50 copies of 7 proprietary chips and 7 additional commercial
microprocessors.

Benchmark testing of a completed system immediately prior to publication
yielded the following results:

• 101,000 quadrilaterals per second. I00 pixel, arbitrarily rotated,
lighted, Z-bnfferezt

• 137,000 triangles per second. 50 pixel, arbitrary strip direction, lighted,
Z-buffered.

• 394.000 lines per second. 10 pixel, arbitrarily directed, depthcued, Z-
buffered.

• 210,000 antialiased lines per second. 10 pixel, arbitrarily directed, Z-
buffered.

• 8.3 millisecond full-screen clear. Both color and Z-bnffer banks
cleared.

7. Acknowledgements

We appreciate and thank the entire Silicon Graphics team.

Figure 5

Silicon Graphics Superworkstafion windowing system simultaneously
exhibits high-performance 3D graphics, multi-mode graphics, and
arbitrarily shaped windows.

8. References

1. Bresenham, J. Algorithm for Computer Control of a Digital Plotter.
IBM Systems Journal 4, 1 (1965), 25-30.

2. Clark, Jim and Hannah, Marc. Distributed Processing in a High-
Performance Smart Image Memory. Lambda 1, 3 (4th Quarter 1980),
40-45.

3. Clark, Jim. The Geometry Engine, A VLSI Geometry System for
Graphics. Computer Graphics (ACM) 16, 3 (1982), 127.

4. Crow, Frank. The Aliasing Problem in Computer-Generated Shaded
Images. Communications of the ACM 20, November 1977, 799-805.

5. Fuchs, Henry and Johnson, B. An Expandable Multiproeessor
Architecture for Video Graphics. Proceedings of the 6th ACM-IEEE
Symposium on Computer Architecture (April 1979), 58-67.

6. Gouraud, H. Continuous Shading of Curved Surfaces. 1EEE
Transactions on Computers C-20, 6 (June, 1971), 623-629.

7. Gupta, Safish and Sproull, Robert. Filtering Edges for Gray-Scale
Displays. Technical Report, Carnegie-Mellon University, Computer
Science Department, 1981.

8. Porter, Thomas and Duff, Tom. Compositing Digital Images.
Proceedings of SIGGRAPH'84 (Minneapolis, Minnesota, July 23-27,
1984). In Computer Graphics 18, 3 (July 1984), 253-259.

9. Silicon Graphics. IRIS 4D/70 Superworkstation Technical Report.
Silicon Graphics, Mountain View, CA 1987.

10. Sutherland, Ivan and Hodgman, Gary. Reentrant Polygon Clipping.
Communications o f t h e A C M 17, 1 (January 1974), 32.

11. Swanson, Roger and Thayer, Larry. A Fast Shaded-Polygon
Renderer. Proceedings of SIGGRAPH'86 (Dallas, Texas, August
18-22, 1986). In Computer Graphics 20, 4 (August 1986), 95-101.

12. Torborg, John. A Parallel Processor Architecture for Graphics
Arithmetic Operations. Proceedings of SIGGRAPH'87 (Anaheim,
California, July 27-31, 1987). In Computer Graphics 21, 4 (July
1987), 197-204.

246

