
Bernard J, Haan
PaulKahn

Vic rA, Riley
JamesH, Coombs

Norman K, Meyrowitz

by

t h e s e

~ p e s

~ated
;ystems,
typer-
; used in
Ison's

36

i

~ ~ a l "hypertext" to emphasize
the linking of graphics, animation,
sound, and video with textual infor-
mation. Conklin's survey article [6]
describes many of these systems.
Some of the more recent systems
are also described in the book by
Nielsen [19].

article is
,. of these
ystems.
• e part of

a team that developed Intermedia at
Brown University's Institute for
Resea rch in I n f o r m a t i o n and
Scholarship (IRIS) between 1985
and 1990. Intermedia is distinct from
many other hypermedia systems in
that it is intended to model a
mult iuser hypermedia framework
rather than a single hypermediapr0-
gram. We did not want to create an
isolated hypermedia "island',' where
linking functionality was limited to
connections between homogeneous
data managed by a single program
[16]. Our intention was to create a
model for how hypermedia func-
tionality should be handled at the
system level, where linking would be
available for all participating applica-
tions in much the same way that
copying to and pasting from the dip-
board facility is supported in the
Macintosh and Microsoft Windows
environments.

Intermedia presents the user
with a graphical file system browser
(a functional equivalent o f the Mac-
intosh Finder); a set of direct-
manipulation editors for text,
graphics, timelines, animations,
and videodisc data; a browser for
link information; a set o f linguistic
tools; and the ability to create and
traverse links between any two se-
lections in any document in the sys-
tem. As will be explained in greater
detail, information about selections
(called anchors) and links between
these selections is maintained in a
database management system
(DBMS). This separation o f link
data and document data is a distinc-
tive feature of the Intermedia de-
sign.

The Intermedia user begins by

I I I d e !

S l i d e I

S l i d e I

All illustrations used in this article were created by Dynamic Diagrams, Inc.

~ 8 January 1992/Vol.35, No.l/COMMUNIGATIONI OF THE ACM

The user has opened the web for this collection of
NASA program documents and fol lowed links from
the label abOut the Space Shuttle in the SPACE
OVERVIEW diagram In the upper left to SHU~LE
OVERVIEW, a diagram describing material on the
Shuttle program on the lower left. These overviews
are created with the InterDraw graphics editor.
From this secondary overview the user has fol lowed
a link to STS-26 INTRODUCTION, an InterWord text
summary of the STS-26 mission. FOllOWing the rink
highlights the destination anchor, in this case the
f irst line of the document.

The user has double-clicked on an anchor marker
above the phrase "Discovery wil l c a m 11 secondary
payloads" in the text summary. The Web view Is
now visible on the fight, presenting a map of the 36
documents linked to STS-~26 INTRODU~ION. The
darkened lines indicate the 16 documents linked tO
the anchor marker the user has selected. The user
chooses the link tO fol low from a list o f dOcument
names and anchor explainers.
lUdI I

I I I d e I The user has fol lowed a link to a diagram of the
cargo configuration. The map In the web view up-
dates to display the nine documents linked to this
diagram. The user ChOOSeS the anchor above the
names of experiments located in the forward por-
tion of the cargo bay and Is given a choice o f links
tO f ive Illustrations.
IIhdI 4 =

The user chooses to display an Illustration of the
Automated Directional Solidification Fumace (ADSF).
seeking to locate more Information on "solldiflca,
tion ~mace, the user selects the Document Sea~h
window and loOkS for any documents In the NASA
collection containing these words. The search lo-
cates all documents containing any Inflection or
derivation of the words, retumlng a l ist o f over 300
documents sorted with relevance ranks from I to
99. By Sliding the grey bar In the distribution graph
in the lower right of the Document search window.
the user limits the l ist to the 13 documents with a
rank of SO or higher. The highest-ranking document,
ADSF ~ c r l p t l o n , Is linked to the !llustratlon already
displayed and sO COuld have been located by follow-
Ing links. The user selects the second-ranked doCu-

I U d e I ment from the list, M lCrograv~ and Mat. Facilities,
and displays I ~ r m a t i o n about i t Including the list
of relevant words i t contains: furnace, furnaces,
soil(Y, solidification, and solidifying. The user can
open this document by double-clicking on the name
in the list.

Returning to the 5"1rs-26 INTRODUCTION, the user se-
lects a paragraph describing the OASIS Instrument
and creates a new anchor by Choosing Start Unk
from the intermedla menu. This menu manages the
anchor and link commands shared bY all the Inter-
media editOrs. Information about the new anchor
and the pending link Is stored by the System in an
Invisible "llnkboard" (analogous tO a Clipboard) until
the user s e l e ~ a new or existing anchor and com-
pletes the link.

The user completes the link by selecting a new an-
chor, the t i t le and several paragraphs in OASIS De-
scrlptlon. The link Is forged by se le~ng Complete
Link from the Intermedla menu.

COMMUNICATIONS OF THE ACM/January 1992/Vol.35, No.1 3 9

A p r i m a r y
g o a l o f I n t e r m e d i a w a s t o

d e m o n s t r a t e t h a t a n i n t e g r a t e d
a p p l i c a t i o n e n v i r o n m e n t b u i l t u s i n g

objecL oriented p r o g r a m m i n g
t e c h n i q u e s is t h e b e s t e n v i r o n m e n t

t o s u p p o r t h y p e r m e d l a f u n c t i o n a l i t y .

runn ing the In te rmedia program
from the Unix shell. The shell
p r o m p t is replaced by a graphical
file system browser that presents
documents organized in hierarchi-
cal folders. Documents and folders
are manipula ted using controls
similar to those found in the Macin-
tosh user interface. This view of the
In te rmedia document tree, which
resides on a network server, is
shared by all workstations on the
local-area network. Color slides 1 -6
are screen displays showing a user
working with an In te rmedia collec-
tion of nearly 600 documents about
various NASA programs.

As Yankelovich et al. have al-
ready stated, " In te rmedia is both an
author 's tool and a reader ' s tool.
The system, in fact, makes no dis-
tinction between types of users,
provided they have appropr ia te
access rights to the material they
wish to edit, explore, or annotate.
Creat ing new materials and making
and following links are all inte-
grated into a single seamless, multi-
user environment" [26]. Each In-
termedia document opens in its
own window and any document can
be edi ted by any user with appro-
priate privileges. In addi t ion to the
usual features offered by direct-
manipulat ion text and graphic edi-
tors, In te rmedia users can create
and follow links between selections
in any document presented by the
file browser. This link creation and
browsing is shared by all parts of
the user environment . Again we
quote f rom [26]:

In an effort to fit the link-

making process into a conceptual
model already familiar to users, the
act of making links between Inter-
media documents was modeled as
closely as possible on the Smalltalk/
Macintosh copy/paste parad igm
[10]. I f links are to be made fre-
quently, they must be a seamless
par t of the user interface. In any
document , users can specify a selec-
tion region and choose the Start
Link command from the menu. In
any other document , regardless of
type, users can define another se-
lection region and choose . . . the
Complete Link commands.

To achieve these effects, however,
we did not wish to alter an existing
opera t ing system or create a new
one. We did, in fact, create a hyper-
media p rogram runn ing within the
Unix opera t ing system to achieve
the desired level of integrat ion
among dif ferent editors. To model
how hypermedia would look when
in tegrated at the system level, we
created a single application that
appears to the user as though it is
the entire desktop environment . As
we describe in subsection "Integra-
tion of Hypermed ia into the Desk-
top," we believe our strategy can be
used as a model for integrat ing
hypermedia into a mul t iprogram
comput ing environment .

I t is not our intention to provide
a detai led summary o f the features
of In termedia , as this has been
done in a number of previous pa-
pers. The architecture was first de-
scribed in [15]. The phi losophy of
"seamless integration" among ap-
plication editors found in all ver-

sions of In te rmedia and the object-
or iented nature o f the software
deve lopment effort are detai led in
[26]. Addi t ional features have been
described in a number of papers
over the past few years. These in-
clude features to suppor t temporal
data types described in [3, 13, 20];
the integrat ion of morphological
services and full-text retrieval into
this hypermedia f ramework de-
scribed in [7]; extensions to suppor t
g roup annotat ion o f documents
described in [4]; and the ability to
replicate template structures o f
l inked documents described in [5].
The purpose of this article is to
focus on those unique features of
the software architecture not previ-
ously discussed. We will describe
the under ly ing architecture that
made all of In termedia ' s hyper-
media functionality possible. The
software architecture described in
this article is that found in In terme-
dia 4.0, completed in August 1990.

We have chosen the name IRIS
Hypermedia Services to describe those
parts of In te rmedia which make the
hypermedia functionality possible.
The In te rmedia editors, which are
responsible for manipula t ing the
content of their own documents ,
are the surface layer of a complex
system. Each of these editors inher-
its functionality from the IRIS
Hypermed ia Services to suppor t
hypermedia capabilities.

The overall architecture of the
IRIS Hypermed ia Services is shown
in Figure 1. The In te rmedia system
appears to the Unix opera t ing sys-
tem as two processes. The Interme-
dia process is the end-user applica-

40 January 1992/Vol.35, No.l/COMMUNICATIONS OF T H E A C M

In order
t O a c c o m p l i s h t h i s k i n d O f i n t e g r a t i o n ,

i t i s b e s t t o e s t a b l i s h o v e r a l l p o l i c y
g o a l s a n d t h e n t O e n c a p s u l a t e a s

m u c h O f t h e p o l i c y a s p o s s i b l e i n t h e
objec/ oriented f r a m e w o r k t o b e
u s e d b y a p p l i c a t i o n d e v e l o p e r s .

tion. This is built from four distinct
layers. Starting from the user's
point of view, the first layer consists
of the file browser (or Finder), the
five editors, each operating on its
own document type, and the link
browser (or Web View). These each
share functionality defined in the
second layer consisting of two
major building blocks: one for text
and one for graphic objects. Above
this is the Intermedia Layer, a set of
objects for managing hypermedia
data that is shared by the building
blocks. All these layers, in turn, are
made from classes defined by
MacApp, an object-oriented appli-
cation framework developed by
Apple Computer.

Intermedia is a hypermedia ap-
plication written to work on a spe-
cific version of Unix (A/UX 1.1)
and a specific graphical user inter-
face (Macintosh). The IRIS Hyper-
media Services, however, embody
those portions of the software that
are independent of both operating
system and graphical user inter-
face. We feel this portion o f the sys-
tem is a useful model for the way
hypermedia services could be mi-
grated into the computing environ-
ment and deserves careful consid-
eration by anyone currently
designing software with hyper-
media functionality.

The IRIS Hypermedia Services
is comprised o f three parts. The
first part consists of the objects de-
fined in the Intermedia Layer and
inherited by the end-user applica-
tions. The second part is the Link
Client, a library that is bound with
the Intermedia process. The third

part is the Link Server, a library
bound to a DBMS running as a sep-
arate process. The Link Client and
Link Server communicate via Unix
Domain sockets when the two pro-
cesses are running on the same
machine or via Internet sockets
when they are running on separate
machines.

We will describe the IRIS Hyper-
media Services in two stages. The
first section of this article, "Features
of Hypermedia Policy" describes
the hypermedia policy supported
throughout Intermedia. Here we
will describe the end-user interac-
tions, such as copy and paste of an-
chors and links, and the applica-
t ion-program responsibilities, such
as menu handling, that define what
"hypermedia" means in Interme-
dia.

In the section "The Intermedia
Mechanism" the mechanism used
to support this hypermedia policy
will be discussed. Here we will de-
scribe how the "hypermedia" infor-
mation was managed and inte-
grated with the application data.
This will consist of a description of
all three parts of the IRIS Hyper-
media Services: Intermedia Layer,
Link Client, and Link Server.

After the IRIS Hypermedia Ser-
vices have been described, this arti-
cle will conclude with a discussion
of five of the major issues to be ex-
plored in future hypermedia sys-
tems.

Features of Hypermedla Policy
A primary goal of Intermedia was
to demonstrate that an integrated

application environment built using
object-oriented programming tech-
niques is the best environment to
support hypermedia functionality.
In order to accomplish this kind of
integration, it is best to establish
overall policy goals and then to en-
capsulate as much of the policy as
possible in the object-oriented
framework to be used by applica-
tion developers. Our intention was
to implement all general hyper-
media policies at the framework
level, leaving only application-
specific details unresolved. In this
way we assured maximum consist-
ency among Intermedia applica-
tions.

Anchor/Link Display, Highlighting
and Selection
All Intermedia applications must
support a persistent selection,
called an anchor. Each anchor has
an extent, the application-specific
object to which the anchor refers. A
link in Intermedia is a connection
between any two anchors. All appli-
cations must support the display of
a marker associated with each an-
chor. This marker has two states:
linked and unlinked. A consistent
visual appearance of this marker
and how it is to be selected by the
user is enforced as a matter of gen-
eral policy in all Intermedia appli-
cations.

It is up to the individual applica-
tions to determine how to "hook"
the anchor to the appropriate doc-
ument content and how to high-
light the extent of the anchor. The
selection of an object varies from
application to application, depend-

COMMUNIr..ATION$ OF THE ACM/January 1992/Vol.35, No.1 41

IRIS Hypermedla Services ArChitec-
ture
This schematic diagram of Inter-
media shows the layered archi-
tecture of the Intermedla system,
with the Intermedla process on
the left and the Link Server pro-
cess on the right. The two pro-
cesses communicate over a
socket connection. The raised and
darkened layers Identify the por-
tions of the architecture that
constitute the IRIS Hypermedla
Services.

InterWord Document

IndentedQuote
Nlormal
~umberedPoin t
Paragraph
Poem
; u b U U e
Title

Nor n~| +

Charles, the first often children, was born in the same year.
Ea
Nicholas Nicklei~y got underway in 1838, and

continued through October 1839, in which year Dickens
resigned as editor of Ben#e# ~ Miscellany. The first number

of Mas~rHum/~rev's Clod~; appeared in 1840. and~T.¢e

; ~T~0U~h Februan j 1841.:,when D'ickens commenced

8amaOy B..'#~e, which continued through November of that
year. In 1842 he embarked on a visit to Canada and the
United States in which he advocated international
copyright(unscrupulous American publishers, in
particular, were pirating his works) and the abolition of

E~
slavery. His Ame~anNoms, which created a furor th
Amer ica(he commented unfavorably, for one thing, on the
apparently universal-and, so far as Dickens was
concerned, highly distasteful--American predilection for
chewing tobacco and spi~ng out the juice), appeared in

Ea
October of that year. Mort'in Chuzz/ew/t, pad of which was

InterMail Document

~I Unt i t led

,o:[., }

[~ Save m e a copy

Nicole, ~

I just got another request for the Hypermedia /

Bibliography from a student at Texas A&M.;~hi-s'i~ /
t~'~er~n'~-s~r~- ~ " ~ -P-~s'e" ~e'n'~" ~ /
copy to this address in the list. /

I I I G U R i l , .

AnChOrs lfl Text
Both InterWord (left) and InterMail (right) Inherit anchor behavior from the Word Building BlOck. In these
text-based applications, an anchor consists of any contiguous selection of characters. The anchor marker Is
placed at the upper-left corner of the first character In the anchor and cannot be reposltloned. The high-
lighting of the anchor extent Is done with the dotted line of the "marquee."

I l l a U R I | .
Anchors In Graphics
The remaining four Intermedla applications Inherit anchor behavior
from the Graphics Building Block. The anchor's extent is Indicated by
placing grey "handles" around the objects. In the case of the InterVal
tlmellne 0 , any time event or group of events can be an anchor. In
InterVIdeo @, any line or group of lines defining a single frame
or sequence of frames on a vldeodlsc can be an anchor. Selections do
not have to be contiguous, but In both cases the anchor marker Is
placed at the upper left of the first Item selected anti cannot be repo-
sitloned. In InterVIdeo the order of selection determines the order in
which the video clips are played when following a link to the anchor.
BOth InterDraw ® and the InterPlay animation editor 0
allow any graphic object or combination of objects (any object
In any frame of the animation In InterPlay) to be an anchor. While at
creation the anchor marker appears at the upper left of the first oh-
Ject selected, It can be moved In these two applications In the same
way as any other graphic object.

([) InterVal Document

1848 ~ - W.tes autobiographic al ~ragment

Directs and acts in amateur mealricals
I

t~Ublishes final Christmas book,, The
HauntuU Man, in December

1649 . David Copperfleld begins running
18~ . ~avid Copper~eld finishes in November•

Founds end edits the weeldy Household
Words

Tours flaly with Augustus Egg and Wilde
Collins
Returns tu England it

Gives Vie first of many public readings from
h~t own works.

4 2 January 1992/Vo1.35, No.l/COMMUNICATIONS OF THE ACM

ing on whether the object is text,
graphics, or a cell in a table. The
relative location of the anchor
marker and the anchor extent is
also a mat ter de te rmined by the
individual application.

For example, In terWord, the
In termedia text editor, places the
anchor marker above the first char-
acter in the anchor extent. This
marker moves with the anchor as
the text is edited, but cannot be
reposi t ioned independent ly of the
anchor extent. InterDraw, the
graphics editor, and InterPlay, the
animation editor, both initially
place the marker at the upper- lef t
corner of the first object selected
and then allow the user to move the
marker to any position in the docu-
ment. Figures 2 and 3 illustrate how
the marker is displayed in the vari-
ous document types. Figure 2 de-
picts anchors in text-based applica-
tions; Figure 3 illustrates anchors in
graphics-based applications.

The relationship between selec-
tion of the anchor marker and se-
lection of the anchor extent is a
matter of general policy. Regard-
less of the relative position of the
two, selecting the anchor marker
constitutes selecting the anchor it-
self. This means that edit ing opera-
tions (e.g., cut or copy) on a selec-
tion which includes the anchor
marker affects the anchor and link
information. An edit ing operat ion
on any port ion of an anchor 's ex-
tent not including the marker af-
fects only the content of the anchor.

The user can always clarify what
port ion o f a document is "hooked"
to a marker by choosing the marker
and displaying its anchor extent.

Data C o n s i s t e n c y

It is a mat ter of general policy to
keep document data and anchor/
link data consistent at all times. The
system must maintain integrity of
the links and their respective end-
points in the face of edit ing opera-
tions on document names, loca-
tions, and contents. This is
necessary to prevent "dangling
links," (i.e., link references that
point to nonexistent data or empty
anchor references that point to data
that was not saved).

The re are basically two mecha-
nisms that have been used to main-
tain data consistency in hyper text
systems. The system can store an-
chor and link information in the
same files as the data, thereby en-
suring that edit ing operat ions will
affect them both. This mechanism
is adequate for "read-only" hyper-
text collections where data consis-
tency is fixed, and has been favored
in many commercial systems. How-
ever, an edit ing operat ion that af-
fects an anchor in one document
will not necessarily affect all an-
chors in o ther documents l inked to
that anchor without some fur ther
consistency support . Unless some
addit ional system-wide coordina-
tion is provided, edit ing operat ions
as basic as changing a document 's
name and location will cause "dan-

gling links."
Alternatively, the anchor and

link information and the document
contents can be stored and man-
aged in a separate but coordinated
fashion. This is the mechanism
used in Intermedia. We explain the
strategy we used in the following
two paragraphs, and in greater de-
tail in the subsection "The Interme-
dia Layer."

In termedia stores document data
in s tandard Unix files and anchor/
link data in a separate database.
The In te rmedia document tree
begins at a "root" on a local or
mounted Unix file system such as
"/ intermedia/documents" and con-
sists of all documents in that file
system created by In termedia edi-
tors. The link and anchor informa-
tion is stored separately in a DBMS.
Collections of anchor and link data
are par t i t ioned into "webs." From
the user's point of view, a web is a
specific context in which anchors
and links are created and stored.
The user opens a web in o rder to
browse and edit a specific collection
of links. Each user can open only
one web at a time.

Responsibility for coordination
of document data with anchor/l ink
data resides in the IRIS Hyper-
media Services. Editing operations
pe r fo rmed by all applications and
the In termedia file browser pass
through this layer of the frame-
work. For example, the delet ion of
a document from the In termedia
file browser will cause the delet ion

O lnterVideo Document O InterDraw Document (D InterPlay Document

g.rre~l 01855
~'~ ~[:>
St~p I<2 [:>1

NEW Video Links 2
~rlpno~ Start (rid
Cili# Cl~Up t5665 t5674

Aeti~ Net~rk 15640 ,~ ~ o ¢ ~ - ~

~t I¢

n,~,m~nm,~ I ~ ~mkm i [~)'. ;(

Nineteenth Century
I Publi(: He'lth I

I I)
Em B Women and Children]

~. -{~, Pe,,~c. ~. soe,~,..c,,,,ou..]

"~ ~ Sanitation ~.Id Its Absence]

....... D [] [] SetUngs

Fill TeHt Bockground Line
Rvollable .. ,, ~
Patlerns N L ~ J ~ < ~ m ~

m m a m = ,~

"i!!i!!i!)}:~::!i!):;!i;:i4;;i:;:/~ii~;!:,::i~!i!:,iii~,i!iii!??iii~i

COMMUNICATIONS OF THE ACM/January 1992/Vol.35, No.l 43

|

g
the database. Saving the web, that is
saving the changes to the set of an-
chors and links displayed in the
Web View, will cause the applica-
tion editors to first save editing
changes in all documents contain-
ing those anchors and links. I f the
user saves changes to documents
but discards changes to the web,
anchor and link information that
had been cached in memory dur ing
the editing session is not written out
to the database and remains un-
changed.

Selection Handling
It is a matter of policy that all appli-
cations manage persistent selec-
tions. This must be done by com-
municat ing with the IRIS
Hypermedia Services, not by saving
anchor information in the docu-
ments themselves. Each editor must
support the ability to edit document
data and keep track of the location
and current state of the markers
and anchor extents. The support
for this policy varies from editor to
editor.

Menu Handling
All commands used for editing
links (create anchor, start link, com-
plete link, etc.), displaying link
properties (display anchor proper-
ties, display link properties), and
browsing links (show anchor extent,
follow, push, pull) are consistent
across all Intermedia applications.
All these commands are managed
in the Intermedia Layer rather
than by the individual applications
and are presented in a pull-down
menu shared by all editors.

Editing Anchor/Link Objects
It is a matter of policy that cut/
copy/paste operations work in a
similar fashion for both document
data and anchor/link data. The
copying or cutting of the anchor
marker, not the data in the anchor
extent, constitutes the copying or
cutting of the anchor and any link
data.

Resizing of the anchor extent is

supported in the same way that re-
sizing or extending selections is
supported. The undo and redo of
editing operations involving an-
chors and links are also supported
in a manner identical with other
forms of document data. For exam-
ple, InterWord, like all Intermedia
editors, supports undo and redo of
all edit operations in the "live" copy
of the document maintained in
memory between Save operations.
This support is extended to cut/
copy/paste of anchor information
as well. It is possible to make a se-
lection in one InterWord document
that contains text and link markers,
and cut that selection, thereby de-
leting the selected text and unlink-
ing the selected markers. The user
can then paste the selection into
another document thereby insert-
ing both the text and links. The
changes in the Web View map for
both documents will be reflected
immediately. Undoing the cut op-
eration will affect the "live" copy of
the first document while undoing
the paste operation will affect the
"live" copy of the second document.

Muitiuser Access to Documents,
Anchors, and Links
Intermedia supports multiple users
reading and annotat ing a single
document, and only one user writ-
ing to a document at a time. While
each user can have only a single
web open at a time, any number of
users on the same network can si-
multaneously open the same web
and view the same documents, an-
chors, and links. The first user to
edit the document content locks out
all other users from editing the
content until the document is
closed.

By annotation we mean the crea-
tion or modification of anchors and
links as distinct from the creation or
modification of document data.
Because [ntermedia stores anchor
and link data in a separate data-
base, we are able to support simul-
taneous annotation, allowing many
users to make links to the same doc-
uments at the same time. Interme-
dia supports separate access rights

for read, write, and annotate privi-
leges on a per-document basis.

This world of multiuser hyper-
media r u n n i n g across local-area
networks requires a policy estab-
lishing when changes to data by one
user become available to all users.
In Intermedia, all newly created
anchors and links are local to the
user's workstation until they are
saved to disk. Changes made to
open documents are not broadcast
to other users. Intermedia does not
update the view of anchors and
links in any open document based
on the actions of another user. Each
user must close and reopen a docu-
ment and associated web to see
changes made by another user.

ACtive Anchors
To support editors that manipulate
temporal data such as animation
and motion video, Intermedia
adopted the policy of active anchors
[20]. Editors of temporal data sup-
port an action flag associated with
each anchor. The temporal editors
must examine the state of the action
flag on the anchor when following a
link to an animation or video docu-
ment. Note that active anchors can
also be used to execute a query or
perform a sequence of actions de-
fined in a script associated with the
destination anchor.

If the anchor's action flag is set, a
follow into that anchor causes the
application-specific action, such as
r unn i ng an animation, to occur. If
the action flag is not set, following
the link opens the document and
highlights the anchor without per-
forming the action. The content of
the anchor can be viewed, edited,
played, or executed using manual
controls.

Transfer of Webs
Sets of linked documents can be
transferred from one Intermedia
system to another using a canonical
form of the link data described in
[21]. This transfer functionality
supports the selection from the In-
termedia file browser of one or
more file system folders (represent-
ing the document data) containing

January 1992/Vol.35, No.1/COMMUNICATIONS OF T H E A C M

one or more web documents (rep-
resenting the link data).

T h o u g h it is not specifically ad-
dressed in the In te rmedia policy,
we recognize that the interchange
of hypermedia data between differ-
ent hypermedia systems is an im-
por tant issue. One of the authors of
this article (Meyrowitz) part icipated
in discussions which led to the Dex-
ter In terchange Format [12], an
abstract reference model for hyper-
media data. Another au thor (Riley)
part icipated in the planning pro-
cess that has led to the proposed
HyTime s tandard (ISO/IEC DIS
10744) [11, 18], a markup language
for represent ing mult imedia, hy-
permedia , and time/space-based
documents.

Al though Intermedia ' s t ransfer
policy was originally designed to
suppor t the exchange of data be-
tween In termedia users, Killough
has shown it to be viable as an inter-
change format between In te rmedia
and other hyper text systems as well
[14]. This was accomplished by con-
vert ing the In te rmedia interchange
data into the Dexter In terchange
Format, and from this data gener-
ating the format used by the KMS
hypertext system [1]. One of the
design criteria for HyTime is that it
be Dexter-compliant. This suggests
it should be possible to convert the
In termedia interchange format
into a HyTime format as well.

The Intermedla Mechanism
In Intermedia , the hypermedia
policies are encapsulated in a mech-
anism that has two major compo-
nents: the Intermedia Layer and the
Link Engine. The In termedia Layer
supports all live data manipulat ion
while the Link Engine supports the
storage and retrieval of persistent
link data. The storage and retrieval
of document data is managed else-
where in the In te rmedia process
and is not discussed in this article.

The In termedia Layer is imple-
mented as a set of classes that in-
herit from the MacApp application
f ramework as well as newly def ined
classes that model anchors, links,
and webs. The Link Engine is corn-

posed of the Link Client, the Link
Server, and a DBMS. The Link Cli-
ent is a class with which the Inter-
media Layer communicates. The
Link Client in turn communicates
with the Link Server. The Link
Server is a generalized class com-
municat ing data requests to a
DBMS.

A schematic d iagram of the three
parts of the IRIS Hypermedia Ser-
vices and their relation to the other
parts of the In termedia architec-
ture is shown in Figure 1. This
shows how the In termedia Layer
and Link Client are bound in the
In termedia process and the Link
Server and DBMS are bound in a
separate process.

The Intermedia Layer
The In termedia Layer consists o f
extensions to the MacApp frame-
work to suppor t l inking capabilities.
Included in this layer is a data
model class (IntDoc) which handles
reading anchor/l ink data associated
with a document. A data view class
(IntView) provides a set of abstract
methods for the display o f anchor
markers and for highlighting an-
chor extents. Cut, copy, and paste
operat ions are suppor ted by the
IntClipboard class. Activation of and
response to hypermedia operat ions
in the menus (create anchor, start
link, complete link, etc.) is sup-
por ted by methods of the IntSelec-
tion class.

Within this object-oriented appli-
cation framework, we created ap-
plication building blocks that in-
herit some of the functionality from
the In termedia Layer and overr ide
some of its abstract methods. For
example, the Graphics Building
Block subclasses the IntView class
to handle graphic object selection
and highlighting of anchor extent
shown in Figure 4. This, in turn, is
used in both the InterDraw and
InterPlay editors.

The ln te rmedia Layer also con-
tains a Web class. When a web is
opened, an instance of the class, the
Web Object, is created. This object
contains a live copy o f all newly cre-
ated and edi ted anchor and link

data on a per-web basis. This live
data is merged by the In te rmedia
Layer with the current data from
the link database. It is here that the
policy of data consistency is en-
forced. The document and link
database are synchronized by forc-
ing documents to be saved before
the data of the Web Object can be
saved. For example, a user has
made a link between a selection in
an existing document and a selec-
tion in a newly created document.
To save this link, the user saves the
Web View, which first saves the
documents that have been edi ted
before saving the anchor and link
information in the web. This en-
sures that all anchor and link infor-
mation in the link database is syn-
chronized with the current saved
state of each document.

Consistency is also maintained in
operat ions that affect anchor and
link information in unopened webs.
For example, when a document is
deleted, all links containing anchors
in that document are removed
from the database. The delete op-
eration will affect links in any web
in the database. In addition, a user
can edit a por t ion of a document
that is all or par t of an anchor ex-
tent in an unopened web. The ef-
fect this has on the anchor extent is
resolved when the edi ted document
and the web containing that anchor
are opened.

In te rmedia provides an orienta-
tion feature called the Web View
which contains a list of the docu-
ments viewed by the user and a
map of documents linked to the
current ly active window. The Web
View rationale and functionality is
described in [23]. The link map in
the Web View relies on the Web
Object for its information.

All In termedia editors read in
anchor information from the link
database and correlate this to the
application data in each document
at the time the document is opened.
Subsequent changes in the Web
Object are displayed in the live copy
of the document and Web View on
each user's workstation, but are not
p ropaga ted to the live copy of the

COMMUNICATIONS OF THE ACM/January 1992/Vo1.35, No.l 4S

The Link Engine
The Web Object of the Intermedia
Layer communicates the anchor,

I I I G U R I I 4 .

Application Framework Architec-
ture
The class hierarchy of Interme-
dla's application framework Is Il-
lustrated In part. The v iew
method In the MaCApp layer Is
subclassed by IntVlew In the In-
termedla layer where several ab-
stract methods to manage the
display of anchors and markers
are added. These methods are
then defined In the gVlew and
tv lew classes of the Graphics and
Word Building Blocks. In addit ion
to the subclasses from MaCApp,
the Intermedla layer adds new
classes for Anchor, Link, and Web,
shown on the right.

P l 6 U R I I ! ; .

CllentJServer/DBMS Flow of Con-
trol
The GetAnchorLIst method In the
Web class of the Intermedla Layer
(see Figure 4) requests a list of all
anchors In a document. This re-
quest Is passed to the AnchorGet-
First method In the Link Client O.
This passes the request over the
socket connection to the abstract
method AnchorGetLIst In the Link
Server • which Is defined In Link
Ctree method AnchorGetLISt @.
This method translates the re-
quest Into a series of low-level
DBMS operations (REDVREC), re-
questing all anchors wi th a spe-
cific document ID, returning the
anchors and repeating unti l done
O. This list of all anchors Is
cached In the Link Server @ and
then returned to the AnchorGet-
Next method In the Link Client @
one at a t ime across the socket.

P l G U R I IS.

Link Engine Data MOdel
This shows the six major relations
In the Link Engine data model.
The primary key for each relation
is raised to Illustrate how the
data Is connected. Note that the
Document ID Joins the Document
relation to the Document LOCk,
Link, and Anchor relations. The
Anchor ID Joins the Anchor, An-
chor view, Anchor Application,
and Link relations. The Link Is de-
f ined as pairs of Anchor and Doc-
ument IDS. The Web is defined as
a field of the Anchor and Link re-
lations.

link, and document transactions to
the Link Engine and reads that in-
formation from the Link Engine via

the methods of the Link Client
class. These methods, which consti-
tute Intermedia's linking protocol,

46 January 1992/Vol.35, No.l/COMMUNICATIONS OF THE ACM

suppor t establishment of connec-
tions over sockets, opening and
closing of databases, and a set of
operat ions for manipulat ing docu-
ment, link, and anchor data.

An example of how this data is
communicated will illustrate the
way different parts of the architec-
ture share in the hypermedia
mechanism. When the In termedia
process is initialized, the Link Cli-
ent establishes a connection to the
Link Server and opens the link
database. When the In termedia
user opens a web document, the
Web Object in the In termedia
Layer requests all the correspond-
ing web information from the Link
Engine. The Web Object has a
method called GetAnchorList (shown
in the Web class in Figure 4) which
re turns a list o f all anchors and
links for a document each time a
document is opened. When the
user opens a document , this request
is communicated to the Link Client,
which passes the request to the Link
Server over the socket, using a pre-
def ined set o f byte codes. The Link
Server accepts these byte-coded
messages and then performs a se-
ries of operat ions on the database
to retrieve all anchor and link in-
formation for that document by
making calls to a DBMS, in this case
the commercially available C-Tree
[9]. T h e information is then re-
turned to the In te rmedia Layer
along the same communicat ion
path. This is shown in Figure 5,
which follows the AnchorGetFirst
method from the Link Client, to the
Link Server, to the DBMS, that per-
forms the low-level operat ion to
read the anchor data for the speci-
fied document ID from the data-
base. The resultant list of all an-
chors is cached by the Link Server.
This list is then accessed one anchor
at a t ime by the Link Client through
the AnchorGetNext method. The In-
termedia Layer then passes the
application-specific anchor infor-
mation to the document edi tor by
invoking abstract methods that the
document edi tor has overr idden.
These methods then display a
marker for each anchor and hook

the anchor to the appropr ia te data
in the document.

The Link Engine can be de-
scribed in terms of a data model
and the operat ions that can be per-
formed on that data model.

Data Model
The persistent link information is
organized in five major relations:
document, anchor, anchor view,
anchor application, and link. A
schematic d iagram of these rela-
tions is found in Figure 6.

Document Relations. T h e document
relation matches a unique docu-
ment identif ier with the document
name, Unix path and the basic
propert ies such as creator, creation
time, modifier, and modification
time. The pr imary index for this
relation is the unique document
identif ier to suppor t efficient re-
trieval and reliable opera t ion inde-
pendent of changes in document
name and location.

A secondary relation is the docu-
ment lock relation which maintains
information on which documents
are locked for editing. The unique
document identif ier for each
locked document is related to the
process identif ier o f the edit ing
process. This information is used
dur ing release of document locks.

Anchor Relations. T h e anchor rela-
tion matches a unique anchor iden-
tifier with a document identif ier
and basic propert ies o f the anchor
including creator, creation time,
modifier , modification time, and
explainer. The pr imary index for
this relation is the unique anchor
identifier.

Addit ional anchor information is
stored in two other relations.

The anchor view relation is used
to store the location o f the anchor
markers in graphics documents
where the marker is posit ioned in-
dependent ly from the anchor ex-
tent. This relation, which contains
an anchor identifier, a view identi-
fier, and three long integers, was
designed to suppor t applications
that present more than one view of

the document data. An example of
this was InterSpect, a viewer for
three-dimensional wire-frame
models that was part of an early
version of Intermedia . InterSpect
suppor ted both a two-dimensional
and a three-dimensional view of the
same data.

The third relation with anchor
information is the anchor application
relation. In termedia applications
store various amounts o f informa-
tion to define an anchor extent in
this relation, which contains an an-
chor identifier, three long integers,
and a string. The string, which was
included in the design to suppor t
extensibility, is unused. In the In-
terDraw application, for example,
an anchor can consist o f more than
one graphic object. The identif ier
for each graphic object in an an-
chor extent is stored in one of these
relations. Managing information
about changing anchor locations in
text streams presents a part icular
challenge. The In te rWord applica-
tion stores the information it needs
to resolve the location of each an-
c h o r - c o n s i s t i n g of beginning off-
set, ending offset, and an index into
a document 's history l i s t - - in a sin-
gle instance o f the anchor application
relation. The history list, a se-
quence o f numbers appended to
the end of the document, tracks
addit ions and deletions to the docu-
ment. By indexing to the appropr i -
ate point in the history list, Inter-
Word is able to resolve the
appropr ia te location o f each an-
chor.

Link Relation. The link relation
matches a unique link identif ier
with basic propert ies of the link in-
cluding creator, creation time,
modifier, and modification time.
Each link relation consists of a pair
of unique anchor identifiers and
unique document identifiers for
each side of the link. The pr imary
index for this relation is the unique
link identifier.

Other Relations. The database also
contains an object identifier relation
which provides the next available

COMMUNICATIONS OF THE ACM/January 1992/Vol.3$, No.l 47

by this relation are used to identify
all new document, anchor, and link
objects.

Finally, the database contains
database-computed queries stored
in separate relations that contain
the scope information displayed by
the Web View. These relations con-
tain total numbers of anchors, links,
and documents for each unique
web identifier.

Link Engine Operations
The initial operation of the Link
Engine is the opening and closing
of a socket connection between the
Link Client and the Link Server.
The locations of the Intermedia
document hierarchy, the Link
Server, and the link database are
passed as environment variables at
run time. Once the connection is
established, the Link Engine can
open and close the database, using
the DBMS bound with the Link
Server. Another basic operation
returns the next available unique
identifier assigned to documents,
links, and anchors.

The Link Engine supports simi-
lar sets of operations on the data
associated with documents, an-
chors, and links. These including
adding, modifying, and deleting
entire objects or data elements asso-
ciated with each object. Move and
delete operations are supported for
folders (i.e., Unix directories) as
well. Separate methods for manip-
ulating access rights, path name,
and edit lock are supported for
documents.

As discussed previously in the
subsection "Transfer of Webs," a set
of operations for exporting and
importing document, anchor, and
link information is also provided.
Exporting one or more folders cre-
ates a copy of the document hierar-
chy in those folders and a set o f
ASCII files in a canonical form con-
taining the link data for webs in
those folders. The importing of
document and link data in this for-
mat is supported by a complemen-
tary set of operations.

Features for the Next
Generation
In designing and implementing
Intermedia, we have identified a
number o f features that are critical
for making hypermedia a useful
part of the computing environ-
ment. The development of the In-
termedia system ceased before we
could implement solutions for these
issues. Some of these features, such
as wide-area hypermedia support,
require a more extensive network-
ing architecture than we have em-
ployed. Others, such as the need
for filtering tools, are features that
were in the original specification
for Intermedia (see [25] for an
early discussion of filtering), but
were never implemented.

The following discussion repre-
sents the results of our efforts to
define future hypermedia system
capabilities that took place at IRIS
over the past several years. The
next generation of hypermedia sys-
tems should explore solutions to
these issues.

Integration of Hypermedia
into the Desktop
I f hypermedia functionality is iso-
lated in specific hypermedia pro-
grams, the usefulness of that func-
tionality will be very limited.
Hypermedia functionality must be
a feature o f the entire computing
environment, fully reflected in
whatever graphical user interface
integrates information on the user's
screen. Whether that interface is
built around a desktop, notebook,
or room metaphor, hypermedia
linking must be available in all doc-
uments, in all applications.

This means the Link Engine, an
equivalent of the Link Client/Link
Server/DBMS layer in Intermedia,
should be as integral to the comput-
ing environment as the file system
is today.

The functionality found in the
Intermedia Layer, however, should
be separated into two parts: high-
level integration support for appli-
cations and an intermediary pro-
cess that handles link-related re-
quests.

Integration support can be pro-
vided through an application pro-
gram interface (API) to a high-level
toolkit, requiring the application
developer to make calls to the API
at the appropriate times. The tool-
kit should contain the embodiment
of a system's hypermedia policies.
In addition, a predefined set o f
callback routines will have to be
implemented by each application.
An alternate method of providing
this integration support is an appli-
cation framework such as Apple's
MacApp.

Between the application features
found in this API and the database
features found in the Link Engine,
a general desktop hypermedia sys-
tem will require an intermediary
process we call a Link Hub. This
Link Hub should serve four pri-
mary functions:
• keeping the list of pending links

(i.e., links not yet committed to
the database);

• managing the creation o f links;
• knowing how to follow a link (i.e.,

knowing how to locate docu-
ments and which application to
invoke in order to open them);

• providing link information to a
link browser equivalent to the
Intermedia Web View.

By employing an API, a Link Hub,
and a Link Engine, all applications
should be able to incorporate link-
ing, allowing hypermedia to be as
common an integrating feature as
cut, copy and paste is today.

Multiple Webs
The limitation of having only one
web open at a time has proven too
restrictive. We created the concept
o f a web in Intermedia to provide a
specific context in which to collect
all related anchors and links. This
context helped to separate sets of
anchors and links overlaid on the
same documents for different pur-
poses. Restricting the user to one
active web simplified the user inter-
face.

Developers should keep in mind
that providing n o context, that is
displaying all links at all times, may
seem adequate when hypertext

4 8 January 1992/Vo1.35, No.l/COMMUNICJLTIONS OF THE ACM

l inking is limited within an isolated
application or even a specific collec-
tion of documents managed by a
single application. However, this
lack of context will prove inade-
quate when hyper text l inking is
spread across all applications. We
urge designers of future hyper-
media systems to face the challenge
of managing multiple contexts.

It is clear from our experience
with In te rmedia that being able to
view more than one set of links at a
time is quite useful. For example,
hypermedia functionality is com-
monly used today to suppor t on-
line documenta t ion and "help" sys-
tems. Users would obviously like to
be able to browse links in such a
help system while browsing the
links in other webs of information.
It would also be useful to have a
private web open for containing
personal links and annotations in a
set of documents while browsing
through a public web associated
with the same documents.

The re are addit ional complexi-
ties in the application's user inter-
face and in the Link Engine that
arise in this case. When allowing
multiple webs to be open, it be-
comes more complicated to indicate
where links should be stored when
they are created. Likewise, request-
ing from the Link Engine all link
information for a specific docu-
ment or the equivalent of a web
view will require more complex
database operations.

Once multiple active webs are
suppor ted, it is also reasonable to
expect users to need links that ex-
plicitly connect not only the docu-
ments but, in effect, the webs them-
selves. In the same way that
hypermedia links locate and open
documents, future systems should
suppor t links that locate and open
entire contexts of links. An exam-
ple might be a link that not only
opens a document, but also adds
another collection of links to the
user's view, effectively opening
another web.

Filtering Tools
In an environment with many users

and large numbers of links, it is
necessary to provide tools to locate
the most useful information in a
timely fashion. This should be done
by providing tools to limit the kinds
of anchors and links displayed in a
document, which we call exposure
filtering, and to identify the anchors
and links that meet a specific crite-
ria, which we call collection filtering.
Both of these features were part of
the original design of In termedia ,
but nei ther was fully implemented.

In a sense, the In termedia web is
a simple exposure filter. The sug-
gestions for implement ing multiple
webs contained in the preceding
subsection, "Multiple Webs," would
be one step in a strategy for adding
filtering to a hypermedia system.
However, filtering by web is too
coarse to be effective. For example,
a web may be created by the collab-
orat ion of 10 authors, but a reader
may only want to see the links made
by two of them. The filtering must
be finer than entire webs. To filter
out links that are not pert inent , the
user should be able to formulate a
simple query based on the proper-
ties of the anchors and links. Appli-
cation of this query should expose
only those anchors and links which
match the query. Browsing through
documents, the user should only be
shown anchors and links that
passed through the filter.

Using the same query mecha-
nism, the user should also be able to
collect a list of anchors and links
that match a query. From this list
the user should be able to go imme-
diately to the relevant information
or fur ther refine the query.

Addit ional functionality would
be gained by suppor t ing user-
def ined attributes attached to an-
chors, links, and documents. Filters
could be appl ied to match combina-
tions of these attributes. These fil-
ters could be stored and shared
among users.

Any of these features would re-
quire addit ional database manage-
ment support . The Link Engine
would have to suppor t queries con-
sisting of arbi trary combinations of
attributes associated with docu-

ments, anchors, and links.

Wide-Area Hypermedia
The mult iuser hypermedia de-
scribed previously in the subsection
"Multiuser Access to Documents,
Anchors, and Links" is based on
suppor t ing links in documents ac-
cessible across a local-area network
(LAN) model using Sun's Network
File System (NFS), a networking
scheme available on most Unix
workstations. As similar file system
suppor t becomes available for a
wide-area network (WAN), it is
imperative to also add suppor t to
hypermedia functionality. To pro-
vide a WAN hypermedia system,
there are several requirements:

• documents must be accessible
across the WAN;

• documents must be uniquely
identif ied across the WAN in a
more manageable way than path-
names/filenames; and

• link data must be represented in
a more distr ibuted fashion.

To maintain link information
across a WAN, the notion of a doc-
ument identif ier must be extended
beyond the In te rmedia model. In-
termedia document identifiers are
unique on a per-volume (file sys-
tem) basis. For WAN operat ion,
document identifiers must be
unique on a network-wide basis.
Additionally, information about the
physical location of the document
would have to be stored in a more
general fashion. We recommend a
link database per volume, with an-
chors identif ied at the volume/
document level. Essentially, the
only identif ier specification that
would need to change from the In-
termedia database schema is the
document identifier. A service on
each machine could find a particu-
lar document by querying the ma-
chine at the WAN destination and
asking for the document at volume
identif ier x with document identi-
fier y. Each file system could have a
service that mapped volume identi-
f ier /document identif ier pairs to
local file system handles.

Once a scheme for storing

COMMUNICATIONS OF THE ACM/January 1992/Vol.35, No.l 49

.... !i!!!?
umque document ldent]t]ers Is es-
tablished, the most difficult ques-
tion that remains is how to distrib-
ute the link information. The
Intermedia architecture assumed
the anchor information was kept in
a per-volume, multiuser database
and the link relation existed in the
same database and connected two
items on the same volume. A WAN
extension would want to keep all
anchor information in a per-volume,
multiuser database while distribut-
ing the link information. Anchor
information only concerns persis-
tent selections within a document,
and so this information should be
managed with the volume on which
the document is stored.

Link information in a WAN,
multivolume world may connect
anchors in documents that exist on
two different volumes, on two dif-
ferent machines. This calls for a
modification in how and where the
link information is kept. We suggest
keeping the link information in a
per-volume database, but replicating
it, so that the link information is
stored in the databases for the vol-
umes in which the anchors/docu-
ments at either side of the link re-
side.

Transparent Object Storage
Since Intermedia is based on an
object-oriented framework, the
most logical DBMS to use for stor-
ing the anchor and link informa-
tion would be an object-oriented
database (OODB) as was suggested
in [22]. This was not done due to
the lack of a viable commercial
OODB systems at the time. How-
ever, we feel this option should be
seriously considered as OODB
technology continues to evolve.

Combining an OODB with a
t ransparent object-oriented inter-
process communications mecha-
nism would allow the Link Engine
we have described to be consider-
ably simplified. Much of the work
done by the Link Engine involves
flattening the data objects managed
by the Intermedia Layer into a
form that can be transferred across
the network and stored in a con-

ventional database. Whether that
was a full relational database man-
agement system such as INGRES or
a B-tree database system such as
C-Tree, the anchor and link infor-
mation had to be converted into a
series of database management
operations and associated argu-
ments.

In recent months we have
worked with Sun Microsystem's
Remote Procedure Call (RPC)
functions and developed an object-
oriented interprocess communica-
tions mechanism we call RPC++.
This mechanism supports sending
messages to remote objects as well
as passing objects across the net-
work. Combining a facility such as
R P C + + with an OODB would re-
duce the load on the Link Engine
and provide a hypermedia system
with t ransparent object storage.

Conclusion
Our vision of hypermedia is based
on a belief that the computing envi-
ronment should be able to reflect
the ever-changing connections in-
herent in all information. Bush [2]
envisioned how computing ma-
chines could be used to support in-
tellectual work and contain the
complex interlinkage of accumu-
lated knowledge found in the
human record. The "docuverse"
envisioned by Nelson [17] would
contain all of the world's literature,
accessible and interlinked from any
point on the global network. The
cooperative work environments
created by Engelbart [8] were
shared electronic spaces where
groups of workers could manage
and exchange concepts and ideas in
the form of linked structures. We
feel Intermedia has been a stage in
the development of a computing
envi ronment better able to support
intellectual work.

We cannot allow the current
market, with its millions of stand-
alone personal computers, to trans-
form this global hypermedia vision
into a set of isolated applications.
For hypermedia to work in today's
multimedia platforms in the large,
the function of making and travers-

ing links must find its way out of
the individual application and into
the shared space of the desktop
envi ronment where we do our daily
work. Attention must be focused on
how to make hypermedia available
across all applications, as well as
across WANs.

We believe that the IRIS Hyper-
media Services represents a useful
design for those researchers and
developers who are concerned with
hypermedia in the large. The de-
velopment of Intermedia has dem-
onstrated that hypermedia func-
tionality can be implemented in an
object-oriented application frame-
work. We believe our architecture
has demonstrated the value of sep-
arating the anchor and link data
from the document data and using
a database management system for
storing and retrieving the link in-
formation. We believe a similar de-
sign in which the hypermedia func-
tions are well integrated into the
computing envi ronment will pro-
vide the basis for the next genera-
tion of desktop computing. []

References
1. Akscyn, R.M., McCracken, D.L.,

and Yoder, E.A. KMS: A distrib-
uted hypermedia system for man-
aging knowledge in organizations.
Commun. ACM 31, 7 (July 1988),
820-835.

2. Bush, V. As we may think. Atlantic
Monthly 176, 1, 101-108.

3. Catlin, T.J.O. and Smith, K.E. An-
chors for shifting tides: Designing a
'seaworthy' Hypermedia system. In
Proceedings of the 12th International
Online Information Meeting (London,
England, Dec. 6-8, 1988) Oxford
and New Jersey: Learned Informa-
tion, 1988, pp. 15-25.

4. Catlin, T., Bush, P.E. , and
Yankelovich, N. InterNote: Extend-
ing a Hypermedia framework to
support annotative collaboration.
In Hypertext '89 Proceedings (Pitts-
burgh, Pa. Nov. 5-7, 1989) ACM,
N.Y., 1989, pp. 365-378.

5. Catlin, K.S., Garrett, L.N., and
Launhardt, J.A. Hypermedia tem-
plates: An author's tool. In Hypertext
'91 Papers (San Antonio, Tex. Dec.
15-18, 1991).

6. Conklin, J. Hypertext: An intro-
duction and survey. IEEE Comput.

~ 0 January 1992/%1.35, No.1/COMMUNICATIONS OF T H E AOM

20, 9 (Sept., 1987), 17-41.
7. Coombs, J.H. Hypertext, full text,

and automatic linking. International
Conference on Research and Develop-
ment in Information Retrieval (SIGIR
'90). (Brussels, Sept. 5-7, 1990).

8. Engelbart, D.C. and English, W.K.
A research center for augmenting
human intellect. In AFIPS Confer-
ence Proceedings, 1968 Fall Joint Com-
puter Conference. (San Francisco,
Calif., Dec. 9-11, 1968), AFIPS
Press, Montvale, N.J., pp. 395-410.

9. FairCom. C-tree File Handler Pro-
grammer's Reference Guide. Columbia
Mo, 1988.

10. Goldberg, A. Smalltalk-80: The Inter-
active Programming Environment.
Addison Wesley, Reading, Mass.,
1984.

11. Goldfarb, C.F., and Newcomb, S.R.
ANSI Project, X3.749-D, 'Hyper-
media/Time-based Document
Structuring Language (HyTime)'.
X3V 1.8M/SD-7.

12. Halasz, F., and Schwartz, M. The
Dexter Hypertext Reference
Model. In Proceedings of the Hypertext
Standardization Workshop. J. Moline,
D. Benigni, and J. Baronas, Eds.,
NIST Special Publication 500-178,
Gaithersburg: National Institute of
Standards and Technology, Jan.
1990, pp. 95-134.

13. Kahn, P., and Haan, B.J. Video in
hypermedia: The design of Inter-
Video. Visual Resource, VII (1991),
353-360.

14. Killough, R.L. Hypertext inter-
change with the Dexter Model: In-
termedia to KMS. Texas A&M Uni-
versity, Dept. of Computer Science,
Aug. 1990.

15. Meyrowitz, N. Intermedia: The ar-
chitecture and construction of an
object-oriented Hypertext/Hyper-
media system and applications
framework. In Proceedings of the
Conference on Object-Oriented Pro-
gramming Systems, Languages, and
Applications (OOPSLA '86) (Port-
land, Ore. Sept. 29-Oct. 2, 1986).

16. Meyrowitz, N. The missing link:
Why we're all doing Hypertext
wrong. In The Society of Text: Hyper-
text, Hypermedia, and the Social Con-
struction of Information, E. Barrett,
Ed. MIT Press, Cambridge, Mass.
1989, 107-114.

17. Nelson, T.H. Literary Machines.
Swarthmore, Pa, T.H. Nelson,
1981.

18. Newcomb, S.R., Kipp, N.A., and
Newcomb, V.T. The 'HyTime'

Hypermedia/Time-based Docu-
ment Structure Language. Commun.
ACM, 34, 11 (Nov. 1991), 67-83.

19. Nielsen, J. Hypertext and Hypermedia.
Academic Press, San Diego, Calif.,
1990.

20. Palaniappan, M., Yankelovich, N.,
and Sawtelle, M. Linking active an-
chors: A stage in the evolution of
Hypermedia. Hypermedia 2, 1
(1990), 47-66.

21. Riley, V. An interchange format for
Hypertext systems: the Intermedia
model. In Proceedings of the Hypertext
Standardization Workshop, J. Moline,
D. Benigni, and J. Baronas, Eds.,
NIST Special Publication 500-178,
Gaithersburg: National Institute of
Standards and Technology, Jan.
1990, pp. 213-222.

22. Smith, K.E., and Zdonik, S.B. Inter-
media: A case study of the differ-
ences between relational and object-
oriented database systems. In Pro-
ceedings of the Conference on
Object-Oriented Programming Systems,
Languages, and Applications
(OOPSLA '87). (Orlando, Fla., Oct.
4-8, 1987).

23. Utting, K., and Yankelovich, N.
Context and orientation in Hyper-
media networks. ACM Trans. Inf.
Syst. 7, 1 (Jan. 1989), 58-84.

24. van Dam, A. Hypertext '87 keynote
address. Commun. ACM, 31, 7 (July
1988), 887-895.

25. Yankelovich, N., Meyrowitz, N.,
and van Dam, A. Reading and writ-
ing the electronic book. IEEE Com-
put. 18, 10 (Oct. 1985), 16-30.

26. Yankelovich, N., Haan, B.J.,
Meyrowitz, N., and Drucker, S.M.
Intermedia: The concept and the
construction of a seamless informa-
tion environment. IEEE Comput. 21,
1 (Jan. 1988), 81-96.

CR Categories and Subject Descrip-
tors: C.3 [Computer Systems Organiza-
tion]: Special-purpose and Application-
based Systems; H.3 [Information Sys-
tems]: Information Storage and
Retrieval; H.4.3. [Information Sys-
tems]: Information Systems Applica-
tions-Communications Applications

General Terms: Design
Additional Key Words and Phrases:

Hypermedia, hypertext, Intermedia,
IRIS Hypermedia Services
About the Authors:
BERNARD J. HAAN is currently proj-
ect manager of the Multimedia Group
at Siemens-Nixdorf Information Sys-
tems in Cambridge, Mass. His current
research interests include desktop inte-

gration of hypermedia and multimedia.
Author's Present Address: Siemens-
Nixdorf Information Systems, 4 Cam-
bridge Center, Cambridge, MA 02142;
email: bhaan@sni-usa.com
PAUL KAHN is research scientist and
project manager at Brown University's
Institute for Research and Scholarship.
His current research interests include
the design and presentation of digital
information. Author's Present Ad-
dress: Institute for Research and Schol-
arship, Brown University, Box 1946,
Providence, RI 02912; email:
pdk@iris.brown.edu
VICTOR A. RILEY is a technical staff
member in the System Software Tech-
nology Center of the Advanced Systems
Division at Silicon Graphics, Inc. His
current research interests include hy-
pertext and hypermedia document in-
terchange, and the standardization in-
volved with interchange, as well as
object-oriented programming and data-
bases, and window systems. Author's
Present Address: Silicon Graphics, Inc.,
2011 North Shoreline Boulevard, P.O.
Box 7311, Mountain View, CA 94039-
7311; email: var@sgi.com
JAMES H. COOMBS is a research sci-
entist at Brown University's Institute for
Research in Information and Scholar-
ship. His current research interests in-
clude the integration of advanced
searching techniques into the daily
working environment. Author's Pres-
ent Address: Institute for Research and
Scholarship, Brown University, Box
1946, Providence, RI 02912; email:
jhc@iris.brown.edu
NORMAN K. MEYROWITZ is director
of Advanced Software Technology at
GO Corporation. His current research
interests include object-oriented build-
ing blocks, next-generation user envi-
ronments, hypermedia, compound doc-
uments, text processing, user-interface
design, and object-oriented program-
ming. Author's Present Address: GO
Corporation, 950 Tower Lane, 14th
Floor, Foster City, CA 94404; email:
nkm@go.com

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© ACM0002-0782/92/0100-036 $1.50

COMMUNICATIONS OF THE ACM/January 1992/Vo1.35, No.1 Sl

