
Abstract

This paper describes the design and implementation of IRIS Per-
former, a toolkit for visual simulation, virtual reality, and other
real-time 3D graphics applications. The principal design goal is to
allow application developers to more easily obtain maximal perfor-
mance from 3D graphics workstations which feature multiple
CPUs and support an immediate-mode rendering library. To this
end, the toolkit combines a low-level library for high-performance
rendering with a high-level library that implements pipelined, par-
allel traversals of a hierarchical scene graph. While discussing the
toolkit architecture, the paper illuminates and addresses perfor-
mance issues fundamental to immediate-mode graphics and
coarse-grained, pipelined multiprocessing. Graphics optimizations
focus on efficient data transfer to the graphics subsystem, reduction
of mode settings, and restricting state inheritance. The toolkit’s
multiprocessing features solve the problems of how to partition
work among multiple processes, how to synchronize these pro-
cesses, and how to manage data in a pipelined, multiprocessing
environment. The paper also discusses support for intersection
detection, fixed-frame rates, run-time profiling and special effects
such as geometric morphing.
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1 Introduction

Recently, multipurpose workstations have attained graphics perfor-
mance levels that have customarily been the province of expensive,
special-purpose image generators (IGs). Consequently, many
visual simulation applications are migrating from IGs to graphics
workstations. Additionally, the decrease in the cost/performance
ratio of current-generation workstations has opened the door to
non-traditional visual simulation applications such as virtual real-
ity and location-based entertainment. These applications are often
very cost-sensitive and so demand every drop of speed from the
machine.

1.1 Motivation
In our experience, application developers often have problems
extracting graphics performance due to inexperience with the sys-
tem and ignorance of the “new set of rules”, some of them quite
arcane, which must be followed for peak performance on each new
graphics platform. Also, applications often forgo multiprocessing
simply because the development of a multiprocessed application
proves too difficult or time-consuming. The resulting single-
threaded applications sequentially process all tasks, leaving an
expensive graphics subsystem idle while the application carries out
non-graphics processing.

Existing general purpose 3D libraries and toolkits tend to address
different problems. Immediate-mode rendering libraries such as
OpenGL[8], Starbase[5], and XGL provide an efficient interface to
hardware, but leave the definition of geometry, scene content and
multiple eye points to the application. Object-oriented toolkits such
as PHIGS+[12], HOOPS, Doré[6] and IRIS Inventor[11] provide
scene structures based on display lists and objects, but for most
efficient rendering they retain an internal copy of the geometric
data. Since applications often need access to the original data for
other purposes, a second inaccessible copy inside the toolkit can
substantially increase memory usage. In addition, when the appli-
cation dynamically changes geometry, the retained data must be
edited or rewritten. Depending on the toolkit, this can increase pro-
gram complexity, degrade performance, or both.

Most importantly, none of the aforementioned toolkits addresses
multiprocessing. And from our experience, retrofitting a retained-
database toolkit with efficient multiprocessing support and parallel
traversals proves difficult at best.

In addition to demanding maximum performance, visual simula-
tion and virtual reality applications have real-time requirements
and must run at fixed frame rates to avoid the distractions and arti-
facts caused by frame rate variations. To achieve reasonable per-
formance, these applications require efficient database culling to
the viewing frustum, scene complexity management through level-
of-detail switching, intersection testing, and run-time profiling for
application and database tuning. Toolkits written specifically for
visual simulation such as VisionWorks[9] and GVS[7] partially
address many of these issues, but neither offers a fully multipro-
cessed solution.

1.2 Purpose
The fundamental design goal of the toolkit is to provide a software
development layer that delivers the greatest possible performance
from the graphics workstation, freeing the application developer to
concentrate on other matters. We achieve this primarily through:

• Graphics optimizations

• Multiprocessing

Another goal is to simplify the development of virtual reality and
visual simulation applications by providing intrinsic support for
common graphics and database operations such as multiple views,
level-of-detail switching, morphing, intersection testing, picking,
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and run-time profiling. However, the toolkit does not provide direct
support for I/O devices, audio, or motion systems since these are
not directly related to the core functions of a rendering platform or
a multiprocessing framework. Some applications, such as the fly-
through system shown in Figure 17, have added their own device
support to IRIS Performer, as have developers of toolkits for par-
ticular application domains, e.g. dVS[4] and WorldToolkit[7].

The graphics optimizations and multiprocessing features of the
toolkit are targeted for workstations which support immediate-
mode graphics and small-scale, symmetric, shared memory multi-
processing.

1.3 Overview
The toolkit’s core consists of two libraries: libpf and libpr. libpr
consists primarily of optimized graphics primitives as well as inter-
section, shared memory, and other basic functions. libpf is built on
top of libpr and adds database hierarchy, multiprocessing, and
real-time features. This arrangement is illustrated in Figure 1
below:

Figure 1. Library Layering

The two-library approach allows developers to choose which layer
they wish to program to and also avoids “black box” limitations to
flexibility by allowing an application which uses libpf to access the
underlying libpr primitives. An application is also free to access
the immediate-mode graphics library and operating system directly
for customized rendering or control.

In keeping with our bottom-up design methodology, we discuss
libpr first, then follow with libpf and finish with a description of
run-time profiling utilities which facilitate performance tuning.

2 libpr - Efficient Rendering

The libpr library provides the high-performance foundation for
IRIS Performer. Its specialized graphics primitives are designed to
squeeze the highest level of performance from the graphics pipe-
line by efficiently managing geometry and graphics state for imme-
diate-mode rendering. In addition, libpr supports intersection and
shared memory utilities that facilitate a multiprocessed visual
application.

2.1 pfGeoSet - Efficient Geometry Primitive
In our experience, the data structures used to represent geometry
and the code which transfers that data to the graphics hardware
very often make or break an immediate-mode graphics application.
Scattered memory organizations can result in poor cache behavior
and inefficient rendering loops can starve a fast graphics pipeline.

Immediate Mode vs. Display List Mode

The pfGeoSet’s purpose is to achieve maximum immediate-mode
performance for 3D geometry. In immediate mode, the host CPU
must feed the graphics subsystem with primitive, vertex, and
attribute commands. An alternative to immediate mode is display
list mode which compiles a list of commands into a data structure
that can be very efficiently transferred to the graphics subsystem.
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However, display list mode has some significant disadvantages that
immediate mode does not have:

• A display list is a closed data structure. Geometry data must be
duplicated at substantial memory penalty for database queries
like intersections which require read access.

• Display lists are costly to compile. This generally requires that
geometry be static. Techniques requiring vertex manipulation
such as animation do not lend themselves to display list mode.

pfGeoSets utilize application-supplied arrays for attributes such as
coordinates and colors, consequently avoiding these disadvan-
tages. Applications are free to modify these arrays for dynamic
effects without experiencing degraded rendering performance.

A pfGeoSet is a collection of geometric primitives of a single type
defined by its:

• primitive type: points, lines, line strips, triangles, quads, or tri-
angle strips

• attribute lists: coordinates, colors, normals, texture coordinates

• attribute bindings: per-vertex, per-primitive, overall, off.

Figure 2 illustrates a pfGeoSet consisting of two triangles with a
per-primitive color binding: the first is red and the second is blue.

Figure 2. pfGeoSet Structure

On high-end machines in particular, care must be taken to ensure
that immediate-mode data transfer is efficient or else the graphics
hardware will be starved. pfGeoSets guarantee efficient data trans-
fer by enforcing an a priori grouping of geometry by type that
facilitates the use of customized, extremely tight rendering loops.
Since all primitives within a pfGeoSet are homogeneous, a single,
well-tuned rendering routine that is tailored to the specific pfGeo-
Set type can quickly transfer the primitives with a minimum of
overhead. For example, if a pfGeoSet is a collection of triangles
which have colors defined per-primitive (i.e., one color per trian-
gle), its corresponding rendering routine doesn’t waste precious if-
tests determining whether or not a color should be sent down with
each vertex. Over 700 of these specialized rendering routines exist
(macro-generated) to handle all combinations of primitive types
and attribute bindings, and all are indirectly accessed through the
single pfDrawGSet() routine.

pfGeoSet Construction

Developers may find pfGeoSet construction messy and may some-
times generate pfGeoSets with sub-optimal performance, e.g.,
pfGeoSets with a small number of primitives may suffer from
excessive setup overhead when transferring them to the graphics
subsystem. Or an application may fail to use triangle meshes where
possible. Connecting triangles together into a mesh can signifi-
cantly reduce the amount of data transfer from the CPU to the
graphics subsystem as well as the amount of processing required in
the graphics hardware. Unfortunately, most databases do not utilize
triangle meshing and automatic meshing algorithms are complex.
To avoid these pitfalls, the pfuBuilder utility functions provide
convenient meshing and performance-oriented construction of
pfGeoSets. The application simply feeds independent, potentially
concave polygons to a pfuBuilder which returns sorted, meshed,
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and optimized pfGeoSets on request.

2.2 Efficient Graphics State Management
Unlike geometry, graphics state commands do not modify the
frame buffer; they do not “draw” anything, but instead configure
the graphics hardware with a particular mode (e.g. shading model)
or attribute (e.g. texture) that modifies the appearance of geometry.
Like geometry, efficient management of graphics state is required
for optimal graphics performance.

In libpr there are 3 ways to set graphics state, each of which offers
significant performance advantages:

• Immediate mode

• Display list mode

• Encapsulated mode

In general, applications use immediate mode to set global state
such as enabling fog and use encapsulated mode to specify the
appearance of geometry at database creation time. Display list
mode is primarily intended for use by the libpf library to accom-
modate multiprocessing.

2.2.1 pfState - Immediate Mode

The state management provided by the pfState object is useful for
avoiding redundant mode changes. A pfState object maintains all
current and previous graphics state in a state stack. The set of man-
aged graphics state is that which can be modified through libpr
routines and is a subset of that provided by the graphics library.
Graphics state is partitioned into:

• Modes such as backface culling, gouraud shading, wireframe
on/off

• Attributes such as texture, material parameters

Modes are generally simple integer values that are set by single
commands such as pfShadeModel() while attributes are objects
like pfTexture that encapsulate many graphics characteristics.
Modes are “set” and attributes are “applied” by their immediate-
mode routines: pfShadeModel() and pfApplyTex() for example.

By shadowing the state of the graphics hardware, a pfState can
eliminate costly mode changes. For example, if the current shading
model is FLAT then a subsequent attempt at setting a FLAT shad-
ing model should be intercepted before being sent to the graphics
hardware. Avoiding mode changes is especially useful for parallel-
ized geometry engines which become essentially single-threaded
during a mode change because mode changes must be broadcast to
all engines. Redundant mode changes become particularly preva-
lent if the database is sorted by mode (See Section 3.1.3).

2.2.2 pfDispList - Display List Mode

The primary purpose of the pfDispList is to capture an entire
frame’s worth of data for use in multiprocessing. It captures and
buffers libpr rendering commands such as pfShadeModel() and
pfApplyTex(). As will be discussed in Section 3.2.2, two processes
can communicate via a pfDispList to increase throughput. One
producer process fills the pfDispList and a consumer process
draws it by traversing it and sending appropriate commands to the
graphics subsystem. Throughput is enhanced because the producer
process off-loads expensive database processing from the time-
critical consumer process which performs immediate-mode render-
ing. A pfDispList may be configured as a FIFO or ring buffer for
concurrent producer/consumer configurations.

A pfDispList is different from a typical display list in that it cap-
tures only references to libpr objects and does not contain individ-
ual vertex or primitive commands; instead the libpr objects
themselves contain and transfer these commands. Consequently a
pfDispList can be quickly built and traversed. Additionally, a
pfDispList is somewhat editable (it may be reused and appended

to) and can also contain references to function callbacks for user-
defined rendering.

2.2.3 pfGeoState - Encapsulated Mode

The pfGeoState object provides the primary mechanism for speci-
fying graphics state in an IRIS Performer application. It encapsu-
lates all state modes and attributes managed by libpr. For example,
a pfGeoState may be configured to enable lighting and reference a
wood pfTexture and a shiny pfMaterial. Then after it is applied to
the graphics subsystem, subsequent geometry will have the appear-
ance of a finished wood surface. A pfGeoState can be attached to a
pfGeoSet so that together they define geometry with a specific
appearance.

The pfGeoState has some special features that either directly or
indirectly enhance rendering performance:

Locally Set vs. Globally Inherited State

It is possible to specify every libpr mode and attribute of a pfGeo-
State, in which case the pfGeoState becomes a true graphics con-
text that fully defines the appearance of geometry. However, a full
graphics context is fairly expensive to evaluate and is almost never
required. The key observation is that many state settings apply to
most geometry in the database. For example: fog, lighting model,
light sources and lighting enable flag are often applied to the entire
scene since they are global effects by nature. Conversely, attributes
such as materials and textures are likely to change often within a
database. pfGeoStates support these two kinds of state by distin-
guishing between globally inherited and locally set state respec-
tively. By globally inheriting state, a pfGeoState can reduce the
amount of state it sets, i.e.- it becomes sparse. A sparse pfGeoState
is more efficiently managed because fewer pieces of state need be
examined. State is inherited simply by not specifying it. However,
an important point discussed below is that state is never inherited
between pfGeoStates. As an important result, pfGeoState render-
ing becomes order-independent.

Order Independence

In many immediate-mode graphics libraries, geometry inherits pre-
viously set graphics modes. As a result,  rendering is order-depen-
dent; graphics state and geometry must be organized in a specific
order to produce the desired appearance. Order dependence is
undesirable for high-level database manipulations such as view
culling and sorting which frequently modify rendering order.

To ensure order independence, the application must either com-
pletely specify the graphics state of all geometry or it must be
aware of the current graphics state and change state when neces-
sary. The former solution seriously compromises performance if
the graphics context is non-trivial and the latter is a bookkeeping
nightmare.

pfGeoStates guarantee order independence for rendering as a direct
consequence of not inheriting state from each other. When applied,
a pfGeoState implicitly saves and restores state so that its state
modifications are insulated from other pfGeoStates. Furthermore,
if a global state element is modified by a pfGeoState, it will be
restored for those pfGeoStates which inherit that element.

Lazy Push/Pop

If a pfGeoState explicitly pushed and popped all graphics state,
significant performance would be lost due to unnecessary mode
setting. Instead, a pfGeoState pushes only those global state ele-
ments that it needs to change and pops only those global state ele-
ments that it needs to inherit and that were changed by a
previously-applied pfGeoState. Lazy popping eliminates useless
mode changes since a mode is not restored if a pfGeoState is going
to change it anyway.



2.3 Multiprocessing Support
The libpr library is designed to fully support, but not require, a
multiprocessing environment. To this end, libpr provides mecha-
nisms for creating and maintaining shared data.

2.3.1 Shared Memory

libpr provides mechanisms for sharing memory between related
(forked from the same image) and unrelated processes. Allocations
are reference counted to support operations such as deletion in a
multiprocessed environment (See Section 3.2.3).

2.3.2 pfMultibuffer - Multibuffered Arrays

When a process needs to modify a piece of data for consumption
by other processes, data must be passed or multiple copies (buff-
ers) must be maintained. To facilitate this, libpr provides multipro-
cessing constructs such as queues and multibuffered memory. The
pfMultibuffer object provides data synchronization and data exclu-
sion for multi-stage software pipelines by managing multiple cop-
ies of a single data array. pfMultibuffer is particularly useful for
dynamic and morphing geometry. A global index for each process
indicates the currently active pfMultibuffer buffer, e.g., process A
may be working on buffer0 while process B is simultaneously
working on buffer2. By changing the global index, processes can
“pass” work to each other, simulating a processing pipeline. Since
buffers are recycled rather than copied, the mechanism is efficient
regardless of the amount of data which changes and independent of
the number of consuming processes. When the contents of a
pfMultibuffer stop changing, the most recent version is copied into
each buffered instance so the application does not need to write
every pfMultibuffer every frame.

2.4 Database Intersection
Most applications require intersection testing for purposes such as
picking and collision detection. Since the target of these tests is
often the visual data already represented in pfGeoSets, libpr pro-
vides the ability to intersect line segments against the polygons
inside a pfGeoSet, thereby avoiding expensive duplication of the
database. We chose line segments as the first primitive to imple-
ment because the tests are fast and they provide the most natural
expression of common queries such as picking, line-of-sight visi-
bility, and terrain following. Many simple collision detection
mechanisms can be implemented by intersecting a set of line seg-
ments that describe the swept volume of a moving object with the
database. The racing car simulator shown in Figure 15 uses two
segments for following the track height and four segments for
detecting collisions with walls and other cars. Several line seg-
ments can be grouped into a single intersection request to reduce
processing overhead. Performance may be further improved by
specifying an optional bounding cylinder which encompasses all
line segments and by caching plane equations for static pfGeoSets.

pfSegsIsectGSet() returns the nearest or farthest intersection along
each line segment. Applications can use a discriminator callback
to examine each intersection individually during traversal of the
geometry. Discriminator callbacks can direct the intersection tra-
versal and/or modify the intersecting line segments for fine-grained
intersection control. Intersection information available to the appli-
cation includes the actual triangle within the hit pfGeoSet, the
intersection position and geometric normal.

3 libpf - Adds Database Hierarchy and
Automated Multiprocessing to libpr

Representing a visual database involves more than just geometry
and its associated graphics state. A higher-level library, libpf, built
on top of libpr provides a hierarchical scene graph of nodes which
organizes libpr geometry for improved modeling and processing

efficiency.

IRIS Performer accomplishes most database processing through
traversals of the scene graph hierarchy. Much of libpf’s program-
ming interface handles traversal configuration and control. Typi-
cally, an application updates scene graph and viewing parameters
for a frame and then activates one or more processing traversals.
For improved performance on multiprocessor systems, libpf can
automatically execute these traversals in parallel with little extra
programming burden on the application.

3.1 Database
A scene graph consists of nodes connected in a directed, acyclic
fashion. Geometry lies at the leaves of the scene graph while inter-
nal nodes support notions such as grouping, transformation, selec-
tion, and sequencing as well as special operations such as level-of-
detail switching, and morphing.

3.1.1 Class Hierarchy

While both libpf and libpr libraries are object-oriented, the flat
class hierarchy of libpr allowed us to write it in C. However, the
natural expression of scene graph nodes requires a deeper class
hierarchy as shown in Figure 3. Consequently libpf is written in
C++.

Figure 3. Node Class Hierarchy

Nodes fall into three groups: abstract, internal and leaf. pfNode is
the abstract base class for all nodes and is itself derived from an
internal class called pfUpdatable which creates and maintains mul-
tiple copies of the node for multiprocessing as described in Section
3.2.

The internal node types are:

• pfGroup: references pfNodes as children

• pfScene: group that roots a scene graph.

• pfSwitch: group with none, one, or all children active

• pfSequence: sequences through its children for animation
effects

• pfSCS: applies an unchangeable transformation (static coordi-
nate system) to its children

• pfDCS: applies a changeable transformation to its children
(dynamic coordinate system)

• pfLayer: renders coplanar geometry, e.g. pictures on a wall.

• pfLOD: selects one or more children based on distance to eye,
viewport pixel size, and field-of-view (level-of-detail).

• pfMorph: interpolates geometry, color, etc. between models

• pfPartition: spatially partitions geometry beneath it into an effi-
cient data structure

The leaf node types are:

• pfGeode: references zero or more pfGeoSets

• pfBillboard: rotates pfGeoSets to face the eyepoint
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• pfLightPoint: draws visible, but non-illuminating points of
light, e.g. stars, runway lights

• pfLightSource: non-visible but illuminating light source

In a scene graph, pfGeodes typically contain most of the visual
geometry. Each pfGeode references a set of libpr pfGeoSets. Spe-
cialized geometry is contained within pfLightPoints and pfBill-
boards.

3.1.2 Node Hierarchy

State Inheritance

In addition to providing organizational and instancing capability, a
hierarchy of nodes (scene graph) also allows state inheritance.
Within a scene graph, inheritance is strictly top-down. The absence
of any left-right or bottom-up inheritance allows arbitrary pruning
of the scene graph during traversal. This also facilitates paralleliza-
tion of a single traversal because subgraphs of the scene graph can
be traversed independently. The primary type of inherited state is
3D transformations, although user callbacks may also affect inher-
ited state during traversals. Graphics state such as that defined by
the pfGeoState primitive is not inherited through the scene graph.
Grouping the primary specification of graphics state with leaf
geometry rather than with internal nodes of the scene graph greatly
facilitates tasks such as sorting by graphics mode.

Bounding Volume Hierarchy

The node hierarchy also defines a hierarchy of bounding volumes
which are used to accelerate intersection and culling. Each node
has a bounding sphere which encloses the node as well as any chil-
dren it may have. The toolkit automatically recalculates these
bounding volumes when geometry or scene graph topology
changes.

All node types except pfScene retain parent lists. This allows a
change to a child in a scene graph, such as a bounding volume
change, to be propagated to all its ancestors in the scene graph. To
eliminate redundant updates, internal state is marked using dirty
bits which are propagated to the root of the scene graph so the
cleaning of dirty state can be deferred until required.

3.1.3 Traversals

After the application configures the scene graph and viewing
parameters, three basic traversals may process the scene graph:

• Intersection traversal (ISECT) — processes intersection
requests for collision detection and terrain following.

• Culling traversal (CULL) — rejects objects outside the view-
ing frustum, computes level-of-detail switches, sorts geometry
by modes

• Drawing traversal (DRAW) — sends geometry and graphics
commands to the graphics subsystem.

TABLE 1. Traversal Characteristics

ISECT CULL DRAW

Controller pfSegSet pfChannel pfChannel

Global
Activation

pfSegsIsectNode pfCull pfDraw

Modes pfSegSet mode pfChanTravMode pfChanTravMode

Masks pfNodeTravMask
pfSegSet mask

pfNodeTravMask
pfChanTravMask

pfNodeTravMask
pfChanTravMask

Process
Callback

pfIsectFunc pfChanCullFunc pfChanDrawFunc

Node
Callbacks

pfNodeTravFuncs pfNodeTravFuncs pfNodeTravFuncs

Table 1 lists the libpf routines which define major characteristics
of these 3 traversals

The default CULL and DRAW traversals are completely automatic
and are triggered by pfFrame() (See Section 3.2.2). However,
pfFrame() first triggers a partial traversal of the scene graph which
cleans the internal state of the scene graph. Portions of the scene
graph may have already been cleaned if the application called a
routine which attempted to read a piece of state which was dirty.

Cull Traversal

The CULL traversal precedes the DRAW and uses many tech-
niques to improve rendering performance by reducing load on both
the DRAW traversal and on the graphics subsystem:

• Culling to the viewing frustum (pfChannel)

• Computing state specific to a pfChannel, e.g. level-of-detail

• Sorting for performance and visual quality

• Generating a simple display list (pfDispList) for the DRAW
traversal

For applications with an eye point in the midst of the database,
culling to the viewing frustum can reject the majority of geometry,
substantially reducing the amount of data sent to the graphics sub-
system. Viewing state and frustum are encapsulated by the pfChan-
nel object. IRIS Performer supports multiple views, e.g. stereo,
through multiple pfChannels which may view the same or different
pfScenes.

The CULL traversal uses the hierarchical bounding volumes pro-
vided by the scene graph (See Section 3.1.2). Bounding spheres are
used within the scene graph because they are fast to update, trans-
form and test against. Axially aligned bounding boxes are used for
each pfGeoSet to provide tighter bounds around the actual geome-
try.

During the CULL traversal the bounding sphere of each node is
transformed as necessary and compared against the viewing frus-
tum. The action taken depends on the result of the bounding vol-
ume test as follows:

• Completely outside the frustum: traversal continues without
traversing any of the node’s children — the node is pruned

• Completely inside the frustum: continue down the scene graph
with no further culling tests

• Partially or potentially intersecting: continue testing and tra-
versing down the scene graph

The ultimate output of the CULL traversal is the geometry and
graphics state information to be sent to the graphics hardware.
When enabled to do so, the CULL traversal first generates sorted
lists of the pfGeoSets to be rendered. Each frame, these lists are
sorted by graphics mode to increase rendering performance by
minimizing expensive graphics mode changes such as transforma-
tion and texture changes. It is here that the order-independence
offered by pfGeoStates (see Section 2.2.3) is especially useful.
Next, the CULL traversal converts these sorted lists into a single
pfDispList which eventually contains the entire frame. Transparent
geometry is placed into the display list last, after a limited depth
sort which improves both pixel-fill performance and the visual
quality of the transparency. In our experience, mode sorting can
significantly improve rendering throughput, sometimes more than
50%.

Draw Traversal

For each visual channel, the DRAW traverses the display list gen-
erated by its associated CULL traversal and sends commands to
the graphics subsystem. The DRAW traversal differs from the
CULL and ISECT traversals in that it does not involve traversing
the actual scene graph. We designed the pfDispList format to be



very simple, so the DRAW traversal has very little work other than
issuing graphics calls. The scene graph traversal overhead is
absorbed by the CULL which increases rendering throughput when
multiprocessing. When not multiprocessing, we can combine the
CULL and DRAW traversals into a single traversal which both
culls and issues graphics commands to avoid the small overhead of
pfDispList generation.

Traversal Control

Nodes have separate traversal masks for each traversal type to
allow the application to “mask off” subgraphs of the scene for tra-
versal. A node is only traversed if the logical AND of the traversal
mask and the node mask is non-zero. This allows multiple data-
bases to coexist in the same scene graph. For example, a scene
graph may contain simpler geometry for collisions than for render-
ing in order to reduce intersection times. In this case, the DRAW
traversal mask for the collision geometry and the ISECT traversal
mask for the visual geometry would both be zero.

Traversal Callbacks

Traversal callbacks provide even finer control on traversals. Each
node can have its own pre- and post-traversal callbacks corre-
sponding to each traversal type. These allow the application to
prune or terminate the traversal at any time. The pre-CULL call-
back also allows the application to specify the result of the cull test
for customized culling. The application may use the pre- and post-
DRAW callbacks for custom rendering using libpr or the underly-
ing graphics library, or to change and restore the graphics state for
a portion of the scene graph. Figure 16 shows a real-time video
effects program which uses DRAW callbacks to apply video tex-
turing.

Intersection Traversal

ISECT traversals differ from the CULL and DRAW in that they are
not automatic but are directly invoked by the application. Cur-
rently, intersections are based entirely on sets of line segments. The
pfSegSet structure embodies an intersection request as a group of
line segments, an intersection mask, discriminator callback, and
traversal mode. The traversal consists of testing the pfSegSet
against the hierarchical bounding volumes in the scene graph.
Intersection “hits” can be returned for pfNode bounding volumes,
pfGeoSet bounding boxes and the actual geometry inside pfGeo-
Sets. In addition to the traversal callbacks described above, inter-
sections also provide a discriminator callback so that the
application can examine each “hit” during traversal and accept or
reject the intersection as well as terminate traversal. Because
ISECT traversals usually require a pfSegSet to be tested against
many triangles, the traversal transforms the pfSegSet into local
object coordinates rather than transforming the bounding volumes
and pfGeoSets into world coordinates. Since intersections do not
modify the database, applications may invoke many intersection
requests in parallel.

Efficiency of Bounding Volume Hierarchy

The efficiency of both CULL and ISECT traversals is largely
dependent on the depth and balance of the scene graph hierarchy.
For example, a scene graph arranged as a balanced octree will cull
more quickly than a flat scene graph. A scene graph with poor spa-
tial hierarchy can be rearranged as a result of database profiling as
described in Section 4.2 or be imposed with an improved second-
ary partitioning with pfPartition as described in Section 3.1.4.

3.1.4 Performance Optimizations

pfFlatten - Eliminating Transformations

Taking a single model and placing it under multiple static transfor-
mations (e.g. trees, houses) in the scene graph is convenient for
modeling, but not always necessary at run time. During rendering,
a transformation typically requires the hardware matrix stack to be

pushed, the new transformation applied, the geometry drawn and
then the matrix stack to be popped. For small models, these matrix
operations can consume as much time or more than the actual ren-
dering. pfFlatten() can improve graphics performance at a cost in
memory usage by duplicating static, instanced geometry, applying
the current static transform to the geometry, and setting all static
coordinate systems (pfSCSes) to the identity matrix.

pfLOD - Level of Detail

Next to view frustum culling, the most important mechanism for
reducing and managing the graphics load is level-of-detail (LOD)
switching. When an object is only a few pixels large on the screen,
it’s wasteful to render a model with a high polygon count; rather, a
coarser model with a lower level-of-detail should be rendered
instead. The pfLOD node uses distance to the eye point, field-of-
view, viewport pixel size, and graphics stress (see Section 3.3.2) to
select among models of varying geometric complexity.

To make LOD changes as inconspicuous as possible, the pfLOD
node can gradually fade between two models when switching. A
drawback to fade LOD is that it requires rendering both models
during the transition which temporarily increases the graphics load.
An alternative LOD mechanism provided by the pfMorph node is
described in Section 3.1.5 and can avoid this penalty by smoothly
migrating vertices from one LOD to another.

pfSequence - Animation Sequences

Most high-quality animation requires moving vertices every frame.
But for the highest performance with minimal CPU loading, most
real-time applications make extensive use of precomputed anima-
tion sequences such as a sequence of textures to simulate a flicker-
ing torch. The pfSequence node supports this by automatically
sequencing through its children. Each child is assigned a period of
time, rather than a number of frames, during which it should be
displayed so that the sequence is immune to frame rate variations.
An example of pfSequence use is the dragon seen in the back-
ground of Figure 13.

pfBillboard - Billboarded Geometry

Rotating geometry, usually a single textured polygon, so that it
always faces the eye is a trick from visual simulation used for axi-
ally and radially symmetric objects such as trees, clouds and spe-
cial effects such as smoke or fire. Using a billboarded polygon
instead of a full three-dimensional model reduces both geometry
and pixel fill demands on the graphics pipe. A pfBillboard can be
constrained to rotate about an axis or a point. The trees and lamp
posts in Figure 14 are examples of pfBillboards.

pfPartition - Spatial Data Structure

IRIS Performer relies on the hierarchical bounding volumes of a
scene graph to accelerate intersection and culling traversals. How-
ever, a user-constructed scene graph may exhibit poor spatial
arrangement, obviating the benefits of hierarchical bounding vol-
umes. In this case a specialized spatial data structure imposed on
the default scene graph can provide much higher performance, par-
ticularly for intersections. The pfPartition group node analyzes
geometry underneath it at database load time and partitions pfGeo-
Sets into a 2D grid with multiple membership. During the intersec-
tion traversal, line segments in a pfSegSet are scan converted onto
the grid to quickly determine which pfGeoSets need to be tested
against. Other types of spatial data structures may be added in the
future.

3.1.5 Special Features

pfMorph - Morphing

The pfMorph node provides a mechanism for interpolating geome-
try between many sources. A pfMorph takes a set of input arrays
and weights and places the linear combination of the input arrays



into an output array. Typically, the morphed arrays are the vertex,
color, normal or texture coordinate arrays of a pfGeoSet in the
scene graph beneath the pfMorph node. The two main applications
are for continuously varying animated geometry such as the head
of the creature in the foreground of Figure 13 and for continuous
LOD switching [2]. The latter allows nearly invisible LOD transi-
tions and can be more efficient than fade LOD if the cost of mor-
phing is small compared to the cost of drawing two models during
a fade transition.

3.1.6 Database Importation

IRIS Performer is strictly a runtime programming interface with an
in-memory scene representation and currently has no database file
format. An application calls toolkit routines to create and assemble
a scene graph from various elements such as pfNodes, pfGeoSets
and pfGeoStates. Because the task of creating pfGeoSets can be
tedious, a utility library built on top of the toolkit provides routines
(pfuBuilder) to simplify the construction and triangle meshing of
pfGeoSets. Using these, database loaders have been written for
various database formats including Autodesk DXF, Wavefront
OBJ, Software Systems FLT, Coryphaeus DWB, and LightScape
LSB. Database formats with a hierarchical scene graph and visual
simulation extensions (e.g. level-of-detail, billboards) map directly
to the toolkit scene graph. For those database formats without any
hierarchy, the utility library provides spatial octree-based breakup
of geometry (pfuBreakup) so that even large, monolithic models
can be organized into a scene graph for efficient culling and inter-
secting.

3.2 Multiprocessing
A fundamental design criterion of the toolkit was to improve per-
formance through multiprocessing while hiding the programming
complexities that multiprocessing creates. This section describes
our solutions to the following multiprocessing problems:

• How to partition work among multiple processes

• How to synchronize process execution

• How to manage data in a pipelined, multiprocessing environ-
ment

3.2.1 Pipelined Multiprocessing

IRIS Performer employs a coarse-grained, pipelined, multipro-
cessing scheme, i.e., a relatively small number of processes work
concurrently on different stages of one or more processing pipe-
lines. This configuration favors workstations with a relatively
small number of processors (tens) over massively parallel systems
(thousands). The partitioning of work into multiple processes is
based on processing stages. A processing stage is a discrete section
of a processing pipeline and encompasses specific types of work.
Processing stages are tightly coupled to the scene graph traversals
described in Section 3.1.3. The ISECT, CULL, and DRAW pro-
cessing stages consist of zero or more intersection, culling, and
drawing traversals respectively in addition to application-specific
processing that is accessed through function callbacks. An addi-
tional processing stage, the APP, consists primarily of application
code as well as database, viewpoint, and system modifications
made through toolkit routines. Together, these four stages define
two kinds of processing pipelines:

• rendering pipeline: APP → CULL → DRAW

• intersection pipeline: APP → ISECT

pfPipe - Rendering Pipeline

The APP stage is the head of all pipelines and controls their execu-
tion. A rendering pipeline consists of the CULL and DRAW stages
and is encapsulated by the pfPipe primitive. An application may
use one or more parallel pfPipes that each renders zero or more
viewpoints into a single graphics window. The multipipe feature is

provided for machines with multiple graphics subsystems and
includes support for time-multiplexing the output of multiple hard-
ware renderers to a single display. The intersection pipeline con-
sists of the ISECT stage. Only one intersection pipeline is
supported.

Figure 4. Multiprocessing Multipipe Configuration

Multiprocess Partitioning - pfMultiprocess

Multiprocessing in IRIS Performer is achieved by splitting the ren-
dering and intersection pipelines at stage boundaries into multiple
processes. For example, the APP and CULL stages may be com-
bined into a single process while the DRAW stage is split into a
separate process, resulting in a a 2-process configuration which is
suitable for a 2-processor machine. The application specifies this
partitioning through pfMultiprocess(), allowing applications to
choose a process partitioning based on the number of available
CPUs. Figure 4 illustrates a processing configuration consisting of
two rendering pipelines and an intersection pipeline where each
stage has been split into a separate process. Figure 5 illustrates dif-
ferent multiprocess partitionings of the rendering pipeline that
range from 1 to 3 processes.

Multiprocessing With Shared vs. Non-shared Address Space

All pipelined processes are created by pfConfig() using the fork()
mechanism. We chose fork() over mechanisms which allow a fully
shared virtual address space so we could selectively share memory
and support multiple graphics pipes, since not all immediate-mode
graphics libraries allow multiple rendering contexts within a single
virtual address space. Synchronization for all processes created by
pfConfig() is handled internally.

Additional Multiprocessing

Additional multiprocessing is easily acquired if the application
itself creates extra processes. The ISECT and APP stages particu-
larly lend themselves to this kind of multiprocessing. For example,
multiple ISECT processes may concurrently execute calls to
pfSegsIsectNode() which intersects a set of line segments with a
scene graph (see Section 3.1.3). However, synchronization for
these processes is the responsibility of the application. The stippled
circles in Figure 4 depict these user-spawned processes.

3.2.2 Process Synchronization

Process synchronization defines the execution order of multiple
processes. It is responsible for enforcing periods of mutual exclu-
sion between processes and for ensuring concurrent execution of
processes. Most process synchronization in the toolkit is achieved
through well-known mechanisms such as semaphores and locks.

Throughput vs. Latency

IRIS Performer enforces pipelined synchronization of processes
created by pfConfig(). Pipelined multiprocessing trades increased
throughput for increased latency. Rendering latency is defined as
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the time elapsed from viewpoint specification until the display is
completed for that viewpoint. Rendering throughput is defined as
the amount of geometry processed in unit time. The size of the
throughput vs. latency trade-off is dictated by the number of pro-
cesses in the pipeline (its depth) and increases with process count.
Pipeline depth is configurable and can range from 1 to 3. For exam-
ple, a configuration combining the APP and CULL into a single
process and separating the DRAW will generate a rendering pipe-
line whose depth is 2. If all pipeline stages are well-utilized, per-
formance can be increased over the single-processed case by a
factor equal to the pipeline depth.

Figure 5. Multiprocess Partitioning and Timing Diagram

Figure 5 illustrates timing diagrams for different multiprocess con-
figurations ranging from 1 to 3 processes that are running at 20Hz.
Boxes represent the execution time of individual stages and each
row of boxes corresponds to a single process. Thus, multiple rows
of timing boxes illustrate parallel execution of pipeline stages. The
text inside the boxes specify the stage or stages that the process
handles while the numbers indicate the frame that the process is
currently working on. Notice how the amount of time available to
each stage (throughput) increases as the number of processes
(pipeline depth) increases.

Frame Control

The toolkit typically synchronizes the application to a user-speci-
fied frame rate, e.g. 30Hz. This frame rate defines a series of frame
boundaries that demarcate the beginning and ending of a frame.
The APP stage is responsible for synchronizing to the specified
frame rate and for triggering all processing pipelines once per
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frame by calling pfSync() and pfFrame() respectively.

pfSync() suspends the calling process until the next frame bound-
ary and is discussed in more detail in Section 3.3.1. pfFrame() indi-
cates that all rendering and intersection pipelines should begin
processing a new frame. If a pipeline stage is not ready to begin
processing a new frame because the processing time for the previ-
ous frame exceeded the allotted frame time, the stage has frame-
extended. In this event, pfFrame() does not block but returns con-
trol to the application. If the APP process frame-extends, then
pfFrame() is not called often enough and the update rate drops
even if the rendering pipeline can keep up. For this reason, applica-
tion processing must be kept to within a frame time.

Improving Latency

Certain applications like “man-in-the-loop” flight simulation and
virtual reality applications utilizing a head-tracked display require
very low latencies [13]. The latencies listed in Figure 5 are timed
from the end of the APP processing until video scanout of the last
pixel. To ensure this minimal latency even in cases when the APP
takes less than its full allotment of time, the toolkit allows latency-
critical updates such as the viewpoint to be made just before kick-
ing off the CULL traversal with pfFrame(). Figure 6 depicts a
close-up view of how pfSync() and pfFrame() work together to
synchronize process execution. Latency-critical updates are made
in the shaded portions of the APP processing time and may reduce
throughput by delaying the triggering of the processing pipelines.

Figure 6. pfSync and pfFrame

The following pseudo-code fragment illustrates the use of pfSync()
and pfFrame() in a typical simulation loop:

while(!Done)
{

updateSim(); /* Make non-latency-critical updates */
pfSync(); /* Sleep until next frame boundary */
updateView(); /* Read input devices and update eyepoint */
pfFrame(); /* Trigger new frame */

}

A special multiprocessing mode illustrated by the last timing dia-
gram of Figure 5 eliminates an entire frame of latency by overlap-
ping the CULL and DRAW processes that are working on the same
frame. The two processes communicate via a FIFO which stalls a
process on empty and full conditions. Although the DRAW has to
wait for the CULL to begin filling the FIFO and will stall if it is
faster than the CULL, in practice neither of these drawbacks are
significant. In this overlapped case, latency is reduced to a single
frame, generally the lowest possible. When CULL and DRAW are
not overlapped, latency can still be reduced to a single frame by
culling to a slightly larger viewing volume and sampling a new
viewing position just before drawing.

A lower latency alternative to pipelined multiprocessing would be
a single, multithreaded scene graph traversal. We chose against this
method due to the much higher complexity and overhead arising
from the necessary fine-grained synchronization. Also, the threads
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would have to be single-threaded when the application makes ran-
dom access modifications to the database and when rendering, if
the graphics pipeline does not allow multiple writers.

Pipeline Bottlenecks

Ideally, each process in the pipeline takes exactly one frame time to
complete its work. This situation indicates a balanced pipeline that
is getting maximum utilization of its processors and is the one
depicted in Figure 5. An out-of-balance situation arises when a
particular process takes longer than all other processes in the pipe-
line and becomes a bottleneck. In most graphics intensive applica-
tions, the process handling the DRAW stage is the bottleneck. In
this case, draw times can be reduced through the stress manage-
ment techniques described in Section 3.3.2. If the bottleneck is due
to the CULL stage, times can be reduced by disabling one or more
culling modes. Bottlenecks due to the APP stage are largely the
responsibility of the application.

Process Callbacks

By default, IRIS Performer performs all rendering processing
when triggered by pfFrame(); culling and drawing functions are
carried out in “black box” fashion. Process callbacks provide the
user with the ability to execute custom code both before and after
default processing, and to execute the code in the appropriate pro-
cess when multiprocessing.

Process callbacks are provided for the ISECT, CULL, and DRAW
stages. Default processing for these stages is triggered by pfSegsI-
sectNode, pfCull, and pfDraw respectively. If a callback is speci-
fied, default processing is disabled and must be explicitly triggered
by the callback. This arrangement allows the user to “wrap” default
processing with custom code, allowing save/restore, before/after,
and multipass rendering methods which use techniques such as
projective textures [10]. Figure 12 is from an application which
uses multipass renderings with projective textures to simulate a
spotlight with real-time shadows. In practice, the DRAW callback
is often used for 2D graphics, textual annotations and specialized
rendering that requires the full flexibility of the underlying graph-
ics library. A typical DRAW callback is illustrated below:

void
drawCallback(pfChannel *chan, void *data)
{

clearFrameBuffer();
pfDraw();
drawSpecialStuff();

}

3.2.3 Data Management

Three problems plague data management in a pipelined multipro-
cessing environment:

1) Data visibility. Processes need to share data.
2) Data exclusion. A process must not modify data while other

processes are simultaneously reading and/or writing it.
3) Data synchronization. Data modifications must be propagated

down processing pipelines in a “frame-accurate” fashion.

1) is handled by the shared memory mechanisms described in
Section 2.3.1. 2) can be handled with hardware spin locks but fine-
grain locking becomes expensive and as we shall see, the data
exclusion problem is solved by the solution to 3). First, let us
examine the data synchronization problem more closely.

Data Synchronization

In the toolkit’s multiprocessing pipelines, multiple processes work
on different frames at the same time. For example, the APP process
works on frame 33 while the DRAW is on frame 31. Suppose a sin-
gle matrix in shared memory represents the position of a database
model. If the APP process updates this matrix while the DRAW
process is sending it to the graphics hardware, the matrix might be
partially updated when sent to the graphics, resulting in an unin-

tended combination of two matrices. Alternatively, the model
might be drawn at the position it should have at frame 33, rather
than frame 31. In this case we say that the matrix update is not
frame-accurate since it does not affect the displayed model at the
appropriate time.

Note that hardware pipelines exemplified by graphics subsystems
such as RealityEngine[1] solve the data synchronization problem
by copying the entire database down through the pipeline. While
wide, fast data paths make this practical for hardware pipelines,
software pipelines do not have this luxury and require another
approach.

Multibuffering

We solve the problem of data exclusion and data synchronization
with a technique called multibuffering. Multibuffering employs
multiple copies of data structures known as pfUpdatables (or
updatables) that are logically partitioned into buffers known as
pfBuffers. All libpf objects including pfNodes are pfUpdatables so
that each pfBuffer contains a full copy of the scene graph. A
pfBuffer is associated with a single process and that process may
access only those pfUpdatables in its pfBuffer, thereby solving the
data exclusion problem.

Modifications made to pfUpdatables by the APP process are
recorded in an update list. Each frame these updates are applied to
all downstream pfUpdatables so the updates propagate down all
pipelines in frame-accurate fashion, thereby solving the data syn-
chronization problem. Propagating only database modifications
significantly reduces the amount of data that flows through the pro-
cessing pipelines.

This update-based multibuffering mechanism is most useful when
making sparse modifications to largely static data structures. This
is in contrast to the pointer-switching type of multibuffering pro-
vided by pfMultibuffer (see Section 2.3.2) which is most suitable
for data structures with large changes, such as vertex arrays used in
morphing. In this case, swapping pointers is much more efficient
than copying large amounts of data.

Figure 7. Multibuffering of a Scene Graph for APP and CULL

pfBuffer and pfUpdatable

In addition to forking multiple processes, pfConfig() creates and
associates a pfBuffer with each process (except the DRAW as is
discussed below). Each pfBuffer has an id table which associates
the address of a pfUpdatable with its id. When created, a pfUpdat-
able is assigned a unique integer id and is added to the id table of
the creating process’ pfBuffer. Then during the period when
updates are exchanged, corresponding pfUpdatables are created in
all downstream pfBuffers. Figure 7 depicts the referencing of two
copies of the scene graph (one each for the APP and CULL pro-
cesses) through the pfBuffer’s idTable.
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Selective Multibuffering

The net result is that N “images” of each pfUpdatable are created:
one for each pfBuffer in use. At first glance this may seem to be an
extravagant use of memory. However, only pfUpdatables are mul-
tibuffered and only libpf objects are pfUpdatables, e.g. pfNodes,
pfChannels. Thus all libpr primitives such as pfGeoSets and
pfGeoStates are not multibuffered and do not suffer the memory
penalty that multibuffering introduces. This design decision relies
on the following assumptions:

• Geometric primitives like pfGeoSets and pfGeoStates repre-
sent the vast majority of database memory. Thus, duplicating
only the scene graph skeleton does not drastically increase
memory usage.

• Most geometry is static and does not require the frame-accurate
behavior provided by multibuffering. (In Figure 7 the pfUpdat-
able numbered “1” is a pfGeode that references a non-multi-
buffered pfGeoSet.)

Although the first assumption has proven reasonable in most cir-
cumstances, we are currently exploring a “copy-on-write” exten-
sion to the multibuffering mechanism which would create extra
copies only when an updatable is modified. The second assumption
however, is restrictive in applications which use sophisticated mor-
phing techniques like continuous terrain level-of-detail that require
vertex-level manipulations of geometry [2]. Without multibuffer-
ing, the APP process may modify geometry at the same time the
DRAW is sending the geometry to the graphics subsystem, result-
ing in cracks between adjacent polygons. To solve this problem we
have offered a solution with the pfMultibuffer primitive described
in Section 2.3.2.

Data Exclusion Revisited

In addition to frame-accurate behavior, multibuffering provides
data exclusion which is essential to robust multiprocessing. Since
each process is guaranteed exclusive access to updatables in its
pfBuffer, it need not worry for example, that the APP process has
removed a node from the scene graph. Otherwise, the process
might collide with the modification and dereference a bad pointer
with disastrous results.

Update List

An update consists of an updatable id and another integer id which
defines what has changed. For example an update of [31, 12] might
mean “update the transform of the pfDCS whose id is 31.” Record-
ing updates by reference has significant advantages over recording
updates by value, which in the above example would mean copy-
ing the transformation matrix into the update list:

• Updates are homogeneous, thereby simplifying code and data
structures

• Updates are small, resulting in quick recording and memory
conservation

• Updates have a unique key which allow them to be efficiently
managed by a hash table. Specifically, duplicate updates are
discarded, keeping the update list from growing without bound.

The primary disadvantage of this update form is that it requires
blocking the upstream process during the update period described
below.

In order to provide frame-accurate behavior, updates must propa-
gate in an orderly fashion down all processing pipelines. This prop-
agation period occurs during pfFrame(). At this point all processes
downstream of the APP (all CULL and ISECT processes) traverse
the update list generated by the APP process and update their
pfUpdatables. Each update consists of copying a portion of a pfUp-
datable in the upstream pfBuffer into the corresponding pfUpdat-
able in the downstream pfBuffer. For the pfDCS example
mentioned above, we would copy only the transformation matrix

between pfDCS copies. At the end of the update period, all pfUp-
datables in the downstream pfBuffer are identical to those in the
upstream pfBuffer.

During the update period, the upstream process (the APP) must be
blocked so that it cannot modify updatables in its buffer and possi-
bly corrupt the update data exchange; we must ensure data exclu-
sion. This update period is illustrated in Figure 6 as the shaded
portions of the CULL and ISECT processes.

Figure 8 illustrates an APP feeding two pipelines: one intersection
and one rendering pipeline. In this case there are three pfBuffers -
one each for the APP, ISECT, and CULL processes.

Figure 8. Interprocess Communication for Processing Pipelines
Using Update Lists and Display Lists

Pipeline Frame Extension

The APP pfBuffer maintains an update list for each processing
pipeline and appends all updates to all update lists. If a downstream
pipeline is not ready to accept the update list when pfFrame() is
called because it has frame-extended, the APP does not block but
continues with the next frame. In this case, the update list corre-
sponding to the frame-extended pipeline is not reset so that further
updates are appended to the list and previous updates are not lost;
they will be consumed later when the pipeline is ready. If the APP
is feeding multiple pipelines, all ready pipelines update themselves
in parallel.

Cull/Draw Communication

Note however that the DRAW process in Figure 8 does not have a
pfBuffer and uses a different communication mechanism with the
upstream CULL process. This is not precluded by the pfBuffer/
pfUpdatable mechanism but was chosen to reduce memory
requirements and performance degradation. When the CULL and
DRAW stages are in separate processes, the CULL process
traverses the scene graph and renders visible geometry into a libpr
display list (See pfDispList in Section 2.2.2). This is very impor-
tant because it off-loads scene graph traversal overhead from the
time-critical DRAW process. However, this means that there is no
need for a scene graph in the DRAW process. Also, maintaining a
pfBuffer in the DRAW process would require an update period that
would steal precious drawing time.

As illustrated in Figure 8, the CULL and DRAW communicate via
three display lists. In a perfectly balanced pipeline, only two dis-
play lists would be required — the classic double-buffered configu-
ration. However, both CULL and DRAW processes may frame-
extend. As a result, a third display list is required to keep the non-
extending process from waiting until the extending process is fin-
ished with its display list.

pfDelete - Object Deletion

Deletion of a hierarchical scene or subgraph that supports instanc-
ing can be tricky. Care must be taken to ensure that an object’s
memory is not freed until all references to it are removed. To do
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otherwise would open the possibility of corrupted memory and
ungraceful program cessation. IRIS Performer employs a reference
counting scheme to avoid such results.

Whenever an “attachment” is made between two objects, the refer-
ence count of the “attachee” is incremented by one. Reference
count modifications are locked to ensure data exclusion between
multiple processes. pfDelete() deletes objects whose reference
counts are non-positive and follows all reference chains, deleting
objects until it reaches one whose reference count is greater than
zero. The reference count of a pfNode is simply the number of its
parents. User-allocated memory such as the attribute arrays of
pfGeoSets (See Section 2.1) are reference-counted if the memory
is allocated by libpr routines since they maintain internal reference
counts.

Multiprocessed Delete

Unfortunately, multiprocessing adds another dimension to refer-
ence counting. Non-multibuffered objects such as pfGeoSets are
“referenced” by the processes which are accessing them. For
example, the ISECT and DRAW processes may be concurrently
intersecting with, and rendering a given pfGeoSet. Consequently, a
simple reference counting scheme is inadequate.

One possibility would be for processes to reference/dereference
objects as they need them. This is unacceptable from a perfor-
mance standpoint since locks are not free and the number of
objects needing locking is large. IRIS Performer’s solution takes
advantage of its pipelined configuration. An object is not immedi-
ately deleted; rather, a frame-stamped deletion request is added to a
special list. Meanwhile, the back ends of all pipelines (ISECT and
DRAW processes) record the frame count of their most-recently-
completed frame. Then when pfFrame() is called, each deletion
request on the list is examined. If its frame stamp is less than the
frame counts of all pipelines, the deletion request is safely carried
out since all pipelines have flushed themselves of the object.

3.3 Achieving Real-Time

3.3.1 Achieving Real-time Synchronization

Real-time behavior is often required of graphics applications, both
for human and hardware (sensor) perception. Real-time in this con-
text implies more than a reasonable frame rate. Equally important
is a fixed frame rate which ensures a solid, consistent update rate
without glitches or hiccups. In fact, many visual simulation appli-
cations sacrifice peak frame rates for a fixed frame rate.

The first step in achieving real-time behavior is accessing a timer
that runs at wall-clock time, i.e., it runs at the same rate as the
clock on your office wall. Since the graphics update rate is
restricted to integral fractions of the video refresh rate, the video
clock provides a natural real-time clock for synchronizing a graph-
ics application.

pfVClockSync - Synchronizing to Video Retrace

The kernel maintains a video retrace counter and also provides a
synchronizing feature that is accessed through the pfVClockSync()
call. This routine takes two arguments, [interval, offset] that
together specify the frame synchronization boundary. Put arithmet-
ically, pfVClockSync() puts the calling process to sleep until the
video retrace count modulo the interval equals the offset. For
example, if pfVClockSync() is called with arguments of [3, 0]
when the current video clock is 658, the process will sleep until the
video clock is 660.

An application specifies its desired fixed frame rate and synchro-
nizes the APP process to that rate by invoking pfSync() which calls
pfVClockSync() to sleep until the next frame boundary. Note that
pfSync() alone does not guarantee a fixed frame rate. First, the
APP cannot take longer than a frame time because it would then

synchronize to an integral multiple of the desired field rate such as
30Hz dropping to 15 Hz or even 10Hz. Second, the processing
pipelines must be able to complete their work within a frame time
as is discussed in more detail below.

3.3.2 Achieving A Fixed-Frame Rate

Once synchronization to wall-clock time is achieved, the next step
in attaining real-time behavior is to ensure a fixed frame rate. Many
things can compromise a fixed frame rate on a multiuser worksta-
tion:

1) Graphics context switching
2) Process context switching
3) Process frame extension (e.g. APP, CULL extensions)
4) Graphics pipeline frame extension (DRAW extension)

1) can be remedied by ensuring that only the application of interest
is running: no clocks or performance meters allowed. 2) may be
solved by running the application with super-user privileges and
using OS commands to isolate and restrict processors. 3) is more
difficult to solve and requires rearranging database hierarchies, dis-
abling of modes, and further multiprocessing to unload the bur-
dened process(es). 4) is often the most prevalent enemy to a fixed
frame rate and it is that which we address in this section.

Graphics pipelines have hard limits on the amount of geometry
they can process in a given time. Ideally, the throughput of a graph-
ics pipeline is always enough to render the desired amount of scene
geometry in the desired amount of time. In this case a fixed frame
rate is easily achieved. However, most scenes have varying geo-
metric complexities due to varying scene density and/or moving
models which may come into view. If a frame rate is chosen such
that the view of highest complexity may be rendered within a
frame time, then the expensive graphics hardware will be under-
utilized for less complex scenes. On the other hand, if a higher
frame rate is chosen, complex scenes will take longer to render
than the allowed frame time and distracting visual anomalies, tech-
nically referred to as “hiccups”, will occur. Consequently, many
applications choose a frame rate that can handle the average scene
and rely on other mechanisms to artificially reduce more complex
scenes so that they can be rendered within a frame time.

Figure 9. Stress Feedback Filtering

Stress management is the technique used to reduce scene complex-
ity that relies on the level-of-detail mechanism described in
Section 3.1.4. When the system is in stress, LODs are artificially
reduced; coarser than normal models are chosen, so that overall
graphics load is reduced. Stress is based on load, the fraction of a
frame time taken to render a frame, and increases as load exceeds a
user-specified threshold. The load for frame N is used in conjunc-
tion with user-specified parameters to define the stress value for
frame N+1, thus defining a feedback network. As discussed in [3],
this method works reasonably well for relatively constant scene
densities but suffers because the stress is always a frame late and
can exhibit oscillatory behavior. As illustrated in Figure 9, a hys-
teresis band can reduce stress oscillations but a more sophisticated
stress management technique such as that described in [3] has bet-
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ter characteristics.

3.3.3 Overload Management

While stress management seeks to fit DRAW processing into a
frame time, overload management dictates what happens when
stress management has failed and the DRAW exceeds a frame time
— it has frame extended. The application may choose differing
overload behavior by selecting the phase of the DRAW process.
Phase dictates the type of synchronization used by the DRAW pro-
cess: if the phase is locked, the DRAW process is guaranteed to
begin only on a frame boundary. Thus if the DRAW takes just
slightly longer than a frame time, the aggregate frame rate will
drop in half. If the phase is floating, a frame-extended DRAW will
start to draw again as soon as it can (at the next vertical retrace)
and try to “catch up”, relying on stress management to reduce
scene complexity. In practice, floating phase is used more often
than locked phase since it does not sacrifice an entire frame time if
the DRAW takes just slightly longer than a frame. However,
locked phase offers deterministic latencies and can produce a
steadier frame rate.

4 Run-Time Profiling

Without proper profiling and diagnostic utilities, it is difficult to
ascertain the performance of a given application. “Is it running as
fast as it can go?” is the most pertinent question. To answer, the
developer must be able to answer other questions concerning
potential bottleneck areas:

• CPU processing, e.g., is the APP taking longer than the
DRAW?

• CPU to graphics transfer, e.g., is the bus saturated or is the
DRAW suffering from overhead due to small pfGeoSets?

• Geometry transform, e.g., are excessive mode changes thrash-
ing the Geometry Engines? Are my triangle strips too short?

• Geometry fill, e.g., is the pixel depth complexity too high?

To further complicate matters, bottlenecks change and shift as the
visual scene changes, making them moving targets for the tuner.

To aid application and database tuning, IRIS Performer provides
extensive profiling information that is collected at run-time and
may be graphically displayed for easy comprehension. Run-time
collection provides a display of up-to-date information as you fly
through the database, facilitating an interactive and time-saving
approach to tuning. Figure 10 is the statistics display for the scene
in Figure 14 and shows both process and database statistics mea-
surements that are examined in the following sections.

4.1 Process Statistics
Due to the concurrent, time-dependent nature of multiprocessing, it
is often difficult to understand the behavior of a multiprocessed
application. IRIS Performer records the times spent by each pro-
cessing stage and displays the results in a timing diagram which
quickly exposes any bottlenecks. In Figure 10, the upper portion of
the display defines a timing diagram analogous to those in
Figure 5. Vertical lines indicate vertical retrace and frame bound-
aries. Horizontal lines indicate the processing times for different
stages and their color indicates the stage’s frame count.

Example Analysis

From Figure 10 we see that the application is configured as 4 pro-
cesses, one each for ISECT, APP, CULL and DRAW, which all run
in parallel. Additionally, the processing times for CULL and
DRAW are roughly equivalent and occupy most of a frame time
indicating that 30Hz is a reasonable frame rate and load balancing
is good. (Note that the time required to draw the statistics display
itself pushes the draw time over 1/30 sec.) However, the APP and

ISECT stages take little time so we could free a CPU by combining
these two stages into a single process.

Figure 10. Display of Process and Database Statistics

4.2 Database Statistics
Although the toolkit strives to achieve maximum performance with
a given database, a significant amount of performance gain may
lurk within the database itself. For example, a scene graph without
hierarchy will suffer from poor intersection and culling perfor-
mance, both of which rely on hierarchical bounding volumes to
accelerate processing. Also, a pfGeoSet which contains few trian-
gles will suffer from overhead in pfDrawGSet(). These problems
and more can be easily inferred from the statistics display of
Figure 10.

Example Analysis

The ratios of primitives to pfGeoState (12.7) and pfGeoSets to
pfGeoState (2.3) are reasonably high, indicating that pfGeoSet and
pfGeoState overhead is not likely a problem. However, the average
number of triangles per strip is low at 3.1 which indicates that the
hardware geometry processing stage may be a bottleneck. This
fragmentation of the database is likely due to the large number of
textures (81) since a strip cannot span multiple textures.

Figure 11. Profiling Display Depicting Pixel Depth Complexity

Although Figure 10 reveals much about the database, it says noth-
ing about the pixel fill bottleneck which is the most important one
for the majority of full-screen applications. The toolkit provides a
special mode for visualizing pixel depth complexity, the number of
times each pixel is touched. Figure 11 is a false-color visualization
of the depth complexity for the scene of Figure 14. Depth com-
plexities of up to 7 are represented by colors of increasing bright-
ness (some areas have complexities > 7 and wrap). Additionally,
the total number of pixels rendered and the average depth com-



plexity is displayed. All of these statistics are computed and dis-
played at a run-time, albeit at a reduced frame rate.

4.3 Future Work
Our design approach has been to focus on the performance and
structure of the toolkit’s rendering and multiprocessing core.
Because of this, we believe the toolkit provides a good foundation
for additional functionality.

Database Paging

Many applications use databases which are too large to fit in main
RAM memory or even a 32-bit virtual address space so portions of
the database must reside on disk. The avoidance of distracting
pauses when loading from disk requires a quick-loading database
format as well as run-time logic which anticipates the viewpoint so
the toolkit can begin paging database regions before they come
into view.

Traversals

While the current 3-process rendering pipeline (APP, CULL,
DRAW) is adequate for most applications, some require extensive
application and cull processing. The addition of an APP traversal
would allow user callbacks to be invoked each frame to control
object behavior or trigger activity outside the toolkit. And cur-
rently, each pipeline’s CULL traversal is restricted to a single pro-
cess. Implementing parallelized traversals for both APP and
CULL, where multiple processes concurrently carry out the same
traversal, would improve throughput for both. The strict top-down
inheritance of state in the scene graph eases this task since multiple
processes can traverse individual subgraphs without requiring state
information from other subgraphs. However, load balancing issues
and allowing APP processing to be conditional on the results of
visibility and level-of-detail computations are problematic since
these computations are currently made after APP processing.

Collision Detection

While intersecting with line segments is useful for terrain follow-
ing and simple collisions, collisions between objects of substan-
tially different sizes and more detailed interference checking can
require very large numbers of segments for adequate spatial cover-
age. Graph-to-graph intersections of volumes, geometry, and line
segments represented by nodes within the scene graph would
greatly benefit applications such as MCAD.

5 Conclusions

In this paper, we have presented a toolkit with a novel architecture
for building high performance, multiprocessed graphics applica-
tions. We have described how the toolkit extracts maximal perfor-
mance from mult iprocessor,  immediate-mode graphics
workstations primarily through:

• geometric data structures designed for efficient immediate-
mode data transfer

• reduction of graphics mode changes

• pipelined multiprocessing for parallel scene graph traversal

• efficient host-based view frustum culling

• stress modified level-of-detail switching

• run-time database and process statistics for tuning

By emphasizing immediate-mode performance without caching,
the toolkit lends itself to techniques such as character animation
and morphing which require intensive vertex-level modifications.

In the course of writing the toolkit, we developed a number of use-
ful techniques for efficient task and data synchronization in a pipe-
lined, multiprocessing system including a configurable software
pipeline with update-driven multibuffering.

Without these performance optimizations, expensive hardware can
be substantially underutilized. Since the optimizations described in
this paper are non-trivial to implement, providing this functionality
in a layered toolkit makes it substantially easier for application and
other toolkit developers to reap significant performance benefits.
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Figure 12. Real-Time Shadows Using Multipass Rendering

Figure 13. Precomputed and Dynamic Geometry Animations

Figure 14. Visual Simulation Scene

Figure 15. Racing Simulator with Collision Detection

Figure 16. Video Special Effects Using Draw Callbacks

Figure 17. Fly Through with Virtual Reality Interface


