
The Out Of Box Experience:

Lessons Learned Creating Compelling VRML 2.0 Content

Sam Chen, Rob Myers, Rick Pasetto

Silicon Graphics, Inc.

Figure 1. TheOut Of Box Experience Cowtyafd.

Abstract
VRML 2.0 offers a new medium for producing compelling interac-
tive content. The best results, however, require extensive attention
to detail, and a thorough understanding of the constraints of the
delivery mechanism. Creation of a large-scale, consumer-grade
hypermedia environment served as our motivation to discover
what this new medium can really deliver. In this paper, we present
the challenges and pitfalls faced, decisions made, special tech-
niques used, and the lessons learned during a professional VRML
production pipeline. Both world builders and tool makers can ben-
efit tlom the technical and creative issues identified here. We cover
the entire production process: storyboarding, scene composition,
modeling, illumination, navigation issues, embedded user inter-
face, and effective use of sound and animation. Our conclusions
show that performance and interactivity must be the number one
consideration throughout this proms.

CR Categories and Subject Descriptors: 1.3.7[ComputerGraph-
ics]: Three-Dimensional Graphics and Realism - Virtual Reality;
1.3.6 [Computer Graphics]: Methodology and Techniques - Inter-
action techniques.

Additional Keywords: virtualworlds, virtual environments, navi-
gation techniques, three-dimensionaf user interface, VRML

20] 1 N. Shoreline Blvd., Mountain View,CA 94043
sambo@sgi.com

Permission10makedigikdhrd copies of all or parl of (his material for
pemomd or A..srwm llsc is gmnkd wilhout lee provided lhal the copies

.am mrl made or distribukd l-orprolil or commercial advantage, the copy-
right nolice. the tide ofkc publica[icm and its dak appear, and notice is
given thal copyright is by permission ofthe ACM, [w. To copy otherwise,
10 rqruhlish. to post WIswvcrs w to redis[rihute to lists. tcquires specific
pemlissioi] ;mdkw Ite
VRML 97. Mon[crey CA (ISA
Copyright 1997 ACh4 0-89791 -tW6-.x/97/O2 .$3.50

1 INTRODUCTION
Since its creation in October ’94, VRML (Vh-tualReality Mcrdel-
ing Language) [2] remained a niche technology with grass roots
origins and little widespread appeal. Lacking experience and high-
level authoring tools, world builders produced worlds that were
static and simplistic at best. With adoption of the VRML 2.0
Moving Worlds Specification [1], a richer range of possibilities
now awaits the exploration of world builders and tool makers.
However, most of the attention so far has been paid to the technolo-
gy itselfi there has been little focus on the creative application of
VRML.

In October ’96, Silicon Graphics launched the 02, its new desktop
multimedia workstation. An engaging Out Of Box Experience was
incorporated into the system, to introduce each user to the capabil-
ities of their new machine. To defiver a media-rich presentation
central to 02’s packaging, dcrcumentation, demonstmtion, and user
interface, the Out Of Box Experience (or “fX)BE”) used HTML,
MPEG, other standard digital media formats, and JavaScript with
VRML 2.0, with the latter being the integration cornerstone
(Fig. 1). This was an opportunity to demonstrate 3D as a viable
user interface technology, and was the first application of VRML
in such a large scale before a mainstream commercial audience.

The Out Of Box Experience was tuned specifically for perfor-
mance using CosmoPlayer 1.0 on the 02 workstation. VRML 2.0
content was authored using CosmoWorlds 1.0 on Silicon Graphics
workstations. While we believe all of the considerations presented
below are of cross-platform interest, some of the issues detailed
are specific to these configurations.

2 STORYBOARDING AND DESIGN

The 00BE storyboarding and design process started off fike a typ-
ical multimedia production project. The design team, a colbibcrra-
tion between Construct Internet Design and Silicon Graphics,
included an Artistic Direetor, a Producer, a Technicaf Producer,
Writers, and VRML Architects. We launched a very informal pro-
cess, where almost any idea was fair game. This quickly changed,
as we reafized what our constraints were and how difficult a com-
plete implementation of our ambitions would he. The teehnical and
practical implications of creating a large-scale VRML 2.0 experi-
ence had yet to be revealed. At this point, the VRML 2.0 Moving
Worlds draft specification was still undergoing major changes
every week, and VRML 2.0 authoring tools were practically non-
existent. After deciding to defer on advanced extensions for multi-
user environments, chat rooms, avatars, and the like, we namowed
our scope down to exploiting the basic features of Moving Worlds
and applying them effectively.

2.1 Designing for Responsiveness
Our biggest challenge was to design a large-scale world that both
tells a m~ngful story and maintains responsive user interactiv-
ity. Optimization should not be considered as a separate stage of
the production; it must be a continuous process throughout the
entirety of the project pipeline. Constant mindfulness about how to

83

achieve and sustain interactive graphics performance is a funda-
mental part of VRML world building.

In our quest for a highly interactive OOBE, we looked to the game
industry for ideas and tricks. We learned to use simple geometry
with texture maps in place of complex geometry. We studied the
way CD-ROM games manage their asset complexity versus load
time. We examined how to get the most richness with very little
resources. These techniques have direct applications to VRML.

Whh these system constraints in mind, we storyboarded our worlds
by defining an appropriate treatment for each functional domain.
Design inspirations were drawn from theme parks, museums, and
art galleries. llrese studies were refined into a core set of linked
spaces: the Entryspace, Courtyard, Innovations Gallery, System
Tour, and Jung& island. To manage scene complexity and load
time, each of these functional areas was encapsulated within its
own separate VRML file. Whh this design, the user moves from
world to world through hyperlinks that use the VRML Anchor
mechanism.

2.2 Designing for Serendipity
Inspired by the free flow of ideas and relationships that character-
ized our early design process, we felt it was important to allow for
serendipity in the user’s browsing process as well. Whether it’s
giving players the freedom to create personalized rhythm combi-
nations in the 3D drum machine CyberGourrk, or the ability to
tweak their own illumination effects in the lighting demo Boink,
the user participates in the synthesis of his or her own experience
to the degree that he or she invests in it. In other words, the user is
rewarded for having an adventurous spirit.

Part of the overhead in creating for VRML is the necessity for
“designing in the round.” While traditional 2D media need only be
rendered from one best view, the 3D designer must consider how
his or her content looks from all angles. Thus, the user is rewarded
for his or her exploration of the space.

2.3 Knowing Your Audience
It is crucial to know who your audience is and, if possible, on what
platforms they’ll be viewing your content. 00BE targets first-time
and novice 3D users. Their experience needed to be friendly, easy
to navigate, and not too overwhelming. The potential pitfall was
letting the architectural complexity overrule the functionality of
the space. The moment the user feels lost or out of control, the
design has failed.

Knowing that our content is to be viewed on the 02 platform, at
least initially, was a luxury. This granted us significant freedom to
push our scene complexity to the limit within well-recognized
boundaries. Witbout such a well-defined delivery goal up front,
world builders must still decide on the minimum target platform
required to meet their audience and keep the design strictly within
those limitations.

3 MODELING AND GEOMETRY
A single incontestable lesson can be clearly engraved: at all stages,
the design ambition must be driven by the basics of the perfor-
mance budget. Balancing artistic license and high performance
posed the greatest challenge to us, both technically and creatively.

3.1 The Complexity Budget
When planning the actual geometry, we first set a budget for how
many polygons that we could have in the scene at a time. We
wanted a frame rate of at least 10 frames per second on the 02,
which worked out to around 4000 triangles (in any particular view,
not total). As we progressed, we realized how this constraint really
taxed our technical and creative skills; we knew that every triangle
counted, and we made sure that no geometry was wasted.

3.2 Modeling and Conversion
Faced with the lack of a native VRML 2.O-baaed modeler at the
start of our project, we had to rely on existing 3D modelers and file
translators to statt creating our worlds. The modelers used in the
creation of 00BE included Nichiman N-Geometry, Radiance
Ez3d, Alias 3Design, WebSpace Author 1.0 (VRML 1.0), and
CosmoWorlds 1.0 (VRML 2.0). Using existing modelers turned
out to be both a blessing and a curse. As is typically the case in 3D
production environments, we found that each modeler had its own
strong points. However, since some of these modelers were
designed for realism, they would create very high polygon count
models, which we would then have to reduceby hand to fit within
our low polygon budget. Additionrdly, since each modeler had its
own file format, we had to rely on the file converters to do their job
right. Unfortunately, sometimes a converter would introduce
unwanted redundancy, expand geometry, or just create illegal or
bad VRML.

3.3 Structuring Models to Improve
Performance
There are things to watch out for during the modeling phase other
than pure polygon count. For 00BE, we had to consider the way
the VRML 2.0 scene graph was constructed and its depth, the size
of textures and the number of times they were used, the spatial
relationship between objects, as well as other seemingly trivial but
actually crucial factors.

In general, any work you can do up front in the organization of
your scene graph cart help rendering performance. For instance,
with VRML 2.0’s changes to the original VRML 1.0’s attribute
inheritance model, we noticed that scenes containing a lot of
IndexedFaceSets with the same Appearance were getting slower
performance on our target browser. We found that stuffing these
geometries into a single IndexedFaceSet, with a single Appearance
node, sped things up dramatically. We used CosmoWorlds’ “PEP
merging” tool in order to do this.

Another performance key when using IndexedFaceSets is to
employ “backface culling” whenever possible. Appropriately
applied to a model that forms a closed, solid hull, backface culling
can effectively cut its rendering triangle count in half.

3.4 Managing Scene Complexity
The distribution of the complexity budget can be orchestrated
directly, in response to the user’s location, using Level Of Detail
(LOD) nodes and ProximitySensors. We made sure that LOD
switching was very gradual, to avoid disturbing “pops” as the user
approached the object. This meant that there needed to be a lot of
room between objects. For this reason, LODS were used only in
the wide open spaces of the Courtyard and for the planets in
CyberAstmrwmy and not in the spaces with more intimate settings.

ProximitySensors can also help in geometry management, where
you can use them to “turn off’ geometry when the viewer is not

84

near it. For instance, you can turn off all of the geometry inside a
building when the viewer is outside it. An LOD would not work in
this case because you may be close to the geometry but on the
other side of a wall.

3.5 Quick Tips for Modeling
High-Performance Geometry
. Determine your polygon budget and stick to it !
. Beware of spline-based modelers; they can produce high

polygon count models.
. Don’t rely on file conversion to give you well-formed VRML

2.0.
. Try using Textures to stand in for more complex geometry.
. Merge static geometry sharing common appearance attributes

for faster rendering.
. Use backface culling whenever appropriate (IndexedFac-

eSet.solid = TRUE).
. Use LODS, ProximitySensors, and other VRML 2.0 con-

structs to manage scene complexity.

Other performance tuning tips:

. Remove Cylinder ends and Cone bottoms when they aren’t
visible.

. Use the Background node instead of constructing your own
background geometry.

. Employ transparent objects sparingly.

4 LAYOUT
Layout is the process of scene composition, where objects are put
into their proper place in the 3D scene. For 00BE, we used
Cosmo Worlds 1.0 to compose our scenes.

4.1 Cull Volumes
The biggest perforrnaru pitfalt during the layout stage is the
improper spatial organization of the scene. Most browsers rely on
render culling (performed at the Group and Transform nodes) to
maximize rendering performance Casuatly grouping two spatially
separated objects under the same Group or Transform node
reduces the browser’s ability to cull needless rendering. Both
objeds will always be subject to rendering traversal whenever
their connecting bounding volume falls within the viewing frus-
tum, resulting in wasted overhead. For instance, it would be waste-
ful to group a chair in one room with other furniture scattered
throughout other rooms, unless this structure is needed to produce
some meartingfid effed. Heeding this consideration, we made sure
to keep spatial clusters such as the Innovation Gallery and Jungle
Mad each within their own containing Group nodes. Using
graphicat authoring tools to visually inspect cull volume bound-
ing-boxes and the scene graph containership hierarchy, we ensured
that our browser would perform the most effective render culling.

There is another side to this concept of grooming compact cull vol-
umes. By spacing top-level objects far away from each other, a
world can be structured to let the browser readily cull away objects
that aren’t in view. This, of course, allows much more complexity
to be dedicated to each localized cluster, with the knowledge that
this complexity doesn’t have to be shared simultaneously with
other clusters around the world. This is a well-known trick in the
Visurd Simulation industry.

In a related consideration, a sprawling model (such as a
continuously snaking wall, roadway, or the ground terrain itself)
may be a good candidate for spatial subdivision. If the user most
frequently experiences only a small part of an object’s whole
geometry, performance may benefit from more efficient culling of
its unseen portions. To do so, divide one monolithic, sprawling
IndexedFaceSet into a few spatially compact chunks. Now, each of
these independent IndexedFaceSets can be trivially culled out.
This remedy is a balancing act, however, since care must be taken
not to introduce excessive overhead with a gratuitous number of
intermediate objects (see “Structuring Models to Improve
Performance”).

4.2 Multiple Instantiation
Another task that is important during the layout stage is instancing.
The VRML specification provides the DEF/USE mechanism for
this purpose. In production, we found the benefit of instancing to
be twofold. Because an instance reuses defined geometry, it is con-
venient at authoring time; changes made to the master node auto-
matically update all of its clones. More importantly, instancing
decreases file size, resulting in faster downloads and less memory
usage at rurttime. For nodes that require file system or net access
(specifically nodes with the url field), instancing reduces download
time significantly. In Jungle Island with its many instances of the
same palm tree texture and straw hut inlines, instancing effectively
alleviates the browser from having to fetch the same palm tree and
hut multiple times.

4.3 Quick Tips for High-Performance
Layout
. Avoid grouping spatially dispersed objects together, to

achievemore effective culling.
. When possible, position top level objects far apart, to let ren-

der culling do its job.
. Spatially ~ubdivide monolithic, sprawling objects, if typically

viewed a little at a time.
. Use instancing, not copying, to reproduce common geomehy

throughout the scene,

5 NAVIGATION AND INTERFACE
In keeping with its role as packaging, demonstration, and docu-
mentation of its host machine, the Out Of Box Experience called
for a media-rich, multifunctional user interface.

~gure 2. The generaluser-interfaceof 00BE WindowA containspri-
maryVRML contentthat is thecentratfocusof user’sexpaience. Window
B contains secondaryHTML, MPJ?G,and VRML content that can be
accessedthroughwindowsC and A. WhrdowD is the 2D map used for
navigation and orientation,

85

5.1 Full-Screen User Interface disorienting jump-cut. Rather than losing their users in this way,

Using Netscape Navigator and its frame technology, we were able
to design an efficient and intuitive full-screen user interface for
00BE (Fig. 2). We divided the screen into 4 primary areas, with

each frame hosting an appropriate phrgin for the specific MIME
types employed. The main window embeds the CosmoPlayer plug-
in, presenting an ongoing, interactive, VRML-based experience
on the center stage. The upper left frame alternates between
HTML, JPEG images, MPEG movies, and secondary VRML
insets, depending upon the supporting material requested. A strip
of three small frames presents a context-sensitive table of contents,
used to launch related assets. The upper-right frame remains dedi-
cated to an overview “you are here” map, where users carI click at
any time to jump to other parts of the experience. We found that
this scheme offered the flexibility and richness required to unify
our wildly heterogeneous content, while allowing the user to
remain focused on the immersive experience running center-
screen.

It can be rather hard to get around in Cyberspace. We have wit-
nessed many instances where users fumble with 3D trackballs and
joysticks, quickly losing patience with not being able to get where
they wish to go. It was apparent that 00BE needed an embedded
navigational strategy transparent enough for 3D initiates, but
which didn’t limit more adventurous explorers from heading out
on their own. We hosted a parallel suite of navigational paradigms
to support a range of wayfinding styles.

we heartily recommend that authors construct their own continu-
ous viewpoint animations, if needed to conduct their guided tours.)

In the 00BE Ermyspace, we specify the NONE viewer type,
removing discretionary driving controls altogether, to rely solely
on the tour icons for all navigation.

5.3 Named Viewpoint Navigation
Unlike the signpost navigation paradigm, which progresses step by
step to each “must-see” locale, named viewpoints allow the user to
see more of the world. This method was implemented by locating a
named Viewpoint node at each of the selected “scenic vista” points
throughout the world, which in most worlds in 00BE is a superset
of the signpost locations. A user can visit any named viewpoint, at
any time, as desired. For instance, the CosmoPlayer interface
offers its users handy access to named viewpoints via its popup
menu, the dashboard’s viewpoint selection fixture, or PgUp/PgDn
on the keyboard. The process of incorporating these viewpoints
forced us to test our worlds for usability, encouraged us to seek out
the prime “sweet spots: and ensured our users easy access to these
photogenic locations.

5.4 Freeform Navigation
For the adventurous, 00BE offers the CosmoPlayer dashboard,
with complete freedom to roam and explore through our worlds.
With the addition of collision detection in Moving Worlds, roam-
ing is now fun and most of all, intuitive. The dashboard supports

5.2 Signpost Navigation WALK, EXAMINER, and FLY viewers, allowing the inquisitive

Most novices seem to prefer a closely-knit guided tour throughout
user to toggle between these “vehicles” and enjoy the infinite

the 3D experience, relying on signposts, maps, and navigational
range of perspectives and navigational possibilities that 3D offers.
Plenty of “Easter Egg” surprises were authored throughout 00BE,

icons to keep them informed about where they are now, and what to encourage and reward this type of adventurous spirit.
their next step should be. We devised a pair of navigational icons

Em
PROTO WalkingMan [. . .] (

. . .
Anchor {

. . . geometry for back arrow . . .
url IS backURL

}
Anchor {

. . . geometry for to arrow . . .
url IS toURL

}
. . .

}
DEF FOO WalkingMan {

backURL “#ENTRANCE”
touRL ,,#E’y~17,!

)
Figure 3, (Left)“WalkingMan”navigationicon.(Right)“NavLite”navi-
gationicon.Both are implementedusingthe PROTOand Anchornodes.
to address this need the distinctive ‘WalkingMan” and its abbrevi-
ated cousin, “NavLite” (Fig. 3). The navigational icons are quite
conspicuous and easy to click on. Automated viewpoint animation
is triggered when the user clicks on one of the atTows in the icon,
bringing the user to the next (or previous) viewpoint in the tour
sequence, as specified by the Anchors in the VRML file. (NOTE:
00BE relies on CosmoPlayer’s built-in animate-to-viewpoint fea-
ture to deliver the user smoothly to their next destination. This fea-
ture may not be available in some browsers, resulting in a

5.5 The Avatar’s Perspective
Even after handing the dashboard’s free-form controls over to their
user, the author maintains a lot of responsibility for the quality of
the trip. The Navigatiortlnfo’s avatarSize and speed fields exert
significant influence on the user’s navigational experience. We
found that varying the avatarSize field by a few units produces a
vastly different look for the same world, significantly affecting the
apparent ease of navigation. In the 00BE Courtyard, varying the
avatarSize value determined whether the river, the shoreline, and
other important landmarks were visible or not. We believe that the
ability to see more landmark features helps users orient themselves
contextually and navigate cognitively. At the same time, the speed
field must be selected carefully to work well with a given avatar-
Size. For instance, we found that as the camera moved closer to a
texture-mapped terrain, its apparent speed increased. This worked
to our advantage in Jungle Island, where we felt the amount of
time it took to travel from one end of the island to the other was
too short. We were able to prolong the experience by lowering the
speed while specifying a relatively small avatarSize.

5.6 Architecture and Lighting as
Navigational Aids
The spatial architecture of the scene and its lighting serve a tradi-
tional role as content by conveying story, place, and mood. How-
ever, in the brave new VRML world, architecture and lighting can
rdso be applied as potent navigational aids (Fig. 4). 00BEs
Entryspuce establishes a golden spiral form that descends and
expands to lead the traveler downward. Animating lights dim and
brighten to refocus the user’s attention on the next station along the

86

navigational path. These elements work together to produce a
comfortable environment that pulls the user along its intended
course. The lights are triggered by Proximity Sensors, and ani-
mated using ScalarInterpolators attached to the light’s intensity
field. Animating lights are also used in the Industry Gallery for
similar effect.

N&V;;l-HRT_ NA+fLl::T_ NAVLIGHT_ NAVLIGHT
ENGINE

zdld .IAsl ~+2

Pykll&J TimeSensor ealar-
Interpolstor

Spotli ht

start~m set_fraetion intensity

enterTtme traction value_
changed than

We found that embedding the experimental lighting controls
directly within the 3D playground was critical to the success of
Boink. By allowing the user to remain focused within the perfor-
mance setting, the user interaction stays in context without break-
ing metaphor. The result is much more engaging play, and a more
memorable learning experience.

Similarly, the 3D texture mapping widget in RuptorBuilder was
built to support in-scene manipulation. Using only TouchSensors
rmd Scripts, the raptor texture map is wired to respond directly to
mouse actions, the same way it would in a 2D texture map editor.

Trigger l%nar Engine Target

F@W 4. Using lighting as a navigational tool: routingdiagramshowing
how this lighting is implemented.

5.7 3D Widgets
With the addition of interactivity and sensors in Moving Worlds,
entirely self-contained 3D widgets can be implemented in VRML.
The construction of an in-scene widget typically involves an origi-
nating trigger, often routed first to a conditional logic script, then
to an animation engine of some sort, and finally to its targeted
appearance or transform node field. In the Boink space, the light-
ing widgets are constructed in this way (Fig. 5). Fiim 7. 3D texture map editor in RuptorBuilder world. These widgets

performscafing,translation,andselectionof texturemaps.

Breaking through the widget mentality, it can be exciting to estab-
lish the object itself as its own intrinsic user interface. In Cyber-
Gourds, the user controls what is heard by interacting with the
gourds themselves. The head and stalk are clicked to stop and start
a rhythm loop, while the baby buds are used to change the rhythm
samples. Likewise, in Raptorlludder, clicking on the individual
bones and dragging on the various body parts triggers a specific
behavior. We feel this approach is key to maintaining an immer-
sive experience throughout the space, with the added benefit of
extending the user interface metaphor into the third dimension.

Figure 5. 3Dtracfdightwidgetsin Boinkworld.Eachlightingfixturecon-
tainsthreeembeddedVRML sensors for its translation, rotation, and color
seleetion.

Trigger Target

LIGHT_SWITCH_ Ll:~GT:WtTCH_
SENSOR

Ttigger Targat

LIGHT_SWITCH A

Trigger Lo@c Target

Figure 6:.Routingdiagramshowingeventflow for the threetypesof
lightingwidgets: (Top Left) Translation; (Top Right) Rotation; (Bottom)
Color-Selection.

PROTOClickMe [. . .] {

- “hchor {
. . . clickable geometry . . .
url IS url
parameter IS parameter

)
. . .

}

DEF FOO ClickMe {
url “http: // foo. bar. comn
parameter “target =topFrame”

}

Figure 8. The ClickMe widgetis implementedusing a PROTOwith an
embeddedAnchornode.

5.8 “ClickMe”s
In 00BE, it is not always obvious which objects are triggers for
behaviors and animations. This was a conscious design decision,
to encourage users to explore and click on anything they come
across, to maintain the element of surprise and delight. However,
certain elements were important enough to encourage even the
most recafcitrsnt users to click them. We tagged these areas with

87

an overt “ClickMe” icon, purposely designed to be conspicuous
and inviting to click on (Fig. 8). We found this blunt instrument to
bean effective technique in places where the success of the experi-
ence hinged upon establishing unambiguous communication with
the user.

6 ANIMATION
One of the most significant improvements over VRML 1.0 is the
support for animation and behavior in Moving Worlds. In a nut-
shell, animations in VRML usually begin with a trigger that sets
off a timer. This timer, in turn, drives an engine that modifies field
values defining certain characteristics of the scene. Exceptions and
embellishments abound, but they are all characterized by this basic
pipeline.

6.1 Animation Triggers
In 00BE, our animations are usually triggered in one of three
ways:

● ~ When the user crosses into a region of space, spec-
ified with a ProximitySensor, a trigger event is sent to start a
limeSenaor that drives the animation sequence (Fig. 9). The
self-opening gates in Jrmgie Iskmd are rmexample of this.

JUNGLE_ JUNGLE_ JUNGLE_ JUNGLE_
GATE.PROX GATE_TIMER GATE_ENGINE GATE_XFORM

PA’ A “&

Pro;;:;y TimeSensor Orientation-
Inte Iator

Transform

startllrne set_f rsction
rotation

enterTime
frectiin_
changed ~%&-ed

Trigger 7%nar Engine Target

Figure 9. Routing diagram for an animation triggered by a
ProximitySensor.

● ~ When the user clicks an object, an associated
TouchSensor detects (his interaction and sends a triggering
touchT1meevent to start a TimeSensor that drives the anima-
tion sequence (Fig. 10). The Jungle Island gates can also be
opened this way.

JUNGLE_ JUNGLE_ JUNGLE_ JUNGLE_
GATE_TRIGGER GATE_TIMER GATE_ENGINE GATE_XFORM

TouchSeneo TimeSensor Orientation-
Interpofator

Transform

set_fraetion

II

value_
changed

I

WATERFALL_ WATERFALL_ WATERFALL_ WATERFALL_
TIMER ENGINE LOGIC XFORM

D’~1’ ~1 ‘-++

T)meSensor .%alarlnterp. script Tex-Xform
iooP=TRtJE
sfartTime=1 set_f raclion frectionln translation
skrpTime-+ value_

fretilon_ changad Xfomlout
changed

77mer Engine Lc@c Target

F~re 11.Routingdiagramfor an auto-startinganinradon.

6.2 Organic Animations
Animation is achieved by interpolating through a series of key-
frame vahres, carefully posed by the world builder. In 00BE, we
often employed organic animations, to give our subjects more life
and personality. We asked our objects to squash and stretch, ease in
and out, and follow through with secondary actions [5]. The Mov-
ing Worlds interpolators provide only basic linear interpolation
between their keyframes, so we often resorted to higher-level
means to generate keyframes that achieve the subtlety we desired.
While the bouncing shapes in Boink were keyframed manually
using traditional animator techniques (eyeballing), the Rapkm=
Builder animation sequences were performed using a curve-based
keyframe animator in Cosmo Worlds. Because acceleration and
deceleration are accommodated, curve-based animations tend to be
less jerky and flow more naturally. We found the use of a curve-
based animation system to be critical in achieving organic anima-
tions, Note that animation curves will require conversion to linear
keyfrarnes to be compliant with the VRML 2.0 specification,
which can increase file size.

6.3 3D Morphing
In CyberArratomyIOl, we pushed the envelope of traditional ani-
mation by creating something a bit out of the ordinary.
CyberAnutomylOl features 3D morphing of our subject from a
checkered floor into a humanoid (Fig. 12). We implemented this
effect using the CoordinateInterpolator. The result was organic and
effective. As pleased as we were with the outcome, we found the
process quite painstaking. In creating the morphing sequence,
intermediate shapes were composed with the exact same number
of vertices and in the same sequence, with each shape representing
a keyframe. This requirement is extremely important in the proper
outcome of the morph. Each set of coordinate point values was
then cut and pasted sequentially into the keyValue field of the
CoordinateInterpolator until we ended up with a long linear fist of
SFVec3f’s. The vertex count in this list should be an exact multiple
of the number of keyframes in the animation. At this point, the
CoordinateInterpolator can use the keys to index into the list of
coordinate vedors for the 3D morphing sequence (Fig. 13).

Trigger Pmer Engine Targel

Figure 10. Routing diagram for an animation triggered by a
TouchSensor.

. Auto Start: Animations can also be started up automatically
when a scene is first loaded. This usually requires setting the
limeSensor fields with special-case values (Fig. 11).The ani-
mating waterfall in Jungle Iskurd is triggered this way.

~gtws 12. Time-lapse photographs of the 3D morph in
CyberAmtomylOl space.

88

MORPH_ MORPH_
TRIGGER TIMER

MORPH_ MORPH_
ENGINE COORD

%ouchSensor TimeSensor Coordinata-
InterpoIator

sat_fraction

1

Trigger 7imer Engine Target

Figure 13. Routing diagram for 3D morphing. The morphing engine
(implemented with a CoordinateInterpolator) interpolates between 3D
objezts specified as key “poses.”

7 APPEARANCE AND MATERIAL
PROPERTIES
Understanding the interplay of material, color, textore, and lighting
is the key to achieving great looking VRML worlds. But this is
often more complicated than it seems. In reality, most world build-
ers will notice drastic disparities in rendering results from browser
to browser. It was clear up front that we would be relying heavily
on texture mapping to achieve the organic look we were after.
However, we found that even the use of full-color textures on their
own somehow possessed a sterility that left more to be desired.

7.1 Color-Per-Vertex and One-
Component Textures
We found the look we desired by combining polygonal color-per-
vertex shading with the application of one-component textures, let-
ting them blend together to achieve greater richness. The result
was a more true-to-life rendering of an otheiwise sterile and ordi-
nary subject. (See color plates)

According to the Moving Worlds speeitication [1], only one- and
two-component textures can blend with color-per-vertex informa-
tion on the surface they’re combined with. This cuts out the ability
to experiment with the much richer look which could be achieved
by blending three- and four-component textures with color-per-
vertex surfaces. For this production, we converted all three- and
four-component textures down to grayscale and adjusted their lev-
els in Adobe Photoshopw in order to attain the richer blending we
sought.

Our experietsee has shown that the ability to author color-per-ver-
tex information is highly beneficial in a VRML authoring tool.
World builders and tool makers should learn to exploit this feature
more, and browser writers should pay attention to supporting this
capability well. ‘he difference can be quite rewardhtg, as seen in
figure 15c.

7.2 Specularity and Shininess
The addition of specularity and shininess values can further
enhance the richness of an object rendered with one-component
texture and color-per-vertex information. For example, the island
heads on Jungle Island benefit from this technique. The result is a
warm sheen that is only noticeable at certain viewing angles. This
subtlety actually enhances the dynamics of the overall look with-
out overpowering the other appearance elements.

7.3 Texture Mapping
One of the best techniques for adding apparent complexity and
details to a scene efficiently is to model them in image space, using
texture maps. Because the 02 workstation excels in this area, it

made sense to explore the use of texture maps in places where
geometry was traditionally the only alternative.

When using texture maps in VRML, factors to be considered
include:

. file size

. texture size

. use of textures with alpha transparency

. cross-platform compatibility

In the majority of 00BE, we used JPEG textures to leverage their
great image quality to file size ratio. However, for grayacale tex-
tures, we used SGI’S BW file fortnab and for color transparency
textures such as the palm trees on Jungle Island, we used SGI’S

RGBA file format. However, neither of these formats are VRML
standard. Authors should instead use PNG for color transparency
textures, and perhaps GIF for grayscale. In general, we limited all
textures to be no larger than 128x128 pixels, allowing for a few
exceptions where more detail was critical.

When texture maps are used as billboard signs or display screens
in a world, we find that increasing the emissiveColor value to 1.0
is helpful to bring out the color fidelity of the texture. Within the
customer spaces in Innovations Gallery, we used this technique to
simulate backlit wall displays.

It is well understood that texture maps can add apparent genmetry
to a scene, perhaps making it appear twice as complex. But we also
discovered that texture mapping has a valuable impact in the way
it aids navigation. In the 00BE Courtyati, where sweeping path-
ways we constructed with large triangles for efficiency, textures
introduced vital spatial cues to the navigator, drastically improving
interactive feedback regarding the speed of travel and even minor
changes in direction (Fig 14). This technique is used in Jungle
Island extensively as well.

Figure 14. Texture mappingthe groundcan enhaneethe navigational
experience.On the rightis “Mainstmet”withouta texturemap. Notice
thereis verytittledepth cue due to lack of surface features. The application
of a one-component texture, shown on the left, provides speed and
directional cues when navigating.

Because it is often impossible for an authoring system to automati-
cally know how a texture should to be mapped onto a complex sur-
face, it can make certain assumptions. Unfortunately, these usually
result in texture smearing and clumping. Given this, world builders
will findthat a tool that allows them to control how a texture
should be mapped onto geometry, with absolute control down to
the texture coordinate level, is indispensable, Our production team
used Cosmo Worlds’ Texture Applicator extensively, to fine-tune
elaborate mappings such as the Jungle Island rainforest texture.
We would be eager to see tool builders support higher level textur-
ing strategies, such as direct 3D texture painting[3] and procedural
texturing, in the future.

8 LIGHTING
Today, most worlds use nothing but the default browser headlight;
lighting practice in VRML is at best an afterthought.Yet, some of
the most memorable motion picturesare rememberedfor their cre-
ative use of lighting. Imagine if Blade Runner were lit with only
one headlight and nothing else. Great lighting can evoke moods

and contribute significantly to the storytelling process [7]. How-
ever, lighting does not come for free. An understanding of how
various types of lights contribute to a scene creatively, as well as
how they affect scene performance at runtime, is crucial to the suc-
cessful use of lighting in VRML.

8.1 Lighting for Mood
A seldom explored aspect of VRML lighting is its ability to create
mood. In the Alcoa customer gallery, the space is dominated by
heavy machinery using extreme heat and pressure to manufacture
automobile wheels. We applied animating omnge and red lights
here, to engender the feeling of heat in an hostile industrial envi-
ronment. Similarly, in the Rap/orBuilder space, a sense of activity
and undercurrent is achieved by modulating the intensity field of
the DirectionalLight source, simulating the illumination of molten
lava (Fig 15).

tAVA
TIMER

J
TimeSensor
k@=TRUE
sfmrfifne=7
sfOp~me=O

fmction_
chanaed

LAVA_ LAVA_
ENGINE UGHT

1 I 1

Tjmer Engine Target

Figure 15. Routing diagram fora pulsatingDirectionalLightsourcesimu-
lating lava flow.

Taking our cues from successful cinematography, we usually avoid
use of the default VRML headlight. As in snapshots taken with
common point-and-shoot cameras, front-fit subjects tend to look
flat and uninteresting. Studio photographs, on the other hand, pos-
sess a dimensional quality to them, due to their studied use of mul-
tiple light sotmes placed to the side and behind the subject.

8.2 Simulated Lighting using
Color-Per-Vertex
Unfortunately, a completely literal lighting plot, as used to illumi-
nate a stage or movie set, is out of the question, given today’s limit-
ations in lighting performance. An alternative way to achieve
these dramatic lighting effects, however, is through the very practi-
cal use of color-per-vertex shading throughout the scene.

In essence, lighting effects can be applied directly onto the geome-
try itself, to simulate shadows, shading, and highlights. One bene-
fit of this technique is the ability to seledively control how a scene
and its objeets are shaded in ways that real-world lighting cannot
achieve. This is analogous to a painter selectively painting shad-
ows and nuances for maximum effect throughout the scene, in con-
trast to the cinematographer’s lighting, which must follow from
the laws of physics. Many commercial systems utilize this tech-
nique to achieve high-performance, photorealistic rendering [7].

Color-per-vertex shading can be used in conjunction with normal
VRML lights, or it can be used entirely in place of “real” lighting.
The latter case can sped up rendering dramatically, because no

runtime lighting calculations need be performed. For the tunnels in
the Courtyard, we use a combination of DirectionalLight and
color-per-vertex lighting to transition from a sunlit environment to
a dark, ominous tumel, and back out into the sunshine again
(Fig. 16). This interplay between the color-per-vertex shading, the
sunlight, and the orange specular component of the tunnel results
in an evocative blend of warmth, shade, and dimension.

F@we 16. usingcolor-per-vertex to paint lighting onto geometry. ‘t%is
technique is more flexible and performs fasterthanreal lighting.

These techniques can be extremely difficult to control without a
tool that enables the interactive control of light placement and
direction in the scene, and the ability to edit color-per-vertex infor-
mation under the influence of actual lighting conditions.

8.3 Performance Considerations
Lighting performance overhead is a direct function of the number
and type of lights active within the scene. In general, a Directional-
Light is quite a bit less expensive than a PointLight or a Spotilght
[4]. Given this fact of life, we defaulted to the DirectionttJLight for
lighting in most cases. We splurged on PointLights or SpotLights
when we could afford to take advantage of their dramatic attenua-
tion characteristics, at the cost of economizing elsewhere in the
same scene. The bearnWldth and cutOffAngle fields allowed us
great selective control in defining how much light interacts with
our featured geometry.

Our lighting setup usually consists of one or two DirectionafLights
as rim lights, counter-balanced by a SpotLight as the primary fill.
For spaces containing up to ten light sources, such as the Em-ys-
puce, we use Switch and Script nodes to turn lights on and off
depending on proximity. This way, there are never more than three
lights on at any one time. Generally, we find that we are able to
attain our sustained frame rate goaf of 10 frames per second while
using this lighting strategy on the 02 workstation. Note that PC
platforms may have greater lighting limitations.

9 SOUND
Like an engaging soundtrack that contributes to a motion picture,
sound plays a crtrciaf role in the virtual reality medium. Effective
use of sound can establish setting, convey mood, evoke emotions,
and even foreshadow the unseen. It is an integral part of the
VRML experience.

9.1 Resource Requirements
Because sound files tend to be large, understanding their resource
requirements is an important part of the load-balancing strategy.
Proper choice of sampling rate, sample size, file format, and num-

90

ber of channels and samples will ensure short load time and effi-
cient CPU usage. Again, the target platform and delivery
mechanism must be considered. Playing a 44.1 kHz sample
through built-in factory speakers can be wasteful, while playing an
8 kHz sample through power speakers can magnify this mismatch.

Initially, 00BE was designed to deliver CD-quality (44.1 kHz)
audio samples. This was later downgraded to 22.05 kHz to reduce
file size. Because our sounds are generally spatialized, it was
unnecessary to use two-channel stereo samples. We used mono
sources in the WAV format either created from scratch or sampled
off sound library CDs.

9.2 Designing for Ambience
The purpose of ambient sounds is to support the visuals without
competing with them. Ambient sounds can be either musical or
not, ranging from an instrumental composition to rain forest
noises. The challenge lies in authoring ambient sounds that appem
to loop infinitely without sounding repetitious. This requires
selecting the right sample and proper loop point (the transition
between the end and the beginning of a loop). Loop points must
not be noticeable.

In 00BE, we found the optimum ambient sample length to be
about 15 seconds, based on load time and nonrepetition. We use
ambient sounds that are effective in conveying the appropriate
mood in a given space. Selections are also picked based on how
easy they are to loop. An improper choice can immediately
become annoying after a few iterations. One useful technique for
reducing repetition in a sample is to combine it with another sam-
ple of different length during playback. When these separate sam-
ples are playing simultaneously, the phase difference creates the
illusion of randomness which effectively masks out repetition.

For fluidity, multiple ambient sounds should flow seamlessly from
one to another. This is achieved through specifying overlapping
radii of influence in the Sound nodes and letting the samples cross
fade.

9.3 Designing for Effect
The role of sound effects is to support and reinforce animation.
Sound effects need to synchronize accurately with what is being
animated. Due to system latency, or samples that inherently do not
match animation keyframes, synchronization remains the primary
challenge and the focus of authoring.

The majority of custom sound effects in 00BE were a combina-
tion of many individual samples merged and synched to motion.
Samples are inserted at time slices roughly corresponding to the
animation keyframes of interest. Further timing refinements were
usually necessary to match the precise attack times with the height
of actions. This step involves trial and error for optimum playback
result. Once samples are merged, it is difficult to make timing
changes. We found that minor adjustment to animation keyframes
is often a more feasible solution than twealdng the sound sample
itself.

Sound effects can be bound to animating geometry for maximized
spatial effect. By adding a Sound node to the parent Transform that
is animating, sound can follow geometry wherever it goes. Sound
level rises or attenuates depending on proximity. This spatial illu-
sion is achieved by specifying a relatively small radius of influence
in the Sound node. The effect can be quite convincing, as demon-
strated by the animating racing cars in the Team Sauber customer
gallery.

9.4 Quick Tips for Effective Sounds
.
●

✎

✎

●

✎

✎

✎

●

10

Make interactive frame rate a higher priority than sound.
Choose sound parameters based on target platform limitations
and type of delivery mechanism.
Use short mono samples.
Keep the sampling rate below 32 kHz unless quality is most

important and downfoad time is not an issue.
Select short ambient samples that do not sound repXitive and
are easy to loop.
Use multiple loops of different lengths to mask repetition.
Instance sound whenever possible to reduce load time.
Make an effort to synchronize attack times to animation key-
frames of interest.
Use a small radius of influence for sounds hound to animating
geometry.

SUMMARY AND CONCLUSION
In this paper we have presented a real-world example of a major
VRML 2.0 production project. Table 1 illustrates the scope of this
project

Table 1:. OOBE Statistics

Approximate number of polygons per scene 1500-5000

Size of scene, in pixels I 1255x630

I Numberoftextures, totaf I 1,061 1

I IWtmberof WRLfiles,tota* I 73 1

I Number of WAVsound files, total I 165 I

I Number of MPEG movies, total I 69 I

Number of HTML tiles, total 829

Total size, in MB 318.7

We have highlighted the challenges and pitfalls we faced, the
design decisions we made and the lessons we learned during each
stage of the production. Here are some of those lessons:

.

.
●

✎

✎

✎

✎

●

●

✎

✎

Make p-formance a first-class citizen throughout the project.
Determine your polygon budget and stick to it!
Let user interaction and serendipity rule over high polygonal
detail.
Don’t rely on file conversion to give you well-formed VRML
2.0.
Watch out when using spline-based or curve-based modelers
which ate designed for realism, because they can produce
high polygon count models.
Use LODS, ProximitySensors, VisibilitySensor and other
VRML 2.0 constructs to help interactivity.
Use instancing.
Use lighting both to indicate mood and to aid navigation.
Use different navigational “styles” for users with different
familiarities with 3D navigation.
Provide 3D “widgets” that are consistent and familiar
throughout the experience.
Use many types of animations to give a compelling exper-
ience,with different ways to trigger them.

. Use color-per-vertex and texture mapping to provide detail
and enrich the visual presentation without adding polygons.

. Use color-per-vertex to simulate lighting, without incurring
lighting’s performartce cost.

. Use one-component textures plus material color for a richer
effect than three-color textures provide.

In conclusion, we hope that both future content creators and
VRML 2.0 world building tool makers learn from the experiences
we had in developing 00BE. The production experience taught us
many invaluable lessons about how to use this technology effec-
tively in the creation of compelling content. The most resonant les-
son remains the need to fully understand and respect the
limitations of the underlying graphics platform, and how to
squeeze the most VRML out of them. If Content is King, then Per-
formance is the Kingdom. Without an acceptable interactive frame
rate, the content simply cannot rule. Our experience with 00BE
has shown that a compelling VRML experience cannot have one
without the other -- they must have both.

There are many applications of VRML 2.0 which we would like to
investigate in the future for 00BE. Areas in behavioral animations
using mathematical oscillators and flocking behaviors [8], avatars,
and multi-prwticipant worlds are candidates.

11 ACKNOWLEDGMENTS
The authors would like to thank all the reviewers of this paper for
their time and feedback: Dave Story, Jackie Neider, Howard Look,
Rich Gossweiler, Ed Aflard, and Eric Debolle. A special thanks
goes to Josie Wemecke, who helped out tremendously with the
formatting, diagrams, and general readability. Also, many thanks
to the OOBE and Cosmo engineering team for their invaluable
contributions, and to Construct Internet Design (www.con-
struct.net) for their initial models and behaviors. Finally, thanks to
Silicon Graphics, Inc., for making this type of creative and techni-
cal work possible.

References
[1]Bell, G., Carey, R., and Marrin, C. The Virtual Reality Model-

ing Language (VRML) Version 2.0 Moving Worlds Specifica-
tion. 1996. In VRML Architecture Group Web Site: http:ll
vag.vrml.org

[2] Bell, G., Parisi, T., Pesce, M. The Virtual Reality Modeling
Language (VRML) Version 1.0 Specification, 26 May 1995. In
VRML Repository: httplfwww.sdsc.eduhrtl

[3] Hanrahart, P. and Haeberli, F! Direct WYSIWYG Painting and
Texturing On 3D Shapes. Proceedings of SIGGRAPH ’94
(Orlando, FL, July 24-29). In Computer Graphics Proceedings,
Annual Conf. Series, ACM, New York. 1994.215-223.

[41Hartman, J. and Wemecke, J. The VRML 2.0 Handbook: Build-
ing Moving Worlds on the Web. Addison-Wesley publishing,
Menlo Park, CA. 1996.101.

[5] Lasseter, J. Principles of Traditional Animation Applied to 3D
Computer Animation. Proceedings of SIGGRAPH ’87 (Ana-
heim, CA, July 27-3 1). In Computer Graphics Proceedings,
Annual Conf. Series, ACM, New York. 1987.35-44.

[7] Pausch, R., Snoddy, J., Taylor, R., Watson, S,, and Haseltine, E.
Disney’s Aladdin: First Steps Toward Storytelling In Virtual
Reality. Proceedings of SIGGRAPH ’96 (New Orleans, LA,
August 4-9). In ComputerGraphics Proceedings, Amual Conf.
Series, ACM, New York. 1996.193-203.

[8] Reynolds, C.W. Ffocks, Herds, And Schools: A Distributed
Behavioral Model. Proceedings of SIGGRAPH ’87 (Anaheim,
CA, July 27-3 1). In Computer Graphics Proceedings, Amual
Conf. Series, ACM, New York. 1987.25-34.

[9] Wemecke, J. The Inventor Mentor: Programming Object-Or-
iented 3D Graphics With Open Inventor. Release 2. Addison-
Wesley Publishing, Menlo Park, CA. 1994.

[6] Neider, J., Davis, T., and Woo, M. OpenGL Programming
Guide: The Oficial Guide To Learning OpenCL. Release 1.
Addison-Wesley Publishing, Menlo Park, CA. 1993.

92

