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200-MHz Superscalar RISC Microprocessor
Nader Vasseghi, Kenneth Yeager, Egino Sarto, and Mahdi Seddighnezhad

Abstract—Design and implementation details of the MIPS
R10000, 200-MHz, 64-b superscalar dynamic issue RISC micro-
processor is presented. It fetches and decodes four instructions
per cycle and dynamically issues them to five fully pipelined, low
latency execution units. Its hierarchical nonblocking memory sys-
tem helps hide memory latency with two levels of set-associative,
write-back caches. The processor has over 6.8 M transistors and is
built in 3.3-V, 0.30-�m, four-layer metal CMOS technology with
under 30 W of power consumption. The processor delivers peak
performance of Spec95int of 9 and Spec95fp of 19 operating at
200 MHz. Clock and power distribution as well as circuit design
techniques of several blocks is addressed.

I. INTRODUCTION

T HIS processor1 is a dynamic issue superscalar micropro-
cessor that implements the 64-b MIPS-4 instruction set

architecture [1]. It fetches and decodes four instructions in
order and dynamically issues them to five pipelined execution
units after dependency resolution.

The chip includes the processor, floating-point units, two
32 Kbyte primary caches for instructions and data, secondary
cache controller, and a 64-b system interface. The 16.6
17.8 mm chip is implemented in a 3.3-V, 0.3-m, four-layer
metal CMOS process and contains approximately 6.8 million
transistors.

The design aims for high performance even in large real-
world applications which have poor memory locality. With
speculative execution, it calculates memory addresses and ini-
tiates cache refills early. Its hierarchical nonblocking memory
system helps hide memory latency with two levels of set-
associative caches. It delivers peak performance of Spec95int
of 9 and Spec95fp of 19 operating at 200 MHz [7], [8].

To cope with complexity inherent in dynamic issue super-
scalar designs, it uses a modular design approach in which
much of the control logic is within regular custom design
structures.

II. M ICROARCHITECTURE OVERVIEW

This is a dynamic issue superscalar microprocessor that
implements the 64-b MIPS-4 instruction set architecture [1]. It
fetches and decodes four instructions in order and dynamically
issues them to five pipelined execution units after depen-
dency resolution. Instructions graduate in program order upon
completion. It provides sequential memory consistency and
precise exception handling. Fig. 1 contains a block diagram
and pipeline diagram for this processor. Six pipelines process
instructions.
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A. Instruction Fetch Pipeline

The first pipeline fetches and decodes four instructions per
cycle from the instruction cache. To facilitate rapid decoding,
instructions are predecoded as they are refilled into this cache.
Predecoding rearranges fields of each 32-b instruction and
appends a 4-b unit code which identifies which functional unit
will execute it. Each decoded instruction is recorded in a 32-
entry active list which keeps track of the original program
order.

During pipeline stage 1, instructions are fetched sequentially
until a jump or conditional branch instruction selects a new
program address. Target addresses are calculated during stage
2, therefore causing a single-cycle gap in the pipeline. The
efficient execution of a branch instruction requires complex
circuits, since the condition tested by the branch might not
be known for many cycles. Rather than waiting, the path
taken by the branch is predicted using a 512 entry by 2-b
prediction table [3]. The current program state is saved in a
four-entry branch stack. Subsequent instructions are fetched
and executed speculatively. If the prediction is later verified
to be correct, these speculative actions speed the program’s
execution. Otherwise, they are discarded, the program state
is restored using the branch stack, and fetching is resumed
along the other path. Instructions are fetched and executed
speculatively along the predicted branch path, for up to four
deep.

During stage 2, four instructions are decoded and loaded
into one of three instructions queues, depending on which
functional unit is required. Instructions are renamed as they are
decoded. Register renaming is an elegant method for keeping
track of register dependencies in an out-of-order processor.

Integer and floating-point registers are mapped separately,
using similar circuit structures. Each logical register (the 5-
b number in the instruction field) is mapped to a physical
register. There are more physical registers (64) than logical
registers (32), because the register files contain both committed
and temporary values. A 32-entry mapping table assigns each
logical register to the physical register which contains its
current value. A 32-entry free list contains a list of physical
registers which are not currently used. As each instruction
is decoded, its operand registers are mapped to 6-b physical
register numbers, and its destination register is assigned to
the next register from the free list. This new assignment is
written into the mapping table and the previous assignment
is copied into the active list. Later, when this instruction
graduates, this old physical register is returned to the free
list for reuse. Thus, values are uniquely assigned to physical
registers. After mapping, dependencies can be determined
simply by comparing physical register numbers, without regard
to instruction order.
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Fig. 1. Functional block diagram and pipeline timing.

Whenever a branch is predicted, the branch stack makes a
complete “shadow” copy of both mapping tables, the active
list write pointer, and both free list read pointers. When the
misprediction is detected, this shadow is copied back into the
mapping tables in a single cycle.

B. Execution Pipelines

Instructions are executed in parallel in five pipelined execu-
tion units. These units include two integer arithmetic logic
units (ALU’s), a floating-point multiplier, a floating-point

adder, and a load/store unit. Each execution unit is pipelined
with a single cycle repeat rate. Integer ALU’s have a single-
cycle latency and floating point units have two-cycle latency
with result bypassing. Two independent iterative units perform
floating point division and square-root operations and share the
register file ports with the multiplier.

The three instruction queues dynamically issue operations to
the execution units after all their operands become available.
The integer queue issues instructions to the two ALU’s. The
floating-point queue issues instructions to the floating-point
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TABLE I
TECHNOLOGY CHARACTERISTICS

multiplier and adder. An instruction is deleted from either of
these two queues as soon as it is issued. Instructions have no
particular order within these queues.

The address queue issues instructions to the address calcu-
lation unit and the data cache. The data cache contains two
independent banks which can operate concurrently to perform
load, store, and refill operations. Load and store operations
can be performed out of order and can overlap with up to
four cache refill operations. For each refill, the critical word is
transferred first and can be bypassed directly to an execution
unit.

C. External Interface

Memory latency has a major impact on processor per-
formance. To run large programs efficiently, this processor
has a nonblocking memory hierarchy with two levels of set
associative caches. The processor includes on chip 32 Kbyte
two-way set associative primary data and instruction caches.
An external secondary cache is scalable from 512 K to 16
Mbytes of memory using synchronous SRAM’s. With out-of-
order speculative execution, it finds cache misses early and
begins refills while other instructions are being executed in
parallel, and therefore hiding memory latencies [6].

III. GLOBAL IMPLEMENTATION

A. Process Technology

The processor is implemented on a 3.3-V, 0.3-m twin-well
CMOS process. The major process characteristics are shown
in Table I. Although multiple technology partners manufacture
this processor, the layout is drawn with a single set of design
rules that serves as a common denominator among the partners.
Upon tape-out, the final database goes through appropriate
sizing operations to meet the specific partner’s design rules.
Six-transistor cells are used for the RAM arrays for stability
and noise immunity. Approximate RAM cell size is 29m .
It is a four-layer metal technology with the top layer, which is

Fig. 2. Chip and package micrograph.

TABLE II
CHIP AND PACKAGE FEATURES

about twice as thick as the lower layer metals, used primarily
for global chip power and clock distribution.

B. Chip and Package

The chip contains about 6.8 million transistors including
4.4 million in the cache arrays. The die size is 16.617.8
mm and it is packaged in a 599 pin ceramic land grid array
(CLGA) as shown in Fig. 2. Table II summarizes major chip
and package features.

The processor and the CLGA package are designed for
conventional die-attach and wirebond assembly. The package
is an 11-layer cavity-down ceramic package with a Cu–W
(Copper–Tungsten) slug for efficient thermal performance.
The package was designed with controlled characteristic
impedance signal traces and designed to minimize power
and ground inductance with a simultaneous switching output
(SSO) to power-ground pair ratio of 4 : 1. The package
was co-designed with the input/output (I/O) buffers to
guarantee acceptable SSO-noise and crosstalk for 200 MHz
I/O operation. The package mounts on the next-level substrate
using a high-performance socket designed specifically for the
package.
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Fig. 3. Chip micrograph.

Four types of I/O buffers drive the system interface, sec-
ondary cache data, address, and clock signals. Each type can be
separately configured to conform to either low voltage CMOS
(LV-CMOS) or high speed transistor logic (HSTL) standards.
The buffer design for each group has special characteristics.
The system interface buffer contains additional open-drain pull
down transistors to drive HSTL Class-2 multidrop buses [1].
The secondary cache data buffer is designed to reduce overlap
current spikes when switching, thus reducing simultaneous
switching noise. The cache address buffer uses large totem-
pole transistors to rapidly drive multiple distributed loads. The
cache clock buffer drives low impedance differential signals
with minimum output delay. These clocks are precisely aligned
by a low jitter delay element which is configured to adjust for
propagation delays in the printed circuit board clock net.

There is about 50 nF of explicit on-chip de-coupling ca-
pacitor between power and ground to control power supply
switching noise. The chip dissipates 30 W running at 200
MHz and 3.3 V supply voltage. This enables practical usage
of this processor in both high-end as well as mid-range system
configurations. Fig. 3 shows the chip micrograph and outlines
the processor’s major functional blocks.

C. Clock Distribution

An on-chip phase-locked loop (PLL) takes the system clock
input and synthesizes a low skew internal processor clock,
a system interface clock, and secondary cache clock [2].
Independent clock divisors allow the choice of five secondary
cache and seven system interface clock frequencies. This
allows for flexible and scalable system designs while taking
full advantage of the processor speed.

Fig. 4. Clock distribution.

Both 200 and 400 MHz clocks are distributed to four
quadrants of the chip and balanced to form 16 equal phase
points at each area buffer.

A parallel balanced clock tree is used to provide six copies
of a programmable delay clock for the synchronous secondary
SRAM’s. This allows skew compensation without introducing
additional jitter between the processor and the secondary cache
clocks.

The PLL generates 200 MHz and 400 MHz clocks, which
are sent to the center, and are then distributed to the four
quadrants of the chip in a balanced tree. For added isolation
and controllability, the main clock trunks are distributed
on thicker metal 4 layer over metal 3 ground shields as
shown on Fig. 4. Short branches are manually jogged to
make them equidistant. All 16 branches are further tuned
and electrically balanced to within 10 ps using results from
a three-dimensional (3-D) run length code (RLC) extraction
and simulation model. Waveform comparisons of RC against
RLC extraction models showed that inductance effects need
to be taken into account for accurate delay and skew pre-
dictions on the main clock net. For most other nets, where
wire resistances dominated, inductance effects did not have a
significant contribution at the operating frequencies and were
ignored.

Area clock buffers at the end of each branch use the
400 MHz clock signal to resynchronize the other clocks and
perform divide-by-two to achieve 50% duty cycle. Pad area
buffers also generate divide-by-two to eight frequency clocks
for the I/O interface and secondary cache.

Local clock buffers generate the complementary two-phase
clocks which are used for all register, latch, and clocked
elements. Clock buffers use a common layout and orientation
throughout the chip for device matching and include decou-
pling capacitors for switching noise suppression. After size
balancing, the outputs from local buffers within each area
buffer region are shorted together to provide a means to reduce
the effects of extraction inaccuracies and process variations.

Tools were developed to automatically size and balance the
local clock buffers based on layout parasitic extraction and
perform clock skew margin checks throughout the design.

Measured worst-case clock skews of 200 ps have been
achieved at the output of the local clock buffer stages with
this scheme using electron beam probing.



VASSEGHI et al.: 200-MHz SUPERSCALAR RISC MICROPROCESSOR 1679

Fig. 5. Register and latch structures.

D. Register and Latch Methodology

Dynamic latches are used for speed. Where data to output
delays are important, simple pass gate latches are used. Data
feedthrough problems are avoided by ensuring a minimum of
three inverter delays between clocking points. When back-
to-back latches are required, dynamic stacked latches are used
due to immunity to clock skew and data feedthrough problems
[5]. Fig. 5 shows register and latch implementations. Careful
standard layout styles were used to minimize coupling to
dynamic nodes and maintain good noise immunity.

Local to register/latch inverter buffers are used to improve
and control the final clock edge rates and reduce clock loading.
For speed critical areas, logic functions and/or multiplexers at
the input or output of the latch were merged into the latch
structure to reduce levels of logic.

E. Power Distribution

Ideally, both power and clock distribution want to be on the
thicker, low-resistance, top-layer metal. This requirement is
hard to be satisfied with a balanced clock tree style due to its
irregularity. Fig. 6 shows global power distribution on metal
4 layer while maintaining balanced clock tree distribution on
metal 4 over metal 3 ground shields. The clock tree was first
routed on third-layer metal using a global auto router. The
traces were then mirrored to the forth-layer metal and the
parallel metal 3 shadows underneath were grounded. Efficient
pad utilization is achieved by dividing the chip into four power
regions corresponding to the four edges, from which the power
is distributed to the center of the chip on metal 4. Power is
propagated down through metal 3 and 2 regular grid structures
in each region. The power regions are stitched together using
metal 2 layer across metal 3 clock shields. Equal phase area
clock buffer points have been distributed evenly based on the
specific clock usage and loading requirements of each region.
The area to local clock buffer distribution is performed on
metal 3 layer with adjacent shields for added controllability.

Metal 4 power routing and hook-up to metal 3 power grid
was script driven, which allowed flexibility and fast turn
around in cases of changes.

F. Repeater Insertion

Interconnect delays have become a dominant factor, limiting
the performance of submicron VLSI designs. Large RC delays
in long wires cause timing violations and signal integrity

Fig. 6. Power distribution.

problems. Careful attention was given to the floorplan and
the modularity of the design to keep the length of critical
global wires short. In spite of that, over 6000 global nets
needed to be examined. Due to the large number of global nets
with multiple irregular branch segments, tools were written to
identify and analyze problem nets, place and allocate optimum
repeater sites, and modify netlists. Flexible, nonintrusive re-
peater placements were necessary to avoid blockage of channel
routing areas. The repeater cells are abutted at the edges of top
level blocks, introducing only metal 1 blockages in the routing
channel, and share the adjacent block’s power grid structure.
Where increased drive was desired, multiple repeaters cells
were used in parallel.

Fig. 7 shows the repeater insertion flow. The netlist with no
repeaters was fed into the global auto router. From this initial
route, global wire RC information is obtained and given to the
repeater insertion tool, along with the gate capacitance infor-
mation from the original netlist. At this stage, user preference
repeater locations are also provided to the tool. The resulting
RC network is analyzed and optimum repeater locations are
identified and mapped onto the allocated repeater sites on
the chip. The tool calculates signal delays and the theoretical
optimum repeater-location coordinates are determined. These
optimum coordinates are mapped to available repeater sites.
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Fig. 7. Repeater insertion flow.

Fig. 8. Global wire length before and after repeater insertion.

The tool assigns a repeater location that minimizes any delay
increase for cases where a repeater was not available at the
optimum coordinate. In the case of signals with multiple
branches, repeaters could be required in each branch leg. This
would lead to an increase in necessary repeater sites. The tool
attempts to “slide” repeaters back to the point where individual
branch repeaters collapse to a single site. This is often possible
when the length of the line is minimally over the maximum
allowable wire length. The tool then generates a new netlist
with repeaters and modifies the schematic database. With this
new netlist and allocated repeater site information, the global
auto router is invoked for the final global and detailed route.
Further manual optimizations are performed at this stage if
necessary.

About 700 noninverting repeaters were inserted into the long
signal nets. Fig. 8 shows the distribution of global wire length
before and after the repeaters were inserted.

IV. FUNCTIONAL BLOCK IMPLEMENTATION

A. Integer Load Path

Load latency is the minimum number of cycles after issuing
a load instruction before issuing a dependent instruction.

This latency significantly affects the performance of integer
programs, because addresses are often loaded from memory.
Load latency was optimized to be only two cycles using a
combination of logic and circuit techniques. Both the data path
and control signals are time critical.

Load instruction execution is depicted in Fig. 9. Each load
instruction executes the following steps.

1) The address queue dynamically issues the load instruc-
tion after all its operands become ready.

2) The integer register file reads the instruction’s index
register(s).

3) A 64-b adder calculates the instruction’s “virtual mem-
ory address” as the sum of an index register and a 16-b
immediate value, or as the sum of two index registers.
Bit 5 of this address selects between the two banks of the
data cache. Bits 13 : 6 are used as an index for addressing
locations in the cache.

4) The translation look-aside buffer (TLB) translates a
virtual page (addressed using bits 63 : 12 of the virtual
address) into a 28-b physical page number. The page
number and the low 12 address bits are concatenated
into a 40-b “physical memory address.”

5) The tag array of the selected cache bank reads two
address tags.

6) The data array of the selected cache bank reads two
64-b data doublewords.

7) Each address tags is compared to the physical page
number to generate a cache hit signal for each of the
two cache ways.

8) The cache hit signal selects data from the addressed way.

Operands can be bypassed around the register file. Thus, the
latency is computed beginning with step 3).

The 64-b virtual address is generated in half a cycle using
a carry select scheme with dynamic hybrid 2-b carry look
ahead (CLA), and 2-b Manchester carry chain. The TLB, the
cache tag arrays, and cache data arrays operate in parallel. The
TLB matches the high address bits with virtual page addresses
stored in a 64-entry content-addressable-memory (CAM). If
an entry matches, a corresponding physical page address is
read from a 128-entry RAM. (Two physical page addresses
are stored for each virtual page address.) Low address bits are
decoded to select a row within the cache tag and data arrays.

The address compare and data selection use domino dy-
namic logic for speed. Each of the two cache ways contains a
dynamic 28-b comparator. This comparator combines the out-
puts of 28 static exclusive-or gates using a 28-input dynamic-
or gate. This circuit creates a pulse if any tag bit doesnotmatch
the corresponding address bit. The resulting two “cache miss”
signals drive 64 dynamic two-wide and-or gates. Because a
“miss” indicates that the corresponding data is not wanted,
each “miss” signal enables data from the opposite cache way.
This circuit is logically equivalent to a multiplexer when the
addressed data is in the cache. Otherwise, it uselessly logically
OR’s data from the two cache ways, but in this case its output
is ignored anyway.

The Mips instruction set architecture defines byte, halfword,
word, and doubleword data types [1]. The shorter operands
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Fig. 9. Load instruction execution.

require “byte alignment” based on the low three address
bits. To avoid adding delay, the load alignment circuitry is
duplicated for each cache way so that it can operate in parallel
with the tag comparator logic.

The cache miss pulses are gated together to generate a
“LoadDone” signal, which indicates if the load instruction
was completed successfully. This is a timing critical signal,
because it affects the “operand busy” logic in the register
rename logic and in all three instruction queues. Since it is
a single signal with many loads, it is driven by a very large
buffer and is routed with wide traces. Because it is generated
using domino gates, one edge of switching is important for
critical path timing. This edge is optimized by ratioing the
transistors in drivers and following repeaters.

To achieve two-cycle load latency, dependent instructions
must be issued tentatively, one cycle before the “LoadDone”
signal is generated. Thus, the request logic assumes that the
cache will “hit.” If it does not, issuing of any dependent
instruction will be aborted.

B. Instruction Queues and Dependency Matrix

Each instruction queue contains 16 entries. Decoded instruc-
tions are held in the queues until they are selected and issued
to the corresponding execution units. For speed criticality, the

instruction issue and priority selection uses domino logic and
is implemented in two stages as shown in Fig. 10. The first-
level multiplexers select one instruction from each group of
four entries. The second level selects one of these four groups,
or bypasses a newly decoded instruction, for conditional
issue. The control selects for these multiplexers are generated
using two levels of 4-b priority encoders. Each level contains
duplicate circuits to arbitrate between high and low priority
requests. The low priority request is used only if there are
no higher priority requests. This organization reduces delay
by evaluating first-level multiplexers while the second-level
priority encoders generate the select signals required by the
second-level multiplexers.

Each 4-b priority encoder, shown in Fig. 11, uses a com-
bined domino circuit structure with six outputs. Evaluation
starts in phase 1 high, beginning with request 0 and works up.
For each pair, if the request is active, the corresponding output
is evaluated and subsequent requests are ignored. Intermediate
nodes within the ladder get indirectly precharged to
since one of each transistor pair is on. This avoids charge
sharing problems, without adding extra transistors to precharge
the intermediate nodes. The “AnyL” and “NoL” outputs go
to the second stage priority encoders, and L0 to L3 outputs
provide the control for the first stage multiplexer path, shown
in Fig. 10.
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Fig. 10. Queue issue circuit.

Fig. 11. Queue priority circuit.

Two 16 16-b matrices resolve dependencies between
memory accesses. Fig. 12 shows a bit structure representation
of cache dependency and store dependency matrix arrays.
The cache dependency bits avoid unnecessary cache thrashing
by tracking which entries access the same cache set. Store
dependency bits track dependencies of a load on previous store
instructions. The two memory array matrices are interleaved
and pitch matched with the queue array. Row J and column
K correspond to instructions in the queue. Bit [J, K] indicates
that instruction J depends on instruction K. Dep [J, K] is set
if entry [J] is dependant on entry [K]. Dep [J, K] is reset if
either entry is not active.

When the memory address is computed for each new
instruction, a 16-entry CAM array compares it to addresses
already in the queue. The comparator outputs are written into
the matrices’ corresponding row. The bits in each row are

Fig. 12. Dependency matrix.

ORed together to form a 15-b distributed dynamic OR gate
evaluated during phase 1. If any bit in this row is set, the
corresponding instruction has a dependency and must wait.
Each bit will be reset when the instruction that is causing the
dependency is graduated and no longer active.

C. FP Multiplier

The floating point multiplier array uses radix 4 booth recod-
ing leading to 27 partial products. A binary compression tree
enables symmetric and ideal usage of four to two compressors
[4].
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Fig. 13. FP multiplier array.

Since the design is constrained to fit in a datapath, a booth
encode is embedded within the array to minimize vertical
tracks. The tree is made up of static differential pass transistor
four to two compressors which lead to fast, low-power, and
compact layout. The circuit does not require a clock and has
good noise immunity due to its balanced noise coupling.

As can be seen from the wiring track bit slice of the
array, shown in Fig. 13, Booth decoding is interleaved among
the compressors. This provides efficient use of metal by
reutilizing metal tracks, which lead to short wires that self-
isolate themselves.

Unlike most tree arrays, partial products are bit aligned,
where the multiplicand traverses the array diagonally. Sum
and carry, which are the more critical paths, are kept as short
as possible within the tree structure. The multiplier array is
folded to an effective width of about 70 b. The axis was
determined by the optimum placement of subsequent stages of
multiplier datapath. The 53 single-ended multiplier bits travel
vertically to the embedded encoders. Differential 1X, 2X, and
Sign outputs travel horizontally to the Booth decoders. The
53 multiplicand bits are buffered at the bottom and top of
the array and share a common bypassed input. Repeaters are
provided near the center of the array to reduce the long RC
delay. Fig. 14 shows the folded array structure. Metal 1 is
used for local interconnects. Metal 2 is used for global booth
decode lines and for multiplicand routing. Metal 3 is used
for multiplier, tree routing, and multiplicand routing. Because
booth encoding generates both positive and negative numbers,
sign extension and two’s complement must be done. Sign
generate and two’s complement cells were placed in the array
with the goal of maintaining a regular shape. Finally, eight
columns of redundancy were added to generate the lateral
carries needed for the most significant bit (MSB) portion of
the array and to generate a convenient carry out for the 106
bit carry propagate adder.

Fig. 14. FP multiply folded array.

Fig. 15. Biphase bus.

D. Biphase Bus

Nearly 300 bidirectional pins must be connected from the
pad ring to the core. Because these long wires require re-
peaters, two unidirectional buses were used instead of a single
bidirectional (tristate) bus. To avoid doubling the number of
wires, biphase multiplexing is used to send two bits on each
wire as shown in Fig. 15.

Each biphase multiplexer combines signals from a near
pad with a far pad. During phase 1, the far signal travels
halfway and arrives at the multiplexer, while the near signal
is transferred to the core on the biphase bus. During phase 2,
the multiplexer switches and drives the far signal to the core.
For outputs, the biphase bus transfers a bit for the far pad
during phase 1. This bit is latched midway to hold the signal
during phase 2, reaching the far PAD, during which time the
multiplexer switches to transfer a bit to the near pad.

V. DESIGN VERIFICATION AND CAD TOOLS

A. Extraction and Timing Verification

To achieve the target timing goals on this large design,
resistance and capacitance extraction, with coupling effects to
adjacent nets, was required for the full chip timing verification.
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To be able to manage the throughput time required and
overcome capacity limitations of the extraction tool, a two-
level hierarchy was adopted for the chip. The top level
contained cells for the interblock routing as well as placement
of 35 functional blocks. The blocks and routing could have
the layout parasitics extracted independently of each other
with turnaround times varying from few hours to 24 h. When
feeding the data to the timing tool, this approach allowed
the mixing of top blocks that were finalized with blocks that
had partial layout and therefore estimated parasitics. Also, a
tool was utilized that allowed back-annotation of parasitics on
blocks that were previously extracted but were still incomplete
due to last minute changes. In this fashion, a block could have
the right parasitics on over 99% of the nets, depending on the
severity of the change in progress, and estimated numbers for
the areas that were being changed and final layout unavailable.

An in-house developed static timing analyzer to deal with
transparent latch-based designs was utilized. It was optimized
to be able to verify the whole design in one pass. A two-
level hierarchical circuit netlist would be assembled and fed
to the timing tool. The underlying top blocks could be in
different stages of the design. Blocks could be empty, have
schematics with estimated capacitance, have schematics with
extracted capacitance annotation, and on the final stage, be
complete with extracted resistance and capacitance annotation.
This setup gave maximum flexibility allowing one or few
blocks, as seen from the top level, run on users workstation or
the full design run on specially configured high-performance
compute servers. The small cluster of blocks approach allowed
designers to verify their timing fixes with a quick turnaround
time, without having to wait for the results of the jobs on the
full chip, which could take from 24–30 h. Supporting tools
were developed to assist designers visualize common subpaths
out of several different critical paths. This enabled designers
to focus circuit fixes to maximum leverage locations.

B. Physical Design Verification

Extensive layout and circuit guideline checks were per-
formed to catch risk areas. Dynamic structures have been
extensively used throughout the design to gain speed. To con-
trol noise and guarantee functionality, several signal integrity
and dynamic design rule checks were performed on the design
to identify risk areas.

The combined charge sharing and coupling capacitance ratio
to the total capacitance on any dynamic node is kept under
8%. Noise prone wires going directly to the input of dynamic
gates are detected and corrected by either isolating the wire or
adding recovery PMOS pull-ups at the input. Dynamic nodes
into a multiplexer connection are flagged to avoid potential
charge loss, if the multiplexer enables are not guaranteed to
be stable during evaluate.

Signal coupling induced voltage dip on source/drain diffu-
sion of a transistor can momentarily turn on the device and in
case of a dynamic node following this transistor, charge loss
may occur.

Signal propagation time of a wire is effected depending on
the switching activity of the adjacent neighboring wires due to

capacitance coupling. Reverse coupling signal switching slow
down effects are taken into account for setup time checks,
while forward coupling speed up effects are included for hold
time checks.

C. Functional Verification

Verification of a processor with this complexity needs
a very detailed, systematic, and hierarchical approach. To
do that, each block of the design was studied and verified
independently during the first phase of the verification to
make sure that it functions properly based on the target
specification for that block. During the second phase of the
verification, all blocks were integrated together in a full chip
simulation environment. A C-based system model including
the bus controller, secondary cache array, memory controller,
and memory array were also added to the model to support the
full system simulation. In the final phase of the verification,
the processor was integrated with real system ASIC’s designed
by system groups to verify the functionality of the processor in
the whole system. In each phase, specific directed and random
diagnostics were run on the model.

An in-house hardware description language and simulator
integrated with a user-friendly graphical interface were used to
design and verify the processor. An instruction level simulator
was also included in this package to check the content of the
architectural registers and memory hierarchy at the instruction
boundary. The simulator provided useful features like backup,
retry, trace, and follow. Trace and follow determines all signals
which drive a specific signal, or all other signals that are
driven by a specific signal. Also, another in-house tool was
used to check the state transition and arc coverage of each
state machine in the design. Several random code generators
were also used to generate full, partial, and targeted random
sequence of instructions to run on the design. These tools were
tuned to generate codes to stress specific parts of the design
like branch unit, instruction fetch unit, load/store unit, etc.

Three classes of directed diagnostics, random code, and real
applications were developed to run on processor system in
the course of its verification. Directed diagnostics were devel-
oped under two categories: architecture verification programs
(AVP) in order to check mostly the MIPS instruction set,
and microarchitectural verification programs (MVP), which
were a result of detailed study of the behavioral model to
validate the processor at the implementation level. The system
model was capable of injecting different events to the design
at each instruction decode cycle. This mechanism enabled us
to force the processor into a specific state at each cycle and
verify its behavior under that condition. Many asynchronous
events, error checking, and protections, and also cache and
memory coherency were tested by using these mechanisms in
our directed diagnostics.

The second class of diagnostics were random codes de-
veloped by using different random code generators described
earlier. We also used some of these code generators to generate
random multiprocessor (MP) code to verify the MP system that
was simulated by instantiating two to four processor models.
The third class were real codes like UNIX and Windows NT
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operating systems and also short versions of real applications
from different benchmarks.

More than 50 000 diagnostic programs (100 million cycles)
were developed and ran each night or after each design release.
More than 5 billion cycles of random codes ran on the final
design before the tapeout as well as booting three operating
systems. Having a full functional chip, booting UNIX on the
first silicon proved that our methodology for verifying this
complex processor was a success.

D. Test and Debug Features

The processor observes internal signals with ten 128-b
linear-feedback shift registers. Effectively, these signals be-
come virtual output pins. These registers can be used in
two ways. For debugging, the registers sample signals for
an externally-selected cycle, and then shifts them serially
out. In a tester, a succession of cycles can be sampled,
effectively creating a wide logic analyzer. For production
testing, the registers generate signatures which are verified at
the end of each test. Fault coverage is significantly increased
without requiring special ATE features. These registers are
separate structures which do not affect the processor’s logic
or add a noticeable load to the observed signals. They use
the processor’s clock to ensure synchronous behavior and
avoid any special clock requirements. These internal test
points partition the chip into three fully observed sections.
This partitioning significantly reduces the fault grading cost,
because both the test sets and faults are divided into smaller
problems. The observability scan chain is also used for logic
and circuit debug on the tester as well as on the system.
Problems on the chip can be narrowed down to a certain
area by comparing the scan output of simulated RTL model to
the scan output from silicon. The scan features are especially
useful in debugging the processor while it is plugged into the
system.

VI. CONCLUSION

Despite the microarchitectural and hardware complexity
inherent in out-of-order superscalar processors, this chip
achieves high clock rates and functional correctness. Its design
emphasizes concurrency and latency hiding techniques to
efficiently run large real-world applications. A single user
operating system booted 13 days after the first silicon was
received quickly followed by Multiuser, MP UNIX, and
Windows NT running at 200 MHz.

The performance of systems with an aggressive memory
hierarchy gives peak performance of Spec95int of 9 and
Spec95fp of 19. Although performance can be improved by
targeted compiler optimizations, existing codes run efficiently
without recompilation.
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