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Abstract

Website fingerprinting attacks, which use statistical anal-
ysis on network traffic to compromise user privacy, have
been shown to be effective even if the traffic is sent over
anonymity-preserving networks such as Tor. The classical
attack model used to evaluate website fingerprinting attacks
assumes an on-path adversary, who can observe all traffic
traveling between the user’s computer and the Tor network.

In this work we investigate these attacks under a different
attack model, in which the adversary is capable of running a
small amount of unprivileged code on the target user’s com-
puter. Under this model, the attacker can mount cache side-
channel attacks, which exploit the effects of contention on
the CPU’s cache, to identify the website being browsed. In
an important special case of this attack model, a JavaScript
attack is launched when the target user visits a website con-
trolled by the attacker. The effectiveness of this attack sce-
nario has never been systematically analyzed, especially in
the open-world model which assumes that the user is visit-
ing a mix of both sensitive and non-sensitive sites.

In this work we show that cache website fingerprinting
attacks in JavaScript are highly feasible, even when they
are run from highly restrictive environments, such as the
Tor Browser. Specifically, we use machine learning tech-
niques to classify traces of cache activity. Unlike prior
works, which try to identify cache conflicts, our work mea-
sures the overall occupancy of the last-level cache. We show
that our approach achieves high classification accuracy in
both the open-world and the closed-world models. We fur-
ther show that our attack is more resistant than network-
based fingerprinting to the effects of response caching, and
that our techniques are resilient both to network-based de-
fenses and to side-channel countermeasures introduced to
modern browsers as a response to the Spectre attack. To
protect against cache-based website fingerprinting, new de-
fense mechanisms must be introduced to privacy-sensitive
browsers and websites.

1 Introduction

Over the last decades the World Wide Web has grown from
an academic exercise to a communication tool that encom-
passes all aspects of modern life. Users use the web to ac-
quire information, manage their finances, conduct their so-
cial life, and more. This shift to the so called virtual life has
resulted in new challenges to users’ privacy. Monitoring the
online behaviour of users may reveal personal or sensitive
information about the users, including information such as
sexual orientation or political beliefs and affiliations.

Several tools have been developed to protect the online
privacy of users and hide information about the websites
they visit [17, 19, 68]. Prime amongst these is the Tor
network [19], an overlay network of collaborating servers,
called relays, that anonymously forward Internet traffic be-
tween users and web servers. Tor encrypts the network traffic
of all of the users, and transmits it between relays in a way
that prevents external observers from identifying the traffic
of specific users. In addition to the network itself, the Tor
Project also provides the Tor Browser [77], a modified ver-
sion of the Mozilla Firefox web browser, that further protects
users by disabling features that may allow web sites to track
the users.

Past research has demonstrated that encrypting traffic is
not sufficient for protecting the privacy of the users [10, 28,
34, 35, 36, 44, 57, 63, 64, 70, 83, 84]. Observable patterns
in the metadata of encrypted traffic, specifically, the size of
the transmitted data, its direction, and its timing, may reveal
the web page that the user is visiting. Applying such website
fingerprinting techniques to Tor traffic results in a success
rate of over 90% in identifying the websites that a user visits
over Tor [70].

In this paper, we focus on an alternative attack model of
exploiting microarchitectural side-channels, a less explored
option for website fingerprinting. These attacks exploit in-
formation leaks through shared microarchitectural compo-
nents such as caches [26]. The attack model assumes an ad-
versary that can run untrusted code on the same hardware as
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the victim’s browser, an assumption that can be justified in
situations including multiuser systems, virtualized environ-
ments, and cloud-based services. These attacks observe the
internal state of the target PC, rather than the network traf-
fic. As such they offer the potential of overcoming traffic
shaping, often proposed as a defense for website fingerprint-
ing [11, 12, 15, 60, 85]. Similarly, they may be applicable in
scenarios where network-based fingerprinting is known to be
less effective, such as when the browser caches the contents
of the website [35].

One of the most compelling vectors for deployment of mi-
croarchitectural side-channel attacks is through JavaScript
code injected into the user’s web browser through a ma-
licious advertisement or pop-up window. Documents re-
leased by former NSA contractor Edward Snowden indicate
that some nation-state agencies have the operational capa-
bility to exploit this vector on a wide scale. In March 2013
the German magazine Der Spiegel reported on the existence
of a tool called QUANTUMINSERT, which the GCHQ and
the NSA could use to inject malicious code to any web-
site [74]. The Der Spiegel claims that the GCHQ success-
fully used this tool to attack the computers of employees
at the partly-government-held Belgian telecommunications
company Belgacom, and that the NSA used the same tech-
nology to target high-ranking members of the Organization
of the Petroleum Exporting Countries (OPEC) at the organi-
zation’s Vienna headquarters. Finally, malicious advertise-
ments are a viable option for injecting cache side-channel
attacks to browsers [27].

For a small number of websites, under the closed-world
model, Oren et al. [61] show the possibility of fingerprint-
ing via malicious JavaScript code. However, beyond show-
ing the ability to distinguish between a handful of websites,
their work does not provide an analysis of the effective-
ness of the technique. Furthermore, following the disclo-
sure of the Spectre and the Meltdown attacks, which can
also be potentially delivered via malicious JavaScript in-
jection [46, 54], major vendors deployed defenses against
browser-borne side-channel attacks. In particular, all mod-
ern browsers have reduced the resolution of the JavaScript
time function, performance.now(), by several orders of
magnitude [66, 82], making it difficult to tell apart cache hits
and cache misses. Traditionally, cache attacks require high-
resolution timers, and while mechanisms to generate such
timers in web browsers have been published [30, 47, 72], it
is not clear that these can be used for website fingerprinting.

The Tor Browser poses a special challenge for cache at-
tacks. Its timer has a resolution of 100 ms, two orders of
magnitude coarser than any mainstream browser. Further-
more, it disables many features commonly supported by
browsers, preventing known attack avenues. To the best
of our knowledge, no microarchitectural attacks have so
far been demonstrated via Javascript injection in the Tor
Browser.

Thus, in this paper we ask: Are cache-based attacks a vi-
able option for website fingerprinting?

1.1 Our Contribution

We answer this question in the affirmative. We design and
implement a cache-based website fingerprinting attack, and
evaluate it in both the closed-world and the open-world mod-
els. We show that in both models our JavaScript-based at-
tacker achieves high fingerprinting accuracy even when ex-
ecuted on modern mainstream browsers that include all re-
cently introduced countermeasures for side-channel (Spec-
tre) attacks. We further show that our attack is effective even
in the highly restrictive environment of the Tor Browser, al-
though with a drop in accuracy.

Our attack consists of collecting traces of cache occu-
pancy while the browser downlods and renders web sites.
Adapting the techniques of Rimmer et al. [70], we use deep
neural networks to analyze and to classify the collected
traces. By focusing on cache occupancy rather than on activ-
ity within specific cache sets, our attack avoids the need for
high resolution timers required by prior cache-based attacks.
Furthermore, because our technique does not depend on the
layout of the cache, it can overcome proposed countermea-
sures that randomize the cache layout [55, 67, 86].

Finally, we investigate the source of the information in the
cache occupancy traces and show that they contain informa-
tion from both the networking activity and the rendering ac-
tivity of the browser. Using information from the rendering
activity allows our attack to remain effective even in scenar-
ios that thwart network-based fingerprinting, such as when
the browser retrieves data from its response cache and not
from the network, or when the network traffic is shaped.

More specifically, we make the following contributions:

• We design and implement the cache occupancy side-
channel attack, which can operate with the low timer
resolution supported in modern JavaScript engines. Our
attacks only require a sampling rate six orders of mag-
nitude lower than required for the prior attacks of Oren
et al. [61] (Section 4).

• We evaluate the use of two machine learning tech-
niques, CNN and LSTM, for fingerprinting websites
based on the cache activity traces collected while loaded
by the browsers (Section 5).

• We show that cache-based fingerprinting has high ac-
curacy in both the closed- and the open-world models,
under a variety of operating systems and browsers (Sec-
tion 6).

• We evaluate both fingerprinting methods without delet-
ing the browser response cache, and show that while the
accuracy of network-based fingerprinting drops signifi-
cantly, the accuracy of cache-based fingerprinting is not
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affected (Section 7.3).

• We show that cache-based fingerprints contain informa-
tion both from the network activity and from the ren-
dering activity of the target device. Therefore, cache-
based fingerprinting maintains a high accuracy even in
the presence of traffic molding countermeasures which
force a constant bit rate on network traffic. (Sec-
tion 7.4).

2 Background

2.1 Tor

Tor, The Onion Router [19], is a collection of collaborating
servers called relays, designed to provide privacy for net-
work communication. Tor aims to protect users from on-path
adversaries that can observe the network traffic. In this sce-
nario, a user uses a PC to browse the web, and an adversary
positioned between the user’s PC and the destination web
server captures the information that the user exchanges with
the web server.

A common protection for such an attack model is to use
encryption, e.g., using protocols such as TLS [18] which un-
derlies the security of the HTTPS scheme [69]. However,
this solution only protects the contents of the communica-
tion, leaving the identity of the communicating parties ex-
posed to the adversary. Knowing that users merely con-
nected to a certain sensitive website may be enough to in-
criminate them, even if the actual data exchanged over the
secure connection is not known. This risk became a real-
ity in 2016, as tens of thousands of individuals were perse-
cuted by the Turkish government for accessing the domain
bylock.net [48].

The main aim of Tor is thus to protect the identity of the
communicating parties. Tor achieves this protection by for-
warding the users’ communication through a circuit consist-
ing of a few (typically three) Tor relays. The user encrypts
the network traffic with multiple layers of encryption, and
each relay in the circuit decrypts a successive layer to find
out where to forward the traffic. See Dingledine et al. [19]
for further information.

2.2 Website Fingerprinting Attacks and De-
fences

In the conventional attack model of a network-level attacker,
much previous work has demonstrated the ability of an ad-
versary to make probabilistic inferences about users’ com-
munications via statistical analysis, even if these commu-
nications are in their encrypted form. These works have
investigated both the selection of features (such as packet
sizes, packet timings, direction of communication), as well
as the design of classifiers (such as support vector ma-

chines, random forests, Naive Bayes) to make accurate pre-
dictions [10, 28, 34, 35, 36, 44, 57, 63, 64, 70, 83, 84]. In
response, several defense mechanisms have been proposed in
the literature [11, 12, 15, 60, 85]. The common idea behind
these defenses is to inject random delays and spurious cover
traffic to perturb the traffic features and therefore obfuscate
users’ communications. A common point of all of these
defenses is a typical trade-off between latency/bandwidth
and privacy, and thus they face deployment hurdles. Rim-
mer et al. [70] have recently proposed a family of classi-
fiers based on deep learning algorithms such as SDAE, CNN
and LSTM, which operate on the raw network traces and are
therefore less sensitive to ad-hoc defenses against particular
traffic features.

2.3 Cache Side-Channel Attacks
When programs execute on a processor, they share the
use of microarchitectural components such as the cache.
This sharing may result in unintended communication chan-
nels, often called side channels, between programs [26, 38],
which may be used to leak secret information. In partic-
ular, cache-based attacks, which exploit contention on one
of the processor caches, can leak secrets such as crypto-
graphic keys [4, 25, 62, 65, 78], keystrokes [31], address
layout [22, 30, 32], etc.
Cache Operation. Caches bridge the speed gap between
the faster processor and the slower memory. The cache is a
small bank of memory, which stores the contents of recently
accessed memory locations. Most caches in modern proces-
sors are set associative. The cache is divided into partitions
called sets. Each memory location maps to a single set and
can only be cached in the set it maps to. When the processor
needs to access a specific memory location, it successively
searches in a hierarchy of caches. In a cache hit, when the
contents of the required address is found in the cache, access
is performed on the cached contents. Otherwise, in a cache
miss, the process repeats on the next cache level. A miss on
the last-level cache (LLC) results in a time-consuming access
to the RAM.
The Prime+Probe Technique. Past cache-based attacks
from web browsers [27, 61] employ the Prime+Probe tech-
nique [62, 65], which exploits the set-associative structure.
Each round of attack consists of three steps. In the first step,
the cache is primed, i.e., the attacker completely fills some
of the cache sets with its own data. The attacker then waits
some time to allow the victim to execute. Finally, the at-
tacker probes the cache by measuring the time it takes to
access the previously-cached data in each of the sets. If the
victim accesses memory locations that map to a monitored
cache set, the victim’s memory contents will replace the at-
tacker contents in the cache. Hence, the attacker will need to
retrieve the data from lower levels in the hierarchy, increas-
ing the access time to its data. Prime+Probe has been used
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for attacks on data [62, 65] and instruction [3, 4] caches, as
well as for attacks on the LLC [42, 56]. It has been shown
practical in multiple settings, including in across different
virtual machines in cloud environments [39] and from mo-
bile code [27, 61].

Countermeasures in JavaScript. The time difference be-
tween the latencies of a memory access and cache access is
on the order of 0.1 µs. To distinguish between cache hits
and misses, cache attacks typically require a high resolution
timer. Following the publication of the first demonstration
of a cache attack in JavaScript [61], some browsers started
reducing the resolution of the timers they provide as a coun-
termeasure for cache side channel attacks. This approach
become wide-spread after the disclosure of the Spectre at-
tack [46], and now all mainstream browsers incorporate this
countermeasure. Furthermore, while non-traditional timers
in browsers have been identified [24, 47, 72], browsers and
extensions have since disabled many of the features that al-
low sub-microsecond resolution [58, 66, 73]. An extreme
case of this behaviour can be found in the Tor Browser,
which restricts the timer resolution to 100 ms, or 10 Hz.

Several of the previously discovered timers rely on
browser features that are accessible from JavaScript. These
are not accessible in environments such as Cloudflare Work-
ers [7], which rely on the absence of high-resolution timers
to protect against timing attacks [80].

2.4 Related Work
Several past works have looked at the possibility of perform-
ing website fingerprinting based on local side-channel infor-
mation. In all of these works, which we survey in Table 1,
the adversary observes some property of the system while
the victim browser is rendering a webpage. The adversary
then applies a machine learning classifier to the observed
side-channel trace to identify the rendered website.1 Some
of these works assume that the adversary has malicious con-
trol over a hardware component or peripheral [16, 53, 88].
Others assume that the adversary can execute arbitrary na-
tive code on the target hardware [33, 43, 49, 75]. Yet others
make the much more modest assumption that the adversary
can induce the victim to render a webpage containing mali-
cious JavaScript code [8, 45, 61, 81]. We investigate the last
two models.

Kim et al. [45] abuse a data leak in the Chrome imple-
mentation of the Quota Management API, which has been
since fixed. Our attack, in contrast, is based on a funda-
mental property of the CPU running the browser application,
which is far less trivial to fix. (See Section 9.) Moreover, the
mitigations put in place as part of the response to the Spec-
tre and Meltdown disclosures make the high sampling rates

1 A different but closely related class of attacks are “history sniffing” at-
tacks, such as [51, 87], in which the attacker wishes to learn which websites
the victim has visited in the past.

exploited thus far [61, 81] unattainable in modern secure
browsers. Our attack, in contrast, achieves high accuracy at
drastically lower sampling rates and is capable of classifying
a significant number of websites at sampling rates as low as
10 Hz. To the best of our knowledge, no cache attack that
uses such low clock resolutions has been demonstrated.

In addition, Oren et al. [61] only recorded a small num-
ber of traces from a few popular websites, and did not in-
vestigate the effectiveness of cache-based fingerprinting in
open-world contexts, or in scenarios where various anti-
fingerprinting measures are in place. We address all of these
shortcomings in this work. Furthermore, while Oren et al.
[61] do target the Tor Browser, the attack code executes in a
different mainstream browser. Unlike our work, they do not
demonstrate an attack from JavaScript code running within
the Tor Browser.

Booth [8] is able to classify a moderate amount of web-
sites using a non-cache-based method with a millisecond
clock, their attack saturates all of the victim’s CPU cores
with math-intensive worker threads, making it highly notice-
able and easy to detect by the victim.

3 The Website Fingerprinting Attack Model

Target PC

Target AdversaryTarget Browser

Tor Network

Sensitive 

Website

Figure 1: The classical website fingerprinting attack model.
The (passive) adversary monitors the traffic between the tar-
get user and the Tor network.

The classical attack model used to evaluate website fin-
gerprinting attacks is presented in Figure 1. In this model, a
targeted user uses a web browser to display a sensitive web-
site. To protect their privacy, the user does not connect to
the website directly, but instead uses the Tor network for the
connection. The attacker is typically modeled as an on-path
adversary, who is capable of observing all traffic entering
and leaving the Tor network in the direction of the target user.
The adversary cannot understand the contents of the network
traffic since it is encrypted as it enters the Tor network. The
adversary is furthermore unable to directly determine the ul-
timate destination of the communications after it exits the
Tor network, thanks to Tor’s routing protocol. Finally, due
to the encryption and the validation of the Tor network, the
attacker is unable to modify the traffic without terminating
the connection. An important thread of research on the secu-
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Table 1: Related work on website fingerprinting based on local side channels.

Sampling
Work Target Side Channel Attack Model rate [Hz]

Clark et al., 2013 [16] Chrome (Mac, Win, Linux) Power consumption Hardware 250000
Yang et al., 2017 [88] Multiple smartphones Power consumption Hardware 200000
Lifshits et al., 2018 [53] Android Browser, Chrome Android Power consumption Hardware 1000
Jana and Shmatikov, 2012 [43] Chrome Linux, Firefox Linux, Android

Browser (VM)
App memory footprint Native code 100000

Lee et al., 2014 [49] Chromium Linux, Firefox Linux GPU memory leaks Native code N/A
Spreitzer et al., 2016 [75] Chrome Android, Android Browser, Tor

Android
Data-Usage Statistics Native code 20–50

Gülmezoglu et al., 2017 [33] Chrome Linux (Intel and ARM), Tor
Linux

Performance counters Native code 10000

Oren et al, 2015 [61] Safari MacOS, Tor MacOS Last-level cache JavaScript 108

Booth, 2015 [8] Chrome (Mac, Win, Linux), Firefox
Linux

CPU activity JavaScript 1000

Kim et al., 2016 [45] Chromium Linux, Chrome (Win, An-
droid)

Quota Management API JavaScript N/A

Vila and Köpf, 2017 [81] Chromium Linux, Chrome Mac Shared event loop JavaScript 40000
This work Chrome (Win, Linux), Firefox (Win,

Linux), Safari MacOS, Tor Linux
Last-level cache JavaScript 10–500

rity of Tor has investigated the ability of such an adversary
to perform statistical traffic analysis of encrypted traffic, and
then to make probabilistic inferences about users’ commu-
nications [10, 34, 35, 36, 44, 57, 63, 64, 70, 83, 84]. Gong
et al. [28] suggest a variation on this scheme, in which the
attacker remotely probes routers to estimate the load of the
network traffic they process and performs the statistical anal-
ysis based on this estimated traffic.

Target PC

Target

Architectural 

Boundary

Sensitive Browser

Sensitive 

Website

Standard Browser

Standard 

Website

Adversary

Tor Network

Figure 2: Remote cache-based website fingerprinting attack
model. The remote attacker injects malicious JavaScript
code into a browser running on the target machine.

In this work we discuss a different attack model, presented
in Figure 2. In this model, the target user has two concur-

rent browsing sessions. In one session, the user browses to
an adversary-controlled site, which contains some malicious
JavaScript code. In the other session, the user browses to
some sensitive web site. These two sessions can be carried
out on the same browser, on two different browsers belong-
ing to the same user, or even on two browsers residing in
two completely isolated virtual machines which share the
same underlying hardware [71]. Due to architectural bound-
aries, such as sandboxing or process isolation, the malicious
code cannot directly observe the internal state of the sensitive
session. Hence, the adversary cannot directly determine the
ultimate destination of any communication issued from the
sensitive session, even when the sensitive session is using
a direct unencrypted connection to the remote server. The
malicious code can, however, observe the microarchitectural
state of the processor, and use this information to spy on the
sensitive session.

One possible way of causing the target to browse such an
adversary-controlled site is a phishing attack, where the at-
tacker sends fraudulent messages, purporting to be from a
benign source, that induces the victim to click on a link to
a malicious web site. Alternatively, the attacker may pay
an advertisement service to display a (malicious) advertise-
ment when the user visits a third-party website [27]. Finally,
when users do not encrypt some part of their traffic, an ac-
tive on-path adversary is immediately capable of carrying out
this kind of attack by actively injecting this malicious code
into all traffic passing through it from the network to the tar-
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get computer. Importantly, even a more restricted attacker
can still mount this attack. For example, if the user simul-
taneously runs one browsing session over a VPN connec-
tion for sensitive tasks, and another browsing session over
an unsecured connection for mundane tasks, a remote attack
launched over the standard link can target the data exchanged
over the secured link. Such an attack can be launched ei-
ther by compromising the link, or by compromising any of
the components of the insecure website. The main chal-
lenge of the remote attack model is the extremely restricted
JavaScript runtime, which requires the attacker code to be
written in a particular way, as we describe further in Sec-
tion 4.

Regardless of the delivery vector, cache-based fingerprint-
ing has a strong potential advantage over network-based fin-
gerprinting, since it can indirectly observe both the com-
puter’s network activity and the browser’s rendering process.
As we demonstrate in Section 7.4, both of these elements
contribute to the accuracy of our classifier.

4 Data Collection

4.1 Creating memorygrams

The raw data trace for network-based attacks takes the form
of a network trace, commonly in the pcap file format, which
contains a timestamped sequence of all traffic observed on a
certain network link. The corresponding data trace in the
case of cache attacks is the memorygram [61]—a trace of
the cache access latency measured at a constant sampling
rate over a given time period. The memorygrams of Oren
et al. [61] describe the latency of multiple individual sets
or groups of sets at each point in time, resulting in a two-
dimensional array. In contrast, in this work we use a simpli-
fied, one-dimensional memorygram form. The contents of
each entry in our memorygrams is a proxy for the occupancy
of the cache at the specific time period. We collect memo-
rygrams while the browser loads and displays websites, and
use the data as fingerprints for website classification.

The Cache Occupancy Channel. Unlike prior works [27,
61], which use the Prime+Probe side-channel attack, we use
a cache occupancy channel. The main difference is that the
Prime+Probe attack measures contentions in specific cache
sets, whereas our attack measures contention over the whole
cache. Specifically, our JavaScript attack allocates an LLC-
sized buffer and measures the time to access the entire buffer.
The victim’s access to memory evicts the contents of our
buffer from the cache, introducing delays for our access.
Thus, the time to access our buffer is roughly proportional
to the number of cache lines that the victim uses.

Overcoming Hardware Prefetchers. Ideally, we would
like to collect information across the whole cache. Intel
processors, however, try to optimize memory accesses by

prefetching memory locations that the processor predicts
will be accessed in the future. Because prefetching changes
the cache state, we need to fool the prefetchers. To fool the
spatial prefetcher [41], we use the technique of Yarom and
Benger [90] and do not probe adjacent cache sets. To fool
the streaming prefetcher, which tries to identify sequences
of cache accesses, we use a common approach of masking
access patterns by randomizing the order of the memory ac-
cesses we perform [56, 62].

Spatial Information. Compared with the Prime+Probe
attack, the cache occupancy channel does not provide any
spatial information. That is, the adversary does not learn
any information on the addresses that the victim accesses.
While this is a clear disadvantage of the cache occupancy
channel, our attack does not require spatial information. The
main reason is that modern browsers have complex memory
allocation patterns. Consequently, the location that data is
allocated changes each time a page is downloaded, and the
location carries little information on the downloaded page.
In practice, not having spatial information is also an advan-
tage. Without it, there is no need to build eviction sets for
cache sets, a process that can take significant time [27].

Website Memorygrams. We capture memorygrams when
the browser navigates to websites and displays them. We use
the same JavaScript-based collection method for all main-
stream browsers other than the Tor Browser, where we probe
the cache at a fixed rate of one sample every 2 ms. We con-
tinue the probe for 30 seconds, resulting in a vector of length
15,000. When a probe takes longer than 2 ms, we miss the
slot of the next probe. We use a special value to indicate this
case.

When the attack code is launched from within the Tor
Browser, where the timer resolution is limited to 100 ms, we
do not measure how long a sweep over the cache takes, but
instead count how many sweeps over the entire cache fit into
a single 100 ms timeslot. In addition, we do not probe for 30
seconds in this setting, but rather for 50 seconds, to account
for the slower response time over the Tor network. Hence,
Tor memorygrams contain 500 measurements over the entire
50 second measurement time period.

The native code memorygrammer used for the evaluations
in Section 7 does not suffer from a reduced timing resolution
when measuring the Tor browser. Therefore, on mainstream
browsers it runs for 30 seconds and produces 15,000 entries,
and on the Tor browser it runs for 50 seconds and produces
25,000 entries.

Sanity Check. Before proceeding, we want to verify
that memorygrams can be used for fingerprinting. Indeed,
Figure 3 shows graphical representations of memorygrams
of three sites: Wikipedia (https://www.wikipedia.
com), Github (https://www.github.com), and Ora-
cle (https://www.oracle.com), collected through the
native code memorygrammer. Each memorygram is dis-
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Wikipedia

Github

Oracle

Figure 3: Examples of memorygrams. Time progresses from
left to right, shade indicates the number of evictions. (Darker
shades correspond to more eviction.)

played as a coloured strip, where time goes from left to right
and the shade corresponds to cache activity at each time.
(Lighter shades correspond to less evictions.) We see that the
three memorygrams of each site, while not identical, are sim-
ilar to each other. The memorygrams of different websites
are, however, very different from each other. This indicates
that memorygrams may be used for identifying websites.

4.2 Datasets

Closed World Datasets. We evaluate our cache-based
fingerprinting on six different combinations of browsers and
operating systems, summarized in Table 5. Many early
works on website fingerprinting operated under a closed
world assumption, where the attacker’s aim is to distinguish
among accesses to a relatively small list of websites. Our
closed world datasets follow this line of work. These datasets
consist of 100 traces each for a set of 100 websites, to a total
of 10,000 memorygrams. We use the same list of 100 web-
sites that Rimmer et al. [70] selected from the top Alexa sites.
(See Appendix A for a complete list of websites included.)
Similar to previous works, no traffic molding is applied and
only one tab is opened at a time. The browser’s response
cache, however, is not cleared before accessing each web-
site, an aspect of the experiment we analyze in more detail
in Section 7.

Open World Datasets. One common criticism of the closed
world assumption is that it requires the attacker to know the
complete set of websites the victim is planning to visit, al-
lowing the attacker to prepare and train classifiers for each
of these websites. This assumption was challenged by many
authors, for example Juárez et al. [44]. To address this crit-
icism, website fingerprinting methods are often evaluated in

an open-world setting. In this setting, the attacker wishes to
monitor access to a set of sensitive websites, and is expected
to classify them with high accuracy. Additionally, there is a
large set of non-sensitive web pages, all of which the attacker
is expected to generally label as “non-sensitive”.

To evaluate our fingerprinting method in the open-world
settings, we augment the closed-world datasets with addi-
tional 5,000 traces, each collected for a single unique web-
site, again using the list of websites provided by Rimmer
et al. [70]. The base rate for this setting is 33.3%, since
a trivial classifier can simply decide that all pages are non-
sensitive.

5 Machine Learning

5.1 Problem Formulation
Website fingerprinting is generally formulated as a super-
vised learning problem, consisting of a template building
step and an attack step. In the template building step, the
adversary visits each target website multiple times and col-
lects a set of labeled traces (either network traces or memo-
rygrams), each corresponding to a visit to a certain website.
Next, the adversary trains a classifier algorithm on these la-
beled traces, using either classical machine learning methods
or deep learning methods.

In the attack step, the adversary is presented with a set of
unlabeled traces, each one corresponding to a visit to an un-
known website. The adversary then applies the previously
trained classifier to each of these traces and outputs a guess
for each trace. The accuracy of the classifier is finally calcu-
lated as the percentage of the correctly assigned labels.

5.2 Deep Learning Models
Early works on website fingerprinting, starting from Cheng
and Avnur [14], used classical machine learning methods
such as Naive Bayes, Support Vector Machine (SVM) and
k-Nearest Neighbors (k-NN). As a prerequisite step to run-
ning these classical machine learning methods, the adversary
needs to apply an additional feature extraction step which
transforms the raw trace into a more succinct representation.
Since these features were chosen through human insight into
the nature of network traffic, there was no immediate way of
directly applying them to memorygram analysis.

Abe and Goto [2] and later Rimmer et al. [70] suggest
using deep learning for website fingerprinting. Deep learn-
ing performs automatic feature learning from the raw data,
reducing the reliance on human insight at the cost of a
larger required training set. Rimmer et al. [70] show that,
given a large enough training set, deep-learning website-
fingerprinting approaches are as effective as earlier meth-
ods which require manual feature selection. An advantage of
this approach is that it allows us to compare network-based
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and cache-based fingerprinting based on the merit of the raw
data, rather than on the specific choice of features.
Deep Neural Network Configuration.

A deep neural network (DNN) is typically configured as a
sequence of non-linear layers which transform the raw data,
first extracting salient features and then selecting the appro-
priate ones [29]. Every layer in a DNN consists of a set of
artificial neurons, each connected to a set of outputs from the
previous layers. At the forward propagation stage, The acti-
vation function is applied to the product of the each neuron’s
input and it’s weight value, and then forwarded to the next
layer.

For the last layer in the DNNs we evaluate we use a soft-
max layer, which outputs a vector containing a-posteriori
probabilities for each one of the classes.

The process of training the neural network uses back-
propagation to update the weights of each neuron to achieve
a minimum loss at the output. First, the model calculates the
cost between the true classification of the measurement and
the predicted value using a loss function. Next, the model
updates the weights of the each neuron based on the calcu-
lated loss. Every round of forward propagation and back-
propagation is called an epoch. A neural network model runs
multiple epochs to learn the weights for accurate classifica-
tion.

We evaluate deep learning using two classifier models,
Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) networks [37]. A CNN uses a se-
quence of feature mapping layers alternating between con-
volutions and max-pooling. Each of the layers sub-samples
the previous layer, iteratively reducing the size of the input
to a more succinct representation, while preserving the in-
formation they encode. Each convolutional layer is a neural
network specialised for detecting complex patterns in its in-
put. The convolution layer applies several filters to the input
vector, each of which is designed to identify an abstract pat-
tern in a sequence of input elements it is provided with. The
max-pooling layers reduce the dimensionality of the data by
subsampling the filters, choosing the maximum value from
adjacent groups of neurons applied by the filters. This alter-
nating sequence of layers extracts complicated features from
the input and produces vectors short enough for the classi-
fiers. The feature mapping layers are followed by a dense
layer, in which every neuron is connected to every output of
the feature extraction phase. The LSTM-based network has
an initial feature selection step similar to the CNN, but then
adds an additional layer in which each neuron has a memory
cell, with the output of this neuron determined both by its
inputs and by the value of this memory cell. This allows the
classifier to identify patterns in time-based data.
Hyperparameter Selection.

Hyperparameters describe the overall structure of the
DNN and of each layer. The choice of hyperparameters de-
pends on the specific classification problem. For network-

Table 2: Hyperparameters for the CNN classifier
Hyperparameter Value Space

Optimizer Adam Adamax, Adam, SGD, RMSprop
Learning rate 0.001 0.001–0.002
Batch size 100 40–100
Training epoch 20–30 Early stop by accuracy
Convolution layers 3 3–4
Input units (FF) 15000 15000–25000
Input units (Tor) 25000 15000–25000
CNN activation relu relu, tanh
Kernels 256 2–512
Kernel size 16,8,4 2–31
Pool size 4 2–8

Table 3: Hyperparameters for the LSTM classifier
Hyperparameter Value Space

Optimizer Adam Adamax, Adam, SGD, RMSprop
Learning rate 0.001 0.001–0.002
Batch size 100 40–100
Training epoch 20–30 Early stop by accuracy
Convolution layers 2 1–3
Input units (FF) 15000 15000–25000
Input units (Tor) 25000 15000–25000
CNN activation relu relu, tanh
LSTM activation tanh relu,tanh
Kernels 256 2–512
Kernel size 16,8 2–32
Pool size 4 2–8
Dropout 0.2 0.1–0.2
LSTM units 32 8,32

based fingerprinting, we replicated the parameters specified
in the dataset provided by Rimmer et al. [70]. For cache-
based fingerprinting, we manually evaluated several choices
for each hyperparameter.

To prevent overfitting, we use 10-fold cross validation. We
split each dataset consisting of traces into 10 folds of equal
size, and select one fold, consisting of 10% of the traces, as a
test set. The remaining 90% of the traces are used for train-
ing the classifier, with 81% serving as the training set and
9% as the validation set. The model trains on the training
set and the evaluation is done on the test set. The number of
epochs is regulated with an Early-Stop function which stops
the epochs when the accuracy of the validation set no longer
increases over successive iterations. The selected hyperpa-
rameters are summarized in Tables 2, 3, and 4.

For the CNN classifier we use three pairs of convolution
and max pooling layers. For the LSTM classifier we use two.
As discussed above, the traces captured by the code running
within the Tor Browser contain only 500 measurements, due
to the reduced timer resolution. For these shorter traces, we
modified the architecture of our LSTM-based classifier. The
feature selection of this classifier contains only one convolu-
tion layer and we we only used a pool-size of three for the
max-pooling layer to limit the feature reduction before the
LSTM layer. In addition, because the small amount of fea-
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Table 4: Hyperparameters for the LSTM classifier for the Tor
attack

Hyperparameter Value Space

Optimizer Adam Adamax, Adam, SGD, RMSprop
Learning rate 0.001 0.001–0.002
Batch size 100 40–100
Training epoch 20–30 Early stop by accuracy
Convolution layers 1 1–3
Input units 500 500
CNN activation relu relu, tanh
LSTM activation tanh relu,tanh
Kernels 256 2–512
Kernel size 32 2–32
Pool size 3 2–8
Dropout 0.4 0.1–0.4
LSTM units 128 8,32,128

tures we could increase the LSTM units to 128 for learning
more complex patterns from the features.

6 Results

All of the results in this section were obtained by using keras
version 2.1.4, with TensorFlow version 1.7 as the back end,
running on two Ubuntu Linux 16.04 servers, one with two
Xeon E5-2660 v4 processors and 128 GB of RAM, and one
with two Xeon E5-2620 v3 processors and 128 GB of RAM.
Our machine learning instances took approximately 40 min-
utes to run in this configuration.

Table 5 presents the fingerprinting accuracy we obtain.
Recall that in this scenario the JavaScript interpreter of the
targeted browser executes the memorygrammer. Consider-
ing that all modern browsers reduced their timer resolution
and some added jitter as a countermeasure for the Spectre at-
tack [66, 82], the first question we need to address is whether
it is even possible to implement cache-based fingerprinting
attacks in such an environment.
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Figure 4: Cache probe latencies compared to modern
browser timing resolutions.

To answer this question, we measured the latencies of the

cache occupancy channel using a high-resolution timer while
the browser was downloading a web page. Figure 4 shows
the distribution of these latencies. The figure also uses ver-
tical lines to indicate the timer resolutions of the various
browsers. (See Table 5.) As we can see, even at the 2 ms
resolution of the Firefox 59 timer, it is possible to distinguish
between 80% of the probes which take less than 2 ms and the
remaining 20%. This is a welcome side-effect of the use of a
large buffer which is accessed at every probing step. None of
the cache probes we measured, however, took longer than the
100 ms clock period of the Tor Browser. Hence, when run-
ning within the Tor Browser, we count the number of probes
we can perform within each clock tick. (See Section 4.)

The next question is whether the information we collect
with this low resolution is sufficient for fingerprinting. In-
deed, Table 5 shows that in all of the environments we test
our classifier is significantly better than a random guess. Re-
markably, as our results show, even the highly restricted Tor
Browser can be used for mounting cache attacks, albeit with
a significantly lower accuracy than that of general-purpose
browsers.

6.1 Closed World Results
We first look at the typical closed-world scenario investi-
gated by past works. In mainstream browsers, our JavaScript
attack code is consistently able to provide classification ac-
curacies of 70–90%, well over the base rate of 1%. The Tor
Browser attack, however, achieves a lower accuracy of 47%.
If we, however, look not only at the top result output by the
classifier, but also check whether the correct website is one of
the top 5 detected websites, the accuracy of the Tor Browser
attack climbs to 72%, with a base rate of 5%. This method of
looking at the few most probable outputs of a classifier was
previously used in similar classification problems [13, 59].
With some a-priori information an attacker can deduce which
of the top 5 pages the victim has accessed.

We can compare the accuracy of our cache-based fin-
gerprinting to the one obtained by state-of-the-art network-
based methods, as reported by Rimmer et al. [70]. We see
that while there are differences between the classification ac-
curacy achieved in each case, the overall accuracy is com-
parable, assuming both attacks capture the same amount of
traces per website. As in the network-based setting, we be-
lieve that capturing more than 100 traces per website is likely
to increase the accuracy and the stability of our classifier.

6.2 Open World Results
We next turn to the more challenging open-world scenario,
in which the 100 sensitive webpages must be distinguished
from an additional set of 5,000 non-sensitive pages. As seen
in Table 5 the JavaScript-based website fingerprinting code
performs well under this scenario as well, again achieving
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Table 5: Accuracy obtained by in-browser memorygrammer— Mean (percents) and standard deviation.

Operating LLC Timer Closed World Open World
System CPU Size Browser Resolution CNN LSTM CNN LSTM

Linux i5-2500 6 MB Firefox 59 2.0 ms 78.5±1.7 80.0±0.6 86.8±0.9 87.4±1.2
Linux i5-2500 6 MB Chrome 64 0.1 ms 84.9±0.7 91.4±1.2 84.3±0.7 86.4±0.3
Windows i5-3470 6 MB Firefox 59 2.0 ms 86.8±0.7 87.7±0.8 84.3±0.6 87.7±0.3
Windows i5-3470 6 MB Chrome 64 0.1 ms 78.2±1.0 80.0±1.6 86.1±0.8 80.6±0.2
Mac OS i7-6700 8 MB Safari 11.1 1.0 ms 72.5±0.7 72.6±1.3 80.5±1.0 72.9±0.9
Linux i5-2500 6 MB Tor Browser 7.5 100.0 ms 45.4±2.7 46.7±4.1 60.5±2.2 62.9±3.3
Linux i5-2500 6 MB Tor Browser 7.5 (top 5) 100.0 ms 71.9±2.1 70.0±1.7 80.4±1.7 82.7±1.8

Figure 5: ROC curve of a JavaScript attack on Tor for Linux.

classification accuracy of 70–90%. We note that in most
cases the results are slightly better than the closed-world re-
sults. The reason is the larger size of the “non-sensitive”
class. As discussed earlier, this also significantly increases
the base rate for open-world scenarios to 33.3%.

As in the case of the closed-world setting, we can evaluate
the accuracy of the Tor Browser under a top-5 assumption.
Under this relaxation the Tor Browser attack achieves a high
accuracy rate of 83%, with a base rate of 37.3%.

The classification to sensitive vs. non-sensitive site is a
binary classification problem, We can, therefore, apply stan-
dard analysis techniques to this aspect of the results. We
achieved a near perfect classification in all of the open world
settings we evaluated, achieving an area under curve (AUC)
of more than 99% in all cases, as demonstrated by the ROC
curve of the Tor Linux open world dataset shown in Figure 5.

7 Robustness Tests

Having demonstrated the effectiveness of our website finger-
printing technique, we now turn our attention to its robust-
ness and test its resilience to issues known to affect network-
based fingerprinting.

Collection Host

Memorygrammer

Target Browser Network Tracer

Network

Test Harness

Figure 6: Data Collection Setup for the Robustness Tests.

7.1 Evaluation Setup

To compare the results of network fingerprinting with cache-
based fingerprinting, we need to modify out data collection
setup. The setup, illustrated in Figure 6, consists of two data
collection hosts. The memorygram collection host, which
simulates the victim’s machine, runs both the target browser
and the memorygrammer software. The network tracer sits
on-path between the memorygram collection hosts and the
Internet and collect a record of the network traffic. A test
harness written in Perl and Python invokes the memory-
grammer, the network tracer and the target browser at the
same time, then saves a correlated data record consisting of
the memorygram, the network trace in pcap format, and a
screenshot of the target web page for monitoring purposes.
For data collection, we use HP Elite 8300 desktop computers
featuring Intel Core i5-2500 CPUs at 3.30 GHz, with a 6 MB
last-level cache, running CentOS 7.2.1511 and either Firefox
59 or Tor Browser 7.5.

For the robustness tests we use a native-code memory-
grammer, which is based on the Prime+Probe implemen-
tation of Mastik, a side-channel toolkit released under the
GNU Public License [89]. We apply two modifications to
the Mastik code. First, we change the Prime+Probe code
to measure cache occupancy rather than activity in specific
cache sets. Secondly, we use the processor’s performance
counters [40] to count the number of cache evictions rather
than use the high resolution timer to identify evictions. The
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Table 6: Accuracy obtained in robustness tests — Mean (percents) and Standard deviation.

Firefox Network Firefox Cache Tor Network Tor Cache
Test CNN LSTM CNN LSTM CNN LSTM CNN LSTM

Baseline 86.4±1.0 93.2±0.5 94.9±0.5 94.8±0.5 77.6±1.6 90.9±0.7 72.7±0.7 80.4±0.5
Response cache enabled 56.1±1.5 70.6±1.5 92.2±0.8 92.2±0.5 55.5±1.7 65.9±1.0 86.1±0.5 86.3±0.6
Render only – – – – 1.0±0.0 1.0±0.0 63.3±1.1 63.9±1.5
Network only – – – – 77.6±1.6 90.9±0.7 19.9±1.8 51.9±2.7
Temporal drift – – – – 64.5±2.2 81.0±0.6 68.3±0.5 75.6±0.7

use of performance counters for attack purposes has already
been proposed and investigated in the past [6, 9, 50, 79].

7.2 Baseline Scenario

Our baseline scenario replicates the results of our closed
world JavaScript memorygrammer, as well as some of the
results of Rimmer et al. [70]. As we can see in Table 6, the
native-code memorygrammer gives a slightly better accuracy
than the JavaScript memorygrammer on Firefox. When at-
tacking the Tor browser, the native code memorygrammer
achieves much better results than the in-browser JavaScript
code. We believe that the cause of the improvement is the
higher probing accuracy afforded by the native-code mem-
orygrammer. In both browsers, the results of the native-
code memorygrammer are similar to those achievable with
network-based fingerprinting.

7.3 Enabling the Response Cache

Network-based fingerprinting methods, by definition, must
rely on network traffic to perform classification. Typically,
due to caching, many web pages are loaded with partial or
no network traffic. As specified in RFC 7234 [23], the per-
formance of web browsers is typically improved by the use
of response caches. When a web browser client requests a
remote resource from a web server, the server can specify
that a particular response is cacheable, and the web browser
can then store this response locally, either on disk or in mem-
ory. When the page is next requested, the web browser can
ask the server to send the response only if it has been mod-
ified since the last time it was accessed by the client. In
the case of a response cache hit, the server only returns a
short header instead of the complete remote resource, re-
sulting in a very short network traffic sequence. In some
cases, the client can even reuse the cached response without
querying the server for a remote copy, resulting in no net-
work traffic at all. Herrmann et al. [35] demonstrate a sig-
nificant decrease in the accuracy of web fingerprinting when
the browser uses the response cache. Indeed, deleting or dis-
abling the browser cache prior to fingerprinting attacks is a

common practice [63, 83].
We enable caching of page contents by the browser, and

measure the effect on fingerprinting accuracy. In the Firefox
browser we simply refrain from clearing the response cache
between sessions. For privacy reasons, the response cache
in the Tor browser does not persist across session restarts.
Hence, when collecting data on the Tor browser we “prime”
the cache before every recording by opening the web page in
another tab, allowing it to load for 15 seconds, then closing
the tab.

When we keep the browser’s response cache, the advan-
tage of cache-based website fingerprinting starts to emerge.
As Table 6 shows, the accuracy of the standard network-
based methods degrades when the response caching is en-
abled. We can see a degradation in accuracy of over 20% in
the fingerprinting accuracy.

In contrast, the cache-based methods are largely unaf-
fected by the reduction in network traffic, achieving high
accuracy rates. This result supports the conclusion that the
cache-based detection methods are not simply detecting the
CPU activity related to the handling of network traffic, mak-
ing them essentially a special case of network-based clas-
sifiers, but are rather detecting rendering activities of the
browser process.

7.4 Net-only and Render-only Results
Oren et al. [61] show that cache activity is correlated with
network activity, raising the possibility that cache-based fin-
gerprinting basically identifies the level of network activity.
To rule out this possibility and show that website rendering
also contributes to fingerprinting, we separate rendering (or
more precisely, data processing) activity from handling of
network data.

Render-Only Fingerprinting. To capture the data process-
ing activity, we neutralize the network activity by guarantee-
ing constant traffic levels. More specifically, we apply mold-
ing to the network traffic, ensuring that data flow between
the collection host and the network at a fixed bandwidth of
10 KB every 250 ms. To achieve that, we queue data trans-
mitted at a higher rate, or send dummy packets when the
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transmitted data does not fill the desired bandwidth. These
dummy packets are silently dropped by the receiver. The
approach is, basically, BuFLO [21], with τ = ∞, i.e., when
the data stream continues indefinitely. This approach has a
high bandwidth overhead compared to WTF-PAD and WT,
however, it is designed to ensure that the network traffic is
constant irrespective of the contents of the website. As ex-
pected, the raw network captures in this scenario all have the
exact same size, which happens to be twice as large as the
largest network capture recorded without traffic molding.

Because all the traces are identical, the network-based
classifier assigns the same class to all of the traces, and its
accuracy is the same as a random guess. The results of cache-
based fingerprinting show a drop in accuracy compared with
unmolded traffic. However, the accuracy is still significantly
better than a random guess. This experiment demonstrates
the resilience of cache-based website fingerprinting to mit-
igation techniques aimed at network-based fingerprinting,
and suggests that this privacy threat should be countered us-
ing a different class of mitigation techniques, as we explore
further in Section 9.

Network-Only Fingerprinting. In a complementing ex-
periment, we aim to capture only the network traffic. To
collect this dataset, we first capture actual traffic data from
a real browsing session. We then use a mock setup, that
does not involve a browser at all. Instead, we use two
tcpreplay [1] instances, one at the collection host, and
the other at a server, to emulate the network traffic, by re-
playing the data from the pcap file.

The results for this experiment show that the cache-based
classifier is capable of classifying many pages even when
no rendering activity is taking place. However, the accuracy
is significantly lower than in the case that rendering activity
does take place. In particular, our CNN classifier only detects
the correct website in about 20% of the cases, significantly
lower than the 73% we get for the matching closed-world
scenario. (But still much better than the 1% expected for a
random guess.) The accuracy of the network-based classifier
is the same as for the baseline, simply because the network
traffic is replicated.

Combining these two experiments we therefore conclude
that cache-based fingerprinting identifies features both in the
network traffic patterns and in the actual contents of the dis-
played web pages.

7.5 Dealing with Temporal Drift
The accuracy of network-based website fingerprinting
decays over time, when the contents of the website
changes [70]. Many websites use content management sys-
tems (CMS), in which the page layout is based on a fixed
template design, and only the resources loaded into this tem-
plate vary over time. Since, as we have shown, the cache-
based fingerprints capture rendering activities as well as net-

work activities, it would seem that the rendering-related
traces recorded by the cache-based method would have a
longer lifetime, and be more resistant to drift, than the
network-related traces captured by the traditional method.

To test this hypothesis, we repeat the data collection of
the baseline experiment after a delay of 36 days (start to
start). We then measure the ability of both cache-based
and network-based classifiers to accurately classify the new
traces, after being trained on the old traces. In this setting, we
see a drop of 5–10% in the accuracy of both classifiers. We
believe that further experiments are required for accurately
assessing how cache-based and network-based fingerprint-
ing handle temporal drifts.

8 Detecting Unknown Hardware Configura-
tions

In contrast to network-based fingerprinting, which is largely
target agnostic, cache-based fingerprinting needs to be tai-
lored to the precise hardware configuration of the victim ma-
chine, specifically the set count and associativity of its last-
level cache. Using a too large or a too small buffer reduces
the effectiveness of the technique, and eventually the accu-
racy of the classifier. There are, however, not that many pop-
ular configurations. For example, four cache configurations
(4096 or 8192 sets, 12 or 16 ways) cover most of the Intel
Core processor models.

If the target hardware configuration is known beforehand
(assuming, for example, that a particular user is singled out
for attack) the attacker can customize the parameters of the
JavaScript attack code to match the target PC’s parameters.
It would be interesting, however, to see how well an attacker
can remotely determine an unknown target’s cache config-
uration using JavaScript. To investigate this, we created a
JavaScript program that allocates a 20MB array in mem-
ory and iterates over it in several patterns which should fit
in well into different configurations of cache set-counts and
associativities. We then recorded the minimum, maximum
and mean access time per element, plus the standard devi-
ation, for each of these configurations. We collected 1,350
such measurements from multiple systems with cache sizes
of 3 MB, 4 MB, 6 MB, and 8 MB. We then used MATLAB’s
classification learner tool to apply a variety of machine learn-
ing classifiers to the measured data. Using both KNN and
SVM classifiers, we were able to correctly classify the con-
figuration of the target’s last-level cache with over 99.8%
classification accuracy under 5-fold cross validation. Inter-
estingly, even a simple tree-based classifier which compared
the minimum iteration time of three different configurations
to a predefined threshold was 99.6% accurate. We ported this
simple tree-based classifier to JavaScript, creating an LLC
cache size detector which we tested and found capable of ac-
curately detecting the cache sizes of 15 different machines
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with diverse browser, hardware and operating system con-
figurations, taking less than 300 ms to run in all cases. Thus
generic attacks that adapt to the specific hardware onfigura-
tion seem feasible.

9 Countermeasures

Most of the past research into cache attacks has been done
in the context of side-channel cryptanalysis. Due to the dif-
ferent scenario, many of the countermeasures typically sug-
gested for cache-based attack are no longer effective. Tech-
niques such as constant-time programming [5] are only ap-
plicable to regular code, typically found in implementations
of cryptographic primitives. It is hard to see how such
techniques can be applied to web browsers. Similarly, as
this work demonstrates, timer-based defenses that reduce the
timer frequency or add jitter are not effective.

Cache randomization techniques [55, 67, 86] dissociate
victim and adversary cache sets, and prevent the adversary
from monitoring victim access to specific addresses. How-
ever, our attack measures the overall cache activity rather
than looking at specific victim accesses. As such, such tech-
niques are unlikely to be effective against our attack.

Cache partitioning, either using dedicated hardware [20,
86] or via page coloring [52], is a promising approach for
mitigating cache attacks. In a nutshell, the approach parti-
tions the cache between security domains, preventing cross-
domain contention. Web pages are often rendered within
the same browser process. A page-coloring countermeasure
will, therefore, need to adapt to the browser scenario. Alter-
natively, the current shift to strict site isolation [76] as part of
the mitigations for Spectre [46], may assist in applying page
coloring to protect against our attack. A further limitation of
page coloring is that caches support only a handful of colors.
Hence, colors need to be shared, particularly when a large
number of tabs are open. To provide protection, page color-
ing will have to be augmented with a solution that prevents
concurrent use of the same color by multiple sites.

CACHEBAR [91] limits the contention caused by each pro-
cess as a protection for the Prime+Probe attack. Like cache
partitioning, this approach works at a process resolution and
may require adaptions to work in the web browser scenario.
Furthermore, unlike past cryptographic attacks that aim to
identify specific memory accesses, our technique measures
the overall memory use of the victim. Consequently, unless
CACHEBAR is configured to partition the cache, some cross-
process contention will remain, allowing our attack to work.

One potential mitigation is to adapt masking techniques
from the network fingerprinting and create spurious activity
in the cache. Such masking could be applied in the browser,
in the operating system, as a browser plugin and even in-
corporated into a security-conscious website in the form of
JavaScript delivered to the client. Our initial experiments
show that this is a promising mitigation, but further research

is needed to assess its effectiveness and its effect on perfor-
mance and on power consumption.

10 Limitations and Future Work

While the work demonstrates the feasibility of cache-based
website fingerprinting and provides an analysis of the attack,
it does leave some areas for further study. Being the first
analysis of its kind, the scope of the work does not match
the scope of similar works on network-based website finger-
printing. In particular, our datasets are significantly smaller
than those of Rimmer et al. [70], for example. Providing
larger datasets would allow better analysis of the effective-
ness of the technique and would be a beneficial service for
the research community as a whole.

In this work we collected the memorygrams on the same
hardware configuration used by the victim PC. While we
show that we can adapt the data collection to the specific
victim hardware (Section 8), at this stage it is not clear how
much a classifier trained on data collected with one hard-
ware configuration would be effective for classifying memo-
rygrams collected on a different configuration.

The work further shares many of the limitations of
network-based fingerprinting [44]. In particular, websites
tend to change over time or based on the identity of the
user or the specifications of the computer used for displaying
them. Furthermore, our work, like most previous works, as-
sumes that only one website is displayed at each time. Both
Rimmer et al. [70] and our work briefly discuss temporal as-
pects of website fingerprinting, and we also looked a bit into
the issue (Section 7.5). However, further work is required to
assess the impact of this and other variables on the efficacy
of cache-based fingerprinting.

11 Conclusions

In this work we investigate the use of cache side channels
for website fingerprinting. We implement two memorygram-
mers, which capture the cache activity of the browser, and
show how to use deep learning to identify websites based on
the cache activity that displaying them induces.

We show that cache-based website fingerprinting achieves
result comparable with the state-of-the-art network-based
fingerprinting. We further show that cache-based fingerprint-
ing outperforms network-based fingerprinting under a com-
mon operating scenario, where the browser maintains cached
objects. Finally, we demonstrate that cache-based finger-
printing is resilient to both traffic molding and to reduced
timer resolution. The former being the standard defense for
network-based website fingerprinting and the latter the cur-
rently implemented countermeasure for mobile-code-based
microarchitectural attacks. To the best of our knowledge,
this is the first cache-based side channel attack that works
with the 100 ms clock rate of the Tor Browser.
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