
CLOSING KEYNOTE
THE ERA OF CYBER WARFARE
TECHNOLOGY.

Peter Geissler <peter@haxx.in>

mailto:peter@haxx.in

IN STICKERS WE TRUST.
BREAKING NAIVE ESSID/WPA2 KEY
GENERATION ALGORITHMS

Peter Geissler <peter@haxx.in>

mailto:peter@haxx.in

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

My voice is messed up. Please bear with me. :-(

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

TALK OUTLINE

▸ Who? What? Why?

▸ Target device

▸ Dynamic instrumentation

▸ Take-aways

▸ Bonus!

▸ Q&A

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

WHO?

▸ Independent security researcher

▸ Did some stuff on Nintendo wii

▸ Wrote a bunch of exploits (https://haxx.in/)

▸ Gave some talks at cons (HITB, OHM, T2.FI)

▸ Played a bunch of CTF’s (Eindbazen)

https://haxx.in/

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

WHAT?

▸ Default WIFI credentials. Yep, in 2016.

▸ Recovering “secret” algorithms

▸ Dealing with painful/alien code

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

WHAT?

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

PRIOR WORK BY OTHERS

▸ st_keys.c (Kevin Devine, March 2008)

▸ Scrutinizing WPA2 Password Generating Algorithms in
Wireless Routers (Eduardo Novella Lorente, Carlo Meijer, Roel Verdult)

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

TARGET: TECHNICOLOR 7200

Look! Its a black box!

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

TARGET: TECHNICOLOR 7200

This is what it looks like in advertisements!

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

TARGET: TECHNICOLOR 7200

Oh wow, a sticker!

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

Mine looks a bit more like this. ;-/

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

UART PORTS

▸ Two UART ports on the board were identified

▸ Both can be used with the common 8/n/1 @ 115200bps
setting.

▸ One starts spitting out data early on, the other a bit later..

▸ One looks like Linux boot output.. the other like eCos..

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

DUMPING SPI FLASH

▸ Standard 8 PIN SOIC SPI FLASH

▸ Read some JEDEC specs, wire it up, dump it..

▸ Simplified by using GoodFET (Thx Travis!)

TEXT

SOIC CLIPS

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

ANALYSING THE BROADCOM CFE

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

ANALYSING THE BROADCOM CFE

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

BOOT LOADER CODE EXECUTION TRICKS

▸ Broadcom CFE shell is pretty nice

▸ They give you PEEK and POKE !

▸ Oh, and “jump to address” :-)

▸ Requesting a series of POKEs followed by a jump is a
useful code execution primitive

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

DIRTY HACKS AT ITS FINEST

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

DUMPING NAND FLASH

▸ Soldering to teensy TSOP flash pins is tiresome..

▸ What if we leverage a software approach to dump NAND?

▸ Talking to NAND controllers sounds like work too..

▸ What if we piggyback on existing NAND routines? :)

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

DUMPING NAND FLASH

▸ We can automate a series of POKEs to upload a
‘shellcode’ to memory.

▸ Afterwards we can trigger the ‘Jump to address’ option in
the menu to execute our shellcode.

▸ With a bit of massaging a crosscompiler can be used and
we can write this in good old C instead of ASM.

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

DUMPING NAND FLASH

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

FINDING SYMBOLS TO FACILITATE NAND DUMPING

▸ UART_putchar() is needed to write a byte to the serial
port.. (or do low-level UART IO ourselves, sound like work)

▸ We need a function to read a (arbitrary) page from the
NAND flash.

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

UART_putc()

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

UNPACKING THE NAND CONTENTS

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

UNPACKING THE NAND CONTENTS

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

UNPACKING THE NAND CONTENTS

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

UNPACKING THE NAND CONTENTS

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

DECOMPRESSING ECOS

Oh cool. LZMA. The thing with 2783783 variants.

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

DECOMPRESSING ECOS THE CHEESY WAY - LZMA_DUMPER

▸ Lets patch into the code right after the LZMA
decompression

▸ From here we dump the de-LZMA’d buffer as asciihex over
UART.

▸ We call this 30 lines of (reused) C lzma_dumper. ;-)

▸ Result = ecos_decompressed.bin

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

ENTER ECOS

▸ Big ass monolithic piece of shit

▸ I mean, a Realtime Operating System.. :-P

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

A WILD LINUX APPEARS..!

▸ I notice some weird text in this UART log output.

▸ Oh my, this box *also* runs Linux?

▸ Patch bootargs in memory, init=/bin/sh

▸ I owned the Linux and it was useless. ;-(

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

PEELING A 20 MEGABYTE ONION

▸ String references, data references

▸ Static reverse engineering

▸ Dynamic instrumentation

▸ Guesswork

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

DYNAMIC INSTRUMENTATION: QEMU-USER STYLE

▸ mmap() a block of RWX memory at a base address of your
liking.

▸ copy your MIPS code to this block

▸ jump there..

▸ .. pray!

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

ESSID & WPA2 PSK GENERATION

▸ Each device has a unique ‘serial number’, also printed on
the sticker on the box

▸ The serial number is used to generate the ESSID.

▸ The serial number is also used to generate the WPA2 psk.

▸ Going back from a ESSID to a valid serial number is
possible, with a small amount of false hits/collisions.

▸ .. find (possible) ESSIDs, generate all WPA2 keys.. profit!

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

DYNAMIC INSTRUMENTATION: UNICORN EMULATOR STYLE

▸ Unicorn is a lightweight multi-platform, multi-architecture
CPU emulator framework based on Qemu.

▸ By the guy(s) behind Capstone (disassembly library) and
the upcoming keystone (assembler library)

▸ Ships with bindings for high-level languages like Python

▸ Allows for easy bootstrapping and instrumentation of
code.

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

DYNAMIC INSTRUMENTATION: UNICORN EMULATOR STYLE

http://www.unicorn-engine.org/

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

DYNAMIC INSTRUMENTATION: UNICORN EMULATOR STYLE

▸ reg_write / reg_read

▸ mem_write / mem_read

▸ uc.hook_add(UC_HOOK_*, callback)

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

THE BIRTH OF UPC_KEYS.C

▸ Right before 32c3 I got to a point where I was able to
reproduce the algorithms.. using a yucky MIPS-asm-to-c-
translation for some parts.

▸ During a late night beer pong session an anonymous
contributor who goes by ‘p00pf1ng3r’ offered his help to
make the C code more sane.

▸ Over a few beers upc_keys.c was born ! ;-)

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

GENERATING SOME KEYS

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

GENERATING SOME KEYS

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

GENERATING SOME KEYS

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

GENERATING SOME KEYS

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

LIVE DEMO (WOW)

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

WRAP-UP / TAKEAWAYS

▸ Don’t forget to change your default credentials!

▸ Don’t rely on silly vendor algorithms

▸ Don’t be afraid of eCos (or vxWorks, or..)

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

MORE ALGO’S!

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

MORE ALGO’S!

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

MORE ALGO’S!

Yeah OK. We get it!

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

BONUS MATERIAL!

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

UPC WIFI WPA2 RECOVERY SERVICE

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

UPC WIFI WPA2 RECOVERY SERVICE

IN STICKERS WE TRUST - BLASTY @ HITBAMS2016

QUESTIONS? FEEDBACK? BRING IT!

▸ E-mail : peter@haxx.in (keyid: 0x84b5615f)

▸ IRC: blasty @ Freenode / EFnet

▸ Twitter: @bl4sty

mailto:peter@haxx.in

