
Untrustworthy
Hardware

And How to Fix It

PRESENT DAY.

 PRESENT TIME ⌷

- ##FPGA, ##crypto and #openRISC on Freenode

- Shorne and Olofk from #openRISC (hardware and
cross-compilation help)

- PropellerGuy (Parallax Propeller open-source IO
interface)

- Briel Computers’ PockeTerm project

- Maitimo, International Finance, DC408

Greetz:

Thanks to Contributors:

- core modern open source algorithms for strong
cryptography have been heavy scrutinized,
tested and are readily available

- weak (DES, WEP, etc) and “black box” privacy
tools are becoming a thing of the past

- free and open source software has made it
easier to trust the privacy of computer
systems

Layer:01 Software

Let’s assume the software
(hypothetically) is 100% secure…

Where do we go from here?

- firmware is almost exclusively closed source
and controls almost all hardware devices and
functions

- due to their low-level nature, malicious
firmware persists across OS reinstallations

- (DEF CON 22: Summary of Attacks Against BIOS
and Secure Boot) "SPI flash is a really nice
place if you can get there"

Layer:02 Firmware

- hardware is almost always absolutely trusted
by the rest of the system, as it is not widely
considered an attack surface (especially in
the consumer space)

- NSA has been caught hardware backdooring Cisco
systems (Glenn Greenwald, "No Place to Hide"),
and DoD, Apple suspect adversarial nation
states may be doing this as well

- “if the hardware is compromised, then the
whole machine is compromised”

Layer:03 Hardware

hardware backdooring is real

I

- Management Engine runs on a
dedicated logic device within the
processor and runs proprietary
firmware and OS

- Intel ME has full network device
access with the ability to
intercept network traffic without
the CPU’s knowledge

- system access at the lowest level

- remains functional in the
background even if the system is
shut down but remains on standby
power

Layer:04 Intel Management Engine

Management Engine might sound like a feature reserved
for enterprise or server applications, but it
everywhere

- most of our knowledge comes from Igor
Skochinsky and a poorly secured company FTP
server ;)

Intel ME Technical Overview

- most of our knowledge comes from Igor
Skochinsky and a poorly secured company FTP
server ;)

- Runs ThreadX real-time OS (closed source,
proprietary)

Intel ME Technical Overview

- most of our knowledge comes from Igor
Skochinsky and a poorly secured company FTP
server ;)

- Runs ThreadX real-time OS (closed source,
proprietary)

- has its own MAC address and IP address for
out-of-band features

Intel ME Technical Overview

- most of our knowledge comes from Igor
Skochinsky and a poorly secured company FTP
server ;)

- Runs ThreadX real-time OS (closed source,
proprietary)

- has its own MAC address and IP address for
out-of-band features

- some code hidden in an inaccessible on-chip
ROM (decapping required to dump contents),
other parts share space with the firmware ROM

Intel ME Technical Overview

- most of our knowledge comes from Igor Skochinsky and
a poorly secured company FTP server ;)

- Runs ThreadX real-time OS (closed source,
proprietary)

- has its own MAC address and IP address for out-of-
band features

- some code hidden in an inaccessible on-chip ROM
(decapping required to dump contents), other parts
share space with the firmware ROM

- uses compression and encoding (LMZA, Huffman) to
thwart reverse engineering

Intel ME Technical Overview

- most of our knowledge comes from Igor Skochinsky and a poorly secured
company FTP server ;)

- Runs ThreadX real-time OS (closed source, proprietary)

- has its own MAC address and IP address for out-of-band features

- some code hidden in an inaccessible on-chip ROM (decapping required to
dump contents), other parts share space with the firmware ROM

- uses compression and encoding (LMZA, Huffman) to thwart reverse
engineering

- multiple versions of IME exist using ARC, SPARC V8 and other
instruction sets

Intel ME Technical Overview

Atmel Rad-hardened
Sparc V8

ARC
development
platform

“In short, it’s a reverse-engineer’s worst
nightmare.”

- hackaday.com

http://hackaday.com

- effectively the perfect hardware backdoor,
although ME is marketed as an IT out-of-band
management tool

- present in all Intel systems since ~2008-2009,
with no practical way to disable or audit

- handful of exploits exist for ME, with the
number on the rise, requiring a firmware
update from the manufacturer

Note:- AMD also has a similar black-box
platform, called TrustZone / PSP, but it has
not been well documented / researched (they
haven’t made new CPUs until recently)

- If we’re discussing a worst case situation for
hardware security, just how far can we go?

Bonus Round: Speculation

- Hardware backdooring has been documented as
mentioned earlier is viewed as a viable threat by
other state actors (DoD)

- nation states could backdoor product manufacturing
with switched or additional components

- scarier yet, chips themselves (CPUs, chipsets,
NICs, ROMs) could be backdoored at the fabrication
center

What About Nation States?

- University of Michigan researchers documented
how easy it would be to hide malicious
features in processor designs at design time
and fabrication time, even by a single rouge
employee! (A2: Analog Malicious Hardware)

- entirely possible for nation states to
accomplish, and would lead to widespread and
total compromise while being virtually
undetectable

Credit: University of Michigan

Why can’t we do for hardware
what we did for software?

- open source OS is a good start, open source
firmware (Libreboot, etc) is better along with
open source hardware, “no blob” system is
ideal

- some OSHW devices like Novena laptop are very
close to this, but still require blobs for
full functionality

- this also still leaves users trusting the
chips

What can be done for peace-of-mind
private computation for critical
situations and down-right paranoid
users?

- Can we build a cost-effective low-
level solution that offers open source
software AND “open source logic” - a
processor whose designs are publicly
available for anyone to examine or
change?

- on our platform, Linux and all
programs run on the FPGA, so we know
exactly what the CPU is doing

- FPGAs are large blocks of
configurable digital logic
gates

- chips are designed in special
languages called HDLs (hardware
description languages)

- bitstream generators read these
files and program the gates
within the FPGA to function as
the HDL code dictates

- most commonly used for chip
design and testing, special
hardware applications

FPGA 101

An Alternative
- Built around a
cryptographic use case

- Runs GNU/Linux

- Fully open-source
hardware and software
down to the chip
designs of both major
components

- Parallax Propellor for
IO, OpenRISC OR1200
CPU running OS and
tools

Parallax
Propeller

open-source
MicroController

OpenRISC
OR1200

open-source
CPU

Propeller
ROM

Serial TFTKeyboard

FPGA
ROM

block diagram:

OR1200
programming

header

115200 Baud
Serial

UART

SPIPS/2

Let’s Run Linux on Open Source
Microprocessors!

One more thing(s)

- in a recent AMA on Reddit, AMD has publicly
stated that they are “strongly considering”
making the source code for their IME-
equivalent, PSP / Trustzone OPEN SOURCE

- Changes to the PocketTerm project for
integration with the SPI TFT we used will be
available on GitHub alongside scripts for
programming the DE0-nano

- Q/A

Further Reading and Additional Resources
- DEF CON 22: Summary of Attacks Against BIOS and Secure Boot: https://www.youtube.com/watch?v=QDSlWa9xQuA

- DEF CON XX: Hardware Backdooring is Practical: https://www.youtube.com/watch?v=8Mb4AiZ51Yk

- NSA shipment hijacking: http://www.theverge.com/2013/12/29/5253226/nsa-cia-fbi-laptop-usb-plant-spy

- Windows “golden keys” leaked: https://arstechnica.com/security/2016/08/microsoft-secure-boot-firmware-
snafu-leaks-golden-key/

- NSA Cisco implant: https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-
router-getting-implant/

- Apple suspects hardware backdoors by state actors in server shipments: https://www.extremetech.com/extreme/
225524-apple-may-design-its-own-servers-to-avoid-government-snooping

- NSA deploys low level / hardware backdoors against intercepted consumer devices: http://
www.extremetech.com/computing/173721-the-nsa-regularly-intercepts-laptop-shipments-to-implant-malware-
report-says

- Summary of Intel ME: https://boingboing.net/2016/06/15/intel-x86-processors-ship-with.html

- Detailed IME breakdown by Libreboot team: https://libreboot.org/faq/#intel

- REcon 2014: Intel Management Engine Secrets (Igor Skochinsky): https://www.youtube.com/watch?v=4kCICUPc9_8

- Hackaday: The Trouble with Intel’s Management Engine: http://hackaday.com/2016/01/22/the-trouble-with-
intels-management-engine/

- Hackaday IME workarounds: https://hackaday.com/2016/11/28/neutralizing-intels-management-engine/

- A2: Malicious Analog Hardware: https://www.ieee-security.org/TC/SP2016/papers/0824a018.pdf

- Wired Summary of silicon backdooring: https://www.wired.com/2016/06/demonically-clever-backdoor-hides-
inside-computer-chip/

- Power-based side channel attacks: https://www.rsaconference.com/writable/presentations/file_upload/br-w03-
watt-me-worry-analyzing-ac-power-to-find-malware.pdf

- openRISC homepage: http://openrisc.io/

- getting started with openRISC: https://github.com/openrisc/tutorials

https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/
https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/
https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/
https://www.extremetech.com/extreme/225524-apple-may-design-its-own-servers-to-avoid-government-snooping
https://www.extremetech.com/extreme/225524-apple-may-design-its-own-servers-to-avoid-government-snooping
https://github.com/openrisc/tutorials

Copyright Disclaimer Under Section
107 of the Copyright Act 1976,
allowance is made for "fair use" for
purposes such as criticism, comment,
news reporting, teaching,
scholarship, and research. Fair use
is a use permitted by copyright
statute that might otherwise be
infringing. Non-profit, educational
or personal use tips the balance in
favor of fair use.

