
© WAVESTONE 1

Ayoub ELAASSAL
ayoub.elaassal@wavestone.com

@ayoul3__

Dealing the perfect hand
Shuffling memory blocks on z/OS

© WAVESTONE 2

What people think of when I talk about
mainframes

© WAVESTONE 3

The reality: IBM zEC 13 technical specs:
• 10 TB of RAM
• 141 processors,5 GHz
• Dedicated processors for JAVA, XML and

UNIX
• Cryptographic chips…

Badass Badass Badass !!

So what…who uses those anymore ?

© WAVESTONE 6https://mainframesproject.tumblr.com

© WAVESTONE 7

About me

Pentester at Wavestone, mainly hacking Windows and Unix stuff

First got my hands on a mainframe in 2014…Hooked ever since

When not hacking stuff: Metal and wine

• github.com/ayoul3
• ayoul3__

© WAVESTONE 8

This talk

Why we should care about mainframes

Quick recap on how to execute code on z/OS

Playing with z/OS memory layout

© WAVESTONE 9

Quick recap on how to execute code on z/OS

Sniffing credentials

Good ol’ bruteforce

Go through the middleware

And many more (FTP, NJE, etc.)
Check out Phil & Chad’s talks !

© WAVESTONE 10

The wonders of TN3270

The main protocole to interact with a Mainframe is
called TN3270

TN3270 is simply a rebranded Telnet

…Clear text by default
X3270 emulator if
you don’t have the
real thing

© WAVESTONE 11

The wonders of TN3270

© WAVESTONE 12

Damn EBCDIC

© WAVESTONE 13

Ettercap dissector by @Mainframed767

[DEMO ETTERCAP]

© WAVESTONE 14

Quick recap on how to execute code on z/OS

Sniffing credentials

Good ol’ bruteforce

Go through the middleware

And many more (FTP, NJE, etc.)
Check out Phil & Chad’s talks !

© WAVESTONE 15

Time Sharing Option (TSO)

Tsk tsk tsk… too friendly!

TSO is the /bin/bash on z/OS

© WAVESTONE 16

Bruteforce

Nmap script by @Mainframed767

© WAVESTONE 17

Bruteforce is still surprisingly effective

Passwords derived from login

Windows : 5% Mainframe : 27%

© WAVESTONE 18

Quick recap on how to execute code on z/OS

Sniffing credentials

Good ol’ bruteforce

Go through the middleware

And many more (FTP, NJE, etc.)
Check out Phil & Chad’s talks !

© WAVESTONE 19

© WAVESTONE 20

© WAVESTONE 21

© WAVESTONE 22

Interactive applications

CICS is a combination Drupal and Apache Tomcat…before it
was cool (around 1968)

Current version is CICS TS 5.4

Most interactive applications on z/OS rely on a middleware
called CICS

© WAVESTONE 23

If we manage to “exit” the application, we can instruct CICS to
execute default admin programs (CECI, CEMT, etc.) => rarely
secured

CICS: a middleware full of secrets

@ayoul3__

As usual, some API functions are particularly interesting!

CECI offers to execute CICS API functions

© WAVESTONE 24

[DEMO SPOOLOPEN

© WAVESTONE 25

INTRDR = Internal Reader, is the equivalent of
/bin/bash. It executes anything it receives

© WAVESTONE 26

The theory

@ayoul3__

© WAVESTONE 27

The theory

@ayoul3__

© WAVESTONE 28

The theory

@ayoul3__

© WAVESTONE 29

Reverse shell in JCL & REXX

We allocate a new file (dataset)

Reverse shell in REXX – python-like
a scripting language

Execution of the file

© WAVESTONE 30

[DEMO CICSPWN]

© WAVESTONE 31

Quick recap on how to execute code on z/OS

Sniffing credentials

Good ol’ bruteforce

Go through the middleware

And many more (FTP, NJE, etc.)
Check out Phil & Chad’s talks !

© WAVESTONE 32

LISTUSER command

© WAVESTONE 33

Shell on z/OS, now what ?

There are three main security attributes on RACF :

• Special : access any system resource

• Operations : access all dataset regardless of RACF rules

• Audit : access audit trails and manage logging classes

The most widespread security product on z/OS is RACF. It
performs authentication, access control, etc.

© WAVESTONE 34

This talk

Why we should care about mainframes

Quick recap on how to execute code on z/OS

Playing with z/OS memory layout

© WAVESTONE 35

Z architecture

Proprietary CPU (CISC – Big Endian)

Three addressing modes: 23, 31 & 64 bits.

Each instruction has many variants: memory-memory,
memory-register, register-register, register-immediate, etc.

16 general purpose registers (0 – 0xF) (+ 49 other registers)

The PSW register holds control flags and the address of the
next instruction

© WAVESTONE 36

Security context in memory

z/OS memory is full of control blocks: data structures
describing the current state of the system

RACF stores the current user’s privileges in the ACEE control
block…We just need to find it!

© WAVESTONE 37

Security context in memory

PSA
ASCBPSAAOLD

0

548

Address Space
Control Block

Always
starts at

virtu. addr
0

ASCBASXB108

ACEE

USER FLAGS

1... SPECIAL
..1. OPERATIONS
…1 AUDITOR

ASXB

Address Space
Extension Block

ASXBSENV200

38

If we patch byte 38 we’re good to go!

© WAVESTONE 38

Program State Word (PSW)

ABEND S0C4, code 4: Protection exception.

© WAVESTONE 39

Memory protection

Same concept of virtual memory and paging as in Intel (sorta)

Each page frame (4k) is allocated a 4-bit Storage key + Fetch
Protection bit at the CPU level

16 possible Storage key values
0 – 7 : system and middleware. 0 is the master key
8 : mostly for users
9 – 15 : used by programs that require virtual = real memory

© WAVESTONE 40

Program State Word (PSW)

8 - 11 bit : current protection key, 8 in this case

Next instructionControl flags

© WAVESTONE 41

Memory protection

Storage keys match Storage don't match
& Fetch bit ON

Storage don't match
& Fetch bit OFF

PSW key is zero Full Full Full

PSW key is not zero Full None Read

© WAVESTONE 42

Problem state Vs Supervisor state

Some instructions are only available in Supervisor state (kernel
mode) :
• Cross memory operations
• Direct Storage Access
• Changing storage keys
• Exit routines
• Listening/editing/filtering system events
• Etc.

© WAVESTONE 43

Program State Word (PSW)

Problem mode ~ User mode
Supervisor mode ~ Kernel mode

15 - 16 bit : Problem mode is ON in this case (D =1101)

Next instructionControl flags

© WAVESTONE 44

How do we get into Supervisor state

APF libraires are extensions of the zOS kernel

Any program present in an APF library can request
supervisor mode

Obviously…these libraries are very well protected ! (irony)

© WAVESTONE 45

APF hunting on OMVS (Unix)

Every z/OS has an embedded POSIX compliant UNIX running (for
FTP, HTTP, etc.)

APF files have extended attributes on OMVS (Unix)

List extended attributes : ls -E
Find APF files : Find / -ext a
Add APF authorization : extattr +a file

As for setuid bit, if you alter an APF file it loses its extended attribute

© WAVESTONE 46

APF hunting on OMVS (Unix)

[DEMO APF UNIX]

© WAVESTONE 47

APF hunting on z/OS

APF libraries on z/OS are akin to directories. They do not lose their
APF attribute if we drop programs inside

They are a tad more complicated to enumerate. We need to dive
into memory

Control block to the rescue!

© WAVESTONE 48

Hunting APF on z/OS... Diving into virtual memory

PSA
CVT

ECVT CSVT
APFA

APFFLCCVT

0

16

EAECVT

Extended CVT
References
all major
structures

Always
starts at

virtu. addr
0

140
ECVTCSVT

Content
Supervisor

Table

APFA
228 12 8

12
FIRST
LAST

APF

APF

APF

© WAVESTONE 49

Demo ELV.APF LIST[DEMO ELV.APF]

© WAVESTONE 50

Patching ACEE

© WAVESTONE 51

The attack flow

Write an ASM program to patch the curent security context
• Locate the ACEE structure in memory
• Patch the privilege bits in memory

Compile and link the program with the Authorized state

Copy it to an APF library with ALTER access

Run it and enjoy SPECIAL privileges

© WAVESTONE 52

APF

@ayoul3__

© WAVESTONE 53

[DEMO 2 ELV.APF]

© WAVESTONE 54

The theory behind this feat is not new

Mark Wilson @ich408i discussed a similar abuse of privilege using
SVC

Some legitimate products/Mainframe admins use a variation of this
technique too!

Stu Henderson alluded to critical risks of having APF with ALTER
access

© WAVESTONE 55

Supervisor Call

Supervisor Call ~ Syscalls on Linux: APIs to hand over control to
Supervisor mode

Table of 255 SVC. 0 to 200 are IBM reserved. 201 – 255 are user
defined

Some admins/products register an authorized SVC that switches
the AUTH bit and goes into Kernel mode

© WAVESTONE 56

« Magic » SVC code

© WAVESTONE 57

Call SVC to get into Supervisor mode

We do not need to launch
this program from an APF
library anymore

© WAVESTONE 58

Looking for « magic » SVC

We browse the SVC table
looking for these
instructions (and other
possible variations)

© WAVESTONE 59

Supervisor Call

[DEMO ELV.SVF]

© WAVESTONE 60

Excerpts from the Logica attack

https://github.com/mainframed/logica/blob/master/Tfy.source.backdoor

© WAVESTONE 61

A few problems though

The user’s attribute are modified => RACF rules are altered

You can be special, that does not mean you can access any app!
=> Need to figure out the right class/resource to add
RACF rules (not easy)

© WAVESTONE 62

Impersonating users

© WAVESTONE 63

ACEE

UserID
Group Name
User Flags

Privileged flag
Terminal information

Terminal ID
@ List of groups

….

….

Interesting stuff in the ACEE

Duplicate fields

To our user’s ACEE

© WAVESTONE 64

Each program or JOB is allocated a virtual address space (same as
in Windows/Linux)

Private areas can only be addressed from within the address space

All addresses spaces share some common regions that contain
system data & code: PSA, CVT, etc.

Each address space is identified by a 2-byte number : ASID (~ PID
on Linux)

Not so fast…

© WAVESTONE 65

Listing address spaces

PSA
CVT

ASVT

FLCCVT

0

16

CVTASVT

References
all major
structures

Always
starts at

virtu. addr
0

556
ASVTMAXU516

1st ASCB528

1st ASCB2nt ASCB

Last ASCB

...

+16

© WAVESTONE 66

EVL.SELF

List address spaces demo[DEMO ELV.SELF]

© WAVESTONE 67

Virtual address space layout

Shared Area

Low User Private

Extended Private

Extended Common

Common region
User region

System region
PSA

Private

8K

Virtual Address Space

16 MB

2 G

2 T

512 T

16 EB

ACEE
Private region24K

© WAVESTONE 68

Service Request Block: schedules a routine to run on a foreign
Virtual Address Space

Cross memory mode: allows read/write access in remote @ space
using special instructions

Access Register mode: 16-set of dedicated registers that can map
each a remote @ space

Cross memory operations

© WAVESTONE 69

Cross memory operations

© WAVESTONE 70

Cross memory operations

© WAVESTONE 71

Cross memory operations

[DEMO 2 ELV.SELF]

© WAVESTONE 72

• github.com/ayoul3
• ayoul3__

