
{
Breaking the x86 ISA

domas / @xoreaxeaxeax / DEF CON 2017

· Christopher Domas
¹ Cyber Security Researcher @

Battelle Memorial Institute

./bio

· 8086: 1978

· A long, tortured history…

The x86 ISA

· Modes:
¹ Real (Unreal)

¹ Protected mode (Virtual 8086, SMM)

¹ Long mode (Compatibility, PAE)

x86: evolution

· Instruction sets

x86: evolution

· Modern x86 chips are a complex
labyrinth of new and ancient technologies.
¹ Things get lost…

· 8086: 29,000 transistors

· Pentium: 3,000,000 transistors

· Braodwell: 3,200,000,000 transistors

x86: evolution

· We don’t trust software.
¹ We audit it

¹ We reverse it

¹ We break it

¹ We sandbox it

Trust.

· But the processor itself?
¹ We blindly trust

Trust.

· Why?
· Hardware has

all the same problems as software
· Secret functionality?

¹ Appendix H.

· Bugs?
¹ F00F, TSX, Hyperthreading.

· Vulnerabilities?
¹ SYSRET, cache poisoning, sinkhole

Trust.

· We should stop
blindly trusting our hardware.

Trust.

· What do we need to worry about?

· Well known from software
¹ Examples

Backdoors

· Hardware
¹ FPGAs

¹ Hypervisors

¹ Microcode

¹ Supply chain

Backdoors

· Could a hidden instruction
unlock your CPU?

Hidden instructions

· Historical examples
¹ ICEBP

¹ apicall

Hidden instructions

Hidden instructions

· Traditional approaches:
¹ Leaked documentation

¹ Reverse engineering software

¹ NDA

· But what if it’s something stealthy?

Hidden instructions

· Find out what’s really there

Goal: Audit the Processor

· How to find hidden instructions?

Approach

· Instructions can be one byte …
¹ inc eax

¹ 40

·… or 15 bytes ...
¹ lock add qword cs:[eax + 4 * eax + 07e06df23h], 0efcdab89h

¹ 2e 67 f0 48 818480 23df067e 89abcdef

· Somewhere on the order of
1,329,227,995,784,915,872,903,807,060,280,344,576

possible instructions

Approach
https://code.google.com/archive/p/corkami/wikis/x86oddities.wiki

· The obvious approaches don’t work:
¹ Try them all?

º Only works for RISC

¹ Try random instructions?
º Exceptionally poor coverage

¹ Guided based on documentation?
º Documentation can’t be trusted

(that’s the point)

º Poor coverage of gaps in the search space

Approach

· A depth-first-search algorithm

· (Overview)

Tunneling

· Catch: requires knowing the instruction
length

· Simple approach: trap flag
¹ Fails to resolve the length of faulting instructions
¹ Necessary to search privileged instructions:

º ring 0 only: mov cr0, eax
º ring -1 only: vmenter
º ring -2 only: rsm

¹ It’s hard to even auto-generate a successfully
executing ring 3 instruction:
º mov eax, [random_number]

· Solution: page fault analysis

Instruction lengths

· (Overview)

Page Fault Analysis

· Trap flag
¹ Catch branching instructions

¹ Differentiate between fault types

Cleanup

· Reduces search space from 1.3x1036

instructions to ~100,000,000 (one day
of scanning)

· This gives us a way to search the
instructions space.
¹ How do we make sense of the instructions

we execute?

Tunneling

· We need a “ground truth”
· Use a disassembler

¹ It was written based on the documentation

¹ Capstone

Sifting

· Compare:
¹ Observed length of instruction vs.

disassembled length of instruction

¹ Signal generated by instruction vs.
expected signal

Sifting

sandsifter

· (Demo)

sandsifter

· Hidden instructions

· Ubiquitous software bugs

· Hypervisor flaws

· Hardware bugs

Results

· 0f0dxx
¹ Undocumented for non-/1 reg fields

· 0f18xx, 0f{1a-1f}xx
¹ Undocumented until December 2016

· 0fae{e9-ef, f1-f7, f9-ff}
¹ Undocumented for non-0 r/m fields until June 2014

· dbe0, dbe1
· df{c0-c7}
· f1
· {c0-c1}{30-37, 70-77, b0-b7, f0-f7}
· {d0-d1}{30-37, 70-77, b0-b7, f0-f7}
· {d2-d3}{30-37, 70-77, b0-b7, f0-f7}
· f6 /1, f7 /1

Hidden instructions

· Catch:
¹ Undocumented instructions recognized by

the disassembler are not found

Hidden instructions

· Issue:
¹ Our “ground truth” (the disassembler) is

also prone to errors

Software bugs

· Every disassembler we tried as the
“ground truth” was littered with bugs.

Software bugs

· Most bugs only appear in a few tools,
and are not especially interesting

· Some bugs appeared in all tools
¹ These can be used to an attacker’s advantage.

Software bugs

· 66e9xxxxxxxx (jmp)

· 66e8xxxxxxxx (call)

Software bugs

· 66 jmp

· Demo:
¹ IDA

¹ Visual Studio

¹ objdump

¹ QEMU

Software bugs

· 66 jmp

· Why does everyone get this wrong?
¹ AMD designed the 64 bit architecture

¹ Intel adopted… most of it.

Software bugs

· Issues when we can’t agree on a standard
¹ sysret bugs

· Either Intel or AMD is going to be
vulnerable when there is a difference

· Complex architecture
¹ Tools cannot parse a jump instruction

Software bugs

· Azure
¹ CPUID / Trap flag bug

Hypervisor bugs

· Intel:
¹ f00f bug on Pentium

· AMD:
¹ Incorrect signals during decode

· Transmeta:
¹ 0f{71,72,73}xxxx

¹ Premature #GP0 signal during decode

Hardware bugs

· Our processors are not doing what we
think they are
¹ We need formal specifications

¹ We need auditing tools

¹ This is a start.

Conclusions

· Sandsifter lets us introspect what is
otherwise a black box

Conclusions

· Open sourced:
¹ The sandsifter scanning tool

¹ github.com/xoreaxeaxeax/sandsifter

Conclusions

· Use sandsifter to audit your processor

· Reveal the instructions it really supports

· Search for hardware errata

· Break disassemblers,
emulators, and hypervisors

· Send us the results

Conclusions

·github.com/xoreaxeaxeax
¹sandsifter

¹M/o/Vfuscator

¹REpsych
¹ x86 0-day PoC
¹ Etc.

·Feedback? Ideas?

·domas
¹@xoreaxeaxeax

¹xoreaxeaxeax@gmail.com

