# Evading next-gen AV using A.I.





hyrum@endgame.com 🛛 💓 @drhyrum

In

/in/hyrumanderson

DEFER

## The Promise of Machine Learning

- Learn *from data* what constitutes malicious content or behavior
- Discriminatory patterns learned automatically, not obviously constructed by hand
- Generalize to never-before-seen samples and variants...
  - ...so long as data used for "training" is representative of deployment conditions
  - motivated adversaries actively trying to invalidate this assumption





# Goal: Can You Break Machine Learning?

Static machine learning model trained on millions of samples



- Simple structural changes that don't change behavior
  - unpack
  - '.text' -> '.foo' (remains valid entry point)
  - create '.text' and populate with '.text from calc.exe'



| Machine Learnir | ٦g |  |  |
|-----------------|----|--|--|
| Model           |    |  |  |



## **Adversarial Examples**



- Machine learning models have blind spots / hallucinate (modeling error)
- Depending on model and level of access, they can be straightforward to exploit
  - e.g., deep learning is fully differentiable (directly query what perturbation would best bypass model)
- Adversarial examples can generalize across models / model types (Goodfellow 2015)
  - blind spots in YOUR model may also be blind spots in MY model

# Taxonomy of Attacks Against ML

#### adversary's knowledge about your model

An adversary...

• ...has your model

• ...can get a score

• ...can get good/bad

- architecture & weights are known
- a direct attack on your model
- "easy" for deep learning
  - gradient perturbation [for Android malware] (Papernot et al. 2016)
  - dueling models / GAN

[for DGA detection] (Anderson et al. 2016)

- black box...
- ...but can arbitrarily probe and get a score
- score = raw output / confidence before thresholding for good/bad

EvadeML [for PDF malware] (Xu, Qi, Evans, 2016)

- black box...
  - ...but can arbitrarily probe and get a label
- label = malicious / benign
- also a viable solution for traditional AV scanners

MalGan [PE: known features] (Hu, Tan, 2017)

#### difficulty for adversary to bypass

### Related work: full access to model





Malware (90%), Benign (10%)

*Query deep learning model:* what change will be most dramatic reduction in score? (gradient)

Malware variant not a PE file Change in file breaks behavior



break PE format destroy function

Same conditions exist for approaches based on generative adversarial networks

### Related work: attack score-reporter



### Summary of Previous Works

### **Gradient-based attacks: perturbation or GAN**

- Attacker requires full knowledge of model structure and weights
  - Or can train a mimic model
- Presents worst-case attack to the model
- Generated sample may not be valid PE file

### **Genetic Algorithms**

- Requires only score from black box model
- Oracle/sandbox [expensive] needed to ensure that functionality is preserved

**Goal:** Design an AI that chooses format- and function-preserving mutations to bypass black-box machine learning. Reinforcement Learning!

### Atari Breakout



Nolan Bushnell, Steve Wozniak, Steve Bristow

Inspired by Atari Pong

"A lot of features of the Apple II went in because I had designed Breakout for Atari" (The Woz)

#### Game

- Bouncing ball + rows of bricks
- Manipulate paddle (left, right)
- Reward for eliminating each brick

### Atari Breakout: an Al



### Environment

- Bouncing ball + rows of bricks
- Manipulate paddle (*left, right*)
- Reward for eliminating each brick

### Agent

- Input: environment state (pixels)
- Output: action (left, right)
- Feedback: delayed **reward** (score)
- Agent learns through 1000s of games what action to take given state of the environment

https://gym.openai.com/envs/Breakout-v0

### Anti-malware evasion: an Al



### • Environment

- A malware sample (Windows PE)
- Buffet of malware mutations
  - preserve format & functionality
- Reward from static malware classifier
- Agent
  - Input: **environment state** (*malware bytes*)
  - Output: **action** (*stochastic*)
  - Feedback: reward (AV reports benign)

### The Agent's State Observation



#### **Features**

- Static Windows PE file features compressed to 2350 dimensions
  - General File Information
  - Machine/OS/linker info
  - Section characteristics
  - Imported/exported functions
  - Strings
  - File byte and entropy histograms
- Fed to neural network to choose choose the best action for the given "state" (Deep Q-Learning)

## The Agent's Manipulation Arsenal



### **Functionality-preserving mutations:**

#### • Create

- New Entry Point (w/ trampoline)
- New Sections
- Random Imports
- Random bytes to PE overlay
- Bytes to end of section
- Modify
  - Random sections to common name
  - (break) signature
  - Debug info
  - UPX pack / unpack
  - Header checksum
  - Signature



# The Machine Learning Model



### **Static PE malware classifier**

- gradient boosted decision tree (nondifferentiable)
- need not be known to the attacker
- for demo purposes, we reuse feature extractor employed by the agent to represent "state"
- present an optimistic situation for the agent



Machine learning malware model (w/ source!) for demo purposes only. Resemblance to Endgame or other vendor models is incidental.

### Game Setup

#### Environment

- No concept of "you lose, game over"
  - artificially terminate game after max\_turns unless
    unsuccessful
- GBDT Model trained on 100K benign+malicious samples

### Agent

- Agent #1: gets score from machine learning malware detector
- Agent #2: gets malicious/benign label
- Double DQN with dueling network with replay memory



Shall we play a game?

### Expectation Management

- Agent has no knowledge about AV model (*black box*)
- Agent receives incomplete
- Agent has limited (and stochastic) actions

...but AV engines conservative to prevent FPs, so maybe there's a chance...



# Ready, Fight!

### **Evasion Results**

### 15 hours to do 100K trials (~10K episodes x 10 turns each)



\*Warning\* Long episodes can "overattack" to specific model

add\_section, add\_section, add\_section, add\_section, add\_section

## Model Hardening Strategies

Adversarial training

• Train with new evasive variants



#### Feedback to the human

| category   | evasion % | dominant action sequence               |
|------------|-----------|----------------------------------------|
| ransomware | 3%        | unpack->add section->change entrypoint |
| backdoor   | 18        | pack (low entropy)->add imports        |

# We're releasing code

gym-malware OpenAl environment

https://github.com/drhyrum/gym-malware

### Agent

- Preliminary DQN agent for playing game
- [contribute] improve actions, improve RL agent

### Environment

- [**provided**] Manipulations written via LIEF to change elements of a PE file
- [provided] Feature extraction via LIEF to convert raw bytez into environment "state"
- [you provide] API access to AV engine you wish to bypass (default: attack toy mode that is provided)
- [you provide] Malware samples for training and test



### Summary

- Machine Learning Models quite effective at new samples
  - But all models have blind spots that can be exploited
- Our ambitious approach
  - Craft a game of bot vs. AV engine
  - Variants guaranteed to preserve format and function of original
  - No malware source code needed
  - No knowledge of target model needed
- Only modest results. Make it better! https://github.com/drhyrum/gym-malware

# Thank you!

#### Hyrum Anderson

Technical Director of Data Science



🖌 hyrum@endgame.com 🔰 @drhyrum 🛛 🖻 /in/hyrumanderson

**Co-contributors:** 

**Anant Kharkar, University of Virginia Bobby Filar, Endgame** Phil Roth, Endgame

ENDGAME.