
Explore Features Enterprise Pricing

perl6intro / perl6intro.adoc

 Sign up

Sign up Sign inThis repository

5 5 4

 Watch

 Star

 Fork

hankache / perl6intro

master

2994e16 2 hours ago

4 contributors

hankache unicode intro

1833 lines (1360 sloc) 46.4 KB

Perl 6 Introduction

This document is intended to give you a quick overview of the Perl 6 programming language.

For those who are new to Perl 6 it should get you up and running.

Some sections of this document reference other (more complete and accurate) parts of the Perl 6 documentation. You

should read them if you need more information on a specific subject.

Throughout this document, you will find examples for most discussed topics. To better understand them, take the time to

reproduce all examples.

License

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

Raw Blame History

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

1 of 54 11/28/15 12:28

Contribution

If you would like to contribute to this document head over to:

http://github.com/hankache/perl6intro

1. Introduction

1.1. What is Perl 6

Perl 6 is a high-level, general-purpose, gradually typed language. Perl 6 is multi-paradigmatic. It supports Procedural,

Object Oriented and Functional programming.

Perl 6 motto:

TMTOWTDI (Pronounced Tim Toady): There is more than one way to do it.

Easy things should stay easy, hard things should get easier, and impossible things should get hard.

1.2. Jargon

Perl 6: Is a language specification with a test suite. Implementations that pass the specification test suite are considered

Perl 6.

Rakudo: Is a compiler for Perl 6.

Rakudobrew: Is a Perl 6 installation manager.

Panda: Is a Perl 6 module installer.

1.3. Installing Perl 6

Linux

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

2 of 54 11/28/15 12:28

Install Rakudobrew: https://github.com/tadzik/rakudobrew1.

Install Rakudo: Type the following command in the terminal rakudobrew build moar2.

Install Panda: Type the following command in the terminal rakudobrew build-panda3.

OSX

Follow the same steps listed for installing on Linux

OR

Install with homebrew: brew install rakudo-star

Windows

Download the latest installer (file with .MSI extension) from http://rakudo.org/downloads/star/

If your system architecture is 32-bit, download the x86 file if it’s 64-bit download the x86_64 file.

1.

After installation add C:\rakudo\bin to your PATH2.

Docker

Get the official Docker image docker pull rakudo-star1.

Then run a container with the image docker run -it rakudo-star2.

1.4. Running Perl 6 code

Running Perl 6 code can be done using the REPL (Read-Eval-Print Loop).

Within the terminal, type perl6 , write your code and hit [Enter]

Alternatively, write your code in a file, save it and run it.

It is recommended that Perl 6 files have a .pl6 extension.

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

3 of 54 11/28/15 12:28

Run the file from the terminal using the following syntax: perl6 filename.pl6

The REPL is mostly used for trying a specific piece of code, typically a single line.

For programs with more than a single line it is recommended to store them in a file and then run them.

1.5. Editors

Since most of the time we will be writing and storing our Perl 6 programs in files, we should have a decent text editor that

recognizes Perl 6 syntax.

I personally use and recommend Atom. It is a modern text editor and comes with Perl 6 syntax highlighting out of the

box.

Other people in the community also use Vim, Emacs or Padre.

Recent versions of Vim ship with syntax highlighting out of the box. Emacs and Padre will require installation of additional

packages.

1.6. Hello World!

We shall begin with The hello world ritual.

say 'hello world';

1.7. Syntax overview

Perl 6 is free form: You are free (most of the time) to use any amount of whitespace.

Statements are typically a logical line of code, they need to end with a semicolon: if True { say "Hello" };

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

4 of 54 11/28/15 12:28

Expressions are a special type of statement that returns a value: 1+2 will return 3

Expressions are made of Terms and Operators.

Terms are:

Variables: A value that can be manipulated and changed.

Literals: A constant value like a number or a string.

Operators are classified into types:

Type Explanation Example

Prefix Before the term. ++1

Infix Between terms 1+2

Postfix After the term 1++

Circumfix Around the term (1)

Postcircumfix After one term, around another Array[1]

1.7.1. Identifiers

Identifiers are the name given to terms when you define them.

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

5 of 54 11/28/15 12:28

Rules:

They must start with an alphabetic character or an underscore.

They can contain digits (except the first character).

They can contain dashes or apostrophes (except the first and last character), provided there’s an alphabetic

character to the right side of each dash/apostrophe.

Valid Invalid

var1 1var

var-one var-1

var’one var'1

var1_ var1'

_var -var

Naming conventions:

Camel case: variableNo1

Kebab case: variable-no1

Snake case: variable_no1

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

6 of 54 11/28/15 12:28

You are free to name your identifiers as you like, but it is good practice to adopt one naming convention consistently.

Using meaningful names will ease your (and others) programming life.

var1 = var2 * var3 is syntactically correct but its purpose is not evident.

monthly-salary = daily-rate * working-days would be a better way to name your variables.

1.7.2. Comments

A comment is a piece of text ignored by the compiler and used as a note.

Comments are divided into 3 types:

Single line:

#This is a single line comment

Embedded:

say #`(This is an embedded comment) "Hello World."

Multi line:

=begin comment
This is a multi line comment.
Comment 1
Comment 2
=end comment

1.7.3. Quotes

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

7 of 54 11/28/15 12:28

Strings need to be delimited by either double quotes or single quotes.

Always use double quotes:

if your string contains an apostrophe.

if your string contains a variable that needs to be interpolated.

say 'Hello World'; #Hello World
say "Hello World"; #Hello World
say "Don't"; #Don't
my $name = 'John Doe';
say 'Hello $name'; #Hello $name
say "Hello $name"; #Hello John Doe

2. Operators

Operator Type Description Example Result

+ Infix Addition 1 + 2 3

- Infix Subtraction 3 - 1 2

* Infix Multiplication 3 * 2 6

** Infix Power 3 ** 2 9

/ Infix Division 3 / 2 1.5

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

8 of 54 11/28/15 12:28

Note For the complete list of operators, including their precedence, go to http://doc.perl6.org/language/operators

3. Variables

Perl 6 variables are classified into 3 categories: Scalars, Arrays and Hashes.

A sigil (Sign in Latin) is a character that is used as a prefix to categorize variables.

$ is used for scalars

@ is used for arrays

% is used for hashes

3.1. Scalars

A scalar holds one value or reference.

#String
my $name = 'John Doe';
say $name;

#Integer
my $age = 99;
say $age;

3.2. Arrays

Arrays are lists containing multiple values.

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

9 of 54 11/28/15 12:28

my @animals = ['camel','llama','owl'];
say @animals;

Many operations can be done on arrays as shown in the below example:

Tip The tilde ~ is used for concatenation.

Script

my @animals = ['camel','vicuña','llama'];
say "The zoo contains " ~ @animals.elems ~ " animals";
say "The animals are: " ~ @animals;
say "I will adopt an owl for the zoo";
@animals.push("owl");
say "Now my zoo has: " ~ @animals;
say "The first animal we adopted was the " ~ @animals[0];
@animals.pop;
say "Unfortunately the owl got away and we're left with: " ~ @animals;
say "We're closing the zoo and keeping one animal only";
say "We're going to let go: " ~ @animals.splice(1,2) ~ " and keep the " ~ @animals;

Output

The zoo contains 3 animals
The animals are: camel vicuña llama
I will adopt an owl for the zoo
Now my zoo has: camel vicuña llama owl
The first animal we adopted was the camel
Unfortunately the owl got away and we're left with: camel vicuña llama
We're closing the zoo and keeping one animal only
We're going to let go: vicuña llama and keep the camel

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

10 of 54 11/28/15 12:28

Explanation

.elems returns the number of elements in an array.

.push() adds an element to the array.

We can access a specific element in the array by specifying its position @animal[0] .

.pop removes the last element from the array.

.splice(a,b) will remove the b elements that start at position a .

Note For the complete Array reference, see http://doc.perl6.org/type/Array

3.3. Hashes

A Hash is a set of Key/Value pairs.

my %capitals = ('London','UK','Berlin','Germany');
say %capitals;

#another succinct way of filling the hash:
my %capitals = (London => 'UK', Berlin => 'Germany');
say %capitals;

3.4. Types

In the previous examples, we did not specify what type the variables should hold. This means that the variable type will

be whatever we assigned to it.

Tip .WHAT will return the type of the variable.

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

11 of 54 11/28/15 12:28

my $var = 'Text';
say $var;
say $var.WHAT;

$var = 123;
say $var;
say $var.WHAT;

As you can see in the above example, the type of $var was once (Str) and then (Int).

This style of programming is called dynamic typing. Dynamic in the sense that a variable type is whatever you assign to

it.

Now try running the below example:

Notice Str before the variable name.

my Str $var = 'Text';
say $var;
say $var.WHAT;

$var = 123;
say $var;
say $var.WHAT;

It will fail and return this error message: Type check failed in assignment to $var; expected Str but got Int

What happened is that we specified beforehand that the variable should be of type (Str). When we tried to assign an (Int)

to it, it failed.

This style of programming is called static typing. Static in the sense that variable types are defined before assignment

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

12 of 54 11/28/15 12:28

and cannot change.

Perl 6 is classified as gradually typed; it allows both static and dynamic typing.

Below is a list of the most commonly used types.

You will most probably never use the first two but they are listed for informational purpose.

Type Description Example Result

Mu The root of the Perl 6 type hierarchy

Any
Default base class for new classes and for

most built-in classes

Cool
Value that can be treated as a string or

number interchangeably

my Cool $var = 31; say

$var.flip; say $var * 2;
13 62

Str String of characters
my Str $var = "NEON"; say

$var.flip;
NOEN

Int Integer (arbitrary-precision) 7 + 7 14

Rat Rational number (limited-precision) 0.1 + 0.2 0.3

Bool Boolean !True False

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

13 of 54 11/28/15 12:28

3.5. Introspection

Introspection is the process of getting information about an object properties like its type.

In one of the previous example we used .WHAT to return the type of the variable.

my Int $var;
say $var.WHAT;
my $var2;
say $var2.WHAT;
$var2 = 1;
say $var2.WHAT;
$var2 = "Hello";
say $var2.WHAT;
$var2 = True;
say $var2.WHAT;
$var2 = Nil;
say $var2.WHAT;

(Int)
(Any)
(Int)
(Str)
(Bool)
(Any)

The type of a variable holding a value is correlated to its value.

The type of a strongly declared empty variable is the type with which it was declared.

The type of an empty variable that wasn’t strongly declared is (Any)

To clear the value of a variable, assign Nil to it.

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

14 of 54 11/28/15 12:28

3.6. Scoping

Before using a variable for the first time, it needs to be declared.

Several declarators are used in Perl 6, my is what we have been using so far in the examples above.

my $var=1;

The my declarator give the variable lexical scope. In other words, the variable will only be accessible in the same block

it was declared.

A block in Perl 6 is delimited by { } . If no block is found, the variable will be available in the whole Perl script.

{
my Str $var = 'Text';
say $var; #is accessible

}
say $var; #is not accessible, returns an error

Since a variable is only accessible in the block where it is defined, the same variable name can be redefined in another

block.

{
my Str $var = 'Text';
say $var;

}
my Int $var = 123;
say $var;

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

15 of 54 11/28/15 12:28

Note For more info on variables, see http://doc.perl6.org/language/variables

4. Functions and mutators

It is important to differentiate between functions and mutators.

Functions do no change the initial state of the object they were called on.

Mutators modify the state of the object.

Script

my @numbers = [7,2,4,9,11,3];

@numbers.push(99);
say @numbers; #1

say @numbers.sort; #2
say @numbers; #3

@numbers.=sort;
say @numbers; #4

Output

[7 2 4 9 11 3 99] #1
(2 3 4 7 9 11 99) #2
[7 2 4 9 11 3 99] #3
[2 3 4 7 9 11 99] #4

Explanation

.push is a mutator, it changes the state of the array (#1)

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

16 of 54 11/28/15 12:28

.sort is a function, it returns a sorted array but doesn’t modify the state of the initial array:

(#2) shows that it returned a sorted array.

(#3) shows that the initial array is still unmodified.

In order to enforce a function to act as a mutator, we use .= instead of . (#4) (Line 9 of the script)

5. Loops and conditions

Perl 6 has a multitude of conditionals and looping constructs.

5.1. if

The code runs only if the condition has been met.

my $age = 19;

if $age > 18 {
say 'Welcome'

};

In Perl 6 we can invert the code and the condition.

Even if the code and the condition have been inverted, the condition is always evaluated first.

my $age = 19;

say 'Welcome' if $age > 18;

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

17 of 54 11/28/15 12:28

If the condition is not met, we can still specify alternative blocks for execution using:

else

elsif

#run the same code for different values of the variable
my $number-of-seats = 9;

if $number-of-seats <= 5 {
say 'I am a sedan'

} elsif $number-of-seats <= 7 {
say 'I am 7 seater'

} else {
say 'I am a van'

};

5.2. unless

The negated version of an if statement can be written using unless .

The following code:

my $clean-shoes = False;

if not $clean-shoes {
say 'Clean your shoes'

};

can be written as:

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

18 of 54 11/28/15 12:28

my $clean-shoes = False;

unless $clean-shoes {
say 'Clean your shoes'

};

Negation in Perl 6 is done using either ! or not .

unless (condition) is used instead of if not (condition) .

unless cannot have an else clause.

5.3. with

with behave like the if statement, but checks if the variable is defined.

my Int $var=1;

with $var {
say 'Hello'

};

If you run the code without assigning a value to the variable nothing should happen.

my Int $var;

with $var {
say 'Hello'

};

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

19 of 54 11/28/15 12:28

without is the negated version of with . You should be able to relate it to unless .

If the first with condition is not met, an alternate path can be specified using orwith .

with and orwith can be compared to if and elsif .

5.4. for

The for loop iterates over multiple values.

my @array = [1,2,3];

for @array -> $array-item {
say $array-item*100

};

Notice that we created an iteration variable $array-item in order to perform the operation *100 on each array item.

5.5. given

given is the Perl 6 equivalent of the switch statement in other languages.

my $var = 42;

given $var {
when 0..50 { say 'Less than 50'}
when Int { say "is an Int" }
when 42 { say 42 }
default { say "huh?" }

};

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

20 of 54 11/28/15 12:28

After a successful match, the matching process will stop.

Alternatively proceed will instruct Perl 6 to continue matching even after a successful match.

my $var = 42;

given $var {
when 0..50 { say 'Less than 50';proceed}
when Int { say "is an Int";proceed}
when 42 { say 42 }
default { say "huh?" }

};

5.6. loop

loop is another way of writing a for loop.

Actually loop is how for loops are written in C-family programming languages.

Perl 6 belongs to the C-family languages.

loop (my $i=0; $i < 5; $i++) {
say "The current number is $i"

};

Note For more info on loops and conditions, see http://doc.perl6.org/language/control

6. I/O

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

21 of 54 11/28/15 12:28

In Perl 6, two of the most common Input/Output interfaces are the Terminal and Files.

6.1. Basic I/O using the Terminal

6.1.1. say

say writes to the standard output. It appends a new line at the end. In other words, the following code:

say 'Hello Mam.';
say 'Hello Sir.';

will be written on 2 separate lines.

6.1.2. print

print on the other hand behave like say but doesn’t add a new line.

Try replacing say with print and compare both results.

6.1.3. get

get is used to capture input from the terminal.

my $name;

say "Hi, what's your name?";
$name=get;

say "Dear $name welcome to Perl 6";

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

22 of 54 11/28/15 12:28

When the above code runs, the terminal will be waiting for you to input your name. Subsequently, it will greet you.

6.1.4. prompt

prompt is a combination of print ans get .

The above example can be written like this:

my $name = prompt("Hi, what's your name? ");

say "Dear $name welcome to Perl 6";

6.2. Running Shell Commands

Two subroutines can be used to run shell commands:

run Runs an external command without involving a shell

shell Runs a command through the system shell. All shell meta characters are interpreted by the shell, including

pipes, redirects, environment variable substitutions and so on

my $name = 'Neo';
my $command = run 'echo', "hello $name";
my $command2 = shell "ls";

echo and ls are common shell keywords.

echo prints text to the terminal (the equivalent of print in Perl 6)

ls lists all files and folders in the current directory

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

23 of 54 11/28/15 12:28

6.3. File I/O

6.3.1. slurp

slurp is used to read data from a file.

Create a text file with the following content:

datafile.txt

John 9
Johnnie 7
Jane 8
Joanna 7

my $data = slurp "datafile.txt";
say $data;

6.3.2. spurt

spurt is used to write data to a file.

my $newdata = "New scores:
Paul 10
Paulie 9
Paulo 11";

spurt "newdatafile.txt", $newdata;

After running the above code, a new file named newdatafile.txt will be created. It will contain the new scores.

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

24 of 54 11/28/15 12:28

6.4. Working with files and directories

Perl 6 can list the contents of a directory without running shell commands (using ls) as seen in a previous example.

say dir; #List files and folders in the current directory
say dir "/Documents"; #List files and folders in the specified directory

In addition to that you can create new directories and delete them.

mkdir "newfolder";
rmdir "newfolder";

mkdir creates a new directory.

rmdir delete an empty directory. Returns an error if not empty.

You can also check if the specified path exits, if it is a file or a directory:

In the directory where you will be running the below script, create an empty folder folder123 and an empty pl6 file

script123.pl6

say "script123.pl6".IO.e;
say "folder123".IO.e;

say "script123.pl6".IO.d;
say "folder123".IO.d;

say "script123.pl6".IO.f;
say "folder123".IO.f;

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

25 of 54 11/28/15 12:28

IO.e checks if the directory/file exist.

IO.f checks if the path is a file.

IO.d checks if the path is a directory.

Note For more info on I/O, see http://doc.perl6.org/type/IO

7. Subroutines

7.1. Definition

Subroutines or subs are a means of packaging a set of functionality.

A subroutine definition begins with the keyword sub . After their definition, they can be called by their handle.

Check out the below example:

sub alien-greeting {
say "Hello earthlings";

}

alien-greeting;

The previous example showcased a subroutine that doesn’t require any input.

7.2. Signature

Many subroutines would require some input in order to work. That input is provided by arguments. The number and type

of arguments that this subroutine accepts is called its signature.

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

26 of 54 11/28/15 12:28

The below subroutine accepts a string argument.

sub say-hello (Str $name) {
say "Hello " ~ $name ~ "!!!!"

}
say-hello "Paul";
say-hello "Paula";

7.3. Multi subroutine

It is possible to define multiple subroutines having the same name but different signatures. When the subroutine is

called, the runtime environment will decide which version to use depending on the number and type of the supplied

arguments. This type of subroutines is defined the same way as normal subs with the exception of swapping the sub

keyword with multi .

multi greet($name) {
say "Good morning $name";

}
multi greet($name, $title) {

say "Good morning $title $name";
}

greet "Johnnie";
greet "Laura","Mrs.";

7.4. Default and Optional Arguments

If a subroutine is defined to accept an argument, and we call it without providing it with the required argument, it will fail.

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

27 of 54 11/28/15 12:28

Alternatively Perl 6 provides us the ability to define subroutines with:

Optional Arguments

Default Arguments

Optional arguments are defined by appending ? after the argument name.

sub say-hello($name?) {
if $name.defined {

say "Hello " ~ $name;
 } else {

say "Hello Human";
 }
}
say-hello;
say-hello("Laura");

If the user doesn’t supply an argument, it can default to a specific value.

This is done by assigning a value to the argument within the subroutine definition.

sub say-hello($name="Matt") {
say "Hello " ~ $name;

}
say-hello;
say-hello("Laura");

Note For more info on subroutines and functions, see http://doc.perl6.org/language/functions

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

28 of 54 11/28/15 12:28

8. Classes & Objects

8.1. Introduction

Object Oriented programming is one of the widely used paradigms nowadays.

An object is a set of variables and subroutines bundled together.

The variables are called attributes and the subroutines are called methods.

Attributes define the state and methods define the behavior of an object.

A class defines the structure of a set of objects.

In order to understand the relationship consider the below example:

There are 4 people present in a room objects ⇒ 4 people

These 4 people are humans class ⇒ Human

They have different names, age, sex and nationality attributes ⇒ name, age, sex, nationality

In object oriented parlance, we say that objects are instances of a class.

Consider the below script:

class Human {
has $name;
has $age;
has $sex;

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

29 of 54 11/28/15 12:28

has $nationality;
}

my $john = Human.new(name => 'John', age => 23, sex => 'M', nationality => 'American');
say $john;

The class keyword is used to define a class.

The has keyword is used to define attributes of a class.

The .new() method is called a constructor. It creates the object as an instance of the class it has been called on.

In the above script, a new variable $john holds a reference to a new instance of "Human" defined by Human.new() .

The arguments passed to the .new() method are used to set the attributes of the underlying object.

A class can be given lexical scope using my :

my class Human {

}

8.2. Encapsulation

Encapsulation is an object oriented concept that bundles a set of data and methods together.

The data (attributes) within an object should be private, in other words, accessible only from within the object.

In order to access the attributes from outside the object we use methods that we call accessors.

The below two scripts have the same result.

Direct access to the variable:

my $var = 7;

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

30 of 54 11/28/15 12:28

say $var;

Encapsulation:

my $var = 7;
sub sayvar {

$var;
}
say sayvar;

The method sayvar is an accessors. It let us access the value of the variable without getting direct access to it.

Encapsulation is facilitated in Perl 6 with the use of twigils.

Twigils are secondary sigils. They come between the sigil and the attribute name.

Two twigils are used in classes:

! is used to explicitly declare that the attribute is private.

. is used to automatically generate an accessor for the attribute.

By default, all attributes are private but it is a good habit to always use the ! twigil.

In line with what we said we should rewrite the above class as following:

class Human {
has $!name;
has $!age;
has $!sex;
has $!nationality;
}

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

31 of 54 11/28/15 12:28

my $john = Human.new(name => 'John', age => 23, sex => 'M', nationality => 'American');
say $john;

Append to the script the following statement: say $john.age;

It will return the following error: Method 'age' not found for invocant of class 'Human'

The reason being that $!age is private and can only be used within the object. Trying to access it outside the object will

return an error.

Now replace has $!age with has $.age and see what will be the result of say $john.age;

8.3. Named vs. Positional Arguments

In Perl 6, all classes inherit a default .new() constructor.

It can be used to create objects by providing it with arguments.

The default constructor can only be provided with named arguments.

If you consider the above example, you’ll remark that all the arguments supplied to .new() are defined by name:

name ⇒ 'John'

age ⇒ 23

What if i do not want to supply the name of each attribute each time i want to create a new object?

Then I need to create another constructor that accepts positional arguments.

class Human {
has $.name;
has $.age;
has $.sex;
has $.nationality;

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

32 of 54 11/28/15 12:28

#new constructor that overrides the default one.
method new ($name,$age,$sex,$nationality) {

self.bless(:$name,:$age,:$sex,:$nationality);
 }
}

my $john = Human.new('John',23,'M','American');
say $john;

The constructor that accepts positional arguments need to be defined as seen above.

8.4. Methods

8.4.1. Introduction

Methods are the subroutines of an object.

Like subroutines, they are a means of packaging a set of functionality, they accept arguments, have a signature and

can be defined as multi.

Methods are defined using the method keyword.

In normal circumstances, methods a required to perform some sort of action on the objects' attributes. This enforces the

concept of encapsulation. Object attributes can only be manipulated from within the object using methods. The outside

world, can only interact with the object methods, and has no access to its attributes.

class Human {
has $.name;
has $.age;
has $.sex;
has $.nationality;
has $.eligible;

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

33 of 54 11/28/15 12:28

method assess-eligibility {
if self.age < 21 {

$!eligible = 'No'
 } else {

$!eligible = 'Yes'
 }
 }

}

my $john = Human.new(name => 'John', age => 23, sex => 'M', nationality => 'American');
$john.assess-eligibility;
say $john.eligible;

Once methods are defined within a class, they can be called on an object using the dot notation:

object . method or as in the above example: $john.assess-eligibility

Within the definition of a method, if we need to reference the object itself to call another method we use the self

keyword.

Within the definition of a method, if we need to reference an attribute we use ! even if it was defined with .

The rationale being that what the . twigil does is declare an attribute with ! and automate the creation of an accessor.

In the above example if self.age < 21 and if $!age < 21 would have the same effect, although they are

technically different:

self.age calls the .age method (accessor)

Can be written alternatively as $.age

$!age is a direct call to the variable

8.4.2. Private methods

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

34 of 54 11/28/15 12:28

Normal methods can be called on objects from outside the class.

Private methods are methods that can only be called from within the class.

A possible use case would be a method that calls another one for specific action. The method that interfaces with the

outside world is public while the one referenced should stay private. We do not want users to call it directly, so we

declare it as private.

The declaration of a private method requires the use of the ! twigil before its name.

Private methods are called with ! instead of .

method !iamprivate {
#code goes in here

}

method iampublic {
self!iamprivate;
#do additional things

}

8.5. Class Attributes

Class attributes are attributes that belong to the class itself and not to its objects.

They can be initialized during definition.

Class attributes are declared using my instead of has .

They are called on the class itself instead of its objects.

class Human {
has $.name;
my $.counter = 0;

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

35 of 54 11/28/15 12:28

method new($name) {
self.bless(:$name);

 Human.counter++;
 }
}
my $a = Human.new('a');
my $b = Human.new('b');

say Human.counter;

8.6. Access Type

Until now all the examples that we’ve seen, used accessors to get information from the objects' attributes.

What if we need to modify the value of an attribute?

We need to label it as read/write using the following keywords is rw

class Human {
has $.name;
has $.age is rw;

}
my $john = Human.new(name => 'John', age => 21);
say $john.age;

$john.age = 23;
say $john.age;

By default, all attributes are declared as read only but you can explicitly do it using is readonly

8.7. Inheritance

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

36 of 54 11/28/15 12:28

8.7.1. Introduction

Inheritance is yet another concept of object oriented programming.

When defining classes, soon enough we will realize that some attributes/methods are common to many classes.

Should we duplicate code?

NO! We should use inheritance

Let’s consider we want to define two classes a class for Human beings and a class for Employees.

Human beings have 2 attributes: name and age.

Employees have 4 attributes: name, age, company and salary

One would be tempted to define the classes as follow:

class Human {
has $.name;
has $.age;

}

class Employee {
has $.name;
has $.age;
has $.company;
has $.salary;

}

While technically correct the above piece of code is considered conceptually poor.

A better way to write it would be as follow:

class Human {

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

37 of 54 11/28/15 12:28

has $.name;
has $.age;

}

class Employee is Human {
has $.company;
has $.salary;

}

The is keyword defines inheritance.

In object oriented parlance we say Employee is a child of Human, and Human is a parent of Employee.

All child classes inherit the attributes and methods of the parent class, so there is no need to redefine them.

8.7.2. Overriding

Classes inherit all attributes and methods from their parent classes.

There are cases where we need the method in the child class to behave differently than the one inherited.

To achieve this, we redefine the method in the child class.

This concept is called overriding.

In the below example, the method introduce-yourself is inherited by the Employee class.

class Human {
has $.name;
has $.age;
method introduce-yourself {

say 'Hi i am a human being, my name is ' ~ self.name;
 }
}

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

38 of 54 11/28/15 12:28

class Employee is Human {
has $.company;
has $.salary;

}

my $john = Human.new(name =>'John', age => 23,);
my $jane = Employee.new(name =>'Jane', age => 25, company => 'Acme', salary => 4000);

$john.introduce-yourself;
$jane.introduce-yourself;

Overriding works as follow:

class Human {
has $.name;
has $.age;
method introduce-yourself {

say 'Hi i am a human being, my name is ' ~ self.name;
 }
}

class Employee is Human {
has $.company;
has $.salary;
method introduce-yourself {

say 'Hi i am a employee, my name is ' ~ self.name ~ ' and I work at: ' ~ self.company;
 }

}

my $john = Human.new(name =>'John',age => 23,);
my $jane = Employee.new(name =>'Jane',age => 25,company => 'Acme',salary => 4000);

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

39 of 54 11/28/15 12:28

$john.introduce-yourself;
$jane.introduce-yourself;

Depending of which class the object is, the right method will be called.

8.7.3. Submethods

Submethods are a type of method that are not inherited by child classes.

They are only accessible from the class they were declared in.

They are defined using the submethod keyword.

8.8. Introspection

Introspection is the process of getting information about an object properties like its type, or its attributes or its methods.

class Human {
has Str $.name;
has Int $.age;
method introduce-yourself {

say 'Hi i am a human being, my name is ' ~ self.name;
 }
}

class Employee is Human {
has Str $.company;
has Int $.salary;
method introduce-yourself {

say 'Hi i am a employee, my name is ' ~ self.name ~ ' and I work at: ' ~ self.company;
 }
}

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

40 of 54 11/28/15 12:28

my $john = Human.new(name =>'John',age => 23,);
my $jane = Employee.new(name =>'Jane',age => 25,company => 'Acme',salary => 4000);

say $john.WHAT;
say $jane.WHAT;
say $john.^attributes;
say $jane.^attributes;
say $john.^methods;
say $jane.^methods;
say $jane.^parents;
if $jane ~~ Human {say 'Jane is a Human'};

Introspection is facilitated by:

.WHAT returns the class from which the object has been created.

.^attributes returns a list containing all attributes of the objects.

.^methods returns all methods that can be called on the object.

.^parents returns all parent classes of the class the object belongs.

~~ is called the smart-match operator. It evaluates to True if the object is created from the class it is being

compared against or any of its inheritances.

9. Exception Handling

9.1. Catching Exceptions

Exceptions are a special behavior that happens at runtime when something goes wrong.

We say that exceptions are thrown.

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

41 of 54 11/28/15 12:28

Consider the below script that runs correctly:

my Str $name;
$name = "Joanna";
say "Hello " ~ $name;
say "How are you doing today?"

Output

Hello Joanna
How are you doing today?

Now consider this script that throws an exception:

my Str $name;
$name = 123;
say "Hello " ~ $name;
say "How are you doing today?"

Output

Type check failed in assignment to $name; expected Str but got Int
 in block <unit> at exceptions.pl6:2

You should have remarked that whenever an error occurs (in this case assigning a number to a string variable) the

program will stop and other lines of code will not be evaluated, even if correct.

Exception handling is the process of catching an exception that has been thrown in order for the script to continue

working.

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

42 of 54 11/28/15 12:28

my Str $name;
try {

$name = 123;
say "Hello " ~ $name;

 CATCH {
default {

say "Can you tell us your name again, we couldn't find it in the register.";
 }
 }
}
say "How are you doing today?";

Output

Can you tell us your name again, we couldn't find it in the register.
How are you doing today?

Exception handling is done by using a try-catch block.

try {
#code goes in here
#if anything goes wrong, the script will enter the below CATCH block
#if nothing goes wrong the CATCH block will be ignored

 CATCH {
default {

#the code in here will be evaluated only if an exception has been thrown
 }
 }
}

The CATCH block can be defined the same way a given block is defined. This means we can catch and handle

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

43 of 54 11/28/15 12:28

differently many types of exceptions.

try {
#code goes in here
#if anything goes wrong, the script will enter the below CATCH block
#if nothing goes wrong the CATCH block will be ignored

 CATCH {
when X::AdHoc { #do something if an exception of type X::AdHoc is thrown }
when X::IO { #do something if an exception of type X::IO is thrown }
when X::OS { #do something if an exception of type X::OS is thrown }
default { #do something if an exception is thrown and doesn't belong to the above types }

 }
}

9.2. Throwing Exceptions

In contrast to catching exceptions, Perl 6 also allows you to explicitly throw exceptions.

Two types of exceptions can be thrown:

ad-hoc exceptions

typed exceptions

ad-hoc

my Int $age = 21;
die "Error !";

typed

my Int $age = 21;

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

44 of 54 11/28/15 12:28

X::AdHoc.new(payload => 'Error !').throw;

Ad-hoc exceptions are thrown using the die subroutine followed by the exception message.

Typed exceptions are objects, hence the use of the .new() constructor in the above example.

All typed exceptions descend from class X , below are a few examples:

X::AdHoc is the simplest exception type

X::IO is related to IO errors

X::OS is related to OS errors

X::Str::Numeric related to trying to coerce a string to a number

Note

For a complete list of exception types and their associated methods go to http://doc.perl6.org/type.html and

navigate to types starting with X.

10. Regular Expressions

A regular expression, or regex is a sequence of characters that is used for pattern matching.

The easiest way to understand it is to think of it as a pattern.

if 'enlightenment' ~~ m/ light / {
say "enlightenment contains the word light";

}

In this example, the smart match operator ~~ is used to check if a string (enlightenment) contains the word (light).

"Enlightenment" is matched against a regex m/ light /

10.1. Regex definition

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

45 of 54 11/28/15 12:28

A regular expression can be defined as follows:

/light/

m/light/

rx/light/

Unless specified explicitly, white space is irrelevant, m/light/ and m/ light / are the same.

10.2. Matching characters

Alphanumeric characters and the underscore _ are written as is.

All other characters have to be escaped using a backslash or surrounded by quotes.

Backslash

if 'Temperature: 13' ~~ m/ \: / {
say "The string provided contains a colon :";

}

Single quotes

if 'Age = 13' ~~ m/ '=' / {
say "The string provided contains an equal character = ";

}

Double quotes

if 'name@company.com' ~~ m/ "@" / {
say "This is a valid email address because it contains an @ character";

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

46 of 54 11/28/15 12:28

}

10.3. Matching categories of characters

Characters can be classified into categories and we can match against them.

We can also match against the inverse of that category (everything except it):

Category Regex Inverse Regex

Word character (letter, digit or underscore) \w Any character except a word character \W

Digit \d Any character except a digit \D

Whitespace \s Any character except a whitespace \S

Horizontal whitespace \h Any character except a horizontal whitespace \H

Vertical whitespace \v Any character except a vertical whitespace \V

Tab \t Any character except a Tab \T

New line \n Any character except a new line \N

if "John123" ~~ / \d / {
say "This is not a valid name, numbers are not allowed";

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

47 of 54 11/28/15 12:28

} else {
say "This is a valid name"

}
if "John-Doe" ~~ / \s / {

say "This string contains whitespace";
} else {

say "This string doesn't contain whitespace"
}

10.4. Wildcards

Wildcards can also be used in a regex.

The dot . means any single character.

if 'abc' ~~ m/ a.c / {
say "Match";

}
if 'a2c' ~~ m/ a.c / {

say "Match";
}
if 'ac' ~~ m/ a.c / {

say "Match";
 } else {

say "No Match";
}

10.5. Quantifiers

Quantifiers come after a character and are used to specify how many times we are expecting it.

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

48 of 54 11/28/15 12:28

The question mark ? means zero or one time.

if 'ac' ~~ m/ a?c / {
say "Match";

 } else {
say "No Match";

}
if 'c' ~~ m/ a?c / {

say "Match";
 } else {

say "No Match";
}

The star * means zero or multiple times.

if 'az' ~~ m/ a*z / {
say "Match";

 } else {
say "No Match";

}
if 'aaz' ~~ m/ a*z / {

say "Match";
 } else {

say "No Match";
}
if 'aaaaaaaaaaz' ~~ m/ a*z / {

say "Match";
 } else {

say "No Match";
}
if 'z' ~~ m/ a*z / {

say "Match";

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

49 of 54 11/28/15 12:28

 } else {
say "No Match";

}

The + means at least one time.

if 'az' ~~ m/ a+z / {
say "Match";

 } else {
say "No Match";

}
if 'aaz' ~~ m/ a+z / {

say "Match";
 } else {

say "No Match";
}
if 'aaaaaaaaaaz' ~~ m/ a+z / {

say "Match";
 } else {

say "No Match";
}
if 'z' ~~ m/ a+z / {

say "Match";
 } else {

say "No Match";
}

11. Perl 6 Modules

Perl 6 is a general purpose programming language. It can be used to tackle a multitude of tasks including: text

manipulation, graphics, web, databases, network protocols etc.

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

50 of 54 11/28/15 12:28

Reusability is a very important concept whereby programmers don’t have to reinvent the wheel each time they want to do

a new task.

Perl 6 allows the creation and redistribution of modules. Each module is a packaged set of functionality that can be

reused once installed.

Panda is a module management tool that comes with Rakudo.

To install a specific module, type the below command in your terminal:

panda install "module name"

Note The Perl 6 modules directory can be found on: http://modules.perl6.org/

11.1. Using Modules

MD5 is a cryptographic hash function that produces a 128-bit hash value.

MD5 has a variety of applications of which encryption of passwords stored in a database. When a new user registers,

their credentials are not stored as plain text but rather hashed. The rationale behind this is that if the DB gets

compromised, the attacker will not be able to know what the passwords are.

Lets say you need a script that generates the MD5 hash of a password in preparation for storing it in the DB.

Luckily there’s a Perl 6 module that already implemented the MD5 algorithm. Lets install it:

panda install Digest::MD5

Now run the below script:

use Digest::MD5;

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

51 of 54 11/28/15 12:28

my $password = "password123";
my $hashed-password = Digest::MD5.new.md5_hex($password);

say $hashed-password;

In order to run the md5_hex() function that creates hashes, we need to load the required module.

The use keyword loads the module for use in the script.

12. Unicode

Unicode is a standard for encoding and representing text, that caters for most writing systems in the world.

UTF-8 is a character encoding capable of encoding all possible characters, or code points, in Unicode.

Characters are defined by a:

Grapheme: Visual representation.

Code point: A number assigned to the character.

12.1. Using Unicode

Lets look at how we can output characters using Unicode

say "a";
say "\x0061";
say "\c[LATIN SMALL LETTER A]";

The above 3 lines showcase different ways of building a character:

Writing the character directly (grapheme)1.

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

52 of 54 11/28/15 12:28

Using \x and the code point2.

Using \c and the code point name3.

Now lets output a smiley

say "☺";
say "\x263a";
say "\c[WHITE SMILING FACE]";

Another example combining two code points

say "á";
say "\x00e1";
say "\x0061\x0301";
say "\c[LATIN SMALL LETTER A WITH ACUTE]";

The letter á can be written:

using its unique code point \x00e1

or as a combination of the code points of a and acute \x0061\x0301

Some of the methods that can be used:

say "á".NFC;
say "á".NFD;
say "á".uniname;

Output

NFC:0x<00e1>

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

53 of 54 11/28/15 12:28

NFD:0x<0061 0301>
LATIN SMALL LETTER A WITH ACUTE

NFC returns the unique code point.

NFD decomposes the character and return the code point of each part.

uniname returns the code point name.

Unicode letters can be used as identifiers:

my $Δ = 1;
$Δ++;
say $Δ;

13. The community

Much discussion happens on the #perl6 IRC channel. This should be your go to place for any enquiry:

http://perl6.org/community/irc

Stay tuned by reading blog posts that focus on Perl 6:

http://pl6anet.org/ is a Perl 6 blog aggregator.

Status API Training Shop Blog About Pricing© 2015 GitHub, Inc. Terms Privacy Security Contact Help

perl6intro/perl6intro.adoc at master · hankache/perl6intro · GitHub https://github.com/hankache/perl6intro/blob/master/perl6intro.adoc

54 of 54 11/28/15 12:28

