
A Compressed Suffix Tree Based
Implementation With Low Peak Memory

Usage 1

Daniel Saad Nogueira Nunes2 Mauricio Ayala-Rincón3

Instituto de Ciências Exatas
Departamentos de Ciência da Computação e Matemática

Universidade de Braśılia
Braśılia,Brazil

Abstract

Suffix trees (ST s) and suffix arrays are well known indices which demand too much space for large inputs.
Recently, several works explore a data structure called compressed suffix tree (CST), which offers the same
functionality than suffix trees and is based on compressed suffix arrays, compressed longest common prefix
information and navigational operations. In this paper, the implementation of a CST based on range-
minimum-queries and nearest smaller value queries, which requires roughly more than the space needed
to represent the index during the construction, is presented. Experiments show that this index is useful
for many applications since, on the one side, one can execute complex traversals such as suffix links and
longest common ancestor queries that are essential to deal with several questions about the combinatorial
structure of sequences; and, on the other side, the structure results of practical interest for applications
using computational environments in which the amount of available memory is restricted, because it fits in
main memory of ordinary computers.

Keywords: suffix trees, suffix arrays, longest common prefix, compressed suffix trees, String Processing.

1 Introduction

Suffix trees (ST s) are very versatile data structures well known by their wide range

of applications in several areas of Computer Science such as Computational Biology,

as shown in [14]. The ST of a text encodes all its suffixes in a compact way in

comparison with other data structures such as tries.

1 Work supported by a PRONEX grant from the Federal District Research Foundation FAPDF and a travel
grant from the Foundation for Scientific and Technological Enterprises FINATEC.
2 Email: daniel.saad.nunes@gmail.com
Author supported by a graduate scholarship from the Coordination for Enhancement of Higher Education
Personnel CAPES.
3 Email: ayala@unb.br
Author partially supported by a grant from the National Counsel of Technological and Scientific Develop-
ment CNPq.

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 302 (2014) 73–94

1571-0661 © 2014 Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2014.01.021
Open access under the CC BY-NC-ND license.

mailto:daniel.saad.nunes@gmail.com
mailto:ayala@unb.br
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2014.01.021
http://dx.doi.org/10.1016/j.entcs.2014.01.021
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

Several suffix tree operations as suffix link and lowest common ancestor queries

(LCA) are essential to solve relevant problems. Thus, in practice, a ST with full

functionality, supporting many complex traversals, is often required.

The major problem of ST s is the space consumption in practice. Although the

ST of a text of length n asymptotically requires Θ(n log n) bits, in practice one

needs a factor of ≈ ×15 over the size of the input [19], which results in 45GB of

main memory for building the structure for the human genome, for instance.

Suffix arrays were proposed in order to solve string processing problems using

less space than ST s [23]. However, the information of suffix arrays correspond

only to leaves of ST s in lexicographical order. Nevertheless, suffix arrays can be

enhanced with longest common prefix information (LCP), which implicitly encodes

the topology of the associated ST . Hence, a suffix array can replace entirely a ST
if provided with LCP information and navigational operations over it [2].

Although less space consuming, suffix arrays still require Θ(n log n) bits, usually

4 bytes per input symbol, or 8 bytes if enhanced with the LCP information. The

amount of space required for the structure is still huge, not allowing their use for

moderately large sized texts.

Recently, a great amount of work has been done in order to compress the suffix

array data structure as shown in [12] and [8]. The compressed structure can achieve

Θ(nH0) bits of space, where H0 stands for the zero order entropy. Consequently,

one needs less space in practice to represent the suffix array information, although

the compression increases the query time over the structure. Generally, the factor

of compression is very large. One can represent the structure within few bits per

input symbol, as shown in [16].

It’s also possible to represent the LCP information in a compressed way using

Θ(n) bits [30]. Hence, using compressed data structures for navigational operation

in LCP, it’s possible to emulate a ST using Θ(nH0) bits of space, which represent

a huge economy of space in practice.

This compressed data structure composed by compressed suffix array, com-

pressed LCP information and compressed navigational information is called com-

pressed suffix tree (CST), and was introduced by K. Sadakane in [31]. Despite a

few additional amount of bits being necessary to represent the CST with support

to complex traversals , more time is required to answer queries. Usually a factor

of Θ(logε n), ε > 0, is present in each suffix array, LCP, or navigation operations.

The trade-off between space and time is highly acceptable when high quantities of

memory are not available.

Our contribution is an implementation of a CST with low memory peak usage if

compared with other state-of-art indices. It uses a compressed data structure based

on [5] for range-minimum-queries (RMQ), previous smaller value queries (PSV)

and next smaller value queries (NSV), to navigate in the topology encoded by the

compressed LCP information. In order to reduce the peak memory required during

the construction of the structure, instead of compressing a raw suffix array, an

incremental algorithm to build the compressed suffix array within Θ(nH0) working

space was used [15]. This incremental algorithm avoids building a raw suffix array

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–9474

and then compressing it due to the online approach used.

In order to evaluate the proposed implementation, experiments were performed

with two indices. The first one is based on a uncompressed suffix array provided

by [25] and uncompressed LCP information calculated with the method from [18].

The second index is a CST proposed by the Succinct Data Structures group (SuDS)

from the university of Helsinki [34] [33], which is based on [31].

The paper is organized as follows. All necessary basic concepts are given in

Section 2; compressed suffix arrays and LCP are presented in Section 3 and then,

in Section 4, compressed suffix trees are introduzed. Then, in Sections 5 and 6 re-

lated work and experimental results are presented, before concluding and presenting

future work in Section 7.

2 Basic Concepts

An alphabet Σ is a finite set of symbols {α0, α1, . . . , ασ−1} with a total order α0 <

α1 < . . . < ασ−1, where |Σ| = σ, the cardinality or size of the alphabet. Texts are

finite strings of symbols of Σ. The ith symbol of a text T of length n is denoted by

T [i] and its substring from the ith until the jth symbol as T [i, j], 0 ≤ i ≤ j ≤ n− 1.

The suffix T [i, n− 1] is denoted by Ti. It is assumed that the last character of any

text T is the symbol $, which belongs to Σ and is lexicographically smaller than

any other symbol of Σ and that occurs only in the last position of T . Given to texts

R and S, it is said that R =k S whenever the first k symbols of both strings are

equal.

According to [14], a ST for T is a rooted directed tree with exactly n leaves

numbered from 0 to n−1. Each internal node, other than the root, has at least two

children and each edge is labeled with a nonempty substring of T . Edges out of a

node cannot have edge-labels beginning with the same character. The key feature

of ST s is that the concatenation of the edge-labels on the path from the root to

any leaf i spells Ti. The Figure 1 shows a suffix tree for the text T = acaaacatat$.

A suffix array A is an array of integers containing the starting position of suffixes

of T in the lexicographical order induced by the order of the symbols. Thus, TA[0] <

TA[1] < . . . < TA[n−1].

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–94 75

•

$ a ca t

10 •

a ca t

•

T3 T7

•

T10 T8

•

T4 T5

•

T3 T7

•

T10 T8

1 5 9 7

2 3 0 4 8 6

Figure 1. Suffix Tree for T = acaaacatat$.

Table 1
Suffix array for acaaacatat$ and LCP information.

i TA[i] A[i] LCP [i]

0 $ 10 0

1 aaacatat$ 2 2

2 aacatat$ 3 1

3 acaaacatat$ 0 3

4 acatat$ 4 1

5 at$ 8 2

6 atat$ 6 0

7 caaacatat$ 1 2

8 catat$ 5 0

9 t$ 9 1

10 tat$ 7 0

The LCP information holds the length of the longest common prefix between

two adjacent entries of a suffix array. Formally, it is defined as:

LCP [i] =

⎧⎨
⎩

max{k |TA[i] =k TA[i+1]}, i < n− 1

0, i = n− 1
(1)

An example of suffix array and LCP information for T = acaaacatat$ is shown

in Table 1.

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–9476

3 Compressing Suffix Arrays and LCP

The compression of a suffix array can be achieved by sampling only few entries

of this data structure in such a way that non sampled entries are recoverable by

computation. If the sample factor is K ∈ Θ(log n) one would need only Θ(n) bits

to represent the sampled entries.

The core of a compressed suffix array data structure is the Ψ function, which

allows us to navigate through the suffix array. This function is defined as:

Ψ(i) = j, A[j] = (A[i] + 1) mod n (2)

In other words, if A[i] = k, then Ψ(i) gives us the lexicographical order of suffix

T(k+1) mod n among all other suffixes.

Naively, Ψ would be represented using Θ(n log n) bits. However it is possible to

represent Ψ within Θ(nH0) bits. Since the array is in lexicographical order, Ψ holds

an increasing sequence for suffixes starting with the same symbol, as illustrated in

Table 2. Therefore, it is possible to encode each increasing sequence in Θ(n) bits

using Rice coding while allowing Θ(1) time query to any position of the Ψ values

using Rank and Select queries on bitvectors, as shown in [12]. Although there are

Θ(1) solutions for Rank and Select queries, it is often obtained an ω(1) result in

practice because of better performance and less space consumption, as shown in

[11]. The access time for Ψ is denoted by tΨ.

Table 2
Ψ function walks through the suffix array.

Once the Ψ data structure is built, one can recover non sampled suffix arrays

entries by walking through the suffix array using this function. Using Table 2 as

an example, A[2] is not sampled, therefore the Ψ function is called 4 times until a

sampled value is found; hence, A[2] = A[10]− 4 = 7− 4 = 3. On average, an access

to A[i], denoted by tA, takes O(tΨK), as shown in [16].

The proposed CST builds the compressed suffix array using an incremental al-

gorithm from [15]. The algorithm only Θ(nH0) bits of working space and Θ(n log n)

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–94 77

Table 3
LCP [i] +A[i] holds an increasing sequence if suffixes are examined in the text order.

i TA[i] A[i] LCP [i] A[i] + LCP [i]

0 $ 10 0 10

1 aaacatat$ 2 2 4

2 aacatat$ 3 1 4

3 acaaacatat$ 0 3 3

4 acatat$ 4 1 5

5 at$ 8 2 10

6 atat$ 6 0 6

7 caaacatat$ 1 2 3

8 catat$ 5 0 5

9 t$ 9 1 10

10 tat$ 7 0 7

time, and thus, creates the compressed suffix array without building the raw suffix

array first. The idea is to compute Ψ incrementally from the end to the beginning

of the text. For each block of size B ∈ Θ(n
logn), one needs to calculate the posi-

tion of the new added suffixes among them and the position of each new added

suffix among the existing ones, and finally use this new information to build the Ψ

function for the added suffixes. There are B ∈ Θ(log n) blocks overall.

It was shown in [30] that LCP information can be compressed using at most

2n bits for its representation, while fast access is allowed. This is possible because

LCP [i] + A[i] values hold an increasing sequence if the entries are examined in

decreasing length of suffixes. Thus, it can be represented by the same methods

used to represent Ψ. For example, in Table 3, there is an increasing sequence

(3, 3, 4, 4, 5, 5, 6, 7, 10, 10, 10) for A[i]+LCP [i] values when the entries are examined

in decreasing order of suffix lengths. The methodology from [18] computes the LCP

information based on this order, so was the method of choice of the proposed CST .

Since the encoded information is not stored in lexicographical order, one needs

an additional access to A[i] to retrieve LCP [i], thus, an access to LCP [i] takes

tLCP ∈ Θ(tA).

4 Compressed Suffix Trees

Once the LCP information implicitly encodes the associated suffix tree topology, one

needs to navigate through this information in order to make complex tree traversals.

But in first place, it is necessary to identify the topology in the LCP information.

And this can be done using the concept of �-interval, which owns a one-to-one

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–9478

correspondence with the internal nodes of the associated ST [2]. An interval [i, j]

is an �-interval, denoted by �− [i, j], if:

i = 0 ∨ LCP [i− 1] < �

LCP [k] ≥ �, i ≤ k < j

LCP [k] = �, for one i ≤ k < j

j = n− 1 ∨ LCP [j] < �

(3)

The positions in an � − [i, j] interval with LCP value equal to � are called �-

indices.

Another useful concept is the concept of child interval. Given that � − [i, j] is

an interval, �′ − [i′, j′] is embedded in an � − [i, j] interval if it is a sub-interval of

[i, j]. It is said that �− [i, j] encloses �′ − [i′, j′]. If �− [i, j] encloses �′ − [i′, j′] and
there is no other interval embedded in � − [i, j] that also encloses �′ − [i′, j′], then
�′ − [i′, j′] is called a child interval of �− [i, j].

These intervals correspond to internal nodes in ST s because they are maximal

(can neither be extended to the left nor to the right) and every suffix shares a prefix

of length �. Analogously, an internal node of ST can not be extended, because

every edge starts with a different symbol and the leaves which are below the node,

share a prefix of length equal to the string depth of the internal node. Besides, the

parent-child-intervals represent a relationship of parent and child in the associated

ST . The leaves are represented by the suffix array A itself [2].

Once the relation of the LCP with the topology of the tree is understood, nav-

igational operations are necessary to emulate suffix tree traversals. The proposed

compressed ST is based on RMQ, NSV and PSV queries over the LCP information

to navigate in the tree. Formally they are defined as:

RMQ(i, j) = min{arg min
i≤k≤j

{LCP [k]}} (4)

PSV (i) = −1 ∨ max
0≤k<i

{LCP [k] < LCP [i]} (5)

NSV (i) = (n− 1) ∨ min
i<k≤n−1

{LCP [k] < LCP [i]} (6)

With a single data structure proposed in [5], one can handle these three queries.

The data structure is a tree whose leaves have the same height and correspond to

the LCP information. Let L be the number of siblings allowed for any node in

this tree. Sibling leaves correspond logically to a block. Each parent in this tree

is labeled with the leftmost position considering all the positions of minimum LCP

value of its children. An example of this structure corresponding to the Table 3 is

presented in Figure 2. In this example, the leaves correspond to the LCP informa-

tion (0, 2, 1, 3, 1, 2, 0, 2, 0, 1, 0) and the parent of the leaves labeled with (3, 1, 2) is

labeled with the position 4, which is the leftmost position in the LCP array that

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–94 79

occurs the minimum value 1 among (3, 1, 2). Following this idea, the root is la-

beled with 0 because the leftmost position in which the minimum LCP value occurs

between the positions (0, 10) of the LCP array is the position 0.

Figure 2. Data structure introduced by [5] for Table 3.

To answer NSV (i) queries, one must scan the i’s block and if the value is not

present, a bottom-up search is done until a node with a LCP value lesser than

LCP (i) is found. Then, a top-down search is executed in order to find the block in

which the NSV query will be answered. PSV queries work in a symmetric way.

For RMQ(i, j) queries, one must scan i’s block and j’s block to find a local

answer and then, execute a bottom-up search to calculate the RMQ between i’s

block and j’s until a common ancestor of the underlying leaves is achieved.

Since both queries need a top-down and/or a bottom-up traversals of the tree

of height O(logL(n)) = O(log(n/L)) and either an analysis of the block or the L
children, the running time for RMQ, NSV and PSV queries is O(tLCP ·L log(n/L)).
The space used by the structure belongs to o(n) bits if L = ω(log n). Running time

for RMQ queries is denoted by tRMQ . For PSV and NSV queries tPNSV is used.

Traversals and navigational operations supported by the CST implementation

are shown in Table 4.

Most of these operations were implemented as suggested by [10] with some slight

differences. The methodology to execute each navigational operation is described

below. Assume the node u is identified by � − [i, j] if it is not a leaf and node v is

identified by �′ − [i′, j′] if it is not a leaf either.

• Root: returns the root node of the ST . This can be done returning the 0 −
[0, n− 1] interval in O(1) time.

• Leaf(u): returns true if u is a leaf, false otherwise. One just have to check if the

interval [i, j] from u is a singleton interval, i.e, i = j. It is possible to check the

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–9480

Table 4
Supported operations of the proposed implementation

Operation Description Complexity

Root The root of the ST O(1)

Leaf(u) True if u is a leaf, false otherwise O(1)

Locate(u) The A[u] value O(tA)

Parent(u) The parent of node u O(tPNSV)

Children(u) The children of node u O(σ · tRMQ)

Edge(u, v) Edge label between nodes u and v O(tA + |S|)

Child(v, c) Child following an specific edge label O(σ · tRMQ)

Depth(v) String depth from the root to u O(tRMQ)

LCA(u, v) LCA between u and v O(tRMQ)

SLink(v) Suffix link of node u O(tRMQ)

equality in O(1) time.

• Locate(u): returns the position of the suffix associated with a ST leaf. Node u

must be a leaf, hence one just have to lookup A[i].

• Parent(u): returns the parent of the u node. The string depth of Parent(u)

must be the greatest among (LCP [i − 1], LCP [j]). Let k be the position which

occurs the maximum between LCP [i− 1] and LCP [j]. Thus, the parent interval

is given by [PSV (k) + 1, NSV (k)]. The operation has O(tPNSV) total cost. This

operation is illustrated by Figure 3.

Figure 3. Parent operation.

• Children(u): returns the children of the node u. If u is a leaf, it returns NULL.

The child intervals of a node u, are determined by its �-indices which are denoted

by {ı1, ı2, . . . , ık}. The �-indices can be recovered through RMQ queries. So

the first child is determined by [i, ı1 = RMQ(i, j − 1)], the second by [ı1 +

1, RMQ(ı1, j − 1)], and so on, until the last child is determined by [ık, j]. Since

at most σ children are possible, the complexity of this operation is O(σ · tRMQ).

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–94 81

Figure 4 shows the Children(u) operation.

Figure 4. Children operation.

• Edge(u, v): returns the label S of the edge between u and v. This is given by

T [A[i′] + �,A[i′] + �+ |S| − 1]. Hence, one needs O(tA + |S|) time to recover the

desired information.

• Child(u, c) returns the child of u which is linked by an edge that begins with the

symbol c. This can be done collecting the children of u and checking their first

symbol using the technique from Edge operation. Since a node has at most σ

children, the operation takes O(σ · tRMQ) time.

• Depth(u): returns the string depth of node u. If u is a Leaf, it returns A[u];

otherwise, returns � = LCP [RMQ(i, j − 1)]. Therefore, the operation requires

O(tRMQ) time.

• LCA(u, v): returns the lowest common ancestor of u and v .The LCA of u and

v is an �′′ − [i′′, j′′] interval. Let k = RMQ(j, i′ − 1). The common prefix (and

string depth) �′′ can be identified as LCP [RMQ(j, i′ − 1)] and the boundaries

as [PSV (k) + 1, NSV (k)]. Hence, the operation needs O(tRMQ) time. This

operations is ilustrated by Figure 5.

Figure 5. LCA operation.

• SLink(u): returns the node v which is linked with u by a suffix-link. If u is a

leaf, it returns Ψ(i); otherwise, it follows the suffix-links for Ψ(i) and Ψ(j), finds

the � value by setting k = LCP [RMQ(i, j − 1)] and then, finds the boundaries

with [PSV (k) + 1, NSV (k) + 1]. The operation takes O(tRMQ) time since it is

dominated by the RMQ query. Figure 6 illustrates the suffix link operation.

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–9482

Figure 6. Suffix link operation.

5 Related Work

The Figure 7 presents a chronology of related work including relevant works on

compressed and uncompressed ST data structures. It helps one to establish a

connection between our results and the others.

Initially, suffix trees were introduced in the 1970’s decade by Weiner [35], giving

birth to several works in which the expressive power and computational capabilities

of this structure were better explained and thoroughly understood, such as the

outstanding works of McCreight’s [24], Apostolico’s [3], Ukkonen’s [32] and Farach

[6].

In the begging of the 1990’s decade, Udi Manber and Gene Myers pointed out

that suffix trees had an excessive space consumption in practice. Thus, they pro-

posed the suffix arrays [23]. In their work the authors also introduced techniques

to deal with the notion of longest common prefix.

Still in the ambit of suffix arrays, Kasai et. al proposed a O(n) method to

compute the LCP information [18]. Abouelhoda et.al showed many applications

that have arisen from the suffix array data structure and LCP information [1]. The

same authors, in another work, showed that every problem solvable with the help

of a suffix tree is also solvable by replacing suffix trees by enhanced suffix arrays

with the same time complexity [2]. Later, Puglisi et. al introduced a taxonomy for

the suffix arrays construction algorithms algorithms [28].

In the 2000’s decade, Grossi and Vitter introduced a data structure that is more

space-efficient than suffix arrays. They called this data structure compressed suffix

arrays [13]. This structure achieved an O(nH0) ⊆ o(n log n) bits space requirement

result for its final representation, but its construction required Θ(n log n) bits. Si-

multaneously, Ferragina and Mazini described the FM-Index [7], which essentially

corresponds to compressed suffix arrays. Still in 2000, Sadakane proposed a full

index based on the compressed suffix array [29]. Shortly afterwards, the same au-

thor introduced an algorithm for building the compressed LCP information in Θ(n)

bits [29]. Later in the same decade, variations of the compressed suffix array, as for

example the RLFM index [22], were introduced. Concerned about the space con-

sumption during the compressed suffix arrays construction, Hon et. al developed

an incremental algorithm which builds the compressed suffix array within Θ(nH0)

bits of working space [15].

Since it was possible to compress both the suffix array and the LCP information,

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–94 83

Su�
x Tree

Elaboration
[W

ei73]

Com
binatorial

Proprerties of STs
[M

cC76]

O
nline

Algorithm
 for STs

[U
kk95]

STs w
ith integer

alphabet
[Far97]

Applications of
STs

[Apo85]

Su�x Array
Elaboration

[M
M

90]
Linear algorithm

s
for SA construction

Applications of
SAs

[AKO
02]

Replacing STs
for SAs
[AKO

04]

Taxonom
y

of SAs Algorithm
s

[PST07]

Libdivsufsort
[M

or07]

Elaboration
of CSAs
[G

V00]

Sadakane
CSA

[Sad00] FM
-Index

[FM
01]LCP in O

(n)
bits

[Sad02]

RLFM
Index

[M
N

05]

Increm
ental

Algorithm
[H

LS07]

LCP in
O

(n) tim
e

[KLA01]

PLCP
[KM

P09]

Inducing LCP
Array

[Fis11]

BTW
 based

LCP
[BG

O
S11]

Rank/Select
Q

ueries
[G

G
M

N
05]

Rank/Select
Q

ueries
[N

P12]

CST description
[Sad07]

CST Cánovas and
N

avarro
[RCN

10]

CST O
hlebusch

Fischer and G
og

[O
FG

10]

CST Fischer,
M

äkinen and
N

avarro
[FM

N
08]

Proposed
Im

plem
entation

[SAR13]

SuD
S Index

[SuD
S09]

Com
pact STs

[Kur99]

Theoretical W
ork

Practical W
ork

Figure 7. Related Work.

the first works about compressed suffix trees appeared; among them, we can mention

Sadakane’s work [31]. After this work, other works such as Fischer’s et. al [10],

Välimäki’s et. al [34], Cánovas and Navarro’s [5] and Ohlebusch’s et. al [27] have

come up with both theoretical and practical variations of compressed suffix trees.

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–9484

Finally, our work also aims to contribute to the improvement of this space-efficient

data structure by using:

• the incremental algorithm of Hon et. al [15] in the compressed suffix array con-

struction;

• the Θ(n) bits LCP result by Sadakane [30] and

• the NSV, PSV and RMQ queries for navigational operations on the CST , which

also appeared in [10] and [5].

0 20 40 60 80 100
DNA file(MB)

0

500

1000

1500

2000

2500

3000

Ti
m

e(
se

co
nd

)

CST
SuDS CST
Raw ST

Building time
Size(MB) vs Time(second)

Figure 8. Building time for K=10 and L=8.

6 Experimental Results

In order to evaluate the implementation of the proposed CST , a comparison with a

raw ST based on suffix array and LCP information was carried out. Comparisons

with the CST provided by the SuDS group in [33] were performed as well.

Initially, the suffix array of the uncompressed structure was built with the li-

brary libdivsufsort [25]. It can build a suffix array very quickly using 5n+O(1)

bytes per input symbol and Θ(n log n) time. Afterwards, the LCP information was

calculated through Kasai et. al ’s method in [18] without compression as well. Fi-

nally, the data structure chosen for the RMQ and PSV queries was based on the

one in [5], that is the same used in the proposed implementation.

Experiments were carried out with several random DNA texts with different

sizes generated with a simple C++ program. The sizes were under 100MB because

the implementation supports only 32-bits operations.

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–94 85

The experiments were run under a 64-bit Linux operating system in a core i7-

3770k processor.

Different scenarios were created by modifying the parameters K and L, the

sample factors for the compressed suffix array and for the data structure proposed

as proposed in [5], respectively. The parameters change the space/time requirements

over the inputs. Hence, there is a time-space trade-off within the indices.

• The first scenario sets K = 10 and L = 8 and it is the worst space-efficient

scenario; therefore, it is the fastest one.

• The second scenario has an intermediary trade-off between time and space, the

parameters were set as K = 20 and L = 16.

• The last scenario, with parameters K = 20 and L = 32, is the most space-efficient

and therefore the slowest one.

The parameter B = 60 was chosen empirically and it was fixed in all scenarios

because it represented a good trade-off between memory peak and building time.

The first subject of interest for the analysis is the time required for the construc-

tion of the data structures. While the raw data structure needs an almost negligible

building time, requiring only few seconds, the proposed one and the SuDS CST re-

quire a time in the order of thousand of seconds, to build the index in a compressed

way. See building times for the different scenarios in the Figures 8, 9 and 10.

0 20 40 60 80 100
DNA file(MB)

0

1000

2000

3000

4000

Ti
m

e(
se

co
nd

)

CST
SuDS CST
Raw ST

Building time
Size(MB) vs Time(second)

Figure 9. Building time for K=20 and L=16.

Comparing the compressed indices, the proposed implementation has a factor of

≈ 2× over the SuDS index in the fastest scenario, as given in the Figure 8. this is a

reasonable factor since the memory peak of the proposed implementation is much

lower. In the slowest scenario, given in the Figure 10, the factor is of ≈ 2.5× over

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–9486

the SuDS index.

Despite of being an important resource, the building time is not crucial for

applications for which the index needs to be built only once. A typical example is the

problem of mapping fragments of DNA to a reference genome. In this application,

the index for the genome needs to be built only once in order to map several billions

of fragments.

0 20 40 60 80 100
DNA file(MB)

0

500

1000

1500

2000

2500

3000

Ti
m

e(
se

co
nd

)

CST
SuDS CST
Raw ST

Building time
Size(MB) vs Time(second)

Figure 10. Building time for K=20 and L=32.

The high building time is payed off with low space usage after the structure is

built, and with low memory peak usage. This can be observed in the Figures 11 , 12

and 13. Also, it has been shown that the proposed index does not use much more

space in its construction than the space required to represent the final structure.

The main reason for this, is the use of the incremental algorithm introduced by [15],

which allows the construction of the compressed suffix array within Θ(nH0) bits.

In comparison with the SuDS index, the proposed implementation is highly

competitive in practice when considering the memory peak. On the one hand, the

memory peak of the SuDS index has a factor of ≈ 4.5× over the input. Hence, for

a 100MB DNA text, for instance, one would require 450MB of main memory in the

construction of this structure. On the other hand, the proposed implementation

has a low peak memory. The fastest variant, whose space usage is depicted in the

Figure 11, needs a factor of ≈ 2.5× over the input whereas the slowest variants,

in the Figures 12 and 13 need only factors of ≈ 2× and ≈ 1.7× over the input,

respectively. The raw index requires a huge amount of peak memory during its

construction compared to the compressed indices, requiring factors above 12× over

the input in all scenarios.

Considering the space of the final structure, the fastest variant of the proposed

implementation, showed in the Figure 11 consumes ≈ 19 bits per input symbol,

which is slightly more than the requirement from the SuDS index, which is ≈ 14

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–94 87

bits per input symbol. Considering the slowest variants, shown in Figures 12 and

13, the proposed implementation uses only ≈ 14 and ≈ 13 bits per input symbol

respectively, beating the space required by SuDS index. The raw index requires

≈ 80 bits per input symbol in the scenarios, which represents a huge demand of

space in comparison with the compressed indices.

0 20 40 60 80 100
DNA file(MB)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Sp
ac

e(
M

B
)

Memory Peak CST
Memory Peak SuDS
Memory Peak Raw ST
Space CST
Space SuDS
Space Raw ST

Memory peak and space
Size(MB) vs Space(MB)

Figure 11. Space for K=10 and L=8.

0 20 40 60 80 100
DNA file(MB)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Sp
ac

e(
M

B
)

Memory Peak CST
Memory Peak SuDS
Memory Peak Raw ST
Space CST
Space SuDS
Space Raw ST

Memory peak and space
Size(MB) vs Space(MB)

Figure 12. Space for K=20 and L=16.

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–9488

0 20 40 60 80 100
DNA file(MB)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Sp
ac

e(
M

B
)

Memory Peak CST
Memory Peak SuDS
Memory Peak Raw ST
Space CST
Space SuDS
Space Raw ST

Memory peak and space
Size(MB) vs Space(MB)

Figure 13. Space for K = 20, L = 32.

Figures 14, 15 and 16 relate the running time of several critical operations for

the compressed data structure and the raw one. The comparison was done between

these two indices only, because they are based on the same types of queries (PSV,

NSV and RMQ queries), while the SuDS index is based on a succinct balanced

parenthesis representation to execute the operations [31].

The LCA queries were executed between random leaves of the trees. The other

queries were executed at random positions. When the CST occupies more space, the

running time of the operations is smaller than when it occupies less space. While in

the fastest variant all operations run under microseconds using ≈ 19 bits per input

symbol, as shown in Figure 14, in the slowest variant more complex operations, such

as RMQ and LCA, run in few milliseconds using only ≈ 13 bits per input symbol,

as illustrated in the Figure 16.

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–94 89

0 20 40 60 80 100
DNA file(MB)

1

10

100

1000
O

pe
ra

tio
n

co
st

(m
ic

ro
se

co
nd

)

SA CST
SA Raw ST
LCP CST
LCP Raw ST
RMQ CST
RMQ Raw ST
NSV CST
NSV Raw ST
PSV CST
PSV Raw ST
LCA CST
LCA Raw ST

Operation cost
Size(MB) vs Operation cost(microsecond)

Figure 14. ST operations for K=10, L=8.

0 20 40 60 80 100
DNA file(MB)

1

10

100

1000

10000

O
pe

ra
tio

n
co

st
(m

ic
ro

se
co

nd
)

SA CST
SA Raw ST
LCP CST
LCP Raw ST
RMQ CST
RMQ Raw ST
NSV CST
NSV Raw ST
PSV CST
PSV Raw ST
LCA CST
LCA Raw ST

Operation cost
Size(MB) vs Operation cost(microsecond)

Figure 15. ST operations for K=20, L=16.

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–9490

0 20 40 60 80 100
DNA file(MB)

1

10

100

1000

10000
O

pe
ra

tio
n

co
st

(m
ic

ro
se

co
nd

)

SA CST
SA Raw ST
LCP CST
LCP Raw ST
RMQ CST
RMQ Raw ST
NSV CST
NSV Raw ST
PSV CST
PSV Raw ST
LCA CST
LCA Raw ST

Operation cost
Size(MB) vs Operation cost(microsecond)

Figure 16. ST operations for K=20, L=32

0 20 40 60 80 100
DNA file(MB)

10

100

1000

10000

O
pe

ra
tio

n
co

st
(m

ic
ro

se
co

nd
)

SA CST
SA Raw ST
LCP CST
LCP Raw ST
RMQ CST
RMQ Raw ST
NSV CST
NSV Raw ST
PSV CST
PSV Raw ST
LCA CST
LCA Raw ST

Operation cost
Size(MB) vs Operation cost(microsecond)

Figure 17. ST operations with K = 20 and L = 32 when few memory is available.

Additional experiments have confirmed that when enough memory is not avail-

able the operation’s cost for the raw structure is completely degraded, giving rise

to running times greater than the necessary for the same operations with the com-

pressed index. This happens because the raw structure does not fit entirely into

main memory, as the compressed does, and disk access is required in order to re-

cover the necessary pages. This scenario is illustrated in the Figure 17. Since the

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–94 91

implementation does not handle huge texts yet, the environment was configured to

use only 580MB of RAM memory.

7 Conclusion and Future Work

A compressed suffix tree index, CST , with very low memory peak usage was pro-

posed and implemented. The structure offers a good time and space trade-off and

was shown useful for dealing with non trivial operations such as LCA computations.

Running time and memory usage were analyzed regarding a raw ST implemen-

tation based on uncompressed suffix arrays and LCP information and the SuDS

CST [33].

The proposed CST needs only ≈ 13 bits per symbol in one of the variants,

that is much less than the ≈ 80 bits per symbol that the raw structure requires.

This represents a huge economy in space regarding other approaches, which allows

manipulation of large texts when memory availability is critical. The current im-

plementation also shows to be competitive and efficient in practice regarding the

use of space if compared to state-of-the-art CST implementations such as the SuDS

CST . Actually, the peak memory of the proposed implementation is much lower

than the one of the SuDS index and the final space to represent the structure is very

competitive in space-efficient variants of the proposed implementation with respect

to the one of the SuDS CST .

Additional comparisons with other CST implementations, such as the ones given

in [5] and [27] are proposed as future work. Performing these comparisons will allow

to identify precisely the practical capabilities of the proposed index. Experiments

with different alphabets than the one of DNA sequences, such as the ones of proteins

and natural languages, shall be done to measure the capability of compression of

the structure.

Further improvements of the structure will be possible through a faster and more

space-efficient mechanism for the representation and use of the Ψ function and the

compressed suffix array information, as for instance those solutions given in [16].

One of these solutions is to adopt the FM-Index, introduced in [8], as substitute for

the compressed suffix array, which is of great interest since it can outperform the

second structure with respect to time and space in some scenarios. The investigation

of the RLFM index is also interesting[22].

Other possible solution is to encode the Ψ function using Elias gamma code in-

stead of the Rice code, since the former can be faster and more space-efficient than

the latter for small alphabets such as DNA or proteins. Such mechanisms would al-

low a better space and time usage, which can improve the proposed implementation

of the incremental algorithm introduced by [15], since the implementation is worse

in practice than the other implementations of the same algorithm such as the ones

in the Bioinformatics tools BWT [20] and BWA [21].

Improvements in the execution of Rank and Select queries using the methodol-

ogy from [26], which has been shown faster than the method used in our approach in

[11], would speed up the operations running time and building time of the proposed

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–9492

implementation, as all them are dependent on the time required by these queries.

The adoption of other mechanisms to build the LCP information, such as those

proposed in [17],[9] and [4] can improve the building time and query time for this

information, which would indirectly speed up the NSV, PSV and RMQ queries and

tree traversals operations, since they are based on LCP access.

Also, to make the structure of practical usefulness for applications with huge

texts, it should be ported to a 64-bit architecture.

References

[1] Abouelhoda, M., S. Kurtz and E. Ohlebusch, The Enhanced Suffix Array and Its Applications to
Genome Analysis, in: Workshop on Algorithms in Bioinformatics, Lecture Notes in Computer Science
2452 (2002), pp. 449–463.

[2] Abouelhoda, M., S. Kurtz and E. Ohlebusch, Replacing suffix trees with enhanced suffix arrays, Journal
of Discrete Algorithms 2 (2004), pp. 53–86.

[3] Apostolico, A., The myriad virtues of subword trees, in: A. Apostolico and Z. Galil, editors,
Combinatorial Algorithms on Words, NATO ASI Series F, Computer and System Sciences 12, Springer
Verlag, 1985 pp. 85–96.

[4] Beller, T., S. Gog, E. Ohlebusch and T. Schnattinger, Computing the longest common prefix array based
on the Burrows-Wheeler transform, in: String Processing and Information Retrieval, Lecture Notes in
Computer Science 7024 (2011), pp. 197–208.

[5] Cánovas, R. and G. Navarro, Practical compressed suffix trees, in: Proceedings of the 9th international
conference on Experimental Algorithms, Lecture Notes in Computer Science 6049 (2010), pp. 94–105.

[6] Farach, M., Optimal suffix tree construction with large alphabets, in: Proceedings 38th Annual
Symposium on Foundations of Computer Science FOCS, IEEE (1997), pp. 137–143.

[7] Ferragina, P. and G. Manzini, Opportunistic data structures with applications, in: Proceedings 41st
Annual Symposium on Foundations of Computer Science FOCS, IEEE (2000), pp. 390–398.

[8] Ferragina, P. and G. Manzini, Indexing compressed text, Journal of the Association for Computing
Machinery 52 (2005), pp. 552–581.

[9] Fischer, J., Inducing the LCP-array, in: 12th International Symposium on Algorithms and Data
Structures WADS, Lecture Notes in Computer Science 6844 (2011), pp. 374–385.

[10] Fischer, J., V. Mäkinen and G. Navarro, An (other) entropy-bounded compressed suffix tree, in: 19th
Annual Symposium Combinatorial Pattern Matching CPM, Lecture Notes in Computer Science 5029
(2008), pp. 152–165.

[11] González, R., S. Grabowski, V. Mäkinen and G. Navarro, Practical implementation of rank and select
queries, Poster Proceedings Volume of 4th Workshop on Efficient and Experimental Algorithms WEA
(2005), 27–38 pp.

[12] Grossi, R. and J. Vitter, Compressed suffix arrays and suffix trees with applications to text indexing
and string matching, SIAM Journal on Computing 35 (2005), pp. 378–407.

[13] Grossi, R. and J. S. Vitter, Compressed suffix arrays and suffix trees with applications to text indexing
and string matching (extended abstract), in: F. F. Yao and E. M. Luks, editors, Proceedings of the
thirty-second annual ACM symposium on Theory of computing (2000), pp. 397–406.

[14] Gusfield, D., “Algorithms on strings, trees, and sequences: computer science and computational
biology,” Cambridge University Press, 1997.

[15] Hon, W., T. Lam, K. Sadakane, W. Sung and S. Yiu, A space and time efficient algorithm for
constructing compressed suffix arrays, Algorithmica 48 (2007), pp. 23–36.

[16] Hon, W., T. Lam, W. Sung, W. Tse, C. Wong and S. Yiu, Practical aspects of compressed suffix
arrays and FM-index in searching DNA sequences, in: Proceedings of the 6th Workshop on Algorithm
Engineering and Experiments (2004), pp. 31–38.

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–94 93

[17] Kärkkäinen, J., G. Manzini and S. Puglisi, Permuted longest-common-prefix array, in: Proceedings of
the 20th Annual Symposium on Combinatorial Pattern Matching CPM, Lecture Notes in Computer
Science 5577, Springer (2009), pp. 181–192.

[18] Kasai, T., G. Lee, H. Arimura, S. Arikawa and K. Park, Linear-Time Longest-Common-Prefix
Computation in Suffix Arrays and Its Applications, in: A. Amir and G. M. Landau, editors, 12th
Annual Symposium on Combinatorial Pattern Matching CPM, Lecture Notes in Computer Science
2089 (2001), pp. 181–192.

[19] Kurtz, S., Reducing the space requirement of suffix trees, Software Practice and Experience 29 (1999),
pp. 1149–1171.

[20] Lam, T., W. Sung, S. Tam, C. Wong and S. Yiu, Compressed indexing and local alignment of DNA,
Bioinformatics 24 (2008), pp. 791–797.

[21] Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows–Wheeler transform,
Bioinformatics 25 (2009), pp. 1754–1760.

[22] Mäkinen, V. and G. Navarro, Succinct suffix arrays based on run-length encoding, Nordic Journal of
Computing 12 (2005), pp. 40–66.

[23] Manber, U. and G. Myers, Suffix arrays: a new method for on-line string searches, in: Proceedings of
the first annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied
Mathematics (1990), pp. 319–327.

[24] McCreight, E., A space-economical suffix tree construction algorithm, Journal of the Association for
Computing Machinery 23 (1976), pp. 262–272.

[25] Mori, Y., Libdivsufsort: a lightweight suffix sorting library, Available in: https://code.google.com/p/
libdivsufsort/ (2007).

[26] Navarro, G. and E. Providel, Fast, small, simple rank/select on bitmaps, in: Symposium on
Experimental Algorithms, Lecture Notes in Computer Science 7276 (2012), pp. 295–306.

[27] Ohlebusch, E., J. Fischer and S. Gog, CST++, in: Proceedings of the 17th international conference
on String processing and information retrieval, Lecture Notes in Computer Science 6393 (2010), pp.
309–321.

[28] Puglisi, S. J., W. F. Smyth and A. H. Turpin, A taxonomy of suffix array construction algorithms,
ACM Comput. Surv. 39 (2007).

[29] Sadakane, K., Compressed text databases with efficient query algorithms based on the compressed suffix
array, Algorithms and Computation 1969 (2000), pp. 295–321.

[30] Sadakane, K., Succinct representations of LCP information and improvements in the compressed suffix
arrays, in: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, Society
for Industrial and Applied Mathematics (2002), pp. 225–232.

[31] Sadakane, K., Compressed suffix trees with full functionality, Theory of Computing Systems 41 (2007),
pp. 589–607.

[32] Ukkonen, E., On-line construction of suffix trees, Algorithmica 14 (1995), pp. 249–260.

[33] V. Mäkinen, N. Välimäki, J. Siren and S. Kazi, SuDS group website, Available in: http://www.cs.
helsinki.fi/group/suds/cst/ (2009).

[34] Välimäki, N., V. Mäkinen, W. Gerlach and K. Dixit, Engineering a compressed suffix tree
implementation, ACM Journal of Experimental Algorithmics 14 (2009).

[35] Weiner, P., Linear pattern matching algorithms, in: 14th Annual Symposium on Switching and
Automata Theory SWAT (FOCS), IEEE (1973), pp. 1–11.

D.S. Nogueira Nunes, M. Ayala-Rincón / Electronic Notes in Theoretical Computer Science 302 (2014) 73–9494

https://code.google.com/p/libdivsufsort/
https://code.google.com/p/libdivsufsort/
http://www.cs.helsinki.fi/group/suds/cst/
http://www.cs.helsinki.fi/group/suds/cst/

	Introduction
	Basic Concepts
	Compressing Suffix Arrays and LCP
	Compressed Suffix Trees
	Related Work
	Experimental Results
	Conclusion and Future Work
	References

