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Abstract
Rank and select are fundamental operations in succinct data structures, that is, data structures whose
space consumption approaches the information-theoretic optimal. The performance of these primitives is
central to the overall performance of succinct data structures.

Traditionally, the select operation is the harder to implement efficiently, and most prior implement-
ations of select on machine words use 50-80 machine instructions. (In contrast, rank on machine words
can be implemented in only a handful of instructions on machines that support POPCOUNT.) However,
recently Pandey et al. [15] gave a new implementation of machine-word select that uses only four x86
machine instructions; two of which were introduced in Intel’s Haswell CPUs.

In this paper, we investigate the impact of this new implementation of machine-word select on the
performance of general bit-vector-select. We first compare Pandey et al.’s machine-word select to the
state-of-the-art implementations of Zhou et al. [20] (which is not specific to Haswell) and Gog et al. [8]
(which uses some Haswell-specific instructions). We exhibit a speedup of 2× to 4×.

We then study the impact of plugging Pandey et al.’s machine-word select into two state-of-the-art
bit-vector-select implementations. Both Zhou et al.’s and Gog et al.’s select implementations perform a
single machine-word select operation for each bit-vector select. We replaced the machine-word select
with the new implementation and compared performance. Even though there is only a single machine-
word select operation, we still obtained speedups of 20% to 68%. We found that the new select not only
reduced the number of instructions required for each bit-vector select, but also improved CPU instruction
cache performance and memory-access parallelism.
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1 Introduction
A succinct data structure consumes an amount of space that is close to the information-theoretically
optimal. More precisely, if Z denotes the information-theoretically optimal space usage for a given
data-structure specification, then a succinct data structure would use Z + o(Z) space. There is much
research on how to replace traditional data structures with succinct alternatives [2–4, 7, 13, 16, 17],
especially for memory-intensive applications, such as genetic databases, newspaper archives, dic-
tionaries, etc. Researchers have proposed numerous succinct data structures, including compressed
suffix arrays [10], FM indexes [5], and wavelet trees [13].

Two basic operations—namely rank and select [12]—are commonly used for navigating within
succinct data structures. For bit vector B[0, . . . , n− 1], RANK(j) returns the number of 1s in prefix
B[0, . . . , j] of B; SELECT(r) returns the position of the rth 1, that is, the smallest index j such that
RANK(j) = r. For example, for the 12-bit vector B[0, . . . , 11] =100101001010, RANK(5) = 3,
because there are three bits set to one in the 6-bit prefix B[0, . . . , 5] of B, and SELECT(4) = 8,
because B[8] is the fourth 1 in the bit vector.

Researchers have proposed many ways to improve the empirical performance of rank and se-
lect [8, 9, 14, 18, 20] because faster implementations of rank and select yield faster succinct data
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structures. Many succinct data structures are asymptotically optimal, but have poor performance in
practice due to the constants involved in bit-vector rank and select operations [18].

This paper focuses on a new implementation of select on machine words and its performance
impact on general bit-vector select operations.

Implementing Select
Most practical select implementations chunk the bit vector into basic blocks. They also maintain

one or more levels of indexes, called superblocks, which identify the basic block containing the jth
bit, for some predetermined values of j.

The select operation proceeds in two phases. In the first phase SELECT(j) does a lookup in the
superblocks and finds the basic block that contains the jth one. In the second phase the algorithm
performs a select operation on the basic block. If the basic block is larger than a machine word, then
the algorithm uses POPCOUNT sequentially to find the machine word that contains the jth bit of the
vector. It then performs a select on that machine word to find the exact location of the jth bit in the
vector.

Implementing select on a machine word turns out to be surprisingly complex, when only standard
operations such as shift, mask, multiply, addition, etc. are available. Therefore, the select operation
on machine words represents a significant component of the time required to perform select, even
on large bit vectors.

For machine words, the select operation has been harder to implement than the rank operation.
The rank operation on a machine word can be implemented using a dedicated machine instruction,
POPCOUNT, which counts the number of 1s in a machine word. In contrast, until recently, the best
known implementations of select on machine words used 50–80 machine instructions [20]. Most
prior implementations use broadword programming [14,18], SSE4 instructions [8] or a combination
of broadword programming and the POPCOUNT instruction [20].

Recently, Pandey et al. [15] gave a new implementation of machine-word select, which we call
PTSelect. PTSelect uses only four x86 machine instructions, two of which were introduced in Intel’s
Haswell CPUs in 2013. One instruction, PDEP, deposits bits from one operand in locations specified
by the bits of the other operand. The second instruction, TZCNT, returns the number of trailing
zeros in its argument. Although these two instructions did not exist a few years ago, they are widely
available today.

Results
We perform an experimental study of how PTSelect, the new implementation of the select oper-
ation on 64-bit words proposed by Pandey et al. [15], affects select on large bit vectors.

We run two different benchmarks. First we compare PTSelect to CS-Poppy [20] and SDSL [8]
on machine-word select.

Second, we replace the machine-word select implementations in CS-Poppy and SDSL with
PTSelect. We then evaluate the performance gain for select on large bit vectors.

We show the performance gain as a function of the bit-vector size.

Our experiments show that PTSelect runs 2×—4× faster than the state-of-the-art implementa-
tion [20] on 64-bit machine words.

When we replace the machine-word select implementation with PTSelect on large bit vectors we
see a performance gain of 20% to 68%.

We found that the new select not only reduced the number of instructions required for each
bit-vector select, but also improved CPU instruction cache performance and memory-access par-
allelism.
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Algorithm 1 Algorithm for determining the position of the jth 1 in a machine word.
1: function PTSELECT(x, j)
2: i← SHIFTLEFT(1, j)
3: p← PDEP(i, x)
4: return TZCNT(p)

2 How Select is Being Implemented on Large Bit Vectors

This section reviews the general bit-vector select implementations in CS-Poppy [20] and SDSL [8]
and explains the role that machine-word select performs in these algorithms. We then discuss the
differences in the implementations of CS-Poppy and SDSL.

Both CS-Poppy and SDSL use a position-based sampling approach to implement bit-vector se-
lect. In position-based sampling, the bit-vector maintains a side table S[i], where S[i] = SELECT(ki)
for some constant k. The algorithm thus knows that, for any y, S[by/kc] ≤ SELECT(y) < S[by/kc+
1]. It may then use additional auxiliary data structures to further narrow down the location of the yth
one to a single machine word. After finding the target machine word, it performs a machine-word
select to find the exact location of the yth one in the bit vector.

2.1 Select in CS-Poppy
CS-Poppy groups bits into 512-bit basic blocks, groups each group of 4 basic blocks into a lower

block, and groups 221 lower blocks into an upper block. It maintains a table L0 of the rank of the first
bit of each upper block. A select operation begins by searching in L0 for the upper block containing
the target bit. The paper says this is done using binary search; the implementation performs a linear
scan. For each upper block, CS-Poppy maintains a table S as described above, which it uses to find
a lower block B near the target bit. CS-Poppy then consults a table L1 of the rank of the first bit of
each lower block. It uses L1 to scan forward from B until it finds the lower block B′ that actually
contains the target bit. It then consults a table L3 of the popcount of each basic block to scan through
the basic blocks of B′ until it finds the basic block that contains the target bit. It then performs a
linear scan of the words in the basic block, using POPCOUNT to find the machine word that contains
the target bit. Finally, it performs a machine-word select to find the precise location of the target bit.

CS-Poppy optimizes cache performance by using 512-bit basic blocks (which occupy a single
cache line), and by storing L1 and L2 in a packed, interleaved format so that accessing L2 does not
incur any additional cache miss after accessing the corresponding entry in L1. See the paper for
details [20].

2.2 Select in SDSL
SDSL divides the bit vector in superblocks by storing position of every 4096-th one in a table

S as described above. If the size of a superblock (i.e., difference in the index of k4096-th one and
(k + 1)4096-th one, for some k) is larger than or equal to log4n, where n is the number of bits in
the bit vector, then it is called long and SDSL maintains another level of positions by storing the
positions of all 4096 ones. If the size of a superblock is smaller than log4n then it is called short,
and SDSL maintains another level of positions by storing the positions of every 64-th one.

To perform SELECT(y), the algorithm first performs a lookup in superblocks. If the yth bit
occurs in a long superblock then it can answer by a look up in the next level. Otherwise, if the yth
bit occurs in a short superblock, it looks up in the next level to determine the nearest machine word.
The algorithm then sequentially performs POPCOUNT to determine the target 64-bit word in which
the yth bit occurs. It then performs a select on the target 64-bit word.

CVIT 2016
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Figure 1 A simple example of pdep instruction [11]. The 2nd operand acts as a mask to deposit bits from
the 1st operand.

3 PTSelect
This section reviews Pandey, et al.’s PTSelect implementation, shown in Algorithm 1. To select

the jth bit from a 64-bit word x, the algorithm first loads the constant 1 into a register, shifts it left
by j, then invokes PDEP and TZCNT.

We now explain the PDEP and TZCNT instructions, both of which were introduced in Intel’s
Haswell line of CPUs.

PDEP deposits bits from one operand in locations specified by the bits of the other operand, as
illustrated in Figure 1. If p = PDEP(v, x), then the ith bit of p is given by

pi =
{

vj if xi is the jth 1 in x,

0 otherwise.

TZCNT returns the number of trailing zeros in its argument. If B is a 12-bit vector such that
B[0, 11] =110010100000 then TZCNT(B) = 5.

The PTSelect algorithm works because performing PDEP(2j , x) produces a 64-bit integer p with
a single bit set—in the same position as x’s jth bit. TZCNT then finds the position of this bit by
counting the number of trailing zeros in p.

4 Evaluation
In this section we evaluate PTSelect, the new machine-word select implementation proposed by

Pandey et al. [15]. We compare PTSelect against machine-word select implementations in Zhou at
al’s CS-Poppy [19] (which is an optimized implementation of combined sampling [14]) and Gog et
al.’s SDSL [6] (which is an implementation of Clark et al. [1] and broadword programming). We
then measure the impact of PTSelect on the performance of the overall bit-vector select algorithms
in these implementations.

We address the following questions about the performance of PTSelect:

How does PTSelect compare to machine-word select implementations in CS-Poppy and SDSL
on 64-bit words in cache?
How does PTSelect compare to machine-word select implementations in CS-Poppy and SDSL
on 64-bit words not in cache?
How does PTSelect affects the performance of bit-vector select in CS-Poppy and SDSL.
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Implementation Time (ns)

CS-Poppy 8.11

SDSL 4.23

PTSelect 2.07

Table 1 Time to perform a machine-word select on an in-cache 64-bit machine word by CS-Poppy, SDSL,
and PTSelect.

4.1 Experimental Setup
To answer the above questions, we perform three different benchmarks. First we evaluate the

performance of PTSelect and machine-word select implementations in CS-Poppy and SDSL on a
single 64-bit machine word. Second we evaluate the performance of PTSelect and machine-word
select implementations in CS-Poppy and SDSL on 64-bit machine words drawn randomly from a
bit vector. Third we replace the machine-word select implementations in CS-Poppy and SDSL with
PTSelect and evaluate the performance for select operations on large bit vectors.

For our experiments we used the same benchmark suite that is used in Zhou et al.’s paper [19].
To evaluate SDSL on the same benchmark, we took the bit vector select implementation from the
SDSL library [6] and added it to the benchmark suite. Our version of the benchmarking suite is
available at https://github.com/splatlab/rankselect.

We performed microbenchmarks to measure how fast PTSelect runs on machine words compared
to the machine-word select implementations in CS-Poppy and SDSL. In the first benchmark we
perform 10M select operations on a single machine word with random rank values and report the
total time. Because we perform select on a single machine word there are essentially no cache misses
during the experiment.

For the second benchmark, we measure the time required to perform 10M machine-word select
on a word chosen randomly from a bit vector. Thus, for large bit vectors, the select is likely to incur
a cache miss loading the input word. This benchmark measures the performance difference that
different machine-word select implementations yield in a realistic workload of essentially random
selects out of a bit vector.

For the third benchmark, we perform 10M bit-vector selects. This benchmark measures the total
time to perform the select, including traversing data structures, performing a machine-word select,
and cache misses.

We perform these experiments with bit vector sizes from 224 to 234. For each of the benchmarks,
we perform experiments with three different densities of the bit vector, 90%, 50%, and 10%. We
perform 10 iterations of each experiment and report the average time (in nanoseconds) to perform a
single operation.

We have also collected some hardware stats in order to analyze our evaluation results. We
have used two tools, perf and intel VTune to collect stats. We used perf to collect the number of
instruction-cache misses and the number of instructions. We used intel VTune to collect the average
number of in-flight memory read requests.

All experiments were performed on an Intel(R) Core(TM) i7-6700HQ CPU (@ 2.60GHz with 4
cores and 6MB LLC) running Ubuntu x86_64 4.4.0-59-generic.

4.2 In-register machine-word select
Table 1 shows the time taken to perform select on in-cache 64-bit words. PTSelect is 4× faster

than the CS-Poppy machine-word select and 2× faster than the SDSL machine-word select.

CVIT 2016
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Figure 2 Performance of select operation on machine words with density 90%, 50%, and 10%. (Lower is
better.)

4.3 Machine-word select
Figure 2 shows the average time taken per select operation by CS-Poppy, SDSL, and PTSelect

for select operations on machine words chosen randomly from a bit vector.
PTSelect is 2.2×–6× faster than CS-Poppy and SDSL. CS-Poppy machine-word select is the

slowest for any bit vector size. For larger bit vectors, PTSelect is 5× faster than CS-Poppy and 3×
faster than SDSL.

We explain these results as follows. When the bit vector is small, cache misses are relatively
rare, so the cost of each select is dominated by the computational costs, which are shown in Table 1.
As the bit vector grows, the time to perform a machine-word select becomes dominated by the time
required to load the queried machine word into cache.

However, this presents one puzzle: if the time to perform a machine-word select within a large
bit vector is dominated by the time to resolve a cache miss, why is PTSelect faster than SDSL, which
is in turn faster than CS-Poppy? Shouldn’t they all take roughly the same amount of time, i.e. the
time required to serve the cache miss?
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Figure 3 Performance of select operation on large bit vector with densities 90%, 50%, and 10%. (Lower
is better.)

The reason they do not all take the same amount of time is memory parallelism. Modern CPUs
can issue multiple memory reads in parallel, increasing throughput. Figure 4 shows the average level
of memory parallelism observed for each algorithm during our machine-word select benchmark.
PTSelect has almost 3× the parallelism of CS-Poppy, and about 2× the parallelism of SDSL. This
largely explains the performance difference between the different machine-word select algorithms
seen for large bit vectors in Figure 2.

And why do the different machine-word select implementations enable different levels of memory
parallelism? Modern CPUs maintain a relatively large window of outstanding instructions, any of
which can be issued as soon as its inputs are available. Each iteration of our benchmark loop is
independent of previous iterations, so the CPU can potentially execute two or more iterations in
parallel, if they fit within its window of outstanding instructions. Thus, a shorter implementation of
select will enable more iterations to fit in the CPU’s instruction window, enabling greater parallelism.
Each iteration will induce roughly one cache miss so, as a result, a shorter select implementation will
enable greater memory parallelism.

CVIT 2016
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Implementation Instruction count

CS-Poppy 80

SDSL 49

PTSelect 12

Table 2 The number of instructions in each implementation of machine-word select. These counts include
function prologues and epilogues and code for loading the arguments from bit-vector, in addition to the core
instructions for performing the machine-word select.
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Figure 4 The average number of in-flight read requests per cycle when performing machine-word select
operations on increasing bit vector sizes for CS-Poppy, SDSL, and PTSelect.

This is exactly what we see in the benchmark. Table 2 shows the number of instructions in
each select implementation. All the implementations consist of straight-line code with no branches.
CS-Poppy consists of 80 instructions and averages 3 concurrent memory accesses, suggesting an
instruction window of about 240 instructions. SDSL consists of 49 instructions and averages 4
concurrent memory accesses, suggesting an instruction window of about 200 instructions. PTSelect
contains only 12 instructions and averages 8 concurrent memory accesses, which would suggest a
window size of only about 100 instructions. We suspect that PTSelect is actually being bottlenecked
by the number of outstanding memory requests supported by the CPU.

4.4 Bit-vector select
Figure 3 shows the average time taken per bit-vector select by CS-Poppy, SDSL, CS-Poppy with

PTSelect and SDSL with PTSelect.
Both CS-Poppy and SDSL are faster when we replace their default machine-word select im-

plementation with PTSelect. CS-Poppy with PTSelect performs 20%–68% faster than traditional
CS-Poppy. SDSL with PTSelect performs 2%–15% faster than traditional CS-Poppy.

5 Conclusion
This paper shows that having an efficient implementation of machine-word select leads to a

faster bit-vector select. In our evaluation we found that PTSelect is the fastest machine-word select
implementation. CS-Poppy with PTSelect is the fastest bit-vector select for large bit vectors and
SDSL with PTSelect is the fastest bit-vector select for small bit vectors.

Even though the machine-word select is invoked only once during a bit-vector select (irrespective
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of the size of the bit vector) the performance gain by using PTSelect increases with increasing bit-
vector sizes. This is because the small size of PTSelect enables the CPU to execute more selects in
parallel, increasing memory-level parallelism, improving performance for bit vectors that do not fit
in cache.

We believe that there may be additional opportunities to optimize succinct data structure imple-
mentations using x86 bit-manipulation instructions. Furthermore, by making succinct data structures
that match the performance of conventional data structures, we can bring succinct data structures
from theory into practice.
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that memory-level parallelism might explain the performance we observed in our machine-word
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