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Abstract
We present a simple and practical algorithm for the
c−approximate near neighbor problem (c−NN): given n
points P ⊂ Rd and radius R, build a data structure which,
given q ∈ Rd, can with probability 1 − δ return a point
p ∈ P with dist(p, q) ≤ cR if there is any p∗ ∈ P with
dist(p∗, q) ≤ R. For c = d + 1, our algorithm determin-
istically (δ = 0) preprocesses in time O(nd log d), space
O(dn), and answers queries in expected time O(d2); this
is the first known algorithm to deterministically guarantee
an O(d)−NN solution in constant time with respect to n for
all `p metrics. A probabilistic version empirically achieves
useful c values (c < 2) where c appears to grow minimally
as d → ∞. A query time of O(d log d) is available, provid-
ing slightly less accuracy. These techniques can also be used
to approximately find (pointers between) all pairs x, y ∈ P
with dist(x, y) ≤ R in time O(nd log d).

The key to the algorithm is a locality-sensitive hash: a
mapping h : Rd → U with the property that h(x) = h(y) is
much more likely for nearby x, y. We introduce a somewhat
regular simplex which tessellates Rd, and efficiently hash
each point in any simplex of this tessellation to all d + 1
corners; any points in neighboring cells will be hashed to a
shared corner and noticed as nearby points. This method
is completely independent of dimension reduction, so that
additional space and time savings are available by first
reducing all input vectors.

1 Introduction.

In this paper, we focus on a practical variation of
the traditional nearest neighbor search problem (NNS):
given points P ⊂ Rd and query point q ∈ Rd, find p ∈ P
which minimizes dist(p, q). The usual approach is to
preprocess P so that a later query can quickly retrieve
the closest point.

Although much work has been done to efficiently
solve NNS, the known non-probabilistic approaches thus
far are not much more efficient than a brute force linear
search over P , except in small dimensions d (see [15]
for approaches in small d). Therefore, practical algo-
rithms have been developed which can efficiently solve
probabilistic approximate versions of NNS. These less
exact variations still support many applications, includ-
ing data mining, information retrieval, media databases
(such as images or video), pattern recognition, and du-
plicate detection. For example, a video database may
want to avoid the insertion of videos which are slightly
altered versions of existing data, and may do so by solv-
ing an approximate version, such as c−NN (defined be-
low), on real vector representations of the videos. In

this case, we expect a near-duplicate video q to be many
times closer to a particular point in P than any other,
so a fast approximate algorithm is very useful.

The authors of [11] show how to reduce a probabilis-
tic approximate version of NNS to a version in which
the allowed distances between p and q are restricted by
a fixed parameter R. In particular, let us define the
c−near neighbor problem (c−NN) as follows:

Definition 1.1. Given points P ⊂ Rd, radius R > 0,
and probability tolerance δ > 0, preprocess P so that for
any q ∈ Rd, we can, with probability at least 1− δ, find
p ∈ P with dist(p, q) < cR whenever there is a p′ ∈ P
with dist(p′, q) < R.

The value c ≥ 1 is the approximation factor; ideally we
can solve this for c = 1 + ε, where both error terms
ε and δ are small. The exact value of R is immaterial
since input points can easily be scaled to match the fixed
radius of any particular c−NN implementation.

The work in [11] also introduced the idea of a
locality-sensitive hash — a hash function h with the
property that h(x) = h(y) is more likely for nearby
points x, y. A good locality-sensitive hash can serve
as a basis for solving c−NN, and thus for approximate
approaches to NNS as well. Since [11], a number of such
hashes have been proposed for use on various point sets
(including strings [13] and families of subsets [3]), and
in various metrics (cf. [7], [2], [8]).

In this paper, we focus on solving c−NN in Rd un-
der the `p norm for p ∈ [1,∞] (equation (2.6)), with
emphasis on `2 (equation (2.12)). Previous work has
centered around reducing the time complexity depen-
dence on n = |P |. However, locality-sensitive hashes
more directly solve c−NN than variants of NNS, and
lend themselves to approaches more sensitive to dimen-
sion d, accuracy c, and certainty 1 − δ, than to speed
in terms of n. We propose that any advantages previ-
ously conveyed by smaller theoretical exponents on n
can be expressed in the form of better speed, proba-
bility of success, and approximation factors within this
framework.

1.1 Anatomy of a locality-sensitive hash A typ-
ical locality-sensitive hashing scheme on Rd consists
of three components: dimension reduction, the local-
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ity hash, and amplification. It is widely utilized that a
random projection of n points in Rd to a smaller space
Rt, t = O(log n), is likely to preserve interpoint dis-
tances ([7], [12]). Thus we can apply a locality hash to
a reduced vector with good results.

In addition, most locality hashes improve with some
form of amplification – a repetition of some portion of
the hashing scheme which improves the accuracy. Ex-
amples include using multiple hash tables with slightly
different locality hash functions, or performing multi-
ple queries via random points close to the given q ∈ Rd
([14]).

The locality hash we present in §2 is independent
of either dimension reduction or amplification, so that
both of these techniques can be used to augment the
base performance. This paper focuses on the locality
hash itself; we do not directly address the question of
how to optimally combine the hash with these tech-
niques.

1.2 Our contributions We present two versions of
a simple and general algorithm based on a tessellation
of Rd by simplices (a simplex is the d−dimensional
generalization of a triangle — the convex hull of d + 1
points in general position). In each case, any given point
is hashed to all d+ 1 corners of the cell (one simplex) in
the tessellation which contains the point. In this way,
we can be sure to match any two points in neighboring
cells of the tessellation.

By using simplices instead of hypercubes, we can
work with O(d) corners instead of O(2d); thus we
confront the curse of dimensionality. We can achieve
storage in time O(d log d) per point, and lookup in
expected time O(d2), or O(d log d) at some accuracy
cost as explained in §2.4.

Our main theoretical result (in §2) is to show that
one version of our hash deterministically (δ = 0) solves
c−NN with c = 2d in the `p norm for any p ∈ [1,∞],
and that the other version gives an approximate factor
c ≤ d + 1 for `2. Previous algorithms ([4]) can solve
c−NN in query time independent of n, with c = O(d)
in `1, and in select other `p metrics via embedding ([5],
[9], [10]). To our knowledge, this is the first proven to
achieve c = O(d) for all `p, p ∈ [1,∞].

We also give empirical evidence (in §3) that the
algorithm is practical as a probabilistic approach to
c−NN for smaller c on a wide range of dimensions.
For example, using artificial data, we approximate the
quantity β.1, an estimated upper bound on c for δ = 0.1
(90% confidence). In table 1, we see that this algorithm
achieves β.1 = 1.6 in R300 with at least 90% confidence,
without dimension reduction.

d = 10 100 300 10 20
hash Lt = 5 5 5 d+ 1 d+ 1
here 1.6 1.7 1.6 1.5 1.5
pstable [7] 5.6 4.7 5.1 3.9 2.8
sphere grid [2] 6.0 5.1 5.1 4.1 3.1
unary [8] 8.3 6.0 5.6 4.4 3.3

Table 1: Empirical estimates of β.1 = D.05/D.95, further
explained in §3.

2 The algorithm

In this section, we describe a general class of hash
algorithms which provide guarantees of finding close
enough neighbors while excluding those sufficiently far
apart. Next we describe a particular version of this
algorithm, which we refer to as the orthogonal version,
which is easy to implement and analyze. Finally
we present an improved version, the vertex-transitive
version, along with some thoughts towards improved
time and space complexity.

2.1 The general method In this section, we sup-
pose that we have a partition P which is a family of
subsets of Rn with the following properties: (i) Each el-
ement c ∈ P, called a cell, is the convex hull of finitely-
many points; (ii) Rn = ∪P, while the intersection of
any two cells has zero measure; and (iii) any bounded
region contains finitely many cells. The general frame-
work of our algorithm, described next, works for any
such partition.

The partition algorithm Based on such a par-
tition, we are now ready to define a general locality-
sensitive hashing algorithm. The idea is to build a map
from each corner of the partition to a list of all data
points in adjacent cells. Conceptually, start with a fast-
lookup mapping (such as a hash map) from every cor-
ner of every cell to an empty linked list (sparse, created
lazily). For point x ∈ Rd, choose a cell c ∈ P containing
x, and append (a pointer to) x to the list mapped from
each corner of c. This process can be repeated for an
arbitrary number of points, at each step augmenting the
lists mapped to by each corner. We say that two points
x, y collide in this hash if any corner point maps to both
x and y; write this as x ∼ y. This general algorithm is
also outlined in the pseudocode in figure 1.

In practice, the result of a query will be a set of
lists of points; it may suffice to simply work with the
first point found, avoiding the time required to parse all
the points.

An advantage of this algorithm is that it determin-
istically guarantees that all close enough points are con-
sidered nearby, while all far enough are not. The chal-
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def locality hashes(x):
cell c = cell containing(x)
return corners(c)

def preprocess points(P):
map = {} # An empty mapping.
for p in P:
for h in locality hashes(p):
map[h].append(p)

return map

def lookup query(map, q):
neighbors = [] # An empty list.
for h in locality hashes(q):
neighbors.append(map[h])

return neighbors

Figure 1: The general partition-based LSH algorithm

lenge from here is to preserve speed by choosing a good
partition. A naive choice of P, such as all unit hyper-
cubes cornered at integer points, can result in many
corners (2d) per cell, which in turn requires running
time exponential in d. Accordingly, we will now con-
sider how our choice of P affects the performance of
this algorithm.

Time and space complexity. The resources
used by this algorithm are dominated by the calls to
locality hash. Suppose one call to locality hash
takes time τ and returns an object of size σ = O(τ).
Our preprocessing time of n points then takes O(nτ)
time, and O(nσ) space. If we do not bother to traverse
the neighbors list and simply return pointers to these
lists, then a single lookup also takes time O(τ).

When we fill in the details below, (§2.4) we’ll see
that we can achieve τ = d log d and σ = d, where d is the
dimensionality of our points. Unfortunately, verifying
the identity of each hash key requires O(d) time, so that
queries (but not storage) are actually O(d2). If we’re
willing to probabilistically verify hash keys at the cost
of some false collisions, we can still achieve O(d log d)
lookups.

Accuracy. Next we’d like to give some useful char-
acterizations concerning which pairs of points are, or are
not, considered nearby neighbors of this algorithm. Our
main goal will be to discover, for a given partition P,
the optimal values D0 and D1 such that

dist(x, y) > D0 ⇒ x 6∼ y and
dist(x, y) < D1 ⇒ x ∼ y.

This algorithm solves c−NN where c = D0/D1 and
δ = 0. The notation here is inspired by the idea,

expanded below, that Dp, for p ∈ (0, 1), can represent
the distance at which

dist(x, y) = Dp ⇒ P (x ∼ y) = p

in a certain probabilistic context.
We’ll work with a particular type of partition which

is more conducive to analysis. A sliced partition is a
division of Rd into cells created by cutting the space
along a series of parallel hyperplanes so that every cell
is bounded by exactly two hyperplanes in each direction.
We further require that the hyperplanes be oriented in
finitely-many directions, and that every bounded subset
of Rd intersects finitely-many of the hyperplanes. It is
not hard to verify that a sliced partition is a special case
of our general partition described above.

As a quick example, the hypercube partition —
in which we cut Rd = {x = (x1, x2, . . . , xd)} along
every hyperplane xi = j; i ∈ [d], j ∈ Z — is a
canonical example of a sliced partition (notation: [d] :=
{1, 2, . . . , d}).

We can effectively define D1 = D1(P) as the
quantity

(2.1) D1 := inf{dist(x, y) : x 6∼ y;x, y ∈ Rd}.

Let cx ∼ cy indicate that cells cx and cy share a
boundary point. Toward characterizing D1 in terms
of the cells of P, we’ll say that points x, y are barely
neighbors when x ∼ y yet there are cells cx, cy with
x ∈ cx, y ∈ cy, and cx 6∼ cy. This may occur when x, y
are in the boundary of neighboring cells, or the same
cell, and this boundary is shared with two cells which
are not neighbors of each other.

Lemma 2.1. Given any points x 6∼ y, there are barely
neighboring points x′ ∼ y′ between x and y along the
line segment xy.

We defer this proof and others in this section to the
appendix. This last lemma clarifies that

(2.2) D1 = inf{dist(x, y) : x, y are barely neighbors},

so that, in finding D1, we may focus exclusively on such
point pairs. Combining this fact with the next lemma
will allow us to gain a powerful tool for extracting D1

from the shape of the cells in any sliced partition.
Let corners(c) denote the minimal set of points

whose convex hull is the cell c. We will say that points
x, y cross a cell c iff x, y ∈ c and there are disjoint
subsets Cx, Cy ⊂ corners(c) with x ∈ convex(Cx) and
y ∈ convex(Cy). Intuitively, we can think of this notion
as stipulating that any edge path from x to y must
contain at least one full edge.
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Figure 2: The orthogonal partition O in R2

Lemma 2.2. Suppose x, y are points in cell c in sliced
partition P. Then x, y are barely neighbors ⇔
x, y cross c.

Lemma 2.1 allowed us to restrict the definition (2.1)
of D1 to the reduced form of (2.2). With lemma 2.2, we
can move one step further, in sliced partitions, to

(2.3) D1 = inf{dist(x, y) : x, y cross some cell c}.

In particular, if all the cells of a sliced partition P are
isometric, then D1 is exactly the minimum distance of
any points which cross the canonical cell. We can now
formally define D0 = D0(P) := sup{dist(x, y) : x ∼
y;x, y ∈ Rd}.

The next result summarizes the main points we will
use from this section.

Property 2.3. If P is a sliced partition with isomet-
ric cells, then D1 = min{dist(x, y) : x, y cross c},
where c is the canonical cell. Moreover, if there ex-
ist colinear points x, y, z such that xy is the diame-
ter of one cell, and yz the diameter of another, then
D0 = 2 max{dist(x, y) : x, y ∈ c} = 2 diam(c).

Applying this result to hypercubes, we see that
D0 = 2

√
d, and D1 = 1 in `2. But each hypercube

has 2d corners, which would lead to exponential time
complexity. The next two sections are devoted to
finding the values of D0, D1 for two sliced partitions
whose canonical cell is the convex hull of d+ 1 corners,
allowing for much faster algorithms.

2.2 The orthogonal partition O We define the or-
thogonal partition, denoted by O, as the sliced parti-
tion given by the slices xi = z : z ∈ Z, i ∈ [d],
and xi − xj = z : z ∈ Z, i 6= j ∈ [d], in
Rd = {x : x = (x1, x2, . . . , xd)}. We will see below
that all the cells in this partition are isometric, so that
we can determine D0 and D1 from a single cell, using
property 2.3.

To begin, notice that this partition is a refinement of
the hypercube partition; it contains strictly more slices.
Also notice that every integer-cornered hypercube is

sliced in the same way, so we may conveniently focus
on the partition of [0, 1]d. Given any permutation π :
[d] → [d], we can define the set Sπ := {x : 0 ≤ xπ(1) ≤
xπ(2) ≤ · · · ≤ xπ(d) ≤ 1}. Each inequality defines
a halfspace; since Sπ is a bounded, nondegenerate
intersection of d + 1 halfspaces in Rd, it is a simplex.
For any permutations π1 6= π2, the set Sπ1 ∩ Sπ2 has
measure zero. It is also clear that ∪πSπ = [0, 1]d.
These simplices are precisely the cells in [0, 1]d of the
orthogonal partition.

We also note that, for any permutations π1 6= π2,
the mapping y = f(x) on Rd which follows yπ2(i) =
xπ1(i), is an isometry (in any `p) mapping Sπ1 → Sπ2 .
Thus all d! cells in the hypercube are isometric, and
since the same decomposition of the cube is repeated
throughout space, all cells of the entire partition are
isometric.

Hence we can focus on a particular cell to study.
We’ll choose Sid, where id is the identity permutation,
and Sid is the cell for which 0 ≤ x1 ≤ x2 ≤ · · · ≤
xd ≤ 1. This cell is cornered by the points fi :=
( 0, 0, . . . , 0︸ ︷︷ ︸

d−i

, 1, 1, . . . , 1︸ ︷︷ ︸
i

), for i = 0, . . . , d.

Whenever a ≤ b ≤ c, we have 〈fc, fa〉 = 〈fb, fa〉
so that 〈fc − fb, fa〉 = 0. Now consider any triangle of
corners fi, fj , fk with i < j < k. Then 〈fk−fj , fj−fi〉 =
〈fk−fj , fj〉−〈fk−fj , fi〉 = 0−0 = 0. Every boundary
triangle in every cell of this partition is a right triangle
— this is why we call it the orthogonal partition.

D1(O) Next we’ll find the value of D1(O) in any `p
norm. To begin, we’ll need the following elementary

Lemma 2.4. If (xi)di=1, (yi)di=1 are nondecreasing se-
quences with min(xi, yi) ≤ max(xi−1, yi−1), then

||x− y||1 ≥ max(xd, yd)−min(x1, y1).

Proof. Let ai = min(xi, yi) and bi = max(xi, yi).
Then ||x − y||1 =

∑d
i=1(bi − ai) ≥

∑d
i=2(bi − bi−1) +

(b1 − a1) = bd − a1. ut
We’re now ready for the main result of this section,

Theorem 2.5.

D1(O) = d1/p−1 in `p

Proof. We’ll begin by showing that

(2.4) D1 ≥ 1 in `1.

Since ||x||p ≥ d1/p−1||x||1, for any x ∈ Rd, this will give
us

(2.5) D1 ≥ d1/p−1 in `p.

Suppose that x, y cross Sid. Then there are distinct
corner sets Fx, Fy ⊂ {f0, f1, . . . , fd} whose convex hulls
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contain x and y, respectively. We can see that each
point can also be viewed as a nondecreasing sequence,
and that xi < xi+1 ⇒ yi = yi+1 and yi < yi+1 ⇒
xi = xi+1, since, e.g., xi < xi+1 ⇒ fd−i ∈ Fx, so that
zi = zi+1 for any point z ∈ convex(Fy), including y. Our
points x, y meet the conditions of lemma 2.4. Since x, y
cross Sid, we must have min(x1, y1) = 0,max(xd, yd) =
1, and thus ||x − y||1 ≥ 1. By property 2.3, this gives
us (2.4).

It remains to be seen that we can find cross-
ing points x, y ∈ Sid which actually achieve the
lower bound given by (2.5). To do so, let x =
(1/d) · (1, 1, 3, 3, 5, 5, . . . , 2dd/2e − 1) and y = (1/d) ·
(0, 2, 2, 4, 4, . . . , 2bd/2c). Then x ∈ convex(Fx), where
fi ∈ Fx iff the parity of i matches that of d, and
y ∈ convex(Fy), with Fy the complement of Fx. So
x, y do indeed cross Sid. We also have x − y = (1/d) ·
(1,−1, 1,−1, . . . ,±1), and ||x − y||p = d1/p−1, which
completes the proof. ut

D0(O) Each cell in [0, 1]d contains the line segment
from ~0 to ~1, which is a diameter of the hypercube —
and hence also of each cell — in any `p norm. We
can also clearly see that this diameter does occur in
a colinear fashion as required by property 2.3, so that
D0(O) = 2d1/p in `p.

We can summarize these results as 1
2D0(O) =

1 in `∞ and D1(O) = 1 in `1.
Recall that D0/D1 gives us the value of the ap-

proximation factor c for the non-probabilistic version of
c−NN. We can summarize our findings thus far by the
surprisingly simple equation

(2.6) c = D0/D1 = 2d in `p, for any p ∈ [1,∞]

for the orthogonal partition.
So far, we’ve examined the theoretical deterministic

(δ = 0) bounds provided by the orthogonal partition.
In order to turn this into actual code, we still need
to check how feasible it is to compute the corners of
a cell containing any given point. We do this in the
next section.

Computing locality hashes(x) in the orthog-
onal partition In this section we suppose there is
a point x ∈ Rd for which we want to compute
locality hashes(x). We do this by implicitly find-
ing cx = cell(x), the cell in O containing x; and then
finding the set corners(cx), which is the ultimate out-
put of locality hashes needed for the overall locality
sensitive hash.

Any point x = (x1, x2, . . . , xd) ∈ Rd can be
decomposed as x = xint + xfrac, where xint =
(bx1c, bx2c, . . . , bxdc). Since every (Zd−cornered) hy-
percube looks the same in O, the corners of cx are ex-
actly xint + corners(cell(xfrac)). Thus it suffices to find

def locality hashes(x):
a corner = x int = map(math.floor, x)
corners = [] # an empty list
add corner(corners, a corner)
π = sort as permu(x - x int)
d = len(x)
for i in 1..d:
a corner[π[d-i]] += 1
add corner(corners, a corner)

return corners

Figure 3: The orthogonal partition’s algorithm

Figure 4: A rotated snapshot of V in R2 — a grid of
equilateral triangles

the corners of cell(x) for any x ∈ [0, 1]d.
Suppose x ∈ Sπ for some permutation π : [d]→ [d].

This means that

(2.7) xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(d).

Our job is to find this permutation based on the
value of x. In other words, we simply have to sort
the coordinates of x, where we think of sorting x as
finding the permutation π which puts the coordinates
in ascending order.

Once we know π, the corners are those of [0, 1]d

which follow (2.7). Let ei denote the canonical
unit basis vector ei = (0, 0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
d−i

). Then

corners(Sπ) = {~0, eπ(d), eπ(d) + eπ(d−1), . . . ,~1}.
The pseudocode in figure 3 computes

locality hashes(x) for a point x given as a list
of coordinates.

2.3 The vertex-transitive partition V In figure 2,
we saw the R2 version of partition O, in which each cell
is an isosceles right triangle. Intuitively, one may be
tempted to improve this partition by searching for even
more regular cells, since this would seem to give a lower
D0/D1 ratio. The next partition we discuss achieves
this type of improvement.

We can define the vertex-transitive partition, de-
noted V, as a particular linear transformation of O.
For any dimension d, let matrix T = T (d) have diag-
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onal elements (1 + (d − 1)
√
d+ 1)/d and off-diagonals

(1 −
√
d+ 1)/d. Then V is characterized by the slices

Th for each hyperplane h which is a slice of O.
We say that a polytope p is vertex transitive iff,

for every pair of vertices v1, v2, there is an isometry
ι : p → p with ι(v1) = v2. The following fact is proved
in the appendix:

Property 2.6. In `2, the cells of V are isometric, and
each is a vertex-transitive simplex.

It is interesting to note that, beyond R2, regular
simplices cannot tessellate Rd, so that this may be
considered a reasonable compromise in which some
form of regularity is maintained within an isometric,
simplicial tiling of space.

In the following analysis, we restrict ourselves to `2.
Since V is isometric, we can focus on a single

particular cell to study — we choose T (Sid). The corners
of this cell are the points pi := T (fi). This means that
(2.8)

pi =
(
i

d

)
~1 +

√
d+ 1

(
−i, . . . ,−i︸ ︷︷ ︸
d−i times

, d− i, . . . , d− i︸ ︷︷ ︸
i times

)
,

from which it is a straightforward computation to see
that 〈pi, pj〉 = i(d + 1 − j) for i ≤ j, and that
||pi−pj ||22 = |j−i|(d+1−|j−i|). This surprisingly simple
formula reveals that the diameter of T (Sid) is clearly
given between any two points pi, pj which approximate
j − i = (d+ 1)/2:

D0(V) = 2

√⌈
d

2

⌉(⌊
d

2

⌋
+ 1
)

=

{
d+ 1 odd d,√
d(d+ 2) even d.

We will invoke a general lemma giving the shortest
distance from any face of T (Sid) to the convex hull of the
other vertices. By minimizing over all faces, this allows
us to find the shortest distance between any points
which cross the cell; this distance is exactly D1(V).

The following lemma deals with subsets of vertices
whose indices are in Nd := {0, 1, . . . , d}. It will be
useful to consider the indices as residue classes modulo
d + 1. To this end, we will extend the usual interval
notation [a, b) ⊂ Nd to allow the case a > b, defined by:
i ∈ [a, b) iff i ∈ Nd and (a ≤ i or i < b).

Lemma 2.7. Suppose A ⊂ Nd and A = ∪ki=1[ai, bi),
written so that k is minimized (i.e., there are no
contiguous or overlapping intervals).

Then the points xA := 1
2k

∑
i pai + pbi−1 (mod d+1)

and xB := 1
2k

∑
i pbi

+ pai−1 (mod d+1) minimize the
distance between convex({pi}i∈A) and convex({pi}i∈B).
Furthermore, ||xA − xB ||22 = d+1

2k .

Proof. Let y := 2k
d+1 (xA − xB). The first goal of

the proof is to see that

(2.9) y ⊥ pi − pj when either i, j ∈ A or i, j ∈ B.

This suffices to show that xAxB is the shortest line
segment between the two affine linear subsets.

In order to decompose y, we introduce the notations
e−i := ed+1−i and e0 := −~1. We will write ti for T (ei),
and t

(2)
i for T 2(ei). Observe that (d + 1)y =

∑
i pai

−
pai−1−(pbi

−pbi−1) =
∑
T (e−ai

−e−bi
) =

∑
t−ai
−t−bi

.
Observe that T =

√
d+ 1(I − µJ), where µ =

(1 − 1/
√
d+ 1)/d and J is the all-one matrix, so that

T 2 = (d+ 1)I − J . Then, for i > 0,

〈t−i, pj〉 = 〈e−i, T 2fj〉 =

〈
e−i ,

d∑
k=d+1−j

t
(2)
k

〉
= (d+ 1)(i ≤ j)− j,(2.10)

where the notation n(boolean) denotes value n if the
boolean is true, 0 otherwise.

Using (2.8), we also have 〈t0, pj〉 = 〈−~1, pj〉 = −j.
Using this, we can re-write (2.10) to include the i = 0
case as 〈t−i, pj〉 = (d+ 1)

(
j ∈ [i, 0)

)
− j, where [0, 0) is

interpreted as the empty set.
Let gi := t−ai

− t−bi
. Then 1

d+1 〈gi, pj〉 = 1(j ∈
[ai, bi)) − 1(0 ∈ [ai, bi)). Let w := #{i : 0 ∈ [ai, bi)}.
Notice that y = 1

d+1

∑
i gi, so that

(2.11)

〈y, pj〉 =
1

d+ 1

∑
i

〈gi, pj〉 =

{
1− w if j ∈ A
−w if j ∈ B.

From this, we have that 〈y, pi − pj〉 = 0 whenever
i, j ∈ A or i, j ∈ B. This finishes the demonstration
of (2.9), the first half of this proof.

Next we confirm the distance between xA and xB .
Using (2.11), (d+ 1)〈y, y〉 =

∑
i〈y, (pai

+pbi−1)− (pbi
+

pai−1)〉 = 2k. Thus ||xA − xB ||22 =
(
d+1
2k

)2 〈y, y〉 = d+1
2k ,

which concludes the proof. ut
The lemma tells us that we can achieve the mini-

mum distance by maximizing k, the number of intervals
needed to express A (or B). For instance, we could al-
ways choose A = {i ∈ Nd : i is even}, in which case
k = dd/2e. Hence D1(V) =

√
(d+ 1)/d for even d, and

1 for odd d.
Combining this with D0(V), we see that, in `2,

(2.12) c =
D0

D1
=

{
d+ 1 if d is odd,

d
√

1 + 1
d+1 if d is even.

We always have c ≤ d + 1, so that the guaranteed
locality-sensitive hashing accuracy of V is essentially

1184 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



twice as good as that of O; although the accuracy of
V has only been verified in `2, whereas our analysis of
O applies for any `p.

Computing locality hashes(x) in V We could
summarize the definition of this partition via V =
T (O). Accordingly, if locality hashes in O(x) com-
putes the corners of the cell in O containing x, then
locality hashes in O(T−1x) does the same for V.

We have T−1 = 1√
d+1

I + µJ , where µ =(
1− 1√

d+1

)
1
d . If y = T−1x, then yi = xi/

√
d+ 1+µsx,

where sx =
∑
i xi. This is computable in O(d) time.

2.4 Time and space complexities As in §2.1, we
will use σ to denote the size of the return value of
locality hashes; and τ to denote the time needed for
computation. The algorithms presented here need at
least τ = Ω(d log d) worst-case time in order to sort the
coordinates of xfrac, as described in §2.2. Unfortunately,
the output has size σ = θ(d2) — there are d+1 corners,
each in Zd — so that we need at least τ = Ω(d2) time
simply to store and return all coordinates of each cell
corner.

In the next section, we mention a method to reduce
these complexities.

A trick for faster hashes The bottleneck in the
algorithms thus far is the fact that we need at least
Ω(d2) space to store and retrieve the list of all d + 1
corners (each in Zd) of the cell containing x.

If the hashed value h(v) of each vector v ∈ Zd is
of the form h(v) ≡ 〈u, v〉 (mod N) for some constant
vector u and constant modulus N , then we can achieve
complexity O(d log d) for σ and τ . To do so, it suffices
to first compute h(xint) and then subsequently add uπ(i)

modulo N , for each i = d, d − 1, . . . , 1, where π is
the sorting permutation as discussed in §2.2. For fast
lookups, we only need to store (xint, π

−1) in a new
table, and a value k associated with each hash key
corresponding to xint + eπ(d) + . . .+ eπ(k). The exact ith

coordinate of a key can be retrieved in constant time as
(xint)i + 1(k ≤ π−1(i)).

Fast lookups can be achieved by only examining
log d random coordinates to verify the key of each hash
table entry. This allows for O(d log d) query time with
a small risk of extra hash table collisions ([1]).

3 Empirical performance

In this section we present empirical evidence on artificial
data suggesting that our algorithm compares favorably
against previously known locality hashes.

3.1 Related hashes We compare our algorithm to
three other locality hashes for real vectors.

The first, presented in [8], is based on a projection
of the points into Hamming space, followed by a projec-
tion onto Zk. This algorithm is very simple to imple-
ment, although it requires a fixed bound on the input
vectors; because it utilizes the unary representation of
coordinates, we refer to it as the unary hash.

In [7], an algorithm was presented based primarily
on dimension reduction tailored to preserve distances
well in certain `p metrics. The reduced vector is
then abridged in a coordinate-wise fashion into Zk.
Intuitively, the equivalence classes of this hash can be
thought of as hypercubes in the reduced space. We refer
to this as the pstable hash.

The authors of [2] specifically design their hash so
that the equivalence classes, in a reduced space, are
spheres (or occluded spheres) instead of hypercubes,
which will always result when concatenating a series of
1-dimensional hashes. We refer to this as the sphere-grid
hash, as it is built on a sequence of grids of spheres.

Also mentioned in [2] is the idea to use the Leech
lattice for d = 24, or dimension reductions thereto. We
have not compared against the Leech lattice primarily
because, as a locality hash (i.e., without dimension
reduction), it exists for only one d, while we are
interested in the ability of other hashes which also scale
to arbitrary dimensions.

3.2 Test data and performance metrics All of
the locality hashes were tested by repeatedly generating
a uniform random point x ∈ [0, C]d, then a random unit
vector w ∈ Rd, and checking to see if x ∼ x+Dw for a
given distance D, where x ∼ y means x, y are considered
nearby according to whichever algorithm is being tested.
In this way, we simulate data that has been randomly
shifted and rotated before processing, and can estimate
the probability P (x ∼ y | dist(x, y) = D), over the
probability space of this random data movement, for
each distance D. Effectively, we are estimating worst-
case bounds on the approximation factor c for any
query/point pair.

Figure 5 shows P (x ∼ y|D) versus distance D for
each algorithm. For easier comparison, the scale of each
algorithm has been chosen so that the 50% point is
at D = 1; better accuracy is indicated by a steeper
descent around this threshold. We exclude sphere grid
from the d = 500 graph because our implementation
had difficulty scaling to this dimension.

It is also interesting to estimate which approxima-
tion factors are available at certain confidence levels for
each algorithm. Let f(D) := P (x ∼ y|dist(x, y) = D).
We assume that f is a strictly decreasing function when
f(D) ∈ (0, 1), which appears to be true for all tested
algorithms. Then we can define Dp := f−1(p) for
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Figure 5: Hit probabilities versus point distance for
dimensions 10, 100, and 500, top to bottom.

hash β.01 β.1 β.3
unary 18 6.2 3.1

sphere grid 16 5.6 2.8
pstable 16 5.1 2.8

here 2.2 1.6 1.4

Table 2: βδ estimates for d = 20.

p ∈ (0, 1). Next, let βδ := Dδ/2/D1−δ/2. We know with
confidence at least 1−δ that dist(x, y) < D1−δ/2 ⇒ x ∼
y, and dist(x, y) > Dδ/2 ⇒ x 6∼ y; when both are true,
we have c ≤ βδ for any single point p.

Figure 6 plots β.05 and β.1 for various dimensions.
Note that c grows minimally as d increases. Table 2
gives β estimates in d = 20 for confidence levels 99%,
90%, and 70%.

Parameters Our choices for the parameters of
each algorithm was based primarily on a requirement
that each query lookup be fast, and next on practical
choices hinted at by the various authors.

Some previous algorithms use a parameter L to
indicate the number of hash tables used, where each
hash table t ∈ [L] is slightly altered, such as by
translating the input point by some vector ut ∈ Rd.
In those cases, the number of hash buckets per point
(we’ll call this Lb) was equal to the number of hash
tables (call this Lt) — but here, we conceptually have

Figure 6: Left: β0.05, right: β0.1 versus dimension.

d+ 1 buckets per point in a single table. Because speed
is a focus of this paper, we compare algorithms with
the same Lt value, which is a more uniform measure
of time complexity. In particular, we use the constant
value Lt = 5 for most empirical data. In table 1, we see
that setting Lt = d+ 1 offers modest accuracy gains at
the cost of slower running time (figure 7). All empirical
data is run using the O(d log d) query time version of
our algorithm.

For unary, we chose to use the fixed number of
projected coordinates per hash vector k = 700, a value
suggested in [8]. For pstable, we used r = 1 as the
denominator for each 1-dimensional hash. In both
pstable and sphere grid, we used k = 2 log d as the
reduced dimension (the reduced dimension is called t
in [2]). In sphere grid, we used σ = 2; larger values
(such as σ = 4, as suggested in [2]) required an order
of magnitude more grids to fill the space, and were thus
significantly slower.

Reproducing the experiments Source code to
easily reproduce all our experiments, along with scripts
to produce our particular graphs and tables, is available
from: http://thetangentspace.com/lsh/

4 Future work

A natural next step is to corroborate the empirical
performance measurements with provable timing-vs-
accuracy bounds.

Many locality-sensitive hash families H (including
those considered here) can be intuitively understood as
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Figure 7: Timing data, in ms per trial. A trial is
two point storages and one lookup. Note the different
scales on both axes, which further emphasize the (not
unexpected) speed difference between the Lt = 5 and
Lt = d+ 1 cases.

matching a point x primarily to an equivalence class
near(x, i) := {y |hi(y) = hi(x)} for each particular hash
hi ∈ H, and ultimately to a larger set near(x, I) :=
∪i∈Inear(x, i). It is inevitable that x ∼ y for any
y ∈ core(x, I) := ∩i∈Inear(x, i). Ideally, we would also
have

near(x, I) = ∪y∈core(x,I)B(y,R),

where R is the radius of detection for the hash. Intu-
itively, this perspective gives us a strong hint toward
making sure that each near(x, i) is sphere-like — an in-
tuition followed by [2], and, less directly, here.

It’s not too difficult to check that near(x, I) for our
hash is a Voronoi cell in a lattice solving the sphere-
packing problem for d = 2, 3, although not for any
larger d. Perhaps there is a trade-off in maintaining
that the core set is a simplex while each near(·, i) set
is sphere-like. The excellent sphere-packing properties
of the Leech lattice ([6]) suggest it would give a good
individual hash ([2]), and perhaps perform better when
complemented by the other Neimeier lattices (although
they could not fit exactly into our simplicial framework
since there are only 24 of them — we need d + 1 = 25
corners, one from each hash).

It has not escaped our notice that the tessellations
presented in this paper may themselves be of geometric
interest. Are they, in some sense, the “most regular”
simplices which isometrically tile space? For the pur-
poses of locality-sensitive hashes, we propose the fol-
lowing optimality of our tessellation:

Conjecture 4.1. Among all sliced partitions into iso-
metric simplices, the canonical simplex c of V minimizes

the ratio between diameter and the shortest distance be-
tween any points which cross c.
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A Appendix

Proof of lemma 2.1.
Let y′ be the first point on line xy moving from y to

x which is the entry point to a new cell; i.e., such that
there is some cell cy′ for which y′ ∈ cy′ but y′′ 6∈ cy′ for
any previous point y′′ on this line. Note that we may
have y′ = y.

Notice that y′ must be on the boundary of the new
cell, so that there is some cell c′ containing both y and
y′. Thus, if y′ ∼ x, then we are done, since x is in some
cell cx 6∼ c′. From here on, we’ll assume that y′ 6∼ x.

Let x0 = x, and, similar to our choice of y′, let x1 be
the next point on the line moving from x to y which is
the entry point to a new cell. We can continue to define
a sequence x1, x2, . . . with each successive point being
the next along xy toward y which is the entry point to
a new cell.

Let xk be the first in this sequence such that xk ∼
y′. Since x 6∼ y′, we have k > 0. As above (for y′), there
must be a cell ck containing both xk−1 and xk. By our
choice of xk, we know that ck 6∼ c′. Thus x′ = xk and
y′ are the desired pair of barely neighboring points. ut

Figure 8 shows an example case to illustrate the
above proof.

Proof of lemma 2.2. We begin with the ⇒
direction. Suppose x, y don’t cross c. If either point
is not in the boundary of c, then clearly they cannot
be barely neighbors. Instead, let’s assume that the
corner sets Cx, Cy ⊂ corners(c) with x ∈ convex(Cx), y ∈
convex(Cy), both contain a common point z ∈ Cx ∩Cy.

If there were a cell c′ containing x but not z, then
the polytope c∩c′ would be defined by corners excluding
z, yet this shape would include x. This contradicts the
necessity of z in Cx, so there cannot be any such cell.
This same argument applies to all cells containing y.
Therefore, any pair of cells c′, c′′ containing x, y must
also share the point z, so that c′ ∼ c′′, and x, y cannot
be barely neighbors.

Next we show the ⇐ direction.
We will refer to any k−dimensional set of the form

convex(F ), for any F ⊂ corners(c), as a k−face of c.
Thus a point is a 0-face, an edge is a 1-face, etc.

We claim that, for every k−face f of c, there is
another cell c′ such that c ∼ c′ and c ∩ c′ = f .

First we’ll complete the proof using this claim, and
then justify it. Suppose that x, y cross cell c. Let
fx, fy denote the minimal k−faces of c which contain
x and y, respectively. Now choose cells cx, cy so that
x ∈ cx, y ∈ cy and cx ∩ c = fx, cy ∩ c = fy, using the
claim. If cx ∼ cy, then there is some point z ∈ cx ∩ cy.
By the convexity of the cells, cx and cy contain the
line segments xz and yz respectively. This means that

there can be no slicing hyperplane which intersects the
triangle formed by x, y, z, which in turn implies that
z ∈ c (see figure 9). By our minimal choices of the
k−faces, we have that z ∈ fx and z ∈ fy. But this
contradicts the fact that x, y cross c! Hence there can
exist no common point z between cx, cy; and cx 6∼ cy so
that x, y are barely neighbors.

Now let’s justify the claim that there is a cell c′ with
c ∩ c′ = f for every k−face f of cell c.

Suppose f is a k−face of cell c. Then f is the
intersection of d − k hyperplanes with c, where each
hyperplane is a slice of the partition that determines
some d− 1−face of c. Let c′ be any cell on the opposite
side of all of these hyperplanes, and with c ∼ c′. If
x ∈ c ∩ c′, then x must be a point in each of these
d − k hyperplanes, so that x ∈ f . It is also clear that
f ⊂ c ∩ c′; so we may conclude that f = c ∩ c′, which
was our goal. ut

Proof of property 2.6.
V is isometric in `2 Let’s check that V is an iso-

metric partition — that every pair of cells is isometric.
Similar to our previous argument, we’ll begin by show-
ing that every image, under T , of a lattice-cornered hy-
percube is isometric to the image of [0, 1]d.

Let u denote the unit hypercube [0, 1]d and ũ =
T (u). Similarly, let c denote an offset hypercube c =
u + z, z ∈ Zd, and c̃ = T (c). We would like to find an
isometry from c̃→ ũ. Let Az be the shift Az(x) = x−z,
so that Az(c) = u. Then clearly Ãz := T ◦Az◦T−1 maps
c̃ to ũ. Notice that

(TAzT−1)(x) = T (T−1(x)− z) = x− Tz,

so that Ãz is indeed an isometry.
Next we’d like to check that any two simplices

T (Sπ1), T (Sπ2) are isometric as well. Suppose π : [d]→
[d] is a permutation, and let Uπ denote the mapping
given by yi = xπ(i) when y = Uπ(x). At this point we
note that T can be written in the form T = αI + βJ,
where I is the identity matrix, J is the all-one matrix,
α =
√
d+ 1, and β = (1−

√
d+ 1)/d. Then

UTπ TUπ = UTπ (αI + βJ)Uπ
= αI + β(UTπ JUπ) = αI + βJ = T.

Using the fact that Uπ is unitary (so UTπ = U−1
π ), we

can see that TUπT−1 = Uπ. So if Uπ : Sπ1 → Sπ2 , then
we still have Uπ : T (Sπ1)→ T (Sπ2), also isometrically.

As a final note, observe that any two isometries
Ã = T ◦ A ◦ T−1 and B̃ = T ◦ B ◦ T−1 may be
composed, and preserve the conjugate relationship Ã ◦
B̃ = T ◦ (A ◦B) ◦T−1. This justifies that a series of the
above tranformations — translations and permutations
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— suffices to produce an isometry between any two cells
of V, and this partition can be studied by considering a
single canonical cell.

The canonical cell is vertex-transitive in `2
Next we’ll choose a particular canonical cell to study,
and justify the name of this partition by showing that
it has the type of polytope regularity known as vertex
transitivity. Recall that a polytope p is vertex transitive
iff, for every pair of vertices v1, v2, there is an isometry
ι : p→ p with ι(v1) = v2.

Our canonical cell in V is T (Sid), with corners pi :=
T (fi). To show that this cell is vertex-transitive, it will
suffice to construct mappings mi,j : T (Sid) → T (Sid),
for any i, j ∈ {0, 1, . . . , d}, such that mi,j is an isometry
and mi,j(pi) = pj .

We proceed by constructing a (non-isometric) map
V : Sid → Sid which acts as a shift operator on the
corners of this simplex. If we define the matrix

W :=
(
~−1 I

−1 ~0

)
,

and let V (x) := Wx+ f1, then

V (fi) = fi+1 for i < d;
V (fd) = f0.

Since V is an affine transformation,
V (convex(f0, f1, . . . , fd)) = convex(V (f0, f1, . . . , fd)),
verifying that V : Sid → Sid.

To operate in the new partition, we extend V via
Ṽ := TV T−1. Clearly, Ṽ maps the canonical cell to
itself, and shifts the corners pi → pi+1 (mod d + 1).
Hence any desired mapping pi → pj can be acheived
by the correct number of iterations of Ṽ ; that is, we
are close to seeing that mi,j = Ṽ k, where k ≡ j − i
(mod d+ 1).

The last step is to confirm that Ṽ is an isometry.
This is the case iff W̃ = TWT−1 is itself isometric.
Let µ := (1 − 1/

√
d+ 1)/d, so that T =

√
d+ 1(I −

µJ); and T−1 = 1√
d+1

(I+
√
d+ 1µJ). Then W̃ = (I−

µJ)W (I+
√
d+ 1µJ), and from here one may tediously

simplify the corresponding formulae for 〈wi, wj〉 (where
wi is the ith column of W̃ ) to confirm that W̃T W̃ = I.

This suffices to demonstrate that T (Sid) is indeed a
vertex-transitive simplex. ut

Figure 8: Example from the proof of lemma 2.1. Here,
x 6∼ y and x′ ∼ y′ are barely neighbors

Figure 9: For the proof of lemma 2.2: If xz and yz are
both intact – i.e., do not intersect a slicing hyperplane
– then all of ∆xyz must exist in a single cell.
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