
A NUMA API for LINUX*

Apr i l 2005

Technical Linux Whitepaper w w w . n o v e l l . c o m

 2

Disclaimer Novell, Inc.makes no representations or warranties with respect to the

contents or use of this document and specifically disclaims any express

or implied warranties of merchantability or fitness for any particular

purpose.

Please note that if you are compiling the original software or
changing basic operating-system packages by yourself, the system
may not be covered by the original maintenance program.

Trademarks Novell is a registered trademark of Novell, Inc. in the United States and

other countries. SUSE is a registered trademark of SUSE LINUX Products

GmbH, a Novell business.

*Linux is a registered trademark of Linus Torvalds. AMD and Opteron are

trademarks of Advanced Micro Devices. IBM and Power PC are

registered trademarks and Power5 is a trademark of IBM

Corporation. SGI and SGI Altix are registered trademarks of Silicon

Graphics, Inc. HP is a trademark of Hewlett-Packard Company. Intel

and Itanium are registered trademarks of Intel Corporation. All other

third-party trademarks are the property of their respective owners.

Copyright Copyright 2005 Novell, Inc. This material may be distributed only

subject to the terms and conditions set forth in the Open Publication

License, v1.0, 1999 or later.

Addresses Novell, Inc.

404 Wyman Street, Suite 500

Waltham, MA 02451

USA

SUSE LINUX Products GmbH

A Novell Business

Maxfeldstr. 5

D-90409 Nürnberg

Germany

Prepared by

Special thanks

Author

SUSE LINUX Products GmbH, A Novell Business

Novell and SUSE LINUX would like to thank AMD for their contributions

to and their support of the creation of this document

Andreas Kleen, Software Engineer, SUSE LINUX

Contributors Richard Brunner, Fellow, AMD

Mark Langsdorf, Technical Staff Member, AMD

Meike Chabowski, Product Marketing Manager, SUSE LINUX

Date April 2005

3

Introduction to NUMA...4

Bandwidth Optimization..6

Overview of the Implementation..7

Policies...8

Some Simple numactl Examples...9

numactl: Important Command Line Switches..10

numactl: Shared Memory ...11

libnuma Basics: Checking for NUMA...12

libnuma: Nodemasks ..13

libnuma: Simple Allocation ..14

libnuma: Process Policy ...15

libnuma: Changing the Policy of Existing Memory Areas ..16

libnuma: Binding to CPUs ...17

libnuma: Enquiring about the Environment ...18

libnuma: Error Handling ..19

NUMA Allocation Statistics with numastat...20

System Call Overview..24

Limitations and Outlook...24

 4

I N T R O D U C T I O N T O N U M A

In traditional SMP (Symmetric Multiprocessing) systems, the computer has a single memory controller that is

shared by all CPUs. This single memory connection often becomes a bottleneck when all processors access memory

at the same time. It also does not scale very well for larger systems with a higher number of CPUs. For this reason,

more and more modern systems are using a CC/NUMA (Cache Coherent/Nonuniform Memory Access) architecture.

Examples are AMD* Opteron*, IBM* Power5*, HP* Superdome, and SGI* Altix*.

On an SMP system, all CPUs have equal access to the same shared memory controller that connects to all the

memory chips (DIMMs). Communication between the CPUs also goes through this shared resource, which can

become congested. The number of memory chips that can be managed by the single controller is also limited,

which limits how much memory can be supported by the system. In addition, the latency to access memory

through this single traffic hub is relatively high.

The NUMA architecture was designed to surpass the scalability limits of the SMP architecture. Instead of having a

single memory controller per computer, the system is split into multiple nodes. Each node has processors and its

own memory. The processors have very fast access to the local memory in the node. All the nodes in the system

are connected using a fast interconnect. Each new node added to the system provides more aggregate memory

bandwidth and capacity to the system, which gives excellent scalability.

The processors in a node all have equal access to the memory in the node. On an system where CPUs have

integrated memory controllers, like the AMD Opteron, a node typically consists of a single CPU, possibly with

multiple cores or virtual threads. On other more traditional NUMA systems, like SGI Altix or HP Superdome, larger

nodes (which are like small SMP systems) with two to four CPUs share memory.

In a NUMA system, each CPU can access local and remote memory. Local memory is located in the same node as

the CPU and provides very low memory access latency. Remote memory is located in a different node and must be

accessed through the interconnect. From the software point of view, this remote memory can be used in the same

way as local memory; it is fully cache coherent. Accessing it takes longer because the interconnect adds more

latency than the local memory bus of the node.

In theory, a NUMA system can just be treated like an SMP system by ignoring the differences between local and

remote memory in the software. In fact, this is often done. But for best performance, these differences should be

taken in account.

One great advantage of the NUMA architecture is that even in a big system with many CPUs it is possible to get

very low latency on the local memory. Because modern CPUs are much faster than memory chips, the CPU often

spends quite some time waiting when reading data from memory. Minimizing the memory latency can therefore

improve software performance.

NUMA policy is concerned with putting memory allocations on specific nodes to let programs access them as

quickly as possible. The primary way to do this is to allocate memory for a thread on its local node and keep the

thread running there (node affinity). This gives the best latency for memory and minimizes traffic over the global

interconnect.

5

On SMP systems, there is a common optimization called cache affinity that is a bit similar. Cache affinity tries to

keep data in the cache of a CPU instead of frequently �bouncing� it between processors. This is commonly done by

a scheduler in the operating system, which tries to keep threads on a CPU for some time before scheduling it on

another. However, there is an important difference from node affinity: When a thread on an SMP system moves

between CPUs, its cache contents eventually move with it. Once a memory area is committed to a specific node on

a NUMA system, it stays there. A thread running on a different node that accesses it always adds traffic to the

interconnect and leads to higher latency. This is why NUMA systems need to try harder to archive node affinity

than SMP systems. Of course, cache affinity by itself is a worthwhile optimization on a NUMA system, too. It is just

not enough for best performance.

The scheduler in the operating system cannot always optimize purely for node affinity, however. The problem is

that not using a CPU in the system would be even worse than a process using remote memory and seeing higher

memory latency. In cases where memory performance is more important than even use of all CPUs in the system,

the application or the system administrator can override the default decisions of the operating system. This allows

better optimization for specific workloads.

Linux traditionally had system calls to bind threads to specific CPUs (using the sched_set_affinity(2) system call

and schedutils). NUMA API extends this to allow programs to specify on which node memory should be allocated.

To make it easier for user space programs to optimize for NUMA configurations, APIs export topology information

and allow user specification of processor and memory resources to use. There are also internal kernel APIs to

provide NUMA topology information for use by kernel subsystems.

The NUMA API described here separates placement of threads to CPUs and placement of memory. It is primarily

concerned with the placement of memory. In addition, the application can configure CPU affinity separately.

NUMA API is currently available on SUSE® LINUX Enterprise Server 9 for AMD64 and for Intel* Itanium* Processor

Family.

 6

B A N D W I D T H O P T I M I Z A T I O N

Memory access performance of programs can be optimized for latency or for bandwidth. Most programs seem to

prefer lower latency, but there are a few exceptions that want bandwidth.

Using node local memory has the best latency. To get more bandwidth, the memory controllers of multiple nodes

can be used in parallel. This is similar to how RAID can improve disk I/O performance by spreading I/O operations

over multiple hard disks. NUMA API can use the MMU (Memory Management Unit) in the CPU to interleave blocks of

memory from different memory controllers. This means that each consecutive page1 in such a mapping comes from

a different node.

When an application does a large streaming memory access to such an interleaved area, the bandwidth of the

memory controllers of multiple nodes is combined. How well this works depends on the NUMA architecture, in

particular on the performance of the interconnect and the latency difference between local and remote memory.

On some systems, it only works effectively on a subset of neighboring nodes.

Some NUMA systems, like AMD Opteron, can be configured by firmware to interleave all memory across all nodes

on a page basis. This is called node interleaving. Node interleaving is similar to the interleaving mode offered by

the NUMA API, but they differ in important ways. Node interleaving applies to all memory. NUMA API interleaving

can be configured for each process or thread individually. If node interleaving is enabled by firmware, the NUMA

policy is disabled. To use NUMA policy, node interleaving always must be disabled in the BIOS or firmware.

With NUMA API, each application can individually adjust the policy that memory areas use for latency or

bandwidth.

1 A page is a 4K unit on an AMD64 or PPC*64 system. It is normally 16k on Intel Itanium Processor Family (IA64
architecture).

7

O V E R V I E W O F T H E I M P L E M E N T A T I O N

NUMA policy is provided by the combined effort of several subsystems. The kernel manages the memory policy for

processes or specific memory mappings. This kernel can be controlled by three new system calls. There is a user

space shared library called libnuma that can be called from applications. libnuma is the recommended API for

NUMA policy in programs. It offers a more user-friendly and abstracted interface than using the system calls

directly. This paper only describes this higher level interface. When the application should not be modified, the

administrator can set some policy using the numactl command line utility. This is less flexible than controlling

policy from the application directly.

The user libraries and applications are included in the numactl RPM, part of SUSE LINUX Enterprise Server 92. In

addition, the package has some utility programs like numastat to collect statistics about the memory allocation

and numademo to show the effect of different policies on the system. The package also contains man pages for all

functions and programs.

2 It was already included in SUSE LINUX 9.1, but it is recommended to use the newer version from SUSE LINUX
Enterprise Server 9.

 8

P O L I C I E S

The main task of NUMA API is to manage policies. Policies can be applied to processes or to memory areas.

NUMA API currently supports four policies:

Name Description

default Allocate on the local node (the node the thread is running on)

bind Allocate on a specific set of nodes

interleave Interleave memory allocations on a set of nodes

preferred Try to allocate on a node first

The difference between bind and preferred is that bind fails when the memory cannot be allocated on the

specified nodes; whereas, preferred falls back to other nodes. Using bind can lead to earlier memory shortages

and delays due to swapping. In libnuma, preferred and bind are combined and can be changed per thread with the

numa_set_strict libnuma function. The default is the more flexible preferred allocation.

Policies can be set per process (process policy) or per memory region. Children inherit the process policy of the

parent on fork. The process policy is applied to all memory allocations made in the context of the process.This

includes internal kernel allocations made in system calls and the file cache. Interrupts always allocate on the

current node. The process policy always applies when a page of memory is allocated by the kernel.

Policies set per memory region, also called VMA policies3, allow a process to set a policy for a block of memory in

its address space. Memory region policies have a higher priority than the process policy. The main advantage of

memory region policies is that they can be set up before an allocation happens. Currently they are only supported

for anonymous process memory, SYSV shared memory, shmem and tmpfs mappings, and hugetlbfs files. The region

policy for shared memory persists until the shared memory segment or file is deleted.

3 VMA stands for virtual memory area and is a region of virtual memory in a process.

9

S O M E S I M P L E N U M A C T L E X A M P L E S

numactl is a command line tool for running processes with a specific NUMA policy. It is useful for setting policies

for programs that cannot be modified and recompiled.

Here are some simple examples of how to use numactl:

numactl --cpubind=0 --membind=0,1 program

Run the program on the CPUs of node 0 and only allocate memory from node 0 or 1. cpubind uses node numbers,

not CPU numbers. On a system with multiple CPUs per node, this can differ.

numactl --preferred=1 numactl --show

Allocate memory preferable from node 1 and show the resulting state.

numactl --interleave=all numbercruncher

Run memory bandwidth-intensive number cruncher with memory interleaved over all available nodes.

numactl --offset=1G --length=1G --membind=1 --file /dev/shm/A --touch

Bind the second gigabyte in the tmpfs file /dev/shm/A to node 1.

numactl --localalloc /dev/shm/file

Reset the policy for the shared memory file /dev/shm/file.

numactl --hardware

Print an overview of the available nodes.

 10

N U M A C T L : I M P O R T A N T C O M M A N D L I N E S W I T C H E S

Here is a quick overview of the important command line switches of numactl. Many of these switches need a

nodemask as argument. Each node in the system has a unique number. A nodemask can be a comma-separated list

of node numbers, a range of nodes (node1-node2), or all. See numactl --hardware for the nodes available on the

current system.

The most common usage is to set the policy for a process. The policy is passed as the first argument and is

followed by the program name and its argument. The available policy switches are:

--membind=nodemask:

Allocate memory only on the nodes in nodemask.

--interleave=nodemask:

Interleave all memory allocations over nodes in nodemask.

--cpubind=nodemask:

Execute the process only on the CPUs of the nodes specified in nodemask. It can be specified in addition to

other policies because it affects the scheduler separately.

--preferred=node:

Allocate memory preferably on the node node.

Two other options are useful:

--show:

Print the current process NUMA state as inherited from the parent shell.

--hardware:

Give an overview of the available NUMA resources on the system.

For additional details, see the numactl(8) man page.

11

N U M A C T L : S H A R E D M E M O R Y

numactl is also able to change policies in shared memory segments. This is useful for changing the policy of an

application.

An example would be a program consisting of multiple processes that uses a common shared memory segment.

This is a common setup for database servers. For the individual processes, it is best to use the default policy of

allocating memory on their current nodes. This way, they get the best memory latency for their local data

structure. The shared memory segment, however, is shared by multiple processes that run on different nodes. To

avoid a hot spot on the node that allocated the memory originally, it may be advantageous to set an interleaved

policy for the shared memory segment. This way, all access to it are spread evenly over all nodes.

More complex policies are possible. When parts of the shared memory are mostly used by specific processes and

are only accessed rarely by others, they could be bound to specific nodes or only interleaved to a subset of nodes

near each other.

Shared memory here can be SYSV shared memory (from the shmat system call), mmapped files in tmpfs or shmfs

(normally in /dev/shm on a SUSE LINUX system), or a hugetlbfs file. The shared memory policy can be set up

before the application starts4. The policy stays assigned to areas in the shared memory segment until it is deleted.

The set policy only applies to new pages that are allocated. Already existing pages in the shared memory segment

are not moved to conform to the policy.

Set up a 1GB tmpfs file to interleave its memory over all nodes.

numactl --length=1G --file=/dev/shm/interleaved --interleave=all

A hugetlbfs file can be set up in the same way, but all lengths must be multiples of the huge page size of the

system5.

An offset into the shared memory segment or file can be specified with --offset=number. All numeric arguments

can have unit prefixes: G for gigabytes, M for megabytes, or K for kilobytes. The mode of the new file can be

specified with --mode=mode.

Alternatively, this can be enforced with the --strict option. When --strict is set and an already allocated page does

not conform to the new policy, numactl reports an error.

numactl has several more options for controlling the type of the shared memory segment. For details, see the

numactl(8) man page.

4 This assumes the application does not insist on creating the shared memory segment itself.
5 grep Hugepagesize/proc/meminfo gives the huge page size of the current system.

 12

L I B N U M A B A S I C S : C H E C K I N G F O R N U M A

So far, we have described numactl, which controls the policy of whole processes. The disadvantage is that the

policy always applies to the whole program, not to individual memory areas (except for shared memory) or

threads. For some programs, more fine-grained policy control is needed.

This can be done with libnuma. libnuma is a shared library that can be linked to programs and offers a stable API

for NUMA policy. It provides a higher level interface than using the NUMA API system calls directly and is the

recommended interface for programs. libnuma is part of the numactl RPM.

Applications link with libnuma as follows:

cc ... -lnuma

The NUMA API functions and macros are declared in the numa.h include file.

#include <numa.h>
...
if (numa_available() < 0) {

 printf(‘‘Your system does not support NUMA API\n’’);
 ...

}
...

Before any NUMA API functions can be used, the program must call numa_available(). When this function returns a

negative value, there is no NUMA policy support on the system. In this case, the behavior of all other NUMA API

functions is undefined and they should not be called.

The next step is usually to call numa_max_node(). This function discovers and returns the number of nodes in the

system. The number of nodes is typically needed to set up and verify the memory policy in the program. All

programs should discover this dynamically instead of hardcoding a specific system's topology.

All libnuma states are kept locally per thread. Changing a policy in one thread does not affect the other threads in

the process.

The following sections give an overview of the various libnuma functions with some examples. Some uncommon

functions are not mentioned. For a more detailed reference, see the numa(3) man page.

13

L I B N U M A : N O D E M A S K S

libnuma manages sets of nodes in abstract data types called nodemask_t defined in numa.h. A nodemask_t is a

fixed size bit set of node numbers. Each node in the system has a unique number. The highest number is the

number returned by numa_max_node(). The highest node is defined for the implementation in the

NUMA_NUM_NODES constant. nodemasks are passed by reference to many NUMA API functions.

A nodemask is initialized empty with nodemask_zero().

nodemask_t mask;
nodemask_zero(&mask);

A single node can be set with nodemask_set and cleared with nodemask_clr. nodemask_equal compares two

nodemasks. nodemask_isset tests if a bit is set in the nodemask.

nodemask_set(&mask, maxnode); /* set node highest */
if (nodemask_isset(&mask, 1)) { /* is node 1 set? */
 ...
}
nodemask_clr(&mask, maxnode); /* clear highest node again */

There are two predefined nodemasks: numa_all_nodes stands for all nodes in the system and numa_no_nodes is

the empty set.

 14

L I B N U M A : S I M P L E A L L O C A T I O N

libnuma offers functions to allocate memory with a specified policy. These allocation functions round all

allocations to pages (4 KB on AMD64 systems) and are relatively slow. They should be used only for allocating large

memory objects that exceed the cache sizes of the CPU and where NUMA policy is likely to help. When no memory

can be allocated, they return NULL. All memory allocated with the numa_alloc family of functions should be freed

with numa_free.

numa_alloc_onnode allocates memory on a specific node:

void *mem = numa_alloc_onnode(MEMSIZE_IN_BYTES, 1);
if (mem == NULL)
/* report out of memory error */
... pass mem to a thread bound to node 1 ...

memsize should be smaller than the node size. Remember that other programs may also have memory allocated on

that node and allocating the full node may lead to swapping. The numa_node_size() function described below can

be used to discover the node size limits of the current system automatically. It is recommended to give

administrators a way to override automatic choices of the program and limit the memory consumption.

The thread must eventually free the memory with numa_free.:

numa_free(mem, memsize);

By default, numa_alloc_onnode tries to allocate memory on the specified node first, but falls back to other nodes

when there is not enough memory. When numa_set_strict(1) was executed first, it does not fall back and fails the

allocation when there is not enough memory on the intended node. Before that, the kernel tries to swap out

memory on the node and clear other caches, which can lead to delays.

numa_alloc_interleaved allocates memory interleaved on all nodes in the system.

void *mem = numa_alloc_interleaved(MEMSIZE_IN_BYTES);
if (mem == NULL)
/* report out of memory error */
... run memory bandwidth intensive algorithm on mem ...
numa_free(mem, MEMSIZE_IN_BYTES);

Using memory interleaved over all nodes is not always a performance win. Depending on the NUMA architecture of

the machine, sometimes interleaving the program on only a subset of neighboring nodes gives better bandwidth.

The numa_alloc_interleaved_subset function can be used to interleave on a specific set of nodes only.

Another function is numa_alloc_local, which allocates memory on the local node. This is normally the default for

all allocations, but useful to specify explicitly when the process has a different process policy. numa_alloc

allocates memory with the current process policy.

15

L I B N U M A : P R O C E S S P O L I C Y

Each thread has a default memory policy inherited from its parent. Unless changed with numactl, this policy is

normally used to allocate memory preferably on the current node. When existing code in a program cannot be

modified to use the numa_alloc functions described in the previous section directly, it is sometimes useful to

change the process policy in a program. This way, specific subfunctions can be run with a nondefault policy

without actually modifying their code. Process policy can also be used to set a policy for a child process before

starting it.

numa_set_interleave_mask enables interleaving for the current thread. All future memory allocations allocate

memory round robin interleaved over the nodemask specified. Passing numa_all_nodes interleaves memory to all

nodes. Passing numa_no_nodes turns off interleaving again. numa_get_interleave_mask returns the current

interleave mask. This can be useful to save a state before changing it in a library so it can be restored later.

numamask_t oldmask = numa_get_interleave_mask();
numa_set_interleave_mask(&numa_all_nodes);
/* run memory bandwidth intensive legacy library that allocates memory */
numa_set_interleave_mask(&oldmask);

numa_set_preferred sets the preferred node of the current thread. The memory allocator tries to allocate memory

on that node first. If there is not enough free memory, it reverts to other nodes.

numa_set_membind sets a strict memory-binding mask to a nodemask. �Strict� means that the memory must be

allocated on the specified nodes. When there is not enough memory free after swapping, the allocation fails.

numa_get_membind returns the current memory binding mask.

numa_set_localalloc sets the process policy to the standard local allocation policy.

 16

L I B N U M A : C H A N G I N G T H E P O L I C Y O F E X I S T I N G M E M O R Y A R E A S

When working with shared memory, it is often not possible to use the numa_alloc family of functions to allocate

memory. The memory must be gotten from shmat() or mmap instead. To allow libnuma programs to set policy on

such areas, there are additional functions for setting memory policy for already existing memory areas.

These functions only affect future allocations in the specified area. Linux uses demand paging and only allocates

memory when a page is first touched by the CPU.

numa_interleave_memory sets an interleaving policy with an interleaving mask. Passing numa_all_nodes

interleaves to all nodes in the system.

void *mem = shmat(...); /* get shared memory */
numa_interleave_mask(mem, size, numa_all_nodes);

numa_tonode_memory allocates the memory on a specific node. numa_tonodemask_memory puts the memory

onto a mask of nodes.

numa_setlocal_memory gives the memory area a policy to allocate on the current node. numa_police_memory

uses the current policy to allocate memory. This can be useful when the memory policy is changed later.

When numa_set_strict(1) was executed previously, these calls call numa_error when any of the already existing

pages in the memory area do not conform to the new policy. Otherwise, existing pages are ignored.

17

L I B N U M A : B I N D I N G T O C P U S

The functions discussed so far allocate memory on specific nodes. Another part of NUMA policy is to run the thread

on the CPUs of the correct node. This is done by the numa_run_on_node function, which binds the current thread

to all CPUs in the node. numa_run_on_node_mask binds the thread to all the CPUs in a nodemask.

Run current thread on node 1 and allocate memory there:

numa_run_on_on_node(1);
numa_set_prefered(1);

A simple way to use libnuma is the numa_bind function. It binds both the CPU and the memory of the process

allocated in the future to a specific nodemask. It is equivalent to the previous example.

Bind process CPU and memory allocation to node 1 using numa_bind:

nodemask_t mask;
nodemask_zero(&mask);
nodemask_set(&mask 1);
numa_bind(&mask);

The thread can be allowed to execute on all nodes again by binding it to numa_all_nodes:

numa_run_on_node_mask(&numa_all_nodes);

The numa_get_run_node_mask function returns the nodemask of nodes on which the current thread is allowed to

run. This can be used to save and restore the scheduler affinity state before running a child process or starting a

thread.

 18

L I B N U M A : E N Q U I R I N G A B O U T T H E E N V I R O N M E N T

numa_node_size returns the memory size of a node. The return argument is the total size of its memory, which is

not necessarily all available to the program. The second argument is a pointer that can be filled with the free

memory on the node. The program can allocate node memory somewhere between the free memory (which is

normally low because Linux uses free memory for caches) and the maximum memory size. When memory is

allocated, Linux frees the cached file data, but allocating too much memory may lead to swapping. This function

gives a hint of how much memory is available for allocation on each node, but it should be only taken as a hint,

preferably with some way for the administrator to overwrite it. In general, it is recommended never to allocate

more than half the total memory of a node by default unless the administrator specified more.

numa_node_to_cpus returns the CPU numbers of all CPUs in a node. This can be used to find out how many CPUs

there are in a node. As arguments, it gets the node number and a pointer to an array. The last argument is the

length of the array in bytes. The array is filled with a bit mask of CPU numbers. These CPU numbers can later be,

for example, passed to the sched_set_affinity system call. When the array is not long enough to contain all CPUs,

the function returns -1 and sets errno to ERANGE. It is recommended for applications to handle this error or pass a

very big buffer, such as 512 bytes. Otherwise, there may be failures on very big machines. Linux already runs on

1024 CPU machines and is expected to be moved to even bigger machines.

19

L I B N U M A : E R R O R H A N D L I N G

Error handling in libnuma is relatively simple. The main reason for this is that errors in setting NUMA policy can

usually be ignored. The worst result of a wrong NUMA policy is that the program runs more slowly than it could.

When an error occurs while setting a policy, the numa_error function is called. By default, it prints an error to

stderr. When the numa_exit_on_error global variable is set, it exits the program. The function is declared weak

and can be overwritten by defining a replacement function in the main program. For example, a C++ program

could throw a C++ exception there.

Memory allocation functions always return NULL when no memory is available.

 20

N U M A A L L O C A T I O N S T A T I S T I C S W I T H N U M A S T A T

For each node in the system, the kernel maintains some statistics pertaining to NUMA allocation status as each

page is allocated. This information may be useful for testing the effectiveness of a NUMA policy.

The statistics are retrieved with the numastat command. The statistics are collected on a per-node basis. On

systems with multiple CPU cores per node, numastat aggregates the results from all cores on a node to form a

single result for the entire node. The numastat command reports the following statistics for each node:

When a process requests a page from a particular node and receives a page from the requested node, numa_hit is

incremented for that particular node. The process may be running on any node in the system.

When a process requests a page from a particular node and instead receives a page from some other node,

numa_miss is incremented at the node where the page was actually allocated. numa_foreign is incremented at the

original node from which the page was requested. The process may be running on any node in the system.

interleave_hit is incremented on the node on which a page is allocated when the allocation obeys the interleave

policy for the address range. In addition, numa_hit and either local_node or other_node are incremented on the

node on which the page is allocated. No statistics are kept for pages allocated according to the interleave policy

but not on the requested node because of its lack of free pages.

When a process requests a page and the resulting page is located on the same node as where the process is

running, local_node is incremented on that particular node.

When a process requests a page and the resulting page is located on a different node than where the process is

running, other_node is incremented for the node on which the page is actually allocated.

The difference between numa_miss and numa_hit and local_node and foreign_node is that the first two count hit

or miss for the NUMA policy. The latter count if the allocation was on the same node as the requesting thread.

To better understand the numastat values, consider the following examples.

The following example shows which counters are incremented when a process running on node 0 requests a page

on node 0 and it is allocated on node 0.

node 3 node 2 node 1 node 0

numa_hit +1

numa_miss

numa_foreign

interleave_hit

local_node +1

other_node

21

The following example shows which counters are incremented when a process running on node 0 requests a page

on node 0 but it is allocated on node 1 due to a shortage of free pages on node 0.

node 3 node 2 node 1 node 0

numa_hit

numa_miss +1

numa_foreign +1

interleave_hit

local_node

other_node +1

The following example shows which counters are incremented when a process running on node 0 requests and

receives a page on node 1. Note the difference between this and the first example.

node 3 node 2 node 1 node 0

numa_hit +1

numa_miss

numa_foreign

interleave_hit

local_node

other_node +1

The following example shows which counters are incremented when a process running on node 0 requests a page

on node 1 but it is allocated on node 0 due to a shortage of free pages on node 1.

node 3 node 2 node 1 node 0

numa_hit

numa_miss +1

numa_foreign +1

interleave_hit

local_node +1

other_node

 22

As a further example, consider a four-node machine with 4 GB of RAM per node. Initially, numastat reports the

following statistics for this machine:

node 3 node 2 node 1 node 0

numa_hit 58956 142758 424386 319127

numa_miss 0 0 0 0

numa_foreign 0 0 0 0

interleave_hit 19204 20238 19675 20576

local_node 43013 126715 409434 305254

other_node 15943 16043 14952 13873

Now suppose that a program called memhog runs on node 1, allocating 8 GB of RAM during execution. After

memhog completes, numastat reports the following statistics:

node 3 node 2 node 1 node 0

numa_hit 58956 142758 424386 320893

numa_miss 48365 1026046 0 0

numa_foreign 0 0 1074411 0

interleave_hit 19204 20238 19675 20577

local_node 43013 126856 1436403 307019

other_node 64308 1042089 14952 13873

Each column represents a node where an allocation event took place. The memhog program tried to allocate

1,074,411 pages from node 1 but was unable to do so. Instead, the process ended with 1,026,046 pages from node

2 and 48,365 pages from node 3.

23

S Y S T E M C A L L O V E R V I E W

NUMA API adds three new system calls: mbind, set_mempolicy, and get_mempolicy. Normally user applications

should use the higher level libnuma interface and not call the system calls directly. The system call interface is

declared in numaif.h include file. The system calls are currently not defined in glibc, applications that use them

should link to libnuma. They may return -1 and ENOSYS in errno when the kernel does not support NUMA policy.

All of these system calls get nodemasks as arguments, similar to the nodemask_t type of libnuma. In the system

call interface, they are defined as arrays of longs, each long containing a string of bits, together with an additional

argument that gives the highest node number in the bitmap.

set_mempolicy sets the memory policy of the current thread. The first argument is the policy. Valid policies are

MPOL_BIND, MPOL_INTERLEAVE, MPOL_DEFAULT, and MPOL_PREFERRED. These map directly to the numactl

policies described earlier. How the nodemask argument is used depends on the policy. For MPOL_INTERLEAVE, it

specifies the interleave mask. For MPOL_BIND and MPOL_PREFERRED, it contains the membind mask.

get_mempolicy retrieves the process memory policy of the current thread. In addition to output arguments for

policy, nodemask and nodemask size, it has an address and flags arguments. When the MPOL_MF_ADDR bit is set in

flags, the VMA policy of the address is returned in the other arguments. When MPOL_F_NODE is additionally set,

the current node to which the address pointed is returned.

mbind sets the memory policy for a memory area. The first argument is a memory address and a length. The rest is

a policy with mask and length similar to set_mempolicy. In addition, it has a flags argument. When

MPOL_MF_STRICT is passed for flags, the call fails when any existing page in the mapping violates the specified

policy.

For more detailed information, refer to the man pages get_mempolicy(2), set_mempolicy(2), and mbind(2).

 24

L I M I T A T I O N S A N D O U T L O O K

On a bigger system, there is normally a hierarchy in the interconnect. This means that neighboring nodes can be

accessed more quickly than remote nodes. NUMA API currently represents the system as a flat set of nodes. Future

versions will allow the application to query node distances. Future versions of NUMA API may also allow setting a

policy on the file cache.

462-001437-001

