
A Survey of Rollback-Recovery Protocolsin Message-Passing SystemsE.N. Elnozahy D.B. Johnson Y.M. WangDept. of Computer Science Dept. of Computer Science AT&T Laboratories-ResearchCarnegie Mellon University Carnegie Mellon University 600-700 Mountain AvenuePittsburgh, PA 15213-3891 Pittsburgh, PA 15213-3891 Murray Hill, NJ 07974AbstractThe problem of rollback-recovery in message-passing systems has undergone extensive study. Inthis survey, we review rollback-recovery techniques that do not require special language constructs,and classify them into two primary categories. Checkpoint-based rollback-recovery relies solely oncheckpointed states for system state restoration. Depending on when checkpoints are taken, ex-isting approaches can be divided into uncoordinated checkpointing, coordinated checkpointing andcommunication-induced checkpointing. Log-based rollback-recovery uses checkpointing and messagelogging. The logs enable the recovery protocol to reconstruct the states that are not checkpointed.There are three di�erent log-based approaches, namely, pessimistic logging, optimistic logging andcausal logging. We identify a set of desirable properties of rollback-recovery protocols, and comparedi�erent approaches with respect to these properties. Log-based rollback-recovery protocols gener-ally rely on the assumption of piecewise determinism and pay additional overhead to allow fasteroutput commits and more localized recovery. We present research issues under each approach, andreview existing solutions to address them. We also present implementation issues of checkpointingand message logging.Key words: distributed systems, fault tolerance, high availability, checkpointing, message logging,rollback, recovery

1

1 IntroductionRollback-recovery achieves fault tolerance by periodically saving the state of a process duringfailure-free execution, and restarting from a saved state upon a failure to reduce the amount of lostwork. The saved process state is called a checkpoint, and the procedure of restarting from previouslycheckpointed state is called rollback-recovery. A checkpoint can be saved on either stable storage orthe volatile storage of another process, depending on the failure scenarios to be tolerated. For long-running scienti�c applications, checkpointing and rollback-recovery can be used to minimize thetotal execution times in the presence of failures. For mission-critical service-providing applications,checkpointing and rollback-recovery can be used to improve service availability by providing fasterrecovery to reduce service down time.Rollback-recovery in message-passing systems is complicated by the issue of rollback propagationdue to interprocess communications. When the sender of a message m rolls back to a state beforesending m, the receiver process must also roll back to a state before m's receipt; otherwise, thestates of the two processes would be inconsistent because they would show that message m wasnot sent but has been received, which is impossible in any correct failure-free execution. Undersome scenarios, cascading rollback propagation may force the system to restart from the initialstate, losing all the work performed before a failure. This unbounded rollback is called the dominoe�ect [144]. The possibility of the domino e�ect is highly undesirable because all checkpoints takenmay turn out to be useless for protecting an application against losing all useful work upon a failure.In a message-passing system, if each participating process takes its checkpoints independentlythen the system is susceptible to the domino e�ect. This approach is called uncoordinated check-pointing or independent checkpointing. One way to avoid the domino e�ect is to perform coordinatedcheckpointing: the processes in a system coordinate their checkpoints to form a system-wide consis-tent state. Such a consistent set of checkpoints can then be used to bound the rollback propagation.Alternatively, communication-induced checkpointing forces each process to take checkpoints basedon some application messages it receives from other processes. This approach does not requiresystem-wide coordination and therefore may scale better. The checkpoints are taken such that aconsistent state always exists, and the domino e�ect cannot occur.The above approaches rely solely on checkpoints, therefore the name checkpoint-based rollback-recovery. In contrast, log-based rollback-recovery uses checkpointing and message logging.1 Log-based rollback-recovery relies on the assumptions underlied in a piecewise deterministic (PWD)execution model [51, 167]. Under the PWD model, each process execution consists of a sequenceof deterministic state intervals, each starting with the occurrence of a nondeterministic event.By logging and replaying the nondeterministic events in their exact original order, a process can1Logging is not con�ned to messages only. It also includes logging nondeterministic events. Earlier papers inthis area have assumed a model in which messages represent nondeterministic events in addition to interprocesscommunications. In this paper, we use the terms event logging and message logging interchangeably.2

deterministically recreate its pre-failure state even if it has not been checkpointed. Log-basedrollback-recovery in general enables a system to have a recoverable state beyond the most recentset of consistent checkpoints. It is therefore particularly attractive for applications that frequentlyinteract with the outside world. The outside world consists of all input and output devices thatcannot roll back.This survey is organized as follows. Section 2 describes the system model, the terminologyand the generic issues in rollback-recovery; Section 3 surveys checkpoint-based rollback-recoveryprotocols, and classi�es them into three primary categories: uncoordinated checkpointing, coordi-nated checkpointing and communication-induced checkpointing; Section 4 covers log-based rollback-recovery techniques including pessimistic logging, optimistic logging and causal logging; Section 5addresses the implementation issues; Section 6 gives additional references to emerging new researchtopics and related research areas, and Section 7 concludes the survey. Rollback-recovery techniquesthat rely on special language constructs such as recovery blocks [144] and transactions [64] are notcovered in this survey. Also, we do not address the use of rollback-recovery to tolerate Byzantinefailures.2 Background and De�nitions2.1 System Model and Failure ModelA message-passing system consists of a �xed number of processes that communicate only throughmessages. Throughout this survey, we use N to denote the total number of processes in the system.Processes cooperate with each other to execute a distributed application program, and interactwith the outside world by receiving and sending input and output messages, respectively. Figure 1shows a sample system consisting of three processes, where horizontal lines extending toward theright hand side represent process executions, and arrows between processes represent messages.
P2

P1

P0

m

Messagesm

Processes

Input message Output messageOutside world

Message-passing system

Figure 1: Example message-passing system with three processes.3

Rollback-recovery protocols generally assume that the communication network is immune topartition, but di�er in the assumptions they make about the reliability of interprocess communi-cation. Some protocols assume that the communication subsystem delivers messages reliably inFirst-In-First-Out (FIFO) order. Other protocols assume that the communication subsystem canlose, duplicate, or reorder messages. The two di�erent assumptions lead to di�erent treatmentsof in-transit messages, as will be described shortly. Their practical implications are discussed inSection 5.A process may fail, in which case it loses its volatile state and stops execution according to thefail-stop model [150]. Processes have access to a stable storage device that survives failures. Stateinformation saved to the device during failure-free execution then can be used for recovery. Thenumber of tolerated process failures may vary from one to N , and the recovery protocol needs tobe accordingly designed. Whether failures that occur during recovery need to be tolerated or notalso a�ects the choice of recovery protocols [51, 157].2.2 Consistent System StatesThe state of a message-passing system is the collection of the individual states of all participatingprocesses and the states of the communication channels. Intuitively, a consistent system state isone that may occur in a legal execution of a distributed computation. A more precise de�nition ofa consistent system state is one in which every message that has been received is also shown to havebeen sent in the state of the sender [38]. For example, the cut in Figure 2(a) straddles a consistentstate of the three processes in Figure 1, while the cut in Figure 2(b) straddles an inconsistent cutbecause process P2 is shown to have received m but P1's state does not reect sending the message.
P2

P1

P0

m

P2

P1

P0

m

m

Inconsistent cut

(b)

m

Consistent cut

Process
states (a)Figure 2: (a) Consistent cut; (b) inconsistent cut.Messages that are sent but not yet received may not cause the system state to be inconsistent.These messages are called in-transit messages (see for example message m0 with respect to thecut in Figure 2(a)). Whether a consistent system state should include the in-transit messages4

depends on whether the system model assumes reliable communication channels or not. For reliablecommunication channels, a consistent state must include in-transit messages because they willalways be delivered to their destinations in any legal execution of the system. For example, inFigure 3(a), the reliable communication protocol can handle only the in-transit messages potentiallylost in the lossy communication channels during failure-free executions; lost in-transit messages dueto process failures need to be separately handled by the rollback-recovery protocol itself. On theother hand, if a system model assumes lossy communication channels, then omitting in-transitmessages from the system state does not cause any inconsistency. In such a model, there is noguarantee that the communication subsystem will deliver all messages to their destinations in a legalexecution. For example, in Figure 3(b), lost in-transit messages due to rollback-recovery cannotbe distinguished from those caused by lossy communication channels; a reliable communicationprotocol at a higher layer can guarantee the delivery of both types of messages.
User applications

Rollback-recovery protocol

Reliable communication protocol

Lossy communication channels

User

applications

Reliable

communication

protocol

User

applications

Rollback-recovery protocol

Lossy communication channels

(a) (b)Figure 3: Implementations of rollback-recovery protocols (a) on top of a reliable communicationprotocol; (b) directly on top of lossy communication channels.An inconsistent state represents a state that can never occur in any legal execution of thesystem. Inconsistent states occur because of failures. For example, the inconsistency in Figure 2(b)can occur if process P1 fails after sending message m to P2. A fundamental goal of any rollback-recovery protocol is to bring the system into a consistent state when inconsistencies occur due toa failure. The reconstructed consistent state is not necessarily one that has occurred before thefailure. It is su�cient that the reconstructed state be one that could have occurred before thefailure in a legal execution.
5

2.3 Checkpointing ProtocolsIn checkpointing protocols, each process periodically saves its state on stable storage. The stateshould contain su�cient information to restart process execution. A consistent global checkpointrefers to a set of N local checkpoints, one from each process, which forms a consistent system state.Any consistent global checkpoint can be used for system restoration upon a failure. To minimizethe amount of lost work, the most recent consistent global checkpoint, called the recovery line [144],is the best choice.Figure 4 gives an example where processes are allowed to take their checkpoints independently,without coordinating with each other. A black bar represents a checkpoint, and each processis assumed to start its execution with an initial checkpoint. Suppose process P2 fails and rollsback to checkpoint C. The rollback \unsends" message m and so P1 is required to roll back tocheckpoint B to \unreceive" m. The rollback of P2 thus propagates to P1, therefore the termrollback propagation. P1's rollback further \unsends" m0 and forces P0 to roll back as well. Suchcascading rollback propagation can eventually lead to an unbounded rollback, called the dominoe�ect [144], as illustrated in Figure 4. The recovery line for the single failure of P2 consists ofthe initial checkpoints. Thus, the system has to roll back to the beginning of its execution andloses all useful work in spite of all the checkpoints that have been taken. To avoid the dominoe�ect, processes need to coordinate their checkpoints so that the recovery line is advanced as newcheckpoints are taken.
P2

P1

P0

m

Failure

line
Recovery

Checkpoint

m

A

B

CFigure 4: Recovery line, rollback propagation and domino e�ect.2.4 Logging ProtocolsLog-based rollback-recovery uses checkpointing and logging to enable processes to replay their exe-cution after a failure beyond the most recent checkpoint. This property is useful when interactionswith the outside world are necessary. It enables a process to repeat its execution and be consistentwith output sent to the outside world without having to take expensive checkpoints before sendingsuch output. Additionally, log-based recovery generally is not susceptible to the domino e�ect,6

allowing processes to use uncoordinated checkpointing if desired.2Log-based recovery relies on the assumptions underlied in a piecewise deterministic (PWD)execution model [51, 167] and employs an additional logging protocol. Under the PWD assumption,a process execution consists of a sequence of state intervals, each starting with a nondeterministicevent such as a message receipt from another process. The execution within each state intervalis deterministic. Thus, by logging every nondeterministic event during failure-free execution andreplaying the logged events in their original order during recovery, a process can replay its executionbeyond the most recent checkpoint. A process state is recoverable if there is su�cient informationto replay the execution up to that state despite any future failures in the system.In Figure 5, suppose messages m5 and m6 are lost upon the failure a�ecting both processes P1and P2, while all the other messages survive the failure. Message m7 becomes an orphan messagebecause process P2 cannot guarantee the regeneration of the same m6 after the rollback, andP1 cannot guarantee the regeneration of the same m7 without the original m6. As a result, thesurviving process P0 becomes an orphan process and is forced to roll back as well. As indicatedin Figure 5, process states X, Y and Z then form the maximum recoverable state [89], i.e., themost recent recoverable consistent system state. Process P0 (P2) rolls back to checkpoint A (C) andreplays message m4 (m2) to reach X (Z). Process P1 rolls back to checkpoint B and replays m1and m3 in their original order to reach Y .
P2

P1

P0

m 1

m 5 m 6

m 5 m 6

A

C

m m

m m

2 3

4 7

Z

Y

X

Maximum
recoverable

, lost upon failure

B

m 0

state

Figure 5: Message logging for deterministic replay.2We use the terms of event logging and message logging interchangeably. Log-based recovery has traditionally beencalled message logging, as earlier papers have assumed that nondeterministic events can be converted to messages.Also, \message logging" has sometimes been used in the literature to refer to the recording of in-transit messages [42,187]. This naming convention is not common and we do not use it in this survey.
7

2.5 Interactions with The Outside WorldA message-passing system often interacts with the outside world to receive input data and show theoutcome of the computation, or to receive service requests and reply with the requested information.The outside world cannot be relied on to roll back if a failure occurs in the system. For example,a printer cannot roll back the e�ects of printing a character; an automatic teller machine cannotrecover the money that it dispensed to a customer; a deleted �le cannot be recovered (unless itsstate is included as part of the checkpoint [166, 191]). It is therefore necessary to ensure that theoutside world perceive a consistent behavior of the system despite failures. Thus, before sendingoutput to the outside world, the system must ensure that the state from which the output is sentwill be recovered despite any future failure. This is commonly called the output commit problem.Some rollback-recovery protocols may need to run a special algorithm to ensure the recoverabilityof the current state, while some protocols can commit output directly without the need for specialarrangements.Similarly, the input messages that a system receives from the outside world may not be repro-ducible, as it may not be able to regenerate them. Therefore, a recovery protocol must arrangeto save the input messages so that they can be retrieved when needed for execution replay after afailure. A common approach is to save each input message on stable storage before allowing theapplication program to process it.2.6 Stable StorageRollback-recovery uses stable storage to save checkpoints, event logs, and other recovery-relatedinformation. Stable storage in rollback-recovery is only an abstraction, although it is often confusedwith disk storage which is usually used to implement it. Stable storage must ensure that the datastored will persist through the tolerated failure modes. Therefore, in a system that tolerates a singlefailure, stable storage may consist of the volatile memory of another process [29, 88]. A system thatwishes to tolerate an arbitrary number of transient failures can implement stable storage by storinginformation on a reliable disk local to each host. And a system that tolerates non-transient failuresmust ensure that the recovery information related to a particular process is always stored on apersistent medium outside the host on which the process is running. A highly-available �le systemcan be used in that case [103]. Independent of the technique that implements stable storage, wecall an event or a message fully logged if it has been stored such that it would persist the toleratedfailures in the system.2.7 Garbage CollectionCheckpoints and event logs consume storage resources. As the application progresses and more re-covery information is collected, a subset of the stored information may become useless for recovery.8

A common approach to garbage collection is to identify the recovery line and discard all infor-mation relating to events that occurred before that line. For example, processes that coordinatetheir checkpoints to form consistent states will always restart from the most recent checkpoints,and so all previous checkpoints can be discarded. Garbage collection is an important pragmaticissue in rollback-recovery protocols. Running a special algorithm to discard useless informationincurs overhead but may be necessary to free up space on stable storage, posing two conictingrequirements to the system implementors. Recovery-protocols di�er in the amount and nature ofthe recovery information they need to store on stable storage, and therefore di�er in the complexityand invocation frequency of their garbage collection algorithms.3 Checkpoint-Based Rollback-RecoveryUpon a failure, checkpoint-based rollback-recovery restores the system state to the most recent con-sistent set of checkpoints, i.e., the recovery line [144]. It does not rely on piecewise determinism,and so does not need to detect, log, and replay nondeterministic events. Since there is no guar-antee that pre-failure execution can be deterministically regenerated after a rollback, it is moresuitable for applications that do not frequently interact with the outside world. Checkpoint-basedrollback-recovery techniques can be classi�ed into three categories: uncoordinated checkpointing,coordinated checkpointing, and communication-induced checkpointing.3.1 Uncoordinated Checkpointing3.1.1 OverviewUncoordinated (or independent) checkpointing allows each process to decide independently whento take checkpoints. The main advantage is the lower runtime overhead during normal executionbecause no coordination among processes is necessary. Autonomy in taking checkpoints also allowseach process to select appropriate checkpoint positions to further reduce the overhead by saving asmaller amount of state information. The main disadvantage is the possibility of the domino e�ect,as shown in Figure 4, which may cause a large amount of useful work to be undone regardlessof how many checkpoints have been taken. In addition, each process needs to maintain multiplecheckpoints, and a garbage collection algorithm needs to be invoked periodically to reclaim thecheckpoints that are no longer useful.During normal execution, the dependencies between checkpoints caused by message exchangesneed to be recorded so that a consistent global checkpoint can be determined during recovery. Thefollowing direct dependency tracking technique is commonly used in uncoordinated checkpoint-ing [25, 178, 192]. Let ci;x (0 � i � N � 1, x � 0) denote the xth checkpoint of process Pi, where iis called the process id and x the checkpoint index (we assume each process Pi starts its executionwith an initial checkpoint ci;0); and let Ii;x (0 � i � N�1, x � 1) denote the checkpoint interval (or9

interval) between ci;x�1 and ci;x. As illustrated in Figure 6, when process Pi at interval Ii;x sendsa message m to Pj , the pair (i; x) is piggybacked on m. When Pj receives m during interval Ij;y, itrecords the dependency from Ii;x to Ij;y, which is later saved onto stable storage when checkpointcj;y is taken.
c i, 1

I j, y

I i, x

c

c c

cc i, x-1

P

P j

i

j, 0 j, 1

i, 0

j, y-1 j, y

i, x

(i, x) m

c c

Figure 6: Checkpoint index and checkpoint interval.If a failure occurs, the rollback initiator will broadcast a dependency request message to collectall the dependency information maintained separately at each process. When a process receivesthe dependency request message, it stops its execution and replies with the stable dependencyinformation and the dependency information associated with its current volatile state (called avolatile checkpoint), if available. The initiator then calculates the recovery line based on the globaldependency information, and broadcasts a rollback request message containing the recovery line.Upon receiving the rollback request, if a process's volatile checkpoint belongs to the recovery line,it simply resumes execution; otherwise, it rolls back to an earlier checkpoint as indicated by therecovery line.3.1.2 Dependency Graphs and Recovery Line CalculationGiven the checkpoint and communication pattern shown in Figure 7(a), there are two approachesproposed in the literature to determining the recovery line. The �rst approach is based on a rollback-dependency graph [25, 35, 184] in which each node represents a checkpoint and a directed edge isdrawn from ci;x to cj;y if (1) i 6= j, and a message m is sent from Ii;x and received in Ij;y or (2) i = jand y = x + 1. The name \rollback-dependency graph" comes from the observation that if Ii;x isrolled back, then Ij;y must also be rolled back. The rollback-dependency graph corresponding to thepattern in Figure 7(a) is illustrated in Figure 7(b). To calculate the recovery line, the graph nodescorresponding to the volatile checkpoints of the failed processes P0 and P1 are initially marked.A reachability analysis [25, 184] is performed by marking all the nodes reachable from any of theinitially marked nodes. The last unmarked node of each process then forms the recovery line asshown in Figure 7(b). 10

c 0,1 c 0,2

c 1,1

P0

P2

P3

P1
c 1,0

c 0,0

(a)

Volatile
Checkpoint checkpoint

Failure

c 0,1

c 1,1

c 0,0

c 1,0

Recovery
line

P0

P2

P3

P1

marked
Initially

c 0,1

c 1,1

c 1,0

c 0,0

Recovery
line

P0

P2

P3

P1

(c)

Marked

(b)

Marked

Figure 7: (a) Example checkpoint and communication pattern; (b) rollback-dependency graph; (c)checkpoint graph.The second approach is based on a checkpoint graph [178, 183]. Checkpoint graphs are similarto rollback-dependency graphs except that, when a message is sent from Ii;x and received in Ij;y,a directed edge is drawn from ci;x�1 (instead of ci;x) to cj;y, as shown in Figure 7(c). The recoveryline can be calculated by �rst removing the nodes corresponding to the volatile checkpoints of thefailed processes, and then applying the following rollback propagation algorithm [178, 187] on thecheckpoint graph:/* Initially, all checkpoints are unmarked */include the last checkpoint of each process in a root set;mark all the checkpoints strictly reachable from any checkpoint in the root set;while (at least one checkpoint in the root set is marked) freplace each marked checkpoint in the root set by the last unmarked checkpoint of the sameprocess;mark all the checkpoints strictly reachable from any checkpoint in the root set;gthe root set is the recovery line.The example demonstrates that the two approaches are equivalent and result in the same recoveryline. The choice usually depends on which graph is more convenient for the issues to be discussed.11

3.1.3 Garbage CollectionThe garbage collection algorithm for independent checkpointing consists of calculating the recoveryline, and discard the obsolete checkpoints before the states that form the line. The calculationproceeds as follows: construct a nonvolatile rollback-dependency graph by omitting the incomingedges of volatile checkpoints (which correspond to volatile dependency information), and initiallymark all volatile checkpoints to start the reachability analysis. Figure 8 illustrates the nonvolatilerollback-dependency graph and the global recovery line of Figure 7(a). Only the �rst checkpointof each process is obsolete and can be garbage-collected. As demonstrated by the �gure, when theglobal recovery line is unable to advance due to rollback propagation, a large number of nonobsoletecheckpoints may need to be retained.To reduce the number of retained checkpoints, Wang et al. derived the necessary and su�cientcondition for a checkpoint to be useful for any future recovery [185, 186]. It was shown that thereexists a set of N recovery lines, the union of which contains all useful checkpoints. Each of the Nrecovery lines is obtained by initially marking one volatile checkpoint in the nonvolatile rollback-dependency graph. Figure 9 illustrates the execution of the optimal checkpoint garbage collectionalgorithm to �nd these N recovery lines. Since the four nonobsolete checkpoints fA;B;C;Dg andthe four obsolete checkpoints do not belong to the union, they can be safely discarded withouta�ecting the safety of any future recovery. It was also proved that the number of useful checkpointscan never exceed N(N + 1)=2, and the bound is tight [185].3.2 Coordinated Checkpointing3.2.1 OverviewIn consistent checkpointing, the processes coordinate their checkpoints to form a global consistentstate. Consistent checkpointing is not susceptible to the domino e�ect, since the processes alwaysrestart from the most recent checkpoint. Also, recovery and garbage collection are both simpli�ed,and stable storage overhead is lower than in uncoordinated checkpointing. The main disadvantageis the sacri�ce of process autonomy in taking checkpoints. In addition, a coordination session needsto be initiated before committing any output, and checkpoint coordination generally incurs messageoverhead.A straightforward approach to coordinated checkpointing is to block interprocess communica-tions until the checkpointing protocol executes [43, 174]. This can be achieved by using the followingtwo-phase blocking protocol: the initiator (coordinator) broadcasts a checkpoint request message;when a process receives the checkpoint request message, it takes a checkpoint, stops sending appli-cation messages, and replies with a local checkpoint done message; once the initiator receives lo-cal checkpoint done from every other process, it broadcasts a global checkpoint done message; uponreceiving global checkpoint done, each process commits its new checkpoint and resumes sending12

P0

P1

P2

P3

Global
recovery

line

Obsolete
checkpointsFigure 8: Garbage collection based on global recovery line and obsolete checkpoints.

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

A

B

C D

A

B

C D

A

B

B

C

C D

D

(c) (d)

(a) (b)

A

Marked

Figure 9: Optimal checkpoint garbage collection.13

application messages. If a failure occurs, a simple recovery procedure is to roll back all processesin the system to the latest committed global checkpoint. When it is desirable to minimize thenumber of processes involved in a rollback, the general recovery line calculation algorithms basedon dependency tracking (as describe in Section 3.1) can still be applied [100].3.2.2 Nonblocking Checkpoint CoordinationInstead of blocking interprocess communications, an alternative is to shift the responsibility of main-taining checkpoint consistency from the sender side to the receiver side. A fundamental problem innonblocking checkpoint coordination is to avoid post-checkpoint messages like m in Figure 10(a),which is sent after process P0 receives checkpoint request, and received before checkpoint requestreaches P1. Under the assumption of FIFO channels, this problem can be solved by always gener-ating a checkpoint request before sending any post-checkpoint messages, and forcing each processto take a checkpoint upon receiving the �rst checkpoint request, as illustrated in Figure 10(b).Chandy and Lamport's distributed snapshot algorithm [38] provides such a nonblocking checkpointcoordination protocol. (The checkpoint request message is called a marker in their paper.) Notethat, since we only need the checkpoint request to be processed before any post-checkpoint mes-sages, checkpoint request can be piggybacked on every post-checkpoint message m and examinedby the receiver before m is processed [101], as shown in Figure 10(c). This modi�cation also allowsnon-FIFO channels. In practice, checkpoint indices can serve as the checkpoint request messages:a checkpoint is triggered when the receiver's local checkpoint index is lower than the piggybackedcheckpoint index [50, 154].
c 0, x c 0, x c 0, x

c 1, x c 1, x

P

P

0

1
c 1, x

m m m

(a) (b) (c)

checkpoint_request checkpoint_request checkpoint_request

Initiator Initiator Initiator

Figure 10: Nonblocking coordinated checkpointing. (a) Checkpoint inconsistency; (b) FIFO chan-nels; (c) non-FIFO channels (short dashed line represents piggybacked checkpoint request).
14

3.2.3 Synchronized Checkpoint ClocksLoosely synchronous clocks can facilitate checkpoint coordination [42, 143, 177]. More speci�cally,loosely-synchronized checkpoint clocks can trigger the local checkpointing actions of all participatingprocesses at approximately the same time without the need of broadcasting the checkpoint requestmessage by a coordinator. A process takes a checkpoint and waits for a period that equals the sumof the maximum deviation between clocks and the maximum time to detect a failure in anotherprocess in the system. The process can be assured that all checkpoints belonging to the samecoordination session must have been taken without the need of global checkpoint done messages. Ifa failure occurs, it has to be detected within the speci�ed time and the protocol is aborted. Toguarantee checkpoint consistency, either the sending of messages is blocked for the duration of theprotocol, or the checkpoint indices can be piggybacked to avoid blocking as explained before.3.2.4 Minimal Checkpoint CoordinationIt is possible to reduce the number of processes involved in a coordinated checkpointing session.Only those processes that have communicated with the checkpoint initiator either directly or in-directly since the last checkpoint need to take new checkpoints [21, 100]. The following two-phaseprotocol is due to Koo and Toueg [100]. During the �rst phase, the checkpoint initiator sends arequest to all processes with which it has communicated since the last checkpoint. Upon receiv-ing such request, each process sends a similar message to all processes it has communicated withsince the last checkpoint and so on, until all processes are identi�ed. During the second phase,all processes identi�ed in the �rst phase take a checkpoint. The result is a consistent checkpointthat involves only the processes that participate. Interprocess communication has to be blockedduring this protocol as explained before. In Koo and Toueg's original scheme, if any of the involvedprocesses is not able or not willing to take a checkpoint, then the entire coordination session isaborted; Kim and Park [93] proposed an improved scheme that allows the new checkpoints in somesubtrees to be committed while the others are aborted.3.3 Communication-induced Checkpointing3.3.1 OverviewCommunication-induced checkpointing [81] is another way to avoid the domino e�ect in uncoor-dinated checkpointing protocols. A system-wide constraint on the checkpoint and communicationpattern is speci�ed to guarantee recovery line progression. Su�cient information is piggybackedon each message so that the receiver can examine the information prior to processing the message.If processing the message would violate the speci�ed constraint, the receiver is forced to take acheckpoint before the processing. In contrast with coordinated checkpointing, no special coordina-tion messages are exchanged. We distinguish two types of communication-induced checkpointing:15

model-based checkpointing maintains certain checkpoint and communication structure that is prov-ably domino e�ect-free, and index-based coordination enforces the consistency between checkpointswith the same index.3.3.2 Model-based CheckpointingSeveral domino e�ect-free checkpoint and communication models have been proposed in the lit-erature. Russell [147] proved that if within every checkpoint interval all message-receiving eventsprecede all message-sending events, then the system is domino e�ect-free. Such a model, called anMRS model, can be maintained by taking an additional checkpoint before every message-receivingevent that is not separated from its previous message-sending event by a checkpoint [2, 184]. In theProgrammer-Transparent Coordination (PTC) scheme [98], Kim et al. proved that the domino ef-fect can be eliminated if each process takes an additional checkpoint before processing any messagethat will cause the process to depend on a checkpoint that it did not previously depend on. Wuand Fuchs [197, 198] proposed that taking a checkpoint immediately after every message-sendingevent can eliminate rollback propagation and therefore the domino e�ect. Some heuristics have alsobeen developed to reduce rollback propagation [188, 199], although they in general do not guaranteedomino e�ect-free recovery.In addition to achieving domino e�ect-free recovery, another branch of research work aims atproviding the bene�ts of piecewise determinism (such as e�cient output commit and recovery)without requiring applications to satisfy the piecewise deterministic model. It is based on theobservation that piecewise determinism can be modeled as having a logical checkpoint [91, 179, 190]before every nondeterministic event. Therefore, checkpoint-based rollback recovery can mimicpiecewise determinism by taking an actual checkpoint before every nondeterministic event. Themain challenge is how to reduce the number of checkpoints while still preserving desirable properties.It has been shown that [182] the three domino e�ect-free models described in the previous paragraphcan all be viewed as special cases of a more general Fixed-Dependency-After-Send (FDAS) model:the receiving of any message that causes its receiver Pj to causally depend on a checkpoint ci;xfor the �rst time must precede any sending of messages from the same checkpoint interval. Themain advantage of the FDAS model is that it allows rollback dependency to be tracked on-line, aproperty that leads to many desirable features of the piecewise deterministic model. The ability totrack rollback dependency is also preserved in the adaptive checkpointing algorithm of Baldoni etal. [16]. In their scheme, an additional boolean vector and another boolean matrix are piggybackedon each message. These data structure allow a receiver to determine if an additional checkpointneeds to be taken to prevent some other checkpoints from becoming useless, i.e., not belonging toany consistent global checkpoints [199].
16

3.3.3 Index-based CoordinationCheckpoint coordination can also be considered as a mechanism to be incorporated into an uncoor-dinated checkpointing protocol to eliminate the domino e�ect. A naive way to employ checkpointcoordination is to start a coordination session whenever a local checkpoint is taken. Alternatively,inconsistency between checkpoints of the same index can be avoided in a lazy fashion if checkpointindex is piggybacked on each message. Upon receiving a message with piggybacked index greaterthan the local index, the receiver is forced to take a checkpoint before processing the message toavoid inconsistency at the last minute [33, 101].The lazy coordination protocol described above has two disadvantages. First, the inducedcheckpoints push the checkpoint indices at some processes higher which may cause more inducedcheckpoints to be taken and, in the worst case, result in an excessive number of induced checkpoints.Second, the additional checkpoint overhead is determined by the checkpoint and communicationpattern and is not otherwise controllable. Wang and Fuchs [189] introduced the notion of laziness(a positive integer) to provide a tradeo� between the checkpoint overhead and rollback distance.When a system speci�es the laziness to be Z, only checkpoints with the same index which isa multiple of Z are required to be consistent. By increasing the laziness, additional checkpointoverhead can be reduced at the expense of a potentially larger rollback distance. Manivannanand Singhal [119] presented a quasi-synchronous checkpointing algorithm to reduce the number offorced checkpoints. Every process increments its next-to-be-assigned checkpoint index at the sameregular time interval to keep the index of the latest checkpoint of each process close to each other.A scheduled checkpoint is skipped if the next-to-be-assigned index is already taken by an inducedcheckpoint.4 Log-Based Rollback-RecoveryLog-based rollback-recovery assumes a piecewise deterministic system model in which a processexecution consists of a sequence of deterministic state intervals. Each interval starts with theoccurrence of a nondeterministic event. Such an event can be the receipt of a message fromanother process or an internal event to the process. Sending a message, however, is not an eventin this model. For example, in Figure 5, the execution of process P0 would be a sequence of fourdeterministic intervals. The �rst one starts with the creation of the process, while the remainingthree start by the receipt of messages m0, m4, and m7, respectively.Log-based rollback-recovery protocols save information about the nondeterministic events onstable storage in addition to checkpointing. During recovery, the events in the log are replayed at thesame points they occurred during the pre-failure execution. Thus, the failed process reconstructs itspre-failure execution during recovery since the execution within each deterministic interval dependson the nondeterministic event that started it. 17

Log-based rollback-recovery contrasts checkpointing schemes in one important way. In check-pointing schemes, the system restarts one or more processes after a failure to restore a consistentstate. The execution of a failed process during recovery is not necessarily identical to its pre-failureexecution. This property simpli�es the implementation of failure-recovery but makes it di�cult forthe system to interact e�ciently with the outside world. Log-based rollback-recovery does not havethis problem and can interact more e�ciently with the outside world.Log-based rollback-recovery protocols have been traditionally called \message logging proto-cols." The association of nondeterministic events with messages is rooted in the earliest systemsthat implemented this style of recovery [23, 28]. These systems translated nondeterministic eventsinto messages according to the CSP model [71]. It is important however to emphasize that theseprotocols are not only limited to message-passing systems. They have found applications in otherstyle of interprocess communication, such as in distributed shared memory systems [37, 170, 197].Log-based rollback-recovery protocols come in three major variants: pessimistic logging, opti-mistic logging, and causal logging protocols. They di�er in their failure-free performance overhead,latency of output commit, simplicity of recovery and garbage collection, and the potential for rollingback surviving processes.4.1 Pessimistic Logging4.1.1 OverviewThe basic assumption in pessimistic logging systems is that a failure can occur after every non-deterministic event in the computation. This assumption is \pessimistic" since failures are rarein reality. Pessimistic logging systems arrange for the information about each nondeterministicevent to be logged before the event is allowed to a�ect the computation. For example, a messageis not delivered to the application program until it is logged. This form of logging is often calledsynchronous logging. Each process also takes periodic checkpoints to limit the amount of work thathas to be repeated in execution replay during recovery. Should a failure occur, the applicationprogram is restarted from the most recent checkpoint and the log of events is replayed to recreatethe execution. Because the execution is deterministic between nondeterministic events, an exactreplay of the pre-failure execution is produced.Consider the example in Figure 11. During failure-free operation the logs of processes P0,P1, and P2 are fm0;m4;m7g, fm1;m3;m6g, and fm2;m5g, respectively. If processes P1 and P2fail as shown, they respectively restart from checkpoints B and C. Each replays its message logand because the execution is deterministic, each restores its pre-failure execution and both will beconsistent with the state of P0 including its receipt of message m7 from P1.The state of each process in a pessimistic logging system is always recoverable. This propertyhas four advantages: 18

P2

P1

P0

m 1

m 5 m 6

A

C

m m

m m

2 3

4 7

B

m 0

Z

Y

X

Maximum
recoverable

state

Figure 11: Pessimistic logging.� A process can commit output to the outside world without running a special protocol.� Recovery is simpli�ed because the e�ects of a failure are con�ned only to the processes thatfail. Functioning processes continue to operate and never become orphans. This property istrue because a process always recovers to the state that included its most recent interactionwith any other process or the outside world.� Processes restart from their most recent checkpoint upon a failure, therefore limiting theextent of execution that has to be replayed. Thus, the frequency of taking checkpoints canbe determined by trading o� the desired runtime performance with the desired protection ofthe execution.� There is no need to run a complex garbage collection protocol for the recovery information.Information about nondeterministic events that occurred before the most recent checkpointand older checkpoints can always be reclaimed since they will never be needed for recovery.The price to be paid for these advantages is a performance penalty incurred by synchronous logging.Implementations of pessimistic logging must therefore resort to special techniques to reduce thee�ects of synchronous logging on performance.4.1.2 Techniques for Reducing Performance OverheadThe simplest form of pessimistic logging is to locally save in stable storage information abouteach event as it occurs and before it a�ects the application program [72, 73]. This form of loggingpotentially has a high performance overhead but allows each host to recover independently whichis desirable in practical systems [74]. 19

Special hardware that assists logging can lower the overhead. This special hardware can takethe form of a fast non-volatile semiconductor memory to implement stable storage [18, 163]. Syn-chronous logging in such an implementation would be orders of magnitude cheaper than with atraditional implementation of stable storage using magnetic disk devices. Therefore, performanceis only slightly a�ected. Another form of hardware support is to use a special bus that guaranteesatomic logging of all messages exchanged in the system [29, 140]. Such hardware support ensuresthat the log of one machine is automatically stored on a designated backup without blocking theexecution of the application program. This scheme, however, requires that all nondeterministicevents be converted into external messages [23, 29].Some pessimistic logging systems reduce the overhead of synchronous logging without relyingon hardware. For example, the sender-based message logging (SBML) protocol logs each messageat the sender in volatile memory [88]. A receiver of a message sends an acknowledgment to thesender including the order in which the message is received. The sender includes the receipt orderin the log. The log thus contains the information necessary to help the receiver recover from futurefailures should they occur. This scheme avoids the overhead of accessing stable storage but it cantolerate only one failure and cannot accommodate nondeterministic events internal to a process.Extensions to this technique can tolerate more than one failure in special network topologies [91].4.1.3 Relaxing Logging AtomicityThe performance overhead of pessimistic logging can be reduced by delivering a message or anevent and deferring its logging until the host communicates with another host or with the outsideworld [77, 88]. In the example of Figure 11, process P0 may defer the logging of message m4 andm7 until it needs to communicate with another process or the outside world. Thus, these messagesare allowed to a�ect process P0 but this e�ect is local { no other process or the outside world cansee it until the messages are logged. The observed behavior of each process is the same as with animplementation that logs events before delivering them to applications. Event logging and deliveryare not performed in one atomic operation in this variation of pessimistic logging. This schemereduces overhead because several events can be logged in one operation, reducing the frequency ofsynchronous access to stable storage. Latency of interprocess communication and output commitare not reduced since a logging operation may often be needed before sending a message.Systems that decouple logging of an event from its delivery may be susceptible to losing thelast messages that were delivered before a failure (an instance of the \last message problem" [124]).This problem occurs only in systems where the communication channels are assumed to be reliable.Consider the example in Figure 11. Assume process P0 fails after delivering m4 and m7 but beforelogging them. Process P0 must receive these messages during recovery to be consistent with processP1. Some protocols that rely on the receiver to log the messages cannot retrieve these messages [77].This problem does not occur in protocols that rely on sender logging or those that do not assume20

reliable communication channels [50, 89].4.2 Optimistic Logging4.2.1 OverviewUnlike pessimistic logging protocols, optimistic logging protocols [87, 89, 91, 134, 157, 168] log mes-sages asynchronously. These protocols make the optimistic assumption that logging will completebefore a failure occurs. A volatile log contains information about the events to be logged, and isushed to stable storage periodically. Optimistic logging does not require the application to blockand thus has better failure performance. However, this advantage comes at the expense of morecomplicated recovery, garbage collection, and output commit compared with pessimistic logging.Should a process fail, the information in the volatile log will be lost and cannot be used duringrecovery. The execution that depends on the lost information cannot be recovered. Furthermore,if the failed process has sent a message during any of this unrecoverable execution, the receiverof the message then becomes an orphan process and must roll back to \unreceive" this message.For example, suppose P2 in Figure 12 fails before message m5 is logged to stable storage. ProcessP1 then becomes an orphan process and must roll back to unreceive the orphan message m6. Therollback of P1 further forces P0 to roll back to unreceive m7. Optimistic logging protocols musttherefore perform dependency tracking during failure-free execution. Upon a failure, the depen-dency tracking information is used to calculate and recover the maximum consistent state of theentire system, in which no process is in an orphan state. The above failure scenario also illus-trates that optimistic logging protocols require a nontrivial garbage collection algorithm. Whilepessimistic logging protocols need only keep the most recent checkpoint of each process, optimisticlogging protocols may need to keep additional checkpoints. In the example, process P1's restartfrom checkpoint B instead of the most recent checkpoint D due to P2's failure. Finally, since mes-sages are logged asynchronously, output commit in optimistic logging protocols generally requiresmulti-host coordination to force the logging progress at some processes to ensure that no failurescenario can revoke the output. For example, if process P0 needs to commit output at state X, itmust log messages m4 and m7 to stable storage and ask P2 to log m2 and m5.4.2.2 Synchronous vs. Asynchronous RecoveryRecovery in optimistic logging protocols can be either synchronous or asynchronous. In synchronousrecovery [157], all processes run a recovery protocol to compute the maximum recoverable systemstate based on dependency and logged information, and then perform the actual rollbacks. Duringfailure-free execution, each process increments its state interval index at the beginning of each stateinterval. Dependency tracking can be either direct or transitive. In direct dependency tracking [89,157], the current index of a message sender is piggybacked on each outgoing message to allow the21

P2

P1

P0

m 1

A

C

m 5 m 6m m

m m

2 3

4 7

B

m 0
D

X

Figure 12: Optimistic logging.receiver to record the dependency directly caused by the message. These direct dependencies canthen be assembled at recovery time to obtain complete dependency information. Alternatively,transitive dependency tracking [157] can be used: each process Pi maintains a size-N vector TDiwhere TDi[i] is Pi's current state interval index, and TDi[j], j 6= i, records the highest index ofany state interval of Pj on which Pi depends. Transitive dependency tracking generally incurs ahigher failure-free overhead for piggybacking and maintaining the dependency vectors, but allowsfaster output commit and recovery [87].In asynchronous recovery, a failed process restarts by sending a rollback announcement broad-cast [160] (or recovery message [168]) to start a new incarnation. Upon receiving a rollback an-nouncement, a process rolls back if it detects that it has become an orphan with respect to thatannouncement, and then broadcast its own rollback announcement. Since rollback announcementsfrom multiple incarnations of the same process may coexist in the system, each process in generalneeds to track the dependency of its state on every incarnation of every other process to correctlydetect orphaned states. Strom and Yemini [168] introduced the following blocking at some mes-sage receiving events to allow tracking dependency on only one incarnation of each process: beforeprocess Pi receives any message carrying a dependency on an unknown incarnation of process Pj ,Pi must �rst receive rollback announcements from Pj to verify that Pi's current state does notdepend on any invalid state of Pj 's previous incarnations. To eliminate the blocking and achievecompletely asynchronous recovery, the protocol by Smith et al. [160] piggybacks all rollback an-nouncements known to a process on every outgoing message. The protocol was later improved torequire piggybacking only a provably minimum amount of information [161].Another issue in asynchronous recovery protocols is the possibility of exponential rollbacks: asingle failure in the system may cause a process to roll back an exponential number of times [157].Figure 13 gives an example, where each integer pair [i; x] represents the xth state interval of the ithincarnation of a process. Suppose P0 fails and loses its interval [1; 2]. When P0's rollback announce-ment r0 reaches P1, P1 rolls back to interval [2; 3] and broadcast another rollback announcementr1. If r1 reaches P2 before r0 does, P2 will �rst roll back to [4; 5] in response to r1, and later roll22

back again to [4; 4] upon receiving r0. By generalizing this example, we can construct scenarios inwhich process Pi, i > 0, rolls back 2i�1 times in response to P0's failure. It was pointed out thatStrom and Yemini's original protocol su�ers from the exponential rollbacks problem [157]. Threeapproaches have been proposed to eliminate the problem by ensuring that any process will rollback at most once in response to a single failure. The protocol by Lowry and Strom [117] pig-gybacks the original rollback announcement from the failed process on every subsequent rollbackannouncement that it triggers. For example, in Figure 13, process P1 piggybacks r0 on r1. Damaniand Garg [45] reduced the number of rollback announcements based on the important observationthat announcing only failures, rather than all rollbacks, su�ces to detect orphans. In other words,rollback announcements generated by non-failed rolled-back processes are always redundant withrespect to those generated by failed processes in terms of �nding the maximum recoverable state.If rollback announcements are only generated by failed processes, messages like r1 in Figure 13no longer exist and so exponential rollbacks will not happen. The recovery protocol by Smith etal. [160, 161] also avoids exponential rollbacks because all rollback announcements are piggybackedon every application message and so always reach a process at the same time.
P0

P2

P1

m 1m 2

m 3

[2, 3] [2, 4]

[4, 4] [4, 5] [4, 6]

[1, 2]

1

0r

r

Figure 13: Exponential rollbacks.4.3 Causal Logging4.3.1 OverviewCausal logging has the failure-free performance advantages of optimistic logging without makingoptimistic assumptions. It avoids synchronous access to stable storage except during output com-mit. Causal logging also retains most of the advantages of pessimistic logging. It allows eachprocess to commit output independently and isolates it from the e�ects of failures that occur inother processes. Furthermore, causal logging limits the rollback of any failed process to the mostrecent checkpoint on stable storage. This reduces the storage overhead and the amount of work atrisk. These advantages come at the expense of a more complex recovery protocol.23

The basic invariant in causal logging is that information about each event that causally precedesthe state of a process is either fully logged or is available locally to the process. Consider the examplein Figure 14(a). While messages m5 and m6 may be lost upon the failure, process P0 at state Xwould have information about the nondeterministic events that precede its state in causal orderaccording to Lamport's happened-before relation [102]. These events consist of the receipts ofmessages m0, m1, m2, m3 and m4. The information about each of these nondeterministic events iseither logged on stable storage or is available locally to process P0. Thus, process P0 will be ableto guide the recovery of P1 and P2 because it has the order in which P1 should replay messages m1and m3 to reach state Y , and the order in which P2 should replay message m2 to reach state Z.Such messages can be replayed from the sender log of P0 or will be regenerated during the recoveryof P1 and P2.
P2

P1

P0

m 1

m 5 m 6

A

C

P2

P1

P0

m 0

m 2 m 3

m 4

m 0 m 1

m 2 m 3

m 4

B

Y

Z

X

(a)

(b)

Maximum
recoverable

state

Figure 14: Causal logging. (a) Maximum recoverable states and (b) antecedence graph of P0 atstate X.Each process maintains information about all the events that have causally a�ected its state.This information acts as an insurance to protect the process from the failures that occur in otherprocesses. It also allows the process to make its state recoverable by simply logging the informationavailable locally. Thus, a process does not need to run a multi-host protocol to commit output.24

4.3.2 Tracking CausalityThe Manetho protocol [51] propagates the causal information in an antecedence graph. The an-tecedence graph provides every process in the system with a complete history of the nondeterministicevents that have causal e�ects on its state. The graph has a node representing each nondetermin-istic event that precedes the state of a process, and the edges correspond to the happened-beforerelation. Figure 14(b) shows the antecedence graph of process P0 of Figure 14(a) at state X. Dur-ing failure-free operation, each process piggybacks on each application message the receipt ordersof its direct and transitive antecedents, ie. its local antecedence graph. The receiver of the messagewill record these receipt orders in its volatile log.In practice, carrying the entire graph on each application message may lead to an unacceptableoverhead. Fortunately, each message carries a graph that is a superset of the one piggybacked onthe previous message sent from the same host. This fact can be used in practical implementationsto reduce the amount of information carried on application messages. Thus, any message betweentwo hosts p and q carries only the di�erence between the graphs piggybacked on the previousmessage exchanged between these two hosts. Furthermore, if p has recently received a messagefrom q, it can exclude the graph portions that have been piggybacked on that message. Processq already contains the information in these excluded portions, and therefore transmitting themserves no purpose. Other optimizations are also possible but depend on the semantics of thecommunication protocol [48]. An implementation of this technique shows that it has very lowoverhead in practice [48].Further reduction of the overhead is possible if the system is willing to tolerate a number offailures that is less than the total number of processes in the system. This observation is thebasis of Family Based Logging protocols (FBL) that are parameterized by the number of toleratedfailures [6, 7]. The basis of these protocols is that to tolerate f process failures, it is su�cient tolog each nondeterministic event in the volatile store of f + 1 di�erent hosts. Sender-based loggingis still used to support message replay during recovery. The event information is piggybacked onapplication messages. However, unlike Manetho, propagation of information about an event stopswhen it has been recorded in f + 1 hosts. For f < n, where n is the number of processes, FBLprotocols do not access stable storage except for checkpointing. Reducing access to stable storagein turn reduces performance overhead and implementation complexity. Applications pay only theoverhead that corresponds to the number of failures they are willing to tolerate. An implementationfor the protocol with f = 1 con�rms that the performance overhead is very small [6]. The Manethoprotocol can be considered a member of FBL protocols corresponding to the case of f = n.4.4 ComparisonVarious rollback-recovery protocols o�er di�erent tradeo�s with respect to performance overhead,latency of output commit, storage overhead, ease of garbage collection, simplicity of recovery,25

Uncoordinated Coordinated Pessimistic Optimistic CausalCheckpointing Checkpointing Logging Logging LoggingPWD Assumed? No No Yes Yes YesOverhead Low Higher Highest Higher HigherOutput Commit Not possible Very slow Fastest Slow FastCheckpoint/process Several 1 1 Several 1Garbage Collection Complex Simple Simple Complex ComplexRecovery Complex Simple Simple Complex ComplexDomino E�ect Possible Not possible Not possible Not possible Not possibleOrphans Possible Possible Not possible Possible Not possibleRollback Extent Unbounded Last Last Some previous Lastcheckpoint checkpoint checkpoint checkpointTable 1: Comparison between di�erent avors of rollback-recovery protocols.freedom from domino e�ect, freedom from orphan processes, and the extent of rollback. Table 1summarizes the comparison between the di�erent variations of rollback-recovery protocols. Unco-ordinated checkpointing generally has the lowest failure-free overhead but su�ers from potentialdomino e�ect. This can be avoided by paying certain degree of performance overhead either to co-ordinate checkpoints or to log messages under the assumption of piecewise determinism. The PWDassumption also has the additional advantages of allowing faster output commits and orphan-freerecovery. Since garbage collection and recovery both involve calculating a recovery line, they canbe performed by simple procedures under coordinated checkpointing and pessimistic logging, bothof which have a predetermined recovery line during failure-free execution. The extent of any po-tential rollback determines the maximum number of checkpoints each process may need to retain.Uncoordinated checkpointing can have unbounded rollbacks, and a process may need to retain upto N checkpoints if the optimal garbage collection algorithm is used [186]. Several checkpoints mayneed to be kept under optimistic logging, depending on the logging progress.5 Implementation Issues5.1 OverviewWhile there is a rich body of research on the algorithmic aspects of rollback-recovery protocols,reports on experimental prototypes or commercial implementations are relatively scarce. The fewexperimental studies available have shown that building rollback-recovery protocols with low failure-free overhead is feasible. These studies also indicate that the main di�culty in implementing theseprotocols lies in the complexity of handling recovery [48]. It is interesting that all commercialimplementations of message logging use pessimistic logging because it simpli�es recovery [29, 74].Several recent studies have also challenged some premises which many rollback-recovery proto-cols rely on. Many of these protocols have been incepted in the 1980's. During that era, processor26

speed and network bandwidth were such that communication overhead was deemed too high, es-pecially when compared to the cost of stable storage access [26]. In such platforms, a protocolthat requires multi-host coordination incurs a large overhead due to the necessary control messagesthat carry out the protocol. A protocol that does not require such communication overhead at theexpense of more stable storage access would perform better in such platforms. Recently, processorspeed and network bandwidth have increased dramatically, while the speed of stable storage accesshas remained relatively the same.3 This change in the equation suggests a fresh look at the premisesof many rollback-recovery protocols. Speci�cally, recent results have shown that [53, 106, 135]:� Stable storage access is now the major source of overhead in checkpointing systems. Commu-nication overhead is much lower in comparison. Such changes favor coordinated checkpointingschemes over message logging or independent checkpointing systems, as they require less ac-cess to stable storage and are simpler to implement.� The case for message logging has become the ability to interact with the outside world, insteadof reducing the overhead [53]. Message logging systems can implement e�cient protocols forcommitting output and logging input that are not possible in checkpoint-only systems.� Recent advances have shown that arbitrary forms of nondeterminism can be supported at avery low overhead in logging systems. Nondeterminism was deemed one of the complexitiesinherent in message logging systems.In the remainder of this section, we address these issues in some detail.5.2 CheckpointingAll available studies have shown that writing the state of a process to stable storage is an importantcontributor to the performance overhead [135]. The simplest way to save the state of a process is tosuspend it, save its address space on stable storage, and then resume it [92, 99, 106, 114, 159, 194].This scheme can be costly for programs with large address spaces if stable storage is implementedusing magnetic disks as it is the custom. Several techniques exist to reduce this overhead.5.2.1 Reducing Checkpointing OverheadConcurrent checkpointing techniques greatly reduce the overhead of saving the state of a pro-cess [109{111]. Concurrent checkpointing does not suspend the execution of the process while thecheckpoint is saved on stable storage. It relies on the memory protection hardware that is com-monly available in modern computer architectures. The address space is protected from further3While semiconductor-based stable storage is becoming more widely available, the size/cost ratio is too lowcompared to disk-based stable storage. It appears that for some time to come, disk-based systems will continue tobe the medium of choice for storing the large �les that are needed in checkpointing and logging systems.27

modi�cation at the start of a checkpoint and the memory pages are saved to disk concurrentlywith the program execution. If the program attempts to modify a page, it will incur a protectionviolation. The checkpointing system copies the page into a separate bu�er from which it is saved onstable storage. The original page is unprotected and the application program is allowed to resume.Adding incremental checkpointing to concurrent checkpointing can further reduce the over-head [50]. Incremental checkpointing avoids rewriting portions of the process states that do notchange between consecutive checkpoints. It can be implemented by using the dirty-bit of the mem-ory protection hardware or by emulating a dirty-bit in software [12]. A public domain packageimplementing these techniques is available [136].Incremental checkpointing can also be extended over several processes. In this technique, thesystem saves the computed parity or some function of the memory pages that are modi�ed acrossseveral processes [137]. This technique is very similar to parity computation in RAID disk systems.The parity pages can be saved in volatile memory of some other processes thereby avoiding the needto access stable storage. The storage overhead of this method is very low, and it can be adjusteddepending on how many failures the system is willing to tolerate [137].5.2.2 System-level versus User-level ImplementationsSupport for checkpointing can be implemented in the kernel [48, 86, 135], or it can be implementedby a library linked with the user program [62, 106, 136, 159, 165, 191]. Kernel-level implementa-tions are more powerful because they can also capture kernel data structures that support thecheckpointed process. However, these implementations are necessarily not portable.Checkpointing can also be implemented in user level. System calls that manipulate memoryprotection such as mprotect of UNIX can emulate concurrent and incremental checkpointing. Thefork system call of UNIX can implement concurrent checkpointing if the operating system imple-ments fork using copy-on-write protection [62]. User-level implementations however cannot accesskernel's data structures that belong to the process such as open �le descriptors and message bu�ers,but these data structures can be emulated at user level [149, 191].5.2.3 Compiler SupportA compiler can be instrumented to generate code that supports checkpointing [108]. A compiledprogram would contain code that decides when and what to checkpoint. The advantage of thistechnique is that the compiler can decide on the variables that must be checkpointed, thereforeavoiding saving unnecessary data. For example, dead variables within a program are not saved ina checkpoint though they have been modi�ed. Furthermore, the compiler may decide the pointsduring program execution where the amount of state to be saved is small.Despite these promising advantages, there are several di�culties with this approach. It isgenerally undecidable to �nd the point in program execution most suitable to take a checkpoint.28

There are, however, several heuristics that can be used. The programmer could provide hints to thecompiler about where checkpoints could be inserted or what data variables should be stored [24,138, 152]. The compiler may also be trained by running the application in an iterative mannerand observing its behavior [108]. The observed behavior could help decide the execution pointswhere it would be appropriate to insert checkpoints. Compiler support could also be simpli�edin languages that support automatic garbage collection [9]. The execution point after each majorgarbage collection provides a convenient place to take a checkpoint at a minimum cost.5.2.4 Coordinated versus Uncoordinated CheckpointingMany checkpointing protocols were incepted at a time where the communication overhead far ex-ceeded the overhead of accessing stable storage [26]. Furthermore, the memory available to run pro-cesses tended to be small. These tradeo�s naturally favored uncoordinated checkpointing schemesover coordinated checkpointing schemes. Current technological trends however have reversed thistradeo�.In modern systems, the overhead of coordinating checkpoints is negligible compared to the over-head of saving the states [50, 125]. Using concurrent and incremental checkpointing, the overheadof either coordinated or uncoordinated checkpointing is essentially the same. Therefore, uncoor-dinated checkpointing is not likely to be an attractive technique in practice given the negligibleperformance gains. These gains do not justify the complexities of �nding a consistent recoveryline after the failure, the susceptibility to the domino e�ect, the high storage overhead of savingmultiple checkpoints of each process, and the overhead of garbage collection.5.3 Communication ProtocolsRollback-recovery complicates the implementation of protocols used for interprocess communica-tions. Some protocols o�er the abstraction of reliable communication channels such as connection-based protocols like TCP [139] or RPC-style communications [27]. Alternatively, other protocolso�er the abstraction of an unreliable datagram service such as UDP [139]. Each type of abstractionrequires additional support to operate properly across failures and recoveries.5.3.1 Location-Independent Identities and RedirectionFor all communication protocols, a rollback-recovery system must mask the actual identity andlocation of a process or a remote port from the application program. This masking is necessary toprevent any application program from acquiring a dependency on the location of a certain process.Such a dependency would make it impossible to restart a process on a di�erent machine after afailure. A solution to this problem is to assign a location-independent, logical identi�er to eachprocess in the system [176]. The system translates the logical identi�er to the actual network29

address of the process in an application-transparent manner. This scheme also allows the systemto appropriately redirect communication to a restarting process after a failure.5.3.2 Reliable Channel ProtocolsIdentity masking and communication redirection after a failure are su�cient for communicationprotocols that o�er the abstraction of an unreliable channel. Protocols that o�er the abstraction ofreliable channels require additional support. These protocols usually generate a timeout upcall tothe application program if the process at the other end of the channel has failed. These timeoutsshould be masked since the failed program will soon restart and resume computation. If suchupcalls are allowed to a�ect the application, then the abstraction of a reliable system is no longerupheld. The application will have to encode the necessary support to communicate with the failedprocess after it recovers.Masking timeouts should also be coupled with the ability of the protocol implementation toreestablish the connection with the restarting process (possibly restarting on a di�erent machine).This support includes the ability to clean up the old connection in an orderly manner, and toestablish a new connection with the restarting host. Furthermore, messages retransmitted as partof the execution replay of the remote host must be identi�ed and if necessary suppressed. Thisrequires the protocol implementation to include a form of sequence number that is only used forthis purpose.Recovering in-transit messages that are lost due to a failure is another problem for reliablecommunication protocols. In TCP/IP communication style, for instance, a message is considereddelivered once an acknowledgment is received from the remote host. The message itself may lingerin the kernel's bu�er for a while before the receiving process consumes it. If this process fails,the in-transit messages must be resent to preserve the semantics of the reliable communicationchannel. Messages must be saved at the sender side for possible retransmission during recovery.This step can be combined in a system that performs sender-based message logging as part of thelog maintenance. In other systems that do not log messages or log messages at the receiver, thecopying of each message at the sender side introduces overhead and complexity. The complexityis due to the need for executing some garbage collection algorithm with other sites to reclaim thevolatile storage.5.4 Message LoggingMessage logging introduces two sources of overhead. First, each message must in general be copiedin the local memory of the process. Second, the volatile log must be ushed on stable storage.The �rst source of overhead may directly a�ect communication throughput and latency. This isespecially true if the copying occurs in the critical path of the interprocess communication protocol.In this respect, sender-based logging is considered more e�cient than receiver-based logging because30

the copying can take place after sending the message over the network. Additionally, the systemmay combine the message logging with the implementation of the communication protocol andshare the message log with the transmission bu�ers. This scheme would avoid the extra copying ofthe message. Logging at the receiver is more expensive because it is in the critical path and no suchsharing between the message logging and the communication protocol logic can be implemented.Another optimization for sender-based logging systems is to use copy-on-write to avoid makingextra-copying. This scheme works well in systems where broadcast messages are implemented usingseveral point-to-point messages. In this case, copy-on-write will allow the system to have one copyfor identical messages and thus reduce the storage and performance overhead of logging. No similaroptimization can be performed in receiver-based systems [53].5.4.1 Message Logging and Coordinated CheckpointingMessage logging has been traditionally presented as a scheme that allows the system to use unco-ordinated checkpointing with no domino e�ect. However, there is nothing that prevents the systemfrom using coordinated checkpointing in a message logging system [53]. Such a scheme has manyadvantages with respect to performance and simplicity. It retains the ability to perform fast outputcommit as in log-based systems. It also retains the simplicity of recovery and garbage collectionthat comes from coordinated checkpointing. Furthermore, it allows a sender-based logging systemto avoid ushing the logs on stable storage, reducing the overhead and complexity of maintaininglogs on stable storage. The combination of coordinated checkpointing and message logging has beenshown to outperform one with uncoordinated checkpointing and message logging [53]. Therefore,the purpose of logging should no longer be the avoidance of taking uncoordinated checkpointingbut the desire for enabling fast output commit.5.5 Stable StorageMagnetic disks have been the medium of choice for implementing stable storage. Although slow,their storage capacity and low cost combination cannot be matched with other alternatives. Animplementation of a stable storage abstraction on top of a conventional �le system may not bethe best choice, however. Such an implementation will not generally give the performance andreliability needed to implement stable storage [48]. The KitLog package o�ers a log abstractionon top of which support for checkpointing and message logging can be implemented. The packageruns in conventional UNIX systems and bypasses the UNIX �le system by accessing the disk in rawmode [146].There have been also several attempts at implementing stable storage using nonvolatile semi-conductor memory [18]. Such implementations do not have the performance problems associatedwith disks. The price and the small storage capacity remain two problems that limit their wideacceptance. 31

5.6 Support for NondeterminismNondeterminism occurs when the application program interacts with the operating system throughsystem calls and upcalls. Log-based systems must track the nondeterminism during failure-freeoperation and replays it with the same e�ect during recovery.5.6.1 System CallsSystem calls in general can be classi�ed into three types. Idempotent system calls are those thatreturn deterministic values whenever executed. Examples include calls that return the user identi�erof the process owner. These calls do not need to be logged. A second class of calls consists of thosethat must be logged during failure-free operation but should not be re-executed during executionreplay. The result from these calls should simply be replayed to the application program. Thesecalls include those that inquire about the environment, such as getting the current time of day.Re-executing these calls during recovery might return a di�erent value that is inconsistent with thepre-failure execution. Therefore, the previous result is simply returned to the application. The lasttype of system calls are those that must be logged during failure-free operation and re-executedduring execution replay. These calls generally modify the environment and therefore they must bere-executed to re-establish the environment changes. Examples include calls that allocate memoryor create processes. Ensuring that these calls return the same values and generate the same e�ectduring reexecution can be very complex [48, 149].5.6.2 Asynchronous signalsDi�erent avors of logging have been suggested with di�erent performance and resilience charac-teristics [7]. These protocols, however, do not support general forms of nondeterminism that arefound in practice. It is ine�cient for example to track the nondeterminism resulting from soft-ware interrupts such as UNIX signals. Such signals must be applied at the same execution pointsduring replay to reproduce the same result. Systems that support this form of nondeterminismsimply take a checkpoint after the occurrence of each signal, which can be very expensive [48].Alternatively, the system may convert these asynchronous signals to synchronous messages suchas in Targon/32 [29], or it may queue the signals until the application polls for them such as inDelta-4 [22, 39]. Both alternatives convert asynchronous event noti�cations into synchronous ones,which may not be suitable or e�cient for many applications. Such solutions also require substantialmodi�cations to the operating system or the application program.Another example of nondeterminism that is di�cult to track is shared memory manipulation inmulti-threaded applications. Reconstructing the same execution during replay requires the sameinterleaving of shared memory accesses by the various threads as in the pre-failure execution.Systems that support this form of nondeterminism supply their own sets of locking primitives, and32

require applications to use them for protecting access to shared memory [62]. The primitives areinstrumented to insert an entry in the log identifying the calling thread and the nature of thesynchronization operation [62]. However, this technique has several problems. It makes sharedmemory access expensive, and may generate a large volume of data in the log. Furthermore, ifthe application does not adhere to the synchronization model (due to a programmer's error, forinstance), execution replay may not be possible.A promising technique for solving this problem is to use instruction counters to e�ciently tracknondeterminism due to asynchronous software interrupts and multi-threading on single-processorsystems. An instruction counter is a register that is decremented upon the execution of eachinstruction. The hardware generates an exception when the register content becomes 0. An In-struction counter can be used in two modes. In one mode, the register is loaded with the numberof instructions to be executed before a breakpoint occurs. After the CPU executes the speci�ednumber of instructions, an exception is generated and propagated to a pre-speci�ed handler. Thismode is useful in setting breakpoints e�ciently, such as during debugging. In the second mode,the instruction counter is loaded with the maximum value it can hold. Execution proceeds untilan event of interest occurs, at which time the content of the counter is sampled, and the numberof instructions executed since the time the counter was set is computed. The use of instructioncounters has been suggested for debugging shared memory parallel programs [36, 122, 148].Instruction counters can be used in rollback-recovery to track the number of instructions thatoccur between asynchronous interrupts. A replay system can use the instruction count to forcethe execution of the same number of instructions between asynchronous interrupts. An instructioncounter can be implemented in hardware, such as in the PA-RISC precision architecture. It alsocan be emulated in software [122]. A recent implementation on a DEC 3000/400 workstation showsthat the overhead of program instrumentation and tracking nondeterminism is less than 6% for avariety of user programs and synthetic benchmarks [158].5.7 Dependency TrackingThere are three forms for implementing dependency tracking. The �rst is the simplest and consistsof tagging the message with an index or a sequence number [86]. Dependency tracking also cantake the form of piggybacking a vector or a graph on top of each message. There are techniques foroptimizing these forms of tracking by exploiting the semantics of the communication system andby piggybacking only incremental changes over application messages. Prototype implementationshave shown that the overhead resulting from tracking is negligible compared to the overhead ofcheckpointing or logging [48].
33

5.8 RecoveryHandling execution restart and replay is a di�cult part of implementing a rollback-recovery sys-tem [48, 104]. Implanting a process in a di�erent environment during recovery can create di�cultiesif its state depends on the pre-failure environment. For example, the process may need to access�les that exist on the local disk of the machine. The simplest solution to this problem is to attemptto restart the program on the same host. If this is not feasible, then the system must insulatethe process from environment-speci�c variables [48]. This can be done for instance by interceptingsystem calls that return environment-speci�c results and replace these results with abstract valuesunder the control of the recovery system [149]. Also, �le access could be made highly available byplacing all �les in network-wide highly available �le servers or by using dual-ported disks. In anycase, the system must reconstruct the state of the process and also the supporting kernel-level datastructures during recovery.6 Related WorkMost existing papers on rollback-recovery either assume all processes are piecewise deterministicor do not take advantage of piecewise determinism at all. In practice, it is important to supportsystems consisting of both deterministic and nondeterministic processes [87, 90]. One challenge isto handle unreplayable nondeterministic events while still preserving the advantages of piecewisedeterminism [41, 184, 190]. Although most rollback-recovery techniques were originally designedfor tolerating hardware failures, they have also been applied to software and protocol error re-covery [169, 184, 190, 193]. Rollback-recovery in shared-memory and distributed shared-memorysystems has also been extensively studied [4, 20, 54, 75, 80{83, 109, 132, 170, 197, 198].This survey has covered mostly rollback-recovery techniques which do not require or take ad-vantage of special linguistic supports. A substantial amount of research e�orts has also focused oncoordinated recovery based on special language constructs such as recovery blocks and conversa-tions [34, 65, 66, 79, 94, 96, 144, 145, 200]. Nett et al. addressed recovery problems in dynamic actionmodels [126{128]. Kim et al. addressed recovery problems in the Programmer-Transparent Coor-dination (PTC) scheme [95, 97, 98]. Orphan elimination problem in nested transaction systems hasalso been studied [69, 70, 113].Theoretical aspects of distributed snapshots also have been studied outside the context of recov-ery [1, 5, 38, 43, 67, 101, 162, 180]. Several fundamental properties regarding consistent global stateshave been derived [13, 16, 120, 131, 184]. Vector timestamps [55, 121, 151, 155] and the context graphused in em Psync [133] bear similarities to the various dependency tracking techniques. Check-pointing and message logging can also be used to facilitate the debugging of parallel and distributedprograms [57, 63, 129, 130]. In the area of distributed discrete-event simulation [59, 124], the TimeWarp optimistic approach, which inspired the seminal work on optimistic message logging [168],34

uses rollbacks to cancel erroneous computations due to the out-of-order arrivals of time-stampedevent messages [59, 60, 85, 118, 141].7 ConclusionsWe have reviewed and compared di�erent approaches to rollback-recovery with respect to a setof properties including the assumption of piecewise determinism, performance overhead, storageoverhead, ease of output commit, ease of garbage collection, ease of recovery, freedom from dominoe�ect, freedom from orphan processes, and the extent of rollback. Uncoordinated checkpointinggenerally has the least constraints and the lowest overhead. But since it su�ers from potentialdomino e�ect, uncoordinated checkpointing often needs to be combined with other techniques tobe useful in practice. For applications involving multiple processes executing in coordinated steps,coordinated checkpointing is often the natural choice to simplify both failure-free and recovery-timeoperations. It can also be combined with log-based recovery protocols to simplify the garbage col-lection task. When desirable, communication-induced checkpointing with index-based coordinationcan be used to coordinate checkpoints in a distributed fashion. For applications that frequently in-teract with the outside world, log-based rollback recovery based on piecewise determinism is often abetter choice because it allows e�cient output commit. The simplicity of pessimistic logging makesit attractive for practical applications which can tolerate a higher failure-free overhead. Causallogging can be employed to reduce the overhead while still preserving the properties of fast outputcommit and orphan-free recovery. Alternatively, optimistic logging provides a tradeo� between theoverhead of logging and the extent of rollback upon a failure. Finally, model-based checkpointingcan be used to mimic piecewise determinism by taking additional checkpoints instead of relying onmessage logging.AcknowledgementThe authors wish to express their sincere thanks to Pi-Yu Chung, Om Damani, W. Kent Fuchs,Yennun Huang, Chandra Kintala, Andy Lowry, James Plank, and Paulo Verissimo for valuablediscussions, encouragement and comments.References[1] A. Acharya and B. R. Badrinath. Recording distributed snapshots based on causal order of messagedelivery. Information Processing Letters, 44(6), December 1992.[2] A. Acharya and B. R. Badrinath. Checkpointing distributed applications on mobile computers. InProc. the Third International Conference on Parallel and Distributed Information Systems, pages 73{80, September 1994. 35

[3] M. Ahamad and L. Lin. Using checkpoints to localize the e�ects of faults in distributed systems. InProc. IEEE Symp. Reliable Distributed Syst., pages 2{11, 1989.[4] R. E. Ahmed, R. C. Frazier, and P. N. Marinos. Cache-aided rollback error recovery (carer) algorithmsfor shared-memory multiprocessor systems. In Proc. IEEE Fault-Tolerant Computing Symp., pages82{88, 1990.[5] M. Ahuja. Repeated global snapshots in asynchronous distributed systems. Technical Report OSU-CISRC-8/89 TR40, Ohio State University, August 1989.[6] L. Alvisi, B. Hoppe, and K. Marzullo. Nonblocking and orphan-free message logging protocols. InProc. IEEE Fault-Tolerant Computing Symp., pages 145{154, 1993.[7] L. Alvisi and K. Marzullo. Message logging: Pessimistic, optimistic, and causal. In Proc. IEEE Int.Conf. Distributed Comput. Syst., pages 229{236, May 1995.[8] L. Alvisi and K. Marzullo. Trade-o�s in implementing causal message logging protocols. In ACMAnnual Symp. on the Priciples of Distributed Computing, pages 58{67, May 1996.[9] A. W. Appel. A runtime system. Technical Report CS-TR-220-89, Department of Computer Science,Princeton University, 1989.[10] A. Arora and M. Gouda. Distributed reset. IEEE Trans. Comput., 43(9):1026{1038, September 1994.[11] O. Babaoglu. Fault-tolerant computing based on Mach. In Proceedings of the Usenix Mach Workshop,pages 186{199, October 1990.[12] O. Babaoglu and W. Joy. Converting a swap-based system to do paging in an architecture lackingpage-reference bits. In Proceedings of the Symposium on Operating Systems Principles, pages 78{86,1981.[13] O. Babaoglu and K. Marzullo. Consistent global states of distributed systems: Fundamental conceptsand mechanisms. In Distributed Systems, Ed. S. Mullender, pages 55{96. Addison-Wesley, 1993.[14] D. F. Bacon. File system measurements and their application to the design of e�cient operationlogging algorithms. Proc. IEEE Symp. Reliable Distributed Syst., pages 21{30, 1991.[15] D. F. Bacon. Transparent recovery in distributed systems. ACM Oper. Syst. Review, pages 91{94,April 1991.[16] R. Baldoni, J. M. Helary, A. Mostefaoui, and M. Raynal. Consistent checkpointing in message passingdistributed systems. Technical Report No. 2564, INRIA, France, June 1995.[17] R. Baldoni, J. M. Helary, A. Mostefaoui, and M. Raynal. On modeling consistent checkpoints and thedomino e�ect in distributed systems. Technical Report No. 2569, INRIA, France, June 1995.[18] J. P. Banâtre, M. Banâtre, and G. Muller. Ensuring data security and integrity with a fast stablestorage. In Proceedings of the fourth Conference on Data Engineering, pages 285{293, February 1988.[19] J. P. Banâtre, M. Banâtre, and G. Muller. Architecture of fault-tolerant multiprocessor workstations.In Workshop on Workstation Operating Systems, pages 20{24, 1989.[20] M. Banatre, A. Ge�aut, P. Joubert, P. Lee, and C. Morin. An architecture for tolerating processorfailures in shared-memory multiprocessors. Technical Report 707, IRISA, Rennes, France, March 1993.[21] G. Barigazzi and L. Strigini. Application-transparent setting of recovery points. In Proc. IEEE Fault-Tolerant Computing Symp., pages 48{55, 1983.[22] P.A. Barrett, A.M. Hilborne, P. Verissimo, L. Rodrigues, P.G. Bond, D.T. Seaton, and N.A. Speirs.The Delta-4 extra performance architecture XPA. In Proceedings of the 20th International Symposiumon Fault-Tolerant Computing, pages 481{488, June 1990.36

[23] J. F. Bartlett. A NonStop Kernel. In Proc. 8th ACM Symp. on Operating Systems Principles, pages22{29, 1981.[24] M. Beck, J. S. Plank, and G. Kingsley. Compiler-assisted checkpointing. Technical Report CS-94-269,University of Tennessee at Knoxville, December 1994.[25] B. Bhargava and S. R. Lian. Independent checkpointing and concurrent rollback for recovery - Anoptimistic approach. In Proc. IEEE Symp. Reliable Distributed Syst., pages 3{12, 1988.[26] B. Bhargava, S.-R. Lian, and P.-J. Leu. Experimental evaluation of concurrent checkpointing androllback recovery algorithms. In Proc. Int. Conf. Data Eng., pages 182{189, March 1990.[27] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions on ComputerSystems, 2(1):39{59, February 1984.[28] A. Borg, J. Baumbach, and S. Glazer. A message system supporting fault-tolerance. In Proc. 9th ACMSymp. on Operating Systems Principles, pages 90{99, October 1983.[29] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. Fault tolerance under UNIX. ACMTrans. Comput. Syst., 7(1):1{24, February 1989.[30] N. S. Bowen and D. K. Pradhan. Survey of checkpoint and rollbak recovery techniques. TechnicalReport TR-91-CSE-17, Dept. of Electrical and Computer Engineering, University of Massachusetts,Amherst, July 1991.[31] N. S. Bowen and D. K. Pradhan. Virtual checkpoints: Architecture and performance. IEEE Trans.Comput., 41(5):516{525, May 1992.[32] N. S. Bowen and D. K. Pradhan. Processor- and memory-based checkpoint and rollback recovery.IEEE Computer Magazine, pages 22{31, February 1993.[33] D. Briatico, A. Ciu�oletti, and L. Simoncini. A distributed domino-e�ect free recovery algorithm. InProc. IEEE 4th Symp. on Reliability in Distributed Software and Database Systems, pages 207{215,1984.[34] R. H. Campbell and B. Randell. Error recovery in asynchronous systems. IEEE Trans. Software Eng.,SE-12(8):811{826, 1986.[35] J. Cao and K. C. Wang. An abstract model of rollback recovery control in distributed systems. ACMOper. Syst. Review, pages 62{76, October 1992.[36] T. Cargill and B. Locanthi. Cheap hardware support for software debugging and pro�ling. Proceedingsof the 2nd Symposium on Architectural Support for Programming Languages and Operating Systems,pages 82{83, October 1987.[37] J. Carter, A. Cox, S. Dwarkadas, E. N. Elnozahy, D. B. Johnson, P. Keleher, S. Rodrigues, W. Yu, andW. Zwaenepoel. Network multicomputing using recoverable distributed shared memory. In Proceedingsof COMPCON'93, pages 515{523, 1993.[38] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributedsystems. ACM Trans. Comput. Syst., 3(1):63{75, February 1985.[39] M. Ch�er�eque, D. Powell, P. Reynier, J-L. Richier, and J. Voiron. Active replication in Delta-4. InProceedings of the 22nd International Symposium on Fault-Tolerant Computing, pages 28{37, July1992.[40] G.-M. Chiu and C.-R. Young. E�cient rollback-recovery technique in distributed computing systems.IEEE Trans. Parallel and Distributed Syst., 7(6):565{577, June 1996.[41] E. Cohen, Y. M. Wang, and G. Suri. When piecewise determinism is almost true. In Proc. Paci�cRim International Symposium on Fault-Tolerant Systems, pages 66{71, December 1995.37

[42] F. Cristian and F. Jahanian. A timestamp-based checkpointing protocol for long-lived distributedcomputations. In Proc. IEEE Symp. Reliable Distributed Syst., pages 12{20, 1991.[43] C. Critchlow and K. Taylor. The inhibition spectrum and the achievement of causal consistency.Technical Report TR 90-1101, Cornell University, February 1990.[44] D. Cummings and L. Alkalaj. Checkpoint/rollback in a distributed system using coarse-graineddataow. In Proceedings of the Twenty Fourth Annual International Symposium on Fault-TolerantComputing, FTCS-24, pages 424{433, June 1994.[45] O. P. Damani and V. K. Garg. How to recover e�ciently and asynchronously when optimism fails. InProc. IEEE Int. Conf. Distributed Comput. Syst., pages 108{115, 1996.[46] G. Deconinck, J. Vounckx, R. Cuyvers, and R. Lauwereins. Survey of checkpointing and rollbacktechniques. Technical Report O3.1.8 and O3.1.12, ESAT-ACCA Laboratory, Katholieke UniversiteitLeuven, Belgium, June 1993.[47] G. Deconinck, J. Vounckx, R. Lauwereins, and J. A. Peperstraete. Survey of backward error recoverytechniques for multicomputers based on checkpointing and rollback. In Proc. IASTED Int. Conf. onModelling and Simulation, pages 262{265, May 1993.[48] E. N. Elnozahy. Manetho: Fault Tolerance in Distributed Systems Using Rollback-Recovery and ProcessReplication. PhD thesis, Department of Computer Science, Rice University, October 1993. Alsoavailable as Technical Report TR93-212.[49] E. N. Elnozahy. Fault Tolerance for Clusters of Workstations, M. Banatre and P. Lee (Editors),chapter 8. Springer Verlag, August 1994.[50] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The performance of consistent checkpointing. InProc. IEEE Symp. Reliable Distributed Syst., pages 39{47, October 1992.[51] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transparent rollback-recovery with low overhead,limited rollback and fast output commit. IEEE Trans. Comput., 41(5):526{531, May 1992.[52] E. N. Elnozahy and W. Zwaenepoel. Replicated distributed processes in manetho. In Proceedings ofthe Twenty Second Annual International Symposium on Fault-Tolerant Computing, FTCS-22, pages18{27, July 1992.[53] E. N. Elnozahy and W. Zwaenepoel. On the use and implementation of message logging. In Proc.IEEE Fault-Tolerant Computing Symp., pages 298{307, 1994.[54] M. J. Feeley, J. S. Chase, V. Narasayya, and H. M. Levy. Integrating coherency and recovery indistributed systems. In Proc. Symp. on Operating System Design and Implementation, 1994.[55] C. J. Fidge. Timestamps in message-passing systems that preserve the partial ordering. In Proc. 11thAustralian Computer Science Conference, pages 55{66, February 1988.[56] M. J. Fischer, N. D. Gri�eth, and N. A. Lynch. Global states of a distributed system. IEEE Trans.Software Eng., SE-8(3):198{202, May 1982.[57] J. Fowler and W. Zwaenepoel. Causal distributed breakpoints. In Proc. IEEE Int. Conf. DistributedComput. Syst., pages 134{141, 1990.[58] T. M. Frazier and Y. Tamir. Application-transparent error-recovery techniques for multicomputers.In The Fourth Conferences on Hypercubes, Concurrent Computers, and Applications, pages 103{108,March 1989.[59] R. M. Fujimoto. Parallel discrete event simulation. Commun. ACM, 33(10):30{53, October 1990.[60] A. Gafni. Rollback mechanisms for optimistic distributed simulation systems. In Proc. SCS Multicon-ference on Distributed Simulation, pages 61{67, July 1988.38

[61] V. K. Garg. Some optimal algorithms for decomposed partially ordered sets. Information ProcessingLetters, 44:39{43, November 1992.[62] A. P. Goldberg, A. Gopal, K. Li, R. E. Strom, and D. F. Bacon. Transparent recovery of Machapplications. In First USENIX Mach Workshop, October 1990.[63] A. P. Goldberg, A. Gopal, A. Lowry, and R. E. Strom. Restoring consistent global states of distributedcomputations. In Proc. ACM/ONR Workshop on Parallel and Distributed Debugging, May 1991.[64] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. San Mateo, CA: MorganKaufmann Publishers, 1993.[65] S. T. Gregory and J. C. Knight. A new linguistic approach to backward error recovery. In Proc. IEEEFault-Tolerant Computing Symp., pages 404{409, 1985.[66] S. T. Gregory and J. C. Knight. On the provision of backward error recovery in production program-ming languages. In Proc. IEEE Fault-Tolerant Computing Symp., pages 506{511, 1989.[67] B. Groselj. Bounded and minimum global snapshots. IEEE Parallel and Distributed Technology, 1(4),November 1993.[68] V. Hadzilacos. An algorithm for minimizing roll back cost. In Proc. ACM Symp. on Principles ofDatabase Systems, pages 93{97, 1982.[69] M. Herlihy, N. Lynch, M. Merritt, andW. Weihl. On the correctness of orphan management algorithms.J. of ACM, 39(4):881{930, October 1992.[70] M. Herlihy and M. McKendry. Timestamp-based orphan elimination. IEEE Trans. Software Eng.,15(7):825{831, July 1989.[71] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666{677,August 1978.[72] Y. Huang and C. Kintala. Software implemented fault tolerance: Technologies and experience. InProc. IEEE Fault-Tolerant Computing Symp., pages 2{9, June 1993.[73] Y. Huang and C. Kintala. A software fault tolerance platform. In Practical Reusable Software, Ed. B.Krishnamurthy, pages 223{245. John Wiley & Sons, 1995.[74] Y. Huang and Y. M. Wang. Why optimistic message logging has not been used in telecommunicationssystems. In Proc. IEEE Fault-Tolerant Computing Symp., pages 459{463, June 1995.[75] G. G. Richard III and M. Singhal. Using logging and asynchronous checkpointing to implementrecoverable distributed shared memory. In Proc. IEEE Symp. Reliable Distributed Syst., pages 58{67,1993.[76] S. Israel and D. Morris. A non-intrusive checkpointing protocol. In The Phoenix Conference onCommunications and Computers, pages 413{421, 1989.[77] P. Jalote. Fault tolerant processes. Distributed Computing, 3:187{195, 1989.[78] P. Jalote. Fault Tolerance in Distributed Systems. Englewood Cli�s, New Jersey:Prentice-Hall, 1994.[79] P. Jalote and R. H. Campbell. Atomic actions for fault-tolerance using CSP. IEEE Trans. SoftwareEng., SE-12(1):59{68, 1986.[80] G. Janakiraman and Y. Tamir. Coordinated checkpointing-rollback error recovery for distributedshared memory multicomputers. In Proc. IEEE Symp. Reliable Distributed Syst., pages 42{51, October1994.[81] B. Janssens and W. K. Fuchs. Experimental evaluation of multiprocessor cache-based error recovery.In Proc. Int. Conf. Parallel Processing, pages I{505{I{508, 1991.39

[82] B. Janssens and W. K. Fuchs. Relaxing consistency in recoverable distributed shared memory. In Proc.IEEE Fault-Tolerant Computing Symp., pages 155{163, June 1993.[83] B. Janssens and W. K. Fuchs. Reducing interprocessor dependence in recoverable distributed sharedmemory. In Proc. IEEE Symp. Reliable Distributed Syst., pages 34{41, October 1994.[84] D. P. Jasper. A discussion of checkpoint restart. Software Age, October 1969.[85] D. R. Je�erson. Virtual time. Trans. on Programming Languages and Systems, 7(3):404{425, July1985.[86] D. B. Johnson. Distributed system fault tolerance using message logging and checkpointing. PhD thesis,Department of Computer Science, Rice University, December 1989.[87] D. B. Johnson. E�cient transparent optimistic rollback recovery for distributed application programs.In Proc. IEEE Symp. Reliable Distributed Syst., pages 86{95, October 1993.[88] D. B. Johnson and W. Zwaenepoel. Sender-based message logging. In Proc. IEEE Fault-TolerantComputing Symp., pages 14{19, 1987.[89] D. B. Johnson and W. Zwaenepoel. Recovery in distributed systems using optimistic message loggingand checkpointing. J. Algorithms, 11:462{491, 1990.[90] D. B. Johnson and W. Zwaenepoel. Transparent optimistic rollback recovery. ACM Oper. Syst. Review,pages 99{102, April 1991.[91] T. T-Y. Juang and S. Venkatesan. Crash recovery with little overhead. In Proc. IEEE Int. Conf.Distributed Comput. Syst., pages 454{461, 1991.[92] M. F. Kaashoek, R. Michiels, H. E. Bal, and A. S. Tanenbaum. Transparent fault-tolerance in parallelOrca programs. Technical Report IR-258, Vrije Universiteit, Amsterdam, October 1991.[93] J. L. Kim and T. Park. An e�cient protocol for checkpointing recovery in distributed systems. IEEETrans. Parallel and Distributed Syst., 4(8):955{960, August 1993.[94] K. H. Kim. Approaches to mechanization of the conversation scheme based on monitors. IEEE Trans.Software Eng., SE-8(3):189{197, May 1982.[95] K. H. Kim. Programmer-transparent coordination of recovering concurrent processes: Philosophy andrules for e�cient implementation. IEEE Trans. Software Eng., 14(6):810{821, June 1988.[96] K. H. Kim. The distributed recovery block scheme. In Software Fault Tolerance, Ed. M. R. Lyu, pages189{209. John Wiley & Sons, 1995.[97] K. H. Kim and J. H. You. A highly decentralized implementation model for the Programmer-Transparent Coordination (PTC) scheme for cooperative recovery. In Proc. IEEE Fault-TolerantComputing Symp., pages 282{289, 1990.[98] K. H. Kim, J. H. You, and A. Abouelnaga. A scheme for coordinated execution of independentlydesigned recoverable distributed processes. In Proc. IEEE Fault-Tolerant Computing Symp., pages130{135, 1986.[99] B. A. Kingsbury and J. T. Kline. Job and process recovery in a UNIX-based operating system. InUsenix Association, Winter Conference Proceedings, 1989, pages 355{364, January 1989.[100] R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed systems. IEEE Trans.Software Eng., SE-13(1):23{31, January 1987.[101] T. H. Lai and T. H. Yang. On distributed snapshots. Information Processing Letters, 25:153{158, May1987. 40

[102] L. Lamport. Time, clocks and the ordering of events in a distributed system. Commun. ACM,21(7):558{565, July 1978.[103] B. W. Lampson and H. E. Sturgis. Crash recovery in a distributed data storage system. Technicalreport, Xerox Palo Alto Research Center, April 1979.[104] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs with Instant Replay. IEEETransactions on Computers, C-36(4):471{482, April 1987.[105] P. A. Lee and T. Anderson. Fault Tolerance Principles and Practice. Wien: Springer-Verlag, 1990.[106] J. Leon, A. L. Fisher, and P. Steenkiste. Fail-safe PVM: A portable package for distributed program-ming with transparent recovery. Technical Report CMU-CS-93-124, Department of Computer Science,Carnegie Mellon University, February 1993.[107] H. V. Leong and D. Agrawal. Using message semantics to reduce rollback in optimistic message loggingrecovery schemes. In Proc. IEEE Int. Conf. Distributed Comput. Syst., pages 227{234, 1994.[108] C. C. Li and W. K. Fuchs. CATCH: Compiler-assisted techniques for checkpointing. In Proceedings ofthe 20th International Symposium on Fault-Tolerant Computing, pages 74{81, 1990.[109] K. Li, J. F. Naughton, and J. S. Plank. Real-time, concurrent checkpointing for parallel programs. InProc. 2nd ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming, pages 79{88,March 1990.[110] K. Li, J. F. Naughton, and J. S. Plank. Checkpointing multicomputer applications. In Proc. IEEESymp. Reliable Distributed Syst., pages 2{11, 1991.[111] K. Li, J. F. Naughton, and J. S. Plank. An e�cient checkpointing method for multicomputers withwormhole routing. Int. J. of Parallel Program., 20(3):159{180, June 1992.[112] L. Lin and M. Ahamad. Checkpointing and rollback-recovery in distributed object based systems. InProc. IEEE Fault-Tolerant Computing Symp., pages 97{104, 1990.[113] B. Liskov, R. Scheier, E. Walker, and W. Weihl. Orphan detection. In Proc. IEEE Fault-TolerantComputing Symp., pages 2{7, 1987.[114] M. Litzkow and M. Solomon. Supporting checkpointing and process migration outside the unix kernel.In Usenix Winter 1992 Technical Conference, pages 283{290, January 1992.[115] J. Long, W. K. Fuchs, and J. A. Abraham. Compiler-assisted static checkpoint insertion. In Proceedingsof the Twenty Second Annual International Symposium on Fault-Tolerant Computing, FTCS-22, pages58{65, July 1992.[116] A. Lowry, J. R. Russell, and A. P. Goldberg. Optimistic failure recovery for very large networks. InProc. IEEE Symp. Reliable Distributed Syst., pages 66{75, 1991.[117] A. Lowry and R. E. Strom. Some problems with optimistic recovery and their solutions. Personalcommunications, December 1992.[118] V. Madisetti, J. Walrand, and D. Messerschmitt. WOLF: A rollback algorithm for optimistic dis-tributed simulation systems. In Simulation Conference Proceedings, pages 296{305, December 1988.[119] D. Manivannan and M. Singhal. A low-overhead recovery technique using quasi-synchronous check-pointing. In Proc. IEEE Int. Conf. Distributed Comput. Syst., pages 100{107, 1996.[120] D. Manivannan and M. Singhal. Quasi-synchronous checkpointing: Models, characterization, andclassi�cation. Tech. Rep. No. OSU-CISRC-5/96-TR33, Dept. of Computer and Information Science,Ohio State University, 1996. 41

[121] F. Mattern. Virtual time and global states of distributed systems. In Proc. Workshop on Parallel andDistributed Algorithms, pages 215{226, October 1988.[122] J. M. Mellor-Crummey and T. J. LeBlanc. A software instruction counter. Proceedings of the 3rdSymposium on Architectural Support for Programming Languages and Operating Systems, pages 78{86, April 1989.[123] P. M. Merlin and B. Randell. State restoration in distributed systems. In Proc. IEEE Fault-TolerantComputing Symp., pages 129{134, June 1978.[124] J. Misra. Distributed discrete-event simulation. ACM Computing Surveys, 18(1):39{65, March 1986.[125] G. Muller, M. Hue, and N. Peyrouz. Performance of consistent checkpointing in a modular operatingsystem: Results of the FTM experiment. Lecture Notes in Computer Science: Dependable Computing-EDCC-1, pages 491{508, October 1994.[126] E. Nett. The recovery problem in distributed systems. In Proc. Workshop on the Future Trends ofDistributed Computing Systems in the 1990's, pages 357{365, 1988.[127] E. Nett, R. Kroger, and J. Kaiser. Implementing a general error recovery mechanism in a distributedoperating system. In Proc. IEEE Fault-Tolerant Computing Symp., pages 124{129, 1986.[128] E. Nett and B. Weiler. Nested dynamic actions - How to solve the fault containment problem in acooperative action model. In Proc. IEEE Symp. Reliable Distributed Syst., pages 106{115, 1994.[129] R. H. B. Netzer and B. P. Miller. Optimal tracing and replay for debugging message-passing parallelprograms. In Proc. Supercomputing '92, pages 502{511, November 1992.[130] R. H. B. Netzer and J. Xu. Adaptive message logging for incremental program replay. IEEE Paralleland Distributed Technology, 1(4):32{39, November 1993.[131] R. H. B. Netzer and J. Xu. Necessary and su�cient conditions for consistent global snapshots. IEEETrans. Parallel and Distributed Syst., 6(2):165{169, February 1995.[132] N. Neves, M. Castro, and P. Guedes. A checkpointing protocol for an entry consistent shared memorysystem. In Proc. 13th ACM Symp. on Principles of Distr. Computing, 1994.[133] L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using context information ininterprocess communication. ACM Trans. Comput. Syst., 7(3):217{246, August 1989.[134] S. L. Peterson and P. Kearns. Rollback based on vector time. In Proc. IEEE Symp. Reliable DistributedSyst., pages 68{77, October 1993.[135] J. S. Plank. E�cient Checkpointing on MIMD Architectures. PhD thesis, Department of ComputerScience, Princeton University, June 1993.[136] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under Unix. InProc. Usenix Technical Conference, pages 213{224, January 1995.[137] J. S. Plank and K. Li. Faster checkpointing with n + 1 parity. In Proceedings of the Twenty FourthAnnual International Symposium on Fault-Tolerant Computing, FTCS-24, pages 288{297, June 1994.[138] J.S. Plank, M. Beck, and G. Kingsley. Compiler-assisted memory exclusion for fast checkpointing.IEEE Technical Committee on Operating Systems and Application Environments, 7(4):10{14, Winter1995.[139] J. B. Postel. Internet Protocol. Internet Request For Comments RFC 791, September 1981.[140] M. L. Powell and D. L. Presotto. Publishing: A reliable broadcast communication mechanism. InProc. 9th ACM Symp. Oper. Syst. Principles, pages 100{109, October 1983.42

[141] A. Prakash and R. Subramanian. Filter: An algorithm for reducing cascaded rollbacks in optimisticdistributed simulation. In Proc. the 24th Annual Simulation Symposium, 1991 Simulation Multicon-ference, pages 123{132, April 1991.[142] P. Ramanathan and K. G. Shin. Checkpointing and rollback recovery in a distributed system usingcommon time base. In Proc. IEEE Symp. Reliable Distributed Syst., pages 13{21, 1988.[143] P. Ramanathan and K. G. Shin. Use of common time base for checkpointing and rollback recovery ina distributed system. IEEE Trans. Software Eng., 19(6):571{583, June 1993.[144] B. Randell. System structure for software fault tolerance. IEEE Trans. Software Eng., SE-1(2):220{232,June 1975.[145] B. Randell and J. Xu. The evolution of the recovery block concept. In Software Fault Tolerance, Ed.M. R. Lyu, pages 1{21. John Wiley & Sons, 1995.[146] M. Ru�n. Kitlog: A generic logging service. In Proceedings of the 11th Symposium on ReliableDistributed Systems, pages 139{148, October 1992.[147] D. L. Russell. State restoration in systems of communicating processes. IEEE Trans. Software Eng.,SE-6(2):183{194, March 1980.[148] M. Russinovich, B. Cogswell, and Z. Segall. Replay for concurrent nondeterministic shared memoryapplications. To appear in Proc. SIGPLAN '96.[149] M. Russinovich, Z. Segall, and D. P. Siewiorek. Application transparent fault management in fault-tolerant mach. In Proc. IEEE Fault-Tolerant Computing Symp., pages 10{19, June 1993.[150] R. D. Schlichting and F. B. Schneider. Fail-stop processors: An approach to designing fault-tolerantcomputing systems. ACM Trans. Comput. Syst., 1(3):222{238, August 1983.[151] R. Schwarz and F. Mattern. Detecting causal relationships in distributed computations: in search ofthe holy grail. Distributed Computing, 7:149{174, 1994.[152] E. Seligman and A. Beguelin. High-level fault tolerance in distributed programs. Technical ReportCMU-CS-94-223, Department of Computer Science, Carnegie Mellon University, December 1994.[153] D. D. Sharma and D. K. Pradhan. An e�cient coordinated checkpointing scheme for multicomputers.In Proc. IEEE Workshop on Fault-Tolerant Parallel and Distributed Systems, June 1994.[154] L. M. Silva and J. G. Silva. Global checkpointing for distributed programs. In Proc. IEEE Symp.Reliable Distributed Syst., pages 155{162, October 1992.[155] M. Singhal and A. Kshemkalyani. An e�cient implementation of vector clocks. Information ProcessingLetters, 43:47{52, 1992.[156] M. Singhal and N. G. Shivaratri. Advanced Concepts in Operating Systems. McGraw-Hill, 1994.[157] A. P. Sistla and J. L. Welch. E�cient distributed recovery using message logging. In Proc. 8th ACMSymposium on Principles of Distributed Computing, pages 223{238, August 1989.[158] J. H. Slye and E. N. Elnozahy. Supporting nondeterministic execution in fault-tolerant systems. InProceedings of the 26th International Symposium on Fault-Tolerant Computing, pages 250{259, June1996.[159] J. M. Smith and J. Ioannidis. Implementing remote fork() with checkpoint/restart. IEEE TechnicalCommittee on Operating Systems Newsletter, pages 12{16, February 1989.[160] S. W. Smith, D. B. Johnson, and J. D. Tygar. Completely asynchronous optimistic recovery withminimal rollbacks. In Proc. IEEE Fault-Tolerant Computing Symp., pages 361{370, 1995.43

[161] S.W. Smith and D.B. Johnson. Minimizing timestamp size for completely asynchronous optimisticrecovery with minimal rollback. In Proceedings of the 15th Symposium on Reliable Distributed Systems,October 1996.[162] M. Spezialetti and P. Kearns. E�cient distributed snapshots. In Proc. IEEE Int. Conf. DistributedComput. Syst., pages 382{388, 1986.[163] M. Staknis. Sheaved memory: Architectural support for state saving and restoration in paged sys-tems. In Proceedings of the 3rd Symposium on Architectural Support' for Programming Languages andOperating Systems, pages 96{102, April 1989.[164] G. Stellner. Consistent checkpoints of PVM applications. In First European PVM User Group Meeting,1994.[165] G. Stellner. CoCheck: Checkpointing and process migration for MPI. In 10th International ParallelProcessing Symposium, April 1996.[166] R. E. Strom, , S. A. Yemini, and D. F. Bacon. A recoverable object store. In Proc. Hawaii InternationalConference on System Sciences, pages II{215{II{221, January 1988.[167] R. E. Strom, D. F. Bacon, and S. A. Yemini. Volatile logging in n-fault-tolerant distributed systems.In Proc. IEEE Fault-Tolerant Computing Symp., pages 44{49, 1988.[168] R. E. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM Trans. Comput. Syst.,3(3):204{226, August 1985.[169] G. Suri, Y. Huang, Y. M. Wang, W. K. Fuchs, and C. Kintala. An implementation and performancemeasurement of the progressive retry technique. In Proc. IEEE International Computer Performanceand Dependability Symposium, pages 41{48, April 1995.[170] G. Suri, B. Janssens, and W. K. Fuchs. Reduced overhead logging for rollback recovery in distributedshared memory. In Proc. IEEE Fault-Tolerant Computing Symp., pages 279{288, June 1995.[171] V.-O. Tam and M. Hsu. Fast recovery in distributed shared virtual memory systems. In The 10thInternational Conference On Distributed Computing Systems, pages 38{45, May 1990.[172] Y. Tamir and T. M. Frazier. Application-transparent process-level error recovery for multicomputers.In Hawaii International Conferences on System Sciences-22, pages 296{305, January 1989.[173] Y. Tamir and T. M. Frazier. Error-recovery in multicomputers using asynchronous coordinated check-pointing. Technical Report CSD-910066, University of California, Los Angeles, September 1991.[174] Y. Tamir and C. H. Sequin. Error recovery in multicomputers using global checkpoints. In Proc. Int.Conf. Parallel Processing, pages 32{41, 1984.[175] D. J. Taylor and M. L. Wright. Backward error recovery in a UNIX environment. In Proceedings ofthe 16th International Symposium on Fault-Tolerant Computing, pages 118{123, 1986.[176] M. Theimer, K. Lantz, and D. R. Cheriton. Preemptable remote execution facilities in the V-system. InProceedings of the 10th SIGOPS Symposium on Operating Systems Principles, pages 2{12, December1985.[177] Z. Tong, R. Y. Kain, and W. T. Tsai. Rollback recovery in distributed systems using loosely synchro-nized clocks. IEEE Trans. Parallel and Distributed Syst., 3(2):246{251, March 1992.[178] K. Tsuruoka, A. Kaneko, and Y. Nishihara. Dynamic recovery schemes for distributed processes. InProc. IEEE 2nd Symp. on Reliability in Distributed Software and Database Systems, pages 124{130,1981.[179] N. H. Vaidya. Consistent logical checkpointing. Technical Report # 94-051, Dept. of Computer Science,Texas A&M University, July 1994. 44

[180] S. Venkatesan. Message-optimal incremental snapshots. In Proc. IEEE Int. Conf. Distributed Comput.Syst., pages 53{60, 1989.[181] K. Venkatesh, T. Radhakrishnan, and H. F. Li. Optimal checkpointing and local recording for domino-free rollback recovery. Information Processing Letters, 25:295{303, July 1987.[182] Y. M. Wang. Consistent global checkpoints that contain a given set of local checkpoints. To appearin IEEE Trans. on Computers.[183] Y. M. Wang. Space Reclamation for Uncoordinated Checkpointing in Message-Passing Systems.PhD thesis, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, August 1993.[184] Y. M. Wang. The maximum and minimum consistent global checkpoints and their applications. InProc. IEEE Symp. Reliable Distributed Syst., pages 86{95, September 1995.[185] Y. M. Wang, P. Y. Chung, and W. K. Fuchs. Tight upper bound on useful distributed system check-points. Tech. Rep. CRHC-95-16, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1995.[186] Y. M. Wang, P. Y. Chung, I. J. Lin, and W. K. Fuchs. Checkpoint space reclamation for uncoordinatedcheckpointing in message-passing systems. IEEE Trans. Parallel and Distributed Syst., 6(5):546{554,May 1995.[187] Y. M. Wang and W. K. Fuchs. Optimistic message logging for independent checkpointing in message-passing systems. In Proc. IEEE Symp. Reliable Distributed Syst., pages 147{154, October 1992.[188] Y. M. Wang and W. K. Fuchs. Scheduling message processing for reducing rollback propagation. InProc. IEEE Fault-Tolerant Computing Symp., pages 204{211, July 1992.[189] Y. M. Wang and W. K. Fuchs. Lazy checkpoint coordination for bounding rollback propagation. InProc. IEEE Symp. Reliable Distributed Syst., pages 78{85, October 1993.[190] Y. M. Wang, Y. Huang, and W. K. Fuchs. Progressive retry for software error recovery in distributedsystems. In Proc. IEEE Fault-Tolerant Computing Symp., pages 138{144, June 1993.[191] Y. M. Wang, Y. Huang, K. P. Vo, P. Y. Chung, and C. Kintala. Checkpointing and its applications.In Proc. IEEE Fault-Tolerant Computing Symp., pages 22{31, June 1995.[192] Y. M. Wang, A. Lowry, and W. K. Fuchs. Consistent global checkpoints based on direct dependencytracking. Information Processing Letters, 50(4):223{230, May 1994.[193] Y. M. Wang, Michael Merritt, and A. B. Romanovsky. Guaranteed deadlock recovery: Deadlockresolution with rollback propagation. In Proc. Paci�c Rim International Symposium on Fault-TolerantSystems, pages 92{97, December 1995.[194] Z. W�ojcik and B. E. W�ojcik. Fault tolerant distributed computing using atomic send receive check-points. In Proceedings of the 2nd IEEE Symposium on Parallel and Distributed Processing, pages215{222, 1990.[195] W. G. Wood. A decentralized recovery control protocol. In Proc. IEEE Fault-Tolerant ComputingSymp., pages 159{164, 1981.[196] W. G. Wood. Recovery control of communicating processes in a distributed system. In ReliableComputer Systems, Ed. S. K. Shrivastava, pages 448{473. Berlin, Germany: Springer-Verlag, 1985.[197] K. L. Wu and W. K. Fuchs. Recoverable distributed shared virtual memory. IEEE Trans. Comput.,39(4):460{469, April 1990.[198] K. L. Wu, W. K. Fuchs, and J. H. Patel. Error recovery in shared memory multiprocessors usingprivate caches. IEEE Trans. Parallel and Distributed Syst., 1(2):231{240, April 1990.45

[199] J. Xu and R. H. B. Netzer. Adaptive independent checkpointing for reducing rollback propagation. InProc. 5th IEEE Symp. on Parallel and Distributed Processing, pages 754{761, December 1993.[200] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud, and Z. Wu. Fault tolerance in concurrentobject-oriented software through coordinated error recovery. In Proc. IEEE Fault-Tolerant ComputingSymp., pages 499{509, 1995.

46

