
A Truly Concurrent Semantics for the K Framework
Based on Graph Transformations

Traian Florin S, erbănut,ă and Grigore Ros, u

University “Alexandru Ioan Cuza” Ias, i
University of Illinois at Urbana-Champaign

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 1 / 18

K

The K Framework
http://k-framework.org

What is K?
A tool-supported rewrite-based framework for defining programming
language design and semantics.

Why?

Programming languages must have formal semantics!
And analysis/verification tools should build on them

Otherwise they are adhoc and likely wrong

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 2 / 18

http://k-framework.org

K

The K Framework
Defining programming languages

Java 1.4 (Chen, CAV’06)

Scheme (Hills&Meredith, SCHEME’07)

Verilog (Meredith&Katelman, MEMOCODE’10)

C (Chucky Ellison, POPL’12)

In progress: Haskell, LLVM, Javascript, . . .

Paradigmatic teaching languages (functional, object-oriented,
agents-based)

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 3 / 18

K

The K Framework
Tool support

Efficient and interactive execution (interpreters)

State-space exploration (search and model-checking)

Deductive program verification (in progress)

Leveraging the generic tool support given by the Maude rewrite engine

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 4 / 18

K

The K Framework
Rewriting based

Running configurations represented as first order terms

Rules specify allowed transitions between configurations

Semantics as a transition system

!"#"$%&'#($)$*'+,-#.,/)0&$#-(1)#/2)3,2$+%(1$(45/67)
89(5$/")#/2)5/"$-#(.:$)$*$(;.,/)05/"$-'-$"$-&7)

<
)(=6>pgm?)

@1#")2,$&)"1$)A)B,,+)CD$-E)

<)

<)

F$2;(.:$)'-,6-#3):$-5G(#.,/)05/)'-,6-$&&7)Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 5 / 18

K rules

K configurations and rules

Read rule * N
V

k

N 7→ V

mem

Running configuration
* 3 y · · ·

k

* 3 y · · ·

k

2 7→ 5 3 7→ 1 4 7→ 6

mem

T

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 6 / 18

K rules

K configurations and rules

Read rule * N
V

k

N 7→ V

mem

Running configuration
* 3 y · · ·

k

* 3 y · · ·

k

2 7→ 5 3 7→ 1 4 7→ 6

mem

T

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 6 / 18

K rules

K configurations and rules
More concurrency with K rules?

Read rule * N
V

k

N 7→ V

mem

Running configuration
* 3 y · · ·

k

* 3 y · · ·

k

2 7→ 5 3 7→ 1 4 7→ 6

mem

T

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 6 / 18

K rules

K configurations and rules
More concurrency with K rules!

Read rule * N
V

k

N 7→ V

mem

Running configuration
1y · · ·

k

1y · · ·

k

2 7→ 5 3 7→ 1 4 7→ 6

mem

T

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 6 / 18

K rules

Semantics Requirements

Conservative extension of term rewriting

While allowing as much concurrency as possible

(1) h(x
g(x, x)

, y, 1
0
) (2) h(x, 0

1
, y) (3) a

b
(4) f(x)

x

h(f(a), 0, 1)
(1)+(2)+(3)+(4)
≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡� h(g(b , b), 1, 0)

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 7 / 18

Graph Transformations

K rules resemble graph transformation rules
The DPO approach

Graph transformation rule (DPO)

K ∪ L ←↩ K ↪→ K ∪ R

K rule
* N
V

k

N 7→ V

mem

* N

k

N 7→ V

mem

V

k

N 7→ V

mem k

N 7→ V

mem
? _oo

?�

OO

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 8 / 18

Graph Transformations

Concurrency and serializability in graph transformations

ρ1 : L1 ←↩ K1 ↪→ R1 ρ2 : L2 ←↩ K2 ↪→ R2

ρ1
∐
ρ2

L1
∐

L2 K1
∐

K2 R1
∐

R2

G C H

m

Theorem (Parallelism and serializability [Ehrig, Kreowski, 1976])

If G
m,ρ1
==⇒ H1, and G

m,ρ2
==⇒ H2 are parallel independent,i.e., only overlapping

on the read-only part, then (1) G
m,ρ1

∐
ρ2

=====⇒ H (concurrency); and

(2) H1
ρ2
=⇒ H and H2

ρ1
=⇒ H (serializability).

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 9 / 18

Graph Transformations

Formally capturing the concurrency of K

Given that . . .
K rules resemble graph transformation rules

Graph rewriting captures concurrency with sharing of context

Capture the concurrency intended for K through graph rewriting

Term graph rewriting approaches seem a promising start
Are sound and complete w.r.t. term rewriting
Are special forms of graph transformations

However, term graph rewriting have 0-sharing (like term rewriting)

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 10 / 18

K graph rewriting

Representing terms as graphs

Term

h(X , 0, 1)

where X is a variable, h and X are of sort s, and 0 and 1 are integers

Jungle (hypergraph) representation Graph representation
s

h

X :s int int

0 1

s

h

X :s

1

int

2

0

int

3

1
[Habel, Kreowski, Plump, 1987]

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 11 / 18

K graph rewriting

K graph rules: a new kind of term graph rewriting rules

K rule ρ

h(x
g(x, x)

, y, 1
0
)

Direct representation as a rewrite rule K2R(ρ)

h(x, y, 1)→ h(g(x, x), y, 0)

Corresponding graph rewrite rule K2G(ρ)

s

h

x:s
1

int

1

3
⊃

s

h

x:s int

1

⊂

s

h

s
1

g
int

3

0

x:s

int

11 2

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 12 / 18

K graph rewriting

Desired level of parallelism

for concurrency, both with sharing and without sharing of context. Therefore,
K term-graphs are close to the bipartite graph representation of jungles (they
actually coincide for ground terms). The difference is that the K term-graph
representation allows certain variables (the anonymous and the pattern-hole
variables) to be omitted from the graph. By reducing the number of nodes
that need to be shared (i.e., by not forcing these variable nodes to be shared
in the interface graph), this “partiality” allows terms at those positions to be
concurrently rewritten by other rules.

L K R L K R

s

h

x:s
1

int

3

1

s

h

x:s int

1

s

h

s

1

g

int

3

0
x:s int

1

1 2

s

h

int
2

0

s

h

int

0

s

h

int
2

1

int

0

l r l r

(1): h(x

g(x, x)
, y, 1

0
) (2): h(x, 0

1
, y)

L K R L K R

s

a

s s

b

s

f

x:s
1

s

x:s

x:s

l r l r

(3): a
b

(4): f(x)
x

G C H

s

h

s

1

f

int
2

0

int

3

1
s
1

a

s

h

s

f

int

s

int

0

int

1

s

h

s

1

g

int
2

1

int

3

0

int

0

int

1

s

b

1 2

l
∗

r
∗

h(f(a), 0, 1)
(1)+(2)+(3)+(4)
≡≡≡≡≡≡≡≡≡≡≡≡≡� h(g(b, b), 1, 0)

Fig. 2. Graph representations for the K rules (1)–(4) from the running example and
their concurrent application.

for concurrency, both with sharing and without sharing of context. Therefore,
K term-graphs are close to the bipartite graph representation of jungles (they
actually coincide for ground terms). The difference is that the K term-graph
representation allows certain variables (the anonymous and the pattern-hole
variables) to be omitted from the graph. By reducing the number of nodes
that need to be shared (i.e., by not forcing these variable nodes to be shared
in the interface graph), this “partiality” allows terms at those positions to be
concurrently rewritten by other rules.

L K R L K R

s

h

x:s
1

int

3

1

s

h

x:s int

1

s

h

s

1

g

int

3

0
x:s int

1

1 2

s

h

int
2

0

s

h

int

0

s

h

int
2

1

int

0

l r l r

(1): h(x

g(x, x)
, y, 1

0
) (2): h(x, 0

1
, y)

L K R L K R

s

a

s s

b

s

f

x:s
1

s

x:s

x:s

l r l r

(3): a
b

(4): f(x)
x

G C H

s

h

s

1

f

int
2

0

int

3

1
s
1

a

s

h

s

f

int

s

int

0

int

1

s

h

s

1

g

int
2

1

int

3

0

int

0

int

1

s

b

1 2

l
∗

r
∗

h(f(a), 0, 1)
(1)+(2)+(3)+(4)
≡≡≡≡≡≡≡≡≡≡≡≡≡� h(g(b, b), 1, 0)

Fig. 2. Graph representations for the K rules (1)–(4) from the running example and
their concurrent application.

for concurrency, both with sharing and without sharing of context. Therefore,
K term-graphs are close to the bipartite graph representation of jungles (they
actually coincide for ground terms). The difference is that the K term-graph
representation allows certain variables (the anonymous and the pattern-hole
variables) to be omitted from the graph. By reducing the number of nodes
that need to be shared (i.e., by not forcing these variable nodes to be shared
in the interface graph), this “partiality” allows terms at those positions to be
concurrently rewritten by other rules.

L K R L K R

s

h

x:s
1

int

3

1

s

h

x:s int

1

s

h

s

1

g

int

3

0
x:s int

1

1 2

s

h

int
2

0

s

h

int

0

s

h

int
2

1

int

0

l r l r

(1): h(x

g(x, x)
, y, 1

0
) (2): h(x, 0

1
, y)

L K R L K R

s

a

s s

b

s

f

x:s
1

s

x:s

x:s

l r l r

(3): a
b

(4): f(x)
x

G C H

s

h

s

1

f

int
2

0

int

3

1
s
1

a

s

h

s

f

int

s

int

0

int

1

s

h

s

1

g

int
2

1

int

3

0

int

0

int

1

s

b

1 2

l
∗

r
∗

h(f(a), 0, 1)
(1)+(2)+(3)+(4)
≡≡≡≡≡≡≡≡≡≡≡≡≡� h(g(b, b), 1, 0)

Fig. 2. Graph representations for the K rules (1)–(4) from the running example and
their concurrent application.

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 13 / 18

K graph rewriting

K rewriting

Definition
Let S be a K rewrite system and t be a term. Then

t
S
≡≡≡≡≡�
K

t ′ iff K2G(t)
K2G(S)
====⇒

Graph
H such that term(H) = t ′

Theorem (Correctness w.r.t. rewriting)

Soundness: If t
ρ
≡≡≡≡≡�
K

t ′ then t
K2R(ρ)
====⇒

Rew
t ′.

Completeness: If t
K2R(ρ)
====⇒

Rew
t ′ then t

ρ
≡≡≡≡≡�
K

t ′.

Serializability: If t
ρ1+···+ρn
≡≡≡≡≡≡≡≡≡≡≡≡�
K

t ′ then t
ρ1
∗

≡≡≡≡≡�
K
· · ·

ρn
∗

≡≡≡≡≡�
K

t ′ (and thus, t
∗

==⇒
Rew

t ′).

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 14 / 18

K graph rewriting

Instead of proof

K term graphs are stable under concurrent applications of K rules
If their instances only overlap on read-only part
If they do not introduce cycles

Serializability based on graph rewriting serializability
[Ehrig, Kreowski, 1976]

K graph rewriting conservatively extends Jungle rewriting
For terms without subterm sharing

Jungle rewriting is sound and complete w.r.t. rewriting
[Holland, Plump, 1991; Plump 1999]

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 15 / 18

K graph rewriting

Parallel K graph rewriting can introduce cycles

graph rewrite rule to graph G, rootG must be preserved in the context C, because
K contains all nodes of L. Therefore, let us define the top of the obtained
graph H as being rootH = r

∗(rootG). Note that rootH might not be equal to
rootG, because rootG could be identified with a variable node by a collapsing
rule; moreover, rootH might not be the only element of ROOTH , because of
the potential “junk” left by the application of the rule. Nevertheless, the term
termH(rootH) would be the one to which termG(rootG) was rewritten.

To show that KGraphΣ admits similar constructions for (composed) K
graph-rewrite rules as Graph, that is, that the graphs described above are in fact
term-graphs, we need to strengthen the constraints on the matching morphisms.

Indeed, without further constraints, applying K graph rules on term-graphs
can produce cyclic graphs. Consider K rules f(g(a

x

), x) and f(y, h(b
y

)) together

with the term to rewrite f(g(a), h(b)). Upon formalizing terms as term-graphs
and K rules as K graph rewrite rules, the result of applying the composed K
graph rewrite rule on the graph representing f(g(a), h(b)) is the graph H in
Fig. 3, which has a cycle and thus it is not a term-graph.

L K R L K R

s

f

s

1

g

x:s
2

s
1

a

s

f

x:s
2

s

1

g

s

a

s

f

x:s
2

s

1

g

s

a

1

s

f

s

2

h

y:s
1

s
1

b

s

f

y:s
1

s

2

h

s

b

s

f

y:s
1

s

2

h

s

b

1

l r l r

(1): f(g(a
x

), x) (2): f(y, h(b
y

))

G C H

s

f

s

1

g

s

2

h

s
1

a

s
1

b

s

f

m(y):s

1

g

m(x):s

2

h

s

b

s

a

s

f

s

1

g

s

2

h

s

b

s

a

1
1

l
∗

r
∗

f(g(a), h(b))
(1)+(2)
====⇒ infinite term f(g(h(g(h(. . .)))), h(g(h(g(. . .))))

Fig. 3. Parallel K graph rewriting can introduce cycles.

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 16 / 18

K graph rewriting

Subterm sharing can jeopardize soundness

Theorem 3 allows us to define K rewriting as follows:

Definition 4. Let t be a Σ-term and ρ1, · · · , ρn be K rules (not necessarily dis-

tinct). Then t
ρ1+···+ρn
≡≡≡≡≡≡≡≡� t

� iff there is a term-graph H s.t. G
K2G(ρ1)+···+K2G(ρn)
===============⇒

KGraphΣ

H and termH(rootH) = t
�, where G is the tree term-graph representing t. We

say that t ≡� t
� iff there is a (composed) K rule ρ s.t. t

ρ
≡� t

�.

We can give a straightforward definition for what it means for a K rule to

match a term: one K rule ρ : (∀X) k[L ⇒ R] matches a term t at the position

given by the �-context C, yielding substitution σ, iff its corresponding rewrite

rule K2R(ρ) : (∀X)L(k) → R(k) matches t at the position given by C, yielding

σ, that is, iff t = C[σ(L(k))]. This conforms to the intuition that, when applied

sequentially, K rules behave exactly as their corresponding rewrite rules.

L K R G C H

s

f

s

1

h

x:s
2

s
1

a

s

f

s

1

h

x:s
2

s

a

s

f

s

1

h

x:s
2

s
1

b

s

a

s

f

s

h

s
1

a

1 2

s

f

x:s

h

s

a

1 2

s

f

s

h

s
1

b

s

a

1 2

l r

(1): f(h(a
b

), x)

l
∗

r
∗

f(h(a), h(a))
(1)
≡� f(h(b), h(b))

(unsound rewriting)

Fig. 4. Subterm sharing might lead to unsound K graph rewriting.

However, it turns out that, although preserving the term-graph structure

(under cycle-freeness assumptions), K rewriting on graphs might not be sound

w.r.t. term rewriting in the presence of subterm sharing. Consider the example

in Fig. 4. We want to apply rule f(h(a

b

), x), corresponding to the regular rewrite

rule f(h(a), x) → f(h(b), x), to the term f(h(a), h(a)). If we would represent

f(h(a), h(a)) as a tree, then the K graph rewriting step would be sound, leading

to a graph depicting f(h(b), h(a)); however, if we decide to collapse the tree

representing h(a) then we obtain f(h(b), h(b)), as depicted in Fig. 4 which cannot

be obtained through regular rewriting. The reason for this unsound rewriting

is that part of the read-only pattern of the rule is shared. To overcome this,

we will restrict the read-only pattern of the rule to only match against a tree

in the graph to be rewritten. We say that a match m : L → G of a K graph

rewrite rule ρ : (L
l←− K

r−→ R) is safe if m(K�rootL) is a tree in G, that is, if

indegree
G
(mV (v)) = 1 for any v ∈ VK�rootL \ {rootL}. Note that, if G is a tree

then all matching morphisms on G are safe.

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 17 / 18

K graph rewriting

Conclusions

Results: A new formalism of term-graph rewriting

Sound and complete w.r.t. term rewriting

Capturing the intended concurrency of K rewriting

Future work
Investigate the cycle condition
Special graph representations for lists and multisets

And re-prove the correctness for this representation

Tools which take advantage of this new semantics?

Traian Florin S, erbănut,ă and Grigore Ros, u A Truly Concurrent Semantics for K 18 / 18

	K
	K rules
	Graph Transformations
	K graph rewriting

