A Truly Concurrent Semantics for the \mathbbm{K} Framework Based on Graph Transformations

Traian Florin Şerbănuță and Grigore Roșu

University "Alexandru Ioan Cuza" Iași University of Illinois at Urbana-Champaign

The \mathbb{K} Framework

http://k-framework.org

What is K?

A tool-supported rewrite-based framework for defining programming language design and semantics.

 \mathbb{K}

Why?

- Programming languages must have formal semantics!
- And analysis/verification tools should build on them
 - Otherwise they are adhoc and likely wrong

The ${\mathbb K}\xspace$ Framework

Defining programming languages

- Java 1.4 (Chen, CAV'06)
- Scheme (Hills&Meredith, SCHEME'07)
- Verilog (Meredith&Katelman, MEMOCODE'10)
- C (Chucky Ellison, POPĽ12)
- In progress: Haskell, LLVM, Javascript, ...
- Paradigmatic teaching languages (functional, object-oriented, agents-based)

The ${\mathbb K}\xspace$ Framework

Tool support

- Efficient and interactive execution (interpreters)
- State-space exploration (search and model-checking)
- Deductive program verification (in progress)

Leveraging the generic tool support given by the Maude rewrite engine

The ${\mathbb K}\xspace$ Framework

Rewriting based

- Running configurations represented as first order terms
- Rules specify allowed transitions between configurations

 \mathbb{K}

Semantics as a transition system

More concurrency with \mathbb{K} rules?

More concurrency with \mathbb{K} rules!

Semantics Requirements

- Conservative extension of term rewriting
- While allowing as much concurrency as possible

$$(1) h(\underbrace{x}_{g(x,x)}, y, \underbrace{1}_{0}) \qquad (2) h(x, \underbrace{0}_{y}, y) \qquad (3) \underbrace{a}_{b} \qquad (4) \underbrace{f(x)}_{x}$$
$$h(f(a), 0, 1) \xrightarrow{(1)+(2)+(3)+(4)} h(g(b, b), 1, 0)$$

Graph Transformations

${\ensuremath{\mathbb K}}$ rules resemble graph transformation rules

The DPO approach

Graph transformation rule (DPO)

Concurrency and serializability in graph transformations

Theorem (Parallelism and serializability [Ehrig, Kreowski, 1976])

If $G \xrightarrow{m,\rho_1} H_1$, and $G \xrightarrow{m,\rho_2} H_2$ are parallel independent, i.e., only overlapping on the read-only part, then (1) $G \xrightarrow{m,\rho_1 \coprod \rho_2} H$ (concurrency); and (2) $H_1 \xrightarrow{\rho_2} H$ and $H_2 \xrightarrow{\rho_1} H$ (serializability).

Formally capturing the concurrency of $\ensuremath{\mathbb{K}}$

Given that ...

- \mathbb{K} rules resemble graph transformation rules
- Graph rewriting captures concurrency with sharing of context

Capture the concurrency intended for $\ensuremath{\mathbb{K}}$ through graph rewriting

- Term graph rewriting approaches seem a promising start
 - Are sound and complete w.r.t. term rewriting
 - Are special forms of graph transformations
- However, term graph rewriting have 0-sharing (like term rewriting)

Representing terms as graphs

Term

h(X, 0, 1)

where X is a variable, h and X are of sort s, and 0 and 1 are integers

${\mathbb K}$ graph rules: a new kind of term graph rewriting rules

 $\mathbb K$ rule ho

$$h(\frac{x}{g(x,x)}, y, \frac{1}{0})$$

Direct representation as a rewrite rule $K2R(\rho)$

$$h(x, y, 1) \rightarrow h(g(x, x), y, 0)$$

Corresponding graph rewrite rule $K2G(\rho)$

Desired level of parallelism

Traian Florin Şerbănuță and Grigore Roșu

${\mathbb K}$ rewriting

Definition

Let S be a K rewrite system and *t* be a term. Then

$$t \underset{\mathbb{K}}{\stackrel{\mathbb{S}}{\Longrightarrow}} t' \quad \text{iff} \quad K2G(t) \underset{Graph}{\stackrel{K2G(\mathbb{S})}{\longrightarrow}} H \text{ such that } \text{term}(H) = t'$$

Theorem (Correctness w.r.t. rewriting)

Soundness: If
$$t \stackrel{\rho}{\Longrightarrow} t'$$
 then $t \stackrel{K2R(\rho)}{Rew} t'$.
Completeness: If $t \stackrel{K2R(\rho)}{Rew} t'$ then $t \stackrel{\rho}{\Longrightarrow} t'$.
Serializability: If $t \stackrel{\rho_1 + \dots + \rho_n}{\Longrightarrow} t'$ then $t \stackrel{\rho_1^*}{\Longrightarrow} \dots \stackrel{\rho_n^*}{\Longrightarrow} t'$ (and thus, $t \stackrel{*}{\Longrightarrow} t'$).

Instead of proof

- $\bullet~\mathbb{K}$ term graphs are stable under concurrent applications of \mathbb{K} rules
 - If their instances only overlap on read-only part
 - If they do not introduce cycles
- Serializability based on graph rewriting serializability [Ehrig, Kreowski, 1976]
- K graph rewriting conservatively extends Jungle rewriting
 - For terms without subterm sharing
- Jungle rewriting is sound and complete w.r.t. rewriting [Holland, Plump, 1991; Plump 1999]

𝔣 graph rewriting

Parallel K graph rewriting can introduce cycles

Traian Florin Şerbănuță and Grigore Roșu

Subterm sharing can jeopardize soundness

Conclusions

Results: A new formalism of term-graph rewriting

- Sound and complete w.r.t. term rewriting
- $\bullet\,$ Capturing the intended concurrency of $\mathbb K$ rewriting

Future work

- Investigate the cycle condition
- Special graph representations for lists and multisets
 - And re-prove the correctness for this representation
- Tools which take advantage of this new semantics?