
Advances in Memory Management
for Windows
October 12, 2007

AbstractAbstractAbstractAbstract
This paper provides information about enhancements in memory management for
Windows Vista® and Windows Server® 2008. It describes the changes that
Microsoft has implemented internally in the operating system and provides
guidelines for application developers, driver writers, and hardware vendors to take
advantage of these advances.

Readers should be familiar with the basics of Windows memory management as
described in Windows Internals by Mark Russinovich and David Solomon.

This information applies for the following operating systems:
Windows Server 2008
Windows Vista

The current version of this paper is maintained on the Web at:
http://www.microsoft.com/whdc/system/cec/MemMgt.mspx

Feedback:Feedback:Feedback:Feedback: Please tell us whether this paper is useful to you. Give us your
comments at:

http://connect.microsoft.com/Survey/Survey.aspx?SurveyID=4925&SiteID=221

References and resources discussed here are listed at the end of this paper.

ContentsContentsContentsContents
Introduction.. 4
About the Memory Manager.. 4
Virtual Address Space...5

Dynamic Allocation of Kernel Virtual Address Space...5
Details for x86 Architectures...6
Details for 64-bit Architectures...7

Kernel-Mode Stack Jumping in x86 Architectures.. 7
Use of Excess Pool Memory..8

Security: Address Space Layout Randomization..9
Effect of ASLR on Image Load Addresses... 9
Benefits of ASLR.. 11
How to Create Dynamically Based Images..11

I/O Bandwidth..11
Microsoft SuperFetch...12
Page-File Writes... 12
Coordination of Memory Manager and Cache Manager...13
Prefetch-Style Clustering..14
Large File Management..15
Hibernate and Standby..16

Advanced Video Model...16

http://www.microsoft.com/whdc/system/cec/MemMgt.mspx
http://connect.microsoft.com/Survey/Survey.aspx?SurveyID=4925&SiteID=221

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 2222

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

NUMA Support..17
Resource Allocation...17
Default Node and Affinity..18
Interrupt Affinity...19
NUMA-Aware System Functions for Applications...19
NUMA-Aware System Functions for Drivers..19
Paging...20

Scalability...20
Efficiency and Parallelism...20
Page-Frame Number and PFN Database.. 20
Large Pages...21
Cache-Aligned Pool Allocation..21
Virtual Machines... 22
Load Balancing... 22
Additional Optimizations... 23

System Integrity..23
Diagnosis of Hardware Errors... 23
Code Integrity and Driver Signing...24
Data Preservation during Bug Checks.. 24

What You Should Do...24
For Hardware Manufacturers...24
For Driver Developers... 24
For Application Developers..25
For System Administrators...25

Resources..25

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 3333

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

DisclaimerDisclaimerDisclaimerDisclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the
software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the
issues discussed as of the date of publication. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot
guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights
under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in this document. Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this document does not give you any license to these patents,
trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail
addresses, logos, people, places and events depicted herein are fictitious, and no association with any
real company, organization, product, domain name, email address, logo, person, place or event is
intended or should be inferred.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, MSDN, SuperFetch, Visual Studio, Windows, Windows Server, and Windows Vista are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 4444

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

IntroductionIntroductionIntroductionIntroduction
Microsoft has implemented major enhancements in memory management for
Windows Vista® and Windows Server® 2008. These changes add features and
improve performance in the following areas:
• More efficient use of virtual address (VA) space.
• Stronger security.
• Better usage of I/O bandwidth.
• Faster hibernate/standby and resume.
• Support for the Windows Vista advanced video model.
• Support for nonuniform memory access (NUMA) architectures.
• Better scalability for server hardware and applications.
• Greater system integrity.

Many of the memory management changes are transparent to applications and
drivers, so existing code runs without modification. To benefit from some of the
changes, however, developers should modify or relink their applications as
described in this paper.

AboutAboutAboutAbout thethethethe MemoryMemoryMemoryMemory ManagerManagerManagerManager
The memory manager handles the allocation and management of physical and
virtual memory for the operating system. The following are the most important
services that it provides:
• Managing key system resources, such as the paged and nonpaged memory

pools and system cache.
• Mapping the VA space into physical memory.
• Paging.
• Protecting the address space of processes from each other and from the

operating system itself.

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 5555

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

The memory manager works with the I/O manager and the cache manager to
ensure that processes can quickly access required data, as Figure 1 shows.

Cached I /O
Fast I /O

F ile System

Memory Manager

Cache Manager

Storage Drivers

D is k

Uncached I /O

I/O Manager

I/O Requests

FigureFigureFigureFigure 1.1.1.1. MemoryMemoryMemoryMemory Manager,Manager,Manager,Manager, I/OI/OI/OI/O Manager,Manager,Manager,Manager, andandandand CacheCacheCacheCache ManagerManagerManagerManager

As Figure 1 shows, the file system receives I/O requests from applications and calls
the I/O manager or cache manager to handle them. The I/O manager handles the
interactions among devices and applications. Both the I/O manager and
applications call the memory manager to map files on behalf of drivers and to
allocate memory for internal uses. The memory manager handles page faults as
required for any subsequent access to the mapped files. The cache manager
provides an interface between the file system and the memory manager for both
fast I/O and cached I/O. The cache manager allocates part of the kernel VA space
to map views of files based on cached I/O access patterns.

VirtualVirtualVirtualVirtual AddressAddressAddressAddress SpaceSpaceSpaceSpace
Window Vista implements significant changes to use VA space more efficiently,
simplify administration, and improve scalability for greater numbers of processors
and larger memory configurations. These changes largely eliminate differences
based on registry size, configuration, and stock keeping unit (SKU). The VA space
changes include:
• Dynamic allocation of kernel virtual address space
• Kernel-mode stack jumping in x86 architectures
• Use of excess pool memory

DynamicDynamicDynamicDynamic AllocationAllocationAllocationAllocation ofofofof KernelKernelKernelKernel VirtualVirtualVirtualVirtual AddressAddressAddressAddress SpaceSpaceSpaceSpace
In Windows Vista and later Windows releases, kernel VA space is dynamically
allocated. The sizes and locations of important system resources—including the
paged and nonpaged memory pools—are no longer fixed, but instead are

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 6666

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

dynamically adjusted according to operational requirements. As a result, system
tuning is automatic. Administrators are not typically required to manually reconfigure
systems to prevent resource imbalances.

Figure 2 shows the effect of the changes in kernel VA space allocation.

User address space

System PTEs

Kernel and executive
H A L

Process page tables

Nonpaged pool

System cache

User address space

System cache
Nonpaged pool

Process page tables
Kernel and executive

H A L
System PTEs

Previous Windows Versions Windows Vista and later

Kernel address space

FigureFigureFigureFigure 2.2.2.2. KernelKernelKernelKernel VirtualVirtualVirtualVirtual AddressAddressAddressAddress SpaceSpaceSpaceSpace

As Figure 2 shows, in earlier Windows releases, the kernel VA space was allocated
statically. Resources were allocated at fixed sizes and locations. Static allocation
imposed artificial limits on the sizes of the memory pools, system page tables, and
other system resources. The sizes of some resources (such as the memory pools)
were set by registry keys or by the SKU.

In Windows Vista and later Windows releases, kernel VA space is allocated
dynamically, similar to the user address space. Kernel VA space is limited only by
the amount of virtual memory that is available on the architecture. The sizes and
locations of individual resources can change according to current system
requirements. Thus, system resources no longer reside at fixed locations in the VA
space. Windows Vista ignores the values of registry keys that earlier Windows
versions used at boot time to determine resource sizes. As a result of dynamic
allocation, all resources are available to any requestor.

Features such as special pool and Driver Verifier can be enabled without reboot
because the system can dynamically allocate the VA space that they require
instead of preallocating it at boot time. In Windows Vista and later Windows
releases, such features do not require any memory when they are not in use. Thus,
features are "free" if not used, whereas in earlier Windows versions, kernel VA
space was allocated at boot time if such features were enabled—even if they were
not being used.

DetailsDetailsDetailsDetails forforforfor x86x86x86x86 ArchitecturesArchitecturesArchitecturesArchitectures
In 32-bit Windows, the full kernel VA space is shared by all resources that the
system is using. Individual resources have no preset size limits, except for
nonpaged pool, which is limited to 75 percent of physical memory. A 32-bit system
that is booted with the standard configuration has a full 2 gigabytes (GBs) of kernel
VA space for the resources to share. An administrator can use the bcdeditbcdeditbcdeditbcdedit
command to increase the amount of user VA space, thus causing an equivalent
reduction in the amount of kernel VA space.

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 7777

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

Because system resource allocation is now determined dynamically instead of at
boot time, 32-bit systems that are booted with 3 GB of user VA space and physical
address extension (PAE) can now use a full 64 GB of memory. Earlier 32-bit
Windows versions imposed a limit of 16 GB of memory when booted with 3 GB of
user VA space and PAE.

By using a kernel-mode debugger, developers and administrators can obtain
information about the kernel address space usage in x86 architectures. The !vm!vm!vm!vm
kernel-mode debugger extension with the flag value 0x21 displays information
about kernel VA space usage without process-specific information. This command
can be helpful in inspecting fragmentation of the address space, which can have a
greater impact on 32-bit systems than on 64-bit systems because 32-bit systems
have significantly less kernel VA space.

In rare circumstances in 32-bit architectures, severe fragmentation can cause
exhaustion of the kernel VA space. The 32-bit versions of Windows Vista SP1 and
Windows Server 2008 support a set of registry keys with which administrators can
limit resource sizes in such systems. These keys are ignored in 64-bit systems. For
more information, see “Memory Management Registry Keys” on MSDN®.

DetailsDetailsDetailsDetails forforforfor 64-bit64-bit64-bit64-bit ArchitecturesArchitecturesArchitecturesArchitectures
In 64-bit Windows, 128 GB is available for each resource (except for nonpaged pool)
along with a 1terabyte (TB) system cache, independent of the amount of physical
memory in the machine. Nonpaged pool is limited to 75 percent of physical memory
in Windows Server 2008 and 40 percent in Windows Vista and earlier Windows
releases.

As an example, consider a 64-bit system with 512 megabytes (MBs) of RAM. In
Windows XP, the paged pool in such a system is relatively small, maybe 1 GB. In a
system with 1 TB of RAM, however, the paged pool would be much larger—up to
128 GB. In Windows Vista, the paged pool is 128 GB in both the 512MB and 1TB
systems, regardless of the physical memory size. Administrators are no longer
required to reconfigure the system or change registry settings to run an application
that uses a large amount of paged pool.

Kernel-ModeKernel-ModeKernel-ModeKernel-Mode StackStackStackStack JumpingJumpingJumpingJumping inininin x86x86x86x86 ArchitecturesArchitecturesArchitecturesArchitectures
Windows Vista further increases the availability of kernel VA space in x86
architectures by more efficiently using space for kernel-mode stacks in recursive
calls into the kernel. When a thread executes a Windows API system call and thus
transitions into the 32-bit kernel, the Windows Vista memory manager provides
kernel-mode stack space by generating a new 16-kilobyte (KB) stack that is chained
to the first stack. When the thread unwinds from the system call, the memory
manager unchains and deletes the stack. This feature, called "kernel-mode stack
jumping," reduces the amount of VA space that the thread requires and thus
lessens the size of the thread’s memory footprint. Kernel-mode stack jumping
results in more efficient memory use by individual Terminal Server clients and
therefore typically enables two to four times more clients to run on each machine.

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 8888

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

Figure 3 shows how Windows Vista differs from earlier Windows versions in the use
of kernel-mode stack space in x86 architectures.

16 Kb kernel -mode stack

Additional 16 Kb stack

16 Kb kernel -mode stack

Additional 16 Kb stack

Previous Windows Versions Windows Vista and later

Unwind when nested
callback is complete .

Recursive call
into kernel

Replacement
6 4 Kb stack for

lifetime of thread

FigureFigureFigureFigure 3.3.3.3. Kernel-ModeKernel-ModeKernel-ModeKernel-Mode StackStackStackStack JumpingJumpingJumpingJumping inininin 32-bit32-bit32-bit32-bit WindowsWindowsWindowsWindows VistaVistaVistaVista

In earlier Windows versions, a thread that executes a system call receives an
expanded, 64KB virtual stack (although only 12 KB, with a 4KB guard page, is
usable for each system call). The thread retains this stack until it terminates,
regardless of whether it continues to use the stack space. For such threads, the
additional space is not used when the thread is not running kernel-mode code.

In 32-bit versions of Windows Vista, a thread receives an additional 16KB stack
each time Win32k.sys issues a callback that results in a transition to the kernel.
When each nested system callback is complete, the memory manager deletes the
associated stack.

Drivers that require additional kernel-mode stack space can take advantage of this
feature by using the KeExpandKernelStackAndCalloutKeExpandKernelStackAndCalloutKeExpandKernelStackAndCalloutKeExpandKernelStackAndCallout function. This function
enables a driver to specify the amount of stack space—up to the value defined in
Ntddk.h as MAXIMUM_EXPANSION_SIZE—with which the system calls a
particular callback function. If the current stack does not have enough space, the
system allocates one or more additional stacks, as required, and deletes them
when the specified driver callback returns. KeExpandKernelStackAndCalloutKeExpandKernelStackAndCalloutKeExpandKernelStackAndCalloutKeExpandKernelStackAndCallout is
supported in Windows Server 2003 for 64-bit architectures and in Windows Vista for
all architectures.

UseUseUseUse ofofofof ExcessExcessExcessExcess PoolPoolPoolPool MemoryMemoryMemoryMemory
When a kernel-mode component allocates more than a page of memory, the
memory manager now uses the pool memory between the end of that allocation
and the next page boundary to satisfy other memory requests.

Drivers must not access memory beyond the end of any allocation. Driver Verifier
has checked for this error for many years, so existing drivers that have been
properly tested should not encounter any problems. Driver writers should
nevertheless be aware of the change. A driver that uses memory beyond the end of
its allocation can corrupt the contents of memory that is allocated to another
component—or even to itself.

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 9999

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

Figure 4 shows how the Windows Vista allocation of pool memory differs from that
of earlier Windows releases.

Driver allocates N b yte s

Allocated to other
requestors

Driver allocates N b yte s

U nused

Page boundary

Page boundary

Page boundary

0xN

Previous Windows Versions Windows Vista and later

FigureFigureFigureFigure 4.4.4.4. ExcessExcessExcessExcess PoolPoolPoolPool AllocationAllocationAllocationAllocation

In Figure 4, a driver allocates N bytes, where N is more than a page but less than a
multiple of the page size. In earlier Windows releases, the memory beyond that
allocation to the next page boundary is wasted. In Windows Vista and later releases,
however, the memory manager can allocate such memory to other requestors.

Security:Security:Security:Security: AddressAddressAddressAddress SpaceSpaceSpaceSpace LayoutLayoutLayoutLayout RandomizationRandomizationRandomizationRandomization
To improve system security and limit the damage that a buffer overrun exploit could
cause, Windows Vista loads DLLs and executable images at a different address
each time they are loaded. This technique, called address space layout
randomization (ASLR), makes it much more difficult for rogue applications to predict
the location of certain system APIs.

Developers must opt in to ASLR support for DLLs and executables by using the
/DYNAMICBASEDYNAMICBASEDYNAMICBASEDYNAMICBASE linker option. This option sets a flag in the image header that
indicates that the image can be loaded at a randomly chosen address. Independent
software vendors (ISVs) are strongly encouraged to opt in to ASLR for their
products.

EffectEffectEffectEffect ofofofof ASLRASLRASLRASLR onononon ImageImageImageImage LoadLoadLoadLoad AddressesAddressesAddressesAddresses
In Windows Vista, the memory manager at startup randomly selects an image-load
bias from one of 256 64KB-aligned addresses at the top of the user-mode address
space. The image-load bias is the starting address of a region into which the
memory manager loads DLLs that support ASLR—that is, DLLs that are flagged for
dynamic-base loading. The same image-load bias applies to all user-mode
processes on the system, so that processes can share dynamically-based DLLs.

In earlier Windows versions, the memory manager tried to load DLLs at the same
location each time in all processes, using the load address specified in the DLL
header (assuming no address space collisions occur within the process).
Consequently, when hackers discovered buffer overrun bugs in Microsoft or third-

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 10101010

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

party products, they were able to use the known linked address of a particular
function in one of these images to launch an attack.

Figure 5 shows the effects of ASLR on load addresses in a hypothetical 32-bit
Windows Vista system.

Executable

Kernel address space

D ynam ic-base DLLs

Randomly chosen
executable load address

Randomly chosen
im a g e -load bias

User address space

FigureFigureFigureFigure 5.5.5.5. EffectEffectEffectEffect ofofofof ASLRASLRASLRASLR onononon LoadLoadLoadLoad AddressesAddressesAddressesAddresses

In Figure 5, the memory manager loads the first dynamic-based DLL at the
randomly chosen image-load bias and then works its way up through the address
space to assign addresses for the remaining dynamic-based DLLs. DLLs that are
linked with /DYNAMICBASEDYNAMICBASEDYNAMICBASEDYNAMICBASE are loaded at the same address across all processes
that use them, thus enabling code sharing among those processes, assuming that
adequate VA space is available and that no VA space collisions occur in the
processes. For executable images, the memory manager follows a similar pattern,
selecting a randomly chosen 64KB-aligned address that is near the base load
address that is stored in the image header. Processes can share executables in the
same way that they share DLLs.

If a DLL or executable image is unloaded by all the processes that are using it, the
memory manager does not necessarily load it at the same address the next time it
is required. Instead, the memory manager again randomly chooses a load address.

Windows Vista loads DLLs that do not support ASLR in the same way as earlier
Windows versions did. Specifically, the system attempts to load the image at the
address specified in the image header. If another DLL is already loaded at that
location, thus causing a collision, the system starts at the highest available address
in the process and works down until it finds a place at which it can load the image. If
additional processes load the same DLL, the system loads the image at the same
address in those processes. If collisions occur in the subsequent processes, the
system relocates the preloaded DLL, thus potentially causing a "domino effect" as
DLLs load.

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 11111111

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

BenefitsBenefitsBenefitsBenefits ofofofof ASLRASLRASLRASLR
ASLR increases security by eliminating the predictability of load addresses. In
addition, it packs DLLs into a smaller range of VAs than in earlier Windows versions,
thus avoiding collisions, saving page table space, and leaving more contiguous VA
space for applications. Dynamic-based DLLs continue to be shared among the
processes that use them.

ASLR applies to user-mode executables and Microsoft-supplied DLLs in Windows
Vista and Windows Server 2008 and extends to the kernel, hardware abstract layer
(HAL), and driver components in Windows Server 2008. Drivers are automatically
dynamically relocated, but user executables and DLLs must explicitly opt in by
using the /DYNAMICBASE/DYNAMICBASE/DYNAMICBASE/DYNAMICBASE linker option.

ASLR, when combined with no-execute protection, provides strong security against
malware that attempts to exploit application vulnerabilities such as buffer overflows.
By itself, ASLR is a relatively weak security measure against buffer overruns. A
hacker who cannot determine the address of a system routine can inject and
execute code off the stack. No-execute protection alone is similarly weak: it
prevents code execution but does not prevent a hacker from using the known
address of a system function. Used together, however, ASLR and no-execute are
very strong. A hacker can neither execute rogue code off the stack nor off a known
address in a DLL.

In general, ASLR has no impact on performance because it is implemented at the
kernel memory-management level. In 32-bit systems, a small improvement in
performance may occur because of code sharing and more efficient use of the
address space. However, degradation could occur in highly congested 32-bit
systems that are loaded with many random images, depending on the quantity and
size of the images.

HowHowHowHow totototo CreateCreateCreateCreate DynamicallyDynamicallyDynamicallyDynamically BasedBasedBasedBased ImagesImagesImagesImages
By default, ASLR applies to all system DLLs and EXEs, which are all linked with
/DYNAMICBASE. ISVs are strongly encouraged to opt into support for ASLR. To
create a dynamically based image, developers should relink their applications with
the /DYNAMICBASE/DYNAMICBASE/DYNAMICBASE/DYNAMICBASE option, which is available in the Microsoft Linker (version
8.00.50727.161 or later) and supported in Microsoft® Visual Studio® 2005 SP1.
This switch is ignored by earlier Windows versions, so no backwards compatibility
problems arise.

To use both ASLR and no-execute, developers should use the /NXCOMPATNXCOMPATNXCOMPATNXCOMPAT flag in
addition to /DYNAMICBASEDYNAMICBASEDYNAMICBASEDYNAMICBASE.

For more information about ASLR and no-execute protection, see "Windows Vista
ISV Security" on MSDN.

I/OI/OI/OI/O BandwidthBandwidthBandwidthBandwidth
Processor speeds and memory sizes have increased by several orders of
magnitude over the last few years, but I/O and disk speed have perhaps only
doubled (although recent improvements such as solid-state drives are beginning to
change that). Many of the processor and memory improvements are not fully
utilized because the I/O subsystem simply cannot keep up. Improving I/O speed
was an important challenge for Windows Vista and involved changes in the
following areas:
• Microsoft SuperFetch™
• Page-file writes

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 12121212

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

• Coordination of memory manager and cache manager
• Prefetch-style clustering
• Large file management
• Hibernate and standby

MicrosoftMicrosoftMicrosoftMicrosoft SuperFetchSuperFetchSuperFetchSuperFetch
SuperFetch is an adaptive page prefetch technique in Windows Vista that analyzes
data usage patterns and preloads data into memory according to those patterns.

As end users go about their business, the memory manager logs information about
their activities. A user-mode SuperFetch service analyzes the log to find patterns in
usage and then prioritizes the commonly used pages on a system-wide basis. The
service then calls the memory manager to preload those pages at the appropriate
time based on their regular use. The memory manager preloads at low priority when
the processor is not being used for other work and the disk is not busy.

For example, consider a system that is regularly used to run payroll at noon on
Fridays. The memory manager logs information about the pages that are required
for the payroll application, and the SuperFetch service recognizes that these pages
are used regularly and thus prioritizes them for loading around noon. The result is
more efficient use of virtual memory and better performance for the end user.

For more information on SuperFetch, see "Windows PC Accelerators." SuperFetch
is not supported in Windows Server 2008.

Page-FilePage-FilePage-FilePage-File WritesWritesWritesWrites
Windows Vista includes numerous enhancements that make writing to the page file
faster and more efficient. In Windows Vista, the memory manager writes more data
in each operation, aligns pages with their neighbors, and does not write pages that
are completely zero.

In earlier Windows versions, the size of write operations was limited to 64 KB.
Consequently, the memory manager could write a maximum of 64 KB to the page
file in a single operation. Windows Vista removes the 64KB limit, so the memory
manager can write the page file in much larger clusters. Write operations are now
typically 1 MB.

Earlier algorithms were designed to ensure that data was written to disk as quickly
as possible. In Windows Vista, however, the goal is to write smart as well as fast.
Moving the disk heads to read and write data is a relatively time-consuming
operation, so reducing the number of such operations can help improve I/O
bandwidth. When the memory manager prepares to write a modified page to its
backing store, it also inspects nearby pages to determine whether any of them also
need to be written, regardless of whether they have been unmapped or trimmed
from the working set. A write operation thus contains a cluster of neighboring
pages—some of which are still in a working set and some of which are not. By
clustering writes in this way, the memory manager helps to increase the contiguity
of data on disk and thus speed up subsequent page-in requests for the same data.

In addition, the memory manager now checks for zeroed pages before it reads or
writes. Internal traces showed that in some situations 7 to 8 percent of write
operations involved pages that were completely zero. Instead of using valuable I/O
bandwidth to write and potentially read such pages, the memory manager simply
puts the page on the zero-page list and marks the page as demand-zero in the
page table. If the corresponding VA is subsequently accessed, the memory

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 13131313

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

manager uses a zero page from memory instead of reading in a zero page from
disk.

Windows Server 2008 and Windows Vista SP1 conserve additional I/O bandwidth
by delaying modified page writes on systems with adequate physical memory.
Instead of using a predetermined modified ("dirty") page threshold, these Windows
releases write modified pages based on an algorithm that considers the amount of
physical memory that is available and the current power state of the disk. This
approach requires fewer disk I/O operations and can extend laptop battery life by
powering up the disks on laptops less often.

CoordinationCoordinationCoordinationCoordination ofofofof MemoryMemoryMemoryMemory ManagerManagerManagerManager andandandand CacheCacheCacheCache ManagerManagerManagerManager
Windows Vista supports greater coordination between the memory manager and
the cache manager for write operations. The memory manager and the cache
manager write modified pages to their backing store by using worker threads. The
memory manager uses two such threads: the modified page writer thread and the
mapped page writer thread. The cache manager uses several lazy-writer threads,
which periodically queue dirty pages from the system cache to be written to their
backing store. Windows Vista coordinates the actions of these threads to optimize
seek operations, reduce latency, and minimize duplication of I/O operations.
Additional enhancements provide parallel operation and avoid the use of locks
whenever possible.

The modified page writer thread writes dirty pages from memory to the paging files
when required by a combination of the number of modified pages, the number of
available pages, and the reuse of existing cached pages.

The mapped page writer thread writes dirty pages from mapped files out to their
backing store at timed intervals. In Windows Vista and later Windows releases, the
mapped page writer sweeps through the dirty page list at regular intervals and
flushes all the pages out to their backing store. If the number of free pages is low,
the system accelerates the sweep by using a shorter interval. In earlier Windows
releases, the mapped page writer flushed everything at absolute 5-minute intervals.
Windows Vista writes dirty pages sooner than earlier Windows releases and the
write operations typically involve less data.

The cache manager’s lazy-writer threads periodically queue dirty pages from the
system cache to be written to their backing store. The lazy-writer threads are
coordinated with the mapped page writer thread to issue write requests to the file
system in an orderly way. Specifically, the system writes pages to their backing
store in linear order whenever possible, from the first page to the last page, instead
of writing the dirty pages based on their order in the modified-page list. This
approach is markedly more efficient for large, sparse files.

Consider a disk file that has been extended in length from 1 MB to 200 MB. Some
of the new pages contain data, and some do not. In earlier Windows versions, a
page near the end of the file—for example, at 180 MB—might be written first. The
file system would zero-fill the disk blocks from 1 MB to 180 MB to prevent file
corruption in the event that the system crashed before data from additional modified
pages could be written to the intervening blocks. Then the file system would write
additional blocks in whatever order the requests arrived from the mapped page
writer thread and the lazy-writer threads, working independently. In Windows Vista,
the mapped page writer and lazy-writer threads coordinate to write all the modified
pages in order from 1 MB to 180 MB. All of these pages would have to be written
eventually anyway. Writing them in linear order moves the read/write heads on the
disk more efficiently and avoids the time-consuming action of zero-filling the
intervening blocks for which modified pages are already available.

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 14141414

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

The memory manager now also supports multiple asynchronous flushes to improve
performance. The writer threads issue multiple overlapping write requests for all the
data and then wait for all such requests to complete. In earlier Windows versions,
the threads issued the requests serially, one at a time. The use of asynchronous
requests enables the write operations to occur in parallel where possible.
Meanwhile, the writer threads continue to run at processor and memory speed
instead of being tied to I/O speeds for each individual write request.

Prefetch-StylePrefetch-StylePrefetch-StylePrefetch-Style ClusteringClusteringClusteringClustering
The memory manager prefetches large clusters of pages to satisfy page faults and
populate the system cache. The prefetch operations read data directly into the
system’s page cache instead of into a working set in virtual memory, so the
prefetched data does not consume VA space and the size of the fetch operation is
not limited to the amount of VA space that is available. The prefetched pages are
put on the standby list and marked as in transition in the page table entry (PTE). If a
prefetched page is subsequently referenced, the memory manager adds it to the
working set. However, if it is never referenced, no system resources are required to
release it.

If any pages in the prefetched cluster are already in memory, the memory manager
does not read them again. Instead, it uses a dummy page to represent them, as
Figure 6 shows.

Pages Y and Z are already in memory
so the corresponding MDL entries point
to the system -wide dummy page .

S y s te m -w ide
dummy page X

Y

Z

Physical Memory

A

B

A
X (replaces Y)
X (replaces Z)

B

Header
MDL 1… n

VA Space

A

Y

Z

B

FigureFigureFigureFigure 6.6.6.6. Prefetch-stylePrefetch-stylePrefetch-stylePrefetch-style clusteringclusteringclusteringclustering

In Figure 6, the file offsets and VAs that correspond to pages A, Y, Z, and B are
logically contiguous although the physical pages themselves are not necessarily
contiguous. Pages A and B are nonresident, so the memory manager must read
them. Pages Y and Z are already resident in memory, so it is not necessary to read
them. (In fact, they might already have been modified since they were last read in
from their backing store, in which case it would be a serious error to overwrite their
contents.) However, reading pages A and B in a single operation is more efficient
than performing one read for page A and a second read for page B. Therefore, the
memory manager issues a single read request that comprises all four pages (A, Y,
Z, and B) from the backing store. Such a read request includes as many pages as

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 15151515

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

make sense to read, based on the amount of available memory, the current system
usage, and so on.

When the memory manager builds the memory descriptor list (MDL) that describes
the request, it supplies valid pointers to pages A and B. However, the entries for
pages Y and Z point to a single system-wide dummy page X. The memory manager
can fill the dummy page X with the potentially stale data from the backing store
because it does not make X visible. However, if a component accesses the Y and Z
offsets in the MDL, it sees the dummy page X instead of Y and Z.

The memory manager can represent any number of discarded pages as a single
dummy page, and that page can be embedded multiple times in the same MDL or
even in multiple concurrent MDLs that are being used for different drivers.
Consequently, the contents of the locations that represent the discarded pages can
change at any time.

Prefetch-style clustering can affect the operation of those few drivers that directly
reference pointers in the MDL to read data. Driver writers should make no
assumptions about the order or contents of pages that are described by an MDL
and must not rely on the value of the data at any location that is referenced by an
MDL. In general, most drivers never directly reference a memory location in an MDL
to get the data, so this restriction affects only a few drivers.

Drivers that perform decryption or calculate checksums that are based on the value
of data in the pages that the MDL maps must not reference pointers from the
system-supplied MDL to access the data. Instead, to ensure correct operation, such
a driver should create a temporary MDL that is based on the system-supplied MDL
that the driver received from the I/O manager. The driver tip "What Is Really in That
MDL?" outlines the procedure that such drivers should follow.

If the MDL describes a buffer for a direct I/O write operation, the application that
issued the I/O request might also have mapped a view of the same pages into its
address space. If so, the application could modify the data at the same time that a
driver examines it. Drivers must handle this situation appropriately, by creating a
temporary MDL through which to double-buffer the contents and see a snapshot of
the data.

Drivers that use MDLs as part of a typical I/O operation without accessing the data
in the underlying MDL pages are not required to create a temporary MDL. Internally,
the memory manager keeps track of all the pages that are resident and how each is
mapped. When a driver passes an MDL to a system service routine to perform I/O,
the memory manager ensures that the correct data is used.

Prefetch-style clustering was originally introduced in Windows XP, where it was
used in a few places. Windows Vista uses prefetch-style clustering pervasively
throughout the operating system, providing greater performance benefits.

LargeLargeLargeLarge FileFileFileFile ManagementManagementManagementManagement
Windows Vista provides better I/O performance for operations on large and sparse
files. The Windows Vista memory manager describes file ranges by using an
Adelson-Velsky/Landis (AVL) tree to describe the disk blocks that a file spans. An
AVL tree is a self-balancing binary tree, which provides for more efficient operations
than a linked list, which earlier Windows releases used. The linked list required a
linear walk through all the sections in the file.

An AVL tree greatly increases the speed of system functions that use file offsets to
map, flush, and purge large files. Consequently, backups are now typically twice as
fast as they were in Windows XP.

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 16161616

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

HibernateHibernateHibernateHibernate andandandand StandbyStandbyStandbyStandby
For Windows Vista and later Windows releases, hibernation and standby are faster
and more efficient than in earlier Windows versions. The system now performs
hibernation and standby in the following two steps:
1. Copy the contents of physical memory to the hibernate file on disk. All device

stacks are active.

2. Shut down all device stacks except those on the hibernation path. Copy only
changed data to the hibernate file.

Hibernation and standby now use the same memory management mirroring
technique that is used in fault-tolerant systems. The memory manager copies the
contents of physical memory to disk while all device stacks are active. Therefore,
the copy operation can take advantage of larger I/O sizes, scatter/gather direct
memory access (DMA), and other advanced, efficient I/O techniques to save data
for hibernation. Such techniques include prefetch support, so that the pages
required to resume quickly are read into memory if needed and then included in the
hibernation file.

After the initial copy operation is complete, the system shuts down all the device
stacks except those on the hibernation path. It then copies to the hibernate file only
the data that has changed since the first copy operation. Hibernation no longer
purges the page cache, as in earlier Windows releases. Instead, the system writes
cached data to the hibernate file intelligently based on what is being used. It also
clusters the data so that each write request is about twice as large as in earlier
Windows releases. Consequently, hibernation and standby are much faster and
users are no longer required to understand how they differ. For equivalent system
snapshots, overall hibernation time is about twice as fast as in earlier Windows
releases and the hibernation file is about half the size.

AdvancedAdvancedAdvancedAdvanced VideoVideoVideoVideo ModelModelModelModel
The new video architecture in Windows Vista and later Windows releases more fully
uses modern graphics processing units (GPUs) and virtual memory to provide more
realistic shading, texturing, fading, and other video effects for gaming and
simulations.

To support the video architecture, the memory manager provides a new mapping
type called rotate virtual address descriptors (VADs). Rotate VADs enable the video
drivers to quickly switch user views from regular application memory into cached,
noncached, or write-combined accelerated graphics port (AGP) or video RAM on a
per-page basis, with full support for all cache attributes. In this way, the video
architecture can transfer data directly by using the GPU for higher performance and
rotate unneeded pages in and out on demand. Figure 7 shows how a VA can map
to a page in either regular physical memory or graphics memory.

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 17171717

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

VA Space

User’s virtual
address

Entry for user’s
V A

Page table

User’s data

P a g e -file backed page

User’s data

Video RAM or AGP

FigureFigureFigureFigure 7.7.7.7. RotateRotateRotateRotate VirtualVirtualVirtualVirtual AddressAddressAddressAddress DescriptorsDescriptorsDescriptorsDescriptors

In Figure 7, the page table entry for a location in the user’s VA space can reference
either a page that is backed by a page in video RAM or AGP or by a page in a file.
To switch views, the video driver simply supplies the new address. This technology
enables video drivers to use the GPU for direct transfers and thus can improve
performance by 100 times over the previous video model.

NUMANUMANUMANUMA SupportSupportSupportSupport
Windows Vista more fully uses the capabilities of NUMA architectures than any
earlier Windows release. The basic philosophy behind the NUMA support is to build
as much intelligence as possible into the memory manager and operating system
so that applications are insulated from the details of the individual machine
hardware.

NUMA support in Windows Vista and Windows Server 2008 includes changes in
the following areas:
• Resource allocation
• Default node and affinity
• Interrupt affinity
• NUMA-aware system functions for applications
• NUMA-aware system functions for drivers
• Paging

ResourceResourceResourceResource AllocationAllocationAllocationAllocation
At startup, Windows Vista builds a graph of the NUMA node access costs—that is,
the distance from each node to the other nodes. The system uses this graph to
determine the optimal node from which to obtain resources such as pages during
operation. If adequate resources are not available on the optimal node, the system
consults the graph to determine the next best choice.

Applications can optionally specify an ideal processor, but otherwise do not require
any knowledge about the architecture of a particular machine. Windows ensures
that whenever possible the application runs on the ideal processor and that any

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 18181818

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

memory that the application allocates comes from the ideal processor’s node—that
is, the ideal node. If the ideal node is unavailable or its resources are exhausted,
the system uses the next best choice.

Earlier Windows releases allocated the memory from the current processor’s node,
and if its resources were exhausted, from any node. Thus, in earlier Windows
releases, a process that ran briefly on a non-optimal node could have long-lasting
memory allocations on that node, causing slower, less-efficient operation.

With the Windows Vista defaults, the system allocates the memory on the ideal
node even if the process is currently running on some other node. If memory is not
available on the ideal node, the system chooses the node that is closest to the ideal
node instead of whichever node happens to have memory available. Overall, the
Windows Vista defaults lead to more intelligent system-wide resource allocation by
increasing the likelihood that a process and its resources are on the same node or
on the most optimal alternatives.

The same defaults apply to kernel-mode drivers, which can run in the process
context of the calling thread, the system thread, or an arbitrary thread. If a driver
allocates memory while running in the context of the calling thread—as often occurs
with I/O requests—the system uses the ideal node for the thread’s process as the
default. If the driver is running in the process of the system thread—as is typical for
DriverEntryDriverEntryDriverEntryDriverEntry, AddDriver, EvtDriverDeviceAdd, and related start-up functions—the
system uses the ideal node of the system process. If the driver is running in an
arbitrary thread context, the system uses the ideal node for that process. Drivers
can override these defaults by using the MmXxxxMmXxxxMmXxxxMmXxxx system functions that are
described in "NUMA-Aware System Functions for Drivers," later in this paper. For
example, a driver might allocate memory on a particular node if its device interrupts
on that node.

The system has a single nonpaged memory pool that includes physical memory
from all nodes. The initial nonpaged pool is mapped into a continuous range of VAs.
When a component requests nonpaged pool, the memory manager uses the
thread’s ideal node as an index into the pool, so that the memory is allocated from
the ideal node. The paged memory pools were made NUMA aware in Windows
Server 2003.

Internally, the system PTEs and system cache are now allocated evenly across
nodes. Formerly, such memory was allocated on the boot node and in rare
situations could exhaust the free pages on that node. The memory manager’s own
internal look-aside lists are similarly NUMA aware.

DefaultDefaultDefaultDefault NodeNodeNodeNode andandandand AffinityAffinityAffinityAffinity
As mentioned in the previous section, Windows Vista uses the node that contains
the ideal processor as the default node for memory allocation. In Windows XP and
earlier Windows releases, the default is the node that contains the processor on
which the thread is currently running.

Applications can specify NUMA affinity based on any of the following, in order of
preference:
• VAD, by using VirtualAllocExNumaVirtualAllocExNumaVirtualAllocExNumaVirtualAllocExNuma or MapViewOfFileExNumaMapViewOfFileExNumaMapViewOfFileExNumaMapViewOfFileExNuma.
• Section, by using CreateFileMappingNumaCreateFileMappingNumaCreateFileMappingNumaCreateFileMappingNuma.
• Thread, by using SetThreadAffinityMaskSetThreadAffinityMaskSetThreadAffinityMaskSetThreadAffinityMask or SetThreadIdealProcessorSetThreadIdealProcessorSetThreadIdealProcessorSetThreadIdealProcessor.
• Process, by using SetProcessAffinityMaskSetProcessAffinityMaskSetProcessAffinityMaskSetProcessAffinityMask.

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 19191919

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

The system uses the application-specified affinity whenever possible. Windows
attempts to satisfy all such requests, as described in the previous section, but does
not guarantee that a given request will be completely satisfied from the requested
node. If adequate resources are not available on the requested node, the system
uses the most optimal node that has adequate resources. This approach satisfies
the request quickly rather than waiting indefinitely for memory to become available
on the ideal node.

InterruptInterruptInterruptInterrupt AffinityAffinityAffinityAffinity
Drivers for PCI devices that support message-signaled interrupts (MSI or MSI-X)
can specify an interrupt affinity—that is, the set of processors on which the device’s
interrupt service routine (ISR) runs—for each MSI message that the device
generates. This feature can significantly improve performance, especially on
network interface cards (NICs) that support receive-side scaling (RSS).

A driver can specify an affinity for a particular MSI message when it connects the
interrupt. A driver can also set default affinity and affinity policy by setting values for
the InterruptInterruptInterruptInterrupt Management\AffinityManagement\AffinityManagement\AffinityManagement\Affinity PolicyPolicyPolicyPolicy registry key in the DDInstall.HW section
of its INF. An administrator can also set these values in the registry.

For more information, see the WinHEC presentation "NUMA I/O Optimizations," the
white paper "Interrupt Architecture Enhancements in Windows," and "Interrupt
Affinity and Priority" in the WDK. For NIC-specific information, see "NDIS MSI-X" in
the WDK.

NUMA-AwareNUMA-AwareNUMA-AwareNUMA-Aware SystemSystemSystemSystem FunctionsFunctionsFunctionsFunctions forforforfor ApplicationsApplicationsApplicationsApplications
Windows Vista supports the following new NUMA-aware system functions for
applications:
•••• VirtualAllocExNumaVirtualAllocExNumaVirtualAllocExNumaVirtualAllocExNuma reserves or commits a range of virtual memory and

requests memory on a particular node.
• CreateFileMappingNumaCreateFileMappingNumaCreateFileMappingNumaCreateFileMappingNuma creates or opens a file-mapping object and requests

memory on a particular node.
• MapViewOfFileExNumaMapViewOfFileExNumaMapViewOfFileExNumaMapViewOfFileExNuma maps a view of a file-mapping object and requests

memory on a particular node.
• AllocateUserPhysicalPagesNumaAllocateUserPhysicalPagesNumaAllocateUserPhysicalPagesNumaAllocateUserPhysicalPagesNuma allocates physical memory from a

particular node.
• QueryWorkingSetExQueryWorkingSetExQueryWorkingSetExQueryWorkingSetEx can be used to obtain the node on which a particular VA

is currently allocated.

These functions are NUMA-aware versions of the existing, similarly named
functions. For more information on these functions, see the MSDN Web site.

NUMA-AwareNUMA-AwareNUMA-AwareNUMA-Aware SystemSystemSystemSystem FunctionsFunctionsFunctionsFunctions forforforfor DriversDriversDriversDrivers
Drivers can use two new system functions to specify an affinity for memory
allocation on a particular node:
•••• MmAllocateContiguousMemorySpecifyCacheNodeMmAllocateContiguousMemorySpecifyCacheNodeMmAllocateContiguousMemorySpecifyCacheNodeMmAllocateContiguousMemorySpecifyCacheNode
•••• MmAllocatePagesForMdlExMmAllocatePagesForMdlExMmAllocatePagesForMdlExMmAllocatePagesForMdlEx

MmAllocateContiguousMemorySpecifyCacheNodeMmAllocateContiguousMemorySpecifyCacheNodeMmAllocateContiguousMemorySpecifyCacheNodeMmAllocateContiguousMemorySpecifyCacheNode is similar to the existing
MmAllocateContiguousMemorySpecifyCacheMmAllocateContiguousMemorySpecifyCacheMmAllocateContiguousMemorySpecifyCacheMmAllocateContiguousMemorySpecifyCache function, except that a driver can
request memory from a particular node on a machine that supports the NUMA
architecture.

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 20202020

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

MmAllocatePagesForMdlExMmAllocatePagesForMdlExMmAllocatePagesForMdlExMmAllocatePagesForMdlEx is similar to MmAllocatePagesForMdlMmAllocatePagesForMdlMmAllocatePagesForMdlMmAllocatePagesForMdl, but allows a
driver to optionally request pages only on the current thread’s ideal node, to skip
zeroing of the pages upon allocation, and to specify the cache type that is used to
map the pages.

PagingPagingPagingPaging
Windows Server 2008 incorporates further NUMA enhancements for paging. Server
2008 prefetches pages to the application’s ideal node and migrates pages to the
ideal node when a soft page fault occurs. A soft page fault occurs when the system
can find the requested page elsewhere in memory, whereas a hard page fault
requires reading the page in from disk.

ScalabilityScalabilityScalabilityScalability
As Windows runs on larger and more powerful machines, Microsoft continues to
enhance the system’s ability to scale up to service more and faster processors and
RAM.

EfficiencyEfficiencyEfficiencyEfficiency andandandand ParallelismParallelismParallelismParallelism
As a result of numerous internal improvements to the memory manager, memory
allocation now requires fewer I/O operations and fewer locks for optimal throughput.

Internally, the memory manager now uses a bitmap instead of a linked list to track
the free pages in the nonpaged pool. Unlike a linked list, a bitmap can be searched
without a lock, thus reducing contention for the associated lock by more than
50 percent. Furthermore, bitmaps provide automatic coalescing of contiguous free
pages. Windows Server 2008 also uses bitmaps to describe system PTEs.

Large shared sets are now directly mapped instead of hashed. When the number of
entries in a hash table is very large, frequent collisions typically occur unless the
hash table can be dynamically resized. However, resizing is expensive to perform
on large sets. Direct mapping is therefore more efficient than hashing in this
situation.

In Windows Server 2008, the allocation of physically contiguous memory is greatly
enhanced. Requests to allocate contiguous memory are much more likely to
succeed because the memory manager now dynamically replaces pages, typically
without trimming the working set or performing I/O operations. In addition, many
more types of pages—such as kernel stacks and file system metadata pages,
among others—are now candidates for replacement. Consequently, more
contiguous memory is generally available at any given time. In addition, the cost to
obtain such allocations is greatly reduced.

Page-FramePage-FramePage-FramePage-Frame NumberNumberNumberNumber andandandand PFNPFNPFNPFN DatabaseDatabaseDatabaseDatabase
The page-frame number (PFN) database contains information about all of the
physical memory in the machine. In 64-bit editions of Windows Vista SP1 and
Windows Server 2008, page-frame numbers are 64 bits long to support large
amounts of memory and NUMA architectures, on which the physical address space
is sometimes sparsely populated with memory.

In earlier Windows releases, whenever a new page was needed, the memory
manager acquired the PFN spinlock and removed a new page from the appropriate
list chained through the PFN database. Instead, Windows Vista maintains short lists
of immediately available zero pages and free pages for each NUMA node and page
color. (Page coloring is a technique that the memory manager uses to reduce the
possibility of cache-line collisions among pages.) In many cases—particularly

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 21212121

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

demand-zero faults and copy-on-write faults—the system can now get a single
page without acquiring the PFN lock. Reducing the number of spin lock acquisitions
eliminates potential spins on other processors and thus improves parallelism.

LargeLargeLargeLarge PagesPagesPagesPages
Windows Server 2003 introduced large pages for user-mode applications. Windows
Vista and Windows Server 2008 use large pages more extensively internally and
provide enhanced support for them. Windows Vista and Windows Server 2008 use
large pages for the following:
• Initial nonpaged pool
• PFN database
• User application and driver images
• Page file-backed shared memory
• User-mode VirtualAllocVirtualAllocVirtualAllocVirtualAlloc allocations
• Driver I/O space mappings

A user-mode application can allocate pages as large as 4 MB on x86-based
systems by using the VirtualAllocVirtualAllocVirtualAllocVirtualAlloc function with the MEM_LARGE_PAGES flag.
Table 1 lists the large page sizes that are supported in Windows hardware
platforms.

TableTableTableTable 1.1.1.1. LargeLargeLargeLarge PagePagePagePage SizesSizesSizesSizes
ArchitectureArchitectureArchitectureArchitecture LargeLargeLargeLarge pagepagepagepage sizesizesizesize
x86 4 MB
x86 with PAE enabled 2 MB
x64 2 MB
Itanium 16 MB

An application can call GetLargePageMinimumGetLargePageMinimumGetLargePageMinimumGetLargePageMinimum to determine the current large
page size.

The Windows Vista memory manager allocates ranges of large pages more quickly
than earlier Windows releases did. The entire range is no longer required to be
contiguous, so that attempts to allocate large pages are more likely to succeed and
less likely to cause page thrashing. For example, if an application requests 10 MB
of large pages, Windows Vista and later Windows releases can allocate five large
pages of 2 MB each (if large pages are 2 MB on the individual hardware platform)
instead of trying to find 10 MB of physically contiguous memory.

The Windows Vista memory manager also keeps track of which NUMA nodes the
allocated memory belongs to and can zero large pages in parallel by dispatching
threads to the appropriate nodes to zero them locally.

Cache-AlignedCache-AlignedCache-AlignedCache-Aligned PoolPoolPoolPool AllocationAllocationAllocationAllocation
Windows Vista implements support for cache-aligned pool allocation. Drivers can
specify the following flags in the ExAllocatePoolXxxExAllocatePoolXxxExAllocatePoolXxxExAllocatePoolXxx functions to request cache-
aligned memory:
•••• NonPagedPoolCacheAlignedNonPagedPoolCacheAlignedNonPagedPoolCacheAlignedNonPagedPoolCacheAligned
•••• PagedPoolCacheAlignedPagedPoolCacheAlignedPagedPoolCacheAlignedPagedPoolCacheAligned

These flags were defined in earlier Windows releases, but they were ignored.

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 22222222

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

VirtualVirtualVirtualVirtual MachinesMachinesMachinesMachines
Efficiency and scalability are not only important for good server performance, they
are also critical for Windows to run as a guest operating system in a virtualized
system. Windows Vista incorporates several changes that improve its performance
in virtual machine scenarios.

The translation look-aside buffer (TLB) caches the translation from VAs to physical
addresses so that the processor can quickly access this information. If an address
is not available in the TLB, the processor typically must make several memory
references, which are quite time consuming. Consequently, overall system
performance decreases as the TLB hit rate drops.

One way to increase the likelihood that an address will be in the TLB is to flush the
TLB less often. Each time a page has been made invalid, its entry must be flushed
from the buffer. A page becomes invalid when it is unmapped, freed, trimmed from
the working set, or modified by a copy-on-write operation, among others. The entry
must also be flushed if changes are made to the protection or cache attributes of
the page.

Flushing the entire translation buffer across all processors is a relatively expensive
operation that requires significant operating system overhead. Furthermore, after
the buffers are flushed, they must be repopulated. Windows Vista rarely flushes the
entire buffer. As a result, virtual machines can operate much more efficiently.

If a virtualized system hosts several guest operating systems, the size of the guests
can constrain hypervisor performance and limit scalability. To use a smaller
memory footprint and thus be a better guest system, Windows Server 2008 frees
unneeded memory that it has speculatively allocated. In particular, the system
reclaims memory from the initial nonpaged pool if it is not being used.

LoadLoadLoadLoad BalancingBalancingBalancingBalancing
Windows Vista exports the following new events to help in load balancing:
•••• LowCommitConditionNotificationLowCommitConditionNotificationLowCommitConditionNotificationLowCommitConditionNotification
•••• HighCommitConditionNotificationHighCommitConditionNotificationHighCommitConditionNotificationHighCommitConditionNotification
•••• MaximumCommitConditionNotificationMaximumCommitConditionNotificationMaximumCommitConditionNotificationMaximumCommitConditionNotification

The LowCommitConditionNotificationLowCommitConditionNotificationLowCommitConditionNotificationLowCommitConditionNotification event is set when the operating system's
commit charge is low, relative to the current commit limit. In other words, memory
usage is low and a lot of space is available for allocations.

The HighCommitConditionNotificationHighCommitConditionNotificationHighCommitConditionNotificationHighCommitConditionNotification event is set when the operating system's
commit charge is high, relative to the current commit limit. In other words, memory
usage is high and very little space is available. If adequate disk space is available,
the system obtains more memory by automatically increasing the page file size up
to the limit imposed by the administrator. A short-term option is to reduce the
current system load. Long-term solutions are to increase the minimum page file size
or add RAM.

The MaximumCommitConditionNotificationMaximumCommitConditionNotificationMaximumCommitConditionNotificationMaximumCommitConditionNotification event is set when the operating
system's commit charge is near the maximum commit limit. In other words, memory
usage is very high, very little space is available, and the system cannot increase the
size of its paging files because of the current limits imposed by the administrator. A
system administrator can always increase the size or number of paging files,
without restarting the computer, if adequate disk space is available. Other
alternatives are to increase the minimum or maximum page file sizes, add RAM, or
reduce the load.

http://msdn2.microsoft.com/en-us/library/ms789538.aspx

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 23232323

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

These events supplement the pool notification events that were added in Windows
Server 2003. Drivers and other kernel-mode components can register for these
events. For more information on memory-related notification events, see "Standard
Event Objects" in the WDK.

AdditionalAdditionalAdditionalAdditional OptimizationsOptimizationsOptimizationsOptimizations
Additional memory manager optimizations involve the following areas:
• VirtualAllocVirtualAllocVirtualAllocVirtualAlloc and address windowing extensions (AWE) allocations.
• VirtualProtectVirtualProtectVirtualProtectVirtualProtect function.
• Windows on Windows (WOW) on 64-bit systems.

Windows acquires a per-process address space lock to synchronize changes to the
user address space. In Windows Vista, this lock supports both shared and exclusive
access, whereas in earlier Windows versions, the lock supported exclusive access
only. Consequently, many operations such as VirtualAllocVirtualAllocVirtualAllocVirtualAlloc and VirtualQueryVirtualQueryVirtualQueryVirtualQuery can
now run in parallel. Overall, changes within VirtualAllocVirtualAllocVirtualAllocVirtualAlloc reduce the time required
for AWE allocations by over 2500 percent in some scenarios.

The VirtualProtectVirtualProtectVirtualProtectVirtualProtect function changes the access protection on a region of pages in
virtual memory. When a page’s access protection attribute changes, processors
must flush the corresponding TLB entry. Windows Server 2008 issues a single flush
request to all processors whose TLB might contain the entry instead of multiple
single requests to each individual processor. As a result, VirtualProtectVirtualProtectVirtualProtectVirtualProtect can
change access protection on large regions 60 times faster than in earlier Windows
versions.

On 64-bit architectures, Windows Vista uses demand-zeroed memory instead of
pool memory to allocate the page-table bitmaps for 32-bit binary emulation. This
change enables 32-bit binaries to run much more efficiently because they require a
smaller system memory footprint and perform fewer I/O operations.

SystemSystemSystemSystem IntegrityIntegrityIntegrityIntegrity
Through online crash analysis (OCA), users can upload data about system crashes
to Microsoft. This data has provided useful information about the causes of common
system crashes and has led to several system enhancements to detect and handle
potential system corruption. Windows Vista and Windows Server 2008 incorporate
advances to improve system integrity in the following areas:
• Diagnosis of hardware errors
• Code integrity and driver signing
• Data preservation during bug checks

DiagnosisDiagnosisDiagnosisDiagnosis ofofofof HardwareHardwareHardwareHardware ErrorsErrorsErrorsErrors
As mentioned in "Page-File Writes" earlier in this paper, Windows maintains a list of
zero pages. Hardware errors such as DMA transfer errors and single bit errors can
corrupt memory after the pages have initially been zeroed, so Windows Vista
checks the list to ensure that these pages actually are zero. If the system finds an
error, it records the physical address at which the error occurred and the nature of
the error in the event log. This information helps to pinpoint single-bit errors that are
caused by hardware failures.

Machines that frequently encounter such errors are often prone to application hangs
and crashes that are extremely difficult to track down. OCA data indicates that such
failures are much more common than previously suspected. Independent hardware

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 24242424

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

vendors (IHVs) can help diagnose and prevent such errors by using error-correcting
code (ECC) memory.

CodeCodeCodeCode IntegrityIntegrityIntegrityIntegrity andandandand DriverDriverDriverDriver SigningSigningSigningSigning
The memory manager implements a simple, high-speed technique to validate
images for code integrity. This feature enforces the mandatory code signing for
kernel-mode drivers on x64-based systems.

For more information on code signing, see "Digital Signatures for Kernel Modules
on x64-based Systems Running Windows Vista," "Kernel-Mode Code Signing
Walkthrough," and "Summary of Windows Driver Signing Requirements."

Windows Vista supports hot-patching for both system-wide and session drivers, so
that patches can be installed without rebooting the user’s system. Thus, users can
take advantage of security patches as soon as they become available without
waiting for reboot.

DataDataDataData PreservationPreservationPreservationPreservation duringduringduringduring BugBugBugBug ChecksChecksChecksChecks
Windows Vista preserves more data than earlier Windows versions when certain
nondestructive bug checks occur. For example, if a bug check occurs when the
system is paging in part of a kernel-mode component, the system cannot proceed
because the component is missing required information, but the data that is already
in the system cache is not affected. To prevent data loss, the memory manager
writes out all the modified data from the system cache to its backing store (typically
a disk file) and then issues a bug check. Only failures to page in kernel-mode code
or data are fatal; failures to page in user process code or data merely cause an
exception in the application.

To further protect system data, Windows Vista supports the ability to mark views of
the system cache as read only. The registry uses this feature to protect its views
from inadvertent driver corruption. Thus, registry data is read only except when it is
actively being modified.

Driver writers can use the new .pagein.pagein.pagein.pagein debugger command to view the contents of
kernel-mode memory addresses that have been paged out to disk. For more
information about this command, see Debugging Tools for Windows.

WhatWhatWhatWhat YouYouYouYou ShouldShouldShouldShould DoDoDoDo
Most of the memory management enhancements that are described in this paper
are internal and are transparent to administrators, software developers, and
hardware manufacturers. However, a few of the changes require awareness or
action to gain maximum benefit and to contribute to an improved user experience.

Here are the most important effects for hardware manufacturers, driver developers,
application developers, and system administrators.

ForForForFor HardwareHardwareHardwareHardware ManufacturersManufacturersManufacturersManufacturers
• Use ECC.

ForForForFor DriverDriverDriverDriver DevelopersDevelopersDevelopersDevelopers
• Never attempt to access memory beyond what the driver has allocated. Use

Driver Verifier to catch this error.
• Handle dummy pages correctly in drivers that directly access the contents of

MDLs.

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 25252525

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

• Use KeExpandKernelStackAndCalloutKeExpandKernelStackAndCalloutKeExpandKernelStackAndCalloutKeExpandKernelStackAndCallout as necessary to gain additional kernel
stack space.

• Use the new NUMA-aware system functions in drivers that are sensitive to
NUMA architectures and specify interrupt affinity if this is important for your
device.

• Use new events for notification about system load if your driver allocates
memory that it can release during operation.

• Be aware of driver signing requirements for Windows Vista, particularly for x64
architectures.

• Use the .pageinpageinpageinpagein debugger command to inspect kernel-mode data that was
paged out.

ForForForFor ApplicationApplicationApplicationApplication DevelopersDevelopersDevelopersDevelopers
• Relink with the /DYNAMICBASE/DYNAMICBASE/DYNAMICBASE/DYNAMICBASE and /NXCOMPAT/NXCOMPAT/NXCOMPAT/NXCOMPAT options to enable ASLR

with no-execute protection for Windows Vista.
• Be aware that the default NUMA node for memory allocation is now the ideal

node instead of the current node.
• Use the new NUMA-aware system functions to control memory allocation and

query page locations on NUMA architectures.

ForForForFor SystemSystemSystemSystem AdministratorsAdministratorsAdministratorsAdministrators
• Understand the dynamic kernel VA allocation so that you can modify system

tuning—or avoid tuning altogether.
• Use a debugger with the !vm!vm!vm!vm 21 command to inspect details of kernel VA

space use on 32-bit systems.
• Check the system event log for zero-page corruption errors. Upload crash data

to OCA whenever possible.

ResourcesResourcesResourcesResources

MSDN:MSDN:MSDN:MSDN:
WindowsWindowsWindowsWindows VistaVistaVistaVista ISVISVISVISV SecuritySecuritySecuritySecurity

http://msdn2.microsoft.com/en-us/library/bb430720.aspx
MemoryMemoryMemoryMemory ManagementManagementManagementManagement RegistryRegistryRegistryRegistry KeysKeysKeysKeys

http://msdn2.microsoft.com/en-us/library/bb870880.aspx
WindowsWindowsWindowsWindows DriverDriverDriverDriver Kit:Kit:Kit:Kit:

http://msdn2.microsoft.com/en-us/library/aa972908.aspx
Kernel-ModeKernel-ModeKernel-ModeKernel-Mode DriverDriverDriverDriver ArchitectureArchitectureArchitectureArchitecture DesignDesignDesignDesign GuideGuideGuideGuide
Memory Management
Interrupt Affinity and Priority
Standard Event Objects
Kernel-ModeKernel-ModeKernel-ModeKernel-Mode DriverDriverDriverDriver ArchitectureArchitectureArchitectureArchitecture ReferenceReferenceReferenceReference
Standard Driver Routines
Driver Support Routines
DriverDriverDriverDriver DevelopmentDevelopmentDevelopmentDevelopment ToolsToolsToolsTools
Boot Options for Driver Testing and Debugging
NetworkNetworkNetworkNetwork DesignDesignDesignDesign GuideGuideGuideGuide
NDIS MSI-X

http://msdn2.microsoft.com/en-us/library/bb430720.aspx
http://msdn2.microsoft.com/en-us/library/bb870880.aspx
http://msdn2.microsoft.com/en-us/library/aa972908.aspx

AdvancesAdvancesAdvancesAdvances inininin MemoryMemoryMemoryMemory ManagementManagementManagementManagement forforforfor WindowsWindowsWindowsWindows ---- 26262626

October 12, 2007
© 2007 Microsoft Corporation. All rights reserved.

WindowsWindowsWindowsWindows HardwareHardwareHardwareHardware andandandand DriverDriverDriverDriver Central:Central:Central:Central:
DriverDriverDriverDriver SigningSigningSigningSigning RequirementsRequirementsRequirementsRequirements forforforfor WindowsWindowsWindowsWindows [home[home[home[home page]page]page]page]

http://www.microsoft.com/whdc/winlogo/drvsign/drvsign.mspx
DigitalDigitalDigitalDigital SignaturesSignaturesSignaturesSignatures forforforfor KernelKernelKernelKernel ModulesModulesModulesModules onononon SystemsSystemsSystemsSystems RunningRunningRunningRunning

WindowsWindowsWindowsWindows VistaVistaVistaVista
SummarySummarySummarySummary ofofofof WindowsWindowsWindowsWindows Kernel-ModeKernel-ModeKernel-ModeKernel-Mode DriverDriverDriverDriver SigningSigningSigningSigning RequirementsRequirementsRequirementsRequirements

WindowsWindowsWindowsWindows PCPCPCPC Accelerators:Accelerators:Accelerators:Accelerators: PerformancePerformancePerformancePerformance TechnologyTechnologyTechnologyTechnology forforforfor WindowsWindowsWindowsWindows VistaVistaVistaVista
http://www.microsoft.com/whdc/system/sysperf/accelerator.mspx

WhatWhatWhatWhat IsIsIsIs ReallyReallyReallyReally inininin ThatThatThatThat MDL?MDL?MDL?MDL?
http://www.microsoft.com/whdc/driver/tips/mdl.mspx

InterruptInterruptInterruptInterrupt ArchitectureArchitectureArchitectureArchitecture EnhancementsEnhancementsEnhancementsEnhancements inininin WindowsWindowsWindowsWindows
http://www.microsoft.com/whdc/system/bus/PCI/MSI.mspx

NUMANUMANUMANUMA I/OI/OI/OI/O OptimizationsOptimizationsOptimizationsOptimizations
http://download.microsoft.com/download/a/f/d/afdfd50d-6eb9-425e-84e1-
b4085a80e34e/SVR-T332_WH07.pptx

MicrosoftMicrosoftMicrosoftMicrosoft TechNet:TechNet:TechNet:TechNet:
InsideInsideInsideInside thethethethe WindowsWindowsWindowsWindows VistaVistaVistaVista Kernel:Kernel:Kernel:Kernel: PartPartPartPart 3333 (April(April(April(April 2007)2007)2007)2007)

http://www.microsoft.com/technet/technetmag/issues/2007/04/VistaKernel/

Book:Book:Book:Book:
WindowsWindowsWindowsWindows Internals,Internals,Internals,Internals, FourthFourthFourthFourth Edition,Edition,Edition,Edition,
Russinovich, Mark, and David A. Solomon. Redmond, WA: Microsoft Press, 2005

http://www.microsoft.com/MSPress/books/6710.aspx

http://www.microsoft.com/whdc/winlogo/drvsign/drvsign.mspx
http://www.microsoft.com/whdc/system/sysperf/accelerator.mspx
http://www.microsoft.com/whdc/driver/tips/mdl.mspx
http://www.microsoft.com/whdc/system/bus/PCI/MSI.mspx
http://download.microsoft.com/download/a/f/d/afdfd50d-6eb9-425e-84e1-b4085a80e34e/SVR-T332_WH07.pptx
http://download.microsoft.com/download/a/f/d/afdfd50d-6eb9-425e-84e1-b4085a80e34e/SVR-T332_WH07.pptx
http://www.microsoft.com/technet/technetmag/issues/2007/04/VistaKernel/
http://www.microsoft.com/MSPress/books/6710.aspx

	Introduction
	AbouttheMemoryManager
	VirtualAddressSpace
	DynamicAllocationofKernelVirtualAddressSpace
	Detailsforx86Architectures
	Detailsfor64-bitArchitectures

	Kernel-ModeStackJumpinginx86Architectures
	UseofExcessPoolMemory

	Security:AddressSpaceLayoutRandomization
	EffectofASLRonImageLoadAddresses
	BenefitsofASLR
	HowtoCreateDynamicallyBasedImages

	I/OBandwidth
	MicrosoftSuperFetch
	Page-FileWrites
	CoordinationofMemoryManagerandCacheManager
	Prefetch-StyleClustering
	LargeFileManagement
	HibernateandStandby

	AdvancedVideoModel
	NUMASupport
	ResourceAllocation
	DefaultNodeandAffinity
	InterruptAffinity
	NUMA-AwareSystemFunctionsforApplications
	NUMA-AwareSystemFunctionsforDrivers
	Paging

	Scalability
	EfficiencyandParallelism
	Page-FrameNumberandPFNDatabase
	LargePages
	Cache-AlignedPoolAllocation
	VirtualMachines
	LoadBalancing
	AdditionalOptimizations

	SystemIntegrity
	DiagnosisofHardwareErrors
	CodeIntegrityandDriverSigning
	DataPreservationduringBugChecks

	WhatYouShouldDo
	ForHardwareManufacturers
	ForDriverDevelopers
	ForApplicationDevelopers
	ForSystemAdministrators

	Resources
	MSDN:
	WindowsHardwareandDriverCentral:
	MicrosoftTechNet:
	Book:

