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Abstract

The work presented in this thesis is motivated by the twin goals of increasing the

capacity and the flexibility of the Internet. The Internet is comprised of packet-processing

nodes, called routers, that route packets towards their destinations, and physical links that

transport packets from one router to another. Owing to advances in optical technologies,

such as Wavelength Division Multiplexing, the data rates of links have increased rapidly

over the years. However, routers have failed to keep up with this pace because they must

perform expensive per-packet processing operations.

Every router is required to perform a forwarding decision on an incoming packet to

determine the packet’s next-hop router. This is achieved by looking up the destination

address of the incoming packet in a forwarding table. Besides increased packet arrival

rates because of higher speed links, the complexity of the forwarding lookup mechanism

and the large size of forwarding tables have made routing lookups a bottleneck in the rout-

ers that form the core of the Internet. The first part of this thesis describes fast and efficient

routing lookup algorithms that attempt to overcome this bottleneck.
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The second part of this thesis concerns itself with increasing the flexibility and func-

tionality of the Internet. Traditionally, the Internet provides only a “best-effort” service,

treating all packets going to the same destination identically, and servicing them in a first-

come-first-served manner. However, Internet Service Providers are seeking ways to pro-

vide differentiated services (on the same network infrastructure) to different users based

on their different requirements and expectations of quality from the Internet. For this,

routers need to have the capability to distinguish and isolate traffic belonging to different

flows. The ability to classify each incoming packet to determine the flow it belongs to is

called packet classification, and could be based on an arbitrary number of fields in the

packet header. The second part of this thesis highlights some of the issues in designing

efficient packet classification algorithms, and describes novel algorithms that enable rout-

ers to perform fast packet classification on multiple fields.
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CHAPTER  1

Introduction

The Internet is comprised of a mesh of routers interconnected by links. Communica-

tion among nodes on the Internet (routers and end-hosts) takes place using the Internet

Protocol, commonly known as IP. IP datagrams (packets) travel over links from one router

to the next on their way towards their final destination. Each router performs a forwarding

decision on incoming packets to determine the packet’s next-hop router.

The capability to forward packets is a requirement for every IP router [3]. Addition-

ally, an IP router may also choose to perform special processing on incoming packets.

Examples of special processing include filtering packets for security reasons, delivering

packets according to a pre-agreed delay guarantee, treating high priority packets preferen-

tially, and maintaining statistics on the number of packets sent by different networks. Such

special processing requires that the router classify incoming packets into one of several

flows — all packets of a flow obey a pre-defined rule and are processed in a similar man-

ner by the router. For example, all packets with the same source IP address may be defined

to form a flow. A flow could also be defined by specific values of the destination IP

address and by specific protocol values. Throughout this thesis, we will refer to routers
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that classify packets into flows asflow-aware routers. On the other hand, flow-unaware

routers treat each incoming packet individually and we will refer to them aspacket-by-

packet routers.

This thesis is about two types of algorithms: (1) algorithms that an IP router uses to

decidewhere to forward packets next, and, (2) algorithms that a flow-aware router uses to

classify packets into flows.1 In particular, this thesis is about fast and efficient algorithms

that enable routers to process many packets per second, and hence increase the capacity of

the Internet.

This introductory chapter first describes the packet-by-packet router and the method it

uses to make the forwarding decision, and then moves on to describe the flow-aware

router and the method it uses to classify incoming packets into flows. Finally, the chapter

presents the goals and metrics for evaluation of the algorithms presented later in this the-

sis.

1  Packet-by-packet IP router and route lookups

A packet-by-packet IP router is a special-purpose packet-switch that satisfies the

requirements outlined in RFC 1812 [3] published by the Internet Engineering Task Force

(IETF).2 All packet-switches — by definition — perform two basic functions. First, a

packet-switch must perform a forwarding decision on each arriving packet for deciding

where to send it next. An IP router does this by looking up the packet’s destination address

in a forwarding table. This yields the address of the next-hop router3 and determines the

1.  As explained later in this chapter, the algorithms in this thesis are meant for the router data-plane (i.e., the datapath of
the packet), rather than the router control-plane which configures and populates the forwarding table.

2.  IETF is a large international community of network equipment vendors, operators, engineers and researchers inter-
ested in the evolution of the Internet Architecture. It comprises of groups working on different areas such as routing,
applications and security. It publishes several documents, called RFCs (Request For Comments). An RFC either over-
views an introductory topic, or acts as a standards specification document.

3.  A packet may be sent to multiple next-hop routers. Such packets are called multicast packets and are sent out on mul-
tiple egress ports. Unless explicitly mentioned, we will discuss lookups for unicast packets only.
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egress port through which the packet should be sent. This lookup operation is called a

route lookup or anaddress lookup operation. Second, the packet-switch must transfer the

packet from the ingress to the egress port identified by the address lookup operation. This

is calledswitching, and involves physical movement of the bits carried by the packet.

The combination of route lookup and switching operations makes per-packet process-

ing in routers a time consuming task. As a result, it has been difficult for the packet pro-

cessing capacity of routers to keep up with the increased data rates of physical links in the

Internet. The data rates of links have increased rapidly over the years to hundreds of giga-

bits per second in the year 2000 [133] — mainly because of advances in optical technolo-

gies such as WDM (Wavelength Division Multiplexing). Figure 1.1 shows the increase in

bandwidth per fiber during the period 1980 to 2005, and Figure 1.2 shows the increase in

Figure 1.1 The growth in bandwidth per installed fiber between 1980 and 2005. (Source: Lucent
Technologies.)
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the maximum bandwidth of a router port in the period 1997 to 2001. These figures high-

light the gap in the data rates of routers and links — for example, in the year 2000, a data

rate of 1000 Gbps is achievable per fiber, while the maximum bandwidth available is lim-

ited to 10 Gbps per router port. Figure 1.2 also shows the average bandwidth of a router

port over all routers — this average is about 0.53 Gbps in the year 2000. The work pre-

sented in the first part of this thesis (Chapters 2 and 3) is motivated by the need to alleviate

this mismatch in the speeds of routers and physical links — in particular, the need to per-

form route lookups at high speeds. High-speed switching [1][55][56][57][58][104] is an

important problem in itself, but is not considered in this thesis.

Figure 1.2 The growth in maximum bandwidth of a wide-area-network (WAN) router port between 1997
and 2001. Also shown is the average bandwidth per router port, taken over DS3, ATM OC3, ATM OC12,
POS OC3, POS OC12, POS OC48, and POS OC192 ports in the WAN. (Data courtesy Dell’Oro Group,
Portola Valley, CA)
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1.1 Architecture of a packet-by-packet router

Figure 1.3 shows a block diagram of the architecture of a typical high speed router. It

consists of one line card for each port and a switching fabric (such as a crossbar) that inter-

connects all the line cards. Typically, one of the line cards houses a processor functioning

as the central controller for the router. The path taken by a packet through a packet-by-

packet router is shown in Figure 1.4 and consists of two main functions on the packet: (1)

performing route lookup based on the packet’s destination address to identify the outgoing

port, and (2) switching the packet to the output port.

Line card #1

Line card #2

Line card #8

Line card #10

Line card #16

Line card #9

Routing processor

Switching Fabric

Figure 1.3 The architecture of a typical high-speed router.

Determine next Switch to the

Route Lookup Switching

outgoing port.
outgoing port.
hop address and

Line card Fabric
Figure 1.4 Datapath of a packet through a packet-by-packet router.
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The routing processor in a router performs one or more routing protocols such as RIP

[33][51], OSPF [65] or BGP [80] by exchanging protocol messages with neighboring

routers. This enables it to maintain arouting tablethat contains a representation of the net-

work topology state information and stores the current information about the best known

paths to destination networks. The router typically maintains a version of this routing table

in all line cards so that lookups on incoming packets can be performed locally on each line

card, without loading the central processor. This version of the central processor’s routing

table is what we have been referring to as the line card’s forwarding table because it is

directly used for packet forwarding. There is another difference between the routing table

in the processor and the forwarding tables in the line cards. The processor’s routing table

usually keeps a lot more information than the forwarding tables. For example, the for-

warding table may only keep the outgoing port number, address of next-hop, and (option-

ally) some statistics with each route, whereas the routing table may keep additional

information: e.g., time-out values, the actual paths associated with the route, etc.

The routing table is dynamic — as links go down and come back up in various parts of

the Internet, routing protocol messages may cause the table to change continuously.

Changes include addition and deletion of prefixes, and the modification of next-hop infor-

mation for existing prefixes. The processor communicates these changes to the line card to

maintain up-to-date information in the forwarding table. The need to support routing table

updates has implications for the design of lookup algorithms, as we shall see later in this

thesis.

1.2 Background and definition of the route lookup problem

This section explains the background of the route lookup operation by briefly describ-

ing the evolution of the Internet addressing architecture, and the manner in which this

impacts the complexity of the lookup mechanism. This leads us to the formal definition of
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the lookup problem, and forms a background to the lookup algorithms presented thereaf-

ter.

1.2.1 Internet addressing architecture and route lookups

In 1993, the Internet addressing architecture changed fromclass-based addressing to

today’s classless addressing architecture. This change resulted in an increase in the com-

plexity of the route lookup operation. We first briefly describe the structure of IP addresses

and the route lookup mechanism in the original class-based addressing architecture. We

then describe the reasons for the adoption of classless addressing and the details of the

lookup mechanism as performed by Internet routers.

IP version 4 (abbreviated as IPv4) is the version of Internet Protocol most widely used

in the Internet today. IPv4 addresses are 32 bits long and are commonly written in the dot-

ted-decimal notation — for example, 240.2.3.1, with dots separating the four bytes of the

address written as decimal numbers. It is sometimes useful to view IP addresses as 32-bit

unsigned numbers on the number line, , which we will refer to as theIP

number line. For example, the IP address 240.2.3.1 represents the decimal number

4026663681  and the IP address 240.2.3.10 represents

the decimal number 4026663690. Conceptually, each IPv4 address is a pair(netid, hostid),

wherenetid identifies a network, andhostid identifies a host on that network. All hosts on

the same network have the samenetid but differenthostids. Equivalently, the IP addresses

of all hosts on the same network lie in a contiguous range on the IP number line.

The class-based Internet addressing architecture partitioned the IP address space into

five classes — classesA, B andC for unicast traffic, classD for multicast traffic and class

E reserved for future use. Classes were distinguished by the number of bits used to repre-

sent thenetid. For example, a classA network consisted of a 7-bitnetid and a 24-bithos-

tid, whereas a classC network consisted of a 21-bitnetid and an 8-bithostid. The first few
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most-significant bits of an IP address determined its class, as shown in Table 1.1 and

depicted on the IP number line in Figure 1.5.

 The class-based addressing architecture enabled routers to use a relatively simple

lookup operation. Typically, the forwarding table had three parts, one for each of the three

unicast classesA, Band C. Entries in the forwarding table were tuples of the form<netid,

address of next hop>. All entries in the same part hadnetids of fixed-width — 7, 14 and

21 bits respectively for classes A, Band C, and the lookup operation for each incoming

packet proceeded as in Figure 1.6. First, the class was determined from the most-signifi-

cant bits of the packet’s destination address. This in turn determined which of the three

TABLE  1.1. Class-based addressing.

Class Range

Most
significant

address
bits

netid hostid

A 0.0.0.0 -
127.255.255.255

0 bits 1-7 bits 8-31

B 128.0.0.0 -
191.255.255.255

10 bits 2-15 bits 16-31

C 192.0.0.0 -
223.255.255.255

110 bits 3-23 bits 24-31

D (multicast) 224.0.0.0 -
239.255.255.255

1110 - -

E (reserved for future
use)

240.0.0.0 -
255.255.255.255

11110 - -

ClassA ClassB ClassC

0.0.0.0 128.0.0.0 192.0.0.0 224.0.0.0

Figure 1.5 The IP number line and the original class-based addressing scheme. (The intervals represented
by the classes are not drawn to scale.)

240.0.0.0

ClassD ClassE

255.255.255.255
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parts of the forwarding table to use. The router then searched for an exact match between

thenetid of the incoming packet and an entry in the selected part of the forwarding table.

This exact match search could be performed using, for example, a hashing or a binary

search algorithm [13].

The class-based addressing scheme worked well in the early days of the Internet.

However, as the Internet grew, two problems emerged — a depletion of the IP address

space, and an exponential growth of routing tables.

The allocation of network addresses on fixed netid-hostid boundaries (i.e., at the 8th,

16th and 24th bit positions, as shown in Table 1.1) was too inflexible, leading to a large

number of wasted addresses. For example, a classB netid (good for hostids) had to be

allocated to any organization with more than 254 hosts.1 In 1991, it was predicted

1.  While one classC netid accommodates 256hostids, the values 0 and 255 are reserved to denote network and broad-
cast addresses respectively.

Destination Address

Hash

Hash

Hash

Determine

class

class A

class B

class C

Next-hop
Address

Forwarding Table

Figure 1.6 Typical implementation of the lookup operation in a class-based addressing scheme.

address

Extract
netid

216
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[44][91][92] that the class B address space would be depleted in less than 14 months, and

the whole IP address space would be exhausted by 1996 — even though less than 1% of

the addresses allocated were actually in use [44].

The second problem was due to the fact that a backbone IP router stored every allo-

catednetid in its routing table. As a result, routing tables were growing exponentially, as

shown in Figure 1.7. This placed a high load on the processor and memory resources of

routers in the backbone of the Internet.

In an attempt to slow down the growth of backbone routing tables and allow more effi-

cient use of the IP address space, an alternative addressing and routing scheme called

CIDR (Classless Inter-domain Routing) was adopted in 1993 [26][81]. CIDR does away
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Figure 1.7 Forwarding tables in backbone routers were growing exponentially between 1988 and 1992
(i.e., under the class-based addressing scheme). (Source: RFC1519 [26])
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with the class-based partitioning of the IP address space and allowsnetids to be of arbi-

trary length rather than constraining them to be 7, 14 or 21 bits long. CIDR represents a

netid using an IP prefix — a prefix of an IP address with a variable length of 0 to 32 signif-

icant bits and remaining wildcard bits.1 An IP prefix is denoted byP/l whereP is the pre-

fix or netid, andl its length. For example, 192.0.1.0/24 is a 24-bit prefix that earlier

belonged to classC. With CIDR, an organization with, say, 300 hosts can be allocated a

prefix of length 23 (good for hostids) leading to more efficient

address allocation.

This adoption of variable-length prefixes now enables a hierarchical allocation of IP

addresses according to the physical topology of the Internet. A service provider that con-

nects to the Internet backbone is allocated a short prefix. The provider then allocates

longer prefixes out of its own address space to other smaller Internet Service Providers

(ISPs) or sites that connect to it, and so on. Hierarchical allocation allows the provider to

aggregate the routing information of the sites that connect to it, before advertising routes

to the routers higher up in the hierarchy. This is illustrated in the following example:

Example 1.1:(see Figure 1.8) Consider an ISP P and two sites S and T connected to P. For
instance, sites S and T may be two university campuses using P’s network infra-
structure for communication with the rest of the Internet. P may itself be connected
to some backbone provider. Assume that P has been allocated a prefix 192.2.0.0/
22, and it chooses to allocate the prefix 192.2.1.0/24 to S and 192.2.2.0/24 to T.
This implies that routers in the backbone (such as R1 in Figure 1.8) only need to
keep one table entry for the prefix 192.2.0.0/22 with P’s network as the next-hop,
i.e., they do not need to keep separate routing information for individual sites S and
T. Similarly, Routers inside P’s network (e.g., R5 and R6) keep entries to distin-
guish traffic among S and T, but not for any networks or sites that are connected
downstream to S or T.

1.  In practice, the shortest prefix is 8 bits long.

2
32 23–

2
9

512= =
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The aggregation of prefixes, or “route aggregation,” leads to a reduction in the size of

backbone routing tables. While Figure 1.7 showed an exponential growth in the size of

routing tables before widespread adoption of CIDR in 1994, Figure 1.9 shows that the

growth turned linear thereafter — at least till January 1998, since when it seems to have

become faster than linear again.1

1.  It is a bit premature to assert that routing tables are again growing exponentially. In fact, the portion of the plot in Fig-
ure 1.9 after January 1998 fits well with an exponential as well as a quadratic curve. While not known definitively, the
increased rate of growth could be because: (1) Falling costs of raw transmission bandwidth are encouraging decreased
aggregation and a finer mesh of granularity; (2) Increasing expectations of reliability are forcing network operators to
make their sites multi-homed.

Backbone

ISP P

Site S Site T

192.2.0.0/22

192.2.1.0/24 192.2.2.0/24

ISP Q

200.11.0.0/22

Router

R1

R2

192.2.0.0/22, R2

...

Routing table at R1

R3
R4

Figure 1.8 Showing how allocation of addresses consistent with the topology of the Internet helps keep
the routing table size small. The prefixes are shown on the IP number line for clarity.

192.2.0.0/22

192.2.1.0/24192.2.2.0/24

200.11.0.0/22

R6R5

200.11.0.0/22, R3

IP Number Line

S1 S2
S3
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Hierarchical aggregation of addresses creates a new problem. When a site changes its

service provider, it would prefer to keep its prefix (even though topologically, it is con-

nected to the new provider). This creates a “hole” in the address space of the original pro-

vider — and so this provider must now create specific entries in its routing tables to allow

correct forwarding of packets to the moved site. Because of the presence of specific

entries, routers are required to be able to forward packets according to themost specific

route present in their forwarding tables. The same capability is required when a site is

multi-homed, i.e., has more than one connection to an upstream carrier or a backbone pro-

vider. The following examples make this clear:

Example 1.2:Assume that site T in Figure 1.8 with address space 192.2.2.0/24 changed its ISP
to Q, as shown in Figure 1.10. The routing table at router R1 needs to have an addi-
tional entry corresponding to 192.2.2.0/24 pointing to Q’s network. Packets des-

Figure 1.9 This graph shows the weekly average size of a backbone forwarding table (source [136]). The
dip in early 1994 shows the immediate effect of widespread deployment of CIDR.
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tined to T at router R1 match this more specific route and are correctly forwarded
to the intended destination in T (see Figure 1.10).

Example 1.3:Assume that ISP Q of Figure 1.8 is multi-homed, being connected to the backbone
also through routers S4 and R7 (see Figure 1.11). The portion of Q’s network iden-
tified with the prefix 200.11.1.0/24 is now better reached through router R7. Hence,
the forwarding tables in backbone routers need to have a separate entry for this
special case.

Lookups in the CIDR environment

With CIDR, a router’s forwarding table consists of entries of the form<route-prefix,

next-hop-addr>,whereroute-prefix is an IP prefix andnext-hop-addr is the IP address of

the next hop. A destination addressmatches a route-prefix if the significant bits of the pre-

Backbone

ISP P

Site S Site T

192.2.0.0/22

192.2.1.0/24 192.2.2.0/24

ISP Q

200.11.0.0/22

Router

R1

R2

192.2.0.0/22, R2

...

Routing table at R1

R3
R4

Figure 1.10 Showing the need for a routing lookup to find the most specific route in a CIDR environment.

192.2.2.0/24, R3

S1 S2
S3

192.2.0.0/22 200.11.0.0/22

200.11.0.0/22, R3

192.2.1.0/24192.2.2.0/24 (hole)

IP Number Line

R5 R6
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fix are identical to the first few bits of the destination address. A routing lookup operation

on an incoming packet requires the router to find the most specific route for the packet.

This implies that the router needs to solve thelongest prefix matching problem, defined

as follows.

Definition 1.1: Thelongest prefix matching problem is the problem of finding the for-
warding table entry containing the longest prefix among all prefixes (in
other forwarding table entries) matching the incoming packet’s destination
address. This longest prefix is called the longest matching prefix.

Example 1.4:The forwarding table in router R1 of Figure 1.10 is shown in Table 1.2. If an
incoming packet at this router has a destination address of 200.11.0.1, it will match
only the prefix 200.11.0.0/22 (entry #2) and hence will be forwarded to router R3.

Backbone

ISP P

Site S Site T

192.2.0.0/22

192.2.1.0/24 192.2.2.0/24

ISP Q

200.11.0.0/22

Router

R1

R2

192.2.0.0/22, R2

...

Routing table at R1

R3
R4

192.2.0.0/22 200.11.0.0/22

S4

200.11.0.0/22, R3
200.11.1.0/24, R7 R7

200.11.1.0/24

200.11.1.0/24

Figure 1.11 Showing how multi-homing creates special cases and hinders aggregation of prefixes.

192.2.1.0/24192.2.2.0/24

IP Number Line

R5 R6

S1 S2 S3
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If the packet’s destination address is 192.2.2.4, it matches two prefixes (entries #1
and #3). Because entry #3 has the longest matching prefix, the packet will be for-
warded to router R3.

Difficulty of longest prefix matching

The destination address of an arriving packet does not carry with it the information

needed to determine the length of the longest matching prefix. Hence, we cannot find the

longest match using an exact match search algorithm (for example, using hashing or a

binary search procedure). Instead, a search for the longest matching prefix needs to deter-

mine both the length of the longest matching prefix as well as the forwarding table entry

containing the prefix of this length that matches the incoming packet’s destination address.

One naive longest prefix matching algorithm is to perform 32 different exact match search

operations, one each for all prefixes of length , . This algorithm would require

32 exact match search operations. As we will see later in this thesis, faster algorithms are

possible.

In summary, the need to perform longest prefix matching has made routing lookups

more complicated now than they were before the adoption of CIDR when only one exact

match search operation was required. Chapters 2 and 3 of this thesis will present efficient

longest prefix matching algorithms for fast routing lookups.

TABLE  1.2. The forwarding table of router R1 in Figure 1.10.

Entry
Number

Prefix Next-Hop

1. 192.2.0.0/22 R2

2. 200.11.0.0/22 R3

3. 192.2.2.0/24 R3

i 1 i 32≤ ≤



CHAPTER 1   Introduction 17

2  Flow-aware IP router and packet classification

As mentioned earlier, routers may optionally classify packets into flows for special

processing. In this section, we first describe why some routers are flow-aware, and how

they use packet classification to recognize flows. We also provide a brief overview of the

architecture of flow-aware routers. We then provide the background leading to the formal

definition of the packet classification problem. Fast packet classification is the subject of

the second part of this thesis (Chapters 4 and 5).

2.1 Motivation

One main reason for the existence of flow-aware routers stems from an ISP’s desire to

have the capability of providing differentiated services to its users. Traditionally, the Inter-

net provides only a “best-effort” service, treating all packets going to the same destination

identically, and servicing them in a first-come-first-served manner. However, the rapid

growth of the Internet has caused increasing congestion and packet loss at intermediate

routers. As a result, some users are willing to pay a premium price in return for better ser-

vice from the network. To maximize their revenue, the ISPs also wish to provide different

levels of service at different prices to users based on their requirements, while still deploy-

ing one common network infrastructure.1

In order to provide differentiated services, routers require additional mechanisms.

These mechanisms — admission control, conditioning (metering, marking, shaping, and

policing), resource reservation (optional), queue management and fair scheduling (such as

weighted fair queueing) — require, first of all, the capability to distinguish and isolate

traffic belonging to different users based on service agreements negotiated between the

ISP and its customer. This has led to demand for flow-aware routers that negotiate these

1.  This is analogous to the airlines, who also provide differentiated services (such as economy and business class) to dif-
ferent users based on their requirements, while still using the same common infrastructure.
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service agreements, express them in terms ofrules or policies configured on incoming

packets, and isolate incoming traffic according to these rules.

We call a collection of rules or policies apolicy database, flow classifier, or simply a

classifier.1 Each rule specifies a flow that a packet may belong to based on some criteria

on the contents of the packet header, as shown in Figure 1.12. All packets belonging to the

same flow are treated in a similar manner. The identified flow of an incoming packet spec-

ifies anaction to be applied to the packet. For example, a firewall router may carry out the

action of eitherdenying or allowing access to a protected network. The determination of

this action is calledpacket classification — the capability of routers to identify the action

associated with the “best” rule an incoming packet matches. Packet classification allows

ISPs to differentiate from their competition and gain additional revenue by providing dif-

ferent value-added services to different customers.

1.  Sometimes, the functional datapath element that classifies packets is referred to as a classifier. In this thesis, however,
we will consistently refer to the policy database as a classifier.

Figure 1.12 This figure shows some of the header fields (and their widths) that might be used for
classifying a packet. Although not shown in this figure, higher layer (e.g., application-layer) fields may also
be used for packet classification.

L2- DAL2-SAL3-PROTL3-DAL3-SAL4-PROTL4-SP L4-DPPAYLOAD

Link layer headerNetwork layer headerTransport layer header

DA = Destination Address
SA = Source Address
PROT = Protocol

L2 = Layer 2 (e.g., Ethernet)

L3 = Layer 3 (e.g., IP)

L4 = Layer 4 (e.g., TCP)
SP = Source Port
DP =Destination Port

48b48b8b32b32b8b16b 16b
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2.2 Architecture of a flow-aware router

Flow-aware routers perform a superset of the functions of a packet-by-packet router.

The typical path taken by a packet through a flow-aware router is shown in Figure 1.13

and consists of four main functions on the packet: (1) performing route lookup to identify

the outgoing port, (2) performing classification to identify the flow to which an incoming

packet belongs, (3) applying the action (as part of the provisioning of differentiated ser-

vices or some other form of special processing) based on the result of classification, and

(4) switching to the output port. The various forms of special processing in function (3),

while interesting in their own right, are not the subject of this thesis. The following refer-

ences describe a variety of actions that a router may perform: admission control [42],

queueing [25], resource reservation [6], output link scheduling [18][74][75][89] and bill-

ing [21].

2.3 Background and definition of the packet classification problem

Packet classification enables a number of additional, non-best-effort network services

other than the provisioning of differentiated qualities of service. One of the well-known

applications of packet classification is a firewall. Other network services that require

packet classification include policy-based routing, traffic rate-limiting and policing, traffic

Determine next Switch packet

Classification Switching

Classify packet
to obtainaction.

Apply the services
indicated byaction

Special Processing

to outgoing
outgoing port.
hop address and

Line card Fabric

Figure 1.13 Datapath of a packet through a flow-aware router. Note that in some applications, a packet
may need to be classified both before and after route lookup.

Route Lookup

on the packet. port.
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shaping, and billing. In each case, it is necessary to determine which flow an arriving

packet belongs to so as to determine — for example — whether to forward or filter it,

where to forward it to, what type of service it should receive, or how much should be

charged for transporting it.

To help illustrate the variety of packet classifiers, let us consider some examples of

how packet classification can be used by an ISP to provide different services. Figure 1.14

shows ISP1 connected to three different sites: two enterprise networks E1 and E2, and a

TABLE  1.3. Some examples of value-added services.

Service Example

Packet Filtering Deny all traffic from ISP3 (on interfaceX) destined to E2.

Policy Routing Send all voice-over-IP traffic arriving from E1 (on interfaceY) and
destined to E2 via a separate ATM network.

Accounting & Billing Treat all video traffic to E1 (via interfaceY) as highest priority and
perform accounting for such traffic.

Traffic Rate-limiting Ensure that ISP2 does not inject more than 10 Mbps of email traffic
and 50 Mbps of total traffic on interfaceX.

Traffic Shaping Ensure that no more than 50 Mbps of web traffic is sent to ISP2 on
interfaceX.

ISP2

ISP3

E1

E2

ISP1

X

Z

Y

Figure 1.14 Example network of an ISP (ISP1) connected to two enterprise networks (E1 and E2) and to
two other ISP networks across a network access point (NAP).

NAP

Router
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Network Access Point1 (NAP), which is in turn connected to two other ISPs — ISP2 and

ISP3. ISP1 provides a number of different services to its customers, as shown in Table 1.3.

Table 1.4 shows the categories that an incoming packet must be classified into by the

router at interfaceX. Note that the classes specified may or may not be mutually exclusive.

For example, the first and second flow in Table 1.4 overlap. This happens commonly, and

when no explicit priorities are specified, we follow the convention that rules closer to the

top of the list have higher priority.

With this background, we proceed to define the problem of packet classification.

Each rule of the classifier has components. The component of ruleR, denoted as

, is a regular expression on the field of the packet header. A packetP is said to

match a particular ruleR, if , the  field of the header ofP satisfies the regular expres-

sion . In practice, a rule component is not a general regular expression — often lim-

ited by syntax to a simple address/mask or operator/number(s) specification. In an address/

mask specification, a 0 at bit positionx in the mask denotes that the corresponding bit in

1.  A network access point (NAP) is a network location which acts as an exchange point for Internet traffic. An ISP con-
nects to a NAP to exchange traffic with other ISPs at that NAP.

TABLE  1.4. Given the rules in Table 1.3, the router at interface X must classify an incoming packet into the following
categories.

Service Flow Relevant Packet Fields

Packet Filtering From ISP3 and going to E2 Source link-layer address,

destination network-layer address

Traffic rate-limiting Email and from ISP2 Source link-layer address, source transport
port number

Traffic shaping Web and to ISP2 Destination link-layer address, destination
transport port number

All other packets —

d i
th

R i[ ] i
th

i∀ i
th

R i[ ]
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the address is a “don’t care” bit. Similarly, a 1 at bit positionx in the mask denotes that the

corresponding bit in the address is a significant bit. For instance, the first and third most

significant bytes in a packet field matching the specification171.4.3.4/255.0.255.0 must

be equal to 171 and 3, respectively, while the second and fourth bytes can have any value.

Examples of operator/number(s) specifications areeq 1232 andrange 34-9339, which

specify that the matching field value of an incoming packet must be equal to 1232 in the

former specification, and can have any value between 34 and 9339 (both inclusive) in the

latter specification. Note that a route-prefix can be specified as an address/mask pair where

the mask iscontiguous — i.e., all bits with value 1 appear to the left of (i.e., are more sig-

nificant than) bits with value 0 in the mask. For instance, the mask for an 8-bit prefix is

255.0.0.0. A route-prefix of length  can also be specified as a range of width equal to

where . In fact, most of the commonly occurring specifications in practice can

be viewed as range specifications.

We can now formally define packet classification:

Definition 1.2: A classifier  has  rules, , , where  consists of three enti-

ties— (1) A regular expression , , on each of the  header

fields, (2) A number , indicating the priority of the rule in the classi-

fier, and (3) An action, referred to as . For an incoming packet

with the header considered as a d-tuple of points , thed-

dimensional packet classificationproblem is to find the rule  with the

highest priority among all rules  matching the d-tuple; i.e.,

, , , such that  matches ,

. We call rule  the best matching rule for packet.

l 2
t

t 32 l–=

C N Rj 1 j N≤ ≤ Rj

Rj i[ ] 1 i d≤ ≤ d

pr i Rj( )

action Rj( ) P

P1 P2, … Pd,( , )

Rm

Rj

pr i Rm( ) pr i Rj( )> j∀ m≠ 1 j N≤ ≤ Pi Rj i[ ]

1 i d≤ ≤( )∀ Rm P
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Example 1.5:An example of a classifier in four dimensions is shown in Table 1.5. By conven-
tion, the first rule R1 has the highest priority and rule R7 has the lowest priority
(‘*’ denotes a complete wildcard specification, and ‘gt v’ denotes any value greater
than v). Classification results on some example packets using this classifier are
shown in Table 1.6.

We can see that routing lookup is an instance of one-dimensional packet classification.

In this case, all packets destined to the set of addresses described by a common prefix may

be considered to be part of the same flow. Each rule has a route-prefix as its only compo-

TABLE  1.5. An example classifier.

Rule
Network-layer

destination
(address/mask)

Network-layer
source (address/

mask)

Transport-
layer

destination

Transport-
layer

protocol
Action

R1 152.163.190.69/
255.255.255.255

152.163.80.11/
255.255.255.255

* * Deny

R2 152.168.3.0/
255.255.255.0

152.163.200.157/
255.255.255.255

eq http udp Deny

R3 152.168.3.0/
255.255.255.0

152.163.200.157/
255.255.255.255

range 20-21 udp Permit

R4 152.168.3.0/
255.255.255.0

152.163.200.157/
255.255.255.255

eq http tcp Deny

R5 152.163.198.4/
255.255.255.255

152.163.161.0/
255.255.252.0

gt 1023 tcp Permit

R6 152.163.198.4/
255.255.255.255

152.163.0.0/
255.255.0.0

gt 1023 tcp Deny

R7 * * * * Permit

TABLE  1.6. Examples of packet classification on some incoming packets using the classifier of Table 1.5.

Packet
Header

Network-
layer

destination
address

Network-
layer source

address

Transport-
layer

destination
port

Transport-
layer

protocol

Best
matching

rule,
action

P1 152.163.190.69 152.163.80.11 http tcp R1, Deny

P2 152.168.3.21 152.163.200.157 http udp R2, Deny

P3 152.168.198.4 152.163.160.10 1024 tcp R5, Permit
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nent and has the next hop address associated with this prefix as the action. If we define the

priority of the rule to be the length of the route-prefix, determining the longest-matching

prefix for an incoming packet is equivalent to determining the best matching rule in the

classifier. The packet classification problem is therefore a generalization of the routing

lookup problem. Chapters 4 and 5 of this thesis will present efficient algorithms for fast

packet classification in flow-aware routers.

3  Goals and metrics for lookup and classification algorithms

A lookup or classification algorithm preprocesses a routing table or a classifier to com-

pute a data structure that is then used to lookup or classify incoming packets. This prepro-

cessing is typically done in software in the routing processor, discussed in Section 1.1.

There are a number of properties that we desire for all lookup and classification algo-

rithms:

• High speed.

• Low storage requirements.

• Flexibility in implementation.

• Ability to handle large real-life routing tables and classifiers.

• Low preprocessing time.

• Low update time.

• Scalability in the number of header fields (for classification algorithms only).

• Flexibility in specification (for classification algorithms only).

We now discuss each of these properties in detail.

• High speed — Increasing data rates of physical links require faster address look-

ups at routers. For example, links running at OC192c (approximately 10 Gbps)

rates need the router to process 31.25 million packets per second (assuming mini-
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mum-sized 40 byte TCP/IP packets).1 We generally require algorithms to perform

well in the worst case, e.g., classify packets at wire-speed. If this were not the

case, all packets (regardless of the flow they belong to) would need to be queued

before the classification function.This would defeat the purpose of distinguishing

and isolating flows, and applying different actions on them. For example, it would

make it much harder to control the delay of a flow through the router. At the same

time, in some applications, for example, those that do not provide qualities of ser-

vice, a lookup or classification algorithm that performs well in theaverage case

may be acceptable, in fact desirable, because the average lookup performance can

be much higher than the worst-case performance. For such applications, the algo-

rithm needs to process packets at the rate of 3.53 million packets per second for

OC192c links, assuming an average Internet packet size of approximately 354

bytes [121]. Table 1.7 lists the lookup performance required in one router port to

1.  In practice, IP packets are encapsulated and framed before being sent on SONET links. The most commonly used
encapsulation method is PPP (Point-to-Point Protocol) in HDLC-like framing. (HDLC stands for High-level Data Link
Control). This adds either 7 or 9 bytes of overhead (1 byte flag, 1 byte address, 1 byte control, 2 bytes protocol and 2 to
4 bytes of frame check sequence fields) to the packet. When combined with the SONET overhead (27 bytes of line and
section overhead in a 810 byte frame), the lookup rate required for 40 byte TCP/IP packets becomes approximately 25.6
Mpps. (Please see IETF RFC 1661/1662 for PPP/HDLC framing and RFC 1619/2615 for PPP over SONET.)

TABLE  1.7. Lookup performance required as a function of line-rate and packet size.

Year Line
Line-rate
(Gbps)

40-byte
packets
(Mpps)

84-byte
packets
(Mpps)

354-byte
packets
(Mpps)

1995-7 T1 0.0015 0.0468 0.0022 0.00053

1996-8 OC3c 0.155 0.48 0.23 0.054

1997-8 OC12c 0.622 1.94 0.92 0.22

1999-2000 OC48c 2.50 7.81 3.72 0.88

(Now) 2000-1 OC192c 10.0 31.2 14.9 3.53

(Next) 2002-3 OC768c 40.0 125.0 59.5 14.1

1997-2000 1 Gigabit-
Ethernet

1.0 N.A. 1.49 0.35
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handle a continuous stream of incoming packets of a given size (84 bytes is the

minimum size of a Gigabit-Ethernet frame — this includes a 64-byte packet, 7-

byte preamble, 1-byte start-of-frame delimiter, and 12 bytes of inter-frame gap).

• Flexibility in implementation— The forwarding engine may be implemented

either in software or in hardware depending upon the system requirements. Thus,

a lookup or classification algorithm should be suitable for implementation in both

hardware and software. For the highest speeds (e.g., for OC192c in the year

2000), we expect that hardware implementation will be necessary — hence, the

algorithm design should be amenable to pipelined implementation.

• Low storage requirements — We desire that the storage requirements of the data

structure computed by the algorithm be small. Small storage requirements enable

the use of fast but expensive memory technologies like SRAMs (Synchronous

Random Access Memories). A memory-efficient algorithm can benefit from an

on-chip cache if implemented in software, and from an on-chip SRAM if imple-

mented in hardware.

• Ability to handle large real-life routing tables and classifiers— The algorithm

should scale well both in terms of storage and speed with the size of the forward-

ing table or the classifier. At the time of the writing of this thesis, the forwarding

tables of backbone routers contain approximately 98,000 route-prefixes and are

growing rapidly (as shown in Figure 1.9). A lookup engine deployed in the year

2001 should be able to support approximately 400,000-512,000 prefixes in order

to be useful for at least five years. Therefore, lookup and classification algorithms

should demonstrate good performance on current real-life routing tables and clas-

sifiers, as well as accommodate future growth.

• Low preprocessing time — Preprocessing time is the time taken by an algorithm

to compute the initial data structure. An algorithm that supports incremental

updates of its data structure is said to be“dynamic.” A “static”  algorithm

requires the whole data structure to be recomputed each time a rule is added or
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deleted. In general, dynamic algorithms can tolerate larger preprocessing times

than static algorithms. (The absolute values differ with applications.)

• Low update time — Routing tables have been found to change fairly frequently,

often at the peak rate of a few hundred prefixes per second and at the average rate

of more than a few prefixes per second [47]. A lookup algorithm should be able to

update the data structure at least this fast. For classification algorithms, the update

rate differs widely among different applications — a very low update rate may be

sufficient in firewalls where entries are added manually or infrequently. On the

other hand, a classification algorithm must be able to support a high update rate in

so called “stateful” classifiers where a packet may dynamically trigger the addi-

tion or deletion of a new rule or a fine-granularity flow.

• Scalability in the number of header fields (for classification algorithms only) —

A classification algorithm should ideally allow matching on arbitrary fields,

including link-layer, network-layer, transport-layer and — in some cases — the

application-layer headers.1 For instance, URL (universal resource locator — the

identifier used to locate resources on the World Wide Web) based classification

may be used to route a user’s packets across a different network or to give the user

a different quality of service. Hence, while it makes sense to optimize for the

commonly used header fields, the classification algorithm should not preclude the

use of other header fields.

• Flexibility in specification (for classification algorithms only) — A classification

algorithm should support flexible rule specifications, including prefixes, operators

(such as range, less than, greater than, equal to, etc.) and wildcards. Even non-

contiguous masks may be required, depending on the application using classifica-

tion.

1.  That is why packet-classifying routers have sometimes been called “layerless switches”.
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4  Outline of the thesis

This thesis proposes several novel lookup and classification algorithms. There is one

chapter devoted to each algorithm. Each chapter first presents background work related to

the algorithm. It then presents the motivation, key concepts, properties, and implementa-

tion results for the algorithm. It also evaluates the algorithm against the metrics outlined

above and against previous work on the subject.

Chapter 2 presents an overview of previous work on routing lookups. It proposes and

discusses a simple routing lookup algorithm optimized for implementation in dedicated

hardware. This algorithm performs the longest prefix matching operation in two memory

accesses that can be pipelined to give the throughput of one routing lookup every memory

access. This corresponds to 20 million packets per second with 50 ns DRAMs (Dynamic

Random Access Memories).

With the motivation of high speed routing lookups, Chapter 3 defines a new problem

of minimizing the average lookup time while keeping the maximum lookup time bounded.

This chapter then describes and analyzes two algorithms to solve this new problem.

Experiments show an improvement by a factor of 1.7 in the average number of memory

accesses per lookup over those obtained by worst-case lookup time minimization algo-

rithms. Moreover, the algorithms proposed in this chapter support almost perfect balanc-

ing of the incoming lookup load, making them easily parallelizable for high speed designs.

In Chapter 4, we move on to the problem of multi-field packet classification. Chapter 4

provides an overview of previous work and highlights the issues in designing solutions for

this problem. This chapter proposes and discusses the performance of a novel algorithm

for fast classification on multiple header fields.
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Chapter 5 presents another new algorithm for high speed multi-field packet classifica-

tion. This algorithm is different from the one proposed in Chapter 4 in that it supports fast

incremental updates, is otherwise slower, and occupies a smaller amount of storage.

Finally, Chapter 6 concludes by discussing directions for future work in the area of fast

routing lookups and packet classification.
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CHAPTER     2

An Algorithm for Performing

Routing Lookups in Hardware

1  Intr oduction

This chapter describes a longest prefix matching algorithm to perform fast IPv4 route

lookups in hardware. The chapter first presents an overview of previous work on IP look-

ups in Section 2. As we will see, most longest prefix matching algorithms proposed in the

literature are designed primarily for implementation in software. They attempt to optimize

the storage requirements of their data structure, so that the data structure can fit in the fast

cache memories of high speed general purpose processors. As a result, these algorithms do

not lend themselves readily to hardware implementation.

Motivated by the observation in Section 3 of Chapter 1 that the performance of a

lookup algorithm is most often limited by the number of memory accesses, this chapter

presents an algorithm to perform the longest matching prefix operation for IPv4 route

lookups in hardware in two memory accesses. The accesses can be pipelined to achieve

one route lookup every memory access. With 50 ns DRAM, this corresponds to approxi-

mately  packets per second — enough to forward a continuous stream of 64-byte

packets arriving on an OC192c line.

20 106×
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The lookup algorithm proposed in this chapter achieves high throughput by using pre-

computation and trading off storage space with lookup time. This has the side-effect of

increased update time and overhead to the central processor, and motivates the low-over-

head update algorithms presented in Section 5 of this chapter.

1.1 Organization of the chapter

Section 2 provides an overview of previous work on route lookups and a comparative

evaluation of the different routing lookup schemes proposed in literature. Section 3

describes the proposed route lookup algorithm and its data structure. Section 4 discusses

some variations of the basic algorithm that make more efficient use of memory. Section 5

investigates how route entries can be quickly inserted and removed from the data struc-

ture. Finally, Section 6 concludes with a summary of the contributions of this chapter.

2  Background and previous work on route lookup algorithms

This section begins by briefly describing the basic data structures and algorithms for

longest prefix matching, followed by a description of some of the more recently proposed

schemes and a comparative evaluation (both qualitative and quantitative) of their perfor-

mance. In each case, we provide only an overview, referring the reader to the original ref-

erences for more details.

2.1 Background: basic data structures and algorithms

We will use the forwarding table shown in Table 2.1 as an example throughout this

subsection. This forwarding table has four prefixes of maximum width 5 bits, assumed to

have been added to the table in the sequence P1, P2, P3, P4.
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2.1.1 Linear search

The simplest data structure is a linked-list of all prefixes in the forwarding table. The

lookup algorithm traverses the list of prefixes one at a time, and reports the longest match-

ing prefix at the end of the traversal. Insertion and deletion algorithms perform trivial

linked-list operations. The storage complexity of this data structure for prefixes is

. The lookup algorithm has time complexity  and is thus too slow for practical

purposes when  is large. The insertion and deletion algorithms have time complexity

, assuming the location of the prefix to be deleted is known.

The average lookup time of a linear search algorithm can be made smaller if the pre-

fixes are sorted in order of decreasing length. For example, with this modification, the pre-

fixes of Table 2.1 would be kept in the order P4, P3, P1, P2; and the lookup algorithm

would be modified to simply stop traversal of the linked-list the first time it finds a match-

ing prefix.

2.1.2 Caching of recently seen destination addresses

The idea of caching, first used for improving processor performance by keeping fre-

quently accessed data close to the CPU [34], can be applied to routing lookups by keeping

recently seen destination addresses and their lookup results in aroute-cache. A full lookup

TABLE  2.1. An example forwarding table with four prefixes. The prefixes are written in binary with a ‘*’ denoting
one or more trailing wildcard bits — for instance, 10* is a 2-bit prefix.

Prefix Next-hop

P1 111* H1

P2 10* H2

P3 1010* H3

P4 10101 H4

N

O N( ) O N( )

N

O 1( )
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(using some longest prefix matching algorithm) is now performed only if the incoming

destination address is not already found in the cache.

Cache hit rate needs to be high in order to achieve a significant performance improve-

ment. For example, if we assume that a full lookup is 20 times slower than a cache lookup,

the hit rate needs to be approximately 95% or higher for a performance improvement by a

factor of 10. Early studies [22][24][77] reported high cache hit rates with large parallel

caches: for instance, Partridge [77] reports a hit rate of 97% with a cache of size 10,000

entries, and 77% with a cache of size 2000 entries. Reference [77] suggests that the cache

size should scale linearly with the increase in the number of hosts or the amount of Inter-

net traffic. This implies the need for exponentially growing cache sizes. Cache hit rates are

expected to decrease with the growth of Internet traffic because of decreasing temporal

locality [66]. The temporal locality of traffic is decreasing because of an increasing num-

ber of concurrent flows at high-speed aggregation points and decreasing duration of a

flow, probably because of an increasing number of short web transfers on the Internet.

A cache management scheme must decide which cache entry to replace upon addition

of a new entry. For a route cache, there is an additional overhead of flushing the cache on

route updates. Hence, low hit rates, together with cache search and management overhead,

may even degrade the overall lookup performance. Furthermore, the variability in lookup

times of different packets in a caching scheme is undesirable for the purpose of hardware

implementation. Because of these reasons, caching has generally fallen out of favor with

router vendors in the industry (see Cisco [120], Juniper [126] and Lucent [128]) who tout

fast hardware lookup engines that do not use caching.
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2.1.3 Radix trie

A radix trie, or simply a trie,1 is a binary tree that has labeled branches, and that is tra-

versed during a search operation using individual bits of the search key. The left branch of

a node is labeled ‘0’ and the right-branch is labeled ‘1.’ A node,, represents a bit-string

formed by concatenating the labels of all branches in the path from the root node to. A

prefix, , is stored in the node that represents the bit-string. For example, the prefix

is stored in the left child of the root node.

1.  The name trie comes from retrieval, but is pronounced “try”. See Section 6.3 on page 492 of Knuth [46] for more
details on tries.

P1

P2

P4

P3

1

0

0

1

1

11

Figure 2.1 A binary trie storing the prefixes of Table 2.1. The gray nodes store pointers to next-hops. Note
that the actual prefix values are never stored since they are implicit from their position in the trie and can be
recovered by the search algorithm. Nodes have been named A, B, ..., H in this figure for ease of reference.

F

D

B

A

C

E

G

H

next-hop-ptr (if prefix present)

left-ptr right-ptr

Trie node

v

v

p p 0*
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A trie for -bit prefixes has a maximum depth of nodes. The trie for the example

forwarding table of Table 2.1 is shown in Figure 2.1.

The longest prefix search operation on a given destination address proceeds bitwise

starting from the root node of the trie. The left (right) branch of the root node is taken if

the first bit of the address is ‘0’ (‘1’). The remaining bits of the address determine the path

of traversal in a similar manner. The search algorithm keeps track of the prefix encoun-

tered most recently on the path. When the search ends at a null pointer, this most recently

encountered prefix is the longest prefix matching the key. Therefore, finding the longest

matching prefix using a trie takes  memory accesses in the worst case, i.e., has time

complexity .

The insertion operation proceeds by using the same bit-by-bit traversal algorithm as

above. Branches and internal nodes that do not already exist in the trie are created as the

trie is traversed from the root node to the node representing the new prefix. Hence, inser-

tion of a new prefix can lead to the addition of at most other trie nodes. The storage

complexity of a -bit trie with  prefixes is thus .1

An IPv4 route lookup operation is slow on a trie because it requires up to 32 memory

accesses in the worst case. Furthermore, a significant amount of storage space is wasted in

a trie in the form of pointers that are null, and that are onchains — paths with 1-degree

nodes, i.e., that have only one child (e.g., path BCEGH in Figure 2.1).

Example 2.1:Given an incoming 5-bit address 10111 to be looked up in the trie ofFigure 2.1,
the longest prefix matching algorithm takes the path ABCE before reaching a null
pointer. The last prefix encountered on this path, prefix P2 (10*) in node C, is the
desired longest matching prefix.

1.  The total amount of space is, in fact, slightly less than because prefixes share trie branches near the root node.

W W

W

O W( )

W

W N O NW( )

NW
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As Figure 2.1 shows, each trie node keeps a pointer each to its children nodes, and if it

contains a prefix, also a pointer to the actual forwarding table entry (to recover the next-

hop address). Storage space for the pointer can be saved by ‘pushing’ the prefixes to the

leaves of the trie so that no internal node of the trie contains a prefix. Such a trie is referred

to as a leaf-pushed trie, and is shown in Figure 2.2 for the binary trie of Figure 2.1. Note

that this may lead to replication of the same next-hop pointer at several trie nodes.

2.1.4 PATRICIA 1

A Patricia tree is a variation of a trie data structure, with the difference that it has no 1-

degree nodes. Each chain is compressed to a single node in a Patricia tree. Hence, the tra-

versal algorithm may not necessarily inspect all bits of the address consecutively, skipping

over bits that formed part of the label of some previous trie chain. Each node now stores

an additional field denoting the bit-position in the address that determines the next branch

1.  PATRICIA is an abbreviation for “Practical Algorithm To Retrieve Information Coded In Alphanumeric”. It is simply
written as “Patricia” in normal text.
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P4P3
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1

Figure 2.2 A leaf-pushed binary trie storing the prefixes of Table 2.1.
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to be taken at this node. The original Patricia tree [64] did not have support for prefixes.

However, prefixes can be concatenated with trailing zeroes and added to a Patricia tree.

Figure 2.3 shows the Patricia tree for our running example of the routing table. Since a

Patricia tree is a complete binary tree (i.e., has nodes of degree either 0 or 2), it has exactly

 external nodes (leaves) and  internal nodes. The space complexity of a Patricia

tree is thus .

Prefixes are stored in the leaves of a Patricia tree. A leaf node may have to keep a lin-

ear list of prefixes, because prefixes are concatenated with trailing zeroes. The lookup

algorithm descends the tree from the root node to a leaf node similar to that in a trie. At

each node, it probes the address for the bit indicated by the bit-position field in the node.

The value of this bit determines the branch to be taken out of the node. When the algo-

rithm reaches a leaf, it attempts to match the address with the prefix stored at the leaf. This

prefix is the desired answer if a match is found. Otherwise, the algorithm has to recur-

sively backtrack and continue the search in the other branch of this leaf’s parent node.

N N 1–

O N( )
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0 1

1
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C

2

10*

0

3

5

111*

1010* 10101
P3 P4

F

ED

B

A

Figure 2.3 The Patricia tree for the example routing table in Table 2.1. The numbers inside the internal
nodes denote bit-positions (the most significant bit position is numbered 1). The leaves store the complete
key values.
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Hence, the lookup complexity in a Patricia tree is quite high, and can reach in the

worst case.

Example 2.2:Give an incoming 5-bit address 10111 to be looked up in the Patricia tree of Figure
2.3, the longest prefix matching algorithm takes the path ABEG, and compares the
address to the prefix stored in leaf node G. Since it does not match, the algorithm
backtracks to the parent node E and tries to compare the address to the prefix
stored in leaf node F. Since it does not match again, the algorithm backtracks to the
parent node B and finally matches prefix P2 in node D.

Instead of storing prefixes concatenated with trailing zeros as above, a longest prefix

matching algorithm may also form a data structure with different Patricia trees — one

for each of the  prefix lengths. The algorithm searches for an exact match in each of the

trees in decreasing order of prefix-lengths. The first match found yields the longest prefix

matching the given address. One exact match operation on a Patricia tree takes time.

Hence, a longest prefix matching operation on this data structure will take time and

still have  storage complexity.

2.1.5 Path-compressed trie

A Patricia tree loses information while compressing chains because it remembers only

the label on the last branch comprising the chain — the bit-string represented by the other

branches of the uncompressed chain is lost. Unlike a Patricia trie, a path-compressed trie

node stores the complete bit-string that the node would represent in the uncompressed

basic trie. The lookup algorithm matches the address with this bit-string before traversing

the subtrie rooted at that node. This eliminates the need for backtracking and decreases

lookup time to at most  memory accesses. The storage complexity remains. The

path-compressed trie for the example forwarding table of Table 2.1 is shown in Figure 2.4.

Example 2.3:Give an incoming 5-bit address 10111 to be looked up in the path-compressed trie
of Figure 2.4, the longest prefix matching algorithm takes path AB and encounters
a null pointer on the right branch at node B. Hence, the most recently encountered
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prefix P2, stored in node B, yields the desired longest matching prefix for the given
address.

2.2 Previous work on route lookups

2.2.1 Early lookup schemes

The route lookup implementation in BSD unix [90][98] uses a Patricia tree and avoids

implementing recursion by keeping explicit parent pointers in every node. Reference [90]

reports that the expected length of a search on a Patricia tree with non-prefix entries is

. This implies a total of 24 bit tests and 24 memory accesses for

prefixes. Doeringer et al [19] propose thedynamic prefix trie data structure — a variant of

the Patricia data structure that supports non-recursive search and update operations. Each

node of this data structure has six fields — five fields contain pointers to other nodes of the

data structure and one field stores a bit-index to guide the search algorithm as in a Patricia

tree. A lookup operation requires two traversals along the tree, the first traversal descends

P1

0

1

1

E

C
0

1010,P3,5

111

P4

D

B

A

Figure 2.4 The path-compressed trie for the example routing table inTable 2.1. Each node is represented
by (bitstring,next-hop,bit-position).

variable-length bitstring next-hop (if prefix present) bit-position
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the tree to a leaf node and the second backtracks to find the longest prefix matching the

given address. The insertion and deletion algorithms as reported in [19] need to handle a

number of special cases and seem difficult to implement in hardware.

2.2.2 Multi-ary trie and controlled prefix expansion

A binary trie inspects one bit at a time, and potentially has a depth of for -bit

addresses. The maximum depth can be decreased to by inspecting  bits at a time.

This is achieved by increasing the degree of each internal node to. The resulting trie is

called a -way or -ary trie, and has a maximum of  levels. The number of bits

inspected by the lookup algorithm at each trie node,, is referred to as the stride of the

trie. While multi-ary tries have been discussed previously by researchers (e.g., see page

496 of [46], page 408 of [86]), the first detailed exposition in relation to prefixes and rout-

ing tables can be found in [97].

Prefixes are stored in a multi-ary trie in the following manner: If the length of a prefix

is an integral multiple of , say , the prefix is stored at level of the trie. Otherwise, a

prefix of length that is not a multiple of needs to beexpanded to form multiple prefixes,

all of whose lengths are integer multiples of. For example, a prefix of length  needs

to be expanded to two prefixes of length each, that can then be stored in a-ary trie.

Example 2.4:The 4-ary trie to store the prefixes in the forwarding table ofTable 2.1is shown in
Figure 2.5. While prefixes P2 and P3 are stored directly without expansion, the
lengths of prefixes P1 and P4 are not multiples of 2 and hence these prefixes need
to be expanded. P1 expands to form the prefixes P11 and P12, while P4 expands to
form prefixes P41 and P42. All prefixes are now of lengths either 2 or 4.

Expansion of prefixes increases the storage consumption of the multi-ary trie data

structure because of two reasons: (1) The next-hop corresponding to a prefix needs to be

stored in multiple trie nodes after expansion; (2) There is a greater number of unused

(null) pointers in a node. For example, there are 8 nodes, 7 branches, and
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null pointers in the binary trie of Figure 2.1, while there are 8 nodes, 7 branches, and

 null pointers in the 4-ary trie of Figure 2.5. The decreased lookup time

therefore comes at the cost of increased storage space requirements. The degree of expan-

sion controls this trade-off of storage versus speed in the multi-ary trie data structure.

Each node of the expanded trie is represented by an array of pointers. This array has

size  and the pointer at index of the array represents the branch numbered and points

to the child node at that branch.

A generalization of this idea is to have different strides at each level of the (expanded)

trie. For example, a 32-bit binary trie can be expanded to create a four-level expanded trie

with any of the following sequence of strides: 10,10,8,4; or 8,8,8,8, and so on. Srinivasan

et al [93][97] discuss these variations in greater detail. They propose an elegant dynamic

programming algorithm to compute the optimal sequence of strides that, given a forward-

ing table and a desired maximum number of levels, minimizes the storage requirements of

the expanded trie (called a fixed-stride trie) data structure. The algorithm runs in

time, where  is the desired maximum depth. However, updates to a fixed-stride trie

could result in a suboptimal sequence of strides and need costly re-runs of the dynamic

programming optimization algorithm. Furthermore, implementation of a trie whose strides

8 4× 7– 25=

next-hop (if prefix present)

4-ary trie node:
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P2
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G H
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Figure 2.5 A 4-ary trie storing the prefixes of Table 2.1. The gray nodes store pointers to next-hops.
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depend on the properties of the forwarding table may be too complicated to perform in

hardware.

The authors [93][97] extend the idea further by allowing each trie node to have a dif-

ferent stride, and call the resulting trie a variable-stride trie. They propose another

dynamic programming algorithm, that, given a forwarding table and a maximum depth,

computes the optimal stride at each trie node to minimize the total storage consumed by

the variable-stride trie data structure. The algorithm runs in  time for a forward-

ing table with  prefixes.

Measurements in [97] (see page 61) report that the dynamic programming algorithm

takes 1 ms on a 300 MHz Pentium-II processor to compute an optimal fixed-stride trie for

a forwarding table with 38,816 prefixes. This table is obtained from the MAE-EAST NAP

(source [124]). We will call this forwarding table the reference MAE-EAST forwarding

table as it will be used for comparison of the different algorithms proposed in this section.

This trie has a storage requirement of 49 Mbytes for two levels and 1.8 Mbytes for three

levels. The dynamic programming algorithm that computes the optimal variable-stride trie

computes a data structure that consumes 1.6 Mbytes for 2 levels in 130 ms, and 0.57

Mbytes for 3 levels in 871 ms.

2.2.3 Level-compressed trie (LC-trie)

We saw earlier that expansion compresses the number of levels in a trie at the cost of

increased storage space. Space is especially wasted in the sparsely populated portions of

the trie, which are themselves better compressed by the technique of path compression

mentioned in Section 2.1.5. Nilsson [69] introduces the LC-trie, a trie structure with com-

bined path and level compression. An LC-trie is created from a binary trie as follows.

First, path compression is applied to the binary trie. Second, every node that is rooted at

a complete subtrie of maximum depth is expanded to create a-degree node . The
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leaves of the subtrie rooted at node in the basic trie become the children of . This

expansion is carried out recursively on each subtrie of the basic trie This is done with the

motivation of minimizing storage while still having a small number of levels in the trie.

An example of an LC-trie is shown in Figure 2.6.

The construction of an LC-trie for  prefixes takes  time [69]. Incremental

updates are not supported. Reference [97] notes that an LC-trie is a special case of a vari-

able-stride trie, and the dynamic programming optimization algorithm of [97] would

indeed result in the LC-trie if it were the optimal solution for a given set of prefixes. The

LC-trie data structure consumes 0.7 Mbytes on the reference MAE-EAST forwarding

table consisting of 38,816 prefixes and has 7 levels. This is worse than the 4-level optimal

variable-stride trie, which consumes 0.4 Mbytes [97].

2.2.4 The Lulea algorithm

The Lulea algorithm, proposed by Degermark et al [17], is motivated by the objective

of minimizing the storage requirements of their data structure, so that it can fit in the L1-

cache of a conventional general purpose processor (e.g., Pentium or Alpha processor).

Their algorithm expands the 32-bit binary trie to a three-level leaf-pushed trie with the

stride sequence of 16, 8 and 8. Each level is optimized separately. We discuss some of the

optimizations in this subsection and refer the reader to [17] for more details.

The first optimization reduces the storage consumption of an array when a number of

consecutive array elements have the same value; i.e., there are distinct elements in the

array of size , with . For example, an 8-element array that has values

ABBBBCCD could be represented by two arrays: one array, bitarr, stores the 8 bits

1100101, and the second array, valarr, stores the actual pointer values ABCD. The value

of an element at a location is accessed by first counting the number of bits that are ‘1’ in

bitarr[1..j] , say , and then accessingvalarr[p] .
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Figure 2.6 An example of an LC-trie. The binary trie is first path-compressed (compressed nodes are
circled). Resulting nodes rooted at complete subtries are then expanded. The end result is a trie which has
nodes of different degrees.
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Hence, an array of -bit elements, with  of them containing distinct values, con-

sumes  bits when the elements are stored directly in the array, and  bits with

this optimization. The optimization, however, comes with two costs incurred at the time

the array is accessed: (1) the appropriate number of bits that are ‘1’ need to be counted,

and (2) two memory accesses need to be made.

The Lulea algorithm applies this idea to the root node of the trie that contains

 pointers (either to the next-hop or to a node in the next level). As we saw in

Section 2.2.2, pointers at several consecutive locations could have the same value if they

are the next-hop pointers of a shorter prefix that has been expanded to 16 bits. Storage

space can thus be saved by the optimization mentioned above. In order to decrease the

cost of counting the bits in the 64K-wide bitmap, the algorithm divides the bitmap into 16-

bit chunks and keeps a precomputed sum of the bits that are ‘1’ in another array, base_ptr,

of size  bits.

The second optimization made by the Lulea algorithm eliminates the need to store the

64K-wide bitmap. They note that the 16-bit bitmap values are not arbitrary. Instead, they

are derived from complete binary trees, and hence are much fewer in number (678 [17])

than the maximum possible . This allows them to encode each bitmap by a 10-bit num-

ber (called codeword) and use another auxiliary table, calledmaptable, a two-dimensional

array of size . maptable[c][j] gives the precomputed number of bits

that are ‘1’ in the 16-bit bitmap corresponding to codeword before the bit-position.

This has the net effect of replacing the need to count the number of bits that are ‘1’ with an

additional memory access intomaptable.

The Lulea algorithm makes similar optimizations at the second and third levels of the

trie. These optimizations decrease the data structure storage requirements to approxi-

mately 160 Kbytes for the reference forwarding table with 38,816 prefixes — an average
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of only 4.2 bytes per prefix. However, the optimizations made by the Lulea algorithm have

two disadvantages:

1. It is difficult to support incremental updates in the (heavily-optimized) data
structure. For example, an addition of a new prefix may lead to a change in all the
entries of the precomputed arraybase_ptr.

2. The benefits of the optimizations are dependent on the structure of the forward-
ing table. Hence, it is difficult to predict the worst-case storage requirements of
the data structure as a function of the number of prefixes.

2.2.5 Binary search on prefix lengths

The longest prefix matching operation can be decomposed into exact match search

operations, one each on prefixes of fixed length. This decomposition can be viewed as a

linear search of the space  of prefix lengths, or equivalently binary-trie levels. An

algorithm that performs a binary search on this space has been proposed by Waldvogel et

al [108]. This algorithm uses hashing for an exact match search operation among prefixes

of the same length.

Given an incoming address, a linear search on the space of prefix lengths requires

probing each of the  hash tables, , — which requires  hash operations and

hashed memory accesses.1 The binary search algorithm [108] stores in, not only the

prefixes of length , but also the internal trie nodes (calledmarkers in [108]) at level .

The algorithm first probes . If a node is found in this hash table, there is no need to

probe tables . If no node is found, hash tables need not be

probed. The remaining hash tables are similarly probed in a binary search manner. This

requires   hashed memory accesses for one lookup operation. This data structure

has storage complexity  since there could be up to markers for a prefix — each

internal node in the trie on the path from the root node to the prefix is a marker. Reference

1.  A hashed memory access takes  time on average. However, the worst case could be  in the pathological
case of a collision among all  hashed elements.
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[108] notes that not all  markers need actually be kept. Only the  markers that

would be probed by the binary search algorithm need be stored in the corresponding hash

tables — for instance, an IPv4 prefix of length 22 needs markers only for prefix lengths 16

and 20. This decreases the storage complexity to .

The idea of binary search on trie levels can be combined with prefix expansion. For

example, binary search on the levels of a-ary trie can be performed in time

 and storage .

Binary search on trie levels is an elegant idea. The lookup time scales logarithmically

with address length. The idea could be used for performing lookups in IPv6 (the next ver-

sion of IP) which has 128-bit addresses. Measurements on IPv4 routing tables [108], how-

ever, do not indicate significant performance improvements over other proposed

algorithms, such as trie expansion or the Lulea algorithm. Incremental insertion and dele-

tion operations are also not supported, because of the several optimizations performed by

the algorithm to keep the storage requirements of the data structure small [108].

2.2.6 Binary search on intervals represented by prefixes

We saw in Section 1.2 of Chapter 1 that each prefix represents an interval (a contigu-

ous range) of addresses. Because longer prefixes represent shorter intervals, finding the

longest prefix matching a given address is equivalent to finding the narrowest enclosing

interval of the point represented by the address. Figure 2.7(a) represents the prefixes in the

example forwarding table of Table 2.1 on a number line that stretches from address 00000

to 11111. Prefix P3 is the longest prefix matching address 10100 because the interval

 represented by P3 encloses the point 10100, and is the narrowest such

interval.

The intervals created by the prefixes partition the number line into a set of disjoint

intervals (called basic intervals) between consecutive end-points (see Figure 2.7(b)).
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Lampson et al [49] suggest an algorithm that precomputes the longest prefix for every

basic interval in the partition. If we associate every basic interval with its left end-point,

the partition could be stored by a sorted list of left-endpoints of the basic intervals. The

longest prefix matching problem then reduces to the problem of finding the closest left

end-point in this list, i.e., the value in the sorted list that is the largest value not greater

than the given address. This can be found by a binary search on the sorted list.

Each prefix contributes two end-points, and hence the size of the sorted list is at most

 (including the leftmost point of the number line). One lookup operation therefore

takes  time and  storage space. It is again difficult to support fast incre-

mental updates in the worst case, because insertion or deletion of a (short) prefix can

change the longest matching prefixes of several basic intervals in the partition.1 In our

1.  This should not happen too often in the average case. Also note that the binary search tree itself needs to be updated
with up to two new values on the insertion or deletion of a prefix.

00000 101011010010000 10111 11100 11111

P2

P3

P1

P4

00000 101011010010000 10111 11100 11111

P1P4P3P2

P0

P0 P0

(a)

(b)

Figure 2.7 (not drawn to scale) (a) shows the intervals represented by prefixes ofTable 2.1. Prefix P0 is
the “default” prefix. The figure shows that finding the longest matching prefix is equivalent to finding the
narrowest enclosing interval. (b) shows the partitioning of the number line into disjoint intervals created
from (a). This partition can be represented by a sorted list of end-points.
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simple example of Figure 2.7(b), deletion of prefix P2 requires changing the associated

longest matching prefix of two basic intervals to P0.

Reference [49] describes a modified scheme that uses expansion at the root and imple-

ments a multiway search (instead of a binary search) on the sorted list in order to (1)

decrease the number of memory accesses required and (2) take advantage of the cache-

line size of high speed processors. Measurements for a 16-bit expansion at the root and a

6-way search algorithm on the reference MAE-EAST forwarding table with 38,816 entries

showed a worst-case lookup time of 490 ns, storage of 0.95 Mbytes, build time of 5.8 s,

and insertion time of around 350 ms on a 200 MHz Pentium Pro with 256 Kbytes of L2

cache.

TABLE  2.2. Complexity comparison of the different lookup algorithms. A ‘-’ in the update column denotes that
incremental updates are not supported. A ‘-’ in the row corresponding to the Lulea scheme denotes that it
is not possible to analyze the complexity of this algorithm because it is dependent on the structure of the
forwarding table.

Algorithm
Lookup

complexity
Storage

complexity

Update-
time

complexity

Binary trie

Patricia

Path-compressed trie

Multi-ary trie -

LC-trie -

Lulea scheme - - -

Binary search on
lengths

-

Binary search on inter-
vals

-

Theoretical lower
bound [102]

-
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2.2.7 Summary of previous algorithms

Table 2.2 gives a summary of the complexities, and Table 2.3 gives a summary of the

performance numbers (reproduced from [97], page 42) of the algorithms reviewed in Sec-

tion 2.2.1 to Section 2.2.6. Note that each algorithm was developed with a software imple-

mentation in mind.

2.2.8 Previous work on lookups in hardware: CAMs

The primary motivation for hardware implementation of the lookup function comes

from the need for higher packet processing capacity (at OC48c or OC192c speeds) that is

typically not obtainable by software implementations. For instance, almost all high speed

products from major router vendors today perform route lookups in hardware.1 A software

implementation has the advantage of being more flexible, and can be easily adapted in

case of modifications to the protocol. However, it seems that the need for flexibility within

1.  For instance, the OC48c linecards built by Cisco [120], Juniper [126] and Lucent [128] use silicon-based forwarding
engines.

TABLE  2.3. Performance comparison of different lookup algorithms.

Algorithm

Worst-case lookup
time on 300 MHz

Pentium-II with 15ns
512KB L2 cache (ns).

Storage requirements (Kbytes) on
the reference MAE-EAST

forwarding table consisting of
38,816 prefixes, taken from [124].

Patricia (BSD) 2500 3262

Multi-way fixed-stride
optimal trie (3-levels)

298 1930

Multi-way fixed stride
optimal trie (5 levels)

428 660

LC-trie - 700

Lulea scheme 409 160

Binary search on
lengths

650 1600

6-way search on inter-
vals

490 950
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the IPv4 route lookup function should be minimal — IPv4 is in such widespread use that

changes to either the addressing architecture or the longest prefix matching mechanism

seem to be unlikely in the foreseeable future.

A fully associative memory, or content-addressable memory (CAM), can be used to

perform an exact match search operation in hardware in a single clock cycle. A CAM

takes as input a search key, compares the key in parallel with all the elements stored in its

memory array, and gives as output the memory address at which the matching element

was stored. If some data is associated with the stored elements, this data can also be

returned as output. Now, a longest prefix matching operation on 32-bit IP addresses can be

performed by an exact match search in 32 separate CAMs [45][52]. This is clearly an

expensive solution: each of the 32 CAMs needs to be big enough to store prefixes in

absence of apriori knowledge of the prefix length distribution (i.e., the number of prefixes

of a certain length).

A better solution is to use a ternary-CAM (TCAM), a more flexible type of CAM that

enables comparisons of the input key with variable length elements. Assume that each ele-

ment can be of length from 1 to bits. A TCAM stores an element as a (val, mask) pair;

whereval andmask are each -bit numbers. If the element is bits wide, , the

most significant  bits of theval field are made equal to the value of theelement, and the

most significant  bits of themask are made ‘1.’ The remaining  bits of themask

are ‘0.’ Themask is thus used to denote the length of an element. The least significant

 bits ofval can be set to either ‘0’ or ‘1,’ and are “don’t care” (i.e., ignored).1 For

example, if , a prefix 10* will be stored as the pair (10000, 11000). An element

matches a given input key by checking if those bits ofval for which themask bit is ‘1’ are

1.  In effect, a TCAM stores each bit of the element as one of three possible values (0,1,X) where X represents a wild-
card, or a don’t care bit. This is more powerful than needed for storing prefixes, but we will see the need for this in Chap-
ter 4, when we discuss packet classification.
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identical to those in the key. In other words, (val, mask) matches an inputkey if (val & m)

equals (key & m), where & denotes the bitwise-AND operation andm denotes themask.

A TCAM is used for longest prefix matching in the manner indicated by Figure 2.8.

The TCAM memory array stores prefixes as (val, mask) pairs in decreasing order of prefix

lengths. The memory array compares a given input key with each element. It follows by

definition that an element (val, mask) matches the key if and only if it is a prefix of that

key. The memory array indicates the matched elements by setting corresponding bits in

the -bit bitvector, matched_bv, to ‘1.’ The location of the longest matching prefix can

then be obtained by using an-bit priority encoder that takes inmatched_bv as input, and

0 1 0 1

P32 P31 P1

matched_bitvector

Destination Address

memory location of matched entry

Next-hop

Memory

Figure 2.8 Showing the lookup operation using a ternary-CAM. Pi denotes the set of prefixes of lengthi.

Next-hop
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TCAMMemory Array

Priority Encoder

Memory location1 2 3 N
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outputs the location of the lowest bit that is ‘1’ in the bitvector. This is then used as an

address to a RAM to access the next-hop associated with this prefix.

A TCAM has the advantages of speed and simplicity. However, there are two main

disadvantages of TCAMs:

1. A TCAM is more expensive and can store fewer bits in the same chip area as
compared to a random access memory (RAM) — one bit in an SRAM typically
requires 4-6 transistors, while one bit in a TCAM typically requires 11-15 transis-
tors (two SRAM cells plus at least 3 transistors [87]). A 2 Mb TCAM (biggest
TCAM in production at the time of writing) running at 50-100 MHz costs about
$60-$70 today, while an 8 Mb SRAM (biggest SRAM commonly available at the
time of writing) running at 200 MHz costs about $20-$40. Note that one needs at
least  Mb of TCAM to support 512K prefixes. This can be
achieved today bydepth-cascading (a technique to increase the depth of a CAM)
eight ternary-CAMs, further increasing the system cost. Newer TCAMs, based on
a dynamic cell similar to that used in a DRAM, have also been proposed [130],
and are attractive because they can achieve higher densities. One, as yet unsolved,
issue with such DRAM-based CAMs is the presence of hard-to-detect soft errors
caused by alpha particles in the dynamic memory cells.1

2. A TCAM dissipates a large amount of power because the circuitry of a TCAM
row (that stores one element) is such that electric current is drawn in every row

that has an unmatched prefix. An incoming address matches at most prefixes,

one of each length — hence, most of the elements are unmatched. Because of this
reason, a TCAM consumes a lot of power even under thenormal mode of opera-
tion. This is to be contrasted with an SRAM, where the normal mode of operation
results in electric current being drawn only by the element accessed at the input
memory address. At the time of writing, a 2 Mb TCAM chip running at 50 MHz
dissipates about 5-8 watts of power [127][131].

1.  Detection and correction of soft errors is easier inrandom access dynamic memories, because only one row is
accessed in one memory operation. Usually, one keeps an error detection/correction code (EC) with each memory row,
and verifies the EC upon accessing a row. This does not apply in a CAM because all memory rows are accessed simulta-
neously, while only one result is made available as output. Hence, it is difficult to verify the EC for all rows in one search
operation. One possibility is to include the EC with each element in the CAM and require that a match be indicated only
if both the element and its EC match the incoming key and the expected EC. This approach however does not take care
of elements that should have been matched, but do not because of memory errors. Also, this mechanism does not work
for ternary CAM elements because of the presence of wildcarded bits.

512K 32b× 16=

W
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An important issue concerns fast incremental updates in a TCAM. As elements need

to be sorted in decreasing order of prefix lengths, the addition of a prefix may require a

large number of elements to be shifted. This can be avoided by keeping unused elements

between the set of prefixes of length  and . However, that wastes space and only

improves the average case update time. An optimal algorithm for managing the empty

space in a TCAM has been proposed in [88].

In summary, TCAMs have become denser and faster over the years, but still remain a

costly solution for the IPv4 route lookup problem.

3  Proposed algorithm

The algorithm proposed in this section is motivated by the need for an inexpensive and

fast lookup solution that can be implemented in pipelined hardware, and that can handle

updates with low overhead to the central processor. This section first discusses the

assumptions and the key observations that form the basis of the algorithm, followed by the

details of the algorithm.

3.1 Assumptions

The algorithm proposed in this section is specific to IPv4 and does not scale to IPv6,

the next version of IP. It is based on the assumption that a hardware solution optimized for

IPv4 will be useful for a number of years because of the continued popularity of IPv4 and

delayed widespread use of IPv6 in the Internet. IPv6 was introduced in 1995 to eliminate

the impending problem of IPv4 address space exhaustion and uses 128-bit addresses

instead of 32-bit IPv4 addresses. Our assumption is supported by the observation that IPv6

has seen only limited deployment to date, probably because of a combination of the fol-

lowing reasons:

i i 1+
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1. ISPs are reluctant to convert their network to use an untested technology, partic-
ularly a completely new Internet protocol.

2. The industry has meanwhile developed other techniques (such as network
address translation, or NAT [132]) that alleviate the address space exhaustion
problem by enabling reuse of IPv4 addresses inside administrative domains (for
instance, large portions of the networks in China and Microsoft are behind net-
work elements performing NAT).

3. The addressing and routing architecture in IPv6 has led to new technical issues
in areas such as multicast and multi-homing. We do not discuss these issues in
detail here, but refer the reader to [20][125].

3.2 Observations

The route lookup scheme presented here is based on the following two key observa-

tions:

1. Because of route-aggregation at intermediate routers (mentioned in Chapter 1),
routing tables at higher speed backbone routers containfew entries with prefixes
longer than 24-bits. This is verified by a plot of prefix length distribution of the
backbone routing tables taken from the PAIX NAP on April 11, 2000 [124], as
shown in Figure 2.9 (note the logarithmic scale on the y-axis). In this example,
99.93% of the prefixes are 24-bits or less. A similar prefix length distribution is
seen in the routing tables at other backbone routers. Also, this distribution has
hardly changed over time.

2. DRAM memory is cheap, and continues to get cheaper by a factor of approxi-
mately two every year. 64 Mbytes of SDRAM (synchronous DRAM) cost around
$50 in April 2000 [129]. Memory densities are following Moore’s law and dou-
bling every eighteen months. The net result is that a large amount of memory is
available at low cost. This observation provides the motivation for trading off
large amounts of memory for lookup speed. This is in contrast to most of the pre-
vious work (mentioned in Section 2.2) that seeks to minimize the storage require-
ments of the data structure.



   An Algorithm for Performing Routing Lookups in Hardware 57

3.3  Basic scheme

The basic scheme, calledDIR-24-8-BASIC, makes use of the two tables shown in Fig-

ure 2.10. The first table (calledTBL24) stores all possible route-prefixes that are up to, and

Figure 2.9 The distribution of prefix lengths in the PAIX routing table on April 11, 2000. (Source: [124]).
The number of prefixes longer than 24 bits is less than 0.07%.

1

10

100

1000

10000

100000

0 5 10 15 20 25 30

N
um

be
r 

of
 p

re
fix

es
 (

lo
g 

sc
al

e)

Prefix Length

Figure 2.10 ProposedDIR-24-8-BASIC architecture. The next-hop result comes from eitherTBL24 or
TBLlong.

TBL24

TBLlong

0

23

31

Dstn
Addr.

24

8

Next
Hop224

entries



   An Algorithm for Performing Routing Lookups in Hardware 58

including, 24-bits long. This table has 224 entries, addressed from 0 (corresponding to the

24-bits being 0.0.0) to  (255.255.255). Each entry inTBL24 has the format shown

in Figure 2.11. The second table (TBLlong) stores all route-prefixes in the routing table

that are longer than 24-bits. This scheme can be viewed as a fixed-stride trie with two lev-

els: the first level with a stride of 24, and the second level with a stride of 8. We will refer

to this as a (24,8) split of the 32-bit binary trie. In this sense, the scheme can be viewed as

a special case of the general scheme of expanding tries [93].

A prefix,X, is stored in the following manner: ifX is less than or equal to 24 bits long,

it need only be stored inTBL24: the first bit of such an entry is set to zero to indicate that

the remaining 15 bits designate the next-hop. If, on the other hand, prefixX is longer than

24 bits, the first bit of the entry indexed by the first 24 bits ofX in TBL24 is set to one to

indicate that the remaining 15 bits contain a pointer to a set of entries inTBLlong.

In effect, route-prefixes shorter than 24-bits are expanded; e.g. the route-prefix

128.23.0.0/16 will have  entries associated with it inTBL24, ranging from

the memory address 128.23.0 through 128.23.255. All 256 entries will have exactly the

same contents (the next-hop corresponding to the route-prefix 128.23.0.0/16). By using

memory inefficiently, we can find the next-hop information within one memory access.

TBLlong contains all route-prefixes that are longer than 24 bits. Each 24-bit prefix that

has at least one route longer than 24 bits is allocated  entries inTBLlong. Each

2
24

1–

1 bit 15 bits

0 Next-hop

1 Index into 2nd table TBLlong

If longest prefix with this 24-bit prefix is < 25 bits long:

If longest prefix with this 24 bits prefix is > 24 bits long:

15 bits1 bit

Figure 2.11 TBL24 entry format
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entry inTBLlong corresponds to one of the 256 possible longer prefixes that share the sin-

gle 24-bit prefix in TBL24. Note that because only the next-hop is stored in each entry of

the second table, it need be only 1 byte wide (under the assumption that there are fewer

than 255 next-hop routers– this assumption could be relaxed for wider memory.

Given an incoming destination address, the following steps are taken by the algorithm:

1. Using the first 24-bits of the address as an index into the first tableTBL24, the
algorithm performs a single memory read, yielding 2 bytes.

2. If the first bit equals zero, then the remaining 15 bits describe the next-hop.

3. Otherwise (i.e., if the first bit equals one), the algorithm multiplies the remain-
ing 15 bits by 256, adds the product to the last 8 bits of the original destination
address (achieved by shifting and concatenation), and uses this value as a direct
index intoTBLlong, which contains the next-hop.

3.3.1 Examples

Consider the following examples of how route lookups are performed using the table inFig-

ure 2.12.

Example 2.5: Assume that the following routes are already in the table: 10.54.0.0/16,
10.54.34.0/24, 10.54.34.192/26. The first route requires entries inTBL24 that cor-
respond to the 24-bit prefixes 10.54.0 through 10.54.255 (except for 10.54.34). The
second and third routes require that the second table be used (because both of them
have the same first 24-bits and one of them is more than 24-bits long). So, in
TBL24, the algorithm inserts a ‘1’ bit, followed by an index (in the example, the
index equals 123) into the entry corresponding to the 10.54.34 prefix. In the second
table, 256 entries are allocated starting with memory location . Most of
these locations are filled in with the next-hop corresponding to the 10.54.34 route,
but 64 of them (those from  to ) are filled
in with the next-hop corresponding to the route-prefix 10.54.34.192.

We now consider some examples of packet lookups.

Example 2.6:If a packet arrives with the destination address 10.54.22.147, the first 24 bits are
used as an index intoTBL24, and will return an entry with the correct next-hop
(A).

123 256×

123 256×( ) 192+ 123 256×( ) 255+
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Example 2.7:If a packet arrives with the destination address 10.54.34.14, the first 24 bits are
used as an index into the first table, which indicates that the second table must be
consulted. The lower 15 bits of theTBL24 entry (123 in this example) are com-
bined with the lower 8 bits of the destination address and used as an index into the
second table. After two memory accesses, the table returns the next-hop (B).

Example 2.8:If a packet arrives with the destination address 10.54.34.194,TBL24 indicates that
TBLlong must be consulted, and the lower 15 bits of theTBL24 entry are combined
with the lower 8 bits of the address to form an index into the second table. This
time the next-hop (C) associated with the prefix 10.54.34.192/26 (C) is returned.

The size of second memory that stores the tableTBLlong depends on the number of

routes longer than 24 bits required to be supported. For example, the second memory

needs to be 1 Mbyte in size for 4096 routes longer than 24 bits (to be precise, 4096 routes

that are longer than 24 bits and have distinct 24-bit prefixes). We see from Figure 2.9 that

the number of routes with length above 24 is much smaller than 4096 (only 31 for this

Figure 2.12 Example with three prefixes.

Entry

10.54.0

10.54.34

10.55.0

10.53.255

10.54.1

10.54.33

10.54.35

10.54.255

0

1

0

0

0

0

A

123

A

A

A

A

TBL24

123*256

123*256+1

123*256+2

123*256+191

123*256+192

123*256+193

123*256+255

124*256

B

C

B

C

C

B

C

B

TBLlong

Entry

256 entries
allocated to

10.54.34

Number Contents Number Contents Forwarding Table

(10.54.0.0/16, A)
(10.54.34.0/24, B)
(10.54.34.192/26, C)

prefix



   An Algorithm for Performing Routing Lookups in Hardware 61

router). Because 15 bits are used to index intoTBLlong, 32K distinct 24-bit-prefixed long

routes with prefixes longer than 24 bits can be supported with enough memory.

As a summary, we now review some of the pros and cons associated with theDIR-24-

8-BASICscheme.

Pros

1. Except for the limit on the number of distinct 24-bit-prefixed routes with length
greater than 24 bits, this infrastructure will support an unlimited number of route-
prefixes.

2. The design is well suited to hardware implementation. A reference implementa-
tion could, for example, storeTBL24 in either off-chip, or embedded SDRAM and
TBLlong in on-chip SRAM or embedded-DRAM. Although (in general) two
memory accesses are required, these accesses are in separate memories, allowing
the scheme to be pipelined. When pipelined, 20 million packets per second can be
processed with 50ns DRAM. The lookup time is thus equal to one memory access
time.

3. The total cost of memory in this scheme is the cost of 33 Mbytes of DRAM (32
Mbytes forTBL24 and 1 Mbyte forTBLlong), assumingTBLlong is also kept in
DRAM. No special memory architectures are required.

Cons

1. Memory is used inefficiently.

2. Insertion and deletion of routes from this table may require many memory
accesses, and a large overhead to the central processor. This is discussed in detail
in Section 5.

4  Variations of the basic scheme

The basic scheme,DIR-24-8-BASIC, consumes a large amount of memory. This sec-

tion proposes variations of the basic scheme with lower storage requirements, and

explores the trade-off between storage requirements and the number of pipelined memory

accesses.
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4.1 SchemeDIR-24-8-INT: adding an intermediate “length” table

This variation is based on the observation that very few prefixes in a forwarding table

that are longer than 24 bits are a full 32 bits long. For example, there are no 32-bit prefixes

in the prefix-length distribution shown in Figure 2.9. The basic scheme,DIR-24-8-BASIC,

allocates an entire block of 256 entries in tableTBLlong for each prefix longer than 24

bits. This could waste memory — for example, a 26-bit prefix requires only

entries, but is allocated 256TBLlong entries in the basic scheme.

The storage efficiency (amount of memory required per prefix) can be improved by

using an additional level of indirection. This variation of the basic scheme, calledDIR-24-

8-INT, maintains an additional “intermediate” table,TBLint,as shown in Figure 2.13. An

entry inTBL24 that pointed to an entry inTBLlong in the basic scheme now points to an

entry inTBLint. Each entry inTBLint corresponds to the unique 24-bit prefix represented

by theTBL24 entry that points to it. Therefore,TBLint needs to be  entries deep to sup-

port  prefixes that are longer than 24 bits and have distinct 24-bit prefixes.

Assume that an entry, , of TBLint corresponds to the 24-bit prefix . As shown in

Figure 2.14, entry  contains a 21-bit index field into tableTBLlong, and a 3-bitprefix-

length field. The index field stores an absolute memory address inTBLlongat which the

set ofTBLlong entries associated with begins. This set ofTBLlong entries was always of

size 256 in the basic scheme, but could be smaller in this schemeDIR-24-8-INT. The size

of this set is encoded in theprefix-length field of entry . Theprefix-length field indicates

the longest prefix in the forwarding table among the set of prefixes that have the first 24-

bits identical to . Three bits are sufficient because the length of this prefix must be in the

range 25-32. Theprefix-length field thus indicates how many entries inTBLlong are allo-

cated to this 24-bit prefix. For example, if the longest prefix is 30 bits long, then thepre-
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fix-length field will store , andTBLlong will have  entries allocated to

the 24-bit prefix .

Example 2.9:(see Figure 2.13) Assume that two prefixes 10.78.45.128/26 and 10.78.45.132/30
are stored in the table. The entry in tableTBL24 corresponding to 10.78.45 will
contain an index to an entry inTBLint (the index equals 567 in this example). Entry
567 inTBLint indicates a length of 6, and an index intoTBLlong (the index equals
325 in the example) pointing to 64 entries. One of these entries, the 33rd (bits num-
bered 25 to 30 of prefix 10.78.45.132/30 are 100001, i.e., 33), contains the next-
hop for the 10.78.45.132/30 route-prefix. Entry 32 and entries 34 through 47 (i.e.,
entries indicated by 10**** except 100001) contain the next-hop for the

30 24– 6= 26 64=
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10.78.45.128/26 route. The other entries contain the next-hop value for the default
route.

The schemeDIR-24-8-INT improves utilization of tableTBLlong, by an amount that

depends on the distribution of the length of prefixes that are longer than 24-bits. For exam-

ple, if the lengths of such prefixes were uniformly distributed in the range 25 to 32, 16K

such prefixes could be stored in a total of 1.05 Mbytes of memory. This is becauseTBLint

wou ld  requ i re ,  and TBL long wou ld  requ i re

 of memory. In contrast, the basic scheme would

require  to store the same number of prefixes. However, the mod-

ification to the basic scheme comes at the cost of an additional memory access, extending

the pipeline to three stages.

4.2 Multiple table scheme

The modifications that we consider next split the 32-bit space into smaller subspaces

so as to decrease the storage requirements. This can be viewed as a special case of the gen-

eralized technique of trie expansion discussed in Section 2.2.2. However, the objective

here is to focus on a hardware implementation, and hence on the constraints posed by the

worst-case scenarios, as opposed to generating an optimal sequence of strides that mini-

mizes the storage consumption for a given forwarding table.

The first scheme, calledDIR-21-3, extendsthe basic schemeDIR-24-8-BASICto use

three smaller tables instead of one large table (TBL24) and one small table (TBLlong). As

an example, tablesTBL24 andTBLlong in schemeDIR-24-8-BASIC are replaced by a 221

entry table (the “first” table,TBLfirst21), another 221 entry table (the “second” table,

TBLsec21), and a 220 entry table (the “third” table,TBLthird20). The first 21 bits of the

packet’s destination address are used to index intoTBLfirst21, which has entries of width

16K 3B× 0.05MB≈

16K( ) 2i

1…8
∑ 

  8⁄× 1byte× 1MB≈

16K 28× 1byte× 4MB=
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19 bits.1 As before, the first bit of the entry will indicate whether the rest of the entry is

used as the next-hop identifier or as an index into another table (TBLsec21 in this scheme).

If the rest of the entry inTBLfirst21 is used as an index into another table, this 18-bit

index is concatenated with the next 3 bits (bit numbers 22 through 24) of the packet’s des-

tination address, and is used as an index intoTBLsec21. TBLsec21 has entries of width 13

bits. As before, the first bit indicates whether the remaining 12-bits can be considered as a

next-hop identifier, or as an index into the third table (TBLthird20). If used as an index, the

12 bits are concatenated with the last 8 bits of the packet’s destination address, to index

into TBLthird20. TBLthird20, like TBLlong, contains entries of width 8 bits, storing the

next-hop identifier.

The schemeDIR-21-3 corresponds to a (21,3,8) split of the trie. It could be general-

ized to theDIR-n-m scheme which corresponds to a  split of the trie for

general  and . The three tables inDIR-n-m are shown in Figure 2.15.

1.  Word-lengths, such as those which are not multiples of 4, 8, or 16, are not commonly available in off-chip memories.
We will ignore this issue in our examples.

n m 32 n– m–, ,( )

n m

Figure 2.15 Three table scheme in the worst case, where the prefix is longer than (n+m) bits long. In this
case, all three levels must be used, as shown.
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DIR-21-3 has the advantage of requir ing a smaller amount of memory:

. One disadvantage of this scheme is an increase

in the number of pipeline stages, and hence the pipeline complexity. Another disadvantage

is that this scheme puts another constraint on the number of prefixes — in addition to only

supporting 4096 routes of length 25 or greater with distinct 24-bit prefixes, the scheme

supports only  prefixes of length 22 or greater with distinct 21-bit prefixes. It is to be

noted, however, that the decreased storage requirements enableDIR-21-3 to be readily

implemented using on-chip embedded-DRAM.1

The scheme can be extended to an arbitrary number of table levels between 1 and 32 at

the cost of an additional constraint per table level. This is shown in Table 2.4, where we

assume that at each level, only  prefixes can be accommodated by the next higher level

memory table, except the last table, which we assume supports only 4096 prefixes.

Although not shown in the table, memory requirements vary significantly (for the same

number of levels) with the choice of the actual number of bits to use per level. Table 2.4

shows only thelowest memory requirement for a given number of levels. For example, a

three level (16,8,8) split would require 105 Mbytes with the same constraints. As Table

1.  IBM offers 128 Mb embedded DRAM of total size 113 mm2 using 0.18 u semiconductor process technology [122] at
the time of writing.

TABLE  2.4. Memory required as a function of the number of levels.

Number of
levels

Bits used per level
Minimum memory

requirement
(Mbytes)

3 21, 3 and 8 9

4 20, 2, 2 and 8 7

5 20, 1, 1, 2 and 8 7

6 19, 1, 1, 1, 2 and 8 7

221 19⋅( ) 221 13⋅( ) 220 8⋅( )+ + 9MB=

2
18

218
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2.4 shows, increasing the number of levels achieves diminishing memory savings, coupled

with increased hardware logic complexity to manage the deeper pipeline.

5  Routing table updates

Recall from Section 1.1 of Chapter 1 that as the topology of the network changes, new

routing information is disseminated among the routers, leading to changes in routing

tables. As a result, one or more entries must be added, updated, or deleted from the for-

warding table. The action of modifying the table can interfere with the process of forward-

ing packets– hence, we need to consider the frequency and overhead caused by changes

to the table. This section proposes several techniques for updating the forwarding table

and evaluates them on the basis of (1) overhead to the central processor, and (2) number of

memory accesses required per routing table update.

Measurements and anecdotal evidence suggest that routing tables change frequently

[47]. Trace data collected from a major ISP backbone router1 indicates that a few hundred

updates can occur per second. A potential drawback of the 16-million entryDIR-24-8-

BASIC scheme is that changing a single prefix can affect a large number of entries in the

table. For instance, inserting an 8-bit prefix in an empty forwarding table may require

changes to  consecutive memory entries. With the trace data, if every routing table

change affected  entries, it would lead to millions of entry changes per second!2

Because longer prefixes create “holes” in shorter prefixes, the memory entries required

to be changed on a prefix update may not be at consecutive memory locations. This is

1.  The router is part of the Sprint network running BGP-4. The trace had a total of 3737 BGP routing updates, with an
average of 1.04 updates per second and a maximum of 291 updates per second.

2.  In practice, of course, the number of 8-bit prefixes is limited to just 256, and it is extremely unlikely that they will all
change at the same time.

2
16

2
16
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illustrated in Figure 2.16 where a route-prefix of 10.45.0.0/16 exists in the forwarding

table. If the new route-prefix 10.0.0.0/8 is added to the table, we need to modify only a

portion of the 216 entries described by the 10.0.0.0/8 route, and leave the 10.45.0.0/16

“hole” unmodified.

We will only focus on techniques to update the largeTBL24 table in theDIR-24-8-

BASICscheme. The smallerTBLlong table requires less frequent updates and is ignored in

this discussion.

5.1 Dual memory banks

This technique uses two distinct ‘banks’ of memory– resulting in a simple but expen-

sive solution. Periodically, the processor creates and downloads a new forwarding table to

one bank of memory. During this time (which in general will take much longer than one

lookup time), the other bank of memory is used for forwarding. Banks are switched when

the new bank is ready. This provides a mechanism for the processor to update the tables in

a simple and timely manner, and has been used in at least one high-performance router

[76].

“Hole” in 10/8

Figure 2.16 Holes created by longer prefixes require the update algorithm to be careful to avoid them
while updating a shorter prefix.

caused by 10.45.0.0/16

0.0.0 10.0.0 10.45.0 10.45.255 10.255.255 255.255.255

10.0.0.0/8
10.45.0.0/16
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5.2 Single memory bank

It is possible to avoid doubling the memory by making the central processor do more

work. This is typically achieved as follows: the processor keeps a software copy of the

hardware memory contents and calculates the hardware memory locations that need to be

modified on a prefix update. The processor then sends appropriate instructions to the hard-

ware to change memory contents at the identified locations. An important issue to con-

sider is the number of instructions that must flow from the processor to the hardware for

every prefix update. If the number of instructions is too high, performance will become

limited by the processor. We now describe three different update techniques, and compare

their performance when measured by the number of update instructions that the processor

must generate.

5.2.1 Update mechanism 1:Row-update

In this technique, the processor sends one instruction for each modified memory loca-

tion. For example, if a prefix of 10/8 is added to a table that already has a prefix of

10.45.0.0/16 installed, the processor will send  separate instructions,

each instructing the hardware to change the contents of the corresponding memory loca-

tions.

While this technique is simple to implement in hardware, it places a huge burden on

the processor, as experimental results described later in this section show.

5.2.2 Update mechanism 2:Subrange-update

The presence of “holes” partitions the range of updated entries into a series of inter-

vals, which we call subranges. Instead of sending one instruction per memory entry, the

processor can find the bounds of each subrange, and send one instruction per subrange.

The instructions from the processor to the linecards are now of the form: “change  mem-

ory entries starting at memory address  to have the new contents” where  is the

65536 256– 65280=

X

Y Z X
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number of entries in the subrange, is the starting entry number, and  is the new next-

hop identifier. In our example above, the updates caused by the addition of a new route-

prefix in this technique are performed with just two instructions: the first instruction

updating entries 10.0.0 through 10.44.255, and the second 10.46.0 through 10.255.255.

This update technique works well when entries have few “holes”. However, many

instructions are still required in the worst case: it is possible (though unlikely) in the

pathological case that every other entry needs to be updated. Hence, an 8-bit prefix would

require up to 32,768 update instructions in the worst case.

5.2.3 Update mechanism 3:One-instruction-update

This technique requires only one instruction from the processor for each updated pre-

fix, regardless of the number of holes. This is achieved by simply including an additional

5-bit length field in every memory entry indicating the length of the prefix to which the

entry belongs. The hardware now uses this information to decide whether a memory entry

needs to be modified on an update instruction from the processor.

Consider again the example of a routing table containing the prefixes 10.45.0.0/16 and

10.0.0.0/8. The entries in the “hole” created by the 10.45.0.0/16 prefix contain the value

16 in the 5-bit length field; the other entries associated with the 10.0.0.0/8 prefix contain

the value 8. Hence, the processor only needs to send a single instruction for each prefix

update. This instruction is of the form: “insert a -bit long prefix starting in memory at

to have the new contents”; or “delete the -bit long prefix starting in memory at  .”

The hardware then examines  entries beginning with entry . On an insertion, each

entry whose length field is less than or equal to is updated to contain the value. Those

entries with length field greater than are left unchanged. As a result, “holes” are skipped

within the updated range. A delete operation proceeds similarly.

Y Z

Y X

Z Y X

224 Y– X

Y Z

Y
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This update technique reduces overhead at the cost of an additional 5-bit field that

needs to be added to all 16 million entries in the table, which is an additional 10 Mbyte

(about 30%) of memory. Also, unlike the Row- and Subrange-update techniques, this

technique requires a read-modify-write operation for each scanned entry. This can be

reduced to a parallel read and write if the marker field is stored in a separate physical

memory.

5.2.4 Update mechanism 4: Optimized One-instruction-update

This update mechanism eliminates the need to store a length field in each memory

entry, and still requires the processor to send only one instruction to the hardware. It does

so by utilizing structural properties of prefixes, as explained below.

First note that for any two distinct prefixes, either one is completely contained in the

other, or the two prefixes have no entries in common. This structure is very similar to that

of parenthetical expressions where the scope of an expression is delimited by balanced

opening and closing parentheses: for example, the characters “{” and “}” used to delimit

expressions in the ‘C’ programming language. Figure 2.17 shows an example with three

“nested” prefixes.

The hardware needs to know the length of the prefix that a memory entry belongs to

when deciding whether or not the memory entry needs to be modified. In the previous

{

 {

{ }

}

}

Figure 2.17 Example of the balanced parentheses property of prefixes.

10.0.0.0 10.255.255.255

10.1.192.0 10.1.192.255

10.1.0.0 10.1.255.255

Depth 3.........................

Depth 2...........

Depth 1....
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One-instruction-update mechanism, the length is explicitly stored in each memory entry.

However, the balanced parentheses property of prefixes allows the calculation of the nest-

ing depth of a memory entry as follows. The central processor provides the hardware with

the location of thefirst memory entry to be updated. Assume that this entry is at a nesting

depth . The hardware performs a sequential scan of the memory, and keeps track of the

number of opening and closing parentheses seen so far in the scan. Since each opening

parenthesis increases the nesting depth, and each closing parenthesis decreases the nesting

depth, the hardware can calculate the nesting depth of each memory entry, and modify it if

the depth is . The sequential scan stops when the hardware encounters the closing paren-

thesis at nesting depth.

Under this technique, each entry inTBL24 is categorized as one of the following

types: an opening parenthesis (start of prefix), a closing parenthesis (end of prefix), no

parenthesis (middle of prefix), or both an opening and closing parenthesis (if the prefix

contains only a single entry). This information is represented by a 2-bit marker field in

each entry.

Care must be taken when a single entry inTBL24 corresponds to the start or end of

multiple prefixes, as shown in Figure 2.18.A 2-bit encoding is not sufficient to describe all

d

d

d

Depth = 4

{
{ }

}

}

}{

{

Figure 2.18 This figure shows five prefixes, one each at nesting depths 1,2 and 4; and two prefixes at
depth 3. The dotted lines show those portions of ranges represented by prefixes that are also occupied by
ranges of longer prefixes. Prefixes at depths 2, 3 and 4 start at the same memory entry A, and the
corresponding parenthesis markers are moved appropriately.

A B

Depth = 3

Depth = 2

Depth = 1

} {
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the prefixes that begin and end at a memory location ‘A.’ The problem is readily fixed by

shifting the opening and closing markers to the start (end) of the first (last) entry in mem-

ory that the prefix affects. The update algorithm is described in detail below.

We first define two terms– prefix-start (PS)andmemory-start (MS) of a prefix. ,

the prefix-start of a prefix , is defined to be the memory entry where the prefix is sup-

posed to start in memory (for example, both 10.0.0.0/8 and 10.0.0.0/24 are supposed to

start at 10.0.0). , the memory start of a prefix , is the first memory entry which

actually has the entry corresponding to prefix in memory.  may or may not be the

same as . These two entries are different for a prefix  if and only if a longer prefix

than  starts at . In the same way, we define the prefix- and memory-ends (PE and

ME) of a prefix. Hence,  is the first memory entry which has as the deepest (long-

est) prefix covering it, and  is the last.

Example 2.10:If we have prefixes p1(10/8) and p2(10.0.0.0/24);  = 10.0.0;
 = 10.0.1;  = 10.0.0;  = 10.255.255.255,

 = 10.0.0.255.

PS p( )

p

MS p( ) p

p MS p( )

PS p( ) p

p PS p( )

MS p( ) p

ME p( )

10.0.0.0/16

10.0/20

10.0.0/22
10.255.252/22(p4)

10.255.240/20

10.255.240/24 (p5)

(p1)

(p2)

(p6)

(p7)

PS(p1)=PS(p2)=PS(p3)

MS(p1)
PE(p4)

ME(p1)

10.255.254/23

A B E

 (p3)

C D

PE(p3) MS(p2)

PE(p2)

PS(p4)

PS(p7)=PS(p5) PE(p5)

MS(p7)

ME(p7)
PS(p6)

PE(p7)=PE(p1)=PE(p6)

S E S E S S E S/E SE SE E

Figure 2.19 Definition of the prefix and memory start and end of prefixes. Underlined PS (PE) indicates
that this prefix-start (prefix-end) is also the memory-start (memory-end) marker.

PS p1( ) PS p2( )=
MS p1( ) MS p2( ) ME p1( ) PE p1( )=
ME p2( ) PE p2( )=
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Example 2.11: Figure 2.19 shows another detailed example with several route-prefixes, along
with their prefix and memory starts and ends.

Now, instead of putting the start/end markers on the prefix start/end entries, this update

mechanism puts themarkers on the memory start/end entries. Thus when the hardware

encounters a marker, it can uniquely determine that exactlyone prefix has started or

ended. This takes care of the problem that multiple prefixes may start or end at the same

memory location. The exact algorithm can now be formalized:

Assume that the new update is to be carried out starting with memory entry for a -

bit prefix, , with new next-hop . First, the processor determines the first memory entry,

say , after  whose next-hop should change to as a result of this update. The proces-

sor then issues one instructionUpdate(m,Y,Z) to the hardware, which then executes the

steps shown in Figure 2.20.

The algorithm can be intuitively understood as follows: if the hardware encounters a

start-marker while scanning the memory in order to add a new prefix, it knows that it is

entering a deeper prefix and stops updating memory until it again reaches the prefix at

X Y

p Z

m X Z

1. Initialize a depth-counter ( ) to zero.

2. Write the start-marker on .

3. Scan each memory entry starting with , until either  reaches

zero, or,  is reached (i.e., the memory entry just scanned

has a ‘1’ in its last (24-Y) bits). At each location, perform in

order: (a) If entry has start marker, increment  by 1.(b) If

 equals 1, update this entry to denote the next-hop Z. (c) If

entry has an end-marker, decrement  by 1.

4. After completion of (3), put an end marker on the last memory

entry scanned. If a total of only one memory entry ( ) was

scanned, put a start-and-end marker on .

DC

m

m DC

PE p( )

DC

DC

DC

m

m

Figure 2.20 The optimized One-instruction-update algorithm executingUpdate(m,Y,Z).
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which it started. The end condition guarantees that any start-marker it sees will mark the

start of a deeper prefix than (and is hence not to be updated). A formal proof of correct-

ness of this algorithm is provided in Appendix A.

If a prefix is updated, the start and end markers may need to be changed. For instance,

if the entry 10.255.240/20 (p7) is deleted in Figure 2.19, the end-marker for p1 has to be

moved from point D to point E. Again this can be achieved in one instruction if the pro-

cessor sends an indication of whether to move the start/end marker in conjunction with the

relevant update instruction. Note that at most one start/end marker of any other prefix

(apart from the one which is being updated) needs to be changed. This observation enables

the algorithm to achieve all updates (additions/deletions/modifications) in only one pro-

cessor instruction.

5.3 Simulation results

The behavior of each update technique was simulated with the same sequence of rout-

ing updates collected from a backbone router. The trace had a total of 3737 BGP routing

updates, with an average of 1.04 updates per second and a maximum of 291 updates per

second. The simulation results are shown in Table 2.5.1

1.  For the one-instruction-update (optimized technique) we assume that the extra 2-bits to store the opening/closing
marker fields mentioned above arenot stored in a separate memory.

TABLE  2.5. Simulation results of different routing table update techniques.

Update
Technique

Number of instructions
fr om processor per
second (avg/max)

Number of memory
accesses per second (avg/

max)

Row 43.4/17545 43.4/17545

Subrange 1.14/303 43.4/17545

One-instruction 1.04/291 115.3/40415

Y
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The results corroborate the intuition that the row-update technique puts a large burden

on the processor. At the other extreme, the one-instruction-update technique is optimal in

terms of the number of instructions required to be sent by the processor. But unless a sep-

arate marker memory is used, the one-instruction technique requires more than twice as

many memory accesses as the other update techniques. However, this still represents less

than 0.2% of the routing lookup capacity achievable by the lookup algorithm. This simula-

tion suggests that the subrange-update technique performs well by both measures. The

small number of instructions from the processor can be attributed to the fact that the rout-

ing table contained few holes. This is to be expected for most routing tables in the near

term. But it is too early to tell whether routing tables will become more fragmented and

contain more holes in the future.

6  Conclusions and summary of contributions

The main contribution of this chapter is an algorithm to perform one IPv4 routing

lookup operation in dedicated hardware in the time that it takes to execute a single mem-

ory access (when pipelined), and no more than two memory accesses. With the throughput

of one memory access rate, approximately 20 million lookups can be completed per sec-

ond with 50 ns DRAMs (or even faster with upcoming embedded-DRAM technology).

Furthermore, this is the only algorithm that we know of that supports an unlimited

number of prefixes that are less than or equal to 24 bits long. Since a very small proportion

(typically less than 0.1%) of all prefixes in a routing table are longer than 24 bits (see Sec-

tion 3.2), this algorithm supports, practically speaking, routing tables of unlimited size.

The algorithm operates by expanding the prefixes and trading-off cheap memory for

speed. Yet, the total memory cost today is less than $25, and will (presumably) continue to

halve each year. For those applications where low cost is paramount, this chapter
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described several multi-level variations on the basic scheme that utilize memory more

efficiently.

Another contribution of this chapter is the design of several hardware update mecha-

nisms. The chapter proposed and evaluated two update mechanisms (Subrange-update and

One-instruction-update) that perform efficiently and quickly in hardware, with little bur-

den on the routing processor and low interference to the normal forwarding function.
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CHAPTER     3

Minimum average and bounded

worst-case routing lookup time

on binary search trees

1  Intr oduction

Most work on routing lookups [17][31][69][93] has focused on the development of

data structures and algorithms for minimizing the worst-case lookup time, given a for-

warding table and some storage space constraints. Minimizing the worst-case lookup time

is attractive because it does not require packets to be queued before lookup. This enables

simplicity and helps bound the delay of the packet through the router. However, it suffices

to minimize the average lookup time for some types of traffic, such as “best-effort” traf-

fic.1 This presents opportunities for higher overall lookup performance because an aver-

age case constraint is less stringent than the worst-case constraint. This chapter presents

two such algorithms for minimizing the average lookup time — in particular, lookup algo-

rithms that adapt their binary search tree data structure based on the observed statistical

1.  Best-effort traffic comprises the highest proportion of Internet traffic today. This is generally expected to continue to
remain true in the near future.
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properties of recent lookup results in order to achieve higher performance. The exact

amount of performance improvement obtained using the proposed algorithms depends on

the forwarding table and the traffic patterns. For example, experiments using one set of

parameters show a reduction of 42% in the average number of memory accesses per

lookup than those obtained by worst-case lookup time minimization algorithms. Another

benefit of these algorithms is the “near-perfect” load balancing property of the resulting

tree data structures. This enables, for example, doubling the lookup speed by replicating

only the root node of the tree, and assigning one lookup engine each to the left and right

subtrees.

As we saw in Chapter 2, most lookup algorithms use a tree-based data structure. A nat-

ural question to ask is: “What is the best tree data structure for a given forwarding table?”.

This chapter considers this question in the context of binary search trees as constructed by

the lookup algorithm discussed in Section 2.2.6 of Chapter 2. The two algorithms pro-

posed in this chapter adapt the shape of the binary search tree constructed by the lookup

algorithm of Section 2.2.6 of Chapter 2. The tree is redrawn based on the statistics gath-

ered on the number of accesses to prefixes in the forwarding table, with the aim of mini-

mizing the average lookup time. However, the use of a binary search tree data structure

brings up a problem — depending on the distribution of prefix access probabilities, it is

possible for the worst-case depth of a redrawn binary search tree to be as large as ,

where  is the total number of forwarding table entries, and is close to 98,000 [136] at the

time of writing. The worst-case lookup time can not be completely neglected — if it takes

very long to lookup even one incoming packet, a large number of packets arriving shortly

thereafter must be queued until the packet has completed its lookup. Practical router

design considerations (such as silicon and board real-estate resources) limit the maximum

size of this queue, and hence make bounding the worst-case lookup time highly desirable.

Bounding the worst-case performance also enables bounding packet delay in the router

2m 1–

m
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and hence in the network. It is the objective of this chapter to devise algorithms on binary

search trees thatminimize the average lookup time whilekeeping the worst-case lookup

time smaller than a pre-specified maximum.

The approach taken in this chapter has a limitation that it cannot be used in some hard-

ware-based designs where the designer desires a fixed routing lookup time for all packets.

The approach of this chapter can only be used when the router designer wants to minimize

the average, subject to a maximum lookup time. Thus, the designer should be willing to

buffer incoming packets before sending them to the lookup engine in order to absorb the

variability in the lookup times of different packets.

1.1 Organization of the chapter

Section 2 sets up the formal minimization problem. Sections 3 and 4 describe the two

proposed algorithms and analyze their performance. Section 5 discusses the load balanc-

ing characteristics of these algorithms, and Section 6 provides experimental results on

publicly available routing tables and a packet trace. Section 7 discusses related work, and

Section 8 concludes with a summary and contributions of this chapter.

2  Problem statement

Recall that the binary search algorithm [49], discussed in Section 2.2.6 of Chapter 2,

views each prefix as an interval on the IP number line. The union of the end points of these

intervals partitions the number line into a set of disjoint intervals, called basic intervals

(see, for example, Figure 2.7 of Chapter 2). The algorithm precomputes the longest prefix

for every basic interval in the partition, and associates every basic interval with its left

end-point. The distinct number of end-points for prefixes is at most . These

end-points are kept in a sorted list. Given a point,, on the number line representing an

incoming packet, the longest prefix matching problem is solved by using binary search on

m n 2m=

P
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the sorted list to find the end-point in the list that is closest to, but not greater than.

Binary search is performed by the following binary tree data structure: the leaves (external

nodes) of the tree store the left end-points in order from left to right, and the internal nodes

of the tree contain suitably chosen values to guide the search process to the appropriate

child node. This binary search tree for prefixes takes  storage space and has a

maximum depth of .1

Example 3.1:An example of a forwarding table with 4-bit prefixes is shown in Table 3.1, and the
corresponding partition of the IP number line and the binary search tree is shown
in Figure 3.1.

1.  All logarithms in this chapter are to the base 2.

P

m O m( )

O 2m( )log( )
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>

Figure 3.1 The binary search tree corresponding to the forwarding table in Table 3.1. The bit-strings in
bold are the binary codes of the leaves.
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The key idea used in this chapter is that the average lookup time in the binary search

tree data structure can be decreased by making use of the frequency with which a certain

forwarding table entry is accessed in the router. We note that most routers already main-

tain such per-entry statistics. Hence, minimizing routing lookup times by making use of

this information comes at no extra data collection cost. A natural question to ask is:

‘Given the frequency with which the leaves of a tree are accessed, what is the best binary

search tree — i.e., the tree with the minimum average depth?’ Viewing it this way, the

problem is readily recognized to be one of minimizing the average weighted depth of a

binary tree whose leaves are weighted by the probabilities associated with the basic inter-

vals represented by the leaves. The minimization is to be carried over all possible binary

trees that can be constructed with the given number and weights of the leaves.

This problem is analogous to the design of efficient codes (see Chapter 5 of Cover and

Thomas [14]), and so we briefly explain here the relationship between the two problems.

A binary search tree is referred to as analphabetic tree, and the leaves of the tree thelet-

ters of that alphabet. Each leaf is assigned a binary codeword depending on its position in

the tree. The length of the codeword of a symbol is equal to the depth of the corresponding

leaf in the tree. For the example inFigure 3.1, the codeword associated with intervalI1 is

TABLE  3.1. An example forwarding table.

Prefix
Interval

start-point
Interval

end-point

P1 * 0000 1111

P2 00* 0000 0011

P3 1* 1000 1111

P4 1101 1101 1101

P5 001* 0010 0011
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000 and that associated with intervalI5 is 101, where a bit in the codeword is 0 (respec-

tively 1) for the left (respectively right) branch at the corresponding node.

A prefix code satisfies the property that no two codes are prefixes of each other. An

alphabetic code is a prefix code in which the  letters are ordered lexicographically on

the leaves of the resulting binary tree. In other words, if letter appears before letter in

the alphabet, then the codeword associated with letter has a value of smaller magnitude

than the codeword associated with letter. Designing a code for an alphabet is equivalent

to constructing a tree for the letters of the alphabet. With a letter corresponding to an inter-
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1100
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I4
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I5

1/32
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Figure 3.2 The optimal binary search tree (i.e., one with the minimum average weighted depth)
corresponding to the tree inFigure 3.1 when leaf probabilities are as shown. The binary codewords are
shown in bold.
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val, the lookup problem translates to: “Find a minimum average length alphabetic prefix

code (or tree) for an -letter alphabet.”

Example 3.2:If the intervalsI1 throughI6 in Figure 3.1are accessed with probabilities 1/2, 1/4,
1/8, 1/16, 1/32 and 1/32 respectively, then the best (i.e., optimal) alphabetic tree
corresponding to these probabilities (or weights) is shown in Figure 3.2. The code-
word for I1 is now 0 and that ofI5 is 11110. SinceI1 is accessed with a greater
probability thanI5, it has been placed higher up in the tree, and thus has a shorter
codeword

The average length of a general prefix code for a given set of probabilities can be min-

imized using the Huffman coding algorithm [39]. However, Huffman’s algorithm does not

necessarily maintain the alphabetic order of the input data set. This causes implementa-

tional problems, as simple comparison queries are not possible at internal nodes to guide

the binary search algorithm. Instead, at an internal node of a Huffman tree, one needs to

ask for memberships in arbitrary subsets of the alphabet to proceed to the next level.

Because this is as hard as the original search problem, it is not feasible to use Huffman’s

algorithm.

As mentioned previously, we wish to bound the maximum codeword length (i.e., the

maximum depth of the tree) to make the solution useful in practice. This can now be better

understood: an optimal alphabetic tree for letters can have a maximum depth (the root

is assumed to be at depth 0) of  (see, for instance, Figure 3.2 with ). This is

unacceptable in practice because we have seen that , and the value of , the size

of the forwarding table, could be as high as 98,000 [136]. Furthermore, any change in the

network topology or in the distribution of incoming packet addresses can lead to a large

increase in the access frequency of a deep leaf. It is therefore highly desirable to have a

small upper bound on the maximum depth of the alphabetic tree. Therefore, well-known

algorithms for finding an optimal alphabetic tree such as those in [27][36][37] which do

n

n

n 1– n 6=

n 2m= m
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not incorporate a maximum depth-constraint cannot be used in this chapter’s setting. Here

is an example to understand this last point better.

Example 3.3:The alphabetic tree in Figure 3.2 is optimal if the intervals I1 through I6 shown in
the binary tree of Figure 3.1are accessed with probabilities {1/2, 1/4, 1/8, 1/16, 1/
32, 1/32} respectively. For these probabilities, the average lookup time is 1.9375,1

while the maximum depth is 5. If we impose a maximum depth-constraint of 4,
then we need to redraw the tree to obtain the optimal tree that has minimum aver-
age weighted depth and has maximum depth no greater than 4. This tree is shown
in Figure 3.3 where the average lookup time is calculated to be 2.

The general minimization problem can now be stated as follows:

1.
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Figure 3.3 The optimal binary search tree with a depth-constraint of 4, corresponding to the tree inFigure
3.1.
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Choose  in order to minimize , such that , and

 gives rise to an alphabetic tree for intervals where  is the access probability

of the  interval, and  is the length of its codeword, i.e., the number of comparisons

required to lookup a packet in the interval.

The smallest possible value of is the entropy [14], , of the set of probabilities

, where . It is usually the case that is larger than  for

depth-constrained alphabetic trees.1 Finding fast algorithms for computing optimal depth-

constrained binary trees (without the alphabetic constraint) is known to be a hard problem,

and good approximate solutions are appearing only now [59][60][61], almost 40 years

after the original Huffman algorithm [39]. Imposing the alphabetic constraint renders the

problem harder [27][28][35][109]. Still, an optimal algorithm, proposed by Larmore and

Przytycka [50], finds the best depth-constrained alphabetic tree in  time.

Despite its optimality, the algorithm is complicated and difficult to implement.2

In light of this, our goal is to find a practical and provably good approximate solution

to the problem of computing optimal depth-constrained alphabetic trees. Such a solution

should be simpler to find than an optimal solution. More importantly, it should be much

simpler to implement. Also, as the probabilities associated with the intervals induced by

routing prefixes change and are not known exactly, it does not seem to make much sense

to solve the problem exactly for an optimal solution. As we will see later, one of the two

near-optimal algorithms proposed in this chapter can be analytically proved to be requir-

ing no more than two extra comparisons per lookup when compared to the optimal solu-

tion. In practice, this discrepancy has been found to be less than two (for both of the

approximate algorithms). Hence, we refer to them as algorithms fornear-optimal depth-

constrained alphabetic trees, and describe them next.

1.  The lower bound of entropy is achieved in general when there are no alphabetic or maximum depth-constraints.

2.  The complexity formula  has large constant factors, as the implementation requires using a list of merge-
able priority queues with priority queue operations such asdelete_min, merge, findetc.
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3  Algorithm MINDPQ

We first state two results from Yeung [114] as lemmas that we will use to develop

algorithm MINDPQ. The first lemma states a necessary and sufficient condition for the

existence of an alphabetic code with specified codeword lengths, and the second pre-

scribes a method for constructing good, near-optimal trees (which are not depth-con-

strained).

Lemma 3.1(The Characteristic Inequality): There exists an alphabetic code with codeword

lengths  if and only if , where , , and  is defined by

.

Proof: For a complete proof, see [114]. The basic idea is to construct acanonical coding

tree, a tree in which the codewords are chosen lexicographically using the lengths. For

instance, suppose that  for some , and in drawing the canonical tree we find the

codeword corresponding to letter to be 0010. If , then the codeword for letter

 will be chosen to be 0011; if , the codeword for letter  is chosen to be

010; and if , the codeword for letter  is chosen to be 00110. Clearly, the

resulting tree will be alphabetic and Yeung's result verifies that this is possible if and only

if the characteristic inequality defined above is satisfied by the lengths.

The next lemma (also from [114]) considers the construction of good, near-optimal

codes. Note that it does not produce alphabetic trees with prescribed maximum depths.

That is the subject of this chapter.

Lemma 3.2The minimum average length, , of an alphabetic code on letters, where the

 letter occurs with probability  satisfies: . Therefore,

there exists an alphabetic tree on letters with average code length within 2 bits of the entropy of

the probability distribution of the letters.
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Proof: The lower bound, , is obvious. For the upper bound, the code length of the

 letter occurring with probability  is chosen to be:

The proof in [114] verifies that these lengths satisfy the characteristic inequality of Lemma

3.1, and shows that a canonical coding tree constructed with these lengths has an average

depth satisfying the upper bound.

We now return to our original problem of finding near-optimal depth-constrained

alphabetic trees. Let  be the maximum allowed depth. Since the given set of probabili-

ties  might be such that , a direct application of Lemma 3.2

could yield a tree where the maximum depth is higher than. To work around this prob-

lem, we transform the given probabilities into another set of probabilities  such that

. This allows us to apply the following variant of the scheme in

Lemma 3.2 to obtain a near-optimal depth-constrained alphabetic tree with leaf probabili-

ties .

Given a probability vector  such that , we construct a canonical alpha-

betic coding tree with the codeword length assignment to the letter given by:

(3.1)

Each codeword is clearly at most bits long and the tree thus generated has a maxi-

mum depth of . It remains to be shown that these codeword lengths yield an alphabetic

tree. By Lemma 3.1 it suffices to show that the  satisfy the characteristic inequality.

This verification is deferred to Appendix B later in the thesis.
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Proceeding, if the codeword lengths are given by , the resulting alphabetic tree

has an average length of . Now,

(3.2)

where  is the ‘relative entropy’ (see page 22 of [14]) between the probability

distributions  and , and  is the entropy of the probability distribution. In order to

minimize , we must therefore choose , given , so as to minimize

.

3.1 The minimization problem

We are thus led to the following optimization problem:

Given , choose  in order to minimize  sub-

ject to .

Observe that the cost function  is convex in  (see page 30 of [14]). Fur-

ther, the constraint set is convex and compact. In fact, we note that the constraint set is

defined bylinear inequalities. Minimizing convex cost functions with linear constraints is

a standard problem in optimization theory and is easily solved by using Lagrange multi-

plier methods (see, for example, Section 3.4 of Bertsekas [5]).

Accordingly, define the Lagrangean

Setting the partial derivatives with respect to to zero at , we get:

(3.3)
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Put t ing  th i s  back  in ,  we  ge t  the  dua l :

. Now minimizing  subject to

and  gives:

which combined with the constraint that  gives us . Substitut-

ing this in Equation 3.3, we get

(3.4)

To finish, we need to solve Equation 3.4 for  under the constraint that

. The desired probability distribution is then . It turns out that we can find

an explicit solution for , using which we can solve Equation 3.4 by an algorithm that

takes  time and  storage space. This algorithm first sorts the original proba-

bilities  to get  such that  is the largest and  the smallest probability.

Call the transformed (sorted) probability distribution . Then the algorithm solves

for  such that  where:

(3.5)
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Here,  is the number of letters with probability greater than , and the second

equality follows from Equation 3.4. Figure 3.4 shows the relationship between and .

For all letters to the left of  in Figure 3.4,  and for others, .

Lemma 3.3  is a monotonically decreasing function of.

Proof: First, it is easy to see that if increases in the interval , i.e.,

such that  does not change,  decreases monotonically. Similarly, if  increases

from  to  so that  decreases by 1, it is easy to verify that

decreases.

The algorithm uses Lemma 3.3 to do a binary search (in  time) for finding the

hal f -c losed interval  that  contains,  i .e. ,  a sui table value of such that

 and  and .1 The algorithm then knows

the exact value of  and can directly solve for  using Equation 3.5 to get an

explicit formula to calculate . Putting this value of  in

Equation 3.4 then gives the transformed set of probabilities . Given such , the

algorithm then constructs a canonical alphabetic coding tree as in [114] with the codeword

lengths  as chosen in Equation 3.1. This tree clearly has a maximum depth of no more

than , and its average weighted depth is worse than the optimal algorithm by no more

1.  Note that  time is spent by the algorithm in the calculation of  anyway, so a simple linear search can be
implemented to find the interval .
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than 2 bits. To see this, let us refer to the codeword lengths in the optimal tree as .

Then . As  has been chosen to be such that

 for all probability distributions  in the set , it follows

from Equation 3.2 that . This proves the following

main theorem of this chapter:

Theorem 3.1Given a set of  probabilities  in a specified order, an alphabetic tree with a
depth-constraint  can be constructed in  time and  space such that the average
codeword length is at most 2 bits more than that of the optimal depth-constrained alphabetic tree.
Further, if the probabilities are given in sorted order, such a tree can be constructed in linear time.

4  Depth-constrained weight balanced tree (DCWBT)

This section presents a heuristic algorithm to generate near-optimal depth-constrained

alphabetic trees. This heuristic is similar to the weight balancing heuristic proposed by

Horibe [35] with the modification that the maximum depth-constraint is never violated.

The trees generated by this heuristic algorithm have been observed to have even lower

average weighted depth than those generated by algorithm MINDPQ. Also, the implemen-

tation of this algorithm turns out to be even simpler. Despite its simplicity, it is unfortu-

nately hard to prove optimality properties of this algorithm.

We proceed to describe the normal weight balancing heuristic of Horibe, and then

describe the modification needed to incorporate the constraint of maximum depth. First,

we need some terminology. In a tree, suppose the leaves of a particular subtree correspond

to letters numbered through  — we say that the weight of the subtree is . The root

node of this subtree is said to represent the probabilities {, , ..., }; denoted by

. Thus, the root node of an alphabetic tree has weight 1 and represents the proba-

bility distribution .
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In the normal weight balancing heuristic of Horibe [35], one constructs a tree such that

the weight of the root node is split into two parts representing the weights of its two chil-

dren in the most balanced manner possible. The weights of the two children nodes are then

split recursively in a similar manner. In general, at an internal node representing the prob-

abilities , the left and right children are taken as representing the probabilities

and , , if  is such that

This ‘top-down’ algorithm clearly produces an alphabetic tree. As an example, the

weight-balanced tree corresponding toFigure 3.1 is the tree shown in Figure 3.2. Horibe

[35] proves that the average depth of such a weight-balanced tree is greater than the

entropy of the underlying probability distribution  by no more than ,

where  is the minimum probability in the distribution.

Again this simple weight balancing heuristic can produce a tree of unbounded maxi-

mum depth.  For instance,  a d is t r ibut ion  such that  and

, will produce a highly skewed tree of maximum depth . Fig-

ure 3.2 is an instance of a highly skewed tree on such a distribution. We now propose a

simple modification to account for the depth constraint. The modified algorithm follows

Horibe's weight balancing heuristic, constructing the tree in the normal top-down weight

balancing manner until it reaches a node such that if the algorithm were to split the weight

of the node further in the most balanced manner, the depth-constraint would be violated.

Instead, the algorithm splits the node maintaining as much balance as it can while respect-

ing the depth-constraint. In other words, if this node is at depth representing the proba-
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bilities , the algorithm takes the left and right children as representing the

probabilities  and , , if  is such that

and  and . Therefore, the idea is to use the weight balanc-

ing heuristic as far down into the tree as possible. This implies that any node where the

modified algorithm is unable to use the original heuristic would be deep down in the tree.

Hence, the total weight of this node would be small enough so that approximating the

weight balancing heuristic does not cause any substantial effect to the average path length.

For instance, Figure 3.5 shows the depth-constrained weight balanced tree for a maximum

depth-constraint of 4 for the tree inFigure 3.1.

As mentioned above, we have been unable to come up with a provably good bound on

the distance of this heuristic from the optimal solution, but its conceptual and implementa-

tional simplicity along with the experimental results (see next section) suggest its useful-

ness.

Lemma 3.4A depth-constrained weight balanced tree (DCWBT) for leaves can be constructed

in  time and  space.

Proof: At an internal node, the signed difference in the weights between its two subtrees is

a monotonically increasing function of the difference in the number of nodes in the left

and right subtrees. Thus a suitable split may be found by binary search in  time at

every internal node.1 Since there are  internal nodes in a binary tree with leaves,

the total time complexity is . The space complexity is the complexity of storing

the binary tree and is thus linear.

1.  Note that we may need access to . This can be obtained by precomputing  in
linear time and space.
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5 Load balancing

Both of the algorithms MINDPQ and DCWBT produce a binary search tree that is

fairly weight-balanced. This implies that such a tree data structure can be efficiently paral-

lelized. For instance, if two separate lookup engines for traversing a binary tree were

available, one engine can be assigned to the left-subtree of the root node and the second to

the right-subtree. Since the work load is expected to be balanced among the two engines,

we can get twice the average lookup rate that is possible with one engine. This ‘near-per-

fect load-balancing’ helps achieve speedup linear in the number of lookup engines, a fea-

ture attractive in parallelizable designs. The scalability property can be extended — for

instance, the average lookup rate could be made 8 times higher by having 8 subtrees, each

being traversed by a separate lookup engine running at 1/8th the aggregate lookup rate
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Figure 3.5 Weight balanced tree forFigure 3.1 with a depth-constraint of 4. The DCWBT heuristic is
applied in this example at node v (labeled 1100).
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(see Figure 3.6). It is to be remembered, however, that only theaverage lookup rate is bal-

anced among the different engines, and hence, a buffer is required to absorb short-term

bursts to one particular engine in such a parallel architecture.

6  Experimental results

A plot at CAIDA [12] shows that over 80% of the traffic is destined to less than 10%

of the autonomous systems — hence, the amount of traffic is very non-uniformly distrib-

uted over prefixes. This provides some real-life evidence of the possible benefits to be

gained by optimizing the routing table lookup data structure based on the access frequency

of the table entries. To demonstrate this claim, we performed experiments using two large

default-free routing tables that are publicly available at IPMA [124], and another smaller

table available at VBNS [118].

T1 T2 T3 T4 T5 T6 T7 T8

1/8 1/8 1/8 1/8 1/8 1/8 1/81/8
Figure 3.6 Showing 8-way parallelism achievable in an alphabetic tree constructed using algorithm
MINDPQ or DCWBT.
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A knowledge of the access probabilities of the routing table entries is crucial to make

an accurate evaluation of the advantages of the optimization algorithms proposed in this

chapter. However, there are no publicly available packet traffic traces with non-encrypted

destination addresses that access these tables. Fortunately, we were able to find one trace

of about 2.14 million packet destination addresses at NLANR [134]. This trace has been

taken from a different network location (Fix-West) and thus does not access the same rout-

ing tables as obtained from IPMA. Still, as the default-free routing tables should not be too

different from each other, the use of this trace should give us valuable insights into the

advantages of the proposed algorithms. In addition, we also consider the ‘uniform’ distri-

bution in our experiments, where the probability of accessing a particular prefix is propor-

tional to the size of its interval, i.e., an 8-bit long prefix has a probability of access twice

that of a 9-bit long prefix.

Table 3.2 shows the sizes of the three routing tables considered in our experiments,

along with the entropy values of the uniform probability distribution and the probability

distribution obtained from the trace. Also shown is the number of memory accesses

required in an unoptimized binary search (denoted as “Unopt_srch”), which simply is

.

TABLE  3.2. Routing tables considered in experiments. Unopt_srch is the number of memory accesses required in a
naive, unoptimized binary search tree.

Routing table
Number of

prefixes
Number of
intervals

Entr opy
(uniform)

Entr opy
(trace)

Unopt_s
rch

VBNS [118] 1307 2243 4.41 6.63 12

MAE_WEST
[124]

24681 39277 6.61 7.89 16

MAE_EAST
[124]

43435 65330 6.89 8.02 16

#Intervals( )log
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Figure 3.7 plots the average lookup query time (measured in terms of the number of

memory accesses) versus the maximum depth-constraint value for the two different prob-

ability distributions. These figures show that as the maximum depth-constraint is relaxed

from  to higher values, the average lookup time falls quickly, and approaches the

entropy of the corresponding distribution (see Table 3.2). An interesting observation from

the plots (that we have not been able to explain) is that the simple weight-balancing heu-

ristic DCWBT almost always performs better than the near-optimal MINDPQ algorithm,

especially at higher values of maximum depth-constraint.

6.1 Tree reconfigurability

Because routing tables and prefix access patterns are not static, the data-structure build

time is an important consideration. This is the amount of time required to compute the

optimized tree data structure. Our experiments show that even for the bigger routing table

at MAE_EAST, the MINDPQ algorithm takes about 0.96 seconds to compute a new tree,

while the DCWBT algorithm takes about 0.40 seconds.1 The build times for the smaller

(a) (b)

Figure 3.7 Showing how the average lookup time decreases when the worst-case depth-constraint is
relaxed: (a) for the “uniform” probability distribution, (b) for the probability distribution derived by the
2.14 million packet trace available from NLANR. X_Y in the legend means that the plot relates to
algorithm Y when applied to routing table X.
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VBNS routing table are only 0.033 and 0.011 seconds for the MINDPQ and DCWBT

algorithms respectively.

Computation of a new tree could be needed because of two reasons: (1) change in the

routing table, or (2) change in the access pattern of the routing table entries. As mentioned

in Chapter 2, the average frequency of routing updates in the Internet today is of the order

of a few updates per second, even though the peak value can be up to a few hundred

updates per second. Changes in the routing table structure can be managed by batching

several updates to the routing table and running the tree computation algorithm periodi-

cally. The change in access patterns is harder to predict, but there is no reason to believe

that it should happen at a very high rate. Indeed, if it does, there is no benefit to optimizing

the tree anyway. In practice, we expect that the long term access pattern will not change a

lot, while a small change in the probability distribution is expected over shorter time

scales. Hence, an obvious way for updating the tree would be to keep track of the current

average lookup time as measured by the last few packet lookups in the router, and do a

new tree computation whenever this differs from the tree's average weighted depth (which

is the expected value of the average lookup time if the packets were obeying the probabil-

ity distribution) by more than some configurable threshold amount. The tree could also be

recomputed at fixed intervals regardless of the changes.

To investigate tree reconfigurability in more detail, the packet trace was simulated

with the MAE_EAST routing table. For simplicity, we divided the 2.14 million packet

destination addresses in the trace into groups, each group consisting of 0.5M packets. The

addresses were fed one at a time to the simulation and the effects of updating the tree sim-

ulated after seeing the last packet in every group. The assumed initial condition was the

‘equal’ distribution, i.e., every tree leaf, which corresponds to a prefix interval, is equally

1.  These experiments were carried out by implementing the algorithms in C and running as a user-level process under
Linux on a 333 MHz Pentium-II processor with 96 Mbytes of memory.
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likely to be accessed by an incoming packet. Thus the initial tree is simply the complete

tree of depth . The tree statistics for the MINDPQ trees computed for every group

are shown in Table 3.3 for (an arbitrarily chosen) maximum lookup time constraint of 22

memory accesses.

The table shows how computing a new tree at the end of the first group brings down

the average lookup time from 15.94 to 9.26 memory accesses providing an improvement

TABLE  3.3. Statistics for the MINDPQ tree constructed at the end of every 0.5 million packets in the 2.14 million
packet trace for the MAE_EAST routing table. All times/lengths are specified in terms of the number of
memory accesses to reach the leaf of the tree storing the interval. The worst-case lookup time is denoted
by luWorst, the average look up time by luAvg, the standard deviation by luSd. and the average weighted
depth of the tree by WtDepth.

PktNum luWorst luAvg luSd Entr opy WtDepth

0-0.5M 16 15.94 0.54 15.99 15.99

0.5-1.0M 22 9.26 4.09 7.88 9.07

1.0-1.5M 22 9.24 4.11 7.88 9.11

1.5-2.0M 22 9.55 4.29 7.89 9.37

2.0-2.14M 22 9.38 4.14 7.92 9.31

mlog

(a) (b)

Figure 3.8 Showing the probability distribution on the MAE_EAST routing table: (a) “Uniform”
probability distribution, i.e., the probability of accessing an interval is proportional to its length, (b) As
derived from the packet trace. Note that the “Equal” Distribution corresponds to a horizontal line at y=1.5e-
5.
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in the lookup rate by a factor of 1.72. This improvement is expected to be greater if the

depth-constraint were to be relaxed further. The statistics show that once the first tree

update (at the end of the last packet of the first group) is done, the average lookup time

decreases significantly and the other subsequent tree updates do not considerably alter this

lookup time. In other words, the access pattern changes only slightly across groups. Figure

3.8(b) shows the probability distribution derived from the trace, and also plots the ‘equal’

distribution (which is just a straight line parallel to the x-axis). Also shown for comparison

is the ‘uniform’ distribution in Figure 3.8(a). Experimental results showed that the distri-

bution derived from the trace was relatively unchanging from one group to another, and

therefore only one of the groups is shown in Figure 3.8(b).

7  Related work

Early attempts at using statistical properties comprised caching recently seen destina-

tion addresses and their lookup results (discussed in Chapter 2). The algorithms consid-

ered in this chapter adapt the lookup data structure based on statistical properties of the

forwarding tableitself, i.e., the frequency with which each forwarding table entry has been

accessed in the past. Intuitively, we expect that these algorithms should perform better

than caching recently looked up addresses because of two reasons. First, the statistical

properties of accesses on a forwarding table are relatively more static (as we saw in Sec-

tion 6.1) because these properties relate to prefixes that are aggregates of destination

addresses, rather than the addresses themselves. Second, caching provides only two dis-

crete levels of performance (good or bad) for all packets depending on whether they take

the slow or the fast path. Hence, caching performs poorly when only a few packets take

the fast path. In contrast, an algorithm that adapts the lookup data structure itself provides

a more continuous level of performance for incoming packets, from the fastest to the

slowest, and hence can provide a higher average lookup rate.
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Since most previous work on routing lookups has focussed on minimizing worst-case

lookup time, the only paper with a similar formulation as ours is by Cheung and McCanne

[10]. Their paper also considers the frequency with which a certain prefix is accessed to

improve the average time taken to lookup an address. However, reference [10] uses a trie

data structure answering the question of “how to redraw a trie to minimize the average

lookup time under a given storage space constraint,” while the algorithms described here

use a binary search tree data structure based on the binary search algorithm [49] discussed

in Section 2.2.6 of Chapter 2. Thus, the methods and the constraints imposed in this chap-

ter are different. For example, redrawing a trie typically entails compressing it by increas-

ing the degree of some of its internal nodes. As seen in Chapter 2, this can alter its space

consumption. In contrast, it is possible to redraw a binary search tree without changing the

amount of space consumed by it, and hence space consumption is not a constraint in this

chapter’s formulation.

While it is not possible to make a direct comparison with [10] because of the different

nature of the problems being solved, we can make a comparison of the complexity of

computation of the data structures. The complexity of the algorithm in [10] is stated to be

 where  is a constant around 10, and , which makes it about . In

contrast, both the MINDPQ and the DCWBT algorithms are of complexity  for

 prefixes, which, strictly speaking, is worse than . However, including the constants

in calculations, these algorithms have complexity , where the constant factor

is no more than 3. Thus even for very large values of , say , the complexity

of these algorithms is no more than .

8  Conclusions and summary of contributions

This chapter motivates and defines a new problem — that of minimizing the average

routing lookup time while still keeping the worst case lookup time bounded — and pro-

O DnB( ) B D 32= 320n

O n nlog( )

n O n( )

O Cn nlog( ) C

n 2
17

128K=

96n
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poses two near-optimal algorithms for this problem using a binary search tree data struc-

ture. This chapter explores the complexity, performance and optimality properties of the

algorithms. Experiments performed on data taken from routing tables in the backbone of

the Internet show that the algorithms provide a performance gain up to a factor of about

1.7. Higher lookup rates can be achieved with low overhead by parallelizing the data

structure using its “near-perfect” load balancing property.

Finding good depth-constrained alphabetic and Huffman trees are problems of inde-

pendent interest, e.g., in computationally efficient compression and coding. The general

approach of this chapter, although developed for alphabetic trees for the application of

routing lookups, turns out to be equally applicable for solving related problems of inde-

pendent interest in Information theory — such as finding depth-constrained Huffman

trees, and compares favorably to recent work on this topic (for example, Mildiu and Laber

[59][60][61] and Schieber [85]). Since this extension is tangential to the subject of this

chapter, it is not discussed here.
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CHAPTER     4

Recursive Flow Classification:

An Algorithm for Packet

Classification on Multiple Fields

1  Intr oduction

Chapters 2 and 3 described algorithms for routing lookups. In this chapter and the next

we consider algorithms for multi-field packet classification.1

This chapter presents an algorithm for fast packet classification on multiple header

fields. The algorithm, though designed with a hardware realization in mind, is suitable for

implementation in software as well. As we will see from the overview of previous work

on packet classification algorithms in Section 2, the packet classification problem is

expensive to solve in the worst-case — theoretical bounds state that solutions to multi-

field classification either require storage that is geometric, or a number of memory

accesses that is polylogarithmic, in the number of classification rules. Hence, most classi-

1.  The packet classification problem was introduced in Chapter 1: its motivation described in Section 2.1, problem defi-
nition in Section 2.3 and the metrics for classification algorithms in Section 3.
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fication algorithms proposed in the literature [7][23][96] are designed to work well for two

dimensions (i.e., with two header fields), but do not perform as well in multiple dimen-

sions. This is explained in detail in Section 2.

This chapter makes the observation that classifiers in real networks have considerable

structure and redundancy that can be exploited by a practical algorithm. Hence, this chap-

ter takes a pragmatic approach, and proposes a heuristic algorithm, called RFC1 (Recur-

sive Flow Classification), that seems to work well with a selection of classifiers in use

today. With current technology, it appears practical to use the proposed classification algo-

rithm for OC192c line rates in hardware and OC48c rates in software. However, the stor-

age space and preprocessing time requirements become large for classifiers with more

than approximately 6000 four-field rules. For this, an optimization of the basic RFC algo-

rithm is described which decreases the storage requirements of a classifier containing

15,000 four-field rules to below 4 Mbytes.

1.1 Organization of the chapter

Section 2 overviews previous work on classification algorithms. Section 3 describes

the proposed algorithm, RFC, and Section 4 discusses experimental results of RFC on the

classifiers in our dataset. Section 5 describes variations of RFC to handle larger classifiers.

Section 6 compares RFC with previous work described in Section 2, and finally, Section 7

concludes with a summary and contributions of this chapter.

2  Previous work on classification algorithms

Recall from Section 3 of Chapter 1 that a classification algorithm preprocesses a given

classifier to build a data structure, that is then used to find the highest priority matching

rule for every incoming packet. We will assume throughout this chapter that rules do not

1.  This is not to be confused with “Request for Comments”.
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carry an explicit priority field, and that the matching rule closest to the top of the list of

rules in the classifier is the highest priority matching rule. We will work with the following

example classifier in this section.

Example 4.1:The classifier  shown in Table 4.1 consists of six rules in two fields (dimensions)
labeled  and . All field specifications are prefixes of maximum length 3 bits.
As per convention, rule priorities are ordered in decreasing order from top to bot-
tom of the classifier.

2.1 Range lookups

Algorithms that perform classification in multiple dimensions often use a one-dimen-

sional lookup algorithm as a primitive. If the field specifications in a particular dimension

are all prefixes, a lookup in this dimension usually involves either finding all matching

prefixes or the longest matching prefix — this could be performed using any of the algo-

rithms discussed in Chapters 2 and 3. However, as we will see in Section 3.2, field specifi-

cations can be arbitrary ranges. Hence, it will be useful to define the following range

lookup problem for a dimension of width bits.

Definition 1.1: Given a set of  disjoint ranges  that form a partition

of the number line , i.e.,  and  are such that

; the range lookup problem is to find

TABLE  4.1. An example classifier.

Rule F1 F2

R1 00* 00*

R2 0* 01*

R3 1* 0*

R4 00* 0*

R5 0* 1*

R6 * 1*

C
F1 F2

W
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the range  (and any associated information) that contains an incoming

point .

We have already seen one algorithm to solve the range lookup problem — the binary

search algorithm of Section 2.2.6 in Chapter 2 builds a binary search tree on the endpoints

of the set of ranges. We could also solve the range lookup problem by first converting each

range to a set of maximal prefixes, and then solving the prefix matching problem on the

union of the prefixes thus created. The conversion of a range to prefixes uses the observa-

tion that a prefix of length corresponds to a range  where the  least signif-

icant bits of  are all 0 and those of  are all 1. Hence, if we split a given range into the

minimum number of subranges satisfying this property, we arrive at a set of maximal pre-

fixes equivalent to the original range. Table 4.2 lists examples of some range to prefix con-

versions for 4-bit fields.

It can be seen that a range on a-bit dimension can be split into a maximum of

 maximal prefixes.1 Hence, the range lookup problem can be solved using a prefix

matching algorithm, but with the storage complexity increased by a factor of. Feld-

mann and Muthukrishnan [23] show a reduction of the range lookup problem to the prefix

matching problem with an increase in storage complexity by only a constant factor of 2.

However, as we will see later, this reduction cannot be used in all multi-dimensional clas-

sification schemes.

1.  For example, the range  is split into  prefixes. An example of this is the last row in Table 4.2 with
.

TABLE  4.2. Examples of range to prefix conversions for 4-bit fields.

Range Constituent maximal prefixes

[4,7] 01**

[3,8] 0011, 01**, 1000

[1,14] 0001, 001*, 01**, 10**, 110*, 1110

GP
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2.2 Bounds from Computational Geometry

There is a simple geometric interpretation of the packet classification problem. We

have seen that a prefix represents a contiguous interval on the number line. Similarly, a

two-dimensional rule represents an axes-parallel rectangle in the two-dimensional euclid-

ean space of size , where  and  are the respective widths of the two

dimensions. Generalizing, a rule in dimensions represents a-dimensional hyperrectan-

gle in -dimensional space. A classifier is therefore a collection of rectangles, each of

which is labeled with a priority. An incoming packet header represents a point with coor-

dinates equal to the values of the header fields corresponding to the dimensions. For

example, Figure 4.1 shows the geometric representation of the classifier in Table 4.1.

Rules of higher priority overlay those of lower priority in the figure.

Given this geometric representation, classifying an arriving packet is equivalent to

finding the highest priority rectangle among all rectangles that contain the point represent-

ing the packet. If higher priority rectangles are drawn on top of lower priority rectangles

(as in Figure 4.1), this is equivalent to finding the topmost visible rectangle containing a

given point. For example, the packet represented by the point P(011,110) in Figure 4.1

would be classified by rule .

There are several standard problems in the field of computational geometry

[4][79][84], such as ray-shooting, point location and rectangle enclosure, that resemble

packet classification. Point location in a multi-dimensional space requires finding the

enclosing region of a point, given a set ofnon-overlapping regions. Since the hyperrectan-

gles in packet classification could be overlapping, packet classification is at least as hard

as point location. The best bounds for point location in rectangular regions and

dimensions in the worst-case, for , are  time with  space;1 or

 time and  space [73][79]. Clearly this is impracticably slow for classi-

1.  The time bound for  is  [73] but has large constant factors.

2
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fication in a high speed router — with just 100 rules and 4 fields,  space is about 100

Mbytes; and  is about 350 memory accesses.

2.3 Linear search

As in the routing lookup problem, the simplest data structure is a linked-list of all the

classification rules, possibly stored in sorted order of decreasing priorities. For every

arriving packet, each rule is evaluated sequentially until a rule is found that matches all the

relevant fields in the packet header. While simple and storage-efficient, this algorithm

clearly has poor scaling properties: the time to classify a packet grows linearly with the

number of rules.1

2.4 Ternary CAMs

We saw in Section 2.2.8 of Chapter 2 how ternary CAMs (TCAMs) can be used for

performing longest prefix matching operations in dedicated hardware. TCAMs can simi-

larly be used for multi-dimensional classification with the modification that each row of

the TCAM memory array needs to be wider than 32 bits — the required width depends on

1.  Practical evidence suggests that this data structure can support a performance between 10,000 and 30,000 packets per
second using a 200 MHz CPU with a few hundred 4-dimensional classification rules.

N
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Figure 4.1 Geometric representation of the two-dimensional classifier of Table 4.1. An incoming packet
represents a point in the two dimensional space, for instance, P(011,110). Note that R4 is completely hidden
by R1 and R2.

R1



   Recursive Flow Classification: An Algorithm for Packet Classification on Multiple Fields 111

the number of fields used for classification, and usually varies between 128 and 256 bits

depending on the application. An increasing number of TCAMs are being used in the

industry at the time of writing (for at least some applications) because of their simplicity,

speed (the promise of classification in a single clock-cycle), improving density, and possi-

bly absence of competitive algorithmic solutions. While the same advantages and disad-

vantages as discussed in Chapter 2 hold for a classification TCAM, we look again at a few

issues specifically raised by classification.

• Density: The requirement of a wider TCAM further decreases its depth for a

given density. Hence, for a 2 Mb 256-bit wide TCAM, at most 8K classification

rules can be supported. As a TCAM row stores a (value, mask) pair, range specifi-

cations need to be split into mask specifications, further bringing down the num-

ber of usable TCAM entries by a factor of  in the worst case for-

dimensional classification. Even if only two 16-bit dimensions specify ranges

(which is quiet common in practice with the transport-layer source and destination

port number fields), this is a multiplicative factor of 900.

• Power: Power dissipated in one TCAM row increases proportionally to its

width.

In summary, classification makes worse the disadvantages of existing TCAMs.

Because of these reasons, TCAMs will probably still remain unsuitable in the near future

for the following situations: (1) Large classifiers (256K-1M rules) used for microflow rec-

ognition at the edge of the network, (2) Large classifiers (128-256K rules) used at edge

routers that manage thousands of subscribers (with a few rules per subscriber), (3)

Extremely high speed (greater than 200-250 Mpps) classification, and (4) Software-based

classification that may be required for a large number of dimensions, for instance, more

than 8.

2W 2–( ) d
d
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2.5 Hierarchical tries

A -dimensional hierarchical radix trie is a simple extension of the radix trie data

structure in one dimension (henceforth called a 1-dimensional trie), and is constructed

recursively as follows. If  equals 1, the hierarchical trie is identical to the 1-dimensional

radix trie studied before in Section 2.1.3 of Chapter 2. If is greater than 1, we first con-

struct a 1-dimensional trie on say dimension, called the -trie. Hence, the -trie is

a ‘trie’ on the set of prefixes , belonging to dimension  of all rules in the classi-

fier, , where . For each prefix, , in the 1-dimensional -trie,

we recursively construct a -dimensional hierarchical trie, , on those rules which

exactly specify  in dimension , in other words, on the set of rules . Prefix

 is linked to the trie  using another pointer called the next-trie pointer. For instance,

the data structure in two dimensions is comprised of one-trie and several -tries

linked to nodes in the -trie. The storage complexity of the data structure for an-rule

classifier is . The hierarchical trie data structure for the example classifier of

F1-trie

F2-triesR6
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0
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1

Figure 4.2 The hierarchical trie data structure built on the rules of the example classifier of Table 4.1. The
gray pointers are the “next-trie” pointers. The path traversed by the query algorithm on an incoming packet
(000, 010) is also shown.
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Table 4.1 is shown in Figure 4.2. Hierarchical tries are sometimes called “multi-level

tries,” “backtracking-search tries,” or “trie-of-tries.”

A classification query on an incoming packet  proceeds recursively on

each dimension as follows. The query algorithm first traverses the 1-dimensional -trie

based on the bits in  in the usual manner. At each -trie node encountered during this

traversal, the algorithm follows the next-trie pointer (if non-null) and recursively traverses

the -dimensional hierarchical trie stored at that node. Hence, this query algorithm

encounters a rule in its traversal if and only if that rule matches the incoming packet, and it

need only keep track of the highest priority rule encountered. Because of its recursive

nature, the query algorithm is sometimes referred to as a backtracking search algorithm.

The query time complexity for -dimensions is . Incremental updates can be car-

ried out in  time since each of the-prefix components of the updated rule is

stored in exactly one location at maximum depth  in the data structure. As an exam-

ple, the path traversed by the classification query algorithm for an incoming packet

(000,010) is also shown in Figure 4.2.

2.6 Set-pruning tries

A set-pruning trie [106] is similar to a hierarchical trie but with reduced data structure

query time obtained by eliminating the need for doing recursive traversals. This is

achieved by replicating rules at several nodes in the data structure as follows. Consider a

-dimensional hierarchical trie consisting of an-trie and several -dimensional

hierarchical tries. Let  be the set of nodes representing prefixes longer than a prefix in

the -trie. A set-pruning trie is similar to this hierarchical trie except that the rules in the

-dimensional hierarchical trie linked to a prefix  in the -trie are “pushed

down,” i.e., replicated in the -dimensional hierarchical tries linked to all the nodes

in . This “pushing-down” of prefixes is carried out recursively (during preprocessing) on

the remaining  dimensions in the set-pruning trie data structure.
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The query algorithm for an incoming packet  now need only traverse

the -trie to find the longest matching prefix of , follow its next-trie pointer (if non-

null), traverse the -trie to find the longest matching prefix of , and so on for all

dimensions. The manner of replication of rules ensures that every matching rule will be

encountered in this path. The query time complexity reduces to  at the expense of

an increased storage complexity of  since a rule may need to be replicated

times — for every dimension, the  prefix component of a rule may be longer than

 other  prefix components of other rules in the classifier. Update complexity is

, and hence, this data structure is, practically speaking, static.

The set-pruning trie for the example classifier of Table 4.1 is shown in Figure 4.3. The

path traversed by the query algorithm on an incoming packet (000,010) is also shown.

Note that replication may lead to prefix components of different rules being allocated to

the same trie node. When this happens, only the highest priority rule need be stored at that
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Figure 4.3 The set-pruning trie data structure built on the rules of example classifier of Table 4.1. The
gray pointers are the “next-trie” pointers. The path traversed by the query algorithm on an incoming packet
(000, 010) is also shown.
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node — for instance, both R5 and R6 are allocated to node in the -trie of Figure 4.4,

but the node  stores only the higher priority rule R5.

2.7 Grid-of-tries

The grid-of-tries data structure, proposed by Srinivasan et al [95], is an optimization of

the hierarchical trie data structure for two dimensions. This data structure avoids the mem-

ory blowup of set-pruning tries by allocating a rule to only one trie node as in hierarchical

tries. However, it still achieves  query time by using pre-computation and storing a

switch pointer in some trie nodes. A switch pointer is labeled ‘0’ or ‘1’ and guides the

search process in the manner described below. The conditions which must be satisfied for

a switch pointer labeled (  = ’0’ or ‘1’) to exist from a node  in the trie  to a node

 of another trie  are (see Figure 4.4):

1.  and  are distinct tries built on the prefix components of dimension.
Furthermore,  and  are respectively pointed to by the next-trie pointers of
two distinct nodes, say and  of the same trie, , built on prefix components of
dimension .
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Figure 4.4 Showing the conditions under which a switch pointer is drawn from node w to node x. The
pointers out of nodes s and r to tries Tx and Tw respectively are next-trie pointers.
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2. The bit-string that denotes the path from the root node to node in trie  con-
catenated with the bit is identical to the bit-string that denotes the path from the
root node to node in the trie .

3. Node  does not have a child pointer labeled, and

4. Node  in trie  is the closest ancestor of node that satisfies the above condi-

tions.

 If the query algorithm traverses paths  and  for

an incoming packet on the hierarchical trie, the query algorithm need only traverse the

path  on a grid-of-tries data structure. This is because paths and

 are identical (by condition 2 above) till  terminates at node  because  does not

have a child branch labeled (by condition 3). The use of another pointer, called a

“switch pointer,” from node  directly to node  allows the grid-of-tries query algorithm

to traverse all branches that would have been traversed by the hierarchical trie query algo-

rithm without the need to ever backtrack. This new algorithm examines each bit of the

incoming packet header at most once. Hence, the time complexity reduces to, while

storage complexity of  remains identical to that of 2-dimensional hierarchical tries.
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Figure 4.5 The grid-of-tries data structure built on the rules of example classifier in Table 4.1. The gray
pointers are the “next-trie” pointers, and the dashed pointers are the switch pointers. The path traversed by
the query algorithm on an incoming packet (000, 010) is also shown.
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However, adding switch pointers to the hierarchical trie data structure makes incremental

updates difficult to support, so the authors recommend rebuilding the data structure (in

time ) in order to carry out updates [95]. The grid-of-tries data structure for the

example classifier of Table 4.1 is shown in Figure 4.5, along with an example path tra-

versed by the query algorithm.

Reference [95] reports a memory usage of 2 Mbytes on a classifier containing 20,000

rules in two dimensions comprising destination and source IP prefixes, when the stride of

the destination prefix trie is 8 bits and that of the source prefix tries is 5 bits. The worst

case number of memory accesses is therefore 9. The classifier was constructed by using a

publicly available routing table for the destination IP dimension and choosing prefixes

from this routing table randomly to form the source IP dimension.

Grid-of-tries is a good data structure for two dimensional classification occupying rea-

sonable amount of memory and requiring a few memory accesses. It can be used as an

optimization for the last two dimensions of a multi-dimensional hierarchical trie, hence

decreasing the classification time complexity by a factor of to  in  dimen-

sions, in the same amount of storage . As with hierarchical and set-pruning tries,

grid-of-tries requires range specifications to be split into prefixes before the data structure

is constructed.

2.8 Crossproducting

Crossproducting [95] is a packet classification solution suitable for an arbitrary num-

ber of dimensions. The idea is to classify an incoming packet in dimensions by compos-

ing the results of separate 1-dimensional range lookups in each dimension as follows.

The preprocessing step to construct the data structure comprises computing the set of
ranges, , of size , projected by rule specifications in each dimension

. Let , , denote the  range in . A crossproduct table  of size
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 i s  then  cons t ruc ted ,  and  the  bes t  match ing  ru le  fo r  each  en t ry

 in this table is precomputed and stored.

Classification query on an incoming packet  first performs a range

lookup in each dimension to identify the range  containing point . The tuple

 is then directly looked up in the crossproduct table to access the pre-

computed best matching rule.

Example 4.5:The crossproduct table for the example classifier of Table 4.1is shown in Figure
4.6. The figure also illustrates the geometric interpretation of crossproducting.
There is one entry in the crossproduct table for each rectangular cell in the grid cre-
ated by extending the sides of each original rectangle representing a rule. The
query algorithm for an example incoming packet P(011,110) accesses table entry
with the address  accessing rule R5.

We have seen that prefixes give rise to at most  ranges, hence, , and  is

of size . The lookup time is  where  is the time complexity of doing a

range lookup in one dimension. Crossproducting is a suitable solution for very small clas-
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Figure 4.6 The table produced by the crossproducting algorithm and its geometric representation of the
two-dimensional classifier of Table 4.1.
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sifiers only because of its high worst case storage complexity. Reference [95] proposes

using an on-demand crossproducting scheme together with caching for classifiers bigger

than 50 rules in five dimensions. Crossproducting is a static solution since addition of a

rule could change the set of projected ranges and necessitate re-computing the crossprod-

uct table.

2.9 Bitmap-intersection

The bitmap-intersection classification scheme, proposed by Lakshman and Stiliadis

[48], is based on the observation that the set of rules,, that match a packet header, is the

intersection of  sets, , where  is the set of rules that match the packet in the

dimension alone. While crossproducting precomputes and stores the best matching rule

in , this scheme computes and the best matching rule on the fly, i.e., during each clas-

sification operation.

In order to compute intersection of sets efficiently in hardware, each set is encoded as

an -bit bitmap with one bit corresponding to each of the rules. The set of matching

rules is then the set of rules whose corresponding bits are ‘1’ in the bitmap. A classifica-

tion query on a packet, , proceeds in a fashion similar to crossproducting by first per-

forming separate range lookups in each of the dimensions. Each range lookup returns a

bitmap encoding the set of matching rules (precomputed for each range) in that dimen-

sion. The  sets are intersected (by a simple hardware boolean AND operation) to give the

set of rules that match. The best matching rule is then computed from this set. See Fig-

ure 4.7 for the bitmaps corresponding to the example classifier of Table 4.1.

Since each bitmap is  bits wide, and there are  of ranges in each of the dimen-

sions, the total amount of storage space consumed is . The classification time com-

plexity is  where  is the time to do one range lookup and is the

memory width so that it takes  memory operations to access one bitmap. Time com-
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plexity can be brought down by a factor of by using parallelism in hardware to lookup

each dimension independently in parallel. Incremental updates are not supported. The

same scheme can be implemented in software, but the classification time is expected to be

higher because of the unavailability of hardware-specific features, such as parallelism and

bitmap-intersection.

Reference [48] reports that the scheme could support up to 512 rules with a 33 MHz

FPGA device and five 1 Mbit SRAMs, classifying one million packets per second. The

scheme works well for a small number of rules in multiple dimensions, but suffers from a

quadratic increase in storage space and a linear increase in memory bandwidth require-

ments (and hence in classification time) with the size of the classifier. A variation is

described in [48] that decreases the storage requirement at the expense of increased classi-

fication time.

2.10 Tuple space search

The idea of the basic tuple space search algorithm (Suri et al [96]) is to decompose a

classification query into a number of exact match queries. The algorithm first maps each

-dimensional rule into a -tuple whose  component stores the length of the prefix

d
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Figure 4.7 The bitmap tables used in the “bitmap-intersection” classification scheme for the example
classifier of Table 4.1. See Figure 4.6 for a description of the ranges. Also shown is classification query on
an example packet P(011, 110).

Intersected bitmap

d d i
th



   Recursive Flow Classification: An Algorithm for Packet Classification on Multiple Fields 121

specified in the  dimension (the scheme supports only prefix specifications). Hence, the

set of rules mapped to the same tuple are of a fixed and known length, and thus stored in a

hash table for exact match query operations. A classification query is carried out by per-

forming exact match operations on each of the hash tables corresponding to all possible

tuples in the classifier. The tuples and their corresponding hash tables for the example

classifier ofTable 4.1 are shown in Figure 4.8. A variation of the basic algorithm uses heu-

ristics to avoid searching all hash tables using ideas similar to those used in the “binary

search on prefix lengths” lookup scheme mentioned in Section 2.2.5 of Chapter 2 (see [96]

for details).

Classification time in the tuple space search scheme is equal to the time needed for

hashed memory accesses, where is the number of tuples in the classifier. The scheme

uses  storage since each rule is stored in exactly one hash table. Incremental updates

are supported and require just one hashed memory access to the hash table associated with

the tuple of the modified rule. In summary, the tuple space search algorithm performs well

for multiple dimensions in the average case if the number of tuples is small. However, the

use of hashing makes the time complexity of searches and updates non-deterministic.

Also, the number of tuples could be very large, up to , in the worst case. Further-

more, since the scheme supports only prefixes, the storage complexity increases by a fac-

tor of  for generic rules as each range could be split into  prefixes in the

i
th
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Figure 4.8 The tuples and associated hash tables in the tuple space search scheme for the example
classifier of Table 4.1.
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manner explained in Section 2.1. This is one example where the range-to-prefix transfor-

mation technique of [23] cannot be applied because all fields are looked up simulta-

neously.

2.11 A 2-dimensional classification scheme from Lakshman and Stiliadis [48]

Lakshman and Stiliadis [48] propose a 2-dimensional classification algorithm where

one dimension, say , is restricted to having prefix specifications, while the second

dimension, , is allowed to have arbitrary range specifications. The data structure first

builds an -trie on the prefixes of dimension , and then associates a set of non-

overlapping ranges to each trie node,, that represents prefix. These ranges are created

by the end-points of possibly overlapping projections on dimension of those rules, ,

that specify exactly  in dimension . A range lookup data structure (e.g., an array or a

binary search tree) is then constructed on and associated with trie node. The data

structure for the example classifier ofTable 4.1 is shown in Figure 4.9.
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F1 F1 Gw

w p

F2 Sw

p F1

Gw w

F1-trie

R4
R1

0

0

1

search path

000, 001, 011

R6R2

010, 011, 100, 111 100, 111

R3

000, 011

R5

Figure 4.9 The data structure of Section 2.11 for the example classifier of Table 4.1 The search path for
example packet P(011, 110) resulting in R5 is also shown.
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Given a point , the query algorithm proceeds downwards from the root of the

trie according to the bits of  in the usual manner. At every trie node, , encountered

during this traversal, a range lookup is performed on the associated data structure. The

range lookup operation returns the range in containing , and hence the best match-

ing rule, say , within the set  that matches point . The highest priority rule among

the rules  for all trie nodes  encountered during the traversal is the desired highest

priority matching rule in the classifier.

The query algorithm takes time  because a range lookup needs to be per-

formed (in  time) at every trie node in the path from the root to a null node in the

-trie. This can be improved to  using a technique calledfractional cascad-

ing borrowed from Computational Geometry [4]. This technique augments the data struc-

ture such that the problem of searching for the same point in several sorted lists is reduced

to searching in only one sorted list plus accessing a constant number of elements in the

remaining lists. The storage complexity is  because each rule is stored only once in

the data structure. However, the use of fractional cascading renders the data structure

static.

2.12 Area-based quadtree

The Area-based Quadtree (AQT) data structure proposed by Buddhikot et al [7] for

classification in two dimensions supports incremental updates that can be traded off with

classification time by a tunable parameter. The preprocessing algorithm first builds a

quadtree [4], a tree in which each internal node has four children. The parent node of a

quadtree represents a two dimensional space that is decomposed into four equal sized

quadrants, each of which is represented by a child of that node. The original two dimen-

sional space is thus recursively decomposed into four equal-sized quadrants till each quad-

rant has less than or equal to one rule in it (see Figure 4.10 for an example of the
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decomposition process). A set of rules is then allocated to each node of the quadtree in the

manner described next.

A rule is said to cross a quadrant in dimension if it completely spans the dimension-

 of the area represented by that quadrant. For instance, rule R6 spans in both dimensions

the quadrant represented by the root node (the complete 2-dimensional space) of Figure

4.11, while rule R5 does not. If we divide the 2-dimensional space into four quadrants,

rule R5 crosses the north-west quadrant in both dimensions while rule R2 crosses the

south-west quadrant in dimension-. The set of rules crossing the quadrant represented

by a node in dimension is called the “ -crossing filter set (-CFS)” of that node.

Two instances of the same data structure are associated with each quadtree node —

one each for storing the rules in-CFS ( ). Since rules in crossing filter sets span

at least one of the two dimensions, only the range specified in the other dimension need be

stored in the data structure. The classification query proceeds by traversing the quadtree

according to the bits in the given packet — looking at two bits at a time, formed by trans-

posing one bit from each dimension. The query algorithm does two 1-dimensional look-

00 01 10 11NW (00) NE (10)

SE (11)SW (01)

Figure 4.10 An example quadtree constructed by spatial decomposition of two-dimensional space. Each
decomposition results in four quadrants.
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ups (one for each dimension on-CFS) at each quadtree node traversed. Figure 4.11

shows the AQT data structure for the example classifier of Table 4.1.

Reference [7] also proposes an efficient incremental update algorithm that enables

AQT to achieve the following bounds for two-dimensional rules:  space com-

plexity,  search time and  update time for a tunable integral parameter.

2.13 Fat Inverted Segment Tree (FIS-tree)

Feldmann and Muthukrishnan [23] propose the FIS-tree data structure for two dimen-

sional classification as a modification of the segment tree data structure. We first describe

the segment tree data structure, and then the FIS-tree data structure.

A segment tree [4] stores a set of line segments (possibly overlapping) to answer

queries such as finding the highest priority line segment containing a given point effi-

ciently. It consists of a balanced binary search tree on the end points of the line segments

in . Each node, , of a segment tree represents a range — leaves represent the orig-

inal line segments in , and parent nodes represent the union of the ranges represented by

k
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Figure 4.11 The AQT data structure for the classifier of Table 4.1. The label of each node denotes {1-
CFS, 2-CFS}. Also shown is the path traversed by the query algorithm for an incoming packet P(001, 010),
yielding R1 as the best matching rule.
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their children. A line segment is allocated to a node if it contains  but does not con-

tain . The highest priority line segment among all the line segments allocated to

a node is precomputed and stored at the node. The search algorithm for finding the highest

priority line segment containing a given point traverses the segment tree downwards from

the root, and calculates the highest priority of all the precomputed segments encountered

at each node during its traversal. Figure 4.12 shows the segment tree for the line segments

created by the -projections of the rules of classifier in Table 4.1.

An FIS-tree is a segment tree with two modifications: (1) The segment tree is com-

pressed (made “fat” by increasing the degree to more than two) in order to decrease its

depth so that it occupies a given number of levels. (2) Pointers are set up inverted, i.e.,

go from child nodes to the parent to help the search process described below. The classifi-

cation data structure for 2-dimensional classifiers consists of an FIS-tree on dimension

, and a range lookup data structure associated with each node of the FIS-tree. An
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Figure 4.12 The segment tree and the 2-level FIS-tree for the classifier of Table 4.1.
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instance of the range lookup data structure associated with node of the FIS-tree stores

the ranges formed by the -projections of those classifier rules whose -projections

were allocated to .

A classification query on a given point  first solves the range lookup problem

in dimension . This returns a leaf node of the FIS-tree representing the range contain-

ing the point . The query algorithm then follows the parent pointers from this leaf node

up towards the root node, carrying out 1-dimensional range lookups in the associated

range lookup data structures at each node traversed. The algorithm finally computes the

highest priority rule containing the given point at the end of the traversal.

The search time complexity for an-level FIS-tree is  with a storage

space complexity of , where  is the time taken to carry out a 1-dimensional

range lookup. Storage space can be traded off with search time by suitably tuning the

parameter . Several variations to the FIS-tree are needed in order to support incremental

updates — even then, it is easier to support inserts than deletes [23]. The static FIS-tree

can be extended to multiple dimensions by building hierarchical FIS-trees, but the bounds

obtained are similar to other data structures studied earlier. (Please see [23] for details on

supporting updates in FIS trees and multi-dimensional static FIS trees).

Extensive measurements on real-life 2-dimensional classifiers are reported in [23]

using the static FIS-tree data structure. These measurements indicate that two levels suf-

fice in the FIS tree for 4-60K rules with a storage consumption of less than 5 Mbytes. One

classification operation requires fewer than 15 memory accesses. For larger classifiers

containing up to one million 2-dimensional rules, at least 3 levels are required with a stor-

age consumption of approximately 100 Mbytes, while one classification operation

requires fewer than 18 memory accesses.

w

F2 F1

w

P v1 v2( , )

F1

v1

l O l 1+( ) tRL( )

O ln
1 1 l⁄+

( ) tRL

l



   Recursive Flow Classification: An Algorithm for Packet Classification on Multiple Fields 128

2.14 Summary of previous work

Table 4.3 gives a summary of the complexities of the multi-dimensional classification

algorithms reviewed in this chapter. Most proposed algorithms work well for two dimen-

sions, but do not extend to multiple dimensions. Others have either non-deterministic

search time (e.g., tuple space search), or do not scale to classifiers larger than a few hun-

dred rules (e.g., crossproducting or bitmap-intersection). This is not surprising since theo-

retical bounds tell us that multi-dimensional classification has poor worst-case

performance, in either storage or time complexity.

TABLE  4.3. Comparison of the complexities of previously proposed multi-dimensional classification algorithms on a
classifier with  rules and -bit wide dimensions. The results assume that each rule is stored in

 space and takes  time to determine whether it matches a packet. This table ignores the
multiplicative factor of  in the storage complexity caused by splitting of ranges to prefixes.
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3  Proposed algorithm RFC (Recursive Flow Classification)

3.1 Background

The RFC algorithm is motivated by the observation that real-life classifiers contain a

large amount of structure and redundancy that can be exploited by a pragmatic classifica-

tion algorithm. RFC works well for a selection of multi-dimensional real-life classifiers

available to us. We proceed to describe the observed characteristics of these real-life clas-

sifiers and a description of the structure present in them.

3.2 Characteristics of real-life classifiers

We collected 793 packet classifiers from 101 different ISP and enterprise networks

with a total of 41,505 rules. For privacy reasons, sensitive information such as IP

addresses were sanitized while preserving the relative structure in the classifiers.1 Each

network provided up to ten separate classifiers for different services.2 We found the classi-

fiers to have the following characteristics:

1. The classifiers do not contain a large number of rules. Only 0.7% of the classifi-
ers contain more than 1000 rules, with a mean of 50 rules. The distribution of the
number of rules in a classifier is shown in Figure 4.13. The relatively small num-
ber of rules per classifier should not come as a surprise: in most networks today,
rules are configured manually by network operators, and it is a non-trivial task to
ensure correct behavior if the classifier becomes large.

2. The syntax of these classifiers allows a maximum of 8 header fields to be speci-
fied: source/destination network-layer address (32-bits), source/destination trans-
port-layer port numbers (16-bits for TCP and UDP), type-of-service (TOS) field

1.  We wanted to preserve the properties of set relationship, e.g. inclusion, among the rules, or their fields. A 32-bit IP
addressp0.p1.p2.p3is sanitized as follows: (a) A random 32-bit numberc0.c1.c2.c3 is first chosen, (b) a random permu-
tation of the 256 numbers 0...255 is then generated to getperm[0..255] (c) Another random numberS between 0 and 255
is generated: these randomly generated numbers are common for all the rules in the classifier, (d) The IP address with
bytes:perm[(p0 ^ c0 + 0 * s) % 256], perm[(p1 ^ c1 + 1 * s) % 256], perm[(p2 ^ c2 + 2 * s) % 256] andperm[(p3 ^ c3
+ 3 * s) % 256] is then returned as the sanitized transformation of the original IP address, where ̂denotes the exclusive-
or operation. This transformation preserves set relationship across bytes but not necessarily within a byte. Hence, some
structure present in the original classifier may be lost. However, we have since had access to some of the original classi-
fiers, with results similar to those shown in this chapter.

2.  In the collected dataset, classifiers for different services are made up of one or more ACLs (access control lists). An
ACL rule can have one of two actions, “deny” or “permit”. In this discussion, we will assume that each ACL is a sepa-
rate classifier, a common case in practice.
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(8-bits), protocol field (8-bits), and transport-layer protocol flags (8-bits) with a
total of 120 bits. 17% of all rules in the dataset have 1 field specified, 23% have 3

fields specified and 60% have 4 fields specified.1

3. The transport-layer protocol field is restricted to a small set of values: in our
dataset, this field contained only the following values: TCP, UDP, ICMP, IGMP,
(E)IGRP, GRE and IPINIP, or the wildcard ‘*’ (i.e., the set of all transport proto-
cols).

4. The transport-layer address fields have a wide variety of specifications. Many
(10.2%) of them arerange specifications — such as ‘range 20-24’ or ‘gt 1023,’
which means all values greater than 1023. In particular, the specification ‘gt 1023’
occurs in about 9% of the rules. Splitting this range into prefixes results in six
constituent maximal prefixes: 1024-2047, 2048-4095, 4096-8191, 8192-16383,
16384-32767, 32768-65535. Thus, converting all range specifications to prefix
specifications could result in a large increase in the size of a classifier.

1.  If a field is not specified, the wildcard specification is assumed. Note that this is determined by the syntax of the rule
specification language.

Figure 4.13 The distribution of the total number of rules per classifier. Note the logarithmic scale on both
axes.
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5. Approximately 14% of all classifiers had at least one rule with a non-contiguous
mask, and 10.2% of all rules had non-contiguous masks. A non-contiguous mask
means that the bits that are ‘1’ in the mask are not contiguous. For example, a
specification of 137.98.217.0/8.22.160.80 has a non-contiguous mask, which is
surprising. One suggested reason for this is that some network operators choose a
specific numbering/addressing scheme for their routers. This observation indi-
cates that a packet classification algorithm cannot always rely on a network-layer
address specification to be a prefix.

6. It is common for different rules in the same classifier to share a number of field
specifications. Sharing occurs because a network operator frequently wants to
specify the same policy for a pair of communicating groups of hosts or subnet-
works — for instance, the network operator may want to prevent every host in one
group of IP addresses from accessing any host in another group of IP addresses.
Given the limitations of a simple address/mask syntax specification, a separate
rule must be written for each pair in the two (or more) groups. This observation is
used in an optimization of the basic algorithm, described later in Section 5.1.

7. We found that 15% of the rules were redundant. A rule is said to be redundant

if one of the following conditions hold (here, we think of a rule as the set of all

packet headers which could match): (a) There exists a rule appearing earlier

than  in the classifier such that is a subset of . Thus, no packet will ever

match , i.e.,  is redundant. We call thisbackward redundancy —7.8% of the

rules were found to be backward redundant. (b) There exists a rule appearing

after  in the classifier such that (i) is a subset of , (ii)  and  have the same

actions, and (iii) For each rule appearing in between and  in the classifier,

either  is disjoint from , or  has the same action as. We call thisforward

redundancy —7.2% of the rules were forward redundant. In this case, can be

eliminated to obtain a new smaller classifier. A packet matching  in the original

classifier will match  in the new classifier, but will yield the same action.

3.3 Observations about the structure of the classifiers

To illustrate the structure we found in our dataset, we start with an example 2-dimen-

sional classifier containing three rules. Figure 4.14(a) shows three such rectangles, where

each rectangle represents a rule with a range of values in each dimension. The classifier

contains three explicitly defined rules, and the default rule (represented by the background
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rectangle). The arrangement of the three rules in Figure 4.14(a) is such that four distinct

regions, differently shaded, are created (including the white background region). A differ-

ent arrangement could create five regions, as in Figure 4.14(b), or seven regions, as in Fig-

ure 4.14(c). A classification algorithm must keep a record of each region and be able to

determine the region to which each newly arriving packet belongs. Intuitively, the larger

the number of regions that the classifier contains, the more storage is required, and the

longer it takes to classify a packet.

Even though the number of rules is the same in each of the three cases in Figure 4.14,

the task of the classification algorithm becomes progressively harder as it needs to distin-

guish more regions. In general, it can be shown that the number of regions created by

rules in  dimensions can be . Such a worst case example for two dimensions is

shown in Figure 4.15.

We analyzed the structure in our dataset and found that the number of overlapping

regions is considerably smaller than the worst case. Specifically, for the biggest classifier

with 1733 rules, the number of distinct overlapping regions in four dimensions was found

to be 4316, compared to approximately  regions for the worst possible combination

of rules. Similarly, the number of overlapping regions was found to be relatively small in

each of the classifiers in the dataset. This is because rules originate from specific policies

(c) 7 regions(b) 5 regions(a) 4 regions

Figure 4.14 Some possible arrangements of three rectangles (2-dimensional rules). Each differently
shaded rectangle comprises one region. The total number of regions indicated includes the white
background region.
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of network operators and agreements between different networks. For example, the opera-

tors of two different networks may specify several policies relating to the interaction of

the hosts in one network with the hosts in the other. This implies that rules tend to be clus-

tered in small groups instead of being randomly distributed. As we will see, the proposed

algorithm exploits this structure to simplify its task.

3.4 The RFC algorithm

Classifying a packet can be viewed as mapping bits in the packet header to bits of

classID(an identifier denoting the rule, or action), where , , in a manner dic-

tated by the  classifier rules. A simple and fast, but unrealistic, way of doing this map-

ping might be to precompute the value ofclassID for each of the  different packet header

values. This would yield the answer in one step (i.e., one memory access) but would

require too much memory. The main aim of RFC is to perform the same mapping but over

several stages. As shown in Figure 4.16, RFC performs this mapping recursively — in

each stage the algorithm performs areduction, mapping one set of values to a smaller set.

The RFC algorithm has phases, where each phase consists of a set of parallel mem-

ory lookups. Each lookup is a reduction in the sense that the value returned by the memory

Figure 4.15 A worst case arrangement of rectangles.  rectangles span the first dimension, and the
remaining  rectangles span the second dimension. Each of the black squares is a distinct region. The
total number of distinct regions is therefore .
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lookup is shorter (is expressed in fewer bits) than the index of the memory access. The

algorithm, as illustrated in Figure 4.17, operates as follows:

1. In the first phase (phase 0), fields of the packet header are split up into multi-
ple chunks that are used to index into multiple memories in parallel. For example,
the number of chunks equals 8 in Figure 4.17. Figure 4.18 shows an example of
how the fields of a packet may be split into chunks. Each of the parallel lookups
yields an output value that we will calleqID. (The reason for calling this identifier
eqID will become clear shortly). The contents of each memory are chosen so that
the result of the lookup is narrower than the index, i.e., requires fewer bits.

2. In subsequent phases, the index into each memory is formed by combining the
results of the lookups from earlier phases. For example, the results from the look-
ups may be concatenated to form a wider index — we will consider another way
to combine them later.

3. After successive combination and reduction, we are left with one result from the
memory lookup in the final phase. Because of the way the memory contents have
been precomputed, this value corresponds to theclassID of the packet.

2S=2128

2T=212

264 224 2T=212

2S=2128

Phase 0

Simple One-step Classification

Figure 4.16 Showing the basic idea of Recursive Flow Classification. The reduction is carried out in
multiple phases, with a reduction in phaseI being carried out recursively on the image of the phaseI-1. The
example shows the mapping of  bits to  bits in 4 phases.2S 2T

Phase 1 Phase 2 Phase 3

Recursive Flow Classification

d
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For the above scheme to work, the contents of each memory are filled after suitably

preprocessing the classifier. To illustrate how the memories are populated, we consider a

Figure 4.17 Packet flow in RFC.

Phase 0 Phase 1 Phase 2 Phase 3

Packet

indx

Preprocessed Tables

Chunk# 6 5 4 3 2 1 0

Width(bits) 16 16 16 16 16 16 16

Figure 4.18 Example chopping of the packet header into chunks for the first RFC phase. L3 and L4 refer
to the network-layer and transport-layer fields respectively.

Src L3 addrDst L3 addr

L4 protocol and flagsDst L4 portSrc L4 port
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simple example based on the classifier in Table 4.4.

We will see how the 24 bits used to express the two chunks: chunk #4 (L4, i.e., trans-

port-layer protocol) and chunk #6 (Dst L4, i.e, transport-layer destination) are reduced to

just three bits by Phases 0 and 1 of the RFC algorithm. We start with chunk #6, which con-

tains the 16-bit transport-layer destination address. The column corresponding to the

transport-layer field in Table 4.4 partitions the set of all possible chunk values into four

sets: (a) {20, 21} (b) {http (=80)} (c) {>1023} (d) {all remaining numbers in the range 0-

65535}. The four sets can be encoded using two bits through . We call these two bit

values theequivalence class IDs (eqIDs) of the respective sets. The memory correspond-

ing to chunk #6, in Phase 0, is indexed using the different values of 16-bit wide chunk

#6. In each memory location, we place theeqID for the set containing the value. For

example, the value in the memory location is , denoting the set {20,21}. In this way,

a 16-bit to 2-bit reduction is obtained for chunk #6 in Phase 0. Similarly, the column corre-

sponding to 8-bit transport-layer protocol in Table 4.4 consists of three sets: (a) {tcp} (b)

{udp} (c) {all remaining protocol values in the range 0-255} — which can be encoded

TABLE  4.4. An example 4-dimensional classifier.

Dst L3 (value/mask) Src L3 (value/mask) Dst L4 L4 protocol

152.163.190.69/
255.255.255.0

152.163.80.1/
255.255.255.255

* *

152.168.3.0/
255.255.255.0

152.163.200.157/
255.255.255.255

eq http udp

152.168.3.0/
255.255.255.0

152.163.200.157/
255.255.255.255

range 20-21 udp

152.168.3.0/
255.255.255.0

152.163.200.157/
255.255.255.255

eq http tcp

152.168.3.198.4/
255.255.255.255

152.163.160.0/
255.255.252.0

gt 1023 tcp

152.163.198.4/
255.255.255.255

152.163.36.0/
255.255.255.0

gt 1023 tcp

00 11

2
16

m m

20 00
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using two-biteqIDs. Hence, chunk #4 undergoes an eight-bit to two-bit reduction in Phase

0.

In the second phase (Phase 1), we consider the combination of the transport-layer Des-

tination and protocol chunks. Table 4.4 shows that the five sets corresponding to the com-

bination of these chunks are: (a) {({80}, {udp})} (b) {({20-21}, {udp})} (c) {({80},

{tcp})} (d) {({gt 1023}, {tcp})} (e) {all remaining crossproducts of the two columns}.

The five sets can be represented using 3-biteqIDs. The index into the memory in Phase 1

is constructed by concatenating the two 2-biteqIDs from Phase 0. Hence, Phase 1 reduces

the number of bits from four to three. If we now consider the combination of both Phase 0

and Phase 1, we find that 24 bits have been reduced to just 3 bits. Hence, the RFC algo-

rithm uses successive combination and reduction to map the long original packet header to

a short classID.

We will now see how a classifier is preprocessed to generate the values to be stored in

the memory tables at each phase. In what follows, we will use the termChunk Equiva-

lence Set (CES) to denote a set mentioned in the example above, e.g., each of the three

sets: (a) {tcp} (b) {udp} (c) {all remaining protocol values in the range 0-255} is said to

be a Chunk Equivalence Set because if there are two packets with different protocol val-

ues lying in the same set (and having otherwise identical headers), the rules of the classi-

fier do not distinguish between them. Each CES can be constructed in the following

manner.

First phase (Phase 0): The process of constructing a CES in a single dimension is

similar to the procedure mentioned earlier for constructing non-overlapping basic inter-

vals from the projections of the rules onto this dimension. The difference lies in that two

non-contiguous ranges may now form a part of the same CES. Consider a fixed chunk of

size  bits, and those component(s) of the rules in the classifier corresponding to thisb
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chunk. Project the rules in the classifier on the number line . Each component

projects to a set of (not necessarily contiguous) intervals on the number line. The end

points of all the intervals projected by these components form a set of non-overlapping

intervals. Two points in the same interval always belong to the same equivalence set. Also,

two intervals are in the same equivalence set if exactly the same rules project onto them.

As an example, consider chunk #6 (destination L4 port) of the classifier in Table 4.4. The

intervals, , and the constructed equivalence sets,  are shown in Figure 4.19.

The RFC table kept in the memory for this chunk is filled with the correspondingeqIDs.

Thus, in this example,table[20] = , table[23] = , etc. The pseudocode for comput-

ing theeqIDs in Phase 0 is shown in Figure 4.20.

To facilitate the calculation ofeqIDs for subsequent RFC phases, we assign aclass bit-

map (CBM) for each CES. The CBM has one bit for each rule in the classifier, and indi-

cates those rules that contain the corresponding CES. For example, E0 in Figure 4.19 will

have the CBM , indicating that the first and the third rules of the classifier in Table

4.4 contain E0 in chunk #6. Note that the class bitmap isnot physically stored in the RFC

table: it is just used to facilitate the calculation of the storedeqIDs by the preprocessing

algorithm.

Subsequent phases:A chunk in a subsequent phase is formed by a combination of

two (or more) chunks obtained from memory lookups in previous phases. If, for example,

the resulting chunk is of width bits, we again create equivalence sets such that two-bit

0 2
b

1–[ , ]

I0…I4 E0…E3

00 11

0 20 21 80 1023 65535

I0 I1 I2 I3 I4

E0 = {20,21}
E1 = {80}

E2 = {1024-65535}
E3 = {0-19,22-79,81-1023}

Figure 4.19 An example of computing the four equivalence classes E0...E3 for chunk #6 (corresponding
to the 16-bit transport-layer destination port number) in the classifier of Table 4.4.

101000

b b
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packet header values that are not distinguished by the rules of the classifier belong to the

same CES. Hence, (20,udp) and (21,udp) will be in the same CES in the classifier of Table

4.4 in Phase 1. The new equivalence sets for a phase are determined by computing all pos-

sible intersections of equivalence sets from the previous phases being combined. Each dis-

tinct intersection is an equivalence set for the newly created chunk. The pseudocode for

this preprocessing is shown in Figure 4.20.

3.5  A simple complete example of RFC

Realizing that the preprocessing steps are involved, we present a complete example of

RFC operation on a classifier, showing how preprocessing is performed to determine the

/* Phase 0, Chunkj of width b bits*/
for each rulerl  in the classifier
begin

project theith component ofrl  onto the number line , marking the start and end points of
each of its constituent intervals.

endfor
/* Now scan through the number line looking for distinct equivalence classes */
bmp := 0; /* all bits of bmp are initialised to ‘0’ */
for n in 0..2b-1

begin
if (any rule starts or ends at n)
begin

update bmp;
if (bmp not seen earlier)
begin

eq := new_equivalence_class();
eq->cbm := bmp;

endif
endif
else eq := the equivalence class whose cbm is bmp;

table_0_j[n] = eq->ID; /* fill ID in the rfc table*/
endfor

0 2
b

1–[ , ]

Figure 4.20 Pseudocode for RFC preprocessing for chunk of Phase 0.j
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contents of the memories, and how a packet is looked up. The example is based on a 4-

field classifier of Table 4.5 and is shown in Figure 4.22.

4  Performance of RFC

In this section, we look at the performance obtained by the RFC algorithm on the clas-

sifiers in our dataset. First, we consider the storage requirements of RFC. Then we con-

sider its performance to determine the rate at which packets can be classified.

TABLE  4.5. The 4-dimensional classifier used in Figure 4.22.

Rule#
Chunk#0

(Src L3 bits
31..16)

Chunk#1
(Src L3 bits

15..0)

Chunk#2
(Dst L3 bits

31..16)

Chunk#3
(Dst L3 bits

15..0)

Chunk#4
(L4 protocol)

[8 bits]

Chunk#5
(Dstn L4) [16

bits]

R0 0.83/0.0 0.77/0.0 0.0/0.0 4.6/0.0 udp (17) *

R1 0.83/0.0 1.0/0.255 0.0/0.0 4.6/0.0 udp range 20 30

R2 0.83/0.0 0.77/0.0 0.0/255.255 0.0/255.255 * 21

R3 0.0/255.255 0.0/255.255 0.0/255.255 0.0/255.255 * 21

R4 0.0/255.255 0.0/255.255 0.0/255.255 0.0/255.255 * *

/* Assume that chunk i is formed by combining m distinct chunks c1, c2, ..., cm of phases p1,p2, ...,
pm where p1, p2, ..., pm < j */

indx := 0; /* indx runs through all the entries of the RFC table, table_j_i */
listEqs := nil;
for each CES, c1eq, of chunk c1
for each CES, c2eq, of chunk c2
........
for each CES, cmeq of chunk cm
begin
 intersectedBmp := c1eq->cbm & c2eq->cbm & ... & cmeq->cbm;/* bitwise ANDing */
 neweq := searchList(listEqs, intersectedBmp);
 if (not found in listEqs)
 begin
  /* create a new equivalence class */
  neweq := new_Equivalence_Class();
  neweq->cbm := bmp;
  add neweq to listEqs;
 endif
 /* Fill up the relevant RFC table contents.*/
 table_j_i[indx] := neweq->ID;
 indx++;
endfor

Figure 4.21 Pseudocode for RFC preprocessing for chunk of Phase .i j
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Accesses made by the lookup of a packet with
Src network-layer Address = 0.83.1.32
Dst network-layer Address = 0.0.4.6
Transport-layer Protocol = 17 (udp)
Dst transport-layer port number = 22

Phase 0 Phase 1 Phase 2

Chunk#0

Chunk#1

Chunk#2

Chunk#3

Chunk#4

Chunk#5

Chunk#1

Chunk#0

Chunk#0

(0.83)

Bytes 1 and 2

of source
network address

(1.32)

Bytes3 and 4

of source
network address

(0.0)

Bytes 1 and 2

of destn
network address

(4.6)

Bytes 3 and 4

of destn
network address

(udp)

Transport
protocol

(1.32)

Destn

transport-layer
port number

indx

indx

indx

Figure 4.22 This figure shows the contents of RFC tables for the example classifier of Table 4.5. The sequence of accesses
made by the example packet have also been shown using big gray arrows. The memory locations accessed in this sequence
have been marked in bold.

eqID

eqID

eqID

eqID

eqID

eqID

eqID

Three eqIDs (a,b,c) are combined to form
indx = a * Nb * Nc + b * Nc + c where Nb is the number
of eqIDs of type b and Nc is the number of eqIDs of type c.
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4.1 RFC preprocessing

As our dataset has a maximum of four fields, the chunks for Phase 0 are created as

shown in Table 4.6.

The performance of RFC (storage requirements and classification time) can be tuned

with two parameters: (i) The number of phases,, and (ii) The reduction tree used for a

given . For instance, two of the several possible reduction trees for  and

are shown in Figure 4.23 and Figure 4.24 respectively. (For , there is only one

reduction tree possible.) When there is more than one reduction tree possible for a given

value of , the algorithm chooses a tree based on two heuristics: (i) Given a classifier, the

maximum amount of pruning of the search space is likely to be obtained by combining

those chunks together which have the most “correlation.” As an example, the combination

of chunk 0 (most significant 16 bits of the source network address) and chunk 1 (least sig-

nificant 16 bits of the source network address) in the toy example of Figure 4.22 would

result in only 3eqIDs, while the combination of chunk 0 and chunk 4 (destination trans-

port port number) would result in 5eqIDs. (ii) The algorithm combines as many chunks as

it can without causing unreasonable memory consumption. Following these heuristics, we

find that the “best” reduction tree for  is tree_B in Figure 4.23, and the “best” reduc-

tion tree for  is tree_A in Figure 4.24.1

TABLE  4.6. Packet header fields corresponding to chunks for RFC Phase 0.

Chunk# Field (subfield)

0 Source L3 address (most significant 16-bits)

1 Source L3 address (least significant 16-bits)

2 Destination L3 address (most significant 16-bits)

3 Destination L3 address (most significant 16-bits)

4 L4 protocol and flags

5 L4 destination port number

P

P P 3= P 4=

P 2=

P

P 3=

P 4=
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We now look at the performance of RFC on our dataset. Our first goal is to keep the

total storage consumption small. The storage requirements for each of our classifiers is

plotted in Figure 4.25, Figure 4.26 and Figure 4.27 for 2, 3 and 4 phases respectively.The

graphs show how memory usage increases with the number of rules in each classifier. For

practical purposes, it is assumed that memory is only available in widths of 8, 12 or 16

bits. Hence, aneqID requiring 13 bits is assumed to occupy 16 bits in the RFC table.

 As we might expect, the graphs show that storage requirements decrease with an

increase in the number of phases from three to four. However, this comes at the expense of

1.  These reduction trees gave better performance results over other trees for a vast majority of the classifiers in our
experiments.

Phase 0 Phase 1 Phase 2

ClassID

0

1
2
3

4

5

0

1

2
3

4

5

tree_A

Chunk#

Figure 4.23 Two example reduction trees for three phases in RFC.
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Figure 4.24 Two example reduction trees for four phases in RFC.
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two additional memory accesses, illustrating the trade-off between memory consumption

and lookup time in RFC.

Like most algorithms in the literature, RFC does not support quick incremental

updates, and may require rebuilding the data structure in the worst case. It turns out, how-

ever, that rebuilding is only necessary in the case of the addition of a new rule. Deletion of

existing rules can be simply handled by changing the chunk equivalence sets ofeqIDs in

the final phase. The performance of an implementation of such an incremental delete algo-

rithm on random deletes is shown in Figure 4.28.

Our second goal is to keep the preprocessing time small — this is useful when updates

necessitate rebuilding the data structure. Figure 4.29 plots the preprocessing time required

for both three and four phases of RFC.1 These graphs indicate that, if the data structure is

1.  The case P=2 is not plotted: it was found to take hours of preprocessing time because of the unwieldy size of the RFC
tables.
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Figure 4.25 The RFC storage requirement in Megabytes for two phases using the dataset. This special
case of RFC with two phases is identical to the Crossproducting method of [95].
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rebuilt on the addition of every rule, RFC may be suitable if (and only if) the rules change

relatively slowly — for example, not more than once every few seconds. Thus, RFC may

be suitable in environments where rules are changed infrequently; for example, if they are

added manually, or on a router reboot.

Finally, note that there are some similarities between the RFC algorithm and the bit-

map-intersection scheme of [48]; each distinct bitmap in [48] corresponds to a CES in the

RFC algorithm. Also, note that when there are just two phases, RFC corresponds to the

crossproducting method described in [95]. RFC is different from both these schemes in

that it generalizes the concept of crossproducting to make storage requirements feasible

for larger classifiers, along with a lookup time that scales better than that of the bitmap-

intersection approach.

Figure 4.26 The RFC storage requirement in Kilobytes for three phases using the dataset. The reduction
tree used istree_B in Figure 4.23.
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4.2 RFC lookup performance

The RFC lookup operation can be performed in hardware or in software.1 We will dis-

cuss the lookup performance in each case separately.

4.2.1 Lookups in hardware

An example hardware implementation for the treetree_B in Figure 4.23 (three phases)

is illustrated in Figure 4.30 for four fields (six chunks in Phase 0). This design is suitable

for all the classifiers in our dataset, and uses two 4 Mbit SRAMs and two 4-bank 64 Mbit

SDRAMs clocked at 125 MHz.2 The design is pipelined such that a new lookup may

begin every four clock cycles.

1.  Note that preprocessing is always performed in software.
2.  These devices are in production in industry at the time of writing. In fact, even bigger and faster devices are available

at the time of writing — see for example, reference [137].

Figure 4.27 The RFC storage requirement in Kilobytes for four phases using the dataset. The reduction
tree used istree_A in Figure 4.24.
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 The pipelined RFC lookup proceeds as follows:

1. Pipeline Stage 0: Phase 0(Clock cycles 1-4): In the first three clock cycles,
three accesses are made to the two SRAM devices in parallel to yield the sixeqIDs
of Phase 0. In the fourth clock cycle, theeqIDs from Phase 0 are combined to
compute the two indices for the next phase.

2. Pipeline Stage 1: Phase 1(Clock cycles 5-8): The SDRAM devices can be
accessed every two clock cycles, but we assume that a given bank can be accessed
again only after eight clock cycles. By keeping the two memories for Phase 1 in
different banks of the SDRAM, we can perform the Phase 1 lookups in four clock
cycles. The data is replicated in the other two banks (i.e. two banks of memory
hold a fully redundant copy of the lookup tables for Phase 1). This allows Phase 1
lookups to be performed on the next packet as soon as the current packet has com-
pleted. In this way, any given bank is accessed once every eight clock cycles.

Figure 4.28 This graph shows the average amount of time taken by the incremental delete algorithm in
milliseconds on the classifiers available to us. Rules deleted were chosen randomly from the classifier. The
average is taken over 10,000 delete operations, and although not shown, variance was found to be less than
1% for all experiments. This data is taken on a 333 MHz Pentium-II PC running the Linux operating
system.
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Figure 4.29 The preprocessing times for three and four phases in seconds, using the set of classifiers
available to us. This data is taken by running the RFC preprocessing code on a 333 MHz Pentium-II PC
running the Linux operating system.
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Figure 4.30 An example hardware design for RFC with three phases. The registers for holding data in the
pipeline and the on-chip control logic are not shown. This design achieves OC192c rates in the worst case
for 40 byte packets. The phases are pipelined with 4 clock cycles (at 125 MHz clock rate) per pipeline
stage.
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3. Pipeline Stage 2: Phase 2(Clock cycles 9-12): Only one lookup is to be made.
The operation is otherwise identical to Phase 1.

This design classifies approximately 30 million packets per second (to be exact, 31.25

million packets per second with a 125 MHz clock) with a total memory cost of approxi-

mately $40.1 This is fast enough to process minimum length TCP/IP packets at OC192

rates.

Discussion of how RFC exploits the structure in real-life classifiers

We saw in Section 3.3 that rules in real-life classifiers form a small number of overlap-

ping regions and tend to cluster in small groups. The idea behind thereduction steps used

in the RFC algorithm is to quickly narrow down the large search space to smaller sub-

spaces containing these clusters. In order to do this without consuming too much storage,

the reduction is carried out on small-sized chunks. However, the whole packet header

needs to be looked at in order to prune the search space completely to arrive at the best

matching rule — this is the purpose of thecombination steps used in the RFC algorithm

that incrementally combine a few chunks at a time till the whole packet header has been

considered. Because the rules form a small number of overlapping regions, combining

results of the reduction steps creates chunks that are still small enough to keep the total

storage requirements reasonable.

Discussion of hardware implementation of RFC

We have seen that lower bounds to the multi-field packet classification problem imply

that any solution will be either too slow, or will consume a large amount of storage in the

worst case. Given that it is difficult to design hardware around an engine with unpredict-

able speed, RFC takes the approach of ensuring bounded worst-case classification time.

1.  At the time of writing, SDRAMs are available at approximately $1.0 per megabyte, and SRAMs at $12 for a 4 Mbit
device running at 125 MHz [119][129].
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This has the side-effect of making it difficult to accurately predict the storage requirements

of RFC as a function of the size of the classifier — the performance of RFC is determined

by the structure present in the classifier. Even though pathological sets of rules do not

seem to appear in practice, RFC storage requirements could scale geometrically with the

number of rules in the worst case. This lack of characterization of the precise storage

requirements of RFC as a function of only the number of rules in a classifier is a disadvan-

tage to designers implementing RFC in hardware.

4.2.2 Lookups in software

Figure 4.31 shows the pseudocode to perform RFC lookups. When written in ‘C,’

approximately 30 lines of code are required to implement RFC. When compiled on a 333

MHz Pentium-II PC running Windows NT, we found that the worst case path for the code

took  time for three phases, and  for four phases, where

/* pktFields[i] stores the value of field i in the packet header */
for (each chunk numbered chkNum of phase 0)
  eqNums[0][chkNum] = contents of appropriate rfc table at memory location pktFields[chkNum];
for (phaseNum = 1..numPhases-1)
for (each chunk numbered chkNum in Phase phaseNum)
begin
 /* chd stores the number and description about this chunk’s parents chkParents[0..numChkParents-

1]*/
 chd = parent descriptor of (phaseNum, chkNum);
 indx = eqNums[phaseNum of chkParents[0]][chkNum of chkParents[0]];
 for (i=1..chd->numChkParents-1)
   begin
    indx = indx * (total #eqIDs of chd->chkParents[i]) + eqNums[phaseNum of chd->chkPar-

ents[i]][chkNum of chd->chkParents[i]];
     /*** Alternatively: indx = (indx << (#bits of equivID of chd->chkParents[i])) ^ (eqNums[phase-

Num of chkParents[i]][chkNum of chkParents[i]] ***/
   endfor
 eqNums[phaseNum][chkNum] = contents of appropriate rfc table at address indx
endfor
endfor
return (eqNums[numPhases-1][0]); /* this contains the desired classID */

Figure 4.31 Pseudocode for the RFC lookup operation.

140clk 9tm+( ) 146clk 11tm+( )
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 is the memory access time, andclk equals 3 ns.1 With , this corresponds to

 and  for three and four phases respectively. This implies that RFC can clas-

sify close to one million packets per second in the worst case for this dataset. The average

lookup time was found to be approximately 50% faster than the worst case — Table 4.7

shows the average time taken per packet classification for 100,000 randomly generated

packets for some classifiers in the dataset.

The pseudocode in Figure 4.31 calculates the indices into each memory using multi-

plication/addition operations oneqIDs from previous phases. Alternatively, the indices can

be computed by simple concatenation. This has the effect of increasing the memory con-

sumed because the tables do not remain as tightly packed.2 Given the simpler processing,

we might expect the classification time to decrease at the expense of increased memory

usage. Indeed the memory consumed grows approximately by a factor of two for the clas-

sifiers we have considered. Surprisingly, we saw no significant reduction in classification

times. We believe that this is because the processing time is dominated by memory access

time as opposed to the CPU cycle time.

1.  The performance of the lookup code was analyzed using VTune [138], an Intel performance analyzer for processors
of the Pentium family.

2.  Not packing rfc tables in memories may in fact be desirable to accomodate newly added rules in the classifier.

TABLE  4.7. Average time to classify a packet using a software implementation of RFC.

Number of rules in
classifier

Average time per
classification (ns)

39 587

113 582

646 668

827 611

1112 733

1733 621

tm tm 60ns=

0.96µs 1.1µs



   Recursive Flow Classification: An Algorithm for Packet Classification on Multiple Fields 152

4.3 Larger classifiers

To estimate how RFC might perform with future, larger classifiers, we synthesized

large artificial classifiers. We used two different ways to create large classifiers (given the

importance of the structure, it did not seem meaningful to generate rules randomly):

1. A large classifier can be created by concatenating classifiers for different ser-
vices, but belonging to the same network, into a single classifier. This is actually
desirable in scenarios where only one set of RFC tables is desired for the whole
network. In such cases, the classID obtained would have to be combined with
some other information (such as the classifier ID) to obtain the correct intended
action. By only concatenating classifiers from the same network, we were able to
create classifiers such that the biggest classifier had 3896 rules. For each classifier
created, we measured the storage requirements of RFC with both three and four
phases. This is shown in Figure 4.32.

2. To create even larger classifiers, we concatenated all the classifiers of a few (up
to ten) different networks. The performance of RFC with four phases is plotted as
the ‘Basic RFC’ curve in Figure 4.35. We found that RFC frequently runs into
storage problems for classifiers with more than 6000 rules. Employing more
phases does not help as we must combine at least two chunks in every phase, and

finish with one chunk in the final phase.1 An alternative way to process large clas-
sifiers would be to split them into two (or more) parts and construct separate RFC
tables for each part. This would of course come at the expense of doubling the

number of memory accesses.2

5  Variations

Several variations and improvements of RFC are possible. First, it is easy to see how

RFC can be extended to process a larger number of fields in each packet header.

Second, we can possibly speed up RFC by taking advantage of fast lookup algorithms

that find longest matching prefixes in one field. Note that in our examples, we use three

1.  With six chunks in Phase 0, we could have increased the number of phases to a maximum of six. However we found
no appreciable improvement by doing so.

2.  For Phase 0, we need not lookup memory twice for the same chunk if we use wide memories. This would help us
access the contents of both the RFC tables in one memory access.
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memory accesses each for the source and destination network-layer address lookups dur-

ing the first two phases of RFC. This is necessary because of the large number of non-con-

tiguous address/mask specifications. If only prefixes are allowed in the specification, one

can use a more sophisticated and faster algorithm for looking up in one dimension, for

instance, one of the algorithms described in Chapter 2.

Third, we can employ the technique described below to decrease the storage require-

ments for large classifiers.

5.1 Adjacency groups

Since the size of RFC tables depends on the number of chunk equivalence classes, we

try to reduce this number by merging two or more rules of the original classifier as

explained below. We find that each additional phase of RFC further increases the amount

of compaction possible on the original classifier.
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Figure 4.32 The memory consumed by RFC for three and four phases on classifiers created by merging
all the classifiers of one network.
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First we define some notation. We call two distinct rules  and , with  appearing

first in the classifier, to beadjacent in dimension if all of the following three conditions

are satisfied: (1) Both rules have the same action, (2) All but the field have the exact

same specification in the two rules, and (3) All rules appearing in between and  in the

classifier have either the same action or are disjoint from (i.e., do not overlap with ).

Two rules are simply said to beadjacent if they are adjacent in some dimension. Adja-

cency can also be viewed in the following way: Treat each rule with  fields as a boolean

expression of  (multi-valued) variables. Each rule is a conjunction (logical-AND) of

these variables. Two rules are now defined to be adjacent if they are adjacent vertices in

the -dimensional hypercube created by the symbolic representation of the fields.

Example 4.3:For the example classifier of Table 4.8, R2 and R3 are adjacent in the dimension
corresponding to the transport-layer Destination field. Similarly R5 is adjacent to
R6 (in the dimension network-layer Source), but not to R4 (different actions), or to
R7.

TABLE  4.8. An example classifier in four dimensions. The column headings indicate the names of the corresponding
fields in the packet header. “gt N” in a field specification specifies a value strictly greater thanN.

Rule
Network-layer

destination (address/
mask)

Network-layer
source (address/

mask)

Transport-
layer

destination

Transport
-layer

protocol
Action

R1 152.163.190.69/
255.255.255.255

152.163.80.11/
255.255.255.255

* * Deny

R2 152.168.3.0/
255.255.255.0

152.163.200.157/
255.255.255.255

eq http udp Permit

R3 152.168.3.0/
255.255.255.0

152.163.200.157/
255.255.255.255

range 20-21 udp Permit

R4 152.168.3.0/
255.255.255.0

152.163.200.157/
255.255.255.255

eq http tcp Deny

R5 152.163.198.4/
255.255.255.255

152.163.161.0/
255.255.252.0

gt 1023 tcp Permit

R6 152.163.198.4/
255.255.255.255

152.163.0.0/
255.255.252.0

gt 1023 tcp Permit

R7 0.0.0.0/0.0.0.0 0.0.0.0/0.0.0.0 * * Permit

R S R

i

i
th

R S

R R

d

d

d d
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Two rules  and  that are adjacent in dimension are merged to form a new rule

with the same action as (or ).  has the same specifications as that of (or ) for all

fields except that of the , which is simply thelogical-OR of the  field specifications

in  and . The third condition above ensures that the relative priority of the rules in

between  and  will not be affected by this merging.

An adjacency group is defined recursively as: (1) Every rule in the original classifier is

an adjacency group, and (2) Every merged rule that is created by merging two or more

adjacency groups is an adjacency group.

The classifier is compacted as follows. Initially, every rule is in its own adjacency

group. Next, adjacent rules are combined to create a new smaller classifier. This is imple-

mented by iterating over all fields in turn, checking for adjacency in each dimension. After

R S i T

R S T R S

i
th

i
th

R S

R S

R(a1,b1,c1,d1)

S(a1,b1,c2,d1)

T(a2,b1,c2,d1)

U(a2,b1,c1,d1)

V(a1,b1,c4,d2)

W(a1,b1,c3,d2)

X(a2,b1,c3,d2)

Y(a2,b1,c4,d2)

RS(a1,b1,c1+c2,d1)

TU(a2,b1,c1+c2,d1)

VW(a1,b1,c3+c4,d2)

XY(a2,b1,c3+c4,d2)

RSTU(a1+a2,b1,c1+c2,d1)

VWXY(a1+a2,b1,c3+c4,d2)

Carry out an RFC Phase.
Assume:chunks 1 and 2 are combined,
and also chunks 3 and 4 are combined.

RSTU(m1,n1)

VWXY(m1,n2)

(a1+a2,b1) reduces to m1

(c1+c2,d1) reduces to n1

(c3+c4,d2) reduces to n2

RSTUVWXY(m1,n1+n2)

Continue with RFC ...

Merge along

Dimension 3

Figure 4.33 This example shows how adjacency groups are formed on a classifier. Each rule is denoted
symbolically byRuleName(value-of-field1, value-of-field2,...). All rules shown are assumed to have the
same action. ‘+’ denotes a logical OR.

Merge along

Dimension 1

Assume:

Merge along

Dimension 2
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these iterations are completed, the resulting classifier will not have any more adjacent

rules. As each RFC phase collapses some dimensions, groups which were not adjacent in

earlier phases may become so in later stages. In this way, the number of adjacency groups,

and hence the size of the compacted classifier, keeps on decreasing with every phase. An

example of this operation is shown in Figure 4.33.

Note that there is no change in the actual lookup operation: the equivalence class iden-

tifiers now represent bitmaps which keep track of adjacency groups rather than the origi-

nal rules. The benefits of the adjacency group optimization are demonstrated in Figure

4.34 (using 3 RFC phases on 101 large classifiers created by concatenating all the classifi-

ers belonging to one network) and in Figure 4.35 (using 4 RFC phases on even larger clas-

sifiers created by concatenating all the classifiers of a few different networks together)

respectively. With this optimization, the storage requirements of RFC for a 15,000 rule

Figure 4.34 The memory consumed by RFC for three phases with the adjacency group optimization
enabled on classifiers created by merging all the classifiers of one network. The memory consumed by the
basic RFC scheme for the same set of classifiers is plotted in Figure 4.35.
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classifier decreases to only 3.85 MB. The intuitive reason for the reduction in storage is

that several rules in the same classifier commonly share a number of specifications for

many fields (an observation mentioned in Section 3.2).

However, the storage space savings come at a cost. Although the classifier will cor-

rectly identify the action for each arriving packet, it cannot tell which rule in the original

classifier it matched — as the rules have been merged to form adjacency groups, the dis-

tinction between each rule has been lost. This may be undesirable in applications that wish

to maintain matching statistics for each rule.
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Figure 4.35 The memory consumed with four phases with the adjacency group optimization enabled on
the large classifiers created by concatenating all the classifiers of a few different networks. Also shown is
the memory consumed when the optimization is not enabled (i.e. the basic RFC scheme). Notice the
absence of some points in the “Basic RFC” curve. For those classifiers, the basic RFC scheme takes too
much memory/preprocessing time.
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6  Comparison with related work

Table 4.9 shows a qualitative comparison of RFC with previously proposed schemes

for doing packet classification.

7  Conclusions and summary of contributions

It is relatively simple to perform packet classification at high speeds using excessively

large amounts of storage, or at low speeds with small amounts of storage. When matching

multiple fields simultaneously, theoretical bounds show that it is difficult to achieve both

high classification rate and modest storage in the worst case. This chapter shows that real

classifiers exhibit a considerable amount of structure and redundancy, and introduces for

the first time the idea of using simple heuristic algorithms to solve the multi-dimensional

packet classification problem.

TABLE  4.9. A qualitative comparison of some multi-dimensional classification algorithms.

Scheme Pros Cons

Sequential evalu-
ation

Good storage and update require-
ments. Suitable for multiple fields.

High classification time.

Grid-of-tries and
FIS-tree

Good storage requirements and fast
lookup rates for two fields. Suitable for

big 2-dimensional classifiers.

Results in two dimensions do not
extend as well to more than two fields.
Not suitable for non-contiguous masks.

Crossproducting Fast accesses. Suitable for multiple
fields. Can be adapted to rules with

non-contiguous masks.

Large memory requirements. Suitable
without caching for small classifiers up

to 50 rules.

Bitmap-intersec-
tion

Suitable for multiple fields. Can be
adapted to rules with non-contiguous

masks.

Large memory size and memory band-
width required. Comparatively slow

lookup rate. Hardware only.

Tuple space
search

Suitable for multiple fields. Fast aver-
age classification and update time.

Non-deterministic and high classifica-
tion time.

Recursive flow
classification

Suitable for multiple fields. Supports
rules with non-contiguous masks. Rea-
sonable storage requirements for real-

life classifiers. Fast classification.

High preprocessing time and memory
requirements for large classifiers (i.e.
having more than 6000 rules without

adjacency group optimization).
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The contribution of this chapter is the first proposed algorithm, RFC, that deliberately

attempts to exploit this structure. RFC appears to perform well with the selection of real-

life classifiers available to us. A hardware implementation of RFC can classify minimum-

sized IP packets at OC192c rates with commercial memories commonly available today,

while a software implementation can classify at OC48c rates. This chapter also shows that

while the basic RFC scheme may consume a large amount of storage for large four-field

classifiers (with more than 6000 rules), the structure and redundancy in the classifiers can

be further exploited with an optimization of the basic RFC scheme. This optimization

makes RFC practical for classifiers containing up to approximately 15,000 rules.
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CHAPTER     5

Hierarchical Intelligent Cuttings:

A Dynamic Multi-dimensional

Packet Classification Algorithm

1  Intr oduction

We saw in the previous chapter that real-life classifiers exhibit structure and redun-

dancy that can be exploited by simple algorithms. One such algorithm RFC, was described

in the previous chapter. RFC enables fast classification in multiple dimensions. However,

its data structure (reduction tree) has a fixed shape independent of the characteristics of

the classifier.

This chapter is motivated by the observation that an algorithm capable of adapting its

data structure based on the characteristics of the classifier may be better suited for exploit-

ing the structure and redundancy in the classifier. One such classification algorithm, called

HiCuts (Hierarchical Intelligent Cuttings), is proposed in this chapter.
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HiCuts discovers the structure while preprocessing the classifier and adapts its data

structure accordingly. The data structure used by HiCuts is a decision tree on the set of

rules in the classifier. Classification of a packet is performed by a traversal of this tree fol-

lowed by a linear search on a bounded number of rules. As computing the optimal deci-

sion tree for a given search space is known to be an NP-complete problem [40], HiCuts

uses simple heuristics to partition the search space in each dimension.

Configuration parameters of the HiCuts algorithm can be tuned to trade-off query time

against storage requirements. On 40 real-life four-dimensional classifiers obtained from

ISP and enterprise networks with 100 to 1733 rules,1 HiCuts requires less than 1 Mbyte of

storage. The worst case query time is 12, and the average case query time is 8 memory

accesses, plus a linear search on 8 rules. The preprocessing time can be sometimes large

— up to a minute2 — but the time to incrementally update a rule in the data structure is

less than 100 milliseconds on average.

1.1 Organization of the chapter

Section 2 describes the data structure built by the HiCuts algorithm, including the heu-

ristics used while preprocessing the classifier. Section 3 discusses the performance of

HiCuts on the classifier dataset available to us. Finally, Section 4 concludes with a sum-

mary and contributions of this chapter.

1.  The dataset used in this chapter is identical to that in Chapter 4 except that small classifiers having fewer than 100
rules are not considered in this chapter.

2.  Measured using thetime() lynx system call in user level ‘C’ code on a 333MHz Pentium-II PC, with 96 Mbytes of
memory and 512 Kbytes of L2 cache.
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2  The Hierarchical Intelligent Cuttings (HiCuts) algorithm

2.1 Data structure

HiCuts builds a decision tree data structure (shown in Figure 5.1) such that the internal

nodes contain suitable information to guide the classification algorithm, and the external

nodes (i.e., the leaves of the tree) store a small number of rules. On receiving an incoming

packet, the classification algorithm traverses the decision tree to arrive at a leaf node. The

algorithm then searches the rules stored at this leaf node sequentially to determine the best

matching rule. The tree is constructed such that the total number of rules stored in a leaf

node is bounded by a small number, which we callbinth (for ‘bin-threshold’). The shape

characteristics of the decision tree — such as its depth, the degree of each node, and the

local search decision to be made by the query algorithm at each node — are chosen while

preprocessing the classifier, and depend on the characteristics of the classifier.

Next, we describe the HiCuts algorithm with the help of the following example.

Example 5.1:Table 5.1 shows a classifier in two 8-bit wide dimensions. The same classifier is
illustrated geometrically in Figure 5.2. A decision tree is constructed by recur-
sively partitioning1 the two-dimensional geometric space. This is shown in Figure
5.3 with a binth of 2. The root node of the tree represents the complete two-dimen-
sional space of size . The algorithm partitions this space into four, equal

1.  We will use the terms ‘partition’ and ‘cut’ synonymously throughout this chapter.

Figure 5.1 This figure shows the tree data structure used by HiCuts. The leaf nodes store a maximum of
binth classification rules.

binth
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2
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sized geometric subspaces by cutting across the dimension. The subspaces are
represented by each of the four child nodes of the root node. All child nodes,
except the node labeled A, have less than or equal tobinth rules. Hence, the algo-
rithm continues with the tree construction only with node A. The geometric sub-
space of size  at node A is now partitioned into two equal-sized subspaces
by a cut across dimension. This results in two child nodes, each of which have
two rules stored in them. That completes the construction of the decision tree, since
all leaf nodes of this tree have less than or equal tobinth rules

We can now generalize the description of the HiCuts algorithm in dimensions as fol-

lows. Each internal node,, of the tree represents a portion of the geometric search space

TABLE  5.1. An example 2-dimensional classifier.

Rule Xrange Yrange

R1 0-31 0-255

R2 0-255 128-131

R3 64-71 128-255

R4 67-67 0-127

R5 64-71 0-15

R6 128-191 4-131

R7 192-192 0-255

X
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2
8×
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0 255
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Figure 5.2 An example classifier in two dimensions with seven 8-bit wide rules.
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— for example, the root node represents the complete geometric space in dimensions.

The geometric space at node is partitioned into smaller geometric subspaces by cutting

across one of the dimensions. These subspaces are represented by each of the child

nodes of . The subspaces are recursively partitioned until a subspace has no more than

binth number of rules — in which case, the rules are allocated to a leaf node.

More formally, we associate the following entities with each internal node of the

HiCuts data structure for a-dimensional classifier:

• A hyperrectangle , which is a -tuple of ranges (i.e., intervals):( ,

, ..., ). This rectangle defines the geometric subspace stored at.

• A cut , defined by two entities. (1) , the dimension across

which  is partitioned. (2) , the number of partitions of , i.e., the

number of cuts in the interval . Hence, the cut, , divides  into

smaller rectangles which are then associated with the child nodes of.

• A set of rules, . If  is a child of , then  is defined to be the sub-

set of  that ‘collides’ with , i.e., every rule in  that spans, cuts

or is contained in  is also a member of .  is the set of all

d

v

d

v
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R2

R2
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(64*256,Y,2)
R6

Figure 5.3 A possible HiCuts tree with binth = 2 for the example classifier in Figure 5.2. Each ellipse
denotes an internal node with a tuple . Each square is a leaf node which
contains the actual classifier rules.
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rules in the classifier. We call  the colliding rule set of , and denote the

number of rules in  by .

As an example of two -bit wide dimensions, the root node represents a rectangle of

size . The cuttings are made by axis-parallel hyperplanes, which are simply lines

in the case of two dimensions. The cut of a rectangle  is described by the number of

equal-sized intervals created by partitioning one of the two dimensions. For example, if

the algorithm decides to cut the root node across the first dimension into  intervals, the

root node will have  children, each with a rectangle of size  associated

with it.

2.2 Heuristics for decision tree computation

There are many ways to construct a decision tree for a given classifier. During prepro-

cessing, the HiCuts algorithm uses the following heuristics based on the structure present

in the classifier:

1. A heuristic that chooses a suitable number of interval cuts, , to make at an

internal node. A large value of  will decrease the depth of the tree, hence

accelerating query time at the expense of increased storage. To balance this trade-
off, the preprocessing algorithm follows a heuristic that is guided and tuned by a

pre-determined space measure function . For example, the definition

, wherespfac is a constant, is used in the experimental results

in Section 3. We also define aspace measure for a cut  as:

, where  denotes the

child node of node . HiCuts makes as many cuttings as  allows at a cer-

tain node, depending on the number of rules at that node. For instance,

could be chosen to be the largest value (using a simple binary search) such that

. The pseudocode for such a search algorithm is

shown in Figure 5.4.

2. A heuristic that chooses the dimension to cut across, at each internal node. For
example, it can be seen from Figure 5.2 that cutting across the Y-axis would be
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less beneficial than cutting across the X-axis at the root node. There are various

methods to choose a good dimension:(a) Minimizing  in

an attempt to decrease the worst-case depth of the tree.(b) Treating

  as a probability distribution

with  elements, and maximizing the entropy of the distribution. Intuitively,

this attempts to pick a dimension that leads to the most uniform distribution of

rules across nodes, so as to create a balanced decision tree.(c) Minimizing

over all dimensions.(d) Choosing the dimension that has the largest number of

distinct components of rules. For instance, in the classifier of Table 5.1, rules

and  share the same rule component in the dimension. Hence, there are 6

components in the  dimension and 7 components in the dimension. The use of

this heuristic would dictate a cut across dimension for this classifier.

3. A heuristic that maximizes the reuse of child nodes. We have observed in our
experiments that in real classifiers, many child nodes have identical colliding rule
sets. Hence, a single child node can be used for each distinct colliding rule set,

maxj NumRules chi ldj( )( )

NumRules chi ldj( ) NumRules chi ldi( )
i 1=

np C v( )( )

∑ 
 
 

⁄
î 
 
 

np C( )

sm C( )

R3

R5 X

X Y

Y

/* Algorithm to do binary search on the number of cuts to be made at node v. When the number of cuts are
such that the corresponding storage space estimate becomes more than what is allowed by the spacemea-
sure functionspmf(), we end the search. Note that it is possible to do smarter variations of this search algo-
rithm.*/

n = numRules(v);

nump = max(4, sqrt(n)); /* arbitrary starting value of number of partitions to make at this node */

for (done=0;done == 0;)

{

sm(C) = 0;

  for each rule r in R(v)

     { sm(C) += number of partitions colliding with rule r; }

  sm(C) += nump;

  if (sm(C) < spmf(n))

  {

     nump = nump * 2; /* increase the number of partitions in a binary search fashion */

  }

  else { done = 1;}

}

/* The algorithm has now found a value of nump (the number of children of this node) that fits the storage
requirements */

Figure 5.4 Pseudocode for algorithm to choose the number of cuts to be made at node.v
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while other child nodes with identical rule sets can simply point to this node. Fig-
ure 5.5 illustrates this heuristic.

4. A heuristic that eliminates redundancies in the colliding rule set of a node. As a
result of the partitioning of a node, rules may become redundant in some of the

child nodes. For example, in the classifier of Table 5.1, if  were higher priority

than , then  would be made redundant by  in the third child of the root

node labeled B (see Figure 5.3). Detecting and eliminating these redundant rules
can decrease the data structure storage requirements at the expense of increased
preprocessing time. In the experiments described in the next section, we invoked
this heuristic when the number of rules at a node fell below a threshold.

3  Performance of HiCuts

We built a simple software environment to measure the performance of the HiCuts

algorithm. Our dataset consists of 40 classifiers containing between 100 and 1733 rules

from real ISP and enterprise networks. For each classifier, a data structure is built using

the heuristics described in the previous section. The preprocessing algorithm is tuned by

two parameters: (1)binth, and (2)spfac — used in the space measure functionspmf(),

defined as .

Figure 5.6 shows the total data structure storage requirements for and

. As shown, the maximum storage requirement for any classifier is approxi-

mately 1 Mbyte, while the second highest value is less than 500 Kbytes. These small stor-

w1 w2 w3 w4 w5 w6

Figure 5.5 An example of the heuristic maximizing the reuse of child nodes. The gray regions correspond
to children with distinct colliding rule sets.

Cuts at node v

R6

R2 R2 R6

spmf n( ) spfac n×=

binth 8=

spfac 4=
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age requirements imply that in a software implementation of the HiCuts algorithm, the

whole data structure would readily fit in the L2 cache of most general purpose processors.

For the same parameters ( and ), Figure 5.7 shows the maximum

and average tree depth for the classifiers in the dataset. The average tree depth is calcu-

lated under the assumption that each leaf is accessed in proportion to the number of rules

stored in it. As shown in Figure 5.7, the worst case tree depth for any classifier is 12, while

the average is approximately 8. This implies that — in the worst case — a total of 12

memory accesses are required, followed by a linear search on 8 rules to complete the clas-

sification. Hence, a total of 20 memory accesses are required in the worst case for these

parameters.

The preprocessing time required to build the decision tree is plotted in Figure 5.8. This

figure shows that the highest preprocessing time is 50.5 seconds, while the next highest

Figure 5.6 Storage requirements for four dimensional classifiers for binth=8 and spfac=4.
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value is approximately 20 seconds. All but four classifiers have a preprocessing time of

less than 8 seconds.

The reason for the fairly large preprocessing time is mainly the number and complex-

ity of the heuristics used in the HiCuts algorithm. We expect this preprocessing time to be

acceptable in most applications, as long as the time taken to incrementally update the tree

remains small. In practice, the update time depends on the rule to be inserted or deleted.

Simulations indicate an average incremental update time between 1 and 70 milliseconds

(averaged over all the rules of a classifier), and a worst case update time of nearly 17 sec-

onds (see Figure 5.9).

Figure 5.7 Average and worst case tree depth for binth=8 and spfac=4.
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Figure 5.8 Time to preprocess the classifier to build the decision tree. The measurements were taken
using thetime() linux system call in user level ‘C’ code on a 333 MHz Pentium-II PC with 96 Mbytes of
memory and 512 Kbytes of L2 cache.

Figure 5.9 The average and maximum update times (averaged over 10,000 inserts and deletes of
randomly chosen rules for a classifier). The measurements were taken using thetime() linux system call in
user level ‘C’ code on a 333 MHz Pentium-II PC with 96 Mbytes of memory and 512 Kbytes of L2 cache.
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3.1 Variation with parameters binth and spfac

Next, we show the effect of varying the configuration parametersbinth andspfac on

the data structure for the largest 4-dimensional classifier available to us containing 1733

rules. We carried out a series of experiments where parameterbinth took the values 6, 8

and 16; and parameterspfac took the values 1.5, 4 and 8. We make the following, some-

what expected, observations from our experiments:

1. The HiCuts tree depth is inversely proportional to bothbinth andspfac. This is
shown in Figure 5.10.

2. As shown in Figure 5.11, the data structure storage requirements are directly
proportional tospfac but inversely proportional tobinth.

Figure 5.10 Variation of tree depth with parameters binth and spfac for a classifier with 1733 rules.
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3. The preprocessing time is proportional to the storage requirements, as shown in
Figure 5.12.

3.2 Discussion of implementation of HiCuts

Compared with the RFC algorithm described in Chapter 4, the HiCuts algorithm is

slower but consumes a smaller amount of storage. As with RFC, it seems difficult to char-

acterize the storage requirements of HiCuts as a function of the number of rules in the

classifier. However, given certain design constraints in terms of the maximum available

storage space or the maximum available classification time, HiCuts seems to provide

greater flexibility in satisfying these constraints by allowing variation of the two parame-

ters,binth andspfac.

Figure 5.11 Variation of storage requirements with parametersbinth andspfac for a classifier with 1733
rules.
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4  Conclusions and summary of contributions

The design of multi-field classification algorithms is hampered by worst-case bounds

on query time and storage requirements that are so onerous as to make generic algorithms

unusable. So instead we must search for characteristics of real-life classifiers that can be

exploited in pursuit of fast algorithms that are also space-efficient. Similar to Chapter 4,

this chapter resorts to heuristics that, while hopefully well-founded in a solid understand-

ing of today’s classifiers, exploit the structure of classifiers to reduce query time and stor-

age requirements.

While the data structure of Chapter 4 remains the same for all classifiers, HiCuts goes

a step further in that it attempts to compute a data structure that varies depending on the

structure of the classifier — the structure is itself discovered and utilized while prepro-

Figure 5.12 Variation of preprocessing times withbinth andspfac for a classifier with 1733 rules. The
measurements were taken using the time() linux system call in user level ‘C’ code on a 333 MHz Pentium-
II PC with 96 Mbytes of memory and 512 Kbytes of L2 cache.
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cessing the classifier. The HiCuts algorithm combines two data structures for better perfor-

mance — a tree and a linear search data structure — each of which would not be as useful

separately. The resulting HiCuts data structure is the only data structure we know of that

simultaneously supports quick updates along with small deterministic classification time

and reasonable data structure storage requirements.
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CHAPTER     6

Future Directions

As we saw in Section 1 of Chapter 1, the packet processing capacity of IP routers

needs to keep up with the exponential increase in data rates of physical links. This chapter

sets directions for future work by proposing the characteristics of what we believe would

be ‘ideal’ solutions to the routing lookup and packet classification problems.

1  Ideal routing lookup solution

We believe that an ideal routing lookup engine (we restrict our scope to IPv4 unicast

forwarding) hasall of the following characteristics:

• Speed: An ideal solution achieves one routing lookup in the time it takes to com-

plete one access in a (random-access) memory in the worst-case. This characteris-

tic implies that an ideal solution lends itself to pipelining in hardware.

• Storage: The data structure has little or no overhead in storing prefixes. In other

words, the storage requirements are nearly bits, or better, for  prefixes in

the worst-case. A less stringent, though acceptable, characteristic could be that the

storage requirements scale no worse than linearly with the size of the forwarding

32N N
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table. If the backbone forwarding tables continue to grow as rapidly as we saw in

Section 1.2.1 of Chapter 1, exponentially decreasing transistor feature sizes will

enable implementations of an ideal routing lookup solution to continue to grace-

fully meet the demands posed by future routing table growth.

• Update rate: Based on current BGP update rates, an ideal solution supports at

least 20,000 updates per second1 in the worst case. Furthermore, updates are

atomic in that they do not cause interleaved search operations to give incorrect

results.

• Feasibility of implementation: Implementations of an ideal lookup solution

should be feasible with current technology, e.g., should not consume an unreason-

able number of chips, or dissipate unreasonable amount of power, or be too

expensive.

Note that amongst the solutions known at the time of writing, ternary CAMs have

desirable storage (and possibly update rate) characteristics, but do not have the speed of

one RAM access, and do not admit feasible implementations supporting large routing

tables. Even though the algorithm proposed in Chapter 2 seems to satisfy all but the

update rate requirements, the large storage requirements of this algorithm dictate that the

fastest memory technology, i.e., SRAM, cannot be used. This imposes an inherent limita-

tion on the routing lookup rates achievable using this algorithm.

If an ideal solution did exist today, it would consume Mb of memory

for 256K prefixes.2 Now, 8 Mb of fast SRAM (with 3 ns cycle time) can be easily put on a

reasonable sized chip in current 0.18 micron technology. Hence, an ideal solution would

be able to lookup 333 million packets per second, enough to process 40 byte minimum-

sized TCP/IP packets at line rates of 100 Gbps.3 In contrast, only 66 million packets per

1.  This is two orders of magnitude greater than the peak of a few hundred reported by Labovitz [47].

2.  256,000 is more than double the number of prefixes (98,000) at the time of writing (see Section 1.2 of Chapter 1).
3.  Again, this ignores the packet-over-SONET overhead bytes.

32 256K× 8=
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second can be looked up by solutions available today — the algorithm proposed in Chap-

ter 2 (using embedded DRAM), and ternary CAMs (using 2-4 chips).

2  Ideal packet classification solution

An ideal packet classification solution not only has all the characteristics we saw

above of an ideal lookup solution — that of high speed (classification at line-rate), low

storage (to support thousands of classification rules), fast incremental updates, and feasi-

ble implementation (cost effective) — but also the characteristics of flexibility in the num-

ber and specification syntax of packet header fields supported. In contrast with routing

lookups, it is harder to quantify the desirable values of these parameters for packet classi-

fication because of the lack of a sufficient amount of statistical data about real-life classifi-

ers. However, it is not unrealistic to imagine a carrier’s edge router supporting 1000 ISP

subscribers, each with at least 256 five-field classification rules, for a total of 256,000 128-

bit rules required to be supported by the classification engine of a router.

In light of the worst-case lower bounds on multi-dimensional classification algorithms

mentioned in Chapter 4, an ideal classification solution is unlikely to be able to support all

possible worst case combinations of classification rules, and yet satisfy all the other char-

acteristics mentioned above. We believe that intelligent heuristic solutions should be

acceptable.

We now see how close the solutions known at the time of the writing of this thesis

approach that of an ideal solution. A total of sixteen 2 Mb ternary CAM chips are required

to support 256,000 128-bit classification rules. The resulting power dissipation and cost of

the system would be clearly excessive. Similarly, the Recursive Flow Classification algo-

rithm of Chapter 4 would require approximately 9 DRAM chips.1 Though not in terms of

1.  Based on experiments shown in Section 4.3 of Chapter 4, we assume that 4K rules occupy a maximum of approxi-
mately 4.5 Mbytes of memory, and that each DRAM chip has a density of 256 Mbits.
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power dissipation, this solution is still expensive in terms of board real-estate. The HiCuts

algorithm of Chapter 5 would require 4 DRAM chips but would be two to four times

slower than a ternary CAM or recursive flow classification solution.

3  Final words

The above mentioned ideal lookup and classification solutions appear challenging to

obtain, and will probably require not only improved circuit technologies, but also new

data structures and algorithms. Hopefully, this dissertation will serve as a useful founda-

tion for future research in this exciting field in general, and in attempts to obtain these (or

similar) ideal solutions in particular.
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Appendix A

Proof of correctness for the Optimized one-instruc-

tion-update algorithm of Chapter 2

Define , where  is a memory entry, to be the depth of the longest (i.e., deepest) prefix that cov-
ers . Also define  to be the length of a prefix.

Claim C1: For all prefixes , ≤ .
Proof: By definition.

Claim C2: For all prefixes , ≤ .
Proof: By definition.

Claim C3: For all prefixes  and , either of the following hold:
(1) ≤ ≤ ≤  i.e.  is completely contained in.
(2) ≤ ≤ ≤  i.e.  is completely contained in.
(3) ≤ ≤ ≤  i.e.  and  are completely non-overlapping.

Proof:  Follows from the definitions ofPS andPE and the basicparenthesis property of prefixes.

Claim C4: For all memory entries  such that .
Proof: As  is the first memory entry covered by prefix , all memory entries between its
prefix start and memory start must be covered by deeper (i.e., longer) prefixes.

Claim C5: If a prefix  is deeper than  and , then ;
i.e.  has to end (prefix end) before .
Proof: Follows from the fact that  cannot actually start in memory before any deeper prefix has
completely ended.

Now, let the update instruction passed on to the hardware by the processor beUpdate(m,Y,Z).
Before any updates, as is the first memory entry chosen to be updated by the processor,

D m( ) m p
m L p( ) p

p PS p( ) MS p( )

p ME p( ) PE p( )

p q
PS p( ) PS q( ) PE q( ) PE p( ) q p
PS q( ) PS p( ) PE p( ) PE q( ) p q
PS p( ) PE p( ) PS q( ) PE q( ) p q

m PS p( ) m MS p( )<≤ D m( ) L p( )>,
MS p( ) p

p q PS q( ) PS p( )≤ MS q( )< MS q( ) PE p( )>
p MS q( )

q

m
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.  If while executing the algorithm, hardware encounters a start-marker marking a new
prefix, say , on a memory entry ,  equals  but it may or may not equal .
We will show that  in both cases.

Case (S1):
Proof: Since the hardware is not done scanning, it has not yet encountered . As it has
encountered , (C3) tel ls us that  is wholly contained in , and so

.

Case (S2):
There are two subcases possible within this case depending upon where lies with respect
to :
Case(S2.1)
Clearly in this case, prefix is wholly contained in prefix , and so .
Case (S2.2) . Clearly in this case,  is deeper than  (as  needs to
be updated, and  lies in between  and ). By (C3) and (C5), ,
and therefore the hardware should have stopped scanning before reaching. This subcase is
thus not possible at all.
The correctness of the update algorithm now follows immediately. If the hardware, while scanning
memory entries encounters a start-marker, it indicates the start of a prefix which is necessarily
deeper than , and hence is not to be updated. This is exactly what the algorithm does. By updat-
ing only when DC equals 1, it ensures that a memory entry is updated only if it had a prefix shal-
lower than  covering it before the update.❏

D m( ) Y≤
q m2 m2 MS q( ) PS q( )

L q( ) Y>

m2 PS q( ) MS q( )= =
PE p( )

m2 PS q( )=( ) q p
L q( ) L p( )> Y=

PS q( ) m2< MS q( )=
PS q( )

m
m PS q( ) m2< < MS q( )=

q p L q( ) Y>
PS q( ) m m2<≤ MS q( )= p q m

m PS q( ) MS q( ) PE p( ) MS q( )<
m2

Y

Y
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Appendix B

Choice of Codeword Lengths in a Depth-constrained

Alphabetic Tree

Lemma 1A depth-constrained alphabetic tree with maximum depth satisfies the characteristic

inequality of Lemma 3.1 (Chapter 3), when the codeword lengths of the  letter occurring

with probability  are given by: .

Proof: We need to prove that  where , , and  is

defined by . We first prove by induction that

For the base case,  by the definition of . For the induction step, assume the

hypothesis is true for . By definition, . Now there are two pos-

sible cases:

D
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qk qk 2
D–≥ k∀ 

 
lk
* min qklog– D,( ) k 1 n,=

min qklog– 1+ D,( ) 2 k n 1–≤ ≤




=

sn 1≤ sk c sk 1– 2
lk–

,( ) 2
lk–

+= s0 0= c

c a b,( ) a b⁄ b=

si qk
k 1=

i

∑≤ 1 i n 1–≤ ≤∀

s1 2
l1–

= q1≤ l1

i 1– si c si 1– 2
l i–

,( ) 2
l i–

+=



184

1. , and therefore . Using the fact that

, i.e.,  for all nonzero real numbers and , we get

the following using inductive hypothesis:

2. . This implies that  and hence . Also, as is an

integral multiple of ,  and thus:

Therefore, . Also:

. This completes the

proof that these codeword lengths satisfy the characteristic inequality.❏
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