Almost random graphs with simple hash functions

Martin Dietzfelbinger Technische Universität Ilmenau

(Joint work with Philipp Woelfel, Universität Dortmund)

[Appeared: STOC'03]

Version AKA – Hashing, 6.2.2007

Hashing

$$h \colon U \to [m]$$

U : Universe of all keys

$$[m] = \{0, \dots, m-1\}$$
:

the range, indices in table T

Interested in behaviour of h on $S \subseteq U$, n = |S|.

Hashing with two functions

 $h_1, h_2 \colon U \to [m]$

 $[m] = \{0, \ldots, m-1\}$: the range, indices in tables T_1, T_2

Interested in behaviour of h_1, h_2 on $S \subseteq U$.

The graph

Assume h_1, h_2 are "random" \rightarrow "random" bipartite graph $G(S, h_1, h_2)$

edge set: $E = \{ (h_1(x), h_2(x)) \mid x \in S \}$

Randomness properties of $G(S, h_1, h_2)$

Why bother?

Applications (later):

- Cuckoo hashing
- Generating fully random hash functions
- Shared memory simulation
- . . .

Overview

- Universal Hashing
- Structure of function pairs
- Bad substructures of graph, Minimizing
- Probability of bad substructures
- Randomness properties
- Application 1: Cuckoo hashing
- Application 2: Fully random hash functions (whp)
- Conclusion

Universal Hashing [Carter/Wegman 79]

Random experiment:

Choose h at random from a set ("class") $\mathcal{H} \subseteq \{h \mid h \colon U \to [m]\}$

Definition: \mathcal{H} is d-universal if

for each fixed sequence x_1, \ldots, x_d of distinct keys in U $(h(x_1), \ldots, h(x_d))$ is fully random.

Realization, e.g.:

 \mathcal{H} "=" all polynomials of degree $\ < d$ over field U , projected into [m] Space: $\Theta(d)$

Evaluation time: $\Theta(d)$

What if we choose h_1, h_2 from known d-universal classes?

• Simple polynomials:

constant evaluation time $\Rightarrow d$ constant :

nothing known about randomness properties of $G(S, h_1, h_2)$.

 n^ε-universal hash classes of [Siegel 89]
(Space Θ(n^ζ), 1 > ζ > ε; evaluation time O(1)): many properties of truly random graphs hold.
(Used in many theoretical applications; evaluation time unpracticable.)

Our aim: Get good randomness properties in $G(S, h_1, h_2)$

at the (evaluation) cost of low degree polynomials.

Structure of functions

Known [DM90] :

 $g: U \to [r]$ chosen from a d-universal class, $f: U \to [m]$ chosen from a d-universal class, displacements z_0, \ldots, z_{r-1} chosen randomly in [m]

$$h(x) = \left(f(x) + z_{g(x)}\right) \mod m$$

Constant evaluation time!

 $(h(x))_{x\in S}$ has certain randomness properties.

Structure of functions (cont'd)

 $g: U \to [r]$ chosen from a d-wise independent class, $f_1, f_2: U \to [m]$ chosen from a d-wise independent class, $z_0^{(1)}, \ldots, z_{r-1}^{(1)}$ and $z_0^{(2)}, \ldots, z_{r-1}^{(2)}$ chosen randomly in [m]

$$h_1(x) = \left(f_1(x) + z_{g(x)}^{(1)}\right) \mod m$$

 $h_2(x) = \left(f_2(x) + z_{g(x)}^{(2)}\right) \mod m$

Double DM-construction, but use the same g-function

Constant evaluation time!

Like degree-(d-1)-polynomials.

Basic observation:

Let g be given.

Define
$$B_j = \{x \in S \mid g(x) = j\}.$$

Then the $2r\ {\rm random}\ {\rm vectors}$

$$(h_1(x))_{x \in B_j}, (h_2(x))_{x \in B_j}, 0 \le j < r,$$

are independent.

Reason: Random displacements $z_j^{(1)}, z_j^{(2)}$.

Dependencies may exist only among keys inside the same g-row.

Bad substructures

Hope: Inside its connected components graph $G(S, h_1, h_2)$ should behave fully randomly.

Obstructing: |T| = 16 keys (edges); |g(T)| = 11 used g-values

Connected component in which there are dependencies since the keys of some edges belong to the same g-value.

Measure how far $G(S, h_1, h_2)$ is away from being nice:

Definition: $G = G(S, H_1, h_2)$ is ℓ -bad if

 ${\cal G}$ has a connected component induced by the key set T such that

 $|g(T)| \le |T| - \ell.$

(In example: $G(S, h_1, h_2)$ is 5-bad, 4-, 3-, 2-, 1-bad.)

How often do we see ℓ -bad graphs?

If $G(S, h_1, h_2)$ were fully random, there would be no big problem: Use estimates for the probability that T forms a connected component in a random graph.

Multiply by the probability that there are colliding g-values.

Does not work, because $G(T, h_1, h_2)$ is not random.

Minimizing obstructing substructures

Assume $G(S, h_1, h_2)$ has a connected component induced by $T \subseteq S$ that makes it ℓ -bad.

Peel!

Take out edges (keys) so as to retain a connected, ℓ -bad subgraph.

Aim: Reduce, stay 4-bad.

Aim: Reduce, stay 4-bad.

Remove cycle edge with key that is not g-colliding.

Aim: Reduce, stay 4-bad.

Remove cycle edge with key that is not g-colliding.

Remove leaf edge with g-colliding key, if $|g(T)| < |T| - \ell$.

No more possible moves: minimal ℓ -bad structure.

General: repeat throwing away:

- non-g-colliding leaf and cycle edges
- g-colliding leaf and cycle edges, as long as $|g(T)| < |T| \ell$.

Resulting connected minimal structure has at most 2ℓ leaf and cycle edges, and at most 2ℓ *g*-colliding keys

 \Rightarrow can count these structures

 $\begin{aligned} &\Pr(G(S,h_1,h_2) \text{ has } \ell\text{-bad component} \\ &\leq &\Pr(\exists T \colon G(T,h_1,h_2) \text{ is connected, } \ell\text{-bad, minimal}) \\ &\leq &\sum_{T \subseteq S} \Pr(G(T,h_1,h_2) \text{ is connected, } \ell\text{-bad, minimal}) \end{aligned}$

Nice:

if f_1 , f_2 are 2ℓ -wise independent, then within minimal ℓ -bad substructures the dependence produced by keys in the same g-row is made up for by independence via f_1 , f_2

- \Rightarrow the hash values are fully independent
- \Rightarrow we may use known estimates from random graph theory.

Theorem 1

If f_1, f_2, g are 2ℓ -universal, and $m \ge (1 + \varepsilon)n$, then $\Pr(B) = \Pr(G \text{ is } \ell\text{-bad}) = O(n/r^{\ell}).$

Example: Use $\ell = 2$, hence 4-universal classes, and $r = n^{3/4}$.

Randomness properties I

For $T \subseteq S$ let $R^*(T) =$ the event that $|g(T)| \ge |T| - \ell$.

Theorem 2

If f_1, f_2, g are 2ℓ -universal, and $m \ge (1 + \varepsilon)n$, then for all $T \subseteq S$ we have:

- $R^*(T)$ happens $\Rightarrow h_1, h_2$ are perfectly random on T.
- $R^*(T)$ does not happen and $G(T, h_1, h_2)$ is within a connected component of $G(S, h_1, h_2)$ $\Rightarrow G(S, h_1, h_2)$ is ℓ -bad

Intuition:

Apart from a small bad part (probability $O(n/r^{\ell})$) everything inside connected components of G is fully random.

Definition: The cyclomatic number of a connected graph G = (V, E) with N vertices and M edges is M - N + 1,

i.e. the number of edges that are not contained in a (any) spanning tree of G.

Example: 13 nodes, 16 edges, cyclomatic number 4

Randomness properties II

Theorem 3

If f_1, f_2, g are 2ℓ -universal, and $m \ge (1 + \varepsilon)n$, then

 $\Pr(G(S, h_1, h_2) \text{ has c. c. with cyclomatic number } \ge q)$ = $O(n/r^{\ell}) + O(n^{1-q}).$

(For random graphs with the same edge density:

 $\ldots = O(n^{1-q}).)$

Cuckoo hashing [Pagh/Rodler 2001]

Implementation of dynamic dictionary: Two tables T_1, T_2 of size m each

 $x \in S$ may be stored in $T_1[h_1(x)]$ or in $T_2[h_2(x)]$.

 \Rightarrow Constant access time

in the worst case.

"Cuckoo hashing"

because of interesting insertion procedure.

Key x that wants to be placed in the table may kick out another key y that sits in $T_1[h_1(x)]$ or $T_2[h_2(x)]$.

Aim: Insert x. Try $T_1[h_1(x)]$. Occupied!

Kick out 2 from T_1 . Now 2 "nestless". $T_2[h_2(2)]$ occupied!

Kick out 6 from T_2 . Now 6 "nestless". $T_1[h_1(6)]$ occupied!

Kick out 4 from T_1 . Now 4 "nestless". $T_2[h_2(4)]$ occupied!

Kick out 5 from T_2 . Now 5 "nestless". $T_1[h_1(5)]$ empty!

Place 5 in $T_1[h_1(5)]$.

Original analysis [PR01]:

If $S \subseteq U$ is the set of keys in the table, |S| = n , and

- $\bullet \ m \geq (1+\varepsilon)n \text{ and }$
- h_1, h_2 are from a $c \log n$ -universal class,
 - c>0 constant, sufficiently large,

then

- with probability $1 O(\frac{1}{n})$ all S may be stored as required (obstructing: connected component with cyclomatic number ≥ 2)
- a single insertion attempt succeeds with probability $1 O(\frac{1}{n^2})$ within $O(\log n)$ kick-out moves; the expected number of kick-out moves is constant.

If something goes wrong: start anew with new hash functions.

Drawback:

Need strong randomness assumptions about h_1, h_2 :

 $c \log n$ -universality.

(c > 0 constant.)

Achievable with polynomials of degree $c \log n$ or with Siegel's class.

Solution:

Use h_1, h_2 as described above.

Under the assumption that $G(S, h_1, h_2)$ is not ℓ -bad,

the analysis of [PR01] goes through.

Essential: With probability $O(n/r^{\ell}) + O(1/n)$, all connected components of $G(S, h_1, h_2)$ have cyclomatic number at most 1 (at most one extra edge in addition to a spanning tree).

E.g., can use degree-3-polynomials for g, f_1, f_2 and $2r = 2n^{3/4}$ random displacements $z_j^{(1/2)}$.

Simulating uniform hashing

[Östlin/Pagh 2003]: One can initialize a data structure D that involves in essence O(n) random numbers in [t] so that D allows computing a hash function $h: U \to [t]$, with the following property:

- D is built obliviously of the keys it will be applied to
- for each $S \subseteq U$, |S| = n, the probability of a "bad event" B_S in D when applied to S is $O(1/n^k)$
- under the condition that B_S does not occur,

 $h(x), x \in S,$

is perfectly random.

Very interesting consequences for data structures (eliminating idealizing assumptions for the analysis of many hashing procedures), balanced allocation,

Drawback:

Construction requires $c \log n$ -universal hash classes.

Achievable with polynomials of degree $c \log n$ or with Siegel's class.

Pay with high evaluation time.

Alternative:

Let

$$(h(x) = a_{h_1(x)} + \phi_{h_2(x)}(x)) \mod t,$$

where

- h_1 and h_2 are functions chosen as described above, range [m] with $m \ge (1 + \varepsilon)n$,
- a_0, \ldots, a_{m-1} chosen at random from [t],
- $\phi_0, \ldots, \phi_{m-1}$ are chosen at random from a 2q-universal class of functions from U to [t].

The labeled graph

Bipartite graph $G(S, h_1, h_2)$

with node labels: a_j and ϕ_j .

h(x) = $(a_{h_1(x)} + \phi_{h_2(x)}(x)) \mod t$

Theorem 4

Then, for each $S \subseteq U$, |S| = n, apart from a bad event B_S that has probability $O(n/r^{\ell}) + O(n^{1-q})$,

$$h(x), x \in S$$

is fully random on S.

Essence of proof:

For h(x) to be fully random on S it is sufficient

that no connected component of $G(S, h_1, h_2)$ has cyclomatic number

> q.

Conclusion, Open Problems

- Graphs that behave randomly within connected components, with hash functions that are very fast to evaluate.
- Cuckoo hashing and simulation of uniform hashing with fast functions.
- What about denser graphs (m < n)?
- Hypergraphs (3 or more functions)
- Analyze graphs obtained from simple d-universal hash functions.