
Almost random graphs with simple hash

functions

Martin Dietzfelbinger

Technische Universität Ilmenau

(Joint work with Philipp Woelfel, Universität Dortmund)

[Appeared: STOC’03]

Version AKA – Hashing, 6.2.2007

Hashing

S

U

0

m−1

1

2

h

T

h : U → [m]

U : Universe of all keys

[m] = {0, . . . ,m − 1} :

the range,

indices in table T

Interested in behaviour of h

on S ⊆ U , n = |S|.

Hashing with two functions

h1, h2 : U → [m]

[m] = {0, . . . ,m − 1} : the range, indices in tables T1, T2

Interested in behaviour of h1, h2 on S ⊆ U .

The graph

h (x)2

h (x)1

0

1

m−1

0

1

x

m−1

Assume h1, h2 are “random”

→ “random” bipartite graph

G(S, h1, h2)

edge set:

E = {(h1(x), h2(x)) | x ∈ S}

? Randomness properties of G(S, h1, h2)

Why bother?

Applications (later):

• Cuckoo hashing

• Generating fully random hash functions

• Shared memory simulation

• . . .

Overview

• Universal Hashing

• Structure of function pairs

• Bad substructures of graph, Minimizing

• Probability of bad substructures

• Randomness properties

• Application 1: Cuckoo hashing

• Application 2: Fully random hash functions (whp)

• Conclusion

Universal Hashing [Carter/Wegman 79]

Random experiment:

Choose h at random from a set (“class”) H ⊆ {h | h : U → [m]}

Definition: H is d-universal if

for each fixed sequence x1, . . . , xd of distinct keys in U

(h(x1), . . . , h(xd)) is fully random.

Realization, e.g.:

H “=” all polynomials of degree < d over field U , projected into [m]

Space: Θ(d)

Evaluation time: Θ(d)

What if we choose h1, h2 from known d-universal classes?

• Simple polynomials:

constant evaluation time ⇒ d constant :

nothing known about randomness properties of G(S, h1, h2).

• nε-universal hash classes of [Siegel 89]

(Space Θ(nζ), 1 > ζ > ε; evaluation time O(1)):

many properties of truly random graphs hold.

(Used in many theoretical applications;

evaluation time unpracticable.)

Our aim: Get good randomness properties in G(S, h1, h2)

at the (evaluation) cost of low degree polynomials.

Structure of functions

Known [DM90] :

g : U → [r] chosen from a d-universal class,

f : U → [m] chosen from a d-universal class,

displacements z0, . . . , zr−1 chosen randomly in [m]

h(x) =
(

f(x) + zg(x)

)

mod m

Constant evaluation time!

(h(x))x∈S has certain randomness properties.

g

f

U

0

1

0 1 m

r

S

i -1

-1

-1

-1i

S

r

m10

1

0

U

f

g

S

r

m10

1

0

U

f

g

−1

−1i

3

5

8

2

4

3

2

4

jz
displacements

0

1

0

U

f

g

r

m

−1

−11

S

i jz
displacements

4

3

5

8

2

4

3

2

0

U

f

g

10

−1

−1

1

S

r

i m jz
displacements

4

4

3

5

8

2

3

2

−1

−1i

S

r

m10

1

0

U

f

g

displacements
zj

2

3

4

2

8

5

3

4

−1

−1i

S

r

m10

1

0

U

f

g

zj

displacements

3

4

2

8

5

3

2

4

f

−1

−1i

S

r

m10

1

0

U

g

jz
displacements

2

3

4

2

8

5

3

4

Structure of functions (cont’d)

g : U → [r] chosen from a d-wise independent class,

f1, f2 : U → [m] chosen from a d-wise independent class,

z
(1)
0 , . . . , z

(1)
r−1 and z

(2)
0 , . . . , z

(2)
r−1 chosen randomly in [m]

h1(x) =
(

f1(x) + z
(1)
g(x)

)

mod m

h2(x) =
(

f2(x) + z
(2)
g(x)

)

mod m

Double DM-construction, but use the same g-function

Constant evaluation time!

Like degree-(d − 1)-polynomials.

jz
(1)

2

1

5

0

5

6

2

4

0

2

8

0

5

1

2

6

2f
1

z(2)
j

f

−1

g

U

0

1

0 1 m

r

S

i −1

displacements

Basic observation:

Let g be given.

Define Bj = {x ∈ S | g(x) = j}.

Then the 2r random vectors

(h1(x))x∈Bj
, (h2(x))x∈Bj

, 0 ≤ j < r,

are independent.

Reason: Random displacements z
(1)
j , z

(2)
j .

Dependencies may exist only among keys inside the same g-row.

Bad substructures

Hope: Inside its connected components graph G(S, h1, h2) should

behave fully randomly.

Obstructing: |T | = 16 keys (edges); |g(T)| = 11 used g-values

h (x)2

h (x)1
1

1

3

3
6

6

11

13

12

8

7
15 18

3 = g(x)

6

Connected component in which there are dependencies since the keys

of some edges belong to the same g-value.

Measure how far G(S, h1, h2) is away from being nice:

Definition: G = G(S,H1, h2) is ℓ-bad if

G has a connected component induced by the key set T such that

|g(T)| ≤ |T | − ℓ.

(In example: G(S, h1, h2) is 5-bad, 4-, 3-, 2-, 1-bad.)

How often do we see ℓ-bad graphs?

If G(S, h1, h2) were fully random, there would be no big problem:

Use estimates for the probability that T forms a connected component

in a random graph.

Multiply by the probability that there are colliding g-values.

Does not work, because G(T, h1, h2) is not random.

Minimizing obstructing substructures

Assume G(S, h1, h2) has a connected component induced by T ⊆ S

that makes it ℓ-bad.

Peel!

Take out edges (keys) so as to retain a connected, ℓ-bad subgraph.

Aim: Reduce, stay 4-bad.

1

1

3

3
6

6

11

13

12

8

7
15 18

6

3

Remove leaf with key that is not g-colliding.

Aim: Reduce, stay 4-bad.

1

1

3

3
6

6

13

12

8

7
15 18

6

3

Remove cycle edge with key that is not g-colliding.

Aim: Reduce, stay 4-bad.

1

1

3

3
6

6

13

12

7
15 18

6

3

Remove cycle edge with key that is not g-colliding.

Aim: Reduce, ℓ-bad, ℓ = 4.

1

1

3

3
6

6

13

12

7
18

6

3

Remove leaf edge with g-colliding key, if |g(T)| < |T | − ℓ.

Aim: Reduce, stay ℓ-bad, ℓ = 4.

3

3
6

6

13

12

7
18

6

3

1

Remove leaf with key that is not g-colliding.

Aim: Reduce, stay ℓ-bad, ℓ = 4.

3

3
6

6

12

7
18

6

3

1

Remove leaf with key that is not g-colliding.

Aim: Reduce, stay ℓ-bad, ℓ = 4.

3

3
6

6

12

7

6

3

1

Remove leaf with key that is not g-colliding.

Aim: Reduce, stay ℓ-bad, ℓ = 4.

3

3
6

6

12

7

6

3

No more possible moves:

minimal ℓ-bad structure.

General: repeat throwing away:

• non-g-colliding leaf and cycle edges

• g-colliding leaf and cycle edges, as long as |g(T)| < |T | − ℓ.

Resulting connected minimal structure has at most 2ℓ leaf and cycle

edges, and at most 2ℓ g-colliding keys

⇒ can count these structures

Now:

Pr(G(S, h1, h2) has ℓ-bad component

≤ Pr(∃T : G(T, h1, h2) is connected, ℓ-bad, minimal)

≤
∑

T⊆S

Pr(G(T, h1, h2) is connected, ℓ-bad, minimal)

Nice:

if f1, f2 are 2ℓ-wise independent, then within minimal ℓ-bad

substructures the dependence produced by keys in the same g-row is

made up for by independence via f1, f2

⇒ the hash values are fully independent

⇒ we may use known estimates from random graph theory.

Theorem 1

If f1, f2, g are 2ℓ-universal, and m ≥ (1 + ε)n, then

Pr(B) = Pr(G is ℓ-bad) = O(n/rℓ).

Example: Use ℓ = 2, hence 4-universal classes, and r = n3/4.

Randomness properties I

For T ⊆ S let R∗(T) = the event that |g(T)| ≥ |T | − ℓ.

Theorem 2

If f1, f2, g are 2ℓ-universal, and m ≥ (1 + ε)n, then for all T ⊆ S

we have:

• R∗(T) happens ⇒ h1, h2 are perfectly random on T .

• R∗(T) does not happen and G(T, h1, h2) is within a connected

component of G(S, h1, h2)

⇒ G(S, h1, h2) is ℓ-bad

Intuition:

Apart from a small bad part (probability O(n/rℓ)) everything inside

connected components of G is fully random.

Definition: The cyclomatic number of a connected graph G = (V,E)

with N vertices and M edges is M − N + 1,

i.e. the number of edges that are not contained in a (any) spanning tree

of G.

Example: 13 nodes, 16 edges, cyclomatic number 4

Randomness properties II

Theorem 3

If f1, f2, g are 2ℓ-universal, and m ≥ (1 + ε)n, then

Pr(G(S, h1, h2) has c. c. with cyclomatic number ≥ q)

= O(n/rℓ) + O(n1−q).

(For random graphs with the same edge density:

. . . = O(n1−q).)

Cuckoo hashing [Pagh/Rodler 2001]

h (x)1

x

m−1

x

y

y

0

1

m−1

1

0

1T T2

2

1h (y)

2h (x)=h (y)

Implementation of dynamic

dictionary:

Two tables T1, T2

of size m each

x ∈ S may be stored

in T1[h1(x)] or

in T2[h2(x)].

⇒ Constant access time

in the worst case.

“Cuckoo hashing”

because of interesting insertion procedure.

Key x that wants to be placed in the table may kick out another key y

that sits in T1[h1(x)] or T2[h2(x)].

TT

8

m−1

0

1

m−1

1

0

1

4

x

2

2

5

3

6

9

7

5

2

9

8

4

3

7

6

x

Aim: Insert x. Try T1[h1(x)]. Occupied!

TT

x

8

4

m−1

0

1

m−1

1

0

1

x

3

2

2

5

7

9

6

2
5

9

8

4

3

7

6

2

Kick out 2 from T1. Now 2 “nestless”. T2[h2(2)] occupied!

TT

x x

3m−1

0

1

m−1

1

0

1

7

9

2

2

5

8

4

6

2

5

9

8

4

3

7

6
6

Kick out 6 from T2. Now 6 “nestless”. T1[h1(6)] occupied!

T1

6

8

x x

m−1

0

1

m−1

1

0

3

7

T2

2

5

9

4

64

5

9

8

3

7

2
4

Kick out 4 from T1. Now 4 “nestless”. T2[h2(4)] occupied!

TT

6

x x

m−1

0

1

m−1

1

0

1

3

7

2

2

5

8

4

6

9

4

9

8

3

7

2

5

5

Kick out 5 from T2. Now 5 “nestless”. T1[h1(5)] empty!

2T

m−1

0

1

m−1

1

0

1T

4

7

2

5

8

6 6

9

3

x x

5 8

3

79

2

4

done!

Place 5 in T1[h1(5)].

Original analysis [PR01]:

If S ⊆ U is the set of keys in the table, |S| = n, and

• m ≥ (1 + ε)n and

• h1, h2 are from a c log n-universal class,

c > 0 constant, sufficiently large,

then

• with probability 1 − O(1
n
) all S may be stored as required

(obstructing: connected component with cyclomatic number ≥ 2)

• a single insertion attempt succeeds with probability 1 − O(1
n2)

within O(log n) kick-out moves; the expected number of kick-out

moves is constant.

If something goes wrong: start anew with new hash functions.

Drawback:

Need strong randomness assumptions about h1, h2:

c log n-universality.

(c > 0 constant.)

Achievable with polynomials of degree c log n or with Siegel’s class.

Solution:

Use h1, h2 as described above.

Under the assumption that G(S, h1, h2) is not ℓ-bad,

the analysis of [PR01] goes through.

Essential: With probability O(n/rℓ) + O(1/n), all connected

components of G(S, h1, h2) have cyclomatic number at most 1 (at

most one extra edge in addition to a spanning tree).

E.g., can use degree-3-polynomials for g, f1, f2 and 2r = 2n3/4

random displacements z
(1/2)
j .

Simulating uniform hashing

[Östlin/Pagh 2003]: One can initialize a data structure D that involves

in essence O(n) random numbers in [t] so that D allows computing a

hash function h : U → [t], with the following property:

• D is built obliviously of the keys it will be applied to

• for each S ⊆ U , |S| = n, the probability of a “bad event” BS in

D when applied to S is O(1/nk)

• under the condition that BS does not occur,

h(x), x ∈ S,

is perfectly random.

Very interesting consequences for data structures (eliminating

idealizing assumptions for the analysis of many hashing procedures),

balanced allocation,

Drawback:

Construction requires c log n-universal hash classes.

Achievable with polynomials of degree c log n or with Siegel’s class.

Pay with high evaluation time.

Alternative:

Let

(

h(x) = ah1(x) + φh2(x)(x)
)

mod t,

where

• h1 and h2 are functions chosen as described above,

range [m] with m ≥ (1 + ε)n,

• a0, . . . , am−1 chosen at random from [t],

• φ0, . . . , φm−1 are chosen at random from a 2q-universal class of

functions from U to [t].

The labeled graph

φ0

h (x)1

a0

x

a

a1

am−1 φ

φ

φ

m−1

h (x)2

1
Bipartite graph

G(S, h1, h2)

with node labels:

aj and φj .

h(x) =

(ah1(x) + φh2(x)(x)) mod t

Theorem 4

Then, for each S ⊆ U , |S| = n, apart from a bad event BS that has

probability O(n/rℓ) + O(n1−q),

h(x), x ∈ S

is fully random on S.

Essence of proof:

For h(x) to be fully random on S

it is sufficient

that no connected component of G(S, h1, h2) has cyclomatic number

> q.

Conclusion, Open Problems

• Graphs that behave randomly within connected components, with

hash functions that are very fast to evaluate.

• Cuckoo hashing and simulation of uniform hashing with fast

functions.

• What about denser graphs (m < n) ?

• Hypergraphs (3 or more functions)

• Analyze graphs obtained from simple d-universal hash functions.

