Almost random graphs with simple hash

functions

Martin Dietzfelbinger
Technische Universität IImenau
(Joint work with Philipp Woelfel, Universität Dortmund)

[Appeared: STOC'03]

Hashing

$$
h: U \rightarrow[m]
$$

U : Universe of all keys

$$
[m]=\{0, \ldots, m-1\}:
$$

the range,
indices in table T
Interested in behaviour of h on $S \subseteq U, n=|S|$.

Hashing with two functions

$$
h_{1}, h_{2}: U \rightarrow[m]
$$

$[m]=\{0, \ldots, m-1\}:$ the range, indices in tables T_{1}, T_{2}
Interested in behaviour of h_{1}, h_{2} on $S \subseteq U$.

The graph

Assume h_{1}, h_{2} are "random"
\rightarrow "random" bipartite graph
$G\left(S, h_{1}, h_{2}\right)$
edge set:
$E=\left\{\left(h_{1}(x), h_{2}(x)\right) \mid x \in S\right\}$
$?$ Randomness properties of $G\left(S, h_{1}, h_{2}\right)$

Why bother?

Applications (later):

- Cuckoo hashing
- Generating fully random hash functions
- Shared memory simulation

Overview

- Universal Hashing
- Structure of function pairs
- Bad substructures of graph, Minimizing
- Probability of bad substructures
- Randomness properties
- Application 1: Cuckoo hashing
- Application 2: Fully random hash functions (whp)
- Conclusion

Universal Hashing [Carter/Wegman 79]

Random experiment:
Choose h at random from a set ("class") $\mathcal{H} \subseteq\{h \mid h: U \rightarrow[m]\}$
Definition: \mathcal{H} is d-universal if
for each fixed sequence x_{1}, \ldots, x_{d} of distinct keys in U
$\left(h\left(x_{1}\right), \ldots, h\left(x_{d}\right)\right)$ is fully random.
Realization, e.g.:
\mathcal{H} " $=$ " all polynomials of degree $<d$ over field U, projected into $[m]$
Space: $\Theta(d)$
Evaluation time: $\Theta(d)$

What if we choose h_{1}, h_{2} from known d-universal classes?

- Simple polynomials:
constant evaluation time $\Rightarrow d$ constant : nothing known about randomness properties of $G\left(S, h_{1}, h_{2}\right)$.
- n^{ε}-universal hash classes of [Siegel 89]
(Space $\Theta\left(n^{\zeta}\right), 1>\zeta>\varepsilon$; evaluation time $O(1)$): many properties of truly random graphs hold.
(Used in many theoretical applications;
evaluation time unpracticable.)

Our aim: Get good randomness properties in $G\left(S, h_{1}, h_{2}\right)$ at the (evaluation) cost of low degree polynomials.

Structure of functions

Known [DM90] :
$g: U \rightarrow[r]$ chosen from a d-universal class,
$f: U \rightarrow[m]$ chosen from a d-universal class, displacements z_{0}, \ldots, z_{r-1} chosen randomly in $[m]$

$$
h(x)=\left(f(x)+z_{g(x)}\right) \bmod m
$$

Constant evaluation time!
$(h(x))_{x \in S}$ has certain randomness properties.

Structure of functions (contd)

$g: U \rightarrow[r]$ chosen from a d-wise independent class,
$f_{1}, f_{2}: U \rightarrow[m]$ chosen from a d-wise independent class,
$z_{0}^{(1)}, \ldots, z_{r-1}^{(1)}$ and $z_{0}^{(2)}, \ldots, z_{r-1}^{(2)}$ chosen randomly in $[m]$

$$
\begin{aligned}
& h_{1}(x)=\left(f_{1}(x)+z_{g(x)}^{(1)}\right) \bmod m \\
& h_{2}(x)=\left(f_{2}(x)+z_{g(x)}^{(2)}\right) \bmod m
\end{aligned}
$$

Double DM-construction, but use the same g-function
Constant evaluation time!
Like degree- $(d-1)$-polynomials.

Basic observation:

Let g be given.
Define $B_{j}=\{x \in S \mid g(x)=j\}$.
Then the $2 r$ random vectors

$$
\left(h_{1}(x)\right)_{x \in B_{j}},\left(h_{2}(x)\right)_{x \in B_{j}}, 0 \leq j<r,
$$

are independent.
Reason: Random displacements $z_{j}^{(1)}, z_{j}^{(2)}$.
Dependencies may exist only among keys inside the same g-row.

Bad substructures

Hope: Inside its connected components graph $G\left(S, h_{1}, h_{2}\right)$ should behave fully randomly.

Obstructing: $|T|=16$ keys (edges); $|g(T)|=11$ used g-values

Connected component in which there are dependencies since the keys of some edges belong to the same g-value.

Measure how far $G\left(S, h_{1}, h_{2}\right)$ is away from being nice:

Definition: $G=G\left(S, H_{1}, h_{2}\right)$ is ℓ-bad if
G has a connected component induced by the key set T such that

$$
|g(T)| \leq|T|-\ell .
$$

(In example: $G\left(S, h_{1}, h_{2}\right)$ is 5 -bad, $4-, 3-, 2-, 1$-bad.)

How often do we see ℓ-bad graphs?

If $G\left(S, h_{1}, h_{2}\right)$ were fully random, there would be no big problem:
Use estimates for the probability that T forms a connected component in a random graph.

Multiply by the probability that there are colliding g-values.
Does not work, because $G\left(T, h_{1}, h_{2}\right)$ is not random.

Minimizing obstructing substructures

Assume $G\left(S, h_{1}, h_{2}\right)$ has a connected component induced by $T \subseteq S$ that makes it ℓ-bad.

Pee!!

Take out edges (keys) so as to retain a connected, ℓ-bad subgraph.

Aim: Reduce, stay 4-bad.

Remove leaf with key that is not g-colliding.

Aim: Reduce, stay 4-bad.

Remove cycle edge with key that is not g-colliding.

Aim: Reduce, stay 4-bad.

Remove cycle edge with key that is not g-colliding.

Aim: Reduce, ℓ-bad, $\ell=4$.

Remove leaf edge with g-colliding key, if $|g(T)|<|T|-\ell$.

Aim: Reduce, stay ℓ-bad, $\ell=4$.

Remove leaf with key that is not g-colliding.

Aim: Reduce, stay ℓ-bad, $\ell=4$.

Remove leaf with key that is not g-colliding.

Aim: Reduce, stay ℓ-bad, $\ell=4$.

Remove leaf with key that is not g-colliding.

Aim: Reduce, stay ℓ-bad, $\ell=4$.

No more possible moves:
minimal ℓ-bad structure.

General: repeat throwing away:

- non- g-colliding leaf and cycle edges
- g-colliding leaf and cycle edges, as long as $|g(T)|<|T|-\ell$.

Resulting connected minimal structure has at most 2ℓ leaf and cycle edges, and at most $2 \ell g$-colliding keys
\Rightarrow can count these structures

Now:

$$
\begin{aligned}
& \operatorname{Pr}\left(G\left(S, h_{1}, h_{2}\right) \text { has } \ell\right. \text {-bad component } \\
& \quad \leq \operatorname{Pr}\left(\exists T: G\left(T, h_{1}, h_{2}\right) \text { is connected, } \ell \text {-bad, minimal }\right) \\
& \quad \leq \sum_{T \subseteq S} \operatorname{Pr}\left(G\left(T, h_{1}, h_{2}\right) \text { is connected, } \ell \text {-bad, minimal }\right)
\end{aligned}
$$

Nice:
if f_{1}, f_{2} are 2ℓ-wise independent, then within minimal ℓ-bad substructures the dependence produced by keys in the same g-row is made up for by independence via f_{1}, f_{2}
\Rightarrow the hash values are fully independent
\Rightarrow we may use known estimates from random graph theory.

Theorem 1

If f_{1}, f_{2}, g are 2ℓ-universal, and $m \geq(1+\varepsilon) n$, then
$\operatorname{Pr}(B)=\operatorname{Pr}(G$ is ℓ-bad $)=O\left(n / r^{\ell}\right)$.

Example: Use $\ell=2$, hence 4-universal classes, and $r=n^{3 / 4}$.

Randomness properties I

For $T \subseteq S$ let $R^{*}(T)=$ the event that $|g(T)| \geq|T|-\ell$.

Theorem 2

If f_{1}, f_{2}, g are 2ℓ-universal, and $m \geq(1+\varepsilon) n$, then for all $T \subseteq S$ we have:

- $R^{*}(T)$ happens $\Rightarrow h_{1}, h_{2}$ are perfectly random on T.
- $R^{*}(T)$ does not happen and $G\left(T, h_{1}, h_{2}\right)$ is within a connected component of $G\left(S, h_{1}, h_{2}\right)$
$\Rightarrow G\left(S, h_{1}, h_{2}\right)$ is ℓ-bad
Intuition:
Apart from a small bad part (probability $O\left(n / r^{\ell}\right)$) everything inside connected components of G is fully random.

Definition: The cyclomatic number of a connected graph $G=(V, E)$ with N vertices and M edges is $M-N+1$,
i.e. the number of edges that are not contained in a (any) spanning tree of G.

Example: 13 nodes, 16 edges, cyclomatic number 4

Randomness properties II

Theorem 3

If f_{1}, f_{2}, g are 2ℓ-universal, and $m \geq(1+\varepsilon) n$, then

$$
\begin{aligned}
& \operatorname{Pr}\left(G\left(S, h_{1}, h_{2}\right) \text { has c. c. with cyclomatic number } \geq q\right) \\
& \quad=O\left(n / r^{\ell}\right)+O\left(n^{1-q}\right) .
\end{aligned}
$$

(For random graphs with the same edge density:
$\left.\ldots=O\left(n^{1-q}\right).\right)$

Cuckoo hashing [Pagh/Rodler 2001]

> Implementation of dynamic
> dictionary:
> Two tables T_{1}, T_{2}
> of size m each
> $x \in S$ may be stored
> in $T_{1}\left[h_{1}(x)\right]$ or
> in $T_{2}\left[h_{2}(x)\right]$.
> \Rightarrow Constant access time
> in the worst case.

"Cuckoo hashing"

because of interesting insertion procedure.
Key x that wants to be placed in the table may kick out another key y that sits in $T_{1}\left[h_{1}(x)\right]$ or $T_{2}\left[h_{2}(x)\right]$.

Aim: Insert x. Try $T_{1}\left[h_{1}(x)\right]$. Occupied!

Kick out 2 from T_{1}. Now 2 "nestless". $T_{2}\left[h_{2}(2)\right]$ occupied!

Kick out 6 from T_{2}. Now 6 "nestless". $T_{1}\left[h_{1}(6)\right]$ occupied!

Kick out 4 from T_{1}. Now 4 "nestless". $T_{2}\left[h_{2}(4)\right]$ occupied!

Kick out 5 from T_{2}. Now 5 "nestless". $T_{1}\left[h_{1}(5)\right]$ empty!

Place 5 in $T_{1}\left[h_{1}(5)\right]$.

Original analysis [PR01]:

If $S \subseteq U$ is the set of keys in the table, $|S|=n$, and

- $m \geq(1+\varepsilon) n$ and
- h_{1}, h_{2} are from a $c \log n$-universal class,
$c>0$ constant, sufficiently large,
then
- with probability $1-O\left(\frac{1}{n}\right)$ all S may be stored as required (obstructing: connected component with cyclomatic number ≥ 2)
- a single insertion attempt succeeds with probability $1-O\left(\frac{1}{n^{2}}\right)$ within $O(\log n)$ kick-out moves; the expected number of kick-out moves is constant.

If something goes wrong: start anew with new hash functions.

Drawback:

Need strong randomness assumptions about h_{1}, h_{2} :

$$
c \log n \text {-universality. }
$$

($c>0$ constant.)
Achievable with polynomials of degree $c \log n$ or with Siegel's class.

Solution:

Use h_{1}, h_{2} as described above.
Under the assumption that $G\left(S, h_{1}, h_{2}\right)$ is not ℓ-bad, the analysis of [PR01] goes through.

Essential: With probability $O\left(n / r^{\ell}\right)+O(1 / n)$, all connected components of $G\left(S, h_{1}, h_{2}\right)$ have cyclomatic number at most 1 (at most one extra edge in addition to a spanning tree).
E.g., can use degree-3-polynomials for g, f_{1}, f_{2} and $2 r=2 n^{3 / 4}$ random displacements $z_{j}^{(1 / 2)}$.

Simulating uniform hashing

[Östlin/Pagh 2003]: One can initialize a data structure D that involves in essence $O(n)$ random numbers in $[t]$ so that D allows computing a hash function $h: U \rightarrow[t]$, with the following property:

- D is built obliviously of the keys it will be applied to
- for each $S \subseteq U,|S|=n$, the probability of a "bad event" B_{S} in D when applied to S is $O\left(1 / n^{k}\right)$
- under the condition that B_{S} does not occur,

$$
h(x), x \in S,
$$

is perfectly random.
Very interesting consequences for data structures (eliminating idealizing assumptions for the analysis of many hashing procedures), balanced allocation,

Drawback:

Construction requires $c \log n$-universal hash classes.
Achievable with polynomials of degree $c \log n$ or with Siegel's class.
Pay with high evaluation time.

Alternative:

Let

$$
\left(h(x)=a_{h_{1}(x)}+\phi_{h_{2}(x)}(x)\right) \bmod t
$$

where

- h_{1} and h_{2} are functions chosen as described above, range $[m]$ with $m \geq(1+\varepsilon) n$,
- a_{0}, \ldots, a_{m-1} chosen at random from $[t]$,
- $\phi_{0}, \ldots, \phi_{m-1}$ are chosen at random from a $2 q$-universal class of functions from U to $[t]$.

The labeled graph

> Bipartite graph
> $G\left(S, h_{1}, h_{2}\right)$
> with node labels:
> a_{j} and ϕ_{j}
> $h(x)=$
> $\left(a_{h_{1}(x)}+\phi_{h_{2}(x)}(x)\right) \bmod t$

Theorem 4

Then, for each $S \subseteq U,|S|=n$, apart from a bad event B_{S} that has probability $O\left(n / r^{\ell}\right)+O\left(n^{1-q}\right)$,

$$
h(x), x \in S
$$

is fully random on S.

Essence of proof:

For $h(x)$ to be fully random on S
it is sufficient
that no connected component of $G\left(S, h_{1}, h_{2}\right)$ has cyclomatic number
$>q$.

Conclusion, Open Problems

- Graphs that behave randomly within connected components, with hash functions that are very fast to evaluate.
- Cuckoo hashing and simulation of uniform hashing with fast functions.
- What about denser graphs $(m<n)$?
- Hypergraphs (3 or more functions)
- Analyze graphs obtained from simple d-universal hash functions.

