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1 IntroductionThe use of �nite automata (see for instance [5]) to represent sets of wordsis a well established technique. Perhaps the most traditional applicationis found in compiler construction where such automata can be used tomodel and implement e�cient lexical analyzers (see [1]). Applications of�nite automata to solve some speci�c problems in natural language pro-cessing are exempli�ed by the works described in [4] and in [7]. However,the idea of compressing a very large vocabulary1 of words into a minimalacyclic deterministic �nite automaton, and its many applications seemsto be new. (In 1988, when this idea was being tested, we were not awareof the work described in [2] and published soon after. The existence ofa non-disclosure agreement delayed the preparation of this paper evenfurther.)The initial motivation for this research was the problem of imple-menting an e�cient spelling checker for the Portuguese language.2 Itturned out however that besides providing a very satisfactory solutionfor this speci�c problem, the technique is applicable to most languages,including English, and to many other problems which use large vocab-ularies. For instance, the spelling checker we mentioned can processabout 30,000 words per minute on a standard ibm3{compatible personalcomputer, with the automaton for over 200,000 words �tting into about124 kbytes of memory; on an 80386 model the speed goes up to 300,000words per minute.In the following sections we discuss in more detail the reasons for im-plementing spelling checkers based on automata, describe the algorithmsand data structures used, provide some interesting statistics and showsome other possible applications: multilanguage dictionaries, thesauri,1Within this text we use the word vocabulary to mean a set of words over some�nite alphabet.2Portuguese is a member of the family of Romance languages together with French,Spanish, Italian and others. It is particularly close to Spanish and it is the o�cial lan-guage of Brazil, with about 200 million speakers throughout the world. All examplesin this paper follow Brazilian usage.3ibm is the trademark of International Business Machines Corp.2



minimal perfect hashing and text compression.2 Implementation of spelling checkersIn early 1988 we were approached by a Brazilian software house whichwas engaged in the development of a spelling checker and adviser forthe Portuguese language. The company had collected a fairly completemachine-readable vocabulary of about 206,000 words, but had seriousproblems in �nding a suitable compact representation, so that a fastspelling checker and adviser with its data structures could be �t into thestandard 640 kbytes memory of an ibm{compatible personal computeras a memory resident program.One of the most widely used spelling checkers is the unix4 programspell (see [3, 8]). The program starts by stripping from the given word itsa�xes (pre�xes and su�xes); for instance, re-work-ed produces workand over-tak-ing produces take. The resulting word is then hashedproducing an index into a very large bit table which provides the answerwhether the word belongs or not to the vocabulary. By using the a�xstripping, the initial vocabulary of about 250,000 words was reduced toabout 30,000. The size of the hashing table is computed in such a waythat the probability of a non-existing word colliding with an existing one(i.e., a wrong answer) is about 1/4,000 which is perfectly acceptable inpractice. Instead of representing the whole table which is obviously verysparse (out of about 134 million bits, only about 30,000 are ones), dif-ferences between consecutive indices of non-zero entries are compressedby using the in�nite Hu�man codes in order to take care of the variablelength integers. Search speed is achieved by partitioning the table into512 segments, with each segment processed sequentially. The �nal re-sult is a very compact representation of the original vocabulary within52 kbytes of storage.An analysis of the method used by unix spell shows some of itsdrawbacks. In the �rst place, a�x stripping can lead to acceptance of4unix is a trademark of at&t Bell Laboratories.3



compara comparada comparadas comparadocomparados comparai comparais comparamcomparamos comparando comparar compararacomparar�a compararam compar�aramos comparar~aocompararas comparar�as comparardes comparareicomparareis compar�areis compararem compararemoscomparares compararia comparariam comparar��amoscompararias comparar��eis comparas comparassecompar�asseis comparassem compar�assemos comparassescomparaste comparastes comparava comparavamcompar�avamos comparavas compar�aveis comparecomparei compareis comparem comparemoscompares comparo comparouFigure 1: All 51 distinct forms of the Portuguese verb comparar (tocompare).non-existing words. Most of the practical cases are eliminated by a stoplist: foreswear will not be accepted instead of forswear, even thoughfore is a valid pre�x. However, non-words like soughted, printeredor electrowordlesslikement will be accepted! It can be argued ofcourse that such nonsense words will hardly ever occur in a real life text.On the other hand, the speller does accept some non-words which mightappear as spelling or typographical mistakes: womans instead of woman's,tos instead of toes (or maybe toss), and toing instead of toeing (ortowing). It should be noted also that this technique produces in fact anin�nite vocabulary by allowing almost arbitrary combinations of a�xes.The problem becomes more serious in a highly inected Romancelanguage. A regular verb in Portuguese has 78 forms, of which 51 are dis-tinct (see Figure 1). Actually there are four groups of regular verbs (i.e.conjugations) derived from in�nitive forms ending in -ar (like comparar| to compare), -er (comer | to eat), -ir (partir | to leave) and -or4



comparecomparescomparedcomparingFigure 2: All four distinct forms of the English verb to compare. bonita conselheirabonitas conselheirasbonito conselheirobonitos conselheirosFigure 3: All four distinct forms of the Portuguese adjective bonito(pretty) and the noun conselheiro (counselor).(compor | to compose). They all have their own forms, but they alsoshare many common su�xes. This should be contrasted with Englishwhere a regular verb has only four distinct forms (see Figure 2). A regu-lar adjective in Portuguese has four distinct forms which contrasts witha unique form in English. Nouns can have the same endings as adjec-tives when both masculine and feminine forms exist (see Figure 3). Asa result, verbs, nouns, adjectives and many other words share the samesu�xes. Many of these su�xes are endings of other su�xes as well. Allthis makes it di�cult to apply the su�x stripping technique without anelaborate case analysis scheme.In view of these problems, we decided to try a di�erent approachby building a minimal acyclic deterministic partial �nite automaton ac-cepting exactly the about 206,000 words in the available vocabulary, asdescribed in the following section. In this way we could avoid the prob-lems of introducing non-existing words. Besides that, such automata5
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#Figure 4: The minimal acyclic �nite automaton for all forms of the verbsrework, replay, overwork and overplay.provide a simple and general way of implicitly stripping pre�xes andsu�xes since each of these will be represented only once. In Figure 4we show such an automaton for all forms of the English verbs rework,replay, overwork and overplay. Notice that in order to include allforms of the verb work it su�ces to add just one transition labeled bythe letter w from state 0 to state 9.An important aspect of this representation is that a word will befound only if it exists explicitly in the vocabulary used to build theautomaton. This should be contrasted with the unix spelling checker inwhich it would su�ce to insert the verbs work and play in order to getall those forms and many others, such as ultrawork and pseudoplay.On the other hand, as is shown in Section 5, the property of beingable to enumerate all words in the vocabulary from its automaton canbe very useful in other applications.3 Implementation of the automatonThe construction of the automaton proceeds according to the basic al-gorithm: 6



function BuildAutomaton(Vocabulary);beginA  EmptyAutomaton;repeatwhile A not full doinclude the next word of Vocabulary in A;A  minimal(A)until no more words in Vocabulary;return AendAfter the �rst execution of the while loop the automaton A is re-ally a digital tree. Figure 5 shows such a tree after the inclusion of allthe words used in Figure 4. This tree can grow quite large: if the com-plete Portuguese vocabulary of 206,000 words were included at once, thetree would have over 600,000 vertices which would be unmanageable ona standard ibm{compatible personal computer running under the ms{dos5 system. Therefore the outermost repeat loop of the algorithm isnecessary. The minimization step takes advantage of the fact that theautomaton is acyclic and uses an algorithm which is linear in the size ofthe automaton. As a matter of fact, this linear algorithm seems to havebeen discovered independently by others (see for instance [10]).We use a rather elaborate data structure in order to achieve a verycompact memory representation, without sacri�cing the access speed,which depends only on the length of the word being searched and noton the size of the automaton or its alphabet. Each state is representedas an array with N entries (N is the size of the alphabet) | most ofthese entries correspond to non-existing transitions. We take advantageof this fact by shifting and overlapping state arrays in such a way thatthe existing entries do not collide. This technique is similar to the imple-mentation of tries suggested in [6]. To each state we attach one N -bitvector which selects the existing transitions for the state. Array packingis done by a greedy algorithm which in this case gives almost always5ms{dos is a trademark of MicroSoft Corp.7
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Figure 5: The digital tree for all forms of the verbs rework, replay,overwork and overplay. 8



optimal results due to a very large percentage of states with one, twoor three transitions (see Section 4 for some statistics). It also turns outthat the number of distinct bit vectors is much lower than the numberof states, so that many of them are shared.The search algorithm for a given word is of course very e�cient.Starting from the initial state, it traverses through the automaton byusing the consecutive letters of the word to select the transitions, untileither a �nal state is reached or no transition exists (i.e., either the wordbelongs to the vocabulary or not).Our �nal results show that from a practical point of view a simplerdata structure could be used, without much increase in storage or ac-cess time. For instance, an English vocabulary of about 81,000 wordsproduced an automaton with about 30,000 states and 68,000 transitions.Each state could be represented by a sequence of existing transition pairs:a letter (one byte) and a state index (two bytes); an extra byte for eachstate would hold the number of existing transitions. Consequently thewhole automaton would use about 229 kbytes: a 13% increase over ourrepresentation requiring about 203 kbytes. For the Portuguese vocabu-lary the increase would be of about 22%. The search algorithm for thissimpler representation would require a linear pass through the transitionsequence for each state, but as we mentioned already most of the stateshave very few transitions.Our original representation was chosen mainly because we did notknow beforehand either the size of the resulting automaton or its prop-erties, and we tried to minimize the storage requirements. As a matterof fact, besides the packing of the state arrays, we introduced some addi-tional facilities such as short (relative) and long (absolute) state indices,and so on. These may prove useful if we attempt to process much largervocabularies.We also included the possibility of representing automata with mul-tiple initial states, each one of them producing a di�erent vocabulary,but minimized together, so that except for the �rst letters, the commonsu�xes among words are still properly shared. Strictly speaking suchautomata are non-deterministic. This is a very restricted form of non-9



determinism which can be handled by the searching algorithm througha simple loop without requiring any backtracking. This facility is usefulin some applications to be seen in Section 5.4 Some statistics and measurementsAs we mentioned already, our main tests were applied to two cases: anEnglish vocabulary from a popular speller checker with about 81,000words and a Portuguese vocabulary with about 206,000 words. It shouldbe stressed that the information contents of these two vocabularies arevery di�erent. Due to the very high number of derived forms, the Por-tuguese vocabulary contains a much lower number of \basic" forms thanthe English one. This fact explains why the English automaton is sub-stantially larger. Figure 6 shows some of the statistics for these vocab-ularies and automata (the vocabularies are common ASCII �les, withone word per line, followed by the carriage return and line feed charac-ters). We include in this �gure the results of compressing the originalvocabularies and the automata �les with the popular pkzip and pkpak6utility programs. It should be noticed that the compression rates of theautomata �les are relatively low, in contrast with the compression of theoriginal vocabulary �les. This fact was to be expected, since the au-tomata represent already a compacted form of the vocabulary �les (seealso Subsection 5.5).In Figure 7 we show the distribution of the states of the automataaccording to the number of their transitions per state. In both caseswe used the same 26 letter alphabet augmented by the characters �c (c-cedilla needed in Portuguese), - (hyphen) and # (word terminator); seethe next section for the explanation how Portuguese accented letters aretreated. We can see that in both cases about 80% of the states have atmost three valid transitions which explains optimal results of our arraypacking.Figure 8 shows how these automata grow with the number of words6pkzip and pkpak are trademarks of pkware, inc.10



English PortugueseWords 81,142 206,786kbytes 858 2,389Vocabulary pkpak 313 683pkzip 253 602States 29,317 17,267Transitions 67,709 45,838Automaton kbytes 203 124pkpak 173 105pkzip 183 109Figure 6: Statistics for the vocabularies and the automata.included. The words in each vocabulary are distributed �rst randomlyand then alphabetically into ten approximately equal size vocabularies,and then cumulatively added to form the automata. Figure 9 displaysthe same data graphically.It is interesting to note that whereas the growth of the automatonis close to linear when the words are included in alphabetical order, avery di�erent behavior is observed with random order inclusion: actu-ally the automaton can decrease in size when more words are included!This behavior is not surprising. With the inclusion in alphabetical order,previously non-existing pre�xes and many new word roots keep being in-cluded increasing the size of the automaton. When the inclusion followsa random order, most pre�xes and roots (and su�xes as well) end upbeing included in earlier stages. Many of the new words included aresimple additions of some derived forms of other words already in the au-tomaton. Such inclusions can make the automaton shrink. For instance,if the word overplayed were excluded from the automaton in Figure 4,the resulting automaton would actually grow from 17 states and 22 tran-sitions to 18 states and 25 transitions. As an extreme case, we shouldremember that, given the 26 letter standard alphabet, a vocabulary of11



Transitions English Portugueseper state States % States %0 1 0.0 1 0.01 14471 49.4 7191 41.62 6398 21.8 3639 21.13 3369 11.5 2562 14.84 1822 6.2 1502 8.75 1307 4.5 681 3.96 728 2.5 398 2.37 375 1.3 315 1.88 224 0.8 338 2.09 155 0.5 273 1.610 114 0.4 153 0.911 68 0.2 69 0.412 61 0.2 27 0.213 48 0.2 22 0.114 43 0.1 24 0.115 25 0.1 11 0.116 17 0.1 17 0.117 13 0.0 10 0.118 10 0.0 10 0.119 16 0.1 10 0.120 15 0.1 2 0.021 14 0.0 7 0.022 9 0.0 2 0.023 4 0.0 1 0.024 4 0.0 1 0.025 2 0.0 0 0.026 4 0.0 1 0.0Figure 7: Distribution of states according to the number of their transi-tions. 12



English% Random AlphabeticalStates Transitions kbytes States Transitions kbytes10 10,459 17,935 52 4,178 8,540 2520 16,478 29,904 86 7,109 15,474 4430 21,201 40,017 114 9,869 21,560 6140 24,891 48,511 137 12,538 28,219 7950 27,651 55,434 160 15,351 34,633 9760 29,781 61,130 179 18,953 42,402 11870 31,106 65,491 195 21,576 48,608 13580 31,746 68,626 206 23,705 54,216 15390 31,418 69,809 210 25,973 60,137 175100 29,317 67,709 203 29,317 67,709 203Portuguese% Random AlphabeticalStates Transitions kbytes States Transitions kbytes10 17,817 34,751 97 2,126 5,090 1520 22,713 52,627 153 4,375 11,165 3230 25,766 65,729 206 5,677 14,602 4140 27,720 75,370 244 6,853 17,762 4950 29,007 82,609 275 8,414 22,033 6160 29,836 88,130 297 10,726 27,465 7670 30,101 92,081 314 12,845 33,170 9080 29,333 92,047 312 14,426 37,513 10290 26,896 84,611 280 15,665 41,166 112100 17,267 45,838 124 17,267 45,838 124Figure 8: Growth of the automata.13



  0  10  20  30  40  50  60  70  80  90 100
  0

  0  10  20  30  40  50  60  70  80  90 100

 10

  0  10  20  30  40  50  60  70  80  90 100

 20

  0  10  20  30  40  50  60  70  80  90 100

 30

  0  10  20  30  40  50  60  70  80  90 100

 40

  0  10  20  30  40  50  60  70  80  90 100

 50

  0  10  20  30  40  50  60  70  80  90 100

 60

  0  10  20  30  40  50  60  70  80  90 100

 70

  0  10  20  30  40  50  60  70  80  90 100

 80

  0  10  20  30  40  50  60  70  80  90 100

 90

  0  10  20  30  40  50  60  70  80  90 100

100

  0  10  20  30  40  50  60  70  80  90 100

110

  0  10  20  30  40  50  60  70  80  90 100

120

  0  10  20  30  40  50  60  70  80  90 100

130

  0  10  20  30  40  50  60  70  80  90 100

140

  0  10  20  30  40  50  60  70  80  90 100

150

  0  10  20  30  40  50  60  70  80  90 100

160

  0  10  20  30  40  50  60  70  80  90 100

170

  0  10  20  30  40  50  60  70  80  90 100

180

  0  10  20  30  40  50  60  70  80  90 100

190

  0  10  20  30  40  50  60  70  80  90 100

200

  0  10  20  30  40  50  60  70  80  90 100

210

  0  10  20  30  40  50  60  70  80  90 100

220

  0  10  20  30  40  50  60  70  80  90 100

230

  0  10  20  30  40  50  60  70  80  90 100

240

  0  10  20  30  40  50  60  70  80  90 100

250

  0  10  20  30  40  50  60  70  80  90 100

260

% of the vocabulary

%
 o

f 
th

e 
fi

na
l s

iz
e 

of
 th

e 
au

to
m

at
on

English

  0  10  20  30  40  50  60  70  80  90 100
  0

  0  10  20  30  40  50  60  70  80  90 100

 10

  0  10  20  30  40  50  60  70  80  90 100

 20

  0  10  20  30  40  50  60  70  80  90 100

 30

  0  10  20  30  40  50  60  70  80  90 100

 40

  0  10  20  30  40  50  60  70  80  90 100

 50

  0  10  20  30  40  50  60  70  80  90 100

 60

  0  10  20  30  40  50  60  70  80  90 100

 70

  0  10  20  30  40  50  60  70  80  90 100

 80

  0  10  20  30  40  50  60  70  80  90 100

 90

  0  10  20  30  40  50  60  70  80  90 100

100

  0  10  20  30  40  50  60  70  80  90 100

110

  0  10  20  30  40  50  60  70  80  90 100

120

  0  10  20  30  40  50  60  70  80  90 100

130

  0  10  20  30  40  50  60  70  80  90 100

140

  0  10  20  30  40  50  60  70  80  90 100

150

  0  10  20  30  40  50  60  70  80  90 100

160

  0  10  20  30  40  50  60  70  80  90 100

170

  0  10  20  30  40  50  60  70  80  90 100

180

  0  10  20  30  40  50  60  70  80  90 100

190

  0  10  20  30  40  50  60  70  80  90 100

200

  0  10  20  30  40  50  60  70  80  90 100

210

  0  10  20  30  40  50  60  70  80  90 100

220

  0  10  20  30  40  50  60  70  80  90 100

230

  0  10  20  30  40  50  60  70  80  90 100

240

  0  10  20  30  40  50  60  70  80  90 100

250

  0  10  20  30  40  50  60  70  80  90 100

260

% of the vocabulary

%
 o

f 
th

e 
fi

na
l s

iz
e 

of
 th

e 
au

to
m

at
on

Portuguese

Random AlphabeticalFigure 9: Graph of the growth of the automata.14



0 1 2 3 4 5

a

z

.  
.  

.

a

z

.  
.  

.
a

z

.  
.  

.

a

z

.  
.  

. #

#
#

#
#Figure 10: Automaton accepting all words of up to four letters.all letter sequences of length up toM would have (26M+1�1)=25 words;for instance, for M = 4 we would have 475,255 words. On the otherhand, the automaton for such a vocabulary would have only 27M + 1transitions (109 for M = 4; see Figure 10).We also measured the speed with which our automaton can be used.For both languages the results are practically the same, even thoughthe average English word is shorter than the Portuguese one. Our testswere programmed in C and carried out on a standard ibm{compatiblepersonal computer with a 4.77 MHz clock. A simple spelling checkerreading a normal text from a hard disk �le could process about 30,000words per minute; on an 80386 model we achieved the speed of 300,000words per minute.We would like to mention also that we built the automaton for theunix system dictionary /usr/dict/words containing about 25,000 com-monly used English words (202 kbytes).7 The automaton has 16,445states, 38,288 transitions and uses 112 kbytes of memory.7In order to keep a 29 letter alphabet, we used the standard 26 letters plus -(hyphen), ' (quote) and # (word terminator), translated upper case letters into lowercase, and eliminated the few words which include digits.15



5 Applications5.1 Spelling checkers and advisersAs we mentioned already, our �rst motivation was the implementation ofa spelling checker and adviser for Portuguese.8 It should be obvious thatthe minimal acyclic �nite automata we described provide a very conve-nient basis for the spelling checking part for any language for which suchan automaton can be built. An additional problem we had to face is theexistence in Portuguese of 12 letters with diacritical marks: �a, �a, �e, ��, �o,�u, â, ê, ô, ~a, ~o and �u. One simple solution would be to increase by 12 thesize of the alphabet. We chose however to strip the letters of their marks,and encode them and their positions after the word terminator. This so-lution contributes to decrease the size of the automaton, since words likecompar�aramos and compararam or �org~ao and orgânico produce longercommon pre�xes: compararam- and orga-. Very few words have morethan one diacritical mark,9 so that the distinct su�xes created by theencoding are relatively few.With regard to the spelling adviser, we relied heavily on the fact thatPortuguese uses a fairly phonetic spelling system. Besides that, one ofour design decisions was that the program should detect all mistakes (rel-ative to its vocabulary), but would have to give good advice mainly forspelling and not for typing mistakes; the latter ones are easily correctedby the users after they are pointed out.One of the most common sources of spelling mistakes in Portuguese isthe wrong usage of diacritical marks: for instance, necessario instead ofnecess�ario (necessary) or fôlha instead of folha (sheet). Sometimesthe adviser will present several alternatives. The three forms sabia(knew), s�abia (wise woman) and sabi�a (a native Brazilian bird) arecorrect; however sab��a and sâbia do not exist. The encoding of diacrit-ical marks as su�xes makes it particularly easy to �nd all the existing8A commercial spelling checker and adviser based on the ideas described in thissection was implemented by tti Tecnologia Ltda., S~ao Paulo, SP, Brazil.9The word q�uinq�uel��ng�ue (uent in �ve languages) seems to be an absolute cham-pion with its four marks! 16



forms of a word which agree except for those marks.Another source of common spelling mistakes are letter combinationswhich denote similar sounds: extender instead of estender (to extend),pesquiza instead of pesquisa (research), essess~ao instead of exce�c~ao(exception), humido instead of �umido (humid). We take care of this prob-lem by using some phonetic rules. The word whose spelling alternativeswe want to �nd is transformed (by another very simple automaton), afterbeing stripped of its diacritical marks, into a convenient representation:extender would become eS1tender, essess~ao would become eS2eS3ao,where the symbols S1, S2 and S3 denote the usual sound of the letters for di�erent letter contexts. Possible substitutions for the symbol S1are: fs,xg, for the symbol S2: fss,sc,xc,c,ccg, and for the symbol S3:fss,�c,c�cg. Next, a backtracking algorithm is used to enumerate all thepossibilities and check them against the automaton. In the case of theword essess~ao we would have apparently 15 alternatives like esce�caoand excessao. Since the substitutions are generated from left to right,and tested incrementally against the automaton, few alternatives are ac-tually generated, since words starting with esce or eces do not exist. Asa �nal result we get a list of alternatives, in which we include diacriticalmarks whenever they apply. Most of the time the list is very short andaccurate. It should be noted that if the adviser were based on a hashingscheme, incremental testing of the alternatives would not be possible.We believe that the technique we use for spelling advising could beeasily adapted to many languages which use phonetical spelling sys-tems; Spanish and Italian are good candidates. For other languagesthis approach might be less applicable; we certainly would not advise itfor English. It should be noticed, however, that the speed with whichthe automaton can be traversed would probably make feasible other ap-proaches, such as extensive testing of letter substitutions, transpositions,omissions and insertions. 17
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#Figure 11: The numbered version of the automaton5.2 Minimal perfect hashingLet us assume that the representation of our automaton includes, foreach state, an integer which gives the number of words that would beaccepted by the automaton starting from that state. We shall refer tosuch an automaton as a numbered automaton. In Figure 11 we show thenumbered version of the same automaton of Figure 4. The numberingcan be done by a fairly simple traversal through the automaton, once itwas built. The storage requirements for this addition are fairly modest:one integer per state (30 to 35% of storage increase in our examples).Given such a numbered automaton, we can write two simple functionswhich implement a one-to-one correspondence between the integers 1 toL (L is the number of words accepted by the automaton) and the wordsthemselves, as shown in Figures 12 and 13.10These functions represent an e�cient and compact minimal perfecthashing scheme for the vocabulary which can be used in several appli-cations (some will be mentioned in this section). It should be stressedthat this scheme can be used only if the hashing functions do not changevery often since the construction of the automaton can be quite timeconsuming. This should be contrasted with the results described for in-stance in [9], where a fast method to determine a minimal perfect hashing10The ordering implied by this numbering is the lexicographic ordering of the orig-inal vocabulary. 18



function WordToIndex(Word);beginIndex  0;CurrentState  InitialState;for I  1 to Length(Word) doif ValidTransition(CurrentState,Word[I]) thenbeginfor C  FirstLetter to Predecessor(Word[I]) doif ValidTransition(CurrentState,C)then Index  Index + CurrentState[C].Number;CurrentState  CurrentState[Word[I]];if IsFinal(CurrentState)then Index  Index + 1endelse return Unde�ned;if IsFinal(CurrentState)then return Indexelse return Unde�nedend Figure 12: Hashing functionfunction is described. The computation of the resulting hashing requireshowever that the whole vocabulary be kept as part of the data structure,which is usually much larger than the automaton used in our method.5.3 Multilanguage dictionariesNumbered automata can be used to implement multilanguage dictionar-ies for simple word-to-word translations. Vocabularies for several lan-guages can be represented by one automaton with multiple initial states,one for each language. It is interesting to note that even though di�er-19



function IndexToWord(Index);beginCurrentState  InitialState;Count  Index;OutputWord  EmptyWord;repeatfor C  FirstLetter to LastLetter doif ValidTransition(CurrentState,C) thenbeginAuxState  CurrentState[C];if AuxState.Number < Countthen Count  Count � AuxState.NumberelsebeginOutputWord  OutputWord & C;CurrentState  AuxState;if IsFinal(CurrentState)then Count  Count � 1;exit forloopendenduntil Count = 0;return OutputWordendFigure 13: Unhashing function20



ent languages are involved, by reversing the words while we build theautomaton, the minimization process takes advantage of any existingspelling similarities like for instance common Latin pre�xes and rootsexisting in many European languages. Besides the automaton, for eachlanguage we can use an array indexed by the word numbers and mapthem into lists of indices for other languages. The lists can be part ofthe arrays themselves as shown in the hypothetical example in Figure 14for an English{French{Portuguese dictionary.5.4 ThesauriGiven a word like work, a simple thesaurus might produce an outputlike:work:noun avocation,calling,employment,field,job,occupation,profession,trade,vocation;chore,drudgery,grind,labor,slavery,sweat,tedium,toil,travail.verb answer,do,fulfill,meet,qualify,satisfy,suffice.Thus for each grammatical category to which the word belongs (noun,verb, etc.) we have a set of lists of related words, with each list corre-sponding to a di�erent interpretation of the word. Such a thesaurus isusually complete (or closed) in the sense that if we give it any of thewords on one of these lists, we get as one of the results the same list (theword given as the key is usually excluded). Thus if we give the thesaurusthe word toil we might get:toil:noun chore,drudgery,grind,labor,slavery,sweat,tedium,travail,work.verb lumber,persevere,persist,plod,plug.We implemented this kind of thesaurus by using a numbered automa-ton with multiple initial states: each initial state corresponds to one21



English French Portuguese

cat

chat

gato

Figure 14: Example of the auxiliary arrays for multilanguage dictionaryand the word cat (chat in French and gato in Portuguese).22



grammatical category. Besides the automaton, we use some additionaldata structures to represent the lists of words as sequences of numbers.This implementation was tested for an English thesaurus which is part ofa popular commercial product. Its automaton accepts about 9,500 words(a word like work is counted twice, since it is a noun and a verb), has lessthan 9,000 states and 18,000 transitions. The storage requirements are88 kbytes for the automaton and about 39 kbytes for the additional datastructures. The original commercial implementation required about 159kbytes.This kind of application is of course very general and does not dependon the language.5.5 Text compressionA sequence of words belonging to the vocabulary of an automaton canbe obviously encoded by the sequence of its numbers which will usuallyrequire less space. In practice the problem of text compression is morecomplicated due to the appearance of words not belonging to the vo-cabulary, treatment of lower and upper cases and inclusion of non-lettercharacters. It is possible however to combine the above idea with othercompression techniques (see [12]). Our preliminary results show thatthe performance is sometimes reasonably close to that of the utility pro-grams pkzip and pkpak, but not any better. It seems that in this caseonly applications in some special contexts might prove to be of interest.For instance, if we wish to compress a set of words, regardless of theirorder, we can use the automaton itself. The size of the automaton canbe much smaller than the result of a compression program as shown inFigure 6. It also shows that some additional savings can be achieved bycompressing the automaton �le itself.6 Future workWe have shown that �nite automata provide a useful tool for many appli-cations where a very compact representation of large vocabularies with23



direct access is required. One of the directions we would like to followin the future is to do some experiments on languages other than Englishand Portuguese, especially on those with di�erent spelling systems likefor instance Arabic and Hebrew, or even Japanese and Chinese wherea suitable representation for their characters would have to be used. Itseems however that machine-readable vocabularies for these languagesare not easy to �nd.Another interesting direction is to try to build automata for evenlarger vocabularies, in order to study the statistics they produce andto try to understand what kind of information they provide about thelanguage, or at least about its spelling system.Finally we would like to study other possible applications for theseideas. One of them might involve vocabularies found in molecular biol-ogy.AcknowledgmentsWe wish to thank Nilo S. Mismetti and Fernando Mismetti from tti Tec-nologia Ltda. They provided the initial motivation and part of the mate-rial support necessary to carry out this research, besides many stimulat-ing discussions and constant challenges. Imre Simon from the Universityof S~ao Paulo gave us recently some additional hints about applicationsof automata and provided us with an excellent bibliography (see [11]).References[1] Aho, A. V., Sethi, R. and Ullman, J. D. Compilers: Principles, Tech-niques and Tools, Addison{Wesley, Reading, Ma. 1985.[2] Appel, A. W. and Jacobson, G. J. The world's fastest scrabble pro-gram. Commun. ACM 31,5 (May 1988), 572{578, 585.[3] Bentley, J. A spelling checker. Commun. ACM 28,5 (May 1985),456{462. 24
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