
Architectural Support for SWAR Text Processing with Parallel Bit
Streams: The Inductive Doubling Principle

Robert D. Cameron Dan Lin
School of Computing Science, Simon Fraser University

{cameron, lindanl}@cs.sfu.ca

Abstract
Parallel bit stream algorithms exploit the SWAR (SIMD
within a register) capabilities of commodity processors in
high-performance text processing applications such as UTF-
8 to UTF-16 transcoding, XML parsing, string search and
regular expression matching. Direct architectural support for
these algorithms in future SWAR instruction sets could fur-
ther increase performance as well as simplifying the pro-
gramming task. A set of simple SWAR instruction set ex-
tensions are proposed for this purpose based on the princi-
ple of systematic support for inductive doubling as an al-
gorithmic technique. These extensions are shown to signifi-
cantly reduce instruction count in core parallel bit stream al-
gorithms, often providing a 3X or better improvement. The
extensions are also shown to be useful for SWAR program-
ming in other application areas, including providing a sys-
tematic treatment for horizontal operations. An implemen-
tation model for these extensions involves relatively sim-
ple circuitry added to the operand fetch components in a
pipelined processor.

Categories and Subject Descriptors C.1.2 [PROCESSOR
ARCHITECTURES]: Multiple Data Stream Architectures
(Multiprocessors)—Single-instruction-stream, multiple-data-
stream processors (SIMD)

General Terms Design, Performance

Keywords inductive doubling, parallel bit streams, SWAR

1. Introduction
In the landscape of parallel computing research, find-
ing ways to exploit intrachip (multicore) and intraregis-
ter (SWAR) parallelism for text processing and other non-
numeric applications is particularly challenging. Indeed, in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’09, March 7–11, 2009, Washington, DC, USA.
Copyright c© 2009 ACM 978-1-60558-406-5/09/03. . . $5.00

documenting this landscape, a widely cited Berkeley study
[1] identifies the finite-state machine algorithms associ-
ated with text processing to be the hardest of the thirteen
“dwarves” to parallelize, concluding that nothing seems to
help. Indeed, the study even speculates that applications in
this area may simply be “embarrassingly sequential,” easy to
tackle for traditional sequential processing approaches suit-
able for uniprocessors, but perhaps fundamentally unsuited
to parallel methods.

One approach that shows some promise, however, is the
method of parallel bit streams, recently applied to UTF-8 to
UTF-16 transcoding [2, 3], XML parsing [4, 6] and amino
acid sequencing[5]. In this method, byte-oriented character
data is first transposed to eight parallel bit streams, one for
each bit position within the character code units (bytes).
Loading bit stream data into 128-bit registers, then, allows
data from 128 consecutive code units to be represented and
processed at once. Bitwise logic and shift operations, bit
scans, population counts and other bit-based operations are
then used to carry out the work.

In application to UTF-8 to UTF-16 transcoding, a 3X
to 25X speed-up is achieved in using parallel bit stream
techniques on SWAR-capable uniprocessors employing the
SSE or Altivec instruction sets[3]. In the broader context
of XML parsing, further applications of these techniques
demonstrate the utility of parallel bit stream techniques in
delivering performance benefits through a significant portion
of the web technology stack. In an XML statistics gather-
ing application, including the implementation of XML well-
formedness checking, an overall 3X to 10X performance im-
provement is achieved in using the parallel bit stream meth-
ods in comparison with a similarly coded application using
such well known parsers as Expat and Xerces [4]. In an ap-
plication involving transformation between different XML
formats (GML and SVG), an implementation using parallel
bit stream technology required a mere 15 cycles per byte,
while a range of other technologies required from 25 to 200
cycles per byte [6]. Ongoing work is further applying the
parallel bit stream methods to parallel hash value compu-
tation and parallel regular expression matching for the pur-

337

pose of validating XML datatype declarations in accord with
XML Schema [4].

Given these promising initial results in the application of
parallel bit stream methods, what role might architectural
support play in further enhancing this route to paralleliza-
tion of text processing? This paper addresses this question
through presentation and analysis of a constructive proposal:
a set of SWAR instruction set features based on the princi-
ple of systematic support for inductive doubling algorithms.
Inductive doubling refers to a general property of certain
kinds of algorithm that systematically double the values of
field widths or other data attributes with each iteration. In
essence, the goal of the proposed features is to support such
algorithms with specific facilities to transition between suc-
cessive power-of-2 field widths. These transitions are quite
frequent in parallel bit stream programming as well as other
applications. The specific features presented herein will be
referred to as IDISA: inductive doubling instruction set ar-
chitecture.

The remainder of this paper is organized as follows.
The second section of this paper introduces IDISA and the
SWAR notation used throughout this paper. The third section
moves on to discuss an evaluation methodology for IDISA
in comparison to two reference architectures motivated by
the SSE and Altivec instruction sets. The fourth section pro-
vides a short first example of the inductive doubling princi-
ple in action through the case of population count. Sections
5 through 7 then address the application of IDISA to core
algorithms in text processing with parallel bit streams. The
eighth section then considers the potential role of IDISA in
supporting applications beyond parallel bit streams. Section
9 addresses IDISA implementation while Section 10 con-
cludes the paper with a summary of results and directions
for further work.

2. Inductive Doubling Architecture
This section presents IDISA as an idealized model for a
SWAR instruction set architecture designed specifically to
support inductive doubling algorithms. The architecture is
idealized in the sense that we concentrate on only the neces-
sary features for our purpose, without enumerating the addi-
tional operations that would be required for SWAR applica-
tions in other domains. The goal is to focus on the principles
of inductive doubling support in a way that can accommo-
date a variety of realizations as other design constraints are
brought to bear on the overall instruction set design. First we
introduce a simple model and notation for SWAR operations
in general and then present the four key features of IDISA.

IDISA supports typical SWAR integer operations using
a three-register model involving two input registers and one
output register. Each register is of size N = 2K bits, for
some integer K. Typical values of K for commodity proces-
sors include K = 6 for the 64-bit registers of Intel MMX
and Sun VIS technology, K = 7 for the 128-bit registers of

SSE and Altivec technology and K = 8 for the upcoming
Intel AVX technology. The registers may be partitioned into
N/n fields of width n = 2k bits for some values of k ≤ K.
Typical values of k used on commodity processors include
k = 3 for SWAR operations on 8-bit fields (bytes), k = 4
for operations on 16-bit fields and k = 5 for operations on
32-bit fields. Whenever a register r is partitioned into n-bit
fields, the fields are indexed rn[0] through rn[N/n−1]. Field
rn[i] consists of bits i×n through (i+1)×n−1 of register
r, using big-endian numbering.

Let simd<n> represent the class of SWAR operations de-
fined on fields of size n using C++ template syntax. Given
a binary function Fn on n-bit fields, we denote the SWAR
version of this operation as simd<n>::F. Given two input
registers a and b holding values a and b, respectively, the op-
eration r=simd<n>::F(a,b) stores the value r in the output
register r as determined by the simultaneous calculation of
individual field values in accord with the following equation.

ri = Fn(ai, bi) (1)

For example, addition(add), subtraction (sub) and shift
left logical (sll) may be defined as binary functions on n-
bit unsigned integers as follows.

addn(a, b) = (a + b) mod 2n (2)
subn(a, b) = (a− b + 2n) mod 2n (3)
slln(a, b) = a× 2b mod n mod 2n (4)

The Altivec instruction set includes each of these opera-
tions for 8, 16 and 32-bit fields directly following the three-
register model. The SSE set uses a two-register model with
the result being copied back to one of the input operands.
However, the C language intrinsics commonly used to ac-
cess these instructions reflect the three-register model. The
SSE set extends these operations to include operations on
64-bit fields, but constrains the shift instructions, requiring
that all field shifts by the same amount.

Given these definitions and notation, we now present the
four key elements of an inductive doubling architecture. The
first is a definition of a core set of binary functions on n-bit
fields for all field widths n = 2k for 0 ≤ k ≤ K. The sec-
ond is a set of half-operand modifiers that allow the inductive
processing of fields of size 2n in terms of combinations of
n-bit values selected from the fields. The third is the defi-
nition of packing operations that compress two consecutive
registers of n-bit values into a single register of n/2-bit val-
ues. The fourth is the definition of merging operations that
produce a set of 2n bit fields by concatenating corresponding
n-bit fields from two parallel registers. Each of these features
is described below.

For the purpose of direct and efficient support for induc-
tive doubling algorithms, the provision of a core set of opera-
tions at field widths of 2 and 4 as well as the more traditional
field widths of 8, 16 and 32 is key. In essence, inductive dou-
bling algorithms work by establishing some base property at

338

either single or 2-bit fields. Each iteration of the algorithm
then goes on to establish the property for the power-of-2
field width. In order for this inductive step to be most conve-
niently and efficiently expressed, the core operations needed
for the step should be available at each field width. In the
case of work with parallel bit streams, the operations add,
sub, sll, srl (shift right logical), and rotl (rotate left)
comprise the core. In other domains, additional operations
may be usefully included in the core depending on the work
that needs to be performed at each inductive doubling level.

Note that the definition of field widths n = 2k for 0 ≤
k ≤ K also includes fields of width 1. These are included for
logical consistency, but are easily implemented by mapping
directly to appropriate bitwise logic operations, which we
assume are also available. For example, simd<1>::add is
equivalent to simd_xor, the bitwise exclusive-or operation.

The second key facility of the inductive doubling archi-
tecture is the potential application of half-operand modifiers
to the fields of either or both of the operands of a SWAR
operation. These modifiers select either the low n/2 bits of
each n-bit field (modifier “l”) or the high n/2 bits (modifier
“h”). When required, the modifier “x” means that the full
n bits should be used, unmodified. The semantics of these
modifiers are given by the following equations.

l(rn) = rn mod 2n/2 (5)

h(rn) = rn/2n/2 (6)
x(rn) = rn (7)

In our notation, the half-operand modifiers are specified as
optional template (compile-time) parameters for each of the
binary functions. Thus, simd<4>::add<h,l>(a,b) is an
operation which adds the 2-bit quantity found in the high
2-bits of each 4-bit field of its first operand (a) together with
the corresponding 2-bit quantity found in the low 2-bits of
its second operand (b). In general, the purpose of the half-
operand modifiers in support of inductive doubling is to al-
low the processing of n-bit fields to easily expressed in terms
of combination of the results determined by processing n/2
bit fields.

The third facility of the inductive doubling architecture
is a set of pack operations at each field width n = 2k for
1 ≤ k ≤ K. The field values of r=simd<n>::pack(a,b)
are defined by the following equations.

rn/2[i] = conv(an[i], n/2), for i < N/n (8)
rn/2[i] = conv(bn[i−N/n], n/2), for i ≥ N/n (9)

Here conv is a function which performs conversion of an n-
bit value to an n/2 bit value by signed saturation (although
conversion by unsigned saturation would also suit our pur-
pose).

Half-operand modifiers may also be used with the pack
operations. Thus packing with conversion by masking off all
but the low n/2 bits of each field may be be performed using
the operation simd<n>::pack<l,l>.

The final facility of the inductive doubling architecture
is a set of merging operations that produce 2n-bit fields by
concatenating corresponding n-bit fields from the operand
registers. The operations r=simd<n>::mergeh(a,b) and
s=simd<n>::mergel(a,b) are defined by the following
equations.

r2n[i] = a[i]× 2n + b[i] (10)
s2n[i] = a[i + N/(2n)]× 2n + b[i + N/(2n)] (11)

Both SSE and Altivec provide versions of pack and merge
operations for certain field widths. The pack operations are
provided with operands having 16-bit or 32-bit fields on each
platform, although with some variation in how conversion is
carried out. The merge operations are provided at 8-bit, 16-
bit and 32-bit field widths on both architectures and also at
the 64-bit level on SSE.

This completes the description of IDISA. As described,
many of the features are already available with the SWAR
facilities of existing commodity processors. The extensions
enumerated here are relatively straightforward. The innova-
tion is to specifically tackle the design of facilities to offer
systematic support for transitions between power-of-2 field
widths. As we shall show in the remainder of this paper,
these facilities can dramatically reduce instruction count in
core parallel bit stream algorithms, with a factor of 3 reduc-
tion being typical.

3. Evaluation Methodology
IDISA represents a set of instruction set features that could
potentially be added to any SWAR processor. The goal in
this paper is to evaluate these features independent of arti-
facts that may be due to any particular realization, while still
considering realistic models based on existing commodity
instruction set architectures. For the purpose of IDISA eval-
uation, then, we define two reference architectures. For con-
creteness, IDISA and the two reference architectures will
each be considered as 128-bit processors employing the
three-register SWAR model defined in the previous section.

Reference architecture A (RefA) consists of a limited
register processor providing a set of core binary operations
defined for 8, 16, 32 and 64 bit fields. The core binary
operations will be assumed to be those defined by the SSE
instruction set for 16-bit fields. In addition, we assume that
shift immediate operations for each field width exist, e.g.,
simd<8>::srli<1>(x) for a right logical shift of each 8-
bit field by 1. We also assume that a constant load operation
simd::constant<n>(c) loads the constant value c into
each n bit field. The pack and merge facilities of SSE will
also be assumed.

Reference architecture B (RefB) consists of a register-
rich processor incorporating all the operations of reference
architecture A as well as the following additional facilities
inspired by the Altivec instruction set. For each of the 8,

339

16, 32 and 64 bit widths, a binary rotate left logical instruc-
tion simd<n>::rotl(a,b) rotates each field of a by the
rotation count in the corresponding field of b. A three-input
simd<1>::if(a,b,c) bitwise logical operator implements
the logic r = a ∧ b ∨ ¬a ∧ c, patterned after the Altivec
vec_sel operation. Finally, a simd<8>::permute(a,b,c)
selects an arbitrary permutation of bytes from the concatena-
tion of a and b based on the set of indices in c.

Two versions of IDISA are assessed against these ref-
erence architectures as follows. IDISA-A has all the facil-
ities of RefA extended with half-operand modifiers and all
core operations at field widths of 2, 4 and 128. IDISA-B is
similarly defined and extended based on RefB. Algorithms
for both RefA and IDISA-A are assessed assuming that any
required constants must be loaded as needed; this reflects
the limited register assumption. On the other, assessment
for both RefB and IDISA-B will make the assumption that
sufficiently many registers exist that constants can be kept
preloaded.

In each case, the processors are assumed to be pipelined
processors with a throughput of one SWAR instruction each
processor cycle for straight-line code free of memory access.
This assumption makes for straightforward performance
evaluation based on instruction count for straight-line com-
putational kernels. Furthermore, the assumption also elimi-
nates artifacts due to possibly different latencies in reference
and IDISA architectures. Because the same assumption is
made for reference and IDISA architectures, determination
of the additional circuit complexity due to IDISA features is
unaffected by the assumption.

In the remainder of this paper, then, IDISA-A and IDISA-
B models are evaluated against their respective reference ar-
chitectures on straight-line computational kernels used in
parallel bit stream processing and other applications. As
XML and other sequential text processing applications tend
to use memory in an efficient streaming model, the applica-
tions tend to be compute-bound rather than IO-bound. Thus,
the focus on computational kernels addresses the primary
concern for performance improvement of these applications.

The additional circuit complexity to realize IDISA-A
and IDISA-B designs over their reference models will be
addressed in the penultimate section. That discussion will
focus primarily on the complexity of implementing half-
operand modifier logic, but will also address the extension
of the core operations to operate on 2-bit, 4-bit and 128-bit
fields, as well.

4. Population Count
As an initial example to illustrate the principle of induc-
tive doubling in practice, consider the problem of population
count: determining the number of one bits within a particu-
lar bit field. It is important enough for such operations as
calculating Hamming distance to be included as a built-in
instruction on some processors. For example, the SPU of the

c = (x & 0x55555555) + ((x >> 1) & 0x55555555);

c = (c & 0x33333333) + ((c >> 2) & 0x33333333);

c = (c & 0x0F0F0F0F) + ((c >> 4) & 0x0F0F0F0F);

c = (c & 0x00FF00FF) + ((c >> 8) & 0x00FF00FF);

c = (c & 0x0000FFFF) + ((c >>16) & 0x0000FFFF);

Figure 1. Population Count Reference Algorithm

c = simd<2>::add<h,l>(x, x);

c = simd<4>::add<h,l>(c, c);

c = simd<8>::add<h,l>(c, c);

c = simd<16>::add<h,l>(c, c);

c = simd<32>::add<h,l>(c, c);

Figure 2. IDISA Population Count

Cell Broadband Engine has a SWAR population count in-
struction si_cntb for simultaneously determining the num-
ber of 1 bits within each byte of a 16-byte register. In text
processing with parallel bit streams, population count has
direct application to keeping track of line numbers for er-
ror reporting, for example. Given a bit block identifying the
positions of newline characters within a block of characters
being processed, the population count of the bit block can
be used to efficiently and conveniently be used to update the
line number upon completion of block processing.

Figure 1 presents a traditional divide-and-conquer imple-
mentation for a 32-bit integer x adapted from Warren [11],
while Figure 2 shows the corresponding IDISA implemen-
tation for a vector of 32-bit fields. Each implementation em-
ploys five steps of inductive doubling to produce popula-
tion counts within 32 bit fields. The traditional implementa-
tion employs explicit masking and shifting operations, while
these operations are implicit within the semantics of the in-
ductive doubling instructions shown in Figure 2. In each
implementation, the first step determines the the population
counts within 2-bit fields by adding the high bit of each such
field to the low bit to produce a set of 2-bit counts in c.
In the second step, the counts within 4-bit fields of c are
determined by adding the counts of the corresponding high
and low 2-bit subfields. Continuing in this fashion, the final
population counts within 32-bit fields are determined in five
steps.

With the substitution of longer mask constants replicated
for four 32-bit fields, the implementation of Figure 1 can be
directly adapted to SWAR processing using 128-bit registers.
Each binary operator is replaced by a corresponding binary
SWAR operation. Without the IDISA features, a straightfor-
ward RefA implementation of population count for 32-bit
fields thus employs 10 operations to load or generate mask
constants, 10 bitwise-and operations, 5 shifts and 5 adds for
a total of 30 operations to complete the task. Employing op-
timization identified by Warren, this can be reduced to 20
operations, 5 of which are required to generate mask con-
stants. At the cost of register pressure, it is possible that these

340

constants could be kept preloaded in long vector process-
ing. In accord with our evaluation model, the RefB cost is
thus 15 operations. As the IDISA implementation requires
no constants at all, both the IDISA-A and IDISA-B cost is
5 operations. At our assumed one CPU cycle per instruction
model, IDISA-A offers a 4X improvement over RefA, while
IDISA-B offers a 3X improvement over its comparator.

The pattern illustrated by population count is typical. An
inductive doubling algorithm of n steps typically applies
mask or shift operations at each step for each of the two
operands being combined in the step. In general, the mask
constants shown in Figure 1 recur; these are termed “magic
masks” by Knuth [7]. If the algorithm employs a single
operation at each step, then a total of 3n operations are the
required in a RefB implementation, and possibly 4n for a
RefA implementation including the cost of loading masks.
IDISA-A and IDISA-B implementations typically eliminate
the explicit mask and shift operations through appropriate
half-operand modifiers, reducing the total instruction count
to n. Thus a 3X to 4X improvement obtains in these cases.

5. Transposition to Parallel Bit Streams
In this section, we consider the first major application of
IDISA: transposition of byte stream data to parallel bit
stream form. Of course, this operation is critical to the
method of parallel bit streams and all applications of the
method can benefit from a highly efficient transposition pro-
cess. Before considering how the IDISA supports this trans-
position process, however, we first consider algorithms on
existing architectures. Two algorithms are presented; the
best of these requires 72 SWAR operations under the RefB
model to perform transposition of eight serial registers of
byte stream data into eight parallel registers of bit stream
data.

We then go on to show how the transposition problem can
be solved using IDISA-A or IDISA-B with a mere 24 three-
register SWAR operations. We also show that this is optimal
for any three-register instruction set model.

Figure 3 illustrates the input-output requirements of the
transposition problem. We assume that inputs and outputs
are each SWAR registers of size N = 2K bits. The input
consists of N bytes of serial byte data, stored consecutively
in eight SWAR registers each holding N/8 bytes. The output
consists of eight parallel registers, one each for the eight
individual bit positions within a byte. Upon completion of
the transposition process, each output register is to hold
the N bits corresponding to the selected bit position in the
sequence of N input bytes.

5.1 Bit Gathering Algorithm
One straightforward algorithm for implementing the trans-
position process takes advantage of SWAR bit gathering
operations that exist on some architectures. This operation
gathers one bit per byte from a particular position within

…110001100100011010000010

…cbA

…bit0

…bit1

…bit3

…bit4

…bit5

…bit6

…bit7

…bit2

0 0 0

1 1 1

0 1 1

0 1 1

0 0 0

0 0 0

0 0 0

1 0 1

Figure 3. Serial to Parallel Transposition

each byte of a register. For example, the pmovmskb operation
of the Intel SSE instruction set forms a 16-bit mask consist-
ing of the high bit of each byte. Similarly, the si_gbb opera-
tion of the synergistic processing units of the Cell Broadband
Engine gathers together the low bit of each byte.

Using bit gathering, each bit stream of output is assem-
bled 16 positions at a time. Bits from the input register must
be shifted into position, the gather operation performed and
the result inserted into position in the output register. For the
8 streams, this requires at least 22 operations for 16 posi-
tions, or 176 operations to complete the transposition task.

5.2 BytePack Algorithm
A more efficient transposition algorithm on commodity
SWAR architectures involves three stages of binary division
transformation. This is similar to the three stage bit matrix
inversion described by Warren [11], although modified to
use SWAR operations. In each stage, input streams are di-
vided into two half-length output streams. The first stage
separates the bits at even numbered positions from those
at odd number positions. The two output streams from the
first stage are then further divided in the second stage. The
stream comprising even numbered bits from the original byte
stream divides into one stream consisting of bits from posi-
tions 0 and 4 of each byte in the original stream and a second
stream consisting of bits from positions 2 and 6 of each orig-
inal byte. The stream of bits from odd positions is similarly
divided into streams for bits from each of the positions 1 and
5 and bits from positions 2 and 6. Finally, each of the four
streams resulting from the second stage are divided into the
desired individual bit streams in the third stage.

The binary division transformations are accomplished in
each stage using byte packing, shifting and masking. In
each stage, a transposition step combines each pair of serial
input registers to produce a pair of parallel output registers.
Figure 4 shows a stage 1 transposition step in a Ref B
implementation. Using the permute facility, the even and odd
bytes, respectively, from two serial input registers s0 and s1

341

even={0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30};

odd ={1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31};

mask = simd<8>::constant(0xAA);

t0 = simd<8>::permute(s0, s1, even);

t1 = simd<8>::permute(s0, s1, odd);

p0 = simd_if(mask, t0, simd<16>::srli<1>(t1));

p1 = simd_if(mask, simd<16>::slli<1>(t0), t1);

Figure 4. RefB Transposition Step in BytePack Stage 1

are packed into temporary registers t0 and t1. The even and
odd bits are then separated into two parallel output registers
p0 and p1 by selecting alternating bits using a mask. This
step is applied four times in stage 1; stages 2 and 3 also
consist of four applications of a similar step with different
shift and mask constants. Overall, 6 operations per step are
required, yielding a total of 72 operations to transpose 128
bytes to parallel bit stream form in the RefB implementation.

In a RefA implementation, byte packing may also be
achieved by the simd<16>::pack with 4 additional op-
erations to prepare operands. Essentially, the RefB imple-
mentation uses single permute instructions to implement
the equivalent of simd<16>::pack<h,h>(s0, s1) and
simd<16>::pack<l,l>(s0, s1). The RefA implementa-
tion also requires 3 logic operations to implement each
simd_if. Assuming that mask loads are only need once per
128 bytes, a total of 148 operations are required in the RefB
implementation.

5.3 Inductive Halving Algorithm
Using IDISA, it is possible to design a transposition algo-
rithm that is both easier to understand and requires many
fewer operations than the the BytePack algorithm described
above. We call it the inductive halving algorithm for serial to
parallel transposition, because it proceeds by reducing byte
streams to two sets of nybble streams in a first stage, divid-
ing the nybble streams into streams of bit-pairs in a second
stage and finally dividing the bit-pair streams into bit streams
in the third stage.

Figure 5 shows one step in stage 1 of the inductive
halving algorithm, comprising just two IDISA-A opera-
tions. The simd<8>::pack<h,h> operation extracts the
high nybble of each byte from the input registers, while the
simd<8>::pack<l,l> operation extracts the low nybble of
each byte. As in the BytePack algorithm, this step is applied
4 times in stage 1, for a total of 8 operations.

Stage 2 of the inductive halving algorithm reduces nyb-
ble streams to streams of bit pairs. The basic step in
this algorithm consists of one simd<4>::pack<h,h> op-
eration to extract the high pair of each nybble and one
simd<4>::pack<l,l> operation to extract the low pair of
each nybble. Four applications of this step complete stage 2.

Stage 3 similarly uses four applications of a step that uses
a simd<2>::pack<h,h> operation to extract the high bit of
each pair and a simd<2>::pack<l,l> to extract the low bit

p0 = simd<8>::pack<h,h>(s0, s1);

p1 = simd<8>::pack<l,l>(s0, s1);

Figure 5. Step in Inductive Halving Algorithm Stage 1

of each pair. Under either IDISA-A or IDISA-B models, the
complete algorithm to transform eight serial byte registers
s0 through s7 into the eight parallel bit stream registers bit0
through bit7 requires a mere 24 instructions per 128 input
bytes.

5.4 Optimality of the Inductive Halving Algorithm
Here we show that the inductive halving algorithm presented
in the previous subsection is optimal in the following sense:
no other algorithm on any 3-register SWAR architecture
can use fewer than 24 operations to transform eight serial
registers of byte stream data into eight parallel registers of
bit stream data. By 3-register SWAR architecture, we refer
to any architecture that uses SWAR instructions consistent
with our overall model of binary operations using two input
register operands to produce one output register value.

Observe that the N data bits from each input register must
be distributed N/8 each to the 8 output registers by virtue of
the problem definition. Each output register can effectively
be given a 3-bit address; the partitioning problem can be
viewed as moving data to the correct address. However, each
operation can move results into at most one register. At most
this can result in the assignment of one correct address bit
for each of the N input bits. As all 8N input bits need to be
moved to a register with a correct 3-bit address, a minimum
of 24 operations is required.

5.5 End-to-End Significance
In a study of several XML technologies applied to the prob-
lem of GML to SVG transformation, the parabix implemen-
tation (parallel bit streams for XML) was found to the fastest
with a cost of approximately 15 CPU cycles per input byte
[6]. Within parabix, transposition to parallel bit stream form
requires approximately 1.1 cycles per byte [4]. All other
things being equal, a 3X speed-up of transposition alone
would improve end-to-end performance in a complete XML
processing application by more than 4%.

6. Parallel to Serial Conversion
Parallel bit stream applications may apply string editing
operations in bit space to substitute, delete or insert parallel
sets of bits at particular positions. In such cases, the inverse
transform that converts a set of parallel bit streams back
into byte space is needed. In the example of UTF-8 to UTF-
16 transcoding, the inverse transform is actually used twice
for each application of the forward transform, to separately
compute the high and low byte streams of each UTF-16 code
unit. Those two byte streams are subsequently merged to
form the final result.

342

Algorithms for performing the inverse transform mirror
those of the forward transform, employing SWAR merge
operations in place of pack operations. The best algo-
rithm known to us on the commodity SWAR architectures
takes advantage of versions of the simd<8>::mergeh and
simd<8>::mergel operations that are available with each
of the SSE and Altivec instruction sets. To perform the full
inverse transform of 8 parallel registers of bit stream data
into 8 serial registers of byte stream data, a RefA implemen-
tation requires 120 operations, while a RefB implementation
reduces this to 72.

An algorithm employing only 24 operations using
IDISA-A/B is relatively straightforward.. In stage 1, par-
allel registers for individual bit streams are first merged
with bit-level interleaving using simd<1>::mergeh and
simd<8>::mergel operations. For each of the four pairs
of consecutive even/odd bit streams (bit0/bit1, bit2/bit3,
bit4/bit5, bit6/bit7), two consecutive registers of bit-pair
data are produced. In stage 2, simd<2>::mergeh and
simd<2>::mergel are then applied to merge to bit-pair
streams to produce streams of nybbles for the high and low
nybble of each byte. Finally, the nybble streams are merged
in stage 3 to produce the desired byte stream data. The full
inductive doubling algorithm for parallel to serial transpo-
sition thus requires three stages of 8 instructions each. The
algorithm is again optimal, requiring the fewest operations
of any possible algorithm using any 3-register instruction set
model.

The existence of high-performance algorithms for trans-
formation of character data between byte stream and paral-
lel bit stream form in both directions makes it possible to
consider applying these transformations multiple times dur-
ing text processing applications. Just as the time domain and
frequency domain each have their use in signal processing
applications, the byte stream form and parallel bit stream
form can then each be used at will in character stream appli-
cations.

7. Parallel Bit Deletion
Parallel bit deletion is an important operation that allows
string editing operations to be carried out while in parallel
bit stream form. It is also fundamental to UTF-8 to UTF-16
transcoding using parallel bit streams, allowing the excess
code unit positions for UTF-8 two-, three- and four-byte
sequences to be deleted once the sixteen parallel bit streams
of UTF-16 have been computed [3].

Parallel bit deletion is specified using a deletion mask.
A deletion mask is defined as a bit stream consisting of 1s
at positions identifying bits to be deleted and 0s at positions
identifying bits to be retained. For example, consider an 8-bit
deletion mask 10100010 and two corresponding 8-element
parallel bit streams abcdefgh and ABCDEFGH. Parallel dele-
tion of elements from both bit streams in accordance with

the mask yields two five element streams, i.e., bdefh and
BDEFH.

Bit deletion may be performed using the parallel-prefix
compress algorithm documented by Warren and attributed
to Steele [11]. This algorithm uses only logic and shifts with
a constant parameter to carry out the deletion process. How-
ever, it requires k2 preprocessing steps for a final field width
parameter of size 2k, as well as 4 operations per deletion step
per stream. Using the inductive doubling instruction set ar-
chitecture it is possible to carry out bit deletion much more
efficiently.

Deletion within fixed size fields or registers may produce
results that are either left justified or right-justified. For ex-
ample, a five-element stream bdefh within an eight-element
field may be represented as either bdefhxxx or xxxbdefh,
with don’t care positions marked ‘x’. Concatenating an adja-
cent right-justified result with a left-justified result produces
an important intermediate form known as a central deletion
result. For example, xxbd and efhx may be respective right-
justified and left-justified results from the application of the
4-bit deletion masks 1010 and 0010 to the two consecutive
4-element stream segments abcd and efgh. Concatenation
of xxbd and efhx produces the central result xxbdefhx,
which may easily be converted to a either a left or a right
justified 8-element result by an appropriate shift operation.

The observation about how two n-bit central deletion re-
sults can combine to yield a 2n central deletion result pro-
vides the basis for an inductive doubling algorithm. Figure 6
illustrates the inductive process for the transition from 8-bit
central deletion results to 16-bit central deletion results. The
top row shows the original deletion mask, while the second
row shows the original bit stream to which deletions are to
be applied, with deleted bits zeroed out. The third row shows
the central result for each 8-bit field as the result of the pre-
vious inductive step.

To perform the 8→ 16 central deletion step, we first form
the population counts of 4-bit fields of the original deletion
mask as shown in row 4 of Figure 6. Note that in right-
justifying an 8-bit central result, we perform a right shift by
the population count of the low half of the field. Similarly,
left-justification requires a left-shift by the population count
in the high half of the field.

The left and right shifts can be performed simultane-
ously using a rotate left instruction. Right justification by
shifting an n bit field i positions to the right is equiva-
lent to a left rotate of n − i positions. Given a register
value c8 preloaded with the value 8 in each 8-bit field,
the right rotation amounts are computed by the opera-
tion rj=simd<8>::sub<x,l>(c8, cts_4) producing val-
ues shown in row 5, except that don’t care fields (which
won’t be subsequently used) are marked XX.

The left shift amounts are calculated by
lj=simd<8>::srli<4>(cts_4) producing the val-
ues shown in row 6, and are then combined with

343

delmask 1001 1100 0100 1111 0111 0010 0011 0010
bits 0bc0 00gh i0kl 0000 q000 uv0x yz00 CD0F
rslt_8 00bcgh00 0ikl0000 000quvx0 00yzCDF0
cts_4 2 2 1 4 3 1 2 1
rj 6 XX 7 XX
lj XX 1 XX 2

rot_8 6 1 7 2
rslt_16 0000bcghikl00000 0000quvxyzCDF000

Figure 6. Example 8→ 16 Step in Deletion by Central Result Induction

y = simd<2>::xor<h,l>(x, x);

y = simd<4>::xor<h,l>(y, y);

y = simd<8>::xor<h,l>(y, y);

y = simd<16>::xor<h,l>(y, y);

y = simd<32>::xor<h,l>(y, y);

Figure 7. IDISA Parity Implementation

the right shift amounts by the selection operation
rot_8=simd_if(mask0xFF00, rj, lj) as shown
in row 7. Using these computed values, the induc-
tive step is completed by application of the operation
rslt_16=simd<8>::rotl(rslt_8, rot_8) as shown in
row 8.

At each inductive doubling level, it requires 4 operations
to compute the required deletion information and one oper-
ation per bit stream to perform deletion. Note that, if dele-
tion is to be applied to a set of eight parallel bit streams,
the computed deletion information is used for each stream
without recomputation, thus requiring 12 operations per in-
ductive level.

In comparison to the parallel-prefix compress method, the
method of central deletion results using the inductive dou-
bling architecture has far fewer operations. The total prepro-
cessing cost is 4k for k steps of deletion by central result
induction versus 4k2 for the parallel-prefix method. Using
the computed deletion operation, only a single SWAR rotate
operation per bit stream per level is needed, in comparison
with 4 operations per level for parallel-prefix compress.

8. Beyond Parallel Bit Streams
IDISA has a variety of applications in domains beyond text
processing with parallel bit streams. We present a number
of examples in this section, including, most significantly, a
full general solution to the problem of supporting horizontal
SWAR operations.

8.1 Parity
Parity has important applications for error-correcting codes
such as the various Hamming codes for detecting and cor-
recting numbers of bit errors dependent on the number of
parity bits added. Figure 7 shows an IDISA-A parity imple-

mentation with only 5 operations required for 32-bit fields,
slightly more than a 2X improvement over the 11 operations
required in a RefB implementation following Warren [11].
The improvement is less than 3X seen in other cases because
one of the operands need not be modified before applying the
exclusive-or operation.

8.2 Bit Reverse
Bit reverse is an important operation needed in a num-
ber of low level codecs. Following Warren’s inductive
doubling implementation using masks and shifts [11], a
RefA implementation on 32-bit fields requires 28 opera-
tions, while a straightforward IDISA-A implementation us-
ing simd<n>::rotli at each inductive doubling level re-
quires only 5 operations.

8.3 Packed DNA Representation
DNA sequences are often represented as strings consist-
ing of the four nucleotide codes A, C, G and T. Inter-
nally, these sequences are frequently represented in inter-
nal form as packed sequences of 2-bit values. The IDISA
simd<8>:pack and simd<4>:pack operations allow these
packed representations to be quickly computed from byte-
oriented string values by two steps of inductive halving. Sim-
ilarly, conversion back to string form can use two steps of in-
ductive merging. Without direct support for these pack and
merge operations, the SWAR implementations of these con-
versions require the cost of explicit masking and shifting in
combination with the 16-bit to 8-bit packing and 8-bit to 16-
bit merging operations supported by existing SWAR facili-
ties on commodity processors.

8.4 String/Decimal/Integer Conversion
Just as DNA sequences represent an important use case for
SWAR operations on 2-bit fields, packed sequences of deci-
mal or hexadecimal digits represent a common use case for
4-bit fields. These representations can be used both as an in-
termediate form in numeric string to integer conversion and
as a direct representation for packed binary coded decimal.

Figure 8 shows a three-step inductive doubling imple-
mentation for conversion of 32-bit packed BCD values to
integer form. The 32-bit value consists of 8 4-bit decimal
digits. Pairs of digits are first combined by multiplying the

344

b=(d & 0x0F0F0F0F) + 10 * ((d >> 4) & 0x0F0F0F0F)

b=(d & 0x00FF00FF) + 100 * ((d >> 8) & 0x00FF00FF)

b=(d & 0x0000FFFF) + 10000 * (d >> 16)

Figure 8. BCD to Integer Reference Algorithm

t1=simd<8>:constant(10)

t2=simd<16>:constant(100)

t3=simd<32>:constant(10000)

b=simd<8>::add<x,l>(simd<8>::mult<h,x>(d,t1), d)

b=simd<16>::add<x,l>(simd<16>::mult<h,x>(b,t2), b)

b=simd<32>::add<x,l>(simd<32>::mult<h,x>(b,t3), b)

Figure 9. IDISA BCD to Integer

higher digit of the pair by 10 and adding. Pairs of these
two-digit results are then further combined by multiplying
the value of the higher of the two-digit results by 100 and
adding. The final step is to combine four-digit results by
multiplying the higher one by 10000 and adding. Overall,
20 operations are required for this implementation as well
as the corresponding RefA implementation for sets of 32-bit
fields. Under the RefB model, preloading of 6 constants into
registers for repeated use can reduce the number of opera-
tions to 14 at the cost of register pressure.

The IDISA implementation of this algorithm is shown in
Figure 9. This implementation shows an interesting variation
in the use of half-operand modifiers, with only one operand
of each of the addition and multiplication operations modi-
fied at each level. Overall, the IDISA-A implementation re-
quires 9 operations, while the IDISA-B model requires 6 op-
erations with 3 preloaded registers. In either case, this repre-
sents more than a 2X reduction in instruction count as well
as a 2X reduction in register pressure.

8.5 Further Applications
Further applications of IDISA can often be found by search-
ing for algorithms employing the magic masks 0x55555555,
0x33333333, and so on. Examples include the bit-slice im-
plementation of AES [9] and integer contraction and dilation
for quadtrees and octrees[10] and Morton-ordered arrays [8].
Pixel packing from 32 bit fields into a 5:5:5 representation is
a further application of parallel bit deletion.

8.6 Systematic Support for Horizontal SWAR
Operations

In SWAR parlance, horizontal operations are operations
which combine values from two or more fields of the same
register, in contrast to the normal vertical operations which
combine corresponding fields of different registers. Horizon-
tal operations can be found that combine two (e.g., haddpd
on SSE3), four (e.g, si_orx on SPU), eight (e.g, psadbw on
SSE) or sixteen values (e.g., vcmpequb on Altivec). Some
horizontal operations have a vertical component as well. For
example, psadbw first forms the absolute value of the dif-

ference of eight corresponding byte fields before performing
horizontal add of the eight values, while vsum4ubs on Al-
tivec performs horizontal add of sets of four unsigned 8-bit
fields within one register and then combines the result hori-
zontally with corresponding 32-bit fields of a second regis-
ters.

The space of potential horizontal operations thus has
many dimensions, including not only the particular combin-
ing operation and the operand field width, but also the num-
ber of fields being combined, whether a vertical combination
is applied and whether it is applied before or after the hor-
izontal operation and what the nature of the vertical com-
bining operation is. Within this space, commodity SWAR
architectures tend to support only a very few combinations,
without any particular attempt at systematic support for hor-
izontal operations in general.

In contrast to this ad hoc support on commodity pro-
cessors, IDISA offers a completely systematic treatment of
horizontal operations without any special features beyond
the inductive doubling features already described. In the
simplest case, any vertical operation simd<n>::F on n-
bit fields gives rise to an immediate horizontal operation
simd<n>::F<h,l>(r, r) for combining adjacent pairs of
n/2 bit fields. For example, simd<16>::add<h,l> adds
values in adjacent 8 bit fields to produce 16 bit results, while
simd<32>::min<h,l> can produce the minimum value of
adjacent 16-bit fields. Thus any binary horizontal operation
can be implemented in a single IDISA instruction making
use of the <h,l> operand modifier combination.

Horizontal combinations of four adjacent fields can also
be realized in a general way through two steps of induc-
tive doubling. For example, consider the or-across operation
si_orx of the SPU, that performs a logical or operation on
four 32-bit fields. This four field combination can easily be
implemented with the following two operations.

t = simd<64>::or<h,l>(x, x)
t = simd<128>::or<h,l>(t, t)

In general, systematic support for horizontal combina-
tions of sets of 2h adjacent fields may be realized through
h inductive double steps in a similar fashion. Thus, IDISA
essentially offers systematic support for horizontal opera-
tions entirely through the use of <h,l> half-operand mod-
ifier combinations.

Systematic support for general horizontal operations un-
der IDISA also creates opportunity for a design tradeoff: off-
setting the circuit complexity of half-operand modifiers with
potential elimination of dedicated logic for some ad hoc hor-
izontal SWAR operations. Even if legacy support for these
operations is required, it may be possible to provide that sup-
port through software or firmware rather than a full hardware
implementation. Evaluation of these possibilities in the con-
text of particular architectures is a potential area for further
work.

345

9. Implementation
IDISA may be implemented as a software abstraction on top
of existing SWAR architectures or directly in hardware. In
this section, we briefly discuss implementation of IDISA
libraries before moving on to consider hardware design.
Although a full realization of IDISA in hardware is beyond
our current capabilities, our goal is to develop a sufficiently
detailed design to assess the costs of IDISA implementation
in terms of the incremental complexity over the RefA and
RefB architectures. The cost factors we consider, then, are
the implementation of the half-operand modifiers, and the
extension of core operations to the 2-bit, 4-bit and 128-bit
field widths. In each case, we also discuss design tradeoffs.

9.1 IDISA Libraries
Implementation of IDISA instructions using template and
macro libraries has been useful in developing and assessing
the correctness of many of the algorithms presented here.
Although these implementations do not deliver the perfor-
mance benefits associated with direct hardware implemen-
tation of IDISA, they have been quite useful in provid-
ing a practical means for portable implementation of par-
allel bit stream algorithms on multiple SWAR architectures.
However, one additional facility has also proven necessary
for portability of parallel bit stream algorithms across big-
endian and little-endian architectures: the notion of shift-
forward and shift-back operations. In essence, shift forward
means shift to the left on little-endian systems and shift to the
right on big-endian systems, while shift back has the reverse
interpretation. Although this concept is unrelated to induc-
tive doubling, its inclusion with the IDISA libraries has pro-
vided a suitable basis for portable SWAR implementations
of parallel bit stream algorithms. Beyond this, the IDISA
libraries have the additional benefit of allowing the imple-
mentation of inductive doubling algorithms at a higher level
abstraction, without need for programmer coding of the un-
derlying shift and mask operations.

9.2 IDISA Model
Figure 10 shows a block diagram for a pipelined SWAR pro-
cessor implementing IDISA. The SWAR Register File (SRF)
provides a file of R = 2A registers each of width N = 2K

bits. IDISA instructions identified by the Instruction Fetch
Unit (IFU) are forwarded for decoding to the SWAR In-
struction Decode Unit (SIDU). This unit decodes the instruc-
tion to produce signals identifying the source and destination
operand registers, the half-operand modifiers, the field width
specification and the SWAR operation to be applied.

The SIDU supplies the source register information and
the half-operand modifier information to the SWAR Operand
Fetch Unit (SOFU). For each source operand, the SIDU
provides an A-bit register address and two 1-bit signals
h and l indicating the value of the decoded half-operand
modifiers for this operand. Only one of these values may

Instruction
Fetch
Unit

SWAR
Instruction

Decode
Unit

SWAR
Instruction
Execute

Unit

SWAR
Operand

Fetch
Unit

SWAR Register File

SWAR
Result

Write Back
Unit

Figure 10. IDISA Block Diagram

be 1; both are 0 if no modifier is specified. The SIDU also
supplies decoded field width signals wk for each field width
2k to both the SOFU and to the SWAR Instruction Execute
Unit (SIEU). Only one of the field width signals has the
value 1. The SIDU also supplies decoded SWAR opcode
information to SIEU and a decoded A-bit register address
for the destination register to the SWAR Result Write Back
Unit (SRWBU).

The SOFU is the key component of the IDISA model that
differs from that found in a traditional SWAR processor. For
each of the two A-bit source register addresses, SOFU is
first responsible for fetching the raw operand values from the
SRF. Then, before supplying operand values to the SIEU,
the SOFU applies the half-operand modification logic as
specified by the h, l, and field-width signals. The possibly
modified operand values are then provided to the SIEU for
carrying out the SWAR operations. A detailed model of
SOFU logic is described in the following subsection.

The SIEU differs from similar execution units in current
commodity processors primarily by providing SWAR oper-
ations at each field width n = 2k for 0 ≤ k ≤ K. This in-
volves additional circuitry for field widths not supported in
existing processors. In our evaluation model, IDISA-A adds
support for 2-bit, 4-bit and 128-bit field widths in compar-
ison with the RefA architecture, while IDISA-B similarly
extends RefB.

When execution of the SWAR instruction is completed,
the result value is then provided to the SRWBU to update
the value stored in the SRF at the address specified by the
A-bit destination operand.

9.3 Operand Fetch Unit Logic
The SOFU is responsible for implementing the half-operand
modification logic for each of up to two input operands
fetched from SRF. For each operand, this logic is imple-
mented using the decoded half-operand modifiers signals h
and l, the decoded field width signals wk and the 128-bit

346

operand value r fetched from SRF to produce a modified
128-bit operand value s following the requirements of equa-
tions (4), (5) and (6) above. Those equations must be applied
for each possible modifier and each field width to determine
the possible values s[i] for each bit position i. For exam-
ple, consider bit position 41, whose binary 7-bit address is
0101001. Considering the address bits left to right, each 1
bit corresponds to a field width for which this bit lies in the
lower n/2 bits (widths 2, 16, 64), while each 0 bit corre-
sponds to a field width for which this bit lies in the high n/2
bits. In response to the half-operand modifier signal h, bit
s[41] may receive a value from the corresponding high bit
in the field of width 2, 16 or 64, namely r[40], r[33] or r[9].
Otherwise, this bit receives the value r[41], in the case of
no half-operand modifier, or a low half-operand modifier in
conjunction with a field width signal w2, w16 or w64. The
overall logic for determining this bit value is thus given as
follows.

s[41] = h ∧ (w2 ∧ r[40] ∨ w16 ∧ r[33] ∨ w64 ∧ r[9])
∨¬h ∧ (¬l ∨ w2 ∨ w16 ∨ w64) ∧ r[41]

Similar logic is determined for each of the 128 bit posi-
tions. For each of the 7 field widths, 64 bits are in the low
n/2 bits, resulting in 448 2-input and gates for the wk ∧ r[i]
terms. For 120 of the bit positions, or gates are needed to
combine these terms; 441 − 120 = 321 2-input or gates are
required. Another 127 2-input and gates combine these val-
ues with the h signal. In the case of a low-half-operand mod-
ifier, the or-gates combining wk signals can share circuitry.
For each bit position i = 2k + j one additional or gate is re-
quired beyond that for position j. Thus 127 2-input or gates
are required. Another 256 2-input and gates are required for
combination with the ¬h and r[i] terms. The terms for the
low and high half-operand modifiers are then combined with
an additional 127 2-input or gates. Thus, the circuitry com-
plexity for the combinational logic implementation of half-
operand modifiers within the SOFU is 1279 2-input gates per
operand, or 2558 gates in total.

The gate-level complexity of half-operand modifiers as
described is nontrivial, but modest. However, one possible
design tradeoff is to differentiate the two operands, permit-
ting a high half-operand modifier to be used only with the
first operand and a low-modifier to be used only with the sec-
ond operand. This would exclude <h,h> and <l,l> modifier
combinations and also certain combinations for noncommu-
tative core operations. The principal consequence for the ap-
plications considered here would be with respect to the pack
operations in forward transposition, but it may be possible to
address this through SIEU circuitry. If this approach were to
be taken, the gate complexity of half-operand modification
would be reduced by slightly more than half.

9.4 2-Bit and 4-Bit Field Widths
Beyond the half-operand modifiers, extension of core SWAR
operations to 2-bit and 4-bit field widths is critical to induc-
tive doubling support. The principal operations that need to
be supported in this way are addition, pack, merge merge,
and rotate.

Addition for 4-bit fields in a 128-bit SWAR processor
may be implemented as a modification to that for 8-bit fields
by incorporating logic to disable carry propagation at the
16 mid-field boundaries. For 2-bit fields, disabling carry
propagation at 32 additional boundaries suffices, although
it may be simpler to directly implement the simple logic of
2-bit adders.

Pack and merge require bit selection logic for each field
width. A straightforward implementation model for each
operation uses 128 2-input and gates to select the desired
bits from the operand registers and another 128 2-input or
gates to feed these results into the destination register.

Rotation for 2-bit fields involves simple logic for select-
ing between the 2 bits of each field of the operand being
rotated on the basis of the low bit of each field of the rota-
tion count. Rotation for 4-bit fields is more complex, but can
also be based on 1-of-4 selection circuitry involving the low
2 bits of the rotation count fields.

9.5 128-Bit Field Widths
For completeness, the IDISA model requires core opera-
tions to be implemented at the full register width, as well
as power-of-2 partitions. This may be problematic for oper-
ations such as addition due to the inherent delays in 128-bit
carry propagation. However, the primary role of 128 bit op-
erations in inductive doubling is to combine two 64-bit fields
using <h,l> operand combinations. In view of this, it may
be reasonable to define hardware support for such combina-
tions to be based on 64-bit logic, with support for 128-bit
logic implemented through firmware or software.

9.6 Final Notes and Further Tradeoffs
In order to present IDISA as a concept for design extension
of any SWAR architecture, our discussion of gate-level im-
plementation is necessarily abstract. Additional circuitry is
sure to be required, for example, in implementation of SIDU.
However, in context of the 128-bit reference architectures
studied, our analysis suggests realistic IDISA implementa-
tion well within a 10,000 gate budget.

However, the additional circuitry required may be offset
by elimination of special-purpose instructions found in ex-
isting processors that could instead be implemented through
efficient IDISA sequences. These include examples such as
population count, count leading and/or trailing zeroes and
parity. They also include specialized horizontal SWAR op-
erations. Thus, design tradeoffs can be made with the po-
tential of reducing the chip area devoted to special purpose
instructions in favor of more general IDISA features.

347

10. Conclusions
In considering the architectural support for SWAR text pro-
cessing using the method of parallel bit streams, this paper
has presented the principle of inductive doubling and a re-
alization of that principle in the form of IDISA, a modi-
fied SWAR instruction set architecture. IDISA offers sup-
port for SWAR operations at all power-of-2 field widths,
including 2-bit and 4-bit widths, in particular, as well as
half-operand modifiers and pack and merge operations to
support efficient transition between successive power-of-two
field widths. The principal innovation is the notion of half-
operand modifiers that eliminate the cost associated with the
explicit mask and shift operations required for such transi-
tions.

Several algorithms key to parallel bit stream methods
have been examined and shown to benefit from dramatic
reductions in instruction count compared to the best known
algorithms on reference architectures. This includes both a
reference architecture modeled on the SWAR capabilities of
the SSE family as well as an architecture incorporating the
powerful permute or shuffle capabilities found in Altivec or
Cell BE processors. In the case of transposition algorithms to
and from parallel bit stream form, the architecture has been
shown to make possible straightforward inductive doubling
algorithms with a 3X speedup over the best known versions
on permute-capable reference architectures, achieving the
lowest total number of operations of any possible 3-register
SWAR architecture.

Applications of IDISA in other areas have also been
examined. The support for 2-bit and 4-bit field widths in
SWAR processing is beneficial for packed DNA repre-
sentations and packed decimal representations respectively.
Additional inductive doubling examples are presented and
the phenomenon of power-of-2 transitions discussed more
broadly. Most significantly, IDISA supports a fully general
approach to horizontal SWAR operations, offering a consid-
erable improvement over the ad hoc sets of special-purpose
horizontal operations found in existing SWAR instruction
sets.

An IDISA implementation model has been presented em-
ploying a customized operand fetch unit to implement the
half-operand modifier logic. Gate-level implementation of
this unit and operations at the 2-bit and 4-bit field widths
have been analyzed and found to be quite reasonable within a
10,000 gate budget. Design tradeoffs to reduce the cost have
also been discussed, possibly even leading to a net complex-
ity reduction through elimination of instructions that imple-
ment special-case versions of inductive doubling.

Future research may consider the extension of inductive
doubling support in further ways. For example, it may be
possible to develop a pipelined architecture supporting two
or three steps of inductive doubling in a single operation.

Acknowledgments
This research was supported by a Discovery Grant from
the Natural Sciences and Engineering Research Council of
Canada.

References
[1] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,

Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.
Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams, and Katherine A. Yelick. The landscape of parallel
computing research: A view from berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of
California, Berkeley, Dec 2006.

[2] Robert D. Cameron. u8u16 – a high-speed UTF-8 to UTF-16
transcoder using parallel bit streams. Technical Report TR
2007-18, Simon Fraser University, Burnaby, BC, Canada,
2007.

[3] Robert D. Cameron. A case study in SIMD text processing
with parallel bit streams. In ACM Symposium on Principles
and Practice of Parallel Programming (PPoPP), Salt Lake
City, Utah, 2008.

[4] Robert D. Cameron, Kenneth S. Herdy, and Dan Lin. High
performance XML parsing using parallel bit stream technol-
ogy. In CASCON ’08: Proceedings of the 2008 conference of
the Centre for Advanced Studies on Collaborative research,
Toronto, Ontario , Canada, 2008.

[5] James R. Green, Hanan Mahmoud, and Michel Dumontier.
Towards real time protein identification using the Cell BE. In
Workshop on Cell BE and Heterogeneous Multicore Systems:
Architectures and Applications at CASCON ’08, Toronto,
Ontario , Canada, 2008.

[6] Kenneth S. Herdy, David S. Burggraf, and Robert D.
Cameron. High performance GML to SVG transformation
for the visual presentation of geographic data in web-based
mapping systems. In Proceedings of SVG Open 2008,
Nuremburg, Germany, 2008.

[7] Donald E. Knuth. The Art of Computer Programming
Volume 4 Pre-Fascicle 1A: Bitwise Tricks and Techniques.
Draft of 22 December 2008, Stanford University.

[8] R. Raman and D.S. Wise. Converting to and from dilated
integers. IEEE Transactions on Computers, 57(4):567–573,
2008.

[9] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi.
Bitslice implementation of AES. In David Pointcheval,
Yi Mu, and Kefei Chen, editors, CANS, volume 4301 of
Lecture Notes in Computer Science, pages 203–212. Springer,
2006.

[10] Leo Stocco and Günther Schrack. Integer dilation and
contraction for quadtrees and octrees. In Proceedings
of the IEEE Pacific Rim Conference on Communications,
Computers, and Signal Processing, pages 426–428, Victoria,
B.C., 1995.

[11] Henry S. Warren. Hacker’s Delight. Addison-Wesley, 2002.

348

