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Abstract. We attempt to determine the best order and search algorithm to store n compa-
rable data items in an array, A, of length n so that we can, for any query value, x, quickly
find the smallest value in A that is greater than or equal to x. In particular, we consider
the important case where there are many such queries to the same array, A, which resides
entirely in RAM. In addition to the obvious sorted order/binary search combination we
consider the Eytzinger (BFS) layout normally used for heaps, an implicit B-tree layout that
generalizes the Eytzinger layout, and the van Emde Boas layout commonly used in the
cache-oblivious algorithms literature.

After extensive testing and tuning on a wide variety of modern hardware, we arrive
at the conclusion that, for small values of n, sorted order, combined with a good imple-
mentation of binary search is best. For larger values of n, we arrive at the surprising
conclusion that the Eytzinger layout is usually the fastest. The latter conclusion is un-
expected and goes counter to earlier experimental work by Brodal, Fagerberg, and Jacob
(SODA 2003), who concluded that both the B-tree and van Emde Boas layouts were faster
than the Eytzinger layout for large values of n.
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1 Introduction

A sorted array combined with binary search represents the classic data structure/query
algorithm pair: theoretically optimal, fast in practice, and discoverable by school children
playing guessing games. Although sorted arrays are static—they don’t support efficient
insertion or deletion—they are still the method of choice for bulk or batch processing of
data. Even naı̈ve implementations of binary search execute searches several times faster
than the search algorithms of most popular dynamic data structures such as red-black
trees.1

It would be difficult to overstate the importance of algorithms for searching in a
static sorted set. Every major programming language and environment provides a sorting
routine, so a sorted array is usually just a function call away. Many language also provide
a matching binary search implementation. For example, in C++, sorting is done with
std::sort() and the binary search algorithm is implemented in std::lower_bound()
and std::upper_bound(). Examples of binary search in action abound; here are two:

1. The Chromium browser code-base calls std::lower_bound() and std::upper_bound()
from 135 different locations in a wide variety of contexts, including cookie handling,
GUI layout, graphics and text rendering, video handling, and certificate manage-
ment.2 This is the source code that is built and packaged to make Google Chrome, a
web browser that has more than a billion users [19].

2. Repeated binary searches in a few sorted arrays represent approximately 10% of the
computation time for the AppNexus real-time ad bidding engine. This engine runs
continuously on 1500 machines and handles 4 million requests per second at peak.

However, sorted order is just one possible layout that can be used to store data in
an array. Other layouts are also possible and—combined with the right query algorithm—
may allow for faster queries. Other array layouts may be able to take advantage of (or be
hurt less by) modern processor features such as caches, instruction pipelining, conditional
moves, speculative execution, and prefetching.

In this experimental paper we consider four different memory layouts and accom-
panying search algorithms. The following points describe the scope of our study:

• We only consider array layouts that store n data items in a single array of length n.

• The search algorithms used for each layout can find (say) the index of the largest
value that is greater than or equal to x for any value x. In case x is greater than any
value in the array, the search algorithm returns the index n.

• We study real (wall-clock) execution time, not instruction counts, branch mispredic-
tions, cache misses, other types of efficiency, or other proxies for real time.

1For example, Barba and Morin [2] found that a naı̈ve implementation of binary search in a sorted array
was approximately three times faster than searching using C++’s stl::set class (implemented as a red-black
tree).

2https://goo.gl/zpSdXo
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Figure 1: The Eytzinger layout

• We ignore the time required to construct the array layout.3

We consider the following four layouts (here and throughout, logn = log2n denotes
the binary logarithm of n):

1. Sorted: This is the usual sorted layout, in which the data is stored in sorted order
and searching is done using binary search.

2. Eytzinger (see Figure 1): In this layout, the data is viewed as being stored in a com-
plete binary search tree and the values of the nodes in this virtual tree are placed
in the array in the order they would be encountered in a left-to-right breadth-first
traversal. The search algorithm simulates a search in this implicit binary search tree.

3. Btree (see Figure 2): In this layout, the data is viewed as being stored in a complete
(B+ 1)-ary search tree, so that each node—except possibly one leaf—stores B values.
The parameter B is chosen so that B data items fit neatly into a single cache line and
the nodes of this tree are mapped to array locations in the order they are encountered
in a breadth-first search.

4. vEB (see Figure 3): In this, the van Emde Boas layout, the data is viewed as being
stored in a complete binary tree whose height is h = dlog(n+ 1)e − 1. This tree is laid
out recursively: If h = 0, then the single node of the tree is stored in A[0]. Other-
wise, the tree is split into a top-part of height bh/2c, which is recursively laid out in
A[0, . . . ,21+bh/2c −2]. Attached to the leaves of this top tree are up to 21+bh/2c subtrees,
which are each recursively laid out, in left-to-right order, starting at array location
A[21+bh/2c − 1].

3All four layouts can be constructed in O(n) time given a sorted array. Though we don’t report construction
times in the current paper, they are included in the accompanying data sets. For all layouts it is faster to
construct a layout for an array of size 108 than it is to perform 2× 106 searches on the resulting layout.
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8 4 12 2 1 3 6 5 7 10 9 11 14 13 15

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8

Figure 3: The vEB layout

3



1.1 Related Work

Of the four memory layout/search algorithm pairs we study, the sorted array combined
with binary search is, of course, the most well-known and variants of binary search have
been studied for more than half a century. Knuth [13, Section 6.2.1] is a good reference.

The idea of implicitly representing a complete binary tree by listing its nodes in
breadth-first order goes back half a millenium to Eytzinger [6]. In more modern times,
this method was proposed by Williams for an implementation of binary heaps [23].

The implicit Btree layouts we study are a marriage of the Eytzinger layout men-
tioned above and complete (B + 1)-ary trees. This layout was studied by Jones [11] and
LaMarca and Ladner [14] in the context of implementing heaps. Niewiadomski and Ama-
ral [16] consider an implicit k-ary heap implementation in which each node is itself repre-
sented using hte Eytzinger layout.

The vEB layout was proposed by Prokop [18, Section 10.2] because it has the advan-
tage over the Btree layout of being cache-oblivious; the number of cache lines used during
a search is within a factor of four of what can be obtained with a B-tree using an optimal
choice of B.

The work most closely related to ours is that of Brodal, Fagerberg, and Jacob [4]. As
part of their work on cache-oblivious search trees, they present experimental results for
all four of the layouts we study here. Based on their experiments, they reach the following
conclusions:

1. For array lengths smaller than the cache size, the layouts with simplest address
arithmetic—sorted and Eytzinger—were the fastest. The Btree layout was next and
the vEB layout, with its complicated address arithmetic, was by far the slowest.

2. For array lengths much larger than the cache size, Btree layouts were the fastest,
followed by vEB, then Eytzinger, and finally sorted was the slowest.

Between these two extremes, there is an interval where their vEB implementation
spends its time catching up to the sorted and Eytzinger implementations.

1.2 Summary of Results

For readers only interested in an executive summary, our results are the following: For
arrays small enough to be kept in L2 cache, the branch-free binary search code listed in
Listing 2 is the fastest algorithm (see Figure 11). For larger arrays, the Eytzinger layout,
combined with the branch-free prefetching search algorithm in Listing 6 is the fastest
general-purpose layout/search algorithm combination (see Figures 10–21).4 For full ex-
perimental data sets on a wide variety of processors, interested readers are directed to this
project’s webpage.5

In more detail, our findings, with respect to a single process/thread executing re-
peated random searches on a single array, A, are summarized as follows:

4Warning: for consistent performance, the Eytzinger code should use masking as described in Section 5.3.
5http://cglab.ca/˜morin/misc/arraylayout-v2/
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1. For small values of n (smaller than the L1 cache), branch-free implementations of
search algorithms are considerably faster than their branchy counterparts, some-
times by a factor of two.

2. For small values of n (smaller than the L2 cache), a good branch-free implementation
of binary search is unbeaten by any other strategy. A branch-free implementation of
Eytzinger search is a close second.

3. For large values of n (larger than the L3 cache), the branch-free implementation of
binary search is among the worst of all algorithms, followed closely by the branch-
free implementations of Eytzinger search.

4. For large values of n (larger than the L3 cache), the branchy implementations of
search algorithms usually perform better than their branch-free counterparts.

5. For large values of n, the fastest method is the Eytzinger layout combined with a
branch-free search that uses explicit prefetching. More generally, for large values of
n, the fastest search algorithm for each layout uses a branch-free search combined
with explicit prefetching.

6. The standard I/O model of computation [1] is insufficient to explain our results,
though a simple extension of this model does explain them. This model suggests
two variants of our experiments. Preliminary tests with these variants show that this
model has predictive power.

Our conclusions holds across a wide variety of different processors and also hold
in a setting in which multiple threads are performing repeated searches on a single array.
Our conclusions mostly agree with those of Brodal, Fagerberg and Jacob for small values
of n, but are completely different for large values of n. The reason for the differences is
that there are a number of processor architecture considerations—beyond caching—that
affect the relative performance of these layouts.

It was only through careful and controlled experimentation with different imple-
mentations of each of the search algorithms that we are able to understand how the inter-
actions between processor features such as pipelining, prefetching, speculative execution,
and conditional moves affect the running times of the search algorithms. With this under-
standing, we are able to choose layouts and design search algorithms that perform searches
in 1/2 to 2/3 (depending on the array length) the time of the C++ std::lower_bound() im-
plementation of binary search (which itself performs searches in 1/3 the time of searching
in the std::set implemementation of red-black trees).

1.3 Outline

The remainder of this paper is organized as follows: Section 2 provides a brief review of
modern processor architecture paying particular attention to aspects that affect the results
in the current paper. Section 3 describes our implementations of the four memory layouts
and experimental results for these implementations. Section 4 proposes a formal model of
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computation that provides an explanation for our results. Section 5 discusses further ex-
perimental results for our implementations. Finally Section 6 summarizes and concludes
with directions for further research.

2 Processor Architecture Considerations

In this section, we briefly review, at a very high level, the elements of modern processor
architecture that affect our findings. For concreteness, we will use numbers from a recent
high-end desktop processor, the Intel 4790K [10] with 4 8GB DDR3-1866 memory mod-
ules. This processor/RAM combination is also the test machine used for generating the
experimental data in Section 3. For a more detailed presentation of this material (though
without the running 4790K example), we recommend Patterson’s text [17].

2.1 CPU

At the highest level, a computer system consists of a processor (CPU) connected to a ran-
dom access memory (RAM). On the Intel 4790K, the CPU runs at frequency of 4GHz, or
4× 109 cycles per second. This CPU can execute roughly 4× 109 instructions per second.6

2.2 RAM, Latency, and Transfer Rate

The RAM on this system runs at 1866MHz, or roughly 1.866×109 cycles per second. This
RAM module can transfer 8 bytes per cycle from RAM to the CPU, for a (theoretical) peak
transfer rate of 8× 1.866× 109 ≈ 15GB/s.

Individual memory transfers, however, incur latency. The (first-word) latency of this
RAM module is approximately 10ns: From the time a processor issues a request to read
a word of memory from an open row until that word is available is approximately 10−8

seconds. If the memory is not in an open row (as occurs when this access is far from the
previous memory access), latency roughly doubles to 2× 10−8 seconds.

Observe that, if the CPU repeatedly reads 4 byte quantities from random locations
in RAM, then it receives 1/(2×108) of these per second, for a transfer rate of 4×(1/2)×108 =
0.2GB/s. Note how far this is below this peak transfer rate of 15GB/s.

This discrepancy is important: If the CPU is executing instructions that require the
contents of memory locations in RAM, and a subsequent instruction cannot begin before
the previous instruction completes, then the CPU will not execute more than (1/2) × 108

instructions per second; it will waste approximately 79/80 cycles waiting on data from
RAM.

When the CPU reads a RAM address, the RAM moves a 64 byte cache line into the
CPU. If the processor repeatedly reads cache lines from RAM, this results in a transfer rate
of 64/(2× 10−8) ≈ 3.2GB/s. Observe that this is still less than a quarter of the RAM’s peak
transfer rate.

The key point to take from the preceding discussion is the following: In order to

6This is only a very rough approximation of the truth; different instructions have different latencies and
throughput [8]. Ideal code such as dense linear algebra can sustain 3–4 instructions per cycle, but 0.7 instruc-
tions per cycle is normal for typical business code such as online transaction processing [21].
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actually achieve a transfer rate close to the theoretical peak transfer rate, the CPU must
issue memory read requests before previous requests have finished. This will be important
in understanding our experimental results.

2.3 Caches

Since reading from RAM is a relatively slow operation, processors use several levels of
caches between the processor and the RAM. When the CPU reads a memory location, the
entire cache line containing that memory location is loaded into all levels of the CPU cache.
Subsequent accesses to memory locations in that cache line then occur with less latency
since they can use the data in the CPU caches.

The Intel 4790K has a 32KB L1 data cache (per core), a 256KB L2 cache (per core),
and an 8MB L3 cache (shared among 4 cores). Each of these cache levels is successively
slower, in terms of both latency and bandwidth, than the previous level, with L1 being the
fastest and L3 being the slowest; but still much faster than RAM.

2.4 The Prefetcher

To help achieve peak memory throughput and avoid having the processor stall while wait-
ing on RAM, the CPU includes a prefetcher that analyzes memory access patterns in an
attempt to predict future memory accesses. For instance, in simple code such as the fol-
lowing,

long sum = 0;
for (int i = 0; i < n; i++)

sum += a[i];

the prefetcher is likely to detect that memory allocated to array a is being accessed se-
quentially. The prefetcher will then load blocks of a into the cache hierarchy even before
they are accessed. By the time the code actually needs the value of a[i] it will already be
available in L1/L2/L3 cache.

Prefetchers on current hardware can detect simple access patterns like the se-
quential pattern above. More generally, they can often detect arithmetic progressions
of the form a,a + k,a + 2k,a + 3k, . . . and even interleaved arithmetic progressions such as
a,b,a+k,b+ r,a+ 2k,b+ 2r,a+ 3k,b+ 3r, . . .. However, current technology does not go much
beyond this.

2.5 Translation Lookaside Buffer

As part of modern virtual memory systems, the processor has a translation lookaside buffer
(TLB) that maps virtual memory addresses (visible to processes) to physical memory ad-
dresses (addresses of physical RAM). Since a TLB is used for every memory access, it is
very fast, and not very large. The TLB organizes memory into fixed-size pages. A process
that uses multiple pages of memory will sometimes access a page that is not in the TLB.
This is costly, and triggers the processor to walk the page table until it finds the appropriate
page and then it loads the entry for this page into the TLB.
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The Intel 4790K has three data TLBs: The first contains 4 entries for 1GB pages,
the second contains 32 entries for 2MB pages, and the third contains 64 entries for 4KB
pages. In our experiments—which were done on a dedicated system running few other
processes—TLB misses were not a significant factor until the array size exceeded 4GB.

2.6 Pipelining, Branch-Prediction, and Predicated Instructions

Executing an instruction on a processor takes several clock cycles, during which the in-
struction is (1) fetched, (2) decoded, (3) an effective address is read (if necessary), and
finally the instruction is (4) executed. Since the entire process takes several cycles, this
is arranged in a pipeline so that, for example, one instruction is being executed while the
next instruction is reading a memory address, while the next instruction is being decoded,
while the next instruction is being fetched.

The Nehalem processor architecture, on which the Intel 4790K is based, has a 20–
24 stage processor pipeline [3]. If an instruction does not stall for any other reason, there
is still at least a 20–24 cycle latency between the time an instruction is fetched and until
the time it completes execution.

Processor pipelining works well provided that the CPU knows which instruction
to fetch. Where this breaks down is in code that contains conditional jump instructions.
These instructions will possibly change the flow of execution based on the result of some
previous comparison. In such cases, the CPU does not know in advance whether the next
instruction will be the one immediately following the conditional jump or will be the
target of the conditional jump. The CPU has two options:

1. Wait until the condition that determines the target of the jump has been tested. In
this case, the instruction pipeline is not being filled from the time the conditional
jump instruction enters the pipeline until the time the jump condition is tested.

2. Predict whether the jump will occur or not and begin loading the instructions from
the jump target or immediately after the jump, respectively. If the prediction is cor-
rect, then no time is wasted. If the prediction is incorrect, then once the jump con-
dition is finally verified, all instructions placed in the pipeline after the conditional
jump instruction have to be flushed.

Many processors, including the Intel 4790K, implement the second option and im-
plement some form of branch predictor to perform accurate predictions. Branch predictors
work well when the condition is highly predictable so that, e.g., the conditional jump con-
dition is almost always taken or almost always not taken.

Most modern processors use some form of two-level adaptive predictor [24] that
can even handle second-order statistics, such as conditional jumps that implement loops
with a fixed number of iterations. In this case, they can detect conditions such as “this
conditional jump is taken k times consecutively and then not taken once.” In standard
benchmarks, representative of typical work-loads, branch-predictor success rates above
90% and even above 95% are not uncommon [25].

Another useful tool used to avoid branch misprediction (and branches altogether)
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is the conditional move (cmov) family of instructions. Introduced into Intel architectures
in 1995 with the Pentium Pro line, these are instructions that move the contents of one
register to another (or to memory), but only if some condition is satisfied. They do not
change the flow of execution and therefore do not interfere with the processor pipeline.

Conditional moves are a special case of predicated instructions—instructions that
are only executed if some predicate is true. The Intel IA-64 and ARM CPU architectures
include extensive predicated instruction sets.

3 The Layouts

In this section, we provide an in-depth discussion of the implementations and perfor-
mance of the four array layouts we tested.

Throughout this section, we present experimental results. Except where noted oth-
erwise, these results were obtained on the Intel 4790K described in the previous section.
In all these experiments, the data consists of 4-byte (32-bit) unsigned integers. In each
case, the data stored in the array is the integer set {2i + 1 : i ∈ {0, . . . ,n−1}} and searches are
for uniformly randomly chosen integers in the set {0, . . . ,2n}. Therefore roughly half the
searches were for values in the set and half were for values not in the set. Although the
tests reported in this section are for 4-byte unsigned integers, the C++ implementations of
the layouts and search algorithms are generic and can be used for any type of data. All of
the code and scripts used for our experiments are freely available through github.7

3.1 Sorted

In this subsection we take special care to understand the performance of two implementa-
tions of binary search on a sorted array. Even these two simple implementations of binary
search already exhibit some unexpected behaviours on modern processors.

3.1.1 Cache-Use Analysis

Here we analyze the cache use of binary search. In this, and all other analyses, we use the
following variables:

• n is the number of data items (the length of the array).

• C is the cache size, measured in data items.

• B is the cache-line width, the number of data items that fit into a single cache line.

When we repeatedly execute binary search on the same array, there are two ways
the cache helps:

1. (Frequently accessed values) After a large number of searches, we expect to find the
most frequently accessed values in the cache. These are the values at the top of the
(implicit) binary search tree implemented by binary search. If n > C/B, each of these

7https://github.com/patmorin/arraylayout
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values will occupy their own cache line, so the cache only has room for C/B of these
frequently accessed values.

2. (Spatial locality) Once an individual binary search has reduced the search range
down to a size less than or equal to B, the subarray that remains to be searched
will occupy one or two cache lines.

Thus, when we run binary search repeatedly on the same array, the first log(C/B)
comparisons are to cached values and the last logB comparisons are all to values in the
same cache line. Thus, on average, we expect binary search to incur roughly logn −
log(C/B)− logB+ 1 = logn− logC + 1 cache misses.

Some cache analyses of binary search ignore spatial locality. For instance, Brodal et
al. [4] write “The [sorted] layout has bad performance, probably because no nodes in the
top part of the tree share cache lines.” In theory, however, the spatial locality in the small
subtrees should make up for this.

On the Intel 4790K, whose 8MB L3 cache can store 2048K cached values, we expect
to see a sharp increase in search times when n exceeds 221, with each additional level of bi-
nary search incurring another L3 cache miss and access to RAM. When we plot search time
on a vertical axis versus n on a logarithmic horizontal axis, this shows up as an increase in
slope at approximately n = 221.

3.1.2 Branchy Binary Search

Our first implementation of binary search is shown in Listing 1. This code implements
binary search for a value x the way it is typically taught in introductory computer science
courses: It maintains a range of indices {lo, . . . ,hi} and at each stage x is compared to the
value a[m] at index, m, in the middle of the search range. The search then either finds x at
index m (if x = a[m]) or continues searching on one of the ranges {lo, . . . ,m} (if x < a[m]) or
{m+1, . . . ,hi} (if x > a[m]). Since the heart of this algorithm is the three-way branch inside
the while loop, we call this implementation branchy binary search.

Figure 4 shows the running time of 2× 106 searches for values of n ranging from 1
to 230. As the preceding cache analysis predicts, there is indeed a sharp increase in slope
that occurs at around n = 221. To give our results a grounding in reality, this graph also
shows the running-time of the stl::lower_bound() implementation—The C++ Standard
Template Library implementation of binary search. Our naı̈ve implementation and the
stl::lower_bound() implementation perform nearly identically.

If we consider only values of n up to 221, shown in Figure 5, we see an additional
change in slope at n = 216. This is the same effect, but at the L2/L3 cache level; the 4790K
has a 256KB L2 cache capable of storing 64K = 216 data items. Each additional level of
binary search beyond that point incurs an additional L2 cache miss and an access to the
L3 cache.

3.1.3 Branch-Free Binary Search

Readers with experience in micro-optimizing code will see that, for modern desktop pro-
cessors, the code in Listing 1 can be optimized substantially. There are two problems with
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Figure 4: The running time of naı̈ve binary search and stl::lower_bound().
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1 template<typename T, typename I>
2 I sorted_array<T,I>::branchy_search(T x) const {
3 I lo = 0;
4 I hi = n;
5 while (lo < hi) {
6 I m = (lo + hi) / 2;
7 if (x < a[m]) {
8 hi = m;
9 } else if (x > a[m]) {

10 lo = m+1;
11 } else {
12 return m;
13 }
14 }
15 return hi;
16 }

Listing 1: Source code for branchy binary search.

this code:

1. Inside the code is a three-way if statement whose execution path is highly unpre-
dictable. Each of the first two branches has a close to 50% chance of being executed.
The branch-predictor of a pipelined processor is forced to guess which of these
branches will occur and load the instructions from this branch into the pipelline.
When it guesses incorrectly (approximately 50% of the time), the entire pipeline
must be flushed and the instructions for the other branch loaded.

2. The number of iterations of the outer loop is hard to predict. The loop may terminate
early (because x was found). Even when searching for a value x that is not present,
unless n has the form 2k − 1, the exact number of iterations is different for differ-
ent values of x. This implies that the branch predictor will frequently mispredict
termination or non-termination of the loop, incurring the cost of another pipeline
flush.

Listing 2 shows an alternative implementation of binary search that attempts to
alleviate both problems described above. (This code implements a variant of Knuth’s Al-
gorithm U (Uniform Binary Search) [13, Section 6.2.1].) In this implementation, there is
no early termination and, for a given array length n, the number of iterations is fixed (be-
cause the value of n always decreases by half during each iteration of the loop). Therefore,
when this method is called repeatedly on the same array, a good branch-predictor will very
quickly learn the number of iterations of the while loop, and it will generate no further
branch mispredictions.

In the interior of the while loop, there is only one piece of conditional code, which
occurs in Line 7. For readers unfamiliar with C’s choice operator, this code is equivalent
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1 template<typename T, typename I>
2 I sorted_array<T,I>::_branchfree_search(T x) const {
3 const T *base = a;
4 I n = this->n;
5 while (n > 1) {
6 const I half = n / 2;
7 base = (base[half] < x) ? &base[half] : base;
8 n -= half;
9 }

10 return (*base < x) + base - a;
11 }

Listing 2: Source code for branch-free binary search.

to if (base[half] < x) base = &base[half], so this line either reassigns the value of
base (if base[half] < x) or leaves it unchanged. The compiler implements this using a
conditional move (cmov) instruction so that there is no branching within the while loop. For
this reason, we call this branch-free binary search.

The use of conditional move instructions to replace branching is a topic of heated
debate (see, e.g., [20]). Conditional move instructions tend to use more clock cycles than
traditional instructions and, in many cases, branch predictors can achieve prediction ac-
curacies exceeding 95%, which makes it faster to use a conditional jump. In this particular
instance, however, the branch predictor will be unable to make predictions with accuracy
exceeding 50%, making a conditional move the best choice. The resulting assembly code,
shown in Listing 3 is very lean. The body of the while loop is implemented by Lines 8–15
with the conditional move at Line 12.

Figure 6 compares the performance of the naı̈ve and branch-free implementations
of binary search for array sizes ranging from 1 to 216. As expected, the branch-free code
is much faster. After accounting for the overhead of the testing harness, the branch-free
search is approximately twice as fast for n = 216.

However, for larger values of n (shown in Figure 7) the situation changes. For n >
216, the gap begins to narrow slowly until n > 221, at which point it narrows more quickly.
By the time time n exceeds 222, the branch-free code is slower and the gap between the
two continues to widen from this point onward.

3.1.4 Branchy Code, Speculative Execution, and Implicit Prefetching

The reason for the change in relative performance between branchy and branch-free bi-
nary search was not immediately obvious to us. After some experimentation, we discov-
ered it comes from the interplay between branch prediction and the memory subsystem.
In the naı̈ve code, the branch-predictor makes a guess at which branch will be taken and
is correct approximately half the time. An incorrrect guess causes a costly pipeline flush.
However, a correct guess results in the memory subsystem starting to load the array loca-
tion needed during the next iteration of the while loop.
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1 .cfi_startproc
2 movq 8(%rdi), %rdx ; move n into rdx

3 movq (%rdi), %r8 ; move a into r8

4 cmpq $1, %rdx ; compare n and 1

5 movq %r8, %rax ; move base into rax

6 jbe .L2 ; quit if n <= 1

7 .L3:
8 movq %rdx, %rcx ; put n into rcx

9 shrq %rcx ; rcx = half = n/2

10 leaq (%rax,%rcx,4), %rdi ; load &base[half] into rdi

11 cmpl %esi, (%rdi) ; compare x and base[half]

12 cmovb %rdi, %rax ; set base = &base[half] if x > base[half]

13 subq %rcx, %rdx ; n = n - half

14 cmpq $1, %rdx ; compare n and 1

15 ja .L3 ; keep going if n > 1

16 .L2:
17 cmpl %esi, (%rax) ; compare x to *base

18 sbbq %rdx, %rdx ; set dx to 00..00 or 11...11

19 andl $4, %edx ; set dx to 0 or 4

20 addq %rdx, %rax ; add dx to base

21 subq %r8, %rax ; compute base - a (* 4)

22 sarq $2, %rax ; (divide by 4)

23 ret
24 .cfi_endproc

Listing 3: Compiler-generated assembly code for branch-free binary search.

For n < 216, the entire array fits into L2 cache, and the costs of pipeline flushes
exceed any savings obtained by correct guesses. However, for larger n, each correct guess
by the branch-predictor triggers an L2 (in the range 216 < n < 221) or an L3 (for n > 221)
cache miss sooner than it would otherwise. The costs of these cache misses are greater
than the costs of the pipeline flushes, so eventually, the branch-free code loses out to the
branchy code.

Since this was not our initial explanation, and since it was not obvious from the
beginning, we gathered several pieces of evidence to support or disprove this hypothesis.

1. Assembly-level profiling showed that, for large n, the branch-free code spends the
vast majority of its time loading from memory (Line 11, of Listing 3). This is because
the register, rdi, containing the memory address to load is the target of a conditional
move (Line 12). This conditional move has not completed because it is still waiting
on the results of the previous comparison, so execution stalls at this point.

2. Another possible explanation for our results is that the hardware prefetcher is, for
some reason, better able to handle the branchy code than the branch-free code. This
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Figure 8: Branch-free binary search with explicit prefetching is competitive for small val-
ues of n and a clear winner for large values of n.

seems unlikely, since the memory access patterns for both version are quite similar,
and probably too complicated for a hardware prefetcher to predict. Nevertheless, we
ruled out this possibility by disabling the hardware prefetcher and running the tests
again.8 The running-times of the code were unchanged by disabling prefetching.

3. We implemented a version of the branch-free code that adds explicit prefetching. At
the top of the while loop, it prefetches array locations a[half/2] and a[half+half/2]
using gcc’s __builtin_prefetch() builtin, which translates into the x86 prefetch0
instruction. The performance of the resulting code, shown in Figure 8 is consistent
with our hypothesis. The code is nearly as fast as the branch-free code for small
values of n, but tracks (and even improves) the performance of the branchy code for
larger values of n.

Note that this code actually causes the memory subsystem to do more work, and
consumes more memory bandwidth since, in general it loads two cache lines when
only one will be used. Nevertheless it is faster because the memory bandwidth is
more than twice the cache line width divided by the memory latency.

4. We ran our code on an Atom 330 processor that we had available. This low-power
processor was designed to minimize watts-per-instruction so it does not do any form
of speculative execution, including branch prediction. The results, which are shown
in Figure 9, are consistent with our hypothesis. The branch-free code is faster than

8Prefetching was disabled using the wrmsr utility with register number 0x1a4 and value 0xf. This disables
all prefetching [9].
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Figure 9: Binary search running-times on the Atom 330. The Atom 330 has a 512KB L2
cache that can store 217 4-byte integers and does not perform speculative execution of any
kind.

the branchy code across the full range of values for n. This is because, on the Atom
330, branches in the branchy code result in pipeline stalls that do not help the mem-
ory subsystem predict future memory accesses.

From our study of binary search, we conclude the following lesson about the (very
important) case where one is searching in a sorted array:

Lesson 1. For searching in a sorted array, the fastest method uses branch-free code with
explicit prefetching. This is true both on modern pipelined processors that use branch
prediction and on traditional sequential processors.

We finish our discussion of binary search by pointing out one lesser-known caveat:
If n is large and very close to a power of 2, then all three variants of binary search discussed
here will have poor cache utilization. This is caused by cache-line aliasing between the
elements at the top levels of the binary search; in a c-way associative cache, these top-
level elements are all restricted to use O(c) cache lines. This problem is observed in the
experimental results of Brodal et al. [4, Section 4.2] and examined in detail by the first
author [12], who also suggests efficient workarounds.

3.2 Eytzinger

Recall that, in the Eytzinger layout, the data is viewed as being stored in a complete binary
search tree and the values of the nodes in this virtual tree are placed in the array in the
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order they would be encountered in a left-to-right breadth-first traversal. A nice property
of this layout is that it is easy to follow a root-to-leaf path in the virtual tree: The value of
the root of the virtual tree is stored at index 0, and the values of left and right children of
the node stored at index i are stored at indices 2i + 1 and 2i + 2, respectively.

3.2.1 Cache-Use Analysis

With respect to caching, the performance of searches in an Eytzinger array should be com-
parable to that of binary searching in a sorted array, but for slightly different reasons.

When performing repeated random searches, the top levels of the (virtual) binary
tree are accessed most frequently, with a node at depth d being accessed with probability
roughly 1/2d . Since nodes of the virtual tree are mapped into the array in breadth-first
order, the top levels appear consecutively at the beginning of the array. Thus, we expect
the cache to store, roughly, the first C elements of the array, which correspond to the top
logC levels of the virtual tree. As the search proceeds through the top logC levels, it hits
cached values, but after logC levels, each subsequent comparison causes a cache miss.
This results in a total of roughly logn− logC cache misses, just as in binary search.

3.2.2 Branchy Eytzinger Search

A branchy implementation of search in an Eytzinger array, shown in Listing 4, is nearly as
simple as that of binary search, with only one slight complication. When branchy binary
search completes, the variable hi stores the return value. In Eytzinger search, we must
decode the return value from the value of i at the termination of the while loop. Since we
haven’t seen this particular bit-manipulation trick before, we explain it here.

1 template<typename T, typename I>
2 I eytzinger_array<T,I>::branchy_search(T x) const {
3 I i = 0;
4 while (i < n) {
5 if (x < a[i]) {
6 i = 2*i + 1;
7 } else if (x > a[i]) {
8 i = 2*i + 2;
9 } else {

10 return i;
11 }
12 }
13 I j = (i+1) >> __builtin_ffs(˜(i+1));
14 return (j == 0) ? n : j-1;
15 }

Listing 4: Branchy implementation of search in an Eytzinger array.

In the Eytzinger layout, the 2d nodes of the virtual tree at depth d appear consecu-
tively, in left-to-right order, starting at index

∑d−1
k=0 2k = 2d −1. Therefore, an array position
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i ∈ {2d−1, . . . ,2d+1−2} corresponds to a node, u, of the virtual tree at depth d. Furthermore,
the binary representation, bw,bw−1, . . . , b0, of i + 1 has a nice interpretation:

• The bits bw = bw−1 = · · · = bd+1 = 0, since i + 1 < 2d+1.

• The bit bd = 1 since i + 1 ≥ 2d .

• The bits bd−1, . . . , b0 encode the path, u1, . . . ,ud , from the root of the virtual tree to
u = ud : For each k ∈ {1, . . . ,d − 1}, if uk+1 is the left (respectively, right) child of uk ,
then bd−k = 0 (respectively, bd−k = 1).

Therefore, the position of the highest order 1-bit of i+1 tells us the depth, d, of the
node u and the bits bd−1, . . . , b0 tell us the path to u. This is true even if i ≥ n, in which case
we can think of u as an external node of the virtual tree (that stores no data). To answer a
query, we are interested in the last node, w, on the path to u at which the path proceeded
to a left child. This corresponds to the position, r, of the lowest order 0 bit in the binary
representation of i + 1. Furthermore, by right-shifting i + 1 by r + 1 positions we obtain an
integer j such that:

1. j − 1 is the index of w in the array (if w exists), or

2. j = 0 if w does not exist (because the path to u never proceeds from a node to its left
child).

The latter case occurs precisely when we search for a value x that is larger than
any value in the array. The last two lines of code in Listing 4 extract the value of j from
the value of i and convert this back into a correct return value. The only non-standard
instruction used here is gcc’s __builtin_ffs builtin that returns one plus the index of
the least significant one bit of its argument. This operation, or equivalent operations, are
supported by most hardware and C/C++ compilers [22].

3.2.3 Branch-Free Eytzinger Search

A branch-free implementation of search in an Eytzinger array—shown in Listing 5—is also
quite simple. Unfortunately, unlike branch-free binary search, the branch-free Eytzinger
search is unable to avoid variations in the number of iterations of the while loop, since this
depends on the depth (in the virtual tree) of the leaf that is reached when searching for x.
When n = 2h − 1 for some integer k, then all leaves have the same depth but, in general,
there will be leaves of depths h and depth h− 1, where h = dlog(n+ 1)e − 1 is the height of
the virtual tree.

The performance of the branchy and branch-free versions of search in an Eytzinger
array is shown in Figure 10. Branch-free Eytzinger search very closely matches the perfor-
mance of branch-free binary search. As expected, there is an increase in slope at n = 216

and n = 221 since these are the number of 4-byte integers that can be stored int the L2 and
L3 caches, respectively.
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1 template<typename T, typename I>
2 I eytzinger_array<T,I>::branchfree_search(T x) const {
3 I i = 0;
4 while (i < n) {
5 i = (x <= a[i]) ? (2*i + 1) : (2*i + 2);
6 }
7 I j = (i+1) >> __builtin_ffs(˜(i+1));
8 return (j == 0) ? n : j-1;
9 }

Listing 5: Branch-free implementation of search in an Eytzinger array.

However, the performance of the branchy Eytzinger implementation is much better
than expected for large values of n. Indeed, it is much faster than the branchy implemen-
tation of binary search, and even faster than our fastest implementation of binary search.

3.2.4 Why Eytzinger is so Fast

Like branchy binary search, the branchy implementation of search in Eytzinger array is so
much faster than expected because of the interaction between branch prediction and the
memory subsystem. However, in the case of the Eytzinger layout, this interaction is much
more efficient.

To understand why the branchy Eytzinger code is so fast recall that, in the Eytzinger
layout, the nodes are laid out in breadth-first search order, so the two children of a node
occupy consecutive array locations 2i and 2i+1. More generally, for a virtual node, u, that
is assigned index i, u’s 2` descendants at distance ` from u are consecutive and occupy
array indices 2`i + 2` − 1, . . . ,2`i + 2`+1 − 1.

In our working example of 4-byte data with 64-byte cache lines, the sixteen great-
great grandchildren of the virtual node stored at position i are stored at array locations
16i + 15, . . . ,16i + 30. Assuming that the first element of the array is the first element of a
cache line, this means that, of those 16 descendants, 15 are contained in a single cache line
(the ones stored at array indices 16i + 16, . . . ,16i + 30.)

With the Intel 4790K’s 20–24 cycle pipeline, instructions in the pipeline can be
several iterations ahead in the execution of the while loop, which only executes 5–6 in-
structions per iteration. The probability that the branch-predictor correctly guesses the
execution path of four consecutive iterations is only about 1/16, and a flush of (some of)
the pipeline is likely. However, even if the branch predictor does not guess the correct ex-
ecution path, it most likely (with probability 15/16) guesses an execution path that loads
the correct cache line. Even though the branch predictor loads instructions that will likely
never be executed, their presence in the pipeline causes the memory subystem to begin
loading the cache line that will eventually be needed.

Knowing this, there are two optimizations we can make:

1. We can add an explicit prefetch instruction to the branch-free code so that it loads
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Figure 10: The performance of branchy and branch-free Eytzinger search.

the correct cache line. The resulting code is shown in Listing 6.

2. We can align the array so that a[0] is the second element of a cache line. In this way,
all 16 great-great grandchildren of a node will always be stored in a single cache line.

The results of implementing both of these optimizations are shown in Figure 11.9

With these optimizations, the change in slope at the L2 cache limit disappears; four iter-
ations of the search loop is enough time to prefetch data from the L3 cache. Once the L3
cache limit is reached, the behaviour becomes similar to the branchy implementation, but
remains noticeably faster, since the branch-free code does not cause pipeline flushes and
always prefetches the correct cache line 4 levels in advance.

Figure 12 compares Eytzinger search with binary search for small values of n (n ≤
216). At this scale the branch-free Eytzinger code is very close, but not quite as fast as the
best binary search implementations. Something else evident in Figure 11 is a “bumpiness”
of the Eytzinger running-times as a function of n. This bumpiness is caused by branch
mispredictions during the execution of the while loop. The search times are especially low
when n is close to a power of two because in this case nearly all searches perform the same
number of iterations of the while loop (since the underlying tree is a complete binary tree
of height h with nearly all leaves at same level h). The branch predictor quickly learns
the value of h then correctly predicts the final iteration. On the other hand, when n is far
from a power of 2, the number of iterations is either h or h − 1, each with non-negligible

9Although Figure 11 shows the results of implementing both these optimizations, we did test them indi-
vidually. Realigning the array gives in only a small improvement in performance; the real improvements come
from combining branch-free code and explicit prefetching.
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1 template<typename T, typename I>
2 I eytzinger_array<T,I>::branchfree_search(T x) const {
3 I i = 0;
4 while (i < n) {
5 __builtin_prefetch(a+(multiplier*i + offset));
6 i = (x <= a[i]) ? (2*i + 1) : (2*i + 2);
7 }
8 I j = (i+1) >> __builtin_ffs(˜(i+1));
9 return (j == 0) ? n : j-1;

10 }

Listing 6: Branch-free prefetching implementation of search in an Eytzinger array. (The
value of multiplier in this code is the cache line width, B, and the value of offset is
b3B/2c − 1.)

probability, and the branch predictor is unable to accurately predict the final iteration of
the while loop.

Lesson 2. For the Eytzinger layout, branch-free search with explicit prefetching is the
fastest search implementation. For small values of n, this implementation is competitive
with the fastest binary search implementations. For large values of n, this implementation
outperforms all versions of binary search by a wide margin.

3.2.5 A Mixed Eytzinger/Sorted Layout

We conclude this section with a discussion of a mixed layout suggested by the cache-use
analyses of binary and Eytzinger search. Conceptually, this layout implements a binary
search tree (laid out as an Eytzinger array) whose leaves each contain blocks of B values
(stored in sorted order).

More specifically, the first part of the array contains values x0, . . .x2h−2 stored using
the Eytzinger layout and the second part of the array contains values y0, . . . , yn−2h in sorted
order. Here, the value of h is the minimum integer such that 2h−1+B2h ≥ n and the values
in the first part of the array are chosen so that

y0 < · · · < yB−1 < x0 < yB < · · · < y2B−1 < x1 < · · ·

In this way, a search in the first part of the array usually narrows down the answer to a
block of B consecutive values in the second part of the array, and these values are stored
in a single cache line. Using this layout, one can store up to BC values and a search will
incur only a single cache miss. (The Eytzinger layout lives entirely in the cache of size C
and reduces the problem to a binary search in a single cache line of size B.)

Both the search in the Eytzinger array and the sorted block can be implemented us-
ing fast branch-free code so, in theory, this layout should be faster than either the Eytzinger
or the sorted layout. This is true: In Figure 13 we see that this code effectively increases the
cache size when compared to the branch-free Eytzinger code. Though there is an increase
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Figure 11: The performance of branch-free Eytzinger with prefetching.
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Figure 13: Performance of the branch-free mixed layout (without prefetching).

in slope at n = 221, it does not become as severe as the Eytzinger code until n = 225. (In
Figure 13 both implementations are branch-free and neither use prefetching.)

However, this mixed layout is unable to beat branch-free Eytzinger search with
explicit prefetching. This is true even when the mixed layout uses prefetching in the
Eytzinger part of its search (which has the side-effect of prefetching the correct block for
the second part of the search). Figure 14 compares branch-free Eytzinger with prefetching
and a prefetching version of the mixed layout. The two layouts are virtually indistinguish-
able with respect to performance.

Lesson 3. Although the mixed layout looks promising, it is unable to beat the performance
of branch-free Eytzinger with prefetching and is considerably more complicated to imple-
ment.

3.3 Btree

Recall that the (B+1)-tree layout simulates search on a (B+1)-ary search tree, in which each
node stores B values. The nodes of this (B + 1)-ary tree are laid out in the order they are
encountered in a breadth-first search. The Eytzinger layout is a special case of the Btree
layout in which B = 1. As with the Eytzinger layout, there are formulas to find the children
of a node: For j ∈ {0, . . . ,B}, the j-th child of the node stored at indices i, . . . , i+B−1 is stored
at indices f (i, j), . . . , f (i, j) +B− 1 where f (i, j) = i(B+ 1) + (j + 1)B.

The code for search in a (B+ 1)-tree layout consists of a while loop that contains an
inner binary search on a subarray (block) of length B. Very occasionally, the Btree search
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Figure 14: Performance of the branch-free mixed layout with prefetching.

completes with one binary search on a block of size less than B. The block size, B, is chosen
to fit neatly into one cache line. On our test machines, cache lines are 64 bytes wide, so we
chose B = 16 for 4-byte data. Preliminary testing with other block sizes showed that this
theoretically optimal choice for B is also optimal in practice.

3.3.1 Cache-Use Analysis

The height of a (B + 1) tree that stores n keys is approximately log(B+1)n. A search in a
(B + 1)-tree visits log(B+1)n nodes, each of which is contained in a single cache line, so a
search requires loading only log(B+1)n cache lines.

By the same reasoning as before, we expect that the top log(B+1)C levels of the
(B + 1)-tree, which correspond to the first C elements of the array, will be stored in the
cache. Thus, the number of cache misses that occur when searching in a (B+ 1)-tree is

log(B+1)n− log(B+1)C =
logn− logC

log(B+ 1)
.

Observe that this is roughly a factor of log(B+ 1) fewer cache misses than the logn− logC
cache misses incurred by binary search or Eytzinger search.

In our test setup, with B = 16, we therefore expect that the number of cache misses
should be reduced by a factor of log17 ≈ 4.09. When plotted, there should still be an
increase in slope that occurs at n = 221, but it should be significantly less pronounced than
in binary search.
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Figure 15: The performance of Btrees search algorithms.

3.3.2 Naı̈ve and Branch-Free Btree Implementations

We made and tested several implementations of the Btree search algorithm, including a
completely naı̈ve implementation, an implementation that uses C++ templates to unroll
the inner search, and an implementation that uses C++ templates to generate an unrolled
branch-free inner search.

Figure 15 shows the results for our three implementations of Btree search as well
as branch-free binary search and our best implementation of Eytzinger search. For small
values of n, the naı̈ve implementation of Btree search is much slower than the unrolled
implementations, and there is little difference between the two unrolled implementations.
For values of n larger than the L3 cache, the running time of all three Btree search im-
plementations becomes almost indistinguishable. This is expected since, for large n, the
running-time becomes dominated by L3 cache misses, which are the same for all three
implementations.

Compared to branch-free binary search, the Btree search implementations behave
as the cache-use analysis predicts: Both algorithms are fast for n < 221 after which both
show an increase in slope. At this point, the the slope for branch-free binary search is
approximately 3.8 times larger than that of the Btree search. (The analysis predicts a
factor of log17 ≈ 4.09.)

All three implementations of Btree search perform worse than our best Eytzinger
search implementation across the entire spectrum of values of n. For small values of n,
this is due to the fact that Eytzinger search is a simpler algorithm with smaller constants.
One reason Eytzinger search has smaller constants is that the inner binary search of Btrees
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is inherently inefficient. Our virtual Btree stores 16 keys per node, so the inner binary
search has 17 possible outcomes, and therefore requires dlog2 17e = 5 comparisons in some
cases (and in all cases for the branch-free code). This could fixed by using 16-ary trees
instead, but then the number of keys stored in a block would be 15, which does not align
with cache lines. We tested 16-ary trees and found them to be slower than 17-ary trees for
all values of n.10

For values of n larger than the L3 cache size, Eytzinger search and Btree search
have the same rate of growth, but Eytzinger search starts out being faster and remains so.
That the two algorithms have the same rate of growth is no coincidence: This growth is
caused by RAM latency. In the case of Btrees, the time between finishing the search in one
node and beginning the search in the next node is lower-bounded by the time needed to
fetch the next node from RAM. In the case of Eytzinger search, the time it takes to advance
from level ` in the implicit search tree to level ` + 4 is lower-bounded by the time needed
to fetch the node at level ` + 4 from RAM. Thus, both algorithms pay one unit of latency
for every 4 or 5 comparisons.

Figure 16 compares Btrees with Eytzinger search for values of n smaller than the L3
cache size. One interesting aspect of this plot is that the Btree plots have a slight increase
in slope at n = 216—at the point in which the data exceeds the L2 cache size—while the
Eytzinger search algorithm shows almost no change in behaviour. This is because Btree
search work synchronously with the memory subsystem; each Btree node is searched using
4–5 comparisons and then the memory subsystem begins loading the next node (from L3
cache). The Eytzinger search on the other hand begins loading the node at level ` + 4 and
continues to perform comparisons at levels `, ` + 1, ` + 2, and ` + 3 while the memory
subsystem asynchronously fetches the node at level ` + 4. This effectively hides the L3
cache latency.

Lesson 4. Even though it moves B times more data between levels of the cache hierarchy,
Eytzinger search with explicit prefetching outperforms Btrees. It does this by exploiting
parallelism within the memory subsystem and between the processor and memory sub-
system.

3.4 Van Emde Boas

Unlike the Btree layout, the Van Emde Boas layout is parameter free. It is a recursive
layout that provides asympotically optimal behaviour for any cache line width, B. In the
case where there are multiple levels of cache with different cache line widths, the van
Emde Boas layout is asymptotically optimal for all levels simultaneously. Indeed, for any
value of B, a search in a van Emde Boas layout can be viewed as searching in a sequence of
binary trees whose heights are in the interval ((1/2)logB, logB], and each of these subtrees
is stored in a contiguous subarray (and therefore in at most 2 cache lines). The sum of the
heights of these subtrees is dlogne.

10A third alternative is to store 15 keys in blocks of size 16, but this would be outside the model we consider,
in which all data resides in a single array of length n.

27



20 22 24 26 28 210 212 214 216 218 220
n

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22
ru

nn
in
g
ti
m
e
(s
)

running time of 2× 106 searches on n values

aligned branch-free Eytzinger with prefetching
naïve Btree
unrolled Btree
unrolled branch-free Btree
branch-free binary search
L1 cache size
L2 cache size

Figure 16: The performance of Btree search for small values of n.

3.4.1 Cache-Use Analysis

The cache-use analysis of the vEB layout approximates that of B-trees. We expect to find
the most frequently accessed subtrees in the cache, which correspond, roughly, to the first
logC iterations of the search algorithm. Beyond this point, the search passes through a
sequence of subtrees whose height is in the interval ((1/2)logB, logB] and each of which
is contained in at most two cache lines. Thus, the number of cache misses we expect to
see is about O((logn − logC)/ logB). Here, we use big-Oh notation since the exact leading
constant is somewhere between 1 in the best case and 4 in the worst case.

3.4.2 VeB Implementations

To search in a van Emde Boas layout one needs code that can determine the indices of
the left and right child of each node in the virtual binary tree. Unlike, for example, the
Eytzinger layout, this is not at all trivial. We experimented with two approaches to nav-
igating the van Emde Boas tree: machine bit manipulations and lookup tables. It very
quickly became apparent that lookup tables are the faster method.

Our implementations store two or three precomputed lookup tables whose size is
equal to the height of the van Emde Boas tree. In addition to these lookup tables, one must
also store the path, rtl, from the root to the current node as well as an an encoding, p,
of the path from the root to the current node, where each bit of p represents a left turn
(0) or a right turn (1) in this path. Brodal et al. [4] reached the same conclusion when
designing their implementation of the van Emde Boas layout. The most obvious (branchy)
code implementing this algorithm is shown in Listing 7
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1 template<typename T, typename I>
2 I veb_array<T,I>::search(T x) {
3 I rtl[MAX_H+1];
4 I j = n;
5 I i = 0;
6 I p = 0;
7 for (int d = 0; i < n; d++) {
8 rtl[d] = i;
9 if (x < a[i]) {

10 p <<= 1;
11 j = i;
12 } else if (x > a[i]) {
13 p = (p << 1) + 1;
14 } else {
15 return i;
16 }
17 i = rtl[d-s[d].h0] + s[d].m0 + (p&s[d].m0)*s[d].m1;
18 }
19 return j;
20 }

Listing 7: Source code for branchy vEB search.

In addition to the code in Listing 7, we also implemented (as much as possible) a
branch-free version of the vEB code. Performance results for the vEB search implemen-
tations are shown in Figure 17, along with our best implementations of Btree search and
Eytzinger arrays. As seen with other layouts, the branch-free implementation is faster un-
til we exceed the size of the L3 cache, at which point the branchy implementation starts to
catch up. However, in this case, the branchy implementation has a lot of ground to make
up and only beats the branch-free implementation for n > 225.

The branch-free version of the vEB code is competitive with Btrees until n exceeds
the L3 cache size. At this point, the vEB code becomes much slower. This is because the
vEB layout only minimizes the number of L3 cache misses to within a constant factor.
Indeed, the subtrees of a vEB tree have sizes that are odd and will therefore never be
perfectly aligned with cache boundaries. Even in the (extremely lucky) case where a vEB
search goes through a sequence of subtrees of size 15, each of these subtrees is likely to be
split across two cache lines, resulting in twice as many cache misses as a Btree layout.

Lesson 5. The vEB layout is a useful theoretical tool, and may be useful in external mem-
ory settings, but it is not useful for in-memory searching.

4 A Theoretical Model

There is currently no theoretical model of caches or I/O that predicts that Eytzinger search
is competitive with (and certainly not faster than) Btrees. The I/O model [1] predicts that
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Figure 17: The performance of the vEB layout.

the Eytzinger layout is a factor of logB slower than the Btree layout. However, we can
augment the I/O model so that the cache line width, measured in data items, is B, the
latency, measured in time units, for reading a cache line is L, and the bandwidth, measured
as the number of cache lines that can be read per time unit, is W .11 In this model, the time
to search in a Btree is roughly

(L+ c) logBn

where c = O(logB) is the time to search on an (in-memory) block of size B. This is because
a B-tree search consists of logBn rounds where each round requires loading a cache line
(at a cost of L) and searching that cache line (at a cost of c).

On the other hand, if WL > logB, then the memory subsystem can handle logB
cache line requests in parallel without any additional overhead. In this case, then the
running-time of Eytzinger search with prefetching is roughly

max{L,c} logBn .

(Here we assume that the local computation time for logB levels of Eytzinger search and
the local computation time to do binary search on a Btree block of size B is the same c.)
This analysis shows that our experimental results do have a theoretical explanation. It also
suggests two possible extensions of our experiments.

11The I/O model already has the parameter B, so the only real addition to the model here is the bandwidth
parameter W , since we can take L = 1, without loss of generality.
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4.1 Deeper Prefetching in Eytzinger Search

If there is really an excess of bandwidth so that, for example, WL > 2t logB, then the
prefetching for the Eytzinger search can be extended so, when accessing a virtual node, v,
in the Eytzinger tree we prefetch v’s 2tB descendants at distance t + logB from v using 2t

prefetch instructions.

We implemented and tested this idea and found that, for the 4-byte data studied
throughout this paper, it did not yield any speedup with t = 1 and was significantly slower
with t = 2. This agrees with our analysis and the latency/bandwidth characteristics of
our machine (Section 2.2). On our machine, WL ≈ 4.7 and, with 4-byte data, B = 16, so
logB = 4. Thus, the Eytzinger search algorithm continuously has 4 memory requests in
the memory pipeline so it is close to saturating the memory bandwidth already. Taking
t = 1 or t = 2 completely saturates the memory bandwith by having 8, respectively 16,
concurrent memory requests.

However, since B is the number of data items that fit into a single cache line, in-
creasing the size of data items decreases B. For example, with 16-byte data, B = 4, and
logB = 2. In this case, the branch-free Eytzinger search with prefetching is only prefetch-
ing two levels in advance. By choosing t = 1 we extend the prefetching to three levels in
advance and are still only fetching 4 cache lines at any point in time.

Figure 18 shows the result of using deeper prefetching for 4-, 8-, and 16-byte data.
These results agree with the predictions of the model: deeper prefetching is not beneficial
for 4-byte data, but does give an improvement for 16-byte data.

4.2 The k(B+ 1)-tree

Our extended I/O model also suggests a simulation, in the sense that, for any k ≤ W one
can load k cache lines in L + r(k) time units, where r(k) is the time it takes to issue k
prefetch requests. By doing this, one can simulate a model with cache line width B′ = kB
and latency L = L+ r(k).

This immediately raises the question of whether this simulation leads to a useful
data structure. To test this, we implemented a (kB+1)-tree where, before searching within
a node, we first issue k prefetch commands to load the k cache lines used by that node.
This idea of using prefetching to get extra-wide nodes “almost for free” is the essential
idea used to speed up searches in Chen et al.’s prefetching B+-tree [5]. Figure 19 shows the
results of implementing this for all k ∈ {1, . . . ,16}. The best choices of k on this machine
seem to be k ∈ {6,7,8,9,10}.

These results show that one can, indeed, speedup the Btree layout for some suffi-
ciently large values of n by using this technique. This offers some validation of the exten-
sion of the I/O model proposed above. For some choices of k and some values of n, this
yields a layout that is faster than the Eytzinger layout.

Unfortunately, the (Bk+1)-tree requires more parameter-tuning than the Eytzinger
layout and only beats the Eytzinger layout for a limited range of n. This latter fact is
because (Bk + 1)-trees have extremely high arity; the fastest versions have internal nodes
with 97 (k = 6) to 161 (k = 10) children per node. This makes them inefficient except when
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Figure 18: The effects of deeper prefetching in the Eytzinger search algorithm.
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Figure 19: Testing (Bk + 1)-ary trees

the bottom level is nearly full or nearly empty, i.e., when n is close to a power of (Bk + 1).
This is what causes the large oscillations that appear in Figure 19.

5 Further Experiments

In this section, we discuss further experiments that consider the effects of multiple threads,
larger data items, data sizes that exceed the size of the translation lookaside buffer, and
experiments on machines other than the Intel 4790K.

5.1 Multiple Threads

Since the Eytzinger search moves more data from RAM into cache, it uses more memory
bandwidth. This works because, as discussed in Section 2.2, latency, not bandwidth, is the
bottleneck; the bandwidth far exceeds the cache line width divided by the latency. How-
ever, when multiple threads are performing searches in parallel they could—in theory—
saturate the bandwidth.

Figure 20 shows the results of tests using 2, 4, and 8 threads. In these tests, the
array layout is created and k threads are created, each of which performs 2 × 106 ran-
dom searches (each thread seeds its own random number generator with its own unique
seed). The main thread then joins each of these threads. The total time measured is the
time elapsed between (before) the creation of the first thread until (after) the last thread
completes.

These graphs show that, although the performance gap narrows, the Eytzinger
layout continues to outperform the other layouts even with four threads simultaneously
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Figure 20: The performance of searches with two, four, and eight threads.
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searching the array. With eight threads and very large values of n the two become equally
matched. We did not test more than eight threads since this seems unrealistic; the Intel
4790K has only 4 hyperthreaded cores, which appear to the operating system as 8 CPUs.
It does not make sense to run more than 8 computation-intensive threads simultaneously.

5.2 Larger Data Items

Figure 21 shows timing results for 8-byte (64-bit) data items and 16-byte (128-bit) sim-
ulated data items. Each simulated 16-byte datum is a structure that contains an 8-byte
unsigned integer and 8-bytes of padding.

In these experiments, the (B + 1)-trees use values of B = 8 and B = 4, respectively.
Similarly, the Eytzinger search algorithm prefetches the 8 virtual nodes that are 3 (for 8-
byte data) and the four virtual nodes that are 2 (for 16-byte data) levels below the current
node.

It is worth noting that, in both these figures, the largest value of n corresponds
to approximately 12GB of data. These figures show that our conclusions hold also for
larger data items; the branch-free search with prefetching in the Eytzinger layout remains
the method of choice. Indeed, as the size of individual data items increases, Eytzinger
becomes a better and better choice.

5.3 Other Machines

With the exception of Figure 9, the results presented here are running times on a single
machine with a single memory configuration. In order to validate these results across a
wider variety of hardware, we also ran a set of experiments on a number of hardware
platforms. We did this by first running experiments on machines we had access to and
then by asking for help from the Internet.

After being surprised by the performance of the branchy Eytzinger implementation
in our own initial experiments on a handful of machines, we posted to reddit asking for
help testing our initial implementations on more hardware.12 This story made the rounds
of the usual hacking websites and, within two weeks we had received testing results for
over 100 different CPUs. These results are available online13 and, overwhelmingly, they
showed that our branchy implementation of Eytzinger search was faster, or at least as fast
as our branchy implementation of Btrees. It was then that we started micro-optimizing our
code to help understand the reason for this, which led to the conclusions in the current
paper.

The implementations studied in the current paper have been refined significantly
since our initial round of Internet experiments, so we went back to the Internet for a sec-
ond round of experiments, which we are also keeping track of online.14 This data is still
arriving but in the vast majority of cases so far, the conclusions agree with those we ob-
tained on the Intel 4790K. There are two notable exceptions:

12https://www.reddit.com/r/compsci/comments/35ad8d/alternatives_to_sorted_arrays_for_
binary_searching/

13http://cglab.ca/˜morin/misc/arraylayout/
14http://cglab.ca/˜morin/misc/arraylayout-v2/
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Figure 21: The performance of algorithms on 64-bit and 128-bit data.
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1. With the Atom family of processors, the branch-free code is typically faster than the
branchy code over the full range of values of n. As discussed in Section 3.1.4, this
is due to fact that the Atom processors do not perform speculative execution so the
branchy code does not obtain the benefit of implicit prefetching.

2. With some processors (the AMD Phenom II, Intel Celeron J1900, and Intel E3-1230
are examples) the code that does explicit prefetching is much slower, especially
for smaller values of n. This seems to be due to executing prefetch instructions
that attempt to prefetch data outside the input array. Although the documenta-
tion for the __builtin_prefetch() instruction specifically allows prefetching in-
valid addresses, this seems to cause a significant performance hit on these proces-
sors. On such architectures, a work-around is to use a bit-mask to ensure that we
never prefetch an address outside the input array.15

Figure 22 shows the results of using this workaround on the E3-1230. Using a mask
results in reliably fast performance. We also ran the same test on the Intel 4790K (see
Figure 23), and the use of the mask had almost no impact on performance. Thus, for
reliably fast code across the largest number of architectures using a mask to prevent
out-of-bounds prefetches seems advisable.

6 Conclusions and Future Work

We have compared the relative performance of four memory layouts for ordered arrays
and the algorithms for searching in these layouts.

6.1 Eytzinger is Best

Our conclusion is that, for the fastest speed across a wide-variety of array lengths, an
Eytzinger layout and a branch-free search algorithm with explict prefetching is an excel-
lent choice. For reliable performance across a wide variety of architectures, we recommend
the variant that uses a bit mask to prevent prefetching out of bounds.

Not only is searching in an Eytzinger layout fast, it is simple and compact to imple-
ment: Counting semicolons, the Eytzinger search code consists of 5 lines of code, whereas
the fastest Btree code is 19 lines plus a separate inline subroutine for the inner search. If
we look at the compiled code, the Eytzinger code contains 26 assembly instructions and
the Btree code contains 78.

Our conclusion is contrary to our expectations and to previous findings and goes
against conventional wisdom, which states that accesses to RAM are slow, and should be
minimized. A more accurate statement, that accounts for our findings, is that accesses to
RAM have high latency and this latency needs to be mitigated. This was formalized in
Section 4 and the resulting computational model does have some predictive power: It lead
us to deeper prefetching in the Eytzinger search algorithm and the (Bk + 1)-tree, which
behave more or less as the model predicts.

Practically speaking, this work opens up a whole class of algorithms and data struc-
tures that may be simpler to implement and faster in practice. This raises our first open

15Specifically, we take the bitwise AND of the prefetched index and 2blognc − 1.
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Figure 22: Using masking on the Intel E3-1230 to prevent out-of-bounds prefetches.
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Figure 23: Masking prefetches on the Intel 4790K has negligible impact on performance.
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question:

Open Problem 1. Can memory request pipelining be used to design faster algorithms for
other problems?

An obvious candidate to consider in the context of Open Problem 1 is the problem
of sorting where the heap-sort algorithm [7, 23], which already uses the Eytzinger layout,
is an obvious starting point. Scouring the internet, we have only been able to find one
implementation, due to Piotr Tarsa, of heap-sort that experiments with prefetching.16

6.2 For Big Data, Branchy Code can be a Good Prefetcher

Today, no computer science research paper is complete unless it says something about big
data. For small data sets, micro-optimizations such as replacing branching with condi-
tional instructions can produce significant improvements in running-time. For instance,
our branch-free implementation of binary search is about twice as fast as the branchy im-
plementation for n < 216 (refer to Figure 6).

However, as the amount of data increases beyond the size of the various proces-
sor caches, the branchy implementations become faster. Even for binary search, which
represents the worst possible case for branch prediction, the branchy code eventually out-
performs the branch-free code by an increasing margin (refer to Figure 7).

Our experiments show that this speedup is a result of the interaction between a
long processor pipeline, speculative execution, and the memory subsystem. Indeed, spec-
ulative execution acts as a form of prefetching that can speed up memory access patterns
that are far too complicated for current prefetching techniques. In extreme cases (like the
Eytzinger layout) the resulting prefetches are perfectly correct even four branches ahead
of the current execution point.

In hardware design, the general idea of using speculative execution as a prefetching
strategy is called runahead execution [15]. Our results show that, in a processor that has
speculative execution, one can obtain many of the benefits of runahead even on processors
that do not specifically implement it. While this may not be news to hardware experts, to
the best of our knowledge, we are unaware of any algorithms (or even implementations)
that deliberately make use of it.

Our results also show that one has to be very careful with micro-optimizations.
Optimizations that offer great speedups on small or moderate-sized inputs can create great
slowdowns on large inputs. For instance, if we compare branch-free versus branchy binary
search for n = 216, we find that branch-free binary search is about twice as fast. However,
for n = 230, branch-free binary search is about 45% slower.
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