
Automated Instruction Stream Throughput
Prediction for Intel and AMD Microarchitectures

Jan Laukemann∗, Julian Hammer†, Johannes Hofmann‡, Georg Hager§ and Gerhard Wellein¶
Friedrich-Alexander-Universität Erlangen-Nürnberg

Erlangen, Germany
∗Department of Computer Science

jan.laukemann@fau.de
†Erlangen Regional Computing Center

julian.hammer@fau.de
‡Chair of Computer Architecture

johannes.hofmann@fau.de
§Erlangen Regional Computing Center

georg.hager@fau.de
¶Erlangen Regional Computing Center

gerhard.wellein@fau.de

Abstract—An accurate prediction of scheduling and execution
of instruction streams is a necessary prerequisite for predicting
the in-core performance behavior of throughput-bound loop ker-
nels on out-of-order processor architectures. Such predictions are
an indispensable component of analytical performance models,
such as the Roofline and the Execution-Cache-Memory (ECM)
model, and allow a deep understanding of the performance-
relevant interactions between hardware architecture and loop
code.

We present the Open Source Architecture Code Analyzer
(OSACA), a static analysis tool for predicting the execution
time of sequential loops comprising x86 instructions under the
assumption of an infinite first-level cache and perfect out-of-order
scheduling. We show the process of building a machine model
from available documentation and semi-automatic benchmark-
ing, and carry it out for the latest Intel Skylake and AMD Zen
micro-architectures.

To validate the constructed models, we apply them to several
assembly kernels and compare runtime predictions with actual
measurements. Finally we give an outlook on how the method
may be generalized to new architectures.

Index Terms—benchmarking, performance modeling, perfor-
mance engineering, architecture analysis, static analysis

I. INTRODUCTION

Looking at numerical codes, compute-intensive applications
and the resources (time, energy, hardware) they consume, it
is vital to optimize them for performance in order to reduce
their resource consumption. One of the most fundamental
ways of approaching this is performance modeling, where
a (simplified) model of the underlying hardware is used to
predict the runtime of a computational kernel. The Roofline [1]
and ECM [2] performance models are probably the most
common tools employed for this task on modern CPUs.
When applying them, a performance-aware developer will
start to build an understanding of the characteristics of the
architecture-code interactions, and the model will pinpoint the

This work was in part founded by METACCA BMBF project.

constraining bottleneck. Once known, the bottleneck can often
be mitigated by changes in the code, the runtime parameters,
or the execution environment. When the models’ construction
is automated [3], [4], compilers and a wider user base can take
advantage of them.

In practice, the analysis and modeling process on a given ar-
chitecture is typically split in two parts: in-core execution and
data transfer. For example, in the simplest form of the Roofline
model, calculating the chip’s maximum performance taking
only the floating-point operations into account is the in-core
execution analysis while deriving the arithmetic intensity relies
on data transfer analysis. In this work we focus on a refined in-
core execution analysis, where the essential questions is: How
many cycles does it take at least to execute a set of assembly
instructions that constitutes the body of an infinite loop? The
resulting cycle count yields an absolute upper performance
bound (or roof), and it is valid for all processor models of
the same microarchitecture. This is not the same as counting
FLOPs, but a similar and more realistic approach, which may
also be applied to non-floating-point codes [4].

The in-core analysis makes a number of assumptions, which
will be explained later in further detail. Intel already provides
the Intel Architecture Code Analyzer (IACA) [5], an in-core
static analyzer for their latest architectures. It has proven
extremely valuable for analytic performance modeling. Un-
fortunately, IACA is both closed-source and restricted to Intel
CPUs. We want to develop an open version, where developers
can not only see the analysis outcome but also the underlying
model. Beyond the tool itself we want to extend our approach
to other, non-Intel architectures and platforms.

This paper is organized as follows: In Sections I-A–I-C,
we elaborate on the assumptions stated above, give a general
overview of the hardware model and describe relevant fea-
tures of our example architectures and the hardware/software
environment. Section I-D mentions related work. In Section II

ar
X

iv
:1

80
9.

00
91

2v
1

 [
cs

.P
F]

 4
 S

ep
 2

01
8

Micro-Operation Queue
In-Order

Out-of-Order

Memory Control

Data Caches

Port 0 Port 1 Port N...

Out-of-Order Scheduler

ex. unit

...

ex. unit

ex. unit

ex. unit

Instruction Cache

Decode

...

ex. unit

...

ex. unit

Fig. 1: Assumed generic out-of-order port model for modeling,
benchmarking and analysis. Functional units (e.g., ALU, AGU,
MUL, DIV) are associated with ports. An out-of-order sched-
uler assigns µ-ops to ports, which then use their functional
units to execute the instructions in an pipelined fashion.

we explain how to build a detailed machine model for an
architecture from available documentation and benchmarking.
We exercise this methodology on our example architectures
in Section II-C. Section III explains technical details about
the static analyzer and compare its predictions with actual
measurements in Sections III-A and III-B. Finally, Section IV
summarizes the work and gives an outlook to future develop-
ments.

The OSACA sowftare is available for download at [6].
Information about how to reproduce the results in this paper
can be found in the artifact description [7].

A. Background

When thinking about the performance of a CPU processor,
we assume what is widely known as the “port model”: each
instruction is (optionally) split into micro-ops (µ-ops), which
get executed by functional units. A particular instruction may
have multiple functional units that can execute it (e.g., two
integer ALUs), or – in case of complex instructions – multiple
functional units must execute it (e.g., combined load and
floating-point add). Functional units are grouped behind ports,
with one port serving one or more units. Each port can receive
only one instruction per cycle. Figure 1 shows a diagram of
such a generic port model.

The following assumptions, already stated in Section I, are
assumed for our prediction model:

1) All data accesses hit the first-level cache.

This is where the boundary between in-core and data
analysis is drawn. If a dataset fits in the first-level cache,
all accesses will behave the same and there is no need
to consider the order and pattern of previous accesses or
(possibly undisclosed) cache replacement algorithms. It
is also possible to model behavior beyond the L1 [4].

2) Multiple available ports per instruction are utilized with
fixed probabilities.
Since the actual scheduling algorithm is unknown, we
assume that all suitable ports for the same instruction
are used with fixed probabilities. E.g., an add instruction
that may use one of two ports may be scheduled half
the time on one and half the time on the other, or one-
tenth of the time on one and nine-tenth of the time on
another. Consideration of actual port pressure is currently
not supported.

3) Otherwise, out-of-order scheduling by the hardware
works perfectly.
The previous assumption implies imperfect scheduling if
ports are asymmetric. Asymmetry means that multiple
ports can handle the same instruction, but other features
of those ports differ (e.g., one port supports add and
div, while another supports add and mul). This may
cause load imbalance since, e.g., a code with only add
and mul may be imperfectly scheduled.

4) All latencies are hidden via speculative execution.
Speculative execution and out-of-order scheduling allows
the processor to execute a loop kernel with intra-iteration
dependencies as a throughput-bound code (i.e., where
the pipeline which is the bottleneck is fully utilized). In
other words, the critical execution path through the loop
iteration can be ignored. Similar to IACA, we focus on
throughput modeling at the moment and do not model
latency.

To the best of our knowledge, assumptions 1, 3 and 4 apply
to IACA as well, but due to the undisclosed machine model
behind IACA we are unable to validate this. For assumption
2, IACA shifts probabilities to balance port pressures. In
Section II, we will go into detail on how we derived our model
parameters from available sources and benchmarking.

Available, but incomplete and sometimes misleading
sources are: architecture diagrams and performance numbers
found in technical manuals [8] and marketing presentations [9]
of vendors, third-party researchers [10] and enthusiasts [11]
compiling their own benchmarking results.

B. Intel Skylake and AMD Zen Architectures

The most complete information is available on Intel’s micro-
architectures, and we therefore have a clear understanding
of the overall behavior. We will now go into performance-
relevant details on Intel Skylake, followed by a discussion of
AMD Zen.

On Intel Skylake, each port (0− 7) can consume one µ-op
per cycle. A µ-op may take any number of cycles to retire.
Simple instructions (e.g., vaddpd %xmm1,%xmm2,%xmm3
or “add values in xmm1 and xmm2 and store result to xmm3”)

Decoded Micro-Operation Queue
In-Order

Out-of-Order
Out-of-Order Scheduler

Port 0

alu

2nd branch

avx div

avx shft

2×512 bit1×512 bit

Port 1

alu

fast lea

avx fma

Port 5

alu

fast lea

avx shuf

Port 6

alu

1st branch

Port 2

load

agu

Port 3

load

agu

Port 4

store

Port 7

simple agu

avx add

avx alu

Memory Control

32 kB L1 D-Cache
1 MB Unified L2 Cache Line Fill Bu�ers512 bit 512 bit

avx alu

avx shft

avx512 mul

128 bit

Predecode

32 kB L1 I-Cache

Instruction Queue

Micro-op /
L0 CacheDecode

avx fma

avx mul

avx mul

avx add

avx512 fma

avx512 add

avx512 alu

Fig. 2: Intel Skylake core block diagram and port model,
compiled from Intel’s Optimization Manual [8].

map to exactly one µ-op, while complex instructions are split
into multiple µ-ops (e.g., vaddpd %xmm1,(%eax),%xmm3
or “load values at memory address eax, add with values in
xmm1 and store result to xmm3”).1

In Figure 2 we see the mapping of ports to functional units
and thus instructions. Scalar integer instructions need either
port 0, 1, 5 or 6. Vectorized instructions with 256 bit length
go to port 0 or 1. Divides are always handled by port 0. Loads
occupy port 2 or 3, and stores need port 4 as well as 2, 3 or
7 for address calculations.

In addition to ports, there are other potential bottlenecks, in
particular instruction cache bandwidth and fetch and decode
throughput: The L1 instruction cache is limited to 32KiB and
can serve 16Bytes per cycle to the fetcher. The decoders
can emit a total of five µ-ops per cycle, four from simple
instructions and one from a complex instruction. Currently
we ignore those limits.

During allocation and renaming, architectural register IDs
from the machine code are replaced with physical registers.
In combination with move elimination and zeroing idioms
(also during the allocation and renaming step), the processor
is able to locate and circumvent false data dependencies.
All independent instructions can then be scheduled on ports
providing the necessary functional units.

1Unless otherwise noted, we use the AT&T (destination last) form of the
x86 assembly syntax here. IACA uses Intel syntax (destination first) in its
output.

Decoded Micro-Operation Queue
In-Order

Out-of-Order

Memory Control
2×128 bit

32 kB L1 D-Cache512 kB Unified L2 Cache

1×128 bit

512 bit

Out-of-Order Scheduler

Port 4 Port 5 Port 6 Port 7 Port 8 Port 9

agu

Port 0 Port 1 Port 2 Port 3

Out-of-Order Scheduler

load
load
store

agu sse alu

sse mul

sse fma

sse alu

sse mul

sse fma

sse shuf

sse alu

sse add

sse shuf

sse alu

sse add

sse div

alu

branch

alu

mul

alu

div

alu

branch

256 bit

Predecode

64 kB L1 I-Cache

Instruction Queue

Micro-op /
L0 CacheDecode

Floating-point / vector execution Integer execution

Fig. 3: AMD Zen core block diagram and port model,
compiled from AMD’s Optimization Guide [12], market-
ingslides [9] and Agner Fog’s Instruction Tables [11].

One new instruction can be scheduled on each port per
cycle; however, some special conditions exist. One prominent
example, which we also model, is: Divide instructions are
executed scheduled on port 0, and they take four cycles, but
the port already becomes available to non-divide instructions
on the next cycle. We, as well as IACA, model this using
an additional port called 0DV, which only handles divide
instructions and is occupied for four cycles, while port 0 is
only occupied for 1 cycle.

Loads go through ports 2 and 3. Both ports also lead to the
necessary address generation units (AGUs). The “store port”
(4) does not come with its own AGU, thus each store requires
an AGU from port 2 or 3, or – if the address is simple – from
port 7.

C. Validation Hardware, Software and Runtime Environment

All results presented were gathered on two machines:
Skylake Intel Xeon i7-6700HQ with Skylake micro-

architecture running at fixed 1.8 GHz with turbo
disabled

Zen AMD EPYC 7451 with Zen micro-architecture,
running at fixed 1.8 GHz with turbo disabled

OSACA (version 0.2.0) was run with Python v3.5.3 and
benchmarks were compiled using GCC 7.2.0. When compil-
ing for Intel Skylake we used the flags -fopenmp-simd
-march=broadwell. We deliberately ignored the AVX-
512 capabilities, since we wanted to compare prediction
and execution of the same assembly code on both architec-
tures, but such instructions would not execute on AMD Zen.

Compiling for AMD Zen was done with -fopenmp-simd
-march=znver1 -mavx2 -mfma compiler options. For
both platforms we created different versions of the code by
using the -O1, -O2 and -O3 flags, respectively.

During execution, we used likwid-pin to pin the pro-
cesses to a physical core. That and fixing the frequency
reduced fluctuations during runtime measurements. Leaving
turbo mode enabled would lead to unusual results, because
the CPU frequency changes during execution and calculation
of cycles from a combined runtime becomes impossible. In
effect, statistical runtime variations were small enough to be
ignored. In all measurements we nevertheless report the “best”
value (highest performance, lowest runtime).

D. Related Work

In general, there are two approaches to predicting runtime
and performance behavior: static analysis and simulation. Our
work is set in the static analysis category, because we expect
results to be explanatory in order to guide developers and tools
in optimizing performance, and to be available fast in order to
allow inclusion in other tools, such as compilers. Simulators
on the other hand may be more thorough and accurate if
comprehensive implementations exist. They can also consider
the data side, such as diverging branches or interaction of
multiple cores or nodes. These advantages come at a cost:
Steady states for throughput analysis need to be found, valid
and representative data needs to be available, pinpointing a
bottleneck becomes non-trivial and implementation is much
more complex.

Being an inspiration for this work, the most prominent
example for static analysis tools is IACA itself [5]. Developed
by Israel Hirsh and Gideon S. [sic], Intel released the tool in
2012 and has issued the latest version in 2017. It is closed
source and the underlying model has not been published by
the authors. The latest version supports throughput analysis on
Intel micro-architectures Haswell through Skylake (including
AVX-512). It has built-in insight on decomposition of instruc-
tions into µ-ops, µ-op fusion and the port assignments. It also
seems to use a heuristic for scheduling instructions to ports,
which we have no knowledge of. The underlying model is
bound to be more accurate than anything OSACA can hope
for, due to undisclosed information available to the developers
and the complete focus on recent Intel architectures. OSACA,
on the other hand, can model non-Intel architectures and gives
the user information about the underlying model.

Two new projects came up recently in the LLVM com-
munity: LLVM-MCA [13] and LLVM-Exegesis [14]. Both
of them aim at enhancing and using available out-of-order
performance information in LLVM to improve instruction
selection during compile time and to support developers.
LLVM-Exegesis benchmarks operations and derives latency
and port assignment through hardware event counting. The
gathered information is meant to validate LLVM’s TableDef
scheduling models. LLVM-MCA is a simulator that uses the
available scheduling information from the backend to predict
the expected throughput of a basic block, similar to what IACA

and OSACA do. Unlike the latter two, LLVM-MCA actually
runs a simulation of instructions through LLVM’s backend.

Mendis et al. [15] apply a black-box machine learning
approach to throughput estimation, while also trying to capture
memory hierarchy behavior beyond the first-level cache. The
outcome of their prediction is a single-number throughput esti-
mation based on a generic deep neural network. This is helpful
to compilers when comparing possible code transformations,
but is not sufficient from a performance engineering perspec-
tive, where we are interested in the origin of the bottleneck
and hints on how to avoid it. It is also very important to us to
separate the memory hierarchy from execution effects in order
to support performance modeling using the Roofline and ECM
models. Ithemal, their software, and the trained neural network
were not publicly available at the time of writing.

Another simulator covering instruction execution is
gem5 [16], developed by Binkert et al. It supports many
instruction set architectures (x86, ARM, Power and SPARC,
among others), including a complete memory system, multi-
core, cache coherency, DMA, PCI, networks and more. It is
considered a “full-system” simulator, which goes above and
beyond what the scope of this work is, but is is rooted in
the simulation domain. Gem5 also lacks support for important
ISA extensions, such as AVX.

ZSim by Sanches et al. [17] and MARSSx86 by Patel et
al. [18] are also full-system simulators which give a coarse
overview on complete systems (with thousands of cores or
machines), rather than detailed insights pinpointing at a bot-
tleneck.

Charif-Rubial et al. introduced CQA [19], a performance
static analysis tool focused on single-core performance of
loop-centric code. It is not their goal to predict runtime, but
rather give the developer a quality estimate of the code based
on static binary analysis. While they also use benchmarks to
determine instruction throughput and latency, they have opted
for not modeling out-of-order execution.

II. MODEL-CONSTRUCTION METHODOLOGY

To construct a suitable port model for a given CPU archi-
tecture, we need to identify the relevant ports for throughput
and latency during execution, as well as any other functional
units occupied. Additional non-bottleneck units do not in-
fluence the runtime of an instruction (the latency is hidden
by the bottleneck), but they may become a bottleneck when
used in combination with other instructions simultaneously.
Identification of hidden non-bottleneck ports can be achieved
by combined benchmarking of multiple instructions. In the
following sections, we will explain this approach in detail for
the latest AMD Zen and Intel Skylake architectures. Further
on, we show how to integrate the gained knowledge into
OSACA’s database [6] for a throughput prediction model.

Since the definition of “instruction” is ambiguous, we
introduce the term instruction form [20], which refers to
an assembly instruction together with their operand types.
E.g., vaddpd may be used with 128 bit, 256 bit or 512 bit
registers, and memory operands and an optional masking

register. The types of operands have an impact on the resulting
performance and therefore need to be considered. vaddpd
mem,xmm,xmm is the instruction form of vaddpd with a
source memory reference, a 128 bit source register and a
128 bit target register.

Although OSACA is capable of distinguishing between
different ways of addressing the memory (detecting base,
offset, index, scale factor and segment registers), in the current
stage of development a separation regarding the benchmark
measurement and therefore the port distribution is not pro-
vided. Hence, we assume that the maximum throughput of an
instruction is independent of its memory addressing mode.

A. Benchmarking Latency and Throughput

To obtain the latency and throughput of an instruction,
we automatically create assembly benchmarks for use with
ibench [21]. It offers the infrastructure to initialize, run and
accurately measure the desired parameters.

For latency benchmarking we create a dependency chain
by using the destination register of one instruction as a source
register for the next and embedding a suitable number of back-
to-back instructions into a loop. A benchmark code for the
latency of vaddpd may look as follows:
loop:
inc %eax
vaddpd %xmm0, %xmm1, %xmm0
vaddpd %xmm1, %xmm0, %xmm0
vaddpd %xmm0, %xmm1, %xmm0
...
vaddpd %xmm1, %xmm0, %xmm0
cmp %eax, %edx # loop count
jl loop

The above code yields a latency of 4 cy on Intel Skylake and
3 cycles on AMD Zen.

For throughput measurement, instructions with independent
source and destination operands must be issued. This could
be achieved by not reusing any destination registers, but will
easily exhaust all available registers. Since we do not want
to rely on the register renaming capabilities of the core to
compensate for that, multiple independent dependency chains
are created to ensure that enough independent instructions are
available to utilize all functional units. The inner loop body is
long enough to compensate loop overheads:
loop:
inc %eax
vaddpd %xmm3, %xmm0, %xmm0
vaddpd %xmm4, %xmm1, %xmm1
vaddpd %xmm5, %xmm2, %xmm2
vaddpd %xmm3, %xmm0, %xmm0
vaddpd %xmm4, %xmm1, %xmm1
vaddpd %xmm5, %xmm2, %xmm2
vaddpd %xmm3, %xmm0, %xmm0
vaddpd %xmm4, %xmm1, %xmm1
vaddpd %xmm5, %xmm2, %xmm2
vaddpd %xmm3, %xmm0, %xmm0
...
cmp %eax, %edx # loop count
jl loop

This benchmark yields a throughput of 2 instructions per cycle
on Intel Skylake and AMD Zen. From this we can infer that

two independent ports (and thus pipelines) are available for
vaddpd xmm,xmm,xmm.

B. Benchmarking Port Occupation

The port model, in which each port may feed multiple
execution units, creates a peculiar bottleneck when a code
comprises a mixture of different instruction forms that must go
through the same port. Even though ample execution resources
are available, the performance may be impeded by the limit of
one instruction per cycle and port. This “port conflict” can be
measured: By adding another instruction form into the already
throughput bound benchmark, either an increase or no change
in runtime is expected. If the runtime increased, both instruc-
tion forms utilize at least one common port, which needs to
be considered when mapping instruction forms to ports. This
method is currently used to validate known information, but
can be extended to derive a complete, previously unknown,
port model.

C. Example: Fused Multiply-Add on Skylake and Zen

To illustrate our model construction method, we carry
out the analysis of the instruction form vfmadd132pd
m128,xmm2,xmm1 (i.e., multiplying a packed double-
precision value from memory and xmm1, adding this to xmm2
and storing the result in xmm1) for the latest Intel and AMD
architectures.

We use the port model for Skylake, shown in Figure 2, and
Zen, as presented in Figure 3. The benchmark files for latency
and throughput are generated automatically as shown in the
previous section. E.g., the basic repetitive instruction form
for the latency measurement is vfmadd132pd (%rax),
%xmm0, %xmm0. All these instruction forms must be exe-
cuted separately due to the read-after-write hazard between
the current target register and the future source register xmm0.
The throughput benchmark is generated analogously with
independent registers as operands.

Based on these files, we configure and run benchmarks for
various levels of parallelism. On AMD Zen the output will
look like this (note that we are using Intel operand ordering
here since ibench works with Intel assembly syntax internally):

Using frequency 1.80GHz.
2 vfmadd132pd-xmm_xmm_mem-1: 5.011 (clk cy)

vfmadd132pd-xmm_xmm_mem-2: 2.506 (clk cy)
4 vfmadd132pd-xmm_xmm_mem-4: 1.251 (clk cy)

vfmadd132pd-xmm_xmm_mem-5: 1.003 (clk cy)
6 vfmadd132pd-xmm_xmm_mem-8: 0.679 (clk cy)

vfmadd132pd-xmm_xmm_mem-10: 0.503 (clk cy)
8 vfmadd132pd-xmm_xmm_mem-12: 0.502 (clk cy)

vfmadd132pd-xmm_xmm_mem-TP: 0.500 (clk cy)
10 vfmadd132pd-xmm_xmm_xmm-TP: 0.502 (clk cy)

The number behind every instruction form is the amount of
independent parallel instructions in one loop iteration given
the dependencies in every benchmark. “TP” marks throughput
benchmarks, without dependencies. On line 2, we can see that
the latency of this instruction form is 5 cy. The reciprocal
throughput shown on line 9 is 0.5 cy/instr. The measured
throughput is unaffected for benchmarks with ten or more

independent instruction forms, which corroborates our general
assumptions about multi-port code execution: The instruction
form can be spread among two separate ports, because its
throughput is one half and we expect each port to handle
one instruction per cycle. Given that Zen can do two loads
per cycle and the instruction form without a memory operand
has a reciprocal throughput of 0.5 cy/instr. as well, we need
to find which floating point ports (0, 1, 2 or 3) are needed
for fused-multiply-add (FMA). We therefore create bench-
marks with vmulpd %xmm1,%xmm2,%xmm3 and vaddpd
%xmm1,%xmm2,%xmm3 instruction forms interleaved with
the prior vfmadd132pd. At this point, we already know
that vmulpd is executed on floating point port 0 or 1,
vaddpd goes to port 2 or 3 and both instruction forms have
a reciprocal throughput of 0.5 cy/instr. The chosen operands
must be independent of the target register to prevent hazards
and therefore affect dependencies. The result is the following:

Using frequency 1.80GHz.
vfmadd132pd-xmm_xmm_mem-TP-vaddpd: 0.522 (clk cy)
vfmadd132pd-xmm_xmm_mem-TP-vmulpd: 1.024 (clk cy)

From the combined measurement we see that vmulpd –
unlike vaddpd – can not be hidden behind the execution
of vfmadd132pd, so vfmadd132pd must be scheduled to
the same ports as vmulpd, i.e., 0 or 1. To add the instruction
form to the Zen port model of OSACA, we create a new entry
with a reciprocal throughput of 0.5 cy/instr. on port 0, 1, 8 and
9 to the database:

vfmadd132pd-xmm_xmm_mem, 0.5, 5.0, \
"(0.5,0.5,0,0,0,0,0,0,0,0.5,0.5)"

Note that for floating point division we assume that there is
an additional divider pipe on port 3, which is included in
the port occupation notation of the database. For doing the
same workflow on Skylake, we can reuse all priorly created
benchmark codes and get the following results:

Using frequency 1.80GHz.
2 vfmadd132pd-xmm_xmm_mem-1: 4.009 (clk cy)

vfmadd132pd-xmm_xmm_mem-2: 2.006 (clk cy)
4 vfmadd132pd-xmm_xmm_mem-4: 1.011 (clk cy)

vfmadd132pd-xmm_xmm_mem-5: 0.805 (clk cy)
6 vfmadd132pd-xmm_xmm_mem-8: 0.556 (clk cy)

vfmadd132pd-xmm_xmm_mem-10: 0.554 (clk cy)
8 vfmadd132pd-xmm_xmm_mem-12: 0.551 (clk cy)

vfmadd132pd-xmm_xmm_mem-TP: 0.553 (clk cy)
10 vfmadd132pd-xmm_xmm_xmm-TP: 0.502 (clk cy)

vfmadd132pd-xmm_xmm_mem-TP-vaddpd: 1.010 (clk cy)
12 vfmadd132pd-xmm_xmm_mem-TP-vmulpd: 1.004 (clk cy)

Here we get the same expected amount of cycles for the
instruction form in combination with vaddpd and vmulpd
because both functional units are assigned to port 0 and 1,
increasing the overall throughput to 1 cy. This leads to the
assumption of a latency of 4 cy and a reciprocal throughput
of 0.5 cy/instr. The port distribution is 0, 1 for FMA, and 2, 3
for Load. This is represented in the database in the following
way:

vfmadd132pd-xmm_xmm_mem, 0.5, 4.0, \
"(0.5,0,0.5,0.5,0.5,0,0,0,0)"

Note that — similar to Zen — the Skylake architecture has
an additional divider pipe on port 0.

Doing this for every instruction will give a validated port
model, which follows the general structure as seen in Figure 2
and Figure 3.

III. STATIC ANALYZER IMPLEMENTATION

After collecting the performance and scheduling informa-
tion about specific instruction forms for a given architecture, as
done in Section II, OSACA can use it to predict the throughput
of kernels.

OSACA extracts a marked kernel section out of an assembly
or object file. For convenience OSACA supports the same byte
markers as IACA, i.e.:

movl $111, %ebx
.byte 100,103,144

..LABEL:
Some code
...
conditional jump to ..LABEL

movl $222, %ebx
.byte 100,103,144

These markers can be inserted in the source code, but we
have found that this strongly influences the code generated by
the compiler. We therefore recommend to insert the marker
instructions directly into assembly code, to guarantee preser-
vation of the original instructions.

Extracting the inner kernel is done using regular expres-
sions. IACA’s analysis is based on compiled binary object files,
which is an unnecessary step with OSACA. Each instruction
form is analyzed regarding its operands and matched to
entries in the database. If no match was found, corresponding
benchmark files, as described in Section II-A, are generated
automatically. If every instruction form was found, OSACA
performs a throughput analysis based on earlier measured
data and the port distribution from its database. The workflow
of OSACA is depicted in Figure 4. For validation we will
use different assembly representations, which are generated
by the GNU C Compiler with different optimization levels:
-O1, -O2 or -O3. The predictions by OSACA are validated
by comparing predicted runtime to measured execution time
on the systems described in Section I-C. In case of Skylake
we also compare OSACA and IACA predictions, which is
impossible for Zen due to the proprietary nature of IACA.

A. Example: Triad on Skylake and Zen

A typical benchmark for measuring data throughput in
combination with floating-point operations is the “Schönauer”
triad benchmark [22]:

for(int j=0; j<size; ++j)
a[j] = b[j] + c[j]*d[j];

First, we analyze the kernel compiled with Skylake-specific
optimization flags on both architectures. Later, we will do
the same analysis on both architectures with code compiled
for Zen. The resulting maximum measured number of floating

// TRIAD BENCHMARK

//STARTLOOP

for(int j=0; j<size; ++j){

 a[j] = b[j] + c[j]*d[j];

}

User input

Throughput analysisExtract instructions

CSV
data files

OSACA

.L14:
vmovapd 0(%r13, %rax), %ymm0
addl $1, %esi
vmovapd (%r14, %rax), %ymm4
vfmadd132pd (%r12, %rax), %ymm4, %ymm0
vmovapd %ymm0, (%r15, %rax)
addq $32, %rax
cmpl %esi, -100(%rbp)
ja .L14

ibench

#define INSTR vcvtsi2ss
#define NINST 32
#define N edi
#define i r8d
.intel_syntaxnoprefix
.globl ninst
.data
ninst:
.long NINST
.align32
PI:
.long0xf01b866e, 0x400921f9
.text
.globllatency
.typelatency, @function
.align32
loop:

inc i
INSTR xmm3, xmm0, eax
INSTR xmm4, xmm1, ebx
INSTR xmm5, xmm2, ecx
INSTR xmm6, xmm0, eax
INSTR xmm7, xmm1, ebx
INSTR xmm8, xmm2, ecx

Benchmark file
#define INSTR vcvtsi2ss
#define NINST 32
#define N edi
#define i r8d
.intel_syntaxnoprefix
.globl ninst
.data
ninst:
.long NINST
.align32
PI:
.long0xf01b866e, 0x400921f9
.text
.globllatency
.typelatency, @function
.align32
loop:

inc i
INSTR xmm3, xmm0, eax
INSTR xmm4, xmm1, ebx
INSTR xmm5, xmm2, ecx
INSTR xmm6, xmm0, eax
INSTR xmm7, xmm1, ebx
INSTR xmm8, xmm2, ecx

Benchmark file
#define INSTR vcvtsi2ss
#define NINST 32
#define N edi
#define i r8d
.intel_syntaxnoprefix
.globl ninst
.data
ninst:
.long NINST
.align32
PI:
.long0xf01b866e, 0x400921f9
.text
.globllatency
.typelatency, @function
.align32
loop:

inc i
INSTR xmm3, xmm0, eax
INSTR xmm4, xmm1, ebx
INSTR xmm5, xmm2, ecx
INSTR xmm6, xmm0, eax
INSTR xmm7, xmm1, ebx
INSTR xmm8, xmm2, ecx

Benchmark file

vcvtsi2ss-xmm_xmm_r32 1.0
vcvtsi2ss-xmm_xmm_r32-TP 3.0
vmulss-xmm_xmm_xmm 1.0

ibench output

available on

Memory GPR 32b YMMGPR 64b IMD P - Load operation can be hidden behind a past or future store instruction
X - No information for this instruction in data file
* - Instruction micro-ops not bound to a port
Port Binding in Cycles Per Iteration:
--
| Port | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
--
| Cycles | 1.0 | 1.0 | 0 | 0 | 0.75 | 0.75 | 0.75 | 0.75 | 4.0 | 4.0 |
--
 Ports Pressure in cycles
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

| | | | | | | | | | | X .L10:
| | | | | | | | | (1.0)| (1.0)| P vmovapd (%r15,%rax), %ymm0
| | | | | | | | | 1.00 | 1.00 | vmovapd (%r12,%rax), %ymm3
| | | | | 0.25 | 0.25 | 0.25 | 0.25 | | | addl $1, %ecx
| 1.00 | 1.00 | | | | | | | 1.00 | 1.00 | vfmadd132pd 0(%r13,%rax),
| | | | | | | | | | | %ymm3, %ymm0
| | | | | | | | | 2.00 | 2.00 | vmovapd %ymm0, (%r14,%rax)
| | | | | 0.25 | 0.25 | 0.25 | 0.25 | | | addq $32, %rax
| | | | | 0.25 | 0.25 | 0.25 | 0.25 | | | cmpl %ecx,%r10d
| | | | | | | | | | | ja .L10
Total number of estimated throughput: 4.0

Fig. 4: Structural design of OSACA and its workflow. The code example shown here is the Schönauer triad benchmark compiled
with -O3 and analyzed with OSACA assuming the Zen architecture.

operations (FLOP) per second, the maximum number of high-
level, i.e., source code loop iterations (it) per second, and the
minimum number of cycles per iteration are stated in columns
5–7 of Table III.2

The FLOP/s metric is calculated from the total run-
time and total number of FLOPs: 2 FLOP

iteration × size ×
repetitions/runtime. It/s is calculated from size ×
repetitions/runtime. Finally, the number of cycles (cy/it) is
calculated by dividing the clock speed (cy/s) by the perfor-
mance (it/s).

The compiler unrolls the kernel four times at -O3 for AVX
SIMD vectorization (see Figure 4). Unrolling must be ob-
served when interpreting IACA or OSACA predictions, as they
disregard the source code and only predict for assembly-level
iterations. E.g., if a loop was unrolled twice, the prediction by
IACA and OSACA will be for two original iterations instead
of one. This also applies to any additional unrolling on top of
SIMD. In this paper, OSACA and IACA predictions given in
cycles are for one assembly code iteration, whereas the unit
“cy/it” always refers to source code iterations.

All predictions by OSACA and IACA for “Skylake-
optimized” code can be found in the first three rows of Table I.
OSACA’s throughput analysis via osaca --arch skl
--iaca asmfile.s, i.e., for Skylake, predicts 2 cycles
independent of the optimization level. As mentioned above,
OSACA predicts the throughput for one iteration of the
marked kernel code, which corresponds to one iteration in
case of the -O1 and -O2 code and four iterations in case of
-O3. The OSACA prediction for the -O3 code is shown in

2The relation between FLOPs and iterations is trivial in this example; for
more complicated codes it is often useful to think in terms of iterations instead
of FLOPs, so we keep both metrics.

Compiled for Flag unroll OSACA pred. [cy] IACA pred. [cy]
factor Zen SKL SKL

Skylake -O1 1 2.00 2.00 2.24
Skylake -O2 1 2.00 2.00 2.00
Skylake -O3 4 4.00 2.00 2.21

Zen -O1 1 2.00 2.00 2.24
Zen -O2 1 2.00 2.00 2.00
Zen -O3 2 2.00 2.00 2.21

TABLE I: OSACA and IACA throughput analyses for the
Schönauer triad kernel. Note that the cycle counts pertain
to one assembly loop iteration, which may comprise several
source code iterations (according to the unroll factor).

somewhat condensed form in Table II. Our measurement for

P0 P1 P2 P3 P4 P5 P6 P7 Assembly Instructions

.L10:

0.50 0.50 vmovapd (%r15,%rax), %ymm0

0.50 0.50 vmovapd (%r12,%rax), %ymm3

0.25 0.25 0.25 0.25 addl $1, %ecx

0.50 0.50 0.50 0.50 vfmadd132pd 0(%r13,%rax),%ymm3,%ymm0

0.50 0.50 1.00 vmovapd %ymm0, (%r14,%rax)

0.25 0.25 0.25 0.25 addq $32, %rax

0.25 0.25 0.25 0.25 cmpl %ecx, %r10d

ja .L10

1.25 1.25 2.00 2.00 1.00 0.75 0.75 0.00

TABLE II: OSACA prediction (shortened) of -03 Schönauer
triad benchmark for Skylake with code compiled for Skylake.
See Section I-C for system configuration.

the -O3 code is 0.53 cy/it (see last row of Table III), which
matches both the OSACA and IACA predictions well since
4 it · 0.53 cy/it = 2.12 cy.

Unlike OSACA, IACA does not schedule instruction forms
with an average probability but weighs specific ports. The
reason for this is not disclosed and may be based on in-
ternal information. However, this does not affect the overall
throughput and bottleneck prediction for the triad benchmark.
For the benchmark versions compiled with -O1, -O2 and
-O3, IACA predicts between 2.00 cy/it and 2.24 cy/it for each
kernel, but all with a pure port binding of 2.0 cy in the bottle-
neck. Running this code on Zen results in the same runtime
as on Skylake for the -O1 and -O2 versions, but shows
worse performance with -O3 (see rows 7–9 in Table III).
OSACA’s throughput prediction for this version can be found
in the structural design of Figure 4. The lower performance
is due to the Zen architecture executing AVX instructions
as two successive 128-bit chunks. This leads to an expected
total runtime of 4 cycles per (assembly) iteration instead of
Skylake’s 2 (i.e., 1 cy/it instead of 0.5), which is confirmed by
the measurements in column 7 of Table III.

The performance results for the triad benchmark compiled
for the Zen architecture are shown in the first six rows of
Table III. While we can observe similar behavior for the -O1
and -O2 versions compared to the previous example, the com-
piler only unrolls twice for the -O3 version, i.e., it only uses
128-bit wide registers. For all six versions of the benchmark
OSACA predicts 2 cy per assembly iteration, which matches
the measured performance. Since both architectures have the
same throughput limits for 128-bit wide data movement we do
not see a performance difference between Zen and Skylake.

The OSACA output for the -O3 version compiled for Zen
can be found in Table IV. Although Zen has two load units
and one store unit on ports 8 and 9, it has only two AGUs on
the very same ports, so it is only capable of executing either
up to two loads or one load and one store per cycle. OSACA
models this by hiding one load instruction behind a given store
instruction, as seen on the second row in Table IV (vmovaps
0(%r13,%rax),%xmm0).

B. Example: π Benchmark on Skylake and Zen

The Schönauer triad benchmark is bound by load through-
put. In the following we will look at an arithmetic instruction
bound benchmark that calculates π =

∫ 1

0
4/(1 + x2) dx by

simple rectangular integration:

int SLICES = 1000000000;
double sum = 0., delta_x = 1./SLICES;
for(int i=0; i<SLICES; ++i) {

double x = (i+0.5)*delta_x;
sum = sum + 4.0 / (1.0 + x * x);

}
double Pi = sum * delta_x;

As in the previous example, we compiled the benchmark
code with -O1, -O2 and -O3 for Intel Skylake and AMD
Zen with the flags described in Section I-C, but we only
analyze and run on the architecture we compile for. In or-
der to convince GCC to vectorize this code with -O3, the

flag -funsafe-math-optimizations was required. In
Table V we have compiled IACA and OSACA predictions, as
well as the measured reciprocal throughput.

Predictions for -O1 failed to describe the measured runtime
by more than a factor of two on both Skylake and Zen. Manual
inspection of the code confirmed the validity of the predictions
under the model assumptions. To investigate the discrep-
ancy we checked the UOPS_EXECUTED_STALL_CYCLES
hardware event using likwid-perfctr on Intel Skylake,
and found that almost 17 times as many stall cycles were
counted with -O1 compared to -O2. Measuring the average
stall duration (part of likwid’s UOPS_ISSUE group) also
yields 5.5 cy, which is roughly the discrepancy we measured.
Looking into the code again, the relevant difference is that at
-O1, the value of sum is read from the stack, updated, and
written back in every iteration:

.L2:
vxorpd %xmm0, %xmm0, %xmm0
vcvtsi2sd %eax, %xmm0, %xmm0
vaddsd %xmm4, %xmm0, %xmm0
vmulsd %xmm3, %xmm0, %xmm0
vmulsd %xmm0, %xmm0, %xmm0
vaddsd %xmm2, %xmm0, %xmm0
vdivsd %xmm0, %xmm1, %xmm0
vaddsd (%rsp), %xmm0, %xmm5
vmovsd %xmm5, (%rsp)
addl $1, %eax
cmpl $1000000000, %eax
jne .L2

It is kept in a register with -O2 and only written back
after the loop.3 We therefore conclude that on Skylake
the write-after-read dependency invalidates the full through-
put assumption because of problems with the out-of-order
scheduler or speculative execution. On AMD Zen the
DYN_TOKENS_DISP_STALL_CYCLES_RETIRE_TOKEN_
STALL hardware event points into the same direction, increas-
ing to 7× to that of -O2, and thus we suspect that the same
problem exists there as well.

For -O2 and -O3, predictions and measurements match
rather well, in particular on Intel Skylake. The throughput
analysis for the π benchmark compiled for Skylake with
-O3 and predicted for execution on Skylake can be found
in Table VI. The compiler unrolled the kernel eight times,
so that OSACA reports the model for eight iterations of the
loop. Note that for a precise prediction it is necessary to
take a realistic execution of division µ-ops into account. Both
Skylake and Zen use a different pipeline for their divisions.
Therefore, the “main” port is allocated only during one cycle
of the execution, while the remaining cycles leave the port free
for other instructions. OSACA supports division pipelines and
marks them in the output as “DV”.

The fact that OSACA models the instruction throughput in
average port occupation, as mentioned before in Section I-A,

3All assembly kernels and the corresponding IACA and OSACA analysis
can be found in the artifacts repository [7].

Architecture Optimization Unroll Measured Prediction [cy/it]
executed on compiled for flag factor MFLOP/s Mit/s cy/it OSACA IACA

Zen Zen -O1 1x 1797 898 2.00 2.00 –
Zen Zen -O2 1x 1797 898 2.00 2.00 –
Zen Zen -O3 2x 3531 1754 1.02 2.00/2 –

Skylake Zen -O1 1x 1770 885 2.03 2.00 2.24
Skylake Zen -O2 1x 1768 884 2.04 2.00 2.00
Skylake Zen -O3 2x 3505 1753 1.03 2.00/2 2.21/2

Zen Skylake -O1 1x 1792 896 2.01 2.00 –
Zen Skylake -O2 1x 1797 898 2.01 2.00 –
Zen Skylake -O3 4x 3166 1589 1.01 4.00/4 –

Skylake Skylake -O1 1x 1767 884 2.04 2.00 2.24
Skylake Skylake -O2 1x 1776 888 2.03 2.00 2.00
Skylake Skylake -O3 4x 6808 2738 0.53 2.00/4 2.21/4

TABLE III: Measurements of the Schönauer triad benchmark compiled for Intel Skylake and AMD Zen together with the
corresponding predictions by OSACA and Intel IACA.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 Assembly Instructions

.L10:

0.25 0.25 0.25 0.25 (0.5) (0.5) vmovaps 0(%r13,%rax),%xmm0

0.25 0.25 0.25 0.25 0.50 0.50 vmovaps %r15,%rax),%xmm3

0.25 0.25 0.25 0.25 incl %esi

0.50 0.50 0.50 0.50 vfmadd132pd (%r14,%rax),%xmm3,%xmm0

0.25 0.25 0.25 0.25 1.00 1.00 vmovaps %xmm0,(%r12,%rax)

0.25 0.25 0.25 0.25 addq $16,%rax

0.25 0.25 0.25 0.25 cmpl %esi, %ebx

ja .L10

1.25 1.25 0.75 0.75 0.75 0.75 0.75 0.75 2.0 2.0

TABLE IV: OSACA prediction of -03 Schönauer triad bench-
mark for Zen with code compiled for Zen. Parentheses indicate
a hide-able load µ-op.

Arch. Opt. IACA OSACA Measurement

Skylake -O1 3.91 cy/it 4.75 cy/it 9.02 cy/it
Skylake -O2 4.00 cy/it 4.25 cy/it 4.00 cy/it
Skylake -O3 2.00 cy/it 2.00 cy/it 2.06 cy/it

Zen -O1 4.00 cy/it 11.48 cy/it
Zen -O2 4.00 cy/it 4.96 cy/it
Zen -O3 2.00 cy/it 2.44 cy/it

TABLE V: Predictions and measurements of π benchmark on
Skylake and Zen.

leads to a prediction of 4.25 cy instead of 4 cy for the exe-
cution of the benchmark compiled with -O2 on Skylake (see
Tables V and VII). According to IACA, µ-ops for instructions
such as vxorpd or cmp are not bound to a port, indicating
that they take “shortcuts” through the architecture, avoiding
port contention. This knowledge is (still) lacking in OSACA,
which leads to the OSACA in-core throughput model not being
a strictly lower bound for the execution time in all cases. This
error is generally small, however.

In all other -O2 and -O3 predictions the division pipeline
on port 0 for Skylake (and port 3 for Zen, respectively) is
the main throughput bottleneck of the code. With AMD Zen,
the execution is about 20% slower than the prediction. Just

P0 – DV P1 P2 P3 P4 P5 P6 P7 Assembly Instructions

X .L2:

1.00 vextracti128 $0x1, %ymm2, %xmm1

1.00 1.00 vcvtdq2pd %xmm2, %ymm0

0.50 0.50 vaddpd %ymm7, %ymm0, %ymm0

0.25 0.25 0.25 0.25 addl $1, %eax

1.00 1.00 vcvtdq2pd %xmm1, %ymm1

0.50 0.50 vaddpd %ymm7, %ymm1, %ymm1

0.33 0.33 0.33 vpaddd %ymm8, %ymm2, %ymm2

0.50 0.50 vmulpd %ymm6, %ymm0, %ymm0

0.50 0.50 vmulpd %ymm6, %ymm1, %ymm1

0.50 0.50 vfmadd132pd %ymm0, %ymm5, %ymm0

0.50 0.50 vfmadd132pd %ymm1, %ymm5, %ymm1

1.00 8.00 vdivpd %ymm0, %ymm4, %ymm0

1.00 8.00 vdivpd %ymm1, %ymm4, %ymm1

0.50 0.50 vaddpd %ymm1, %ymm0, %ymm0

0.50 0.50 vaddpd %ymm0, %ymm3, %ymm3

0.25 0.25 0.25 0.25 cmpl $125000000, %eax

jne .L2

8.83 16.0 4.83 0.00 0.00 0.00 3.83 0.50 0.00

TABLE VI: OSACA prediction of -O3 π–benchmark for
Skylake, compiled for Skylake.

P0 – DV P1 P2 P3 P4 P5 P6 P7 Assembly Instructions

X .L2:

0.25 0.25 0.25 0.25 vxorpd %xmm0, %xmm0, %xmm0

0.50 0.50 1.00 vcvtsi2sd %eax, %xmm0, %xmm0

0.25 0.25 0.25 0.25 addl $1, %eax

0.50 0.50 vaddsd %xmm5, %xmm0, %xmm0

0.50 0.50 vmulsd %xmm3, %xmm0, %xmm0

0.50 0.50 vfmadd132sd %xmm0, %xmm4, %xmm0

1.00 4.00 vdivsd %xmm0, %xmm2, %xmm0

0.50 0.50 vaddsd %xmm0, %xmm1, %xmm1

0.25 0.25 0.25 0.25 cmpl $1000000000, %eax

jne .L2

4.25 4.00 3.25 0.00 0.00 0.00 1.75 0.75 0.00

TABLE VII: OSACA prediction of -O2 π–benchmark for
Skylake, compiled for Skylake.

as on Skylake, we can observe the bottleneck in the division
pipeline for both the -O2 and -O3 version.

IV. CONCLUSION

A. Summary

Using our Open-Source Architecture Code Analyzer (OS-
ACA) we have shown that a partially automatic machine
model construction and fully automatic throughput analysis
of loop kernels based on benchmarking and known hardware
features is possible and yields accurate results. Benchmarks
are necessary to build a port model and gather throughput and
latency numbers of specific instruction forms. This approach
gives a deep insight into the in-core performance limitations of
a core micro-architecture. We verified our model, performance
data and predictions on Intel Skylake and AMD Zen CPU
architectures using two kernels that show different bottlenecks,
and compared it with measured runtimes and predictions from
Intel’s Architecture Code Analyzer (IACA).

OSACA can extract loop kernels and analyze their instruc-
tion forms out of marked assembly code. Using techniques
shown in this work, one can refine the port models and create
realistic best-case throughput predictions for in-core execution.
OSACA is intended as an alternative to IACA, with the ability
to go beyond Intel hardware.

B. Future Work

OSACA in its current state is a first draft of what we
envision for the future. We intend to expand it with vari-
ous new core features, the most relevant one being latency
modeling (which has been dropped by IACA some years
ago). This requires support for critical path analysis, tracking
dependencies between sources and destinations as well as a
model for output forwarding. Differentiation between memory
addressing modes is already part of the design of OSACA,
but not completely implemented. This is crucial for modeling
the peculiar AGU behind port 7 on Haswell and beyond, and
more generally for any architecture where different addressing
modes can have a varying performance impact.

Once there is a solid model of all the disclosed and known
features, we will also start including less well understood
behavior, such as heuristics of the out-of-order scheduler
and “shortcuts” that bypass the port scheduler. This will
involve very detailed and precise benchmarking to identify
the underlying rules. Furthermore, there is the intention to
add information about the critical path and loop carried
dependencies to enhance the lower bound model in a realistic
way.

Support for non-x86 architectures is on the horizon, but
will first need a lot of manual model building and validation,
since they are not as well understood from a performance per-
spective. In order to support these efforts, we are pursuing an
automatic deduction approach, which is in early development.

A framework for easier and more flexible generation of
benchmarks is currently in development. [23].

REFERENCES

[1] H. T. Kung, “Memory Requirements for Balanced Computer Architec-
tures,” in Proceedings of the 13th Annual International Symposium on
Computer Architecture, ser. ISCA ’86. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1986, pp. 49–54, doi: 10.1145/17356.17362.

[2] H. Stengel, J. Treibig, G. Hager, and G. Wellein, “Quantifying Per-
formance Bottlenecks of Stencil Computations Using the Execution-
Cache-Memory Model,” in Proceedings of the 29th ACM International
Conference on Supercomputing, ser. ICS ’15. New York, NY, USA:
ACM, 2015, pp. 207–216, doi: 10.1145/2751205.2751240.

[3] Y. Lo, S. Williams, B. Van Straalen, T. J. Ligocki, M. J. Cordery, N. J.
Wright, M. W. Hall, and L. Oliker, “Roofline Model Toolkit: A Practical
Tool for Architectural and Program Analysis,” in High Performance
Computing Systems. Performance Modeling, Benchmarking, and Sim-
ulation, ser. Lecture Notes in Computer Science, S. A. Jarvis, S. A.
Wright, and S. D. Hammond, Eds., vol. 8966. Springer International
Publishing, 2015, pp. 129–148, doi: 10.1007/978-3-319-17248-4 7.

[4] J. Hammer, J. Eitzinger, G. Hager, and G. Wellein, “Kerncraft: A Tool
for Analytic Performance Modeling of Loop Kernels,” in Tools for High
Performance Computing 2016, C. Niethammer, J. Gracia, T. Hilbrich,
A. Knüpfer, M. M. Resch, and W. E. Nagel, Eds. Cham: Springer
International Publishing, 2017, pp. 1–22, doi: 10.1007/978-3-319-56702-
0 1.

[5] (2017, 11) Intel Architecture Code Analyzer. [Online]. Available:
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer

[6] J. Laukemann. (2017, 12) OSACA – Open Source Architecture Code
Analyzer. [Online]. Available: https://github.com/RRZE-HPC/OSACA

[7] “Artifact description: Automated instruction stream throughput
prediction for intel and amd microarchitectures.” [Online]. Available:
https://github.com/RRZE-HPC/pmbs2018-paper-artifact/

[8] Intel 64 and IA-32 Architectures Optimization Reference
Manual. [Online]. Available: https://software.intel.com/en-us/download/
intel-64-and-ia-32-architectures-optimization-reference-manual

[9] M. Clark. A New X86 Core Architecture for the
Next Generation of Computing. [Online]. Available:
http://www.hotchips.org/wp-content/uploads/hc archives/hc28/
HC28.23-Tuesday-Epub/HC28.23.90-High-Perform-Epub/HC28.
23.930-X86-core-MikeClark-AMD-final v2-28.pdf

[10] J. Diamond, M. Burtscher, J. D. McCalpin, B. Kim, S. W. Keckler, and
J. C. Browne, “Evaluation and optimization of multicore performance
bottlenecks in supercomputing applications,” in (IEEE ISPASS) IEEE
International Symposium on Performance Analysis of Systems and
Software, April 2011, pp. 32–43.

[11] (2018, 4) Instruction tables. [Online]. Available: http://www.agner.org/
optimize/instruction tables.pdf

[12] (2017, 8) Software Optimization Guide for AMD Family 17h
Processors. [Online]. Available: https://developer.amd.com/wordpress/
media/2013/12/55723 SOG Fam 17h Processors 3.00.pdf

[13] D. Andric. [RFC] llvm-mca: a static performance analysis
tool. [Online]. Available: http://llvm.1065342.n5.nabble.com/
llvm-dev-RFC-llvm-mca-a-static-performance-analysis-tool-td117477.
html

[14] llvm-exegesis – LLVM Machine Instruction Benchmark. [Online].
Available: https://llvm.org/docs/CommandGuide/llvm-exegesis.html

[15] C. Mendis, S. Amarasinghe, and M. Carbin, “Ithemal: Accurate, Portable
and Fast Basic Block Throughput Estimation using Deep Neural Net-
works,” ArXiv e-prints, Aug. 2018, arXiv:1808.07412 [cs.DC].

[16] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, D. A. Wood, B. Beckmann, G. Black, and et al., “The
gem5 simulator,” ACM SIGARCH Computer Architecture News, vol. 39,
no. 2, p. 1, 8 2011, doi: 10.1145/2024716.2024718. [Online]. Available:
http://dx.doi.org/10.1145/2024716.2024718

[17] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitec-
tural Simulation of Thousand-Core Systems,” Proceedings of the 40th
Annual International Symposium on Computer Architecture - ISCA ’13,
2013. [Online]. Available: http://dx.doi.org/10.1145/2485922.2485963

[18] A. Patel, F. Afram, and K. Ghose, “Marss-x86: A qemu-based micro-
architectural and systems simulator for x86 multicore processors,” in 1st
International Qemu Users’ Forum, 2011, pp. 29–30.

https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://github.com/RRZE-HPC/OSACA
https://github.com/RRZE-HPC/pmbs2018-paper-artifact/
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-optimization-reference-manual
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-optimization-reference-manual
http://www.hotchips.org/wp-content/uploads/hc_archives/hc28/HC28.23-Tuesday-Epub/HC28.23.90-High-Perform-Epub/HC28.23.930-X86-core-MikeClark-AMD-final_v2-28.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc28/HC28.23-Tuesday-Epub/HC28.23.90-High-Perform-Epub/HC28.23.930-X86-core-MikeClark-AMD-final_v2-28.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc28/HC28.23-Tuesday-Epub/HC28.23.90-High-Perform-Epub/HC28.23.930-X86-core-MikeClark-AMD-final_v2-28.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam _17h_Processors_3.00.pdf
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam _17h_Processors_3.00.pdf
http://llvm.1065342.n5.nabble.com/llvm-dev-RFC-llvm-mca-a-static-performance-analysis-tool-td117477.html
http://llvm.1065342.n5.nabble.com/llvm-dev-RFC-llvm-mca-a-static-performance-analysis-tool-td117477.html
http://llvm.1065342.n5.nabble.com/llvm-dev-RFC-llvm-mca-a-static-performance-analysis-tool-td117477.html
https://llvm.org/docs/CommandGuide/llvm-exegesis.html
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2485922.2485963

[19] A. S. Charif-Rubial, E. Oseret, J. Noudohouenou, W. Jalby, and G. Lar-
tigue, “CQA: A code quality analyzer tool at binary level,” in 2014 21st
International Conference on High Performance Computing (HiPC), Dec
2014, pp. 1–10.

[20] J. Laukemann, “Design and Implemention of a Framework
for Predicting Instruction Throughput,” Bachelor’s Thesis, 2017.
[Online]. Available: https://hpc.fau.de/files/2018/08/Laukemann
Jan Design and Implementation For a Framework Predicting
Instruction Throughput.pdf

[21] J. Hofmann. (2018, 1) ibench – Measure Instruction Latency and
Throughput. [Online]. Available: https://github.com/hofm/ibench

[22] W. Schönauer, Scientific Supercomputing: Architecture and Use of
Shared and Distributed Memory Parallel Computers. Self-edition,
2000. [Online]. Available: http://www.rz.uni-karlsruhe.de/∼rx03/book

[23] J. Hammer, G. Hager, and G. Wellein, “OoO Instruction Benchmarking
Framework on the Back of Dragons,” SC18 SRC Poster (in review).

https://hpc.fau.de/files/2018/08/Laukemann_Jan_Design_and_Implementation_For_a_Framework_Predicting_Instruction_Throughput.pdf
https://hpc.fau.de/files/2018/08/Laukemann_Jan_Design_and_Implementation_For_a_Framework_Predicting_Instruction_Throughput.pdf
https://hpc.fau.de/files/2018/08/Laukemann_Jan_Design_and_Implementation_For_a_Framework_Predicting_Instruction_Throughput.pdf
https://github.com/hofm/ibench
http://www.rz.uni-karlsruhe.de/~rx03/book

	I Introduction
	I-A Background
	I-B Intel Skylake and AMD Zen Architectures
	I-C Validation Hardware, Software and Runtime Environment
	I-D Related Work

	II Model-Construction Methodology
	II-A Benchmarking Latency and Throughput
	II-B Benchmarking Port Occupation
	II-C Example: Fused Multiply-Add on Skylake and Zen

	III Static Analyzer Implementation
	III-A Example: Triad on Skylake and Zen
	III-B Example: Benchmark on Skylake and Zen

	IV Conclusion
	IV-A Summary
	IV-B Future Work

	References

