
AUTOMATIC SELF-ALLOCATING THREADS (ASAT) ON ANSGI CHALLENGECharles Severance and Richard Enbody�Department of Computer ScienceMichigan State UniversityEast Lansing, MI 48824-1027crs@msu.edu, enbody@cps.msu.eduAutomatic Self Allocating Threads (ASAT) is pro-posed as a way to balance the number of active threadsacross a shared-memory multiprocessing system. Ourapproach is signi�cant in that it is designed for a sys-tem running multiple jobs, and it considers the load ofall running jobs in its thread allocation. In addition,the overhead of ASAT is su�ciently small so that therun times of all jobs improve when it is in use. Inthis paper we consider the application of ASAT forimproving the scheduling of threads on an SGI Chal-lenge. We demonstrate how the number of threadsof an ASAT job adjusts to the overall system load tomaintain thread balance and improve system through-put. INTRODUCTIONA multi-threaded runtime environment which sup-ports lightweight threads can be used to support manyaspects of parallel processing including: virtual pro-cessors, concurrent objects, and compiler run-time en-vironments. However, such a library must depend onthe underlying thread mechanism provided by the op-erating system. Threads working on compute inten-sive tasks work best when there is one thread perform-ing real work on each processor. Matching the numberof running threads to the number of processors canyield both good wall-clock run time and good over-all machine utilization. The challenge is to schedulethreads to maintain one running thread per proces-sor by dynamically adjusting the number of threadsas the load on the machine changes. It is generallynot e�cient to involve the operating system during athread switch between lightweight threads. As such,a lightweight thread must operate within the param-�This work is based on work supported by the National Sci-ence Foundation under Grant No MIP-0209402.

eters provided by the operating system.If an application runs on a dedicated system witha known number of available processors, a multi-threaded run-time environment can utilize a knownnumber of operating system threads and assume thateach operating system thread will have relatively un-interrupted access to CPU resources. However, it ismuch more common to operate in an environmentin which resources are shared by a number of multi-threaded applications running on the same multipro-cessing system. This work is directed at implement-ing e�cient multi-threaded runtime environments insuch a shared environment. This work identi�es thesituations on a multiprocessing system when the op-eration of a lightweight thread environment might benegatively impacted by other threads running on thesystem.The paper consists of several parts. (1) A pro-posed mechanism (ASAT) which allows processes toadjust their thread usage to maximize overall systemutilization, (2) A characterization of the performanceimpact of having the improper number of threads on amultiprocessing system, and (3) an experiment usingthis technique in a multi-threaded compiler run-timeenvironment.EXECUTION MODELThis work focuses on an execution model in whicha serial portion of the code is periodically executedbetween the parallel sections of the code.In a procedural-language environment such asFORTRAN, a loop similar to the following will gen-erate that pattern:

DO ITIME=1,INFINITY...DO PARALLEL IPROB=1,PROBSIZE...ENDDO...ENDDOThe parallel portions of the code may be executedby any number of operating system threads. Thiswork focuses on how to insure that the right numberof operating system threads are used each time theparallel code is executed.Our approach does not necessarily apply to allmulti-threaded environments. Database or networkserver environments may want to have signi�cantlymore operating system threads than available CPUresources in order to mask latencies due to I/O fromthe network, disk or other sources.1 PREVIOUS WORKIn [11] the problem of matching the overall system-wide number of threads to the number of processorswas studied on an Encore Multimax. They identi�eda number of the major problems with having too manythreads including:1. Preemption during spin-lock critical section,2. Preemption of the wrong thread in a producer-consumer relationship,3. Unnecessary context switch overhead, and4. Corruption of caches due to context switches(also see [4]).The general topic of scheduling for parallel loops isone that is well studied. The basic approach of thesetechniques is to partition the iterations of a parallelloop among a number of executing threads in a par-allel process. The goal is to have balanced executiontimes on the processors while minimizing the overheadfor partitioning the iterations. An excellent survey ofthese techniques is presented in [3].The implementation of these techniques on mostshared-memory parallel processors works with a �xednumber of threads determined when the program isinitially started. For the purpose of this paper, we callthis technique Fixed Thread Scheduling (FTS). TheFTS approach is reasonable for many of the existingparallel processing systems as long as each applica-tion has dedicated resources. As we point out in this

paper, not having a dedicated system can seriouslydegrade the e�ectiveness of the FTS approach.Other dynamic, run-time, thread managementtechniques which are geared toward compiler detectedparallelism include: Automatic Self-Adjusting Pro-cessors (ASAP) from Convex [1] and Autotasking onCray Research [2] computers.A previous study of the bene�ts of Automatic Self-Allocating Threads (ASAT) for the Convex Exemplarwas done in [6], details on multipleASAT jobs appearsin [7]. ASATThe general goal of our Automatic Self-AllocatingThreads (ASAT) is to eliminate thread imbalance bydetecting thrashing and then dynamically reducingthe number of active threads to achieve balanced exe-cution over the long term. In this way, multi-threadedapplications will experience thread imbalance onlyduring a small percentage of the execution time ofthe application. To implement ASAT on a parallelprocessing system, there are a number of problemswhich must be solved. The most important are:1. Detecting if too many active threads exist.2. Detecting if too few active threads exist.3. Adjusting the number of threads.ASAT takes advantage of the basic parallel loopstructure shown earlier. Under Fixed ThreadScheduling (FTS) the beginning of the parallel loopactivates the same number of threads each time it isexecuted over the duration of an application. WhenASAT is used, the run-time library will activate theappropriate number of threads based on the overallload on the system. The goal is to create the precisenumber of threads which match the available proces-sors.A critical concept of ASAT is that a job will exam-ine the availability of system resources with respect tocurrent system load. The process is accurate, e�cientand completely decentralized. The thread imbalancedetected is for all threads currently on the system,not simply for this job's threads. Whether other jobsare scheduled using ASAT doesn't matter. However,the stability of multiple ASAT jobs is an importantquestion we examine later in the paper.ASAT uses a timed barrier test to detect threadimbalance on the system. A special barrier routineis inserted to test the system while executing as a

single thread. Using the clock, the elapsed time be-tween the �rst thread entering the barrier and thelast thread leaving the barrier is measured. There isa three-orders of magnitude di�erence between bar-rier passage times under thread-balanced and thread-imbalanced conditions. That di�erence is signi�cantenough to make the barrier a good test for load im-balance.The interval between barrier evaluations can be ad-justed. We set the ASAT software to only run thebarrier test once every 1 second of elapsed time bydefault. The ASAT routine could then be called thou-sands of times per second, but most of the calls wouldreturn immediately because the time between ASATbarrier tests had not yet expired.The number of spawned threads is decreased whenthe barrier transit time indicates a thread imbalance.ASAT has tunable values which determine the val-ues for what is a \bad" transit time and the numberof \bad" transit times necessary to trigger a drop inthreads.To determine whether or not to increase the num-ber of threads, the ASAT barrier test is executed withone additional thread and the barrier transit time ismeasured. If the barrier transit time indicates thatone more thread would execute e�ectively, the com-putation is attempted with one more thread. We callit \dipping your toe in the water." If the number ofthreads we are using has been working smoothly for awhile, we test with more threads for a single barrier.If this barrier runs well, we dive in and run the wholeapplication with more threads. Of course, if the in-crease in threads results in an imbalance, ASAT willdrop the thread count at the next spawn opportunity.ASAT IN A COMPILER RUN-TIMEENVIRONMENTThe basic goal of ASAT is to allow a multithreadedrun-time environment to operate most e�ciently inan environment where the overall load on a systemchanges dynamically.The �rst multi-threaded runtime environmentwhich we have investigated is a compiler run-time en-vironment. For this study, ASAT was implementedwithout modi�cations to the actual compiler library.Because it is not implemented inside the compiler li-brary, the calls to ASAT must be explicitly added tothe application. The two routines are ASAT INITand ASAT ADJUST. ASAT INIT is called at the be-ginning of the program before any parallel loops haveexecuted and ASAT ADJUST is called periodically

outside of a parallel loop. A highly stylized exampleis as follows:CALL ASAT_INIT()DO ITIME=1,INFINITYCALL ASAT_ADJUST()C$DOACROSS LOCAL(I),SHARE(PARTICLE),SCHED(GSS)DO IPART=1,10000Work..ENDDOENDDOENDOnce ASAT is supported directly by the compiler,its use can be controlled using a directive.C$DOACROSS LOCAL(I),SHARE(PARTICLE),C$ SCHED(GSS),THREADS(ASAT)C$DOACROSS LOCAL(I),SHARE(PARTICLE),C$ SCHED(GSS),THREADS(FTS)It it important to separate the thread managementaspects from the chunking and work distribution is-sues. Work distribution techniques such as GuidedSelf Scheduling (GSS) depend of the variation of thelength of each iteration. Thread management sim-ply controls the number of threads which are used toprocess the work. Most compiler run-time librariesare designed to check the number of threads at thebeginning of each parallel section.AN EXISTING MECHANISMAn good example of dynamic thread balancing isthe mechanism available on the Convex C-Series (C-240, C-3X00, C4XXX) supercomputers is called Au-tomatic Self Allocating Processing (ASAP) [1]. Weuse ASAP as a model for comparison.The ASAP processing in the Convex C-Series sys-tems is made possible because of an architecturalfeature called \Communication Registers" which areshared by all of the CPUs. These communication reg-isters allow a multi-threaded process to create, delete,or context-switch threads with minimal performanceimpact. Using this hardware, the compiler can par-allize loops without regard for the number of threadswhich will actually execute in the parallel loop. Anidle CPU can dynamically create thread and \join" aparallel computation with a very small overhead.This hardware support allows users to compiletheir applications assuming a generalized parallel en-vironment regardless of whether or not there will be

Convex

0

1000

2000

3000

4000

5000

6000

Single CPU Parallel/PSS Load Ideal Both/ASAP

CPU

Wall

ApplicationFigure 1: Performance of the Convex on Parallel Jobsenough resources at run-time to execute with multi-ple CPUs. One signi�cant bene�t of ASAP is that along running job that is compiled to run in parallelcan \soak-up" idle cycles as load changes. This ex-ibility allows a parallel/vector computer to be nearly100 percent utilized over long time periods.Throughout this section, a simple, very parallelcomputation will be used as the benchmark applica-tion. The kernel for these tests is as follows:C$ DO_PARALLELDO J=1,100000// 3Flops, 5 Memory references,// no data dependenciesENDDOFigure 1 shows the performance of the code withseveral compiler options and load scenarios. The �rstpair of bars shows the CPU time (dark) and wall time(white) for the application on a single CPU. The sec-ond pair of bars shows the performance of the sameapplication on four CPUs. The third pair of bars isanother application which is single-threaded and can-not run in parallel. The fourth pair of bars showsthe CPU and wall time for the ideal combination ofthe two codes assuming perfect load balancing on fourCPUs. In this case, the ideal CPU time is the sumof the individual times and the wall time is the max-imum of the individual wall times. The last pair ofbars shows the actual performance achieved on theConvex C-240 when the jobs are run together. In theactual run using ASAP both the CPU time and thewall time are essentially the same as the ideal times(approximately 1.05 times longer).

SGI Under Load

0

100

200

300

400

500

600

700

Simple Load Ideal Both Seq

T
im

e

CPU

Wall

ApplicationFigure 2: Performance of the SGI Under LoadPARALLEL APPLICATIONS ANDLOAD ON THE SGIWhen multiple jobs are run on a less tightly cou-pled parallel machine the competing jobs can showdramatic interference with each other. Figure 2 showswhat happens when the experiment performed on theConvex (Figure 1) is performed on a loaded and un-loaded 4-CPU SGI Challenge system.As on the Convex, the application code parallelizesautomatically without any user modi�cations. Likethe Convex, the load application only runs on a sin-gle CPU. However, unlike the Convex, the system per-forms much worse than ideal when both codes are runsimultaneously. The wall time for the combination jobis 1.68 times longer than ideal and the CPU time ofthe combination job is 1.76 times longer than the idealCPU time. In fact, with the two jobs running simul-taneously, the SGI performs worse than if you ran thejobs sequentially (i.e. submitted the jobs to a batchqueue).COMPILER OPTIONS ON THE SGIThe SGI has several compiler options for load loopscheduling provided as part of its parallel FORTRANcompiler [8] [9]. Similar options are typically avail-able on most parallel FORTRAN compilers. Are thesecompiler options su�cient to solve the unbalancedthreads problem? The scheduling options for a paral-lel loop on the SGI include:Simple At the beginning of a parallel loop eachthread takes a �xed number of iterations of theloop.

SGI Compilation Options

0

100

200

300

400

500

600

1-CPU Simple Dynamic GSS

CPU

WallFigure 3: SGI Compiler OptionsDynamic With dynamic scheduling, each threadprocesses a \chunk" of data and when it has com-pleted processing, a new \chunk" is processed.The \chunk size" can be varied by the program-mer based on the application.Guided Self Scheduled This is essentially a modi-�cation of Dynamic scheduling except that large\chunks" are taken during the �rst few iterations,and the \chunksize" is reduced as the loop nearscompletion. GSS is designed to even out widevariations in the execution times of the iterationsof the parallel loop. GSS is described in [5].Figure 3 shows parallel performance of the simpleapplication on an unloaded 4-CPU SGI with variouscompiler options:The Dynamic and GSS options add overhead to theloops. Unlike the Convex, this overhead is in softwareand has a greater impact on the performance of theapplication. These options do not a�ect the allocationof threads so they only partially solve the the problemof having too many threads in a loaded system.PERFORMANCE OF ASATIn this section we show that adding ASAT to theSGI allows it to run with a balanced number ofthreads. In addition, we show how competing jobsinteract with each other. Figure 4 shows how ASATgenerally operates when working on a system withvariable load. In this �gure, an application usingASAT is executing while other users are using the sys-tem. As the load average increases due to other users,the ASAT application releases threads to maintain itsbalance. Under high load conditions, the ASAT ap-plication only has one thread. As the other load de-

Performance of ASAT

0

100

200

300

400

500

600

700

Simple Simple/ASAT Load Ideal Both/Gang Both/ASAT

T
im

e

CPU

Wall

ApplicationFigure 5: Performance of ASAT on the SGIcreases, the ASAT application adds threads increasingits throughput by using the idle cycles.The goal for the rest of this section is to comparethe application executed with ASAT on the SGI withthe execution on the Convex C-240 using ASAP.The �rst test is to duplicate the experiment whichwas performed for Figures 1 and 2 using ASAT toschedule the threads in the application code. Simplescheduling was used along with ASAT.There are several observations about Figure 5.Running the application with ASAT enabled on anempty system did not change the performance of theprogram signi�cantly (1-2 percent). The performanceof the system with both the application and load run-ning simultaneously is very close to ideal. Wall timefor Both/ASAT was the same as ideal because theASAT application ran to completion using the sparecycles while the load was running. The ASAT jobruns at a lower priority than the load job so the loadjob got 100 percent of the CPU for the duration ofits run. CPU time for Both/ASAT was 1.14 timesthe ideal CPU time. Recall that both the CPU andwall time were 1.05 times ideal for the ASAP on theConvex in Figure 1. Also from Figure 5, the wall timefor gang scheduling is 1.68 times longer than ideal andthe CPU time for gang scheduling is 1.76 times longerthan the ideal CPU time.To test ASAT under more varied load patterns, twotime-oriented tests were performed. The �rst time-oriented test measured the ASAT response to rapidlychanging load patterns. In the rapidly changing loadscenario, the varying load conditions consisted of:1. One job that averaged 5 minutes CPU time andarrived approximately every 15 minutes2. Three jobs that averaged 1 minute of CPU timeand arrived approximately every 4 minutes

0

1

2

3

4

5

6

7

8

9

10

Time

Lo
a

d
/#

 t
h

re
a

d
s

Load Average

ASAT Threads

Figure 4: Example operation of ASATThese load jobs were all sequential and were givenhigher priority than the ASAT application. The sys-tem load for the combination of \load" jobs is shownas the bottom plot in Figure 6.Gang scheduling and ASAT are compared in Fig-ure 6. In the �gure, the combination \load" job �n-ishes 4 minutes (11 percent) earlier when using ASATscheduling. In addition, because ASAT processes runat lower priority, the time that the random load (sim-ulating other users) completed was only 1 minute(4 percent) later than when the load completed onan empty system. Using gang scheduling, the simu-lated random load completed 7 minutes (20 percent)later than it would have completed with no load. Inessence, the ASAT process \soaked-up" the idle cy-cles of the system with little or no impact on the restof the load on the system. Because the ASAT processmaintained a balanced number of threads it executedmore e�ciently and terminated faster than the gangscheduled process which had a signi�cant negative im-pact on the other jobs.The second time-oriented test is exactly the sameas the previous test except that the applied load ismore regular. In 2.5 minute intervals, the load is in-creased from 1 to 4 and then back down to zero. Thisapplied load is shown in Figure 7 as an inverted \V"representing the increase in threads followed by a de-crease. The same ASAT and gang processes were eachrun together with this new load pro�le.Figure 7 again compares gang vs. ASAT|the for-mer is the top line and the latter is the second line.The �gure also shows the load by itself (inverted \V")and the number of ASAT threads. As the load is in-creased over the time of the run, ASAT quickly ad-justs the number of threads, maintaining system bal-

ance. When the load goes up, the number of ASATthreads goes down. As resources free up, the numberof ASAT threads is increased to take advantage of theidle resources. The dynamic adjustment of threadsresults in complete and e�cient utilization of the re-sources while providing priority to the short term loadon the system. CONCLUSIONThe ability to dynamically adjust a parallel appli-cation to the amount of available resources is an im-portant tool which allows parallel processors to beused more e�ciently and applications to completemore quickly.In this paper, the performance impact of havinga system with an unbalanced number of threads wasinvestigated.ASAT is proposed as a technique which is easily im-plementable in a run-time library and e�ectively bal-ances thread use across an entire system. As load in-creased on the whole system as ASAT job dynamicallyreduced its threads. When system load decreased theASAT job dynamically increased its threads to soakup available cycles.ASAT is examined in the context of a FORTRANrun-time thread management environment. The per-formance of ASAT is shown to be superior to the exist-ing compiler-provided scheduling mechanisms in SGIPower FORTRAN. ASAT performs nearly as well indiverse load situations as the hardware approach usedby Convex ASAP.

Comparing Gang Scheduling to ASAT

0

1

2

3

4

5

6

7

8

Time

Lo
a

d
 A

v
e

ra
g

e

Load Only

Load+Gang

Load+ASAT

Job Ends 4 Minutes Earlier

Load Run EndsFigure 6: ASAT Response to Rapidly Changing LoadH2.XLC

Slowly Changing Load

0

1

2

3

4

5

6

7

8

Time - Each dot is 30 seconds

Lo
a

d
 A

v
e

ra
g

e

Load Only

Load+ASAT

Load+Gang

Threads

Load Finishes

Run finishes 4.5 minutes earlierFigure 7: ASAT and Slow changes in Load

FUTURE WORKWe need to further study how to best implementASAT using more compiler and operating systemmodi�cations. ASAT, as currently implemented, doesnot make or require any operating system changes.One operating system change we believe would behelpful to ASAT is to assign a lower priority to pro-cesses with more active threads. This modi�cationwould naturally encourage processes with the largestnumber of threads to give up their threads and bal-ance overall usage in the long run. Such an approachwould also penalize non-ASAT processes which makeirresponsible use of system resources.Another area of work is to do a long-term studyof the overall e�ect of ASAT. This work wouldallow one to study the average time spent in aparallel section across a wide variety of applica-tions. We hope to have a version of ASAT avail-able via anonymous FTP. Please check the URLhttp://clunix.msu.edu/�crs/projects/asat for detailson the availability of ASAT.Thanks to: David Kuck and Paul Petersen, Kuck andAssociates; Jerry McAllister, Michigan State Univer-sity; Dave McWilliams, National Center for Super-computing Applications and Lisa Krause, Cray Re-search.References[1] Convex Computer Corporation, \Convex Archi-tecture Reference Manual (C-Series)", DocumentDHW-300, April 1992.[2] Cray Research, CF77 Compiling System, Volume4: Parallel Processing Guide.[3] J. Liu, V. Saletore, \Self Scheduling onDistributed-Memory Machines," IEEE Super-computing'93, pp. 814-823, 1993.[4] J. C. Mogul and A. Borg, The E�ect ofContext Switches on Cache Performance, DECWestern Research Laboratory TN-16, Dec., 1990.http://www.research.digital.com/wrl/techreports/abstracts/TN-16.html[5] C. Polychronopoulos, D. J. Kuck, \Guided SelfScheduling: A Practical Scheduling Scheme forParallel Supercomputers," IEEE Transactionson Computers, Dec. 1987.

[6] Severance C, Enbody R, Wallach S, FunkhouserB, \Automatic Self Allocating Threads (ASAT)on the Convex Exemplar" Proceedings 1995 In-ternational Conference on Parallel Processing(ICPPP95), August 1995, pages I-24 - I-31.[7] Severance C, Enbody R, Peterson P, \Man-aging the Overall Balance of Operating Sys-tem Threads on a MultiProcessor using Auto-matic Self-Allocating Threads (ASAT)," Journalof Parallel and Distributed Computing Special Is-sue on Multithreading on Multiprocessors, to ap-pear.[8] Silicon Graphics, Inc., \Power FORTRANAccel-erator User's Guide," Document 007-0715-040,1993.[9] Silicon Graphics, Inc., \FORTRAN77 Program-mer's Guide," Document 007-0711-030, 1993.[10] Silicon Graphics, Inc., \SymmetricMultiprocess-ing Systems," Technical Report, 1993.[11] A. Tucker and A. Gupta , \Process Control andScheduling Issues for Multiprogrammed Shared-Memory Multiprocessors," ACM SOSP Conf.,1989, p. 159 - 166.

