Backward Search FM-Index

(Full-text index in Minute space)

Paper by

Ferragina \& Manzini
Presentation by
Yuval Rikover

MOTIVATION

- Combine Text compression with indexing (discard original text).
- Count and locate P by looking at only a small portion of the compressed text.
- Do it efficiently:
- Time: O(p)
- Space: $\mathrm{O}\left(\mathrm{n}_{\mathrm{k}}(\mathrm{T})\right)+\mathrm{o}(\mathrm{n})$

HOW DOES IT WORK?

- Exploit the relationship between the BurrowsWheeler Transform and the Suffix Array data structure.
- Compressed suffix array that encapsulates both the compressed text and the full-text indexing information.
- Supports two basic operations:
- Count - return number of occurrences of P in T.
- Locate - find all positions of P in T.

BUT FIRST - COMPRESSION

- Process $\mathrm{T}[1, . ., \mathrm{n}]$ using Burrows-Wheeler Transform
- Receive string $\mathrm{L}[1, \ldots, \mathrm{n}] \quad$ (permutation of T)
- Run Move-To-Front encoding on L
- Receive $L^{M T F}[1, \ldots, \mathrm{n}]$
- Encode runs of zeroes in $L^{M T F}$ using run-length encoding
- Receive Lle $^{\text {rle }}$
- Compress $\boldsymbol{L}^{\text {rle }}$ using variable-length prefix code
- Receive Z (over alphabet $\{0,1\}$)

BURROWS-WHEELER TRANSFORM

- Every column is a permutation of T.
- Given row i, char L[i] precedes F[i] in original T.
- Consecutive char's in L are adjacent to similar strings in T .
- Therefore - L usually contains long runs of identical char's.

F		L
\#	mississipp	i
i	\#mississip	P
i	ppi\#missis	S
i	ssippi\#mis	S
i	ssissippi\#	m
m	ississippi	\#
P	i\#mississi	P
P	pi\#mississ	i
S	ippi\#missi	S
S	issippi\#mi	S
S	sippi\#miss	i
S	sissippi\#m	1

BURROWS-WHEELER TRANSFORM

Reminder: Recovering T from L

1. Find F by sorting L
2. First char of T? m
3. Find m in L
4. $\mathrm{L}[i]$ precedes $\mathrm{F}[i]$ in T . Therefore we get mi
5. How do we choose the correct i in L ?

- The i's are in the same order in L and F
- As are the rest of the char's

6. i is followed by s : mis
7. And so on....

MOVE-TO-FRONT

- Replace each char in L with the number of distinct char's seen since its last occurrence.
- Keep MTF[1,...,|इ|] array, sorted lexicographically.
- Runs of identical char's are transformed into runs of zeroes in $\boldsymbol{L}^{M T F}$
- Bad example
- For larger, English texts, we will receive more runs of zeroes, and dominancy of smaller numbers.
- The reason being that BWT creates clusters of similar char's.

RUN-LENGTH ENCODING

- Replace any sequence of zeroes 0^{m} with:
- $(m+1)$ in binary
- LSB first
- Discard MSB
- Add 2 new symbols - 0,1
- $\boldsymbol{L}^{r l e}$ is defined over $\{\mathbf{0 , 1 , 1 , 2 , \ldots , | \boldsymbol { \Sigma } | \}}$

To give a meatier example (not really), we'll change our text to:
T = pipeMississippi\#
4. $0000 \rightarrow 4+1=5 \rightarrow 101 \rightarrow 101 \rightarrow 10$
5. $00000 \rightarrow 5+1=6 \rightarrow \mathbf{1 1 0} \rightarrow \mathbf{0 1 1} \rightarrow \mathbf{0 1}$
6. $000000 \rightarrow 6+1=7 \rightarrow 111 \rightarrow 111 \rightarrow 11$
7. $0000000 \rightarrow 7+1=8 \rightarrow \mathbf{1 0 0 0} \rightarrow \mathbf{0 0 0 1} \boldsymbol{\rightarrow 0 0 0}$

RUN-LENGTH ENCODING

- Replace any sequence of zeroes 0^{m} with:
- ($\mathrm{m}+1$) in binary
- LSB first
- Discard MSB
- Add 2 new symbols - 0,1
- $\boldsymbol{L}^{r l e}$ is defined over $\{\mathbf{0 , 1 , 1 , 2 , \ldots , | \Sigma | \}}$

How to retrieve m

- given a binary number $b_{0} b_{1}, \ldots, b_{k}$
-Replace each bit b_{j} with a sequence of $\left(b_{j}+1\right) \cdot 2^{j}$ zeroes
$\cdot 10 \rightarrow(1+1) \cdot 2^{0}+(0+1) \cdot 2^{1}=4$ Zeroes

Example

1. $0 \rightarrow 1+1=2 \rightarrow 10 \rightarrow 01 \rightarrow 0$
2. $00 \rightarrow 2+1=3 \rightarrow 11 \rightarrow 11 \rightarrow 1$
3. $000 \rightarrow 3+1=4 \rightarrow \mathbf{1 0 0} \boldsymbol{\rightarrow 0 0 1} \boldsymbol{\rightarrow} \mathbf{0 0}$
4. $0000 \rightarrow 4+1=5 \rightarrow 101 \rightarrow 101 \rightarrow 10$
5. $00000 \rightarrow 5+1=6 \rightarrow \mathbf{1 1 0} \rightarrow \mathbf{0 1 1} \rightarrow \mathbf{0 1}$
6. $000000 \rightarrow 6+1=7 \rightarrow 111 \rightarrow 111 \rightarrow 11$
7. $0000000 \rightarrow 7+1=8 \rightarrow \mathbf{1 0 0 0} \rightarrow \mathbf{0 0 0 1} \boldsymbol{\rightarrow 0 0 0}$

VARIABLE-LENGTH PREFIX CODING

011001011100110100011000110001010010100110011001101001010

over alphabet $\{0,1\}$:

- $\mathbf{1} \rightarrow 11 \quad 0 \rightarrow 10$
- For $\mathrm{i}=1,2, \ldots,|\Sigma|-1$
- $\lfloor\log (i+1)\rfloor$ zeroes
- Followed by binary representation of $\mathrm{i}+1$ which takes $1+\lfloor\log (i+1)\rfloor$
- For a total of $1+2\lfloor\log (i+1)\rfloor$ bits

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline L^{r l e} & 2 & 4 & \mathbf{1} & 5 & \mathbf{0} & 5 & 5 & 4 & 4 & 5 & 2 & 5 & \mathbf{0} & 1 \\
\hline
\end{array}
$$

Example

1. $\mathrm{i}=1 \rightarrow\lfloor\log (2)\rfloor \mathrm{O}$'s, bin(2) $\rightarrow 010$
2. $\mathrm{i}=2 \rightarrow\lfloor\log (3)\rfloor 0$'s, $\operatorname{bin}(3) \rightarrow 011$
3. $\mathrm{i}=3 \rightarrow\lfloor\log (4)\rfloor 0$'s, $\operatorname{bin}(4) \rightarrow 00100$
4. $\mathrm{i}=4 \rightarrow\lfloor\log (5)\rfloor 0$'s, $\operatorname{bin}(5) \rightarrow 00101$
5. $\mathrm{i}=5 \rightarrow\lfloor\log (6)\rfloor 0$'s, $\operatorname{bin}(6) \rightarrow 00110$
6. $\mathrm{i}=6 \rightarrow\lfloor\log (7)\rfloor 0$'s, $\operatorname{bin}(7) \rightarrow 00111$
7. $\mathrm{i}=7 \rightarrow\lfloor\log (8)\rfloor 0$'s, $\operatorname{bin}(8) \rightarrow 0001000$

COMPRESSION - SPACE BOUND

- In 1999, Manzini showed the following upper bound for BWT compression ratio:
- $8 n H_{k}(T)+(0.08+1) \cdot n+\log (n)+g(k,|\Sigma|)$

$$
|Z| \leq 5 n H_{k}(T)+\mathrm{O}(\log n)
$$

$\left[\mathrm{n} \mathbf{H}_{\mathrm{k}}(\mathrm{T}) \leq \mathrm{n} \mathbf{H}_{\mathrm{k}}^{*}(\mathrm{~T}) \leq \mathrm{n} \mathbf{H}_{\mathrm{k}}(\mathrm{T})+\mathrm{O}(\log \mathrm{n})\right.$

- Kn 2001, Manzini showed that for every k, the above compression method is bounded by:

$$
5 n \boldsymbol{H}_{k}^{*}(T)+g(k,|\Sigma|)
$$

NEXT: COUNT P IN T

- Backward-search algorithm
- Uses only L (output of BWT)
- Relies on 2 structures:
- $C[1, \ldots,|\Sigma|]: C[c]$ contains the total number of text chars in T which are alphabetically smaller then c (including repetitions of chars)
- $\operatorname{Occ}(c, q)$: number of occurrences of char c in prefix $\mathrm{L}[1, \mathrm{q}]$

Example

- $\mathrm{C}[$] for $\mathrm{T}=$ mississippi\#

1	5	6	8
i	m	p	s

- occ(s,5) = 2
- $\operatorname{occ}(\mathrm{s}, 12)=4$

Occ \equiv Rank

F	L
\# mississipp	i
i \#mississip	p
i ppi\#missis	S
i ssippi\#mis	S
i ssissippi\#	m
m ississippi	\#
p i\#mississi	p
p pi\#mississ	i
s ippi\#missi	S
s issippi\#mi	S
s sippi\#miss	i
s sissippi\#m	i

BACKWARD-SEARCH

- Works in p iterations, from p down to 1

- Remember that the BWT matrix rows = sorted suffixes of T
- All suffixes prefixed by pattern P, occupy a continuous set of rows
- This set of rows has starting position First
- and ending position Last
- So, (Last - First +1) gives total pattern occurrences
- At the end of the i-th phase, First points to the first row prefixed by $\mathrm{P}[\mathrm{i}, \mathrm{p}]$, and Last points to the last row prefiex by $\mathrm{P}[\mathrm{i}, \mathrm{p}]$.

Algorithm backward_search $(P[1, p])$
(1) $i \leftarrow p, c \leftarrow P[p]$, First $\leftarrow C[c]+1$, Last $\leftarrow C[c+1]$;
(2) while $(($ First \leq Last $)$ and $(i \geq 2))$ do
(3) $c \leftarrow P[i-1]$;
(4) First $\leftarrow C[c]+\operatorname{Occ}(c$, First -1$)+1$;
(5) Last $\leftarrow C[c]+\operatorname{Occ}(c$, Last $)$;
(6) $\quad i \leftarrow i-1$;
(7) if (Last < First) then return "no rows prefixed by $P[1, p]$ " else return 〈First, Last〉.

SUBSTRING SEARCH IN T (Count the pattern occurrences)

BACKWARD-SEARCH EXAMPLE

- $P=$ pssi
- $i=3$
- $\mathrm{C}=\mathrm{s}$ '
- First $=\mathrm{C}\left[\mathrm{s}^{\prime}\right]+\mathrm{Occ}\left(\mathrm{s}^{\prime}, 1\right)+1=8+0+1=9$
- Last $=\mathrm{C}[$'s'] $]+\operatorname{Occ}\left(\right.$'s', $\left.^{\prime} 5\right)=8+2=10$
- (Last - First +1$)=2$

$C[]=$| 1 | 5 | 6 | 8 |
| :---: | :---: | :---: | :---: |
| i | m | p | s |

Algorithm backward_search $(P[1, p])$
(1) $i \leftarrow p, c \leftarrow P[p]$, First $\leftarrow C[c]+1$, Last $\leftarrow C[c+1]$;
(2) while $(($ First \leq Last $)$ and $(i \geq 2))$ do
(3) $c \leftarrow P[i-1]$;
(4) First $\leftarrow C[c]+\operatorname{Occ}(c$, First -1$)+1$;
(5) Last $\leftarrow C[c]+\operatorname{Occ}(c$, Last $)$;
(6) $\quad i \leftarrow i-1$;
(7) if (Last < First) then return "no rows prefixed by $P[1, p]$ " else return 〈First, Last〉.

BACKWARD-SEARCH EXAMPLE

- $\mathbf{P}=\mathrm{pssi}$
- $i=2$
- $\mathrm{C}=\mathrm{s}$ '
- First $=\mathrm{C}\left[\mathrm{s}^{\prime}\right]+\operatorname{Occ}\left({ }^{\prime} \mathrm{s}\right.$ ', 8) $+1=8+2+1=11$
- Last $=\mathrm{C}\left[\mathrm{s}^{\prime}\right]+\operatorname{Occ}\left(\right.$'s' $\left.^{\prime}, 10\right)=8+4=12$
- (Last - First +1$)=2$

$C[]=$| 1 | 5 | 6 | 8 |
| :---: | :---: | :---: | :---: |
| i | m | p | s |

Algorithm backward_search $(P[1, p])$
(1) $i \leftarrow p, c \leftarrow P[p]$, First $\leftarrow C[c]+1$, Last $\leftarrow C[c+1]$;
(2) while $(($ First \leq Last $)$ and $(i \geq 2))$ do
(3) $c \leftarrow P[i-1]$;
(4) First $\leftarrow C[c]+\operatorname{Occ}(c$, First -1$)+1$;
(5) Last $\leftarrow C[c]+\operatorname{Occ}(c$, Last $)$;
(6) $\quad i \leftarrow i-1$;
(7) if (Last < First) then return "no rows prefixed by $P[1, p]$ " else return 〈First, Last〉.

BACKWARD-SEARCH EXAMPLE

- $\mathbf{P}=$ pssi
- $\mathrm{i}=1$
- $\mathrm{c}=\mathrm{C}$ ' p '
- First $=\mathrm{C}\left[{ }^{\prime} \mathrm{p}\right.$ '] $+\operatorname{Occ}\left({ }^{\prime} \mathrm{p}^{\prime}, 10\right)+1=6+2+1=9$
- Last $=$ C['p'] $+\operatorname{Occ}\left({ }^{\prime} p^{\prime}, 12\right)=6+2=8$
- (Last - First +1$)=0$

Algorithm backward_search $(P[1, p])$
(1) $i \leftarrow p, c \leftarrow P[p]$, First $\leftarrow C[c]+1$, Last $\leftarrow C[c+1]$;
(2) while ((First \leq Last $)$ and $(i \geq 2))$ do
(3) $c \leftarrow P[i-1]$;
(4) First $\leftarrow C[c]+\operatorname{Occ}(c$, First -1$)+1$;
(5) Last $\leftarrow C[c]+\operatorname{Occ}(c$, Last $)$;
(6) $\quad i \leftarrow i-1$;
(7) if (Last < First) then return "no rows prefixed by $P[1, p]$ " else return 〈First, Last〉.

BACKWARD-SEARCH ANALYSIS

- Backward-search makes P iterations, and is dominated by Occ() calculations.

Compressed text

- Implement $\operatorname{Occ}()$ to run in $\mathrm{O}(1)$ time, using $|Z|+O\left(n \cdot \frac{\log \log n}{\log n}\right)$ bits.
- So Count will run in $\mathrm{O}(\mathrm{p})$ time, using ${ }^{5 n} H_{k}(T)+\mathrm{O}\left(n \cdot \frac{\log \log n}{\log n}\right)$ bits.
- We saw a partitioning of binary strings into Buckets and Superblocks for answering Rank() queries.
- We'll use a similar solution
- With the help of some new structures
- General Idea: Sum character occurrences in 3 stages

IMPLEMENTING OCC()

- Buckets

- Partition L into substrings of $l=\Theta \log n$ chars each, denoted $B L_{i}$
- This partition induces a partition on $L^{M T F}$, denoted $B L_{i}^{M T F} \quad i=1, . ., n / l$

$$
\begin{aligned}
& \mathrm{T}=\text { pipeMississippi\# } \quad|\mathrm{T}|=|\mathrm{L}|=16 \quad\left|B L_{i}{ }^{M T F}\right|=4 \\
& \begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c}
L & \mathrm{i} & \mathrm{p} & \mathrm{p} & \mathrm{p} & \mathrm{~s} & \mathrm{~s} & \mathrm{~m} & \mathrm{e} & \mathrm{i} & \mathrm{p} & \# & \mathrm{i} & \mathrm{~s} \\
\mathrm{~L} & \mathrm{~s} & \mathrm{i} & \mathrm{i} \\
\boldsymbol{L}^{M T F} & 2 & 4 & 0 & 0 & 5 & 0 & 5 & 5 & 4 & 4 & 5 & 2 & 5 \\
\hline
\end{array}
\end{aligned}
$$

- Applying run-length encoding and prefix-free encoding on each bucket will result in $\mathrm{n} / \log (\mathrm{n})$ variable-length buckets, denoted $B Z_{i}$

IMPLEMENTING OCC()

- Superblocks

- We also partition L into superblocks of size $l^{2}=\Theta \log ^{2}(n)$ each.

$$
\begin{array}{rll}
|T|=|L|=256 & \left|B L_{i}^{\text {MTF }}\right|_{\text {Chars }}=8 & i=1,2, \ldots, 32 \\
& \mid \text { SuperB }\left._{j}\right|_{\text {Chars }}=64 & j=1,2,3,4
\end{array}
$$

- Create a table for each superblock, holding for each character $c \in \sum$, the number of C 's occurrences in L, up to the start of the specific superblock.
- Meaning, for Super_{j}, store occurrences of c in range $L\left[1, \ldots, j \cdot l^{2}\right]$

IMPLEMENTING OCC()

- Back to Buckets

- Create a similar table for buckets, but count only from current superblock's start. Denote tables as $N O_{i}^{\prime}$

- Only thing left is searching inside a bucket.
- For example, $\operatorname{Occ}(\mathrm{c}, 164)$ will require counting in $B L_{21}$
- But we only have the compressed string Z.
- Need more structures

|MPLEMENTING OCC()

- Finding $B Z_{i}$'s starting position in Z, part 1
- Array $W\left[1, \ldots, n / l^{2}\right]$ keeps for every SuperB $_{j}$, the sum of the sizes of the compressed buckets $B Z_{1}, \ldots \ldots, B Z_{j \cdot \log n}$ (in bits).
- Array $W^{\prime}[1, \ldots, n / l]$ keeps for every bucket $B Z_{i}$, the sum of bucket sizes up to it (including), from the superblock's beginning.

$$
W \left\lvert\,=O\left(\frac{n}{1^{2}} \cdot \log n \cdot\left(1+2 \log \left|\sum\right|\right)=\left(\frac{n}{\log n}\right)=\left(W^{\prime}\right)=0\left(\frac{n}{10 g} \cdot \log \left(l^{2}\right)\left(\frac{n}{l o g}\right)\right.\right.\right.
$$

IMPLEMENTING OCC()

- Finding $B Z_{i}$'s starting position in Z, part 2

Occ(k,166)

- Given Occ('c',q)

Find i of $B L_{i}: i=\lceil q / \log n\rceil$
$166 / 8=20.75$
$\rightarrow \mathrm{i}=21$
Find character in $B L_{i}$ to count up to:

$$
h=q-(i-1) \cdot \log n
$$

Find superblock Super B_{t} of $B L_{i}$

$$
t=\left[\frac{i}{\log n}\right]-1
$$

Locate position of $B Z_{i}$ in Z :

$$
W[t]+W^{\prime}[i-1]+1
$$

Compressed bucket is at W[2]+W [20]+1
$\left.\begin{array}{cccccccc}W_{1}^{\prime}[] & W_{2}^{\prime}[] & W_{1}[] & W_{3}^{\prime}[] & W_{4}^{\prime}[] & W_{2}[] & W_{5}^{\prime}[] & W_{6}^{\prime}[]\end{array} W_{3}[]\right]$

$B L_{16}$	$B L_{17}$	$B L_{18}$			$B L_{21}$			$B L_{24}$	
c1,...c8	c1,...c8	c1,...c8	c1,...c8	c1,...c8	c1,.., c8	c1,...c8	c1,...c8	c1,...c8	c1,.., c8
Super $_{2}$ SuperB ${ }_{3}$									

IMPLEMENTING OCC()

- We have the compressed bucket $B Z_{i}$ | 01100101 11|
- And we have h (how many chars to check in $B Z_{i}$).
- But $B Z_{i}$ contains compressed Move-To-Front information...
- Need more structures!
- For every i, before encoding bucket $B L_{i}$ with Move-To-Front, keep the state of the MTF table

$$
\begin{aligned}
& \mathrm{T}=\text { pipeMississippi\# } \quad|\mathrm{T}|=|\mathrm{L}|=16 \\
& \begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \mathrm{i} & \mathrm{p} & \mathrm{p} & \mathrm{p} & \mathrm{~s} & \mathrm{~s} & \mathrm{~m} & \mathrm{e} & \mathrm{i} & \mathrm{p} & \boldsymbol{\#} & \mathrm{i} & \mathrm{~s} & \text { s } & \text { i } & \text { i } \\
\boldsymbol{L}^{M T F} & 2 & 4 & 0 & 0 & 5 & 0 & 5 & 5 & 4 & 4 & 5 & 2 & 5 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

IMPLEMENTING OCC()

- How do we use $M T F_{i}$ to count inside $B Z_{i}$?
- Final structure!
h \# e i mps
- Build a table $S\left[c, h, B Z_{i}, M T F_{i}\right]$, which stores the number of occurrences of 'c' among the first h characters of $B L_{i}$
- Possible because $B Z_{i}$ and $M T F_{i}$ together, completely determine $B L_{i}$

IMPLEMENTING OCC()

- Max size of a compressed bucket $B Z_{i}: l \cdot(1+2\lfloor\log |\Sigma|\rfloor)$
- Number of possible compressed buckets : $\quad 2^{l \cdot(1+2\lfloor\log |\Sigma|\rfloor}=2^{t}$
- Number of possible MFT table states:
- Size of inner table: $|\Sigma| l$
- Size of each entry: $\log l$
- Total size of S[]$: \mathrm{O}\left(2^{t} l \log l\right)=\mathrm{O}(n \cdot \log n \cdot \log \log n)$
-But - having a linear sized index is bad for practical uses when n is large.
-We want to keep the index size sub-linear, specifically: $\mathrm{O}\left(n^{\alpha}\right), \alpha<1$
-Choose bucket size l, such as: $l \cdot(1+2\lfloor\log |\Sigma|\rfloor)=\alpha \log n \quad \alpha<1$
-We get $2^{\alpha \log n}=n^{\alpha}=o(n) \rightarrow \quad|S|=\mathrm{O}\left(n^{\alpha} \cdot \log n \cdot \log \log n\right)$

ANALYZING OCC()

- Summing everything:
- $N O \& W$ both take $\mathrm{o}\left(\frac{n}{\log n}\right)$
- $N O^{\prime} \& W^{\prime}$ both take $\mathrm{O}\left(\frac{n}{\log n} \cdot \log \log n\right)$
- MTF takes $\mathrm{O}\left(\frac{n}{\log n}\right)$
- S takes $\mathrm{O}\left(n^{\alpha} \cdot \log n \cdot \log \log n\right)$
- Total Size: $|Z|+O\left(\frac{n}{\log n} \cdot \log \log n\right) \quad$ Total Time: $\mathrm{O}(1)$

NEXT: LOCATE P IN T

- We now want to retrieve the positions in T of the (Last - First+1) pattern occurrences.
- Meaning: for every $i=$ first, first $+1, \ldots$, , Last

Find position in T of the suffix which prefixes the i-th row.

- Denote the above as pos(i)

$\operatorname{pos}(9)=7$											
m	i	s	S	1	S	S	1	p	p	i	\#
1	2	3	4	5	6	7	8	9	10	11	12

- We can't find pos(i) directly, but we can do:
- Given row i (9) s ippi\#missi s , we can find row j (11) s sippi\#miss i such that $\operatorname{pos}(\mathrm{j})=\operatorname{pos}(\mathrm{i})-1$
- This algorithm is called backward_step(i)
- Running time $O(1)$

	F	L
	\# mississipp	i
	i \#mississip	p
	i ppi\#missis	s
	i ssippi\#mis	s
	i ssissippi\#	
	m ississippi	\#
	p i\#mississi	p
	p pi\#mississ	i
	s ippi\#missi	
	s issippi\#mi	s
	s sippi\#miss	i
	s sissippi\#m	

$$
\mathrm{P}=\mathrm{si}
$$

BACKWARD_STEP

> L[i] precedes F[i] in T.
> All char's appear at the same order in L and F.

- So idea~would just compute $\operatorname{Occ}(L[i], i)+C[L[i]]$

don't

BACKWARD_STEP

- Solution:
- Compare $\operatorname{Occ}(c, i)$ to $\operatorname{Occ}(c, i-1)$ for every $c \in \Sigma \cup\{\#\}$
- Obviously, will only differ at $c=L[i]$.
- Now we can compute $\operatorname{Occ}(L[i], i)+C[L[i]]$.
- Calling Occ() is $\mathrm{O}(1)$
- $|\Sigma|=\Theta(1)$
- Therefore backward_step takes $\mathrm{O}(1)$ time.

LOCATE P IN T: PREPROCESSING

- Now we are ready for the final algorithm.
- First, mark every $\left|\log ^{1+\varepsilon} n\right|$ character from T and its corresponding row (suffix) in L.
- For each marked row r_{j}, store its position $\operatorname{Pos}\left(r_{j}\right)$ in data structure \mathbf{S}.
- For example, querying \mathbf{S} for $\operatorname{Pos}\left(r_{3}\right)$ will return 8 .

8.	F L
	\# mississipp i
	\#mississip p
	i ppi\#missis s
	i ssippi\#mis s
	i ssissippi\# m
	m ississippi \#
	p i\#mississi p
	p pi\#mississ i
$\begin{aligned} & \text { first } \Rightarrow \\ & \text { last } \Rightarrow \end{aligned}$	s ippi\#missi s
	s issippi\#mi s
	s sippi\#miss i
	s sissippi\#m i

m	i	s	s	i	s	s	i	p	p	i	$\#$
1	2	3	4	5	6	7	8	9	10	11	12

LOCATE P \|N T

- Given row index i, find Pos(i) as follows:
\square If r_{i} is a marked row, return $\operatorname{Pos}(\mathrm{i})$ from S . DONE!
- Otherwise - use backward_step(i) to find i ' such that : $\quad \operatorname{Pos}(i)=\operatorname{Pos}(i)-1$
- Repeat \boldsymbol{t} times until we find a marked row.
- Then - retrieve Pos(i') from S and compute Pos(i) by computing: Pos(i') $+t$

m	i	s	s	i	s	s	i	p	p	i	$\#$
1	2	3	4	5	6	7	8	9	10	11	12

$$
\begin{aligned}
\mathrm{P} & =\mathrm{si} \\
\mathrm{i} & =9
\end{aligned}
$$

LOCATE P IN T

Example - finding "si"

- For $i=$ last $=10$
- r_{10} is marked - get Pos(10) from \mathbf{S} :
- $\underline{\operatorname{Pos}(10)}=4$
- For $\mathrm{i}=$ first $=9$
- r_{9} isn't marked. \rightarrow backward_step(9)
- backward_step(9) $=r_{11} \quad(t=1)$
- r_{11} isn't marked either. \rightarrow backward_step(11)
- Backward_step(11) $=r_{4} \quad(t=2)$

LOCATE P IN T

Example－finding＂si＂
－For $i=$ last $=10$
－r_{10} is marked－get $\operatorname{Pos}(10)$ from \mathbf{S} ：
－ Pos（10）＝ 4
－For $\mathrm{i}=$ first $=9$
－r_{9} isn＇t marked．\rightarrow backward＿step（9）
－backward＿step（9）$=r_{11} \quad(\mathrm{t}=1)$
－r_{11} isn＇t marked either．\rightarrow backward＿step（11）
－Backward＿step（11）$=r_{4} \quad(\mathrm{t}=2)$
－r_{4} isn＇t marked either．\rightarrow backward＿step（4）
－Backward＿step（4）$=r_{10} \quad(\mathrm{t}=3)$
－r_{10} is marked - get $\operatorname{Pos}(10)$ from $\mathbf{S} . \operatorname{Pos}(10)=4$
－$\underline{\operatorname{Pos}(9)}=\operatorname{Pos}(10)+t=4+3=\underline{7}$

F		L
\＃	mississipp	
i	\＃mississip	p
i	ppi\＃missis	s
i	ssippi\＃mis	s
m	ssissippi\＃	
p	i\＃mississi	p
p	pi\＃mississ	i
s	ippi\＃missi	s
S	issippi\＃mi	s
	sippi\＃miss	i
s	sissippi\＃m	i

m	i	s	s	i	s	s	i	p	p	i	$\#$
1	2	3	4	5	6	7	8	9	10	11	12

$$
\begin{aligned}
P & =s i \\
i & =9
\end{aligned}
$$

POS(D) ANALYSIS

- A marked row will be found in at most $\left|\log ^{1+\varepsilon} n\right|$ iterations.
- Each iteration uses backward_step, which is O(1).
- So finding a single position takes $\mathrm{O}\left(\log ^{1+\varepsilon} n\right)$
- Finding all occ occurrences of P in T takes:

$$
\mathrm{O}\left(o c c \cdot \log ^{1+\varepsilon} n\right)
$$

but only if querying \mathbf{S} for membership is $\mathbf{O}(1)!$!

S ANALYSIS - TIME

- Partition L's rows into buckets of $\Theta\left(\log ^{2} n\right)$ rows each.
- For each bucket
- Store all marked rows in a Packed-B-Tree (unique for each row),
- Using their distance from the beginning of the bucket as the key. (also storing the mapping)

- A tree will contain at most $\mathrm{O}\left(\log ^{2} n\right)$ keys, of size $\mathrm{O}\left(\log \left(\log ^{2} n\right)\right)=\mathrm{O}(\log \log n)$ bits each.
$\rightarrow \mathrm{O}(1)$ access time

m	i	s	s	i	s	s	i	p	p	i	$\#$
1	2	3	4	5	6	7	8	9	10	11	12

F	L	
$\#$	mississipp	i
i	\#mississip	p
i	ppi\#missis	s
i	ssippi\#mis	s
i	ssissippi\#	m
m	ississippi	$\#$
p	i\#mississi	p
p	pi\#mississ	i
s	ippi\#missi	s
s	issippi\#mi	s
s	sippi\#miss	i
s	sissippi\#m	i

$$
\begin{aligned}
\mathrm{P} & =\mathrm{si} \\
\mathrm{i} & =9
\end{aligned}
$$

S ANALYSIS -SPACE

- The number of marked rows is $\mathrm{O}\left(\frac{n}{\log ^{1+\varepsilon} n}\right)$
- Each key encoded in a tree takes $\mathrm{O}(\log \log n)$ bits, and we need an additional O(logn) bits to keep the Pos(i) value.
- So S takes $\mathrm{O}\left(\frac{n}{\log ^{1+\varepsilon} n}(\log \log n+\log n)\right)$
- The structure we used to count P, uses $|Z|+O\left(\frac{n}{\log n} \cdot \log \log n\right) \quad$ bits, so choose ε between 0 and 1 (because going lower than $\mathrm{O}\left(\frac{n}{\log n} \cdot \log \log n\right)$ doesn't reduce the asymptotic space usage.)

m	i	s	s	i	s	s	i	p	p	i	$\#$
1	2	3	4	5	6	7	8	9	10	11	12

$$
\begin{gathered}
\mathrm{P}=\mathrm{si} \\
\mathrm{i}=9
\end{gathered}
$$

