BACKWARD SEARCH FM-INDEX

(FULL-TEXT INDEX IN MINUTE SPACE)

Paper by Ferragina & Manzini

> Presentation by Yuval Rikover

 Combine Text compression with indexing (discard original text).

 Count and locate P by looking at only a small portion of the compressed text.

• Do it efficiently:

- Time: O(p)
- Space: $O(n H_k(T)) + o(n)$

HOW DOES IT WORK?

• Exploit the relationship between the *Burrows*-*Wheeler Transform* and the Suffix Array data structure.

 Compressed suffix array that encapsulates both the compressed text and the full-text indexing information.

- Supports two basic operations:
 - **Count** return number of occurrences of P in T.
 - Locate find all positions of P in T.

BUT FIRST - COMPRESSION

• Process T[1,..,n] using Burrows-Wheeler Transform

- Receive string L[1,...,n] (permutation of T)
- Run Move-To-Front encoding on L
 - Receive *L*^{*MTF*}[1,...,n]
- Encode runs of zeroes in L^{MTF}using run-length encoding
 - Receive L^{rle}

Compress L^{rle} using variable-length prefix code Receive Z (over alphabet {0,1})

BURROWS-WHEELER TRANSFORM

- Every column is a permutation of T.
- Given row i, char L[i] precedes F[i] in original T.
- Consecutive char's in L are adjacent to similar strings in T.
- Therefore L usually contains long runs of identical char's.

F		L	
#	mississipp	i	
i	#mississip	р	
i	ppi#missis	S	
i	ssippi#mis	S	
i	ssissippi#	m	
m	ississippi	#	
р	i#mississi	р	
р	pi#mississ	i	
S	ippi#missi	S	
S	issippi#mi	S	
S	sippi#miss	i	
S	sissippi#m	i	

BURROWS-WHEELER TRANSFORM

Reminder: Recovering T from L

- 1. Find F by sorting L
- 2. First char of T? m
- 3. Find m in L
- L[i] precedes F[i] in T. Therefore we get mi
- 5. How do we choose the correct i in L?
 - The i's are in the same order in L and F
 - As are the rest of the char's
- 6. i is followed by s: mis
- 7. And so on....

MOVE-TO-FRONT

- Replace each char in L with the number of distinct char's seen since its last occurrence.
- Keep MTF[1,...,|Σ]] array, sorted lexicographically.
- Runs of identical char's are transformed into runs of zeroes in L^{MTF}

L	i	р	S	S	m	#	р	i	S	S	i	i
	1	3	4	0	4	4	3	4	4	0	1	0

• Bad example

- For larger, English texts, we will receive more runs of zeroes, and dominancy of smaller numbers.
- The reason being that BWT creates clusters of similar char's.

RUN-LENGTH ENCODING

- Replace any sequence of zeroes O^m with:
 - (m+1) in binary
 - LSB first
 - Discard MSB
- Add 2 new symbols 0,1
- *L^{rle}* is defined over
 {
 0, 1, 1, 2, ..., |Σ|
 }

L	ii	pp	p	\$ D	S 5	sm	ຠ #	ŧ	ip p	5 #	si	55	S	i	ii
L^{MTL}	-2	43	0	4)	5	04	5 4	54	B	445	42	5	0	1 1	0
L^{rle}	2	4	1	5	0	5	5	4	4	5	2	5	0	1	0

To give a meatier example (not really), we'll change our text to:

T = pipeMississippi#

4. $0000 \rightarrow 4+1 = 5 \rightarrow 101 \rightarrow 101 \rightarrow 10$ 5. $00000 \rightarrow 5+1 = 6 \rightarrow 110 \rightarrow 011 \rightarrow 01$ 6. $000000 \rightarrow 6+1 = 7 \rightarrow 111 \rightarrow 111 \rightarrow 11$ 7. $0000000 \rightarrow 7+1 = 8 \rightarrow 1000 \rightarrow 0001 \rightarrow 000$

RUN-LENGTH ENCODING

- Replace any sequence of zeroes \int_{m}^{m} with:
 - (m+1) in binary
 - LSB first
 - Discard MSB
- Add 2 new symbols 0,1
- *L^{rle}*is defined over
 {
 0, 1, 1, 2, ..., |Σ|
 }

- How to retrieve m
- given a binary number $b_0b_1,...,b_k$
- •Replace each bit b_j with a sequence of $(b_j + 1) \cdot 2^j$ zeroes
- •10 \rightarrow $(1+1) \cdot 2^0 + (0+1) \cdot 2^1 = 4$ Zeroes

Example

1. $0 \rightarrow 1+1 = 2 \rightarrow 10 \rightarrow 01 \rightarrow 0$ 2. $00 \rightarrow 2+1 = 3 \rightarrow 11 \rightarrow 11 \rightarrow 1$ 3. $000 \rightarrow 3+1 = 4 \rightarrow 100 \rightarrow 001 \rightarrow 00$ 4. $0000 \rightarrow 4+1 = 5 \rightarrow 101 \rightarrow 101 \rightarrow 10$ 5. $00000 \rightarrow 5+1 = 6 \rightarrow 110 \rightarrow 011 \rightarrow 01$ 6. $000000 \rightarrow 6+1 = 7 \rightarrow 111 \rightarrow 111 \rightarrow 11$ 7. $0000000 \rightarrow 7+1 = 8 \rightarrow 1000 \rightarrow 0001 \rightarrow 000$

VARIABLE-LENGTH PREFIX CODING

over alphabet {0,1}:

- **1** → 11 **0** → 10
- For $i = 1, 2, ..., |\Sigma| 1$
 - $\lfloor \log(i+1) \rfloor$ zeroes
 - Followed by binary representation of i+1 which takes 1+ [log(i+1)]
 - For a total of $1+2\lfloor \log(i+1) \rfloor$ bits

L ^{rle} 2 4 1 5 0 5 5 4 4 5 2 5	0 1	0
Example		
1. $i=1 \rightarrow \lfloor \log(2) \rfloor$ 0's, $bin(2) \rightarrow 010$ 2. $i=2 \rightarrow \lfloor \log(3) \rfloor$ 0's, $bin(3) \rightarrow 011$ 3. $i=3 \rightarrow \lfloor \log(4) \rfloor$ 0's, $bin(4) \rightarrow 00100$ 4. $i=4 \rightarrow \lfloor \log(5) \rfloor$ 0's, $bin(5) \rightarrow 00101$ 5. $i=5 \rightarrow \lfloor \log(6) \rfloor$ 0's, $bin(6) \rightarrow 00110$ 6. $i=6 \rightarrow \lfloor \log(7) \rfloor$ 0's, $bin(7) \rightarrow 00111$ 7. $i=7 \rightarrow \lfloor \log(8) \rfloor$ 0's, $bin(8) \rightarrow 0001000$		

COMPRESSION - SPACE BOUND

- In 1999, Manzini showed the following upper bound for BWT compression ratio:
 - $8n H_k(T) + (0.08 + 1) \cdot n + \log(n) + g(k, |\Sigma|)$

$$|Z| \le 5n H_k(T) + O(\log n)$$

$$n \mathbf{H}_{k}(T) \le n \mathbf{H}_{k}^{*}(T) \le n \mathbf{H}_{k}(T) + O(\log n)$$

 M 2001, Manzini showed that for every k, the above compression method is bounded by:

$$5n \mathbf{H}_{k}^{*}(T) + g(k, |\Sigma|)$$

NEXT: COUNT P IN T

Backward-search algorithm

- Uses only L (output of BWT)
- Relies on 2 structures:
 - C[1,...,|Σ|]: C[c] contains the total number of text chars in T which are alphabetically smaller then c (including repetitions of chars)
 - Occ(c,q): number of occurrences of char c in prefix L[1,q]

- (4) First $\leftarrow C[c] + \mathsf{Occ}(c, \mathsf{First} 1) + 1;$
- (5) $\mathsf{Last} \leftarrow C[c] + \mathsf{Occ}(c, \mathsf{Last});$
- $(6) \qquad i \leftarrow i 1;$
- (7) if (Last < First) then return "no rows prefixed by P[1,p]" else return (First, Last).

SUBSTRING SEARCH IN T (COUNT THE PATTERN OCCURRENCES)

BACKWARD-SEARCH ANALYSIS

- Backward-search makes P iterations, and is dominated by Occ() calculations.
- Implement Occ() to run in O(1) time, using $|Z| + O\left(n \cdot \frac{\log \log n}{\log n}\right)$ bits.
 - So Count will run in O(p) time, using

$$5n H_k(T) + O\left(n \cdot \frac{\log \log n}{\log n}\right)$$
 bits.

- We saw a partitioning of binary strings into Buckets and Superblocks for answering Rank() queries.
 - We'll use a similar solution
 - With the help of some new structures
- General Idea: Sum character occurrences in 3 stages

<u>Buckets</u>

- Partition L into substrings of $l = \Theta \log n$ chars each, denoted BL_i
- This partition induces a partition on L^{MTF} , denoted BL_i^{MTF} i=1,...,n/l

• Applying *run-length encoding* and *prefix-free encoding* on each bucket will result in $n/\log(n)$ variable-length buckets, denoted BZ_i

• Superblocks

• We also partition L into superblocks of size $l^2 = \Theta \log^2(n)$ each.

$$|T| = |L| = 256$$
 $|BL_i^{MTF}|_{Chars} = 8$ $i = 1, 2, ..., 32$
 $|SuperB_j|_{Chars} = 64$ $j = 1, 2, 3, 4$

Create a table for each superblock, holding for each character C ∈ Σ, the number of C's occurrences in L, up to the start of the specific superblock.
 Meaning, for SuperB_j, store occurrences of c in range L[1,..., j · l²]

$$BL_{16} \xrightarrow{128} BL_{17} 136 \xrightarrow{136} BL_{18} 144 \xrightarrow{152} 160 \xrightarrow{168} 176 \xrightarrow{184} BL_{24} \xrightarrow{192} 161 \xrightarrow{100} 168 \xrightarrow{176} 184 \xrightarrow{1$$

- Only thing left is searching inside a bucket.
 - For example, Occ(c,164) will require counting in BL_{21}
 - But we only have the compressed string Z.
 - Need more structures

• Finding BZ_i , 's starting position in Z, part 1 • Array $W[1,...,n/l^2]$ keeps for every $SuperB_j$, the sum of the sizes of the compressed buckets $BZ_1, \ldots, BZ_{j \cdot \log n}$ (in bits). • Array W'[1,...,n/l] keeps for every bucket BZ_i , the sum of bucket sizes up to it (including), from the superblock's beginning. W' 10 13 12 13 16 11 BZ_1 BZ_6 48 W 23 75 $|W| = O\left(\frac{n}{l^2} \cdot \log n \cdot \left(1 + 2\lfloor \log|\Sigma| \right)\right) = O\left(\frac{n}{\log n}\right) |W'| = O\left(\frac{n}{l} \cdot \log(l^2)\right) = O\left(\frac{n}{\log n} \cdot \log\log n\right)$

- We have the compressed bucket BZ_i 011 00101 11
 - And we have h (how many chars to check in BZ_i).
 - But BZ_i contains compressed Move-To-Front information...
 - Need more structures!
- For every i, before encoding bucket BL_i with Move-To-Front, keep the state of the MTF table

h

011 00101 11

e i m p s

h

- How do we use MTF_i to count inside BZ_i ? • Final structure!
- Build a table $S[c, h, BZ_i, MTF_i]$, which stores the number of occurrences of 'c' among the first *h* characters of BL_i
 - Possible because BZ_i and MTF_i together, completely determine BL_i

• Max size of a compressed bucket $BZ_i : l \cdot (1 + 2 \lfloor \log |\Sigma|)$

- Number of possible compressed buckets : $2^{l \cdot (1+2\lfloor \log |\Sigma| \rfloor)} = 2^t$
- Number of possible MFT table states: $2^{|\Sigma|\log|\Sigma|}$
- Size of inner table: $\sum_{l=1}^{\infty} l$
 - Size of each entry: $\log l$
- Total size of S[]: $O(2^{t} l \log l) = O(n \cdot \log n \cdot \log \log n)$

•But – having a *linear sized index is bad* for practical uses when n is large.

•We want to keep the index size sub-linear, specifically: $O(n^{\alpha}), \alpha < 1$

•Choose bucket size l, such as: $l \cdot (1 + 2\lfloor \log |\Sigma| \rfloor) = \alpha \log n$ $\alpha < 1$

•We get $2^{\alpha \log n} = n^{\alpha} = o(n) \rightarrow |S| = O(n^{\alpha} \cdot \log n \cdot \log \log n)$

ANALYZING OCC()

• Summing everything:

• NO & W both take
$$O\left(\frac{n}{\log n}\right)$$

• NO' & W' both take $O\left(\frac{n}{\log n} \cdot \log \log n\right)$
• MTF takes $O\left(\frac{n}{\log n}\right)$
• S takes $O\left(n^{\alpha} \cdot \log n \cdot \log \log n\right)$
• Total Size: $|Z| + O\left(\frac{n}{\log n} \cdot \log \log n\right)$ Total Time: $O(1)$

NEXT: LOCATE P IN T

- We now want to retrieve the positions in T of the (Last First+1) pattern occurrences.
 - Meaning: for every *i* = first, first+1,...,Last
 Find position in T of the suffix which prefixes the i-th row.
 - Denote the above as pos(i)

- We can't find pos(i) directly, but we can do:
- Given row i (9) s ippi#missi s , we can find row j
 (11) s sippi#miss i such that pos(j) = pos(i) 1
- This algorithm is called *backward_step(i)*
 - Running time O(1)

Uses previous structures

BACKWARD_STEP

• Solution:

- Compare Occ(c,i) to Occ(c,i-1) for every $c \in \Sigma \cup \{\#\}$
- Obviously, will only differ at c = L[i].
- Now we can compute Occ(L[i],i)+C[L[i]].
- Calling Occ() is O(1) • $|\Sigma| = \Theta(1)$
- Therefore *backward_step* takes O(1) time.

LOCATE P IN T: PREPROCESSING

- Now we are ready for the final algorithm.
- First, mark every $\left|\log^{1+\varepsilon} n\right|$ character from T and its corresponding row (suffix) in L.
- For each marked row r_j , store its position $Pos(r_j)$ in data structure **S**.
- For example, querying **S** for Pos(\mathcal{V}_3) will return 8.

m	i	S	S	i	S	S	i	p	p	i	#
1	2	3	4	5	6	7	8	9	10	11	12

LOCATE P IN T

Example – finding "si"

• For i = last = 10• \mathcal{V}_{10} is marked – get Pos(10) from **S** : F • Pos(10) = 4mississipp i #mississip p 2 • For i = first = 9ppi#missis s 3 i • $\Gamma_{\rm Q}$ isn't marked. \rightarrow backward_step(9) 4 ssippi#mis s i • backward_step(9) = r_{11} (t = 1) ssissippi# m 5 i • Γ_{11} isn't marked either. \rightarrow backward_step(11) ississippi # 6 i#mississi p 7 p • Backward_step(11) = V_4 (t = 2) pi#mississ i 8 p firs ippi#missi s 9 10 issippi#mi s S last 11 sippi#miss i S sissippi#m i 12 S P = si# S S S S р m 1 p 1 3 8 12 2 4 5 7 9 10 11 6 i = 9

LOCATE P IN T

Example – finding "si"

- For *i* = last = 10
 - r_{10} is marked get Pos(10) from **S** :
 - Pos(10) = 4

• For i = first = 9

- r_9 isn't marked. \rightarrow backward_step(9)
- backward_step(9) = r_{11} (t = 1)
- r_{11} isn't marked either. \rightarrow backward_step(11)
- Backward_step(11) = V_4 (t = 2)
- \mathcal{V}_4 isn't marked either. \rightarrow backward_step(4)
- Backward_step(4) = V_{10} (t = 3)
- r_{10} is marked get Pos(10) from **S**. Pos(10) = 4
- Pos(9) = Pos(10) + t = 4 + 3 = 7

m	i	S	S	i	S	S	i	р	р	i	#
1	2	3	4	5	6	7	8	9	10	11	12

POS(I) ANALYSIS

- A marked row will be found in at most $|\log^{1+\varepsilon} n|$ iterations.
- Each iteration uses backward_step, which is O(1).
- So finding a single position takes $O(\log^{1+\varepsilon} n)$
- Finding all occ occurrences of P in T takes: $O(occ \cdot \log^{1+\varepsilon} n)$

but only if querying **S** for membership is O(1)!!

S ANALYSIS - TIME

- Partition L's rows into buckets of $\Theta(\log^2 n)$ rows each.
- For each bucket
 - Store all marked rows in a Packed-B-Tree (unique for each row),
 - Using their distance from the beginning of the bucket as the key. (also storing the mapping)

- A tree will contain at most $O(\log^2 n)$ keys, of size $O(\log(\log^2 n)) = O(\log\log n)$ bits each.
 - \rightarrow <u>O(1) access time</u>

m	i	S	S	i	S	S	i	p	р	i	#
1	2	3	4	5	6	7	8	9	10	11	12

S ANALYSIS - SPACE

• The number of marked rows is $O\left(\frac{n}{\log^{1+\varepsilon} n}\right)$

• Each key encoded in a tree takes $O(\log \log n)$ bits, and we need an additional O(logn) bits to keep the Pos(i) value.

• So **S** takes
$$O\left(\frac{n}{\log^{1+\varepsilon} n} (\log \log n + \log n)\right)$$

• The structure we used to count P, uses

$$|Z| + O\left(\frac{n}{\log n} \cdot \log \log n\right)$$
 bits, so choose ε between 0 and
1 (because going lower than $O\left(\frac{n}{\log n} \cdot \log \log n\right)$ doesn't
reduce the asymptotic space usage.)

m	i	S	S	i	S	S	i	p	р	i	#
1	2	3	4	5	6	7	8	9	10	11	12

L mississipp i #mississip p 2 ppi#missis s 3 i ssippi#mis s 4 ssissippi# m 5 ississippi # 6 i#mississi p 7 pi#mississ i 8 ippi#missi s 9 10 issippi#mi s S sippi#miss i 11 S sissippi#m i 12 S P = sii = 9