
BACKWARD SEARCH

FM-INDEX
(FULL-TEXT INDEX IN MINUTE SPACE)

Paper by

Ferragina & Manzini

Presentation by

Yuval Rikover

 Combine Text compression with indexing

(discard original text).

 Count and locate P by looking at only a small

portion of the compressed text.

 Do it efficiently:

 Time: O(p)

 Space: O(n Hk(T)) + o(n)

 Exploit the relationship between the Burrows-

Wheeler Transform and the Suffix Array data

structure.

 Compressed suffix array that encapsulates both the

compressed text and the full-text indexing

information.

 Supports two basic operations:

 Count – return number of occurrences of P in T.

 Locate – find all positions of P in T.

 Process T[1,..,n] using Burrows-Wheeler Transform

 Receive string L[1,..,n] (permutation of T)

 Run Move-To-Front encoding on L

 Receive [1,…,n]

 Encode runs of zeroes in using run-length
encoding

 Receive

 Compress using variable-length prefix code

 Receive Z (over alphabet {0,1})

MTFL

MTFL

rleL

rleL

mississippi#

ississippi#m

ssissippi#mi

sissippi#mis

sippi#missis

ippi#mississ

ppi#mississi

pi#mississip

i#mississipp

#mississippi

ssippi#missi

issippi#miss Sort the rows

p i#mississi p

p pi#mississ i

s ippi#missi s

s issippi#mi s

s sippi#miss i

s sissippi#m i

i ssippi#mis s

m ississippi #

i ssissippi# m

i ppi#missis s

i #mississip p

mississipp i

LF• Every column is a permutation of T.

• Given row i, char L[i] precedes F[i] in

original T.

• Consecutive char’s in L are adjacent

to similar strings in T.

• Therefore – L usually contains long

runs of identical char’s.

1. Find F by sorting L

2. First char of T? m

3. Find m in L

4. L[i] precedes F[i] in T. Therefore we get

mi

5. How do we choose the correct i in L?

 The i’s are in the same order in L and F

 As are the rest of the char’s

6. i is followed by s: mis

7. And so on….

F

Reminder: Recovering T from L

#

i

i

i

i

m

p

p

s

s

s

s

i

p

s

s

m

#

p

i

s

s

i

i

L

 Replace each char in L

with the number of

distinct char’s seen since

its last occurrence.

 Keep MTF[1,…,|Σ|] array,

sorted lexicographically.

 Runs of identical char’s

are transformed into runs

of zeroes in
MTFL

iissip#msspi

spmi#

43210

1 3 13 4 4 4 440 0 0

L

spm#i

43210

sm#ip

43210

m#ips

43210

And so on…

• Bad example

• For larger, English texts, we will receive

more runs of zeroes, and dominancy of

smaller numbers.

• The reason being that BWT creates

clusters of similar char’s.

 Replace any sequence of

zeroes with:

 (m+1) in binary

 LSB first

 Discard MSB

 Add 2 new symbols – 0,1

 is defined over

{ 0,1,1,2,…,|Σ|}

MTFL

rleL

iissip#msspi

1 3 13 4 4 4 440 0 0

L

0
m

Example

1. 0 1+1 = 2 10 01 0

2. 00 2+1 = 3 11 11 1

3. 000 3+1 = 4 100 001 00

4. 0000 4+1 = 5 101 101 10

5. 00000 5+1 = 6 110 011 01

6. 000000 6+1 = 7 111 111 11

7. 0000000 7+1 = 8 1000 0001000

To give a meatier example (not really), we’ll

change our text to:

T = pipeMississippi#

iissi#piemsspppi

0105254455050042

010525445505142rleL

 Replace any sequence of

zeroes with:

 (m+1) in binary

 LSB first

 Discard MSB

 Add 2 new symbols – 0,1

 is defined over

{ 0,1,1,2,…,|Σ|}

rleL

0
m

Example

1. 0 1+1 = 2 10 01 0

2. 00 2+1 = 3 11 11 1

3. 000 3+1 = 4 100 001 00

4. 0000 4+1 = 5 101 101 10

5. 00000 5+1 = 6 110 011 01

6. 000000 6+1 = 7 111 111 11

7. 0000000 7+1 = 8 1000 0001000

How to retrieve m

• given a binary number

•Replace each bit with a sequence of

zeroes

•10 Zeroes

kbbb ,...,10

jb

 j

jb 21

 42)10(211 10

 Compress as follows,

over alphabet {0,1}:

 1 11 0 10

 For i = 1,2,…, |Σ| - 1

 zeroes

 Followed by binary

representation of i+1

which takes 1+

 For a total of 1+2

bits

MTFLrleL

L

)1log(i

Example

1. i=1 0’s, bin(2) 010

2. i=2 0’s, bin(3) 011

3. i=3 0’s, bin(4) 00100

4. i=4 0’s, bin(5) 00101

5. i=5 0’s, bin(6) 00110

6. i=6 0’s, bin(7) 00111

7. i=7 0’s, bin(8) 0001000

iissi#piemsspppi

0105254455050042

010525445505142rleL

)1log(i

)1log(i

)2log(

)3log(

)4log(

)5log(

)6log(

)7log(

)8log(

011 00101 11 00110 10 00110 00110 00101 00101 00110 011 00110 10 010 10

 In 1999, Manzini showed the following upper bound for BWT

compression ratio:

 The article presents a bound using :

 Modified empirical entropy

 The maximum compression ratio we can achieve, using for each

symbol a codeword which depends on a context of size at most k

(instead of always using a context of size k).

 In 2001, Manzini showed that for every k, the above compression

method is bounded by:

 ,log108.08 kgnnTn H k

 TH k

*

 lognΟTnTnTn HHH k

*

kk

 ,5
*

kgTnH k

 Backward-search algorithm

 Uses only L (output of BWT)

 Relies on 2 structures:

 C[1,…,|Σ|] : C[c] contains the total number of text chars in T which are
alphabetically smaller then c (including repetitions of chars)

 Occ(c,q): number of occurrences of char c in prefix L[1,q]

Example

• C[] for T = mississippi#

• occ(s, 5) = 2

• occ(s,12) = 4

Occ Rank

8651

1

2

3

4

5

6

7

8

9

10

11

12

i m p s

 Works in p iterations, from p down to 1

 Remember that the BWT matrix rows = sorted suffixes of T

 All suffixes prefixed by pattern P, occupy a continuous set of rows

 This set of rows has starting position First

 and ending position Last

 So, (Last – First +1) gives total pattern occurrences

 At the end of the i-th phase, First points to the first row prefixed by

P[i,p], and Last points to the last row prefiex by P[i,p].

c = ‘m’

i = 1
P = msi msi

i = 3

c = ‘i’

i = 2

c = ‘s’
msi msi

P
a

o
lo

 F
e

rra
g
in

a
,

U
n
iv

e
rs

ità
 d

i P
is

a

fr
occ=2
[lr-fr+1]

SUBSTRING SEARCH IN T (COUNT THE PATTERN OCCURRENCES)

#mississipp

i#mississip

ippi#missis

issippi#mis

ississippi#

mississippi

pi#mississi

ppi#mississ

sippi#missi

sissippi#mi

ssippi#miss

ssissippi#m

i

p

s

s

m

#

p

i

s

s

i

i

L

mississippi

1

i 2

m 7

p 8

S 10

C

P = si
First step

fr

lr Inductive step: Given fr,lr for P[j+1,p]

ŒTake c=P[j]

P[j]

•Find the first c in L[fr, lr]

ŽFind the last c in L[fr, lr]

•L-to-F mapping of these chars
lr

rows prefixed

by char “i” s

s

unknown

Occ() oracle is enough

8651

1

2

3

4

5

6

7

8

9

10

11

12

i m p s

C[] =

 P = pssi

 i =

 c =

 First =

 Last =

 (Last – First + 1) =

4

‘i’

C[‘i’] + 1 = 2

C[‘i’ + 1] = C[‘m’] = 5

4

First

Last
‘s’

C[‘s’] + Occ(‘s’,1) +1 = 8+0+1 = 9

C[‘s’] + Occ(‘s’,5) = 8+2 = 10

2

3

8651

1

2

3

4

5

6

7

8

9

10

11

12

i m p s

C[] =

 P = pssi

 i =

 c =

 First =

 Last =

 (Last – First + 1) =

First

Last

‘s’

C[‘s’] + Occ(‘s’,1) +1 = 8+0+1 = 9

C[‘s’] + Occ(‘s’,5) = 8+2 = 10

2

3

C[‘s’] + Occ(‘s’,8) +1 = 8+2+1 = 11

C[‘s’] + Occ(‘s’,10) = 8+4 = 12

2

8651

1

2

3

4

5

6

7

8

9

10

11

12

i m p s

C[] =

 P = pssi

 i =

 c =

 First =

 Last =

 (Last – First + 1) =
First
Last

‘s’

2

C[‘s’] + Occ(‘s’,8) +1 = 8+2+1 = 11

C[‘s’] + Occ(‘s’,10) = 8+4 = 12

2

‘p’

C[‘p’] + Occ(‘p’,10) +1 = 6+2+1 = 9

C[‘p’] + Occ(‘p’,12) = 6+2 = 8

0

1

 Backward-search makes P iterations, and is dominated by Occ()

calculations.

 Implement Occ() to run in O(1) time, using bits.

 So Count will run in O(p) time, using bits.

 We saw a partitioning of binary strings into Buckets and

Superblocks for answering Rank() queries.

 We’ll use a similar solution

 With the help of some new structures

 General Idea: Sum character occurrences in 3 stages

n

n
nZ

log

loglog

n

n
nTnH k log

loglog
5

Superblock Bucket Intra-

bucket

Compressed text

 Buckets

 Partition L into substrings of chars each, denoted

 This partition induces a partition on , denoted

 Applying run-length encoding and prefix-free encoding on each bucket will

result in n/log(n) variable-length buckets, denoted

iBL

T = pipeMississippi# |T| = |L| = 16

iissi#piemsspppi

0105254455050042MTFL

L

MTFL

4
MTF

iBL

MTF

iBL

010525445505142rleL

iBZ

lni /,..,1

011 00101 11 | 00110 10 00110 00110 | 00101 00101 00110 011 | 00110 10 010 10

1BZ 4BZ

nl log

 Superblocks

 We also partition L into superblocks of size each.

 Create a table for each superblock, holding for each character c Є Σ, the

number of c’s occurrences in L, up to the start of the specific superblock.

 Meaning, for , store occurrences of c in range

8
Chars

MTF

iBL 32,...,2,1i

 nl 22 log

256 LT

64
CharsjSuperB 4,3,2,1j

jSuperB 2,...,1 ljL

c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8

128 192
136 144 152 160 168 176 184

2SuperB
3SuperB

18BL16BL 24BL17BL

32a

25b

::

7z

55a

38b

::

8z

n

n
n

l

n

log
log

2

3NO2NO

 Back to Buckets

 Create a similar table for buckets, but count only from current superblock's

start. Denote tables as

 Only thing left is searching inside a bucket.

 For example, Occ(c,164) will require counting in

 But we only have the compressed string Z.

 Need more structures

32a

25b

::

7z

55a

38b

::

8z

2a

1b

::

0z

2a

1b

::

1z

23a

13b

::

1z

21a

13b

::

1z

iON

2NO 3NO

21BL

c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8

128 192
136 144 152 160 168 176 184

2SuperB
3SuperB

18BL16BL 24BL17BL

.

.

17ON
18ON

23ON
24ON

21BL

 n

n

n
l

l

n
loglog

log
log 2

 Finding ‘s starting position in Z, part 1

 Array keeps for every , the sum of the sizes

of the compressed buckets (in bits).

 Array keeps for every bucket , the sum of bucket

sizes up to it (including), from the superblock’s beginning.

iBZ

 2/,...,1 lnW jSuperB

njBZBZ log1,.....,

011 00101 11 | 00110 10 00110 | 00101 00101 011 | 00110 10 010 10 | 00110 10 00110 | 00101 00101 011

1BZ 6BZW

W

 lnW /,...,1 iBZ

754823

111613121310

n

n
n

l

n
W

log
log21log

2

 n

n

n
l

l

n
W loglog

log
log 2

 Finding ‘s starting position in Z, part 2

 Given Occ(‘c’,q)
iBZ

njBZBZ log1,.....,

 nnW log/,...,1

Find i of : iBL

n

q
i

log

niqh log)1(

Find character in to count up to:iBL

Find superblock of
iBLtSuperB

1
log

n

i
t

Locate position of in Z:
iBZ

 1]1[iWtW

21BL

c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8

128 192
136 144 152 160 168 176 184

2SuperB
3SuperB

18BL16BL 24BL17BL

011 00101 11 | 00110 10 00110 | 00101 00101 011 | 00110 10 010 10 | 00110 10 00110 | 00101 00101

21BL

[]1W []2W []3W []4W []5W []6W
 1W 2W 3W

Occ(k,166)

166/8 = 20.75

 i = 21

h = 166 – 20*8

 h = 6

(21/8) = 2.625

 t = 2

Compressed bucket is at

W[2]+W`[20]+1

 We have the compressed bucket

 And we have h (how many chars to check in).

 But contains compressed Move-To-Front information…

 Need more structures!

 For every i, before encoding bucket with Move-To-Front, keep

the state of the MTF table

iBZ

iBZ | 011 00101 11 |

iBZ

iBZ

iBL

T = pipeMississippi# |T| = |L| = 16

iissi#piemsspppi

0105254455050042MTFL

L

spmie# sme#ip #ipsme smep#i

1MTF 2MTF 3MTF
4MTF

n

n

n

n

log
log

log

h

 How do we use to count inside ?

 Final structure!

 Build a table , which stores the number of

occurrences of ‘c’ among the first h characters of

 Possible because and together, completely determine

 ii MTFBZhcS ,,,

| 011 00101 11 |iBZ
iMTF

spmie#h

iBL

iBZ
iMTF iBL

s

spmie#

smpei#

#emips

#iemps

| 011 0010 11 | | 010 00101 011 0010| | 00111 00101 00111 00110|

logn…21

a

b

.

.

z

 Max size of a compressed bucket :

 Number of possible compressed buckets :

 Number of possible MFT table states:

 Size of inner table:

 Size of each entry:

 Total size of S[]:

iBZ

 nnnllt loglogloglog2

s

spmie#

smpei#

#emips

#iemps

| 011 0010 11 | | 010 00101 011 0010| | 00111 00101 00111 00110|

logn…21

a

b

.

.

z

)log21(l

 tl
22

)log21(

 log
2

l
llog

•But – having a linear sized index is bad for practical uses when n is

large.

•We want to keep the index size sub-linear, specifically:

•Choose bucket size , such as:

•We get nnn log2 nnnS logloglog

 1, n

l nl log)log21(1

 Summing everything:

 & both take

 & both take

 MTF takes

 S takes

 Total Size: Total Time:

W

 1

n

n

log

 nnn logloglog

011 00101 11 | 00110 10 00110 | 00101 00101 011 | 00110 10 010 10 | 00110 10 00110 | 00101 00101 011

55a

38b

::

8z2NO

754823

111613121310W

W

23a

13b

::

1z 1ON

spmie#

1MTF

NO

ON W

 n

n

n
loglog

log

n

n

log

 n

n

n
Z loglog

log

 We now want to retrieve the positions in T of the (Last – First+1)

pattern occurrences.

 Meaning: for every i = first, first+1,…,Last

Find position in T of the suffix which prefixes the i-th row.

 Denote the above as pos(i)

 We can’t find pos(i) directly, but we can do:

 Given row i (9) , we can find row j

(11) such that pos(j) = pos(i) – 1

 This algorithm is called backward_step(i)

 Running time O(1) Uses previous structures

P = si

1

2

3

4

5

6

7

8

9

10

11

12

pos(9) = 7

#ippississim

121110987654321

 L[i] precedes F[i] in T.

 All char’s appear at the same order in L and F.

 So ideally, we would just compute Occ(L[i],i)+C[L[i]]

P = si

#ippississim

121110987654321

1

2

3

4

5

6

7

8

9

10

11

12

#

i

i

i

i

m

p

p

s

s

s

s

i

p

s

s

m

#

p

i

s

s

i

i

LF

P = si

i = 9

1

2

3

 Solution:

 Compare Occ(c,i) to Occ(c,i-1) for every

 Obviously, will only differ at c = L[i].

 Now we can compute Occ(L[i],i)+C[L[i]].

 Calling Occ() is O(1)

 Therefore backward_step takes O(1) time.

#ippississim

121110987654321

i

p

s

s

m

#

p

i

s

s

i

i

L

P = si

i = 9

 #c
O

cc(c,9
)

O
cc(c,8

)

)1(

 Now we are ready for the final algorithm.

 First, mark every character from T

and its corresponding row (suffix) in L.

 For each marked row , store its position

Pos() in data structure S.

 For example, querying S for Pos() will return 8.

#ippississim

121110987654321

P = si

i = 9

 n1log

1

2

3

4

5

6

7

8

9

10

11

12

first

last

jr

jr

3r

 Given row index i, find Pos(i) as follows:

 If is a marked row, return Pos(i) from S. DONE!

 Otherwise - use backward_step(i) to find i’ such

that : Pos(i’) = Pos(i) – 1

 Repeat t times until we find a marked row.

 Then – retrieve Pos(i’) from S and compute Pos(i)

by computing: Pos(i’) + t

#ippississim

121110987654321

P = si

i = 9

1

2

3

4

5

6

7

8

9

10

11

12

first

last

ir

Example – finding “si”

 For i = last = 10

 is marked – get Pos(10) from S :

 Pos(10) = 4

 For i = first = 9

 isn’t marked. backward_step(9)

 backward_step(9) = (t = 1)

 isn’t marked either. backward_step(11)

 Backward_step(11) = (t = 2)

#ippississim

121110987654321

P = si

i = 9

1

2

3

4

5

6

7

8

9

10

11

12

first

last

10r

9r

11r
11r

4r

Example – finding “si”

 For i = last = 10

 is marked – get Pos(10) from S :

 Pos(10) = 4

 For i = first = 9

 isn’t marked. backward_step(9)

 backward_step(9) = (t = 1)

 isn’t marked either. backward_step(11)

 Backward_step(11) = (t = 2)

 isn’t marked either. backward_step(4)

 Backward_step(4) = (t = 3)

 is marked – get Pos(10) from S. Pos(10) = 4

 Pos(9) = Pos(10) + t = 4 + 3 = 7

#ippississim

121110987654321

P = si

i = 9

1

2

3

4

5

6

7

8

9

10

11

12

first

last

10r

9r

11r
11r

4r

4r
10r

10r

 A marked row will be found in at most

iterations.

 Each iteration uses backward_step, which is O(1).

 So finding a single position takes

 Finding all occ occurrences of P in T takes:

but only if querying S for membership is O(1)!!

#ippississim

121110987654321

P = si

i = 9

1

2

3

4

5

6

7

8

9

10

11

12

first

last
 n1log

 n1log

 n 1log

 nocc 1log

 Partition L’s rows into buckets of rows each.

 For each bucket

 Store all marked rows in a Packed-B-Tree (unique for each row),

 Using their distance from the beginning of the bucket

as the key. (also storing the mapping)

 A tree will contain at most keys, of size

bits each.

 O(1) access time

#ippississim

121110987654321

P = si

i = 9

1

2

3

4

5

6

7

8

9

10

11

12

 n2log

1

3

6

4

 n2log

 nn loglogloglog 2

 The number of marked rows is

 Each key encoded in a tree takes bits,

and we need an additional O(logn) bits to keep

the Pos(i) value.

 So S takes

 The structure we used to count P, uses

bits, so choose ε between 0 and

1 (because going lower than doesn’t

reduce the asymptotic space usage.)

#ippississim

121110987654321

P = si

i = 9

1

2

3

4

5

6

7

8

9

10

11

12

 nloglog

nn

n

n
logloglog

log1

 n

n
1log

 n

n

n
Z loglog

log

 n

n

n
loglog

log

