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1.ABSTRACT 
 
 
In-memory tree structured index search is a fundamental database operation. Modern 
processors provide tremendous computing power by integrating multiple cores, each 
with wide vector units. There has been much work to exploit modern processor 
architectures for database primitives like scan, sort, join and aggregation. However, 
unlike other primitives, tree search presents significant challenges due to irregular and 
unpredictable data accesses in tree traversal. 
 
In [1], the authors presented FAST, an extremely Fast Architecture Sensitive layout of 
the index Tree, which is a binary tree logically organized to optimize for architecture 
features like page size, cache line size, and SIMD width of the underlying hardware. 
FAST eliminates impact of memory latency, and exploits thread-level and datalevel 
parallelism on both CPUs and GPUs to achieve 50 million (CPU) and 85 million (GPU) 
queries per second, 5X (CPU) and 1.7X (GPU) faster than the best previously reported 
performance on the same architectures. 
 
In our project, we are focusing on implementing and analyzing the performance of the 
binary tree with SIMD width optimization on CPUs. 
 
 
 

2. INTRODUCTION 
 
 
Tree structured index search is a critical database primitive, used in a wide range of 
applications. In today’s data warehouse systems, many data processing tasks, such as 
scientific data mining, network monitoring, and financial analysis require handling large 
volumes of index search with low-latency and high-throughput. As memory capacity has 
increased dramatically over the years, many database tables now reside completely in 
memory, thus eliminating disk I/O operations. Modern processors integrate multiple 
cores in a chip, each with wide vector (SIMD) units. Although memory bandwidth has 
also been increasing steadily, the bandwidth to compute ratio is reducing, and 
eventually memory bandwidth will become the bottleneck for future scalable 
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performance. We are using Streaming SIMD Extensions (SSE) to optimize the query 
operation on binary search tree which could utilize the use of SIMD to achieve better 
performance. 
 
 

3.ARCHITECTURE SENSITIVE TREE 
 

3.1Motivation 
 
 
Given a list of (key, rid) tuple sorted by the keys, a typical query involves searching for 
tuple containing a specific key (key_q). Tree index structures are built using the 
underlying keys to facilitate fast search operations – with run-time proportional to the 
depth of the trees. Typically, these trees are laid out in a breadth first fashion, starting 
from the root of the tree. The search algorithm involves comparing the search key to the 
key stored at a specific node at every level of the tree, and traversing a child node 
based on the comparison results. Only one node at each level is actually accessed, 
resulting in ineffective cache line utilization, to the linear storage of the tree.  
 
Although blocking for disk/memory page size has been proposed in the past [2], the 
resultant trees may reduce the TLB miss latency, but do not necessarily optimize for 
effective SIMD utilization/ Recently, 3-ary trees were proposed to exploit the 4-element 
wide SIMD of CPUs. They rearranged the tree nodes in order to avoid expensive 
gather/scatter operations. In order to efficiently use the compute performance of 
processors, it is imperative to eliminate the latency stalls, and store/access trees in a 
SIMD friendly fashion to further speedup the run-time. 
 
 
 

3.2 Hierarchical Blocking 
 
 
We are building binary trees (using the keys of the tuple) as the index structure, with a 
layout optimized for the SIMD architecture. In order to cooperate with the feature we 
rearrange the nodes of the binary index structure and blocking in a hierarchical fashion. 
Before explaining our hierarchical blocking scheme in detail, we first define the following 
notation: 
 
E : Key size (in bytes). 
K : SIMD width (in bytes). 
N : Total Number of input keys. 
NK : Number of keys that can fit into a SIMD register. 
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dN : Tree depth of Index Tree. 
dK : Tree depth of SIMD blocking. 
 
 
In order to simplify the computation, the parameter NK is set to be equal to the number 
of nodes in complete binary sub-trees of appropriate depths 3. Consider Figure 1 where 
we let N = 31, dN = 5 and dK = 2. Figure 1(a) shows the indices of the nodes of the 
binary tree, with the root being the key corresponding to the 15th tuple, and its two 
children being the keys corresponding to the 7th and 23rd tuples respectively, and so 
on for the remaining tree. Traditionally, the tree is laid out in a breadth-first fashion in 
memory, starting from the root node. For our hierarchical blocking, we start with the root 
of the binary tree. The first NK elements are laid out in a breadth-first fashion. Thus, in 
Figure 1(b), the first three elements are laid out, starting from position 0. Each of the 
(NK + 1) children sub-trees (of depth dK ) are further laid out in the same fashion, one 
after another. This corresponds to the sub-trees (of depth 2) at positions 3, 6, 9 and 12 
in Figure 1(b). Our framework for architecture optimized tree layout preserves the 
structure of the binary tree, but lays it out in a fashion optimized for efficient searches. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1. (a) Node indices (=memory locations) of the binary tree. (b) Rearranged nodes 
with SIMD blocking. 
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4.Streaming SIMD Extensions 
 
 
The reason we are grouping three nodes into one, is that  the structure could fit in 
Streaming SIMD Extensions (SSE). 
 
SSE is a SIMD instruction set extension to the x86 architecture,  which contains 70 
new instructions, most of which work on single precision float point data. SIMD 
instructions can greatly increase performance when exactly the same operations are to 
be performed on multiple data objects. To cooperate our project with SSE. We defined 
key as 4bytes float numbers, and using __m128 as the node type. 
__m128 is a 16 bytes vector, which could store four float numbers and do instructions 
on all four number at same time. A variable of type __m128 maps to the XMM[0-7] 
registers. We have used following instructions in our implementation of the data 
structure: 
 
 

void _mm_store_ps(float *p, 
__m128 a ) 

Stores four single-precision, floating-point values 

__m128 _mm_loadu_ps(float * p) Loads four single-precision, floating-point values. 
__m128 _mm_load1_ps(float * p ) Loads a single single-precision, floating-point 

value, copying it into all four words. 
__m128 _mm_cmpgt_ps(__m128 a, 
__m128 b ) 

Compares for greater than. 

__m128 _mm_cmpeq_ps(__m128 a 
, __m128 b ) 

Compares for equality. 

int _mm_movemask_ps( __m128 a ) Creates a 4-bit mask from the most significant 
bits of the four single-precision, floating-point 
values. 
 

 
 
 
 
 
 
 
 
 
 
 

5.Implementation 
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5.1 Building the tree 
 
Given a sorted input of tuples (Ti , i∈ (1..N ), each having 4-byte (key, rid)), we layout 
the index tree (T) by collecting the keys from the relevant tuples and laying them out 
next to each other. We set dN = log2 (N ) . In case N is not a power of two, we still build 
the perfect binary tree, and assume keys for tuples at index greater than N to be equal 
to the largest key (or largest possible number). 
 
To build the blocking tree, we need first generate the normal tree. The data structure we 
used to generate is like heap, child of node i is stored at node i*2+1 and i*2+2. The 
algorithm we generating the normal tree is bottom-up, we have the bottom level nodes 
at first (tuple), we calculate keys of node in one level up by: 
 

Normal_Tree_Key[i] =( Normal_Tree_Key[i*2+1]+Normal_Tree_Key[i*2+2] ) / 2 
 

We keep the procedure until we got key[0]. After that we got the complete tree like 
figure1(a), in an array. 
 
 
Then we generate blocking tree using the normal tree, each odd level node and two of 
their children make up and new node. 
 
F[4] = {Normal_Tree_Key[i], Normal_Tree_Key[i*2+1], Normal_Tree_key[i*2+2], 0} 
 
Fast_Tree_Key[i] = _mm_loadu_ps( &Normal_Tree_Key[i*3]) 
 
 
 

5.2 Query the tree 
 
 
Given a search key (key_q), we now describe our SIMD friendly tree traversal 
algorithm. For a query of key_q, we begin by splatting key_q into a vector register 
(i.e.,replicating key_q for each SIMD lane), denoted by xmm_key_q. We start the 
search by comparing the root of the tree (assign to index) and xmm_key_q, the result is 
assign to a mask register. Then we compute an integer value (termed mask) from the 
mask register. The mask is then looked up into an lookup table, that returns the child 
index(assign to index). If not reach the bottom layer, repeat the procedure 
 
Step 1:  xmm_key_q = _mm_load1_ps(&key_q) 
Step 2:  index = root 
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Step 3:  xmm_mask = _mm_cmpeq_ps(xmm_key_q, V_tree[index]) 
Step 4:  mask =  _mm_movemask_ps (xmm_mask) 
Step 5:  index = index*4 + lookup[mask] 
Step 6:  if index is not reach the bottom layer of the tree back to step 3 
 
Since dK = 2, there are two nodes on the last level of the SIMD block, that have a total 
of four child nodes, with local ids of 0, 1, 2 and 3. There are eight possible values of 
mask, which is used in deciding which of the four child nodes to traverse. Hence, the 
lookup table has 2^NK (= 8) entries, with each entry returning a number & [0..3]. Even 
using four-bytes per entry, this lookup table occupies less than one cache line, and is 
always cache resident during the traversal algorithm. 
 
 

 
Figure2. Example of SIMD(SSE) tree search and the lookup table. 

 
 
In Figure 2, we depict an example of our SSE tree traversal algorithm. Consider the 
following scenario when keyq equals 59 and (key_q > V_tree[0]), (key_q > V_tree[1]) 
and (key_q < V_tree[2]). In this case, the lookup table should return 2 (the left child of 
the second node on the second level, shown in the first red arrow in the figure), and the 
new index should be 2 = 0(old_index)+1(offset)+ lookup[3].  For this specific example, 
mask ([1, 1, 0] and hence index would be 1(20) + 1(21) + 0(22) = 3. Hence Lookup[3] ( 
2. The other values in the lookup table are similarly filled up. Since the lookup table 
returns 2, child_index for the next SSE tree equals 2. Then, we compare three nodes in 
the next SSE tree and Vmask ([1, 1, 1], implying the right child of the node storing the 
value 53, as shown with the second red arrow in the figure. We now continue with the 
load, compare, lookup and offset computation till the end of the tree is reached. After 
traversing through the index structure, we get the index of the tuple that has the largest 
key less than or equal to key_q.  
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As compared to a scalar code, we resolve dK (= log2(NK +1)) levels simultaneously. 
Hence theoretically, a maximum of 2X (=dK ) speedup is possible (in terms of number 
of instructions).  
 
 
 
6.   Performance Analysis 
  
  
We did benchmark for SIMD optimized FAST on energon1.cims.nyu.edu server, whose 
architectural parameters relevant to the performance are listed below. 
  
CPU Name: Intel Xeon L5320 
Number of Cores: 4 
SIMD width: 4 
Cache Size: 4096KB 
Cache Line Size: 64B 
Page Size: 4096B 
  
A list of tuples are generated with 32-bit key and value. The tuples are sorted according 
to the key. Then a normal tree and a FAST are constructed based on it. The size of 
tuple varies from 2^6 to 2^22, corresponding to tree size that varies from 1KB to 64MB. 
One hundred thousand searches are run for each tree. Search keys are generated 
randomly to avoid coherence between subsequent searches. 
  
We run the benchmark for 10 times and average the time consumed. Each benchmark 
involves 10^5 random searches applied on both trees. The result of benchmark is 
shown in table 1. Search performances are compared between the normal tree and on 
the optimized FAST in Figure 3. 
  

Tree Size 1KB 4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB 
Normal Tree 

Elapsed Time 
(s) 

0.0293 0.0356 0.0389 0.0440 0.0533 0.0591 0.0761 0.0936 0.163 

FAST Tree 
Elapsed Time 

(s) 
0.0228 0.0267 0.0330 0.0420 0.0480 0.0547 0.0739 0.1032 0.165 

 
 Table 1. Time consumed by searches on trees of different sizes 
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The benefit of SIMD optimization on search is more noticeable for small trees than large 
trees. The reason is that small trees do not suffer as much latency of memory I/O as 
large trees. We could observe, from table 1, that, for tree size of 1KB and 4KB, 
searches on FAST are 22% and 25% faster than normal tree, respectively. When tree 
size is smaller than page size (4KB), the number of accessed memory pages is 
minimized. There is little memory latency. Thus, the data-level parallelism exploited by 
SIMD optimization gains performance by 20%-30%. This performance improvement 
shows agreement with what addressed in [1]. However, with tree size increasing, the 
performance difference between FAST and normal tree gradually shrinks and finally 
disappears. Probably it results from that search on small trees is compute bound while 
search on large trees is not. When tree size become larger than page size or even 
cache size, it is necessary to bring in data from memory after only a few computations. 
Access to memory also need more address computation for large trees. In this situation, 
the latency coming from cache or memory access becomes performance bottleneck. 
Then search on large trees switches from compute bound to latency bound, thus it does 
not exploit additional compute resources provided by SIMD instructions.  
 
To verify the above hypothesis about performance, we ran the benchmark again with 
Linux profiling tool “perf” and tried to find out the primary reason of the performance 
decrease for large trees. 10^7 searches were carried out in the benchmark to amplify 
the possible effect caused by the hardware events. A variety of hardware events were 
analyzed, including instructions, cache misses and page faults. Finally, it turned out that 
elapsed time showed similar trend with number of bus cycles, as shown in table 2 and   

 
Figure 1. Throughput (million searches per second) of Normal Tree and Fast Tree 
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tree size Normal Tree 
bus cycle 

Fast Tree bus 
cycle 

Normal Tree 
elapsed time 

Fast Tree 
elapsed time 

1k 430,502,606 382,000,321 1.663833406 1.503150901 

2k 460,804,589 425,113,382 1.951052939 1.668005499 

4k 498,377,832 451,082,235 2.115594736 1.766830354 

8k 535,990,005 497,048,714 2.240976779 2.098979892 

16k 574,567,859 514,587,931 2.256231695 2.158809217 

32k 615,431,845 595,555,330 2.330204714 2.246055118 

64k 660,218,516 656,586,118 2.515943729 2.36383442 

128k 708,707,604 701,287,043 2.869222885 2.826380779 

256k 761,954,913 715,888,286 3.030701338 2.988343545 

512k 799,936,717 813,487,022 3.130861292 3.19864613 

1M 897,151,742 831,481,712 3.448993999 3.226389534 

2M 993,904,764 1,268,572,088 3.952918245 5.102762455 

4M 1,187,185,549 1,356,143,392 4.588148258 5.261571795 

8M 1,509,162,112 2,036,208,446 5.792797421 7.968207739 

16M 1,852,235,495 2,186,256,315 7.441925196 8.467376134 

32M 2,091,114,732 2,842,514,412 8.743061693 11.13028249 

64M 2,837,744,858 3,120,498,274 10.83473015 12.14902355 
 

Table 2. Elapsed Time and number of Bus Cycles generated by benchmark with  
“perf stat event=bus cycle” 

 
figure 3. Because the SIMD optimization search requires that four tree nodes are 
computed simultaneously, the processor needs to read four tree nodes from memory for 
every two levels. For normal tree search algorithm, it is necessary to read two tree 
nodes from memory for every two levels. Therefore, SIMD optimization tree search 
have to read more tree nodes from memory than normal tree search. When tree size is 
small, the whole tree may be located in one or a few pages, not many bus cycles are 
needed even SIMD optimization search requires more tree nodes. However, when tree 
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size increases, tree nodes are distributed very dispersedly in memory. Thus, the 
number of bus cycles called by SIMD optimization search is increasing rapidly and 
surpassing normal search. 
 

 

  
Figure 3. Elapsed Time and number of Bus Cycles (According to data from table 2) 
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SIMD optimization search is advantageous in hardware events other than bus cycles. 
For example, there are fewer instructions, CPU clocks in SIMD optimization search. 
Although these differences are tiny, they still help SIMD optimization search. Therefore, 
in conclusion, the analysis result with perf partly proves our hypothesis we raised about 
search performance. It clearly shows that the failure of SIMD optimization search in 
large trees is resulted from the large amount of memory I/O. 
 
 
7 Future work. 
 
Since Fast tree algorithm’s bottleneck is memory I/O, we propose following ways to 
improve performance. 
 
Because __m128 data type could store four float numbers and we only used three of 
them, to utilize the memory space, we could reconstruct the FAST tree that each node 
contains four nodes of normal tree. The total number of nodes in FAST would be 
reduced, hopefully that could improve memory efficiency. 
 
The cache line blocking and page blocking techniques reported by [1] seem to be 
helpful to this problem. We could add more hierarchy block (cache line size, page size) 
to FAST to utilize the hardware. 
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