
1/11

Binary search tree with SIMD bandwidth optimization
using SSE

Bowen Zhang, Xinwei Li

1.ABSTRACT

In-memory tree structured index search is a fundamental database operation. Modern
processors provide tremendous computing power by integrating multiple cores, each
with wide vector units. There has been much work to exploit modern processor
architectures for database primitives like scan, sort, join and aggregation. However,
unlike other primitives, tree search presents significant challenges due to irregular and
unpredictable data accesses in tree traversal.

In [1], the authors presented FAST, an extremely Fast Architecture Sensitive layout of
the index Tree, which is a binary tree logically organized to optimize for architecture
features like page size, cache line size, and SIMD width of the underlying hardware.
FAST eliminates impact of memory latency, and exploits thread-level and datalevel
parallelism on both CPUs and GPUs to achieve 50 million (CPU) and 85 million (GPU)
queries per second, 5X (CPU) and 1.7X (GPU) faster than the best previously reported
performance on the same architectures.

In our project, we are focusing on implementing and analyzing the performance of the
binary tree with SIMD width optimization on CPUs.

2. INTRODUCTION

Tree structured index search is a critical database primitive, used in a wide range of
applications. In today’s data warehouse systems, many data processing tasks, such as
scientific data mining, network monitoring, and financial analysis require handling large
volumes of index search with low-latency and high-throughput. As memory capacity has
increased dramatically over the years, many database tables now reside completely in
memory, thus eliminating disk I/O operations. Modern processors integrate multiple
cores in a chip, each with wide vector (SIMD) units. Although memory bandwidth has
also been increasing steadily, the bandwidth to compute ratio is reducing, and
eventually memory bandwidth will become the bottleneck for future scalable

2/11

performance. We are using Streaming SIMD Extensions (SSE) to optimize the query
operation on binary search tree which could utilize the use of SIMD to achieve better
performance.

3.ARCHITECTURE SENSITIVE TREE

3.1Motivation

Given a list of (key, rid) tuple sorted by the keys, a typical query involves searching for
tuple containing a specific key (key_q). Tree index structures are built using the
underlying keys to facilitate fast search operations – with run-time proportional to the
depth of the trees. Typically, these trees are laid out in a breadth first fashion, starting
from the root of the tree. The search algorithm involves comparing the search key to the
key stored at a specific node at every level of the tree, and traversing a child node
based on the comparison results. Only one node at each level is actually accessed,
resulting in ineffective cache line utilization, to the linear storage of the tree.

Although blocking for disk/memory page size has been proposed in the past [2], the
resultant trees may reduce the TLB miss latency, but do not necessarily optimize for
effective SIMD utilization/ Recently, 3-ary trees were proposed to exploit the 4-element
wide SIMD of CPUs. They rearranged the tree nodes in order to avoid expensive
gather/scatter operations. In order to efficiently use the compute performance of
processors, it is imperative to eliminate the latency stalls, and store/access trees in a
SIMD friendly fashion to further speedup the run-time.

3.2 Hierarchical Blocking

We are building binary trees (using the keys of the tuple) as the index structure, with a
layout optimized for the SIMD architecture. In order to cooperate with the feature we
rearrange the nodes of the binary index structure and blocking in a hierarchical fashion.
Before explaining our hierarchical blocking scheme in detail, we first define the following
notation:

E : Key size (in bytes).
K : SIMD width (in bytes).
N : Total Number of input keys.
NK : Number of keys that can fit into a SIMD register.

3/11

dN : Tree depth of Index Tree.
dK : Tree depth of SIMD blocking.

In order to simplify the computation, the parameter NK is set to be equal to the number
of nodes in complete binary sub-trees of appropriate depths 3. Consider Figure 1 where
we let N = 31, dN = 5 and dK = 2. Figure 1(a) shows the indices of the nodes of the
binary tree, with the root being the key corresponding to the 15th tuple, and its two
children being the keys corresponding to the 7th and 23rd tuples respectively, and so
on for the remaining tree. Traditionally, the tree is laid out in a breadth-first fashion in
memory, starting from the root node. For our hierarchical blocking, we start with the root
of the binary tree. The first NK elements are laid out in a breadth-first fashion. Thus, in
Figure 1(b), the first three elements are laid out, starting from position 0. Each of the
(NK + 1) children sub-trees (of depth dK) are further laid out in the same fashion, one
after another. This corresponds to the sub-trees (of depth 2) at positions 3, 6, 9 and 12
in Figure 1(b). Our framework for architecture optimized tree layout preserves the
structure of the binary tree, but lays it out in a fashion optimized for efficient searches.

Figure 1. (a) Node indices (=memory locations) of the binary tree. (b) Rearranged nodes
with SIMD blocking.

4/11

4.Streaming SIMD Extensions

The reason we are grouping three nodes into one, is that the structure could fit in
Streaming SIMD Extensions (SSE).

SSE is a SIMD instruction set extension to the x86 architecture, which contains 70
new instructions, most of which work on single precision float point data. SIMD
instructions can greatly increase performance when exactly the same operations are to
be performed on multiple data objects. To cooperate our project with SSE. We defined
key as 4bytes float numbers, and using __m128 as the node type.
__m128 is a 16 bytes vector, which could store four float numbers and do instructions
on all four number at same time. A variable of type __m128 maps to the XMM[0-7]
registers. We have used following instructions in our implementation of the data
structure:

void _mm_store_ps(float *p,
__m128 a)

Stores four single-precision, floating-point values

__m128 _mm_loadu_ps(float * p) Loads four single-precision, floating-point values.
__m128 _mm_load1_ps(float * p) Loads a single single-precision, floating-point

value, copying it into all four words.
__m128 _mm_cmpgt_ps(__m128 a,
__m128 b)

Compares for greater than.

__m128 _mm_cmpeq_ps(__m128 a
, __m128 b)

Compares for equality.

int _mm_movemask_ps(__m128 a) Creates a 4-bit mask from the most significant
bits of the four single-precision, floating-point
values.

5.Implementation

5/11

5.1 Building the tree

Given a sorted input of tuples (Ti , i∈ (1..N), each having 4-byte (key, rid)), we layout
the index tree (T) by collecting the keys from the relevant tuples and laying them out
next to each other. We set dN = log2 (N) . In case N is not a power of two, we still build
the perfect binary tree, and assume keys for tuples at index greater than N to be equal
to the largest key (or largest possible number).

To build the blocking tree, we need first generate the normal tree. The data structure we
used to generate is like heap, child of node i is stored at node i*2+1 and i*2+2. The
algorithm we generating the normal tree is bottom-up, we have the bottom level nodes
at first (tuple), we calculate keys of node in one level up by:

Normal_Tree_Key[i] =(Normal_Tree_Key[i*2+1]+Normal_Tree_Key[i*2+2]) / 2

We keep the procedure until we got key[0]. After that we got the complete tree like
figure1(a), in an array.

Then we generate blocking tree using the normal tree, each odd level node and two of
their children make up and new node.

F[4] = {Normal_Tree_Key[i], Normal_Tree_Key[i*2+1], Normal_Tree_key[i*2+2], 0}

Fast_Tree_Key[i] = _mm_loadu_ps(&Normal_Tree_Key[i*3])

5.2 Query the tree

Given a search key (key_q), we now describe our SIMD friendly tree traversal
algorithm. For a query of key_q, we begin by splatting key_q into a vector register
(i.e.,replicating key_q for each SIMD lane), denoted by xmm_key_q. We start the
search by comparing the root of the tree (assign to index) and xmm_key_q, the result is
assign to a mask register. Then we compute an integer value (termed mask) from the
mask register. The mask is then looked up into an lookup table, that returns the child
index(assign to index). If not reach the bottom layer, repeat the procedure

Step 1: xmm_key_q = _mm_load1_ps(&key_q)
Step 2: index = root

6/11

Step 3: xmm_mask = _mm_cmpeq_ps(xmm_key_q, V_tree[index])
Step 4: mask = _mm_movemask_ps (xmm_mask)
Step 5: index = index*4 + lookup[mask]
Step 6: if index is not reach the bottom layer of the tree back to step 3

Since dK = 2, there are two nodes on the last level of the SIMD block, that have a total
of four child nodes, with local ids of 0, 1, 2 and 3. There are eight possible values of
mask, which is used in deciding which of the four child nodes to traverse. Hence, the
lookup table has 2^NK (= 8) entries, with each entry returning a number & [0..3]. Even
using four-bytes per entry, this lookup table occupies less than one cache line, and is
always cache resident during the traversal algorithm.

Figure2. Example of SIMD(SSE) tree search and the lookup table.

In Figure 2, we depict an example of our SSE tree traversal algorithm. Consider the
following scenario when keyq equals 59 and (key_q > V_tree[0]), (key_q > V_tree[1])
and (key_q < V_tree[2]). In this case, the lookup table should return 2 (the left child of
the second node on the second level, shown in the first red arrow in the figure), and the
new index should be 2 = 0(old_index)+1(offset)+ lookup[3]. For this specific example,
mask ([1, 1, 0] and hence index would be 1(20) + 1(21) + 0(22) = 3. Hence Lookup[3] (
2. The other values in the lookup table are similarly filled up. Since the lookup table
returns 2, child_index for the next SSE tree equals 2. Then, we compare three nodes in
the next SSE tree and Vmask ([1, 1, 1], implying the right child of the node storing the
value 53, as shown with the second red arrow in the figure. We now continue with the
load, compare, lookup and offset computation till the end of the tree is reached. After
traversing through the index structure, we get the index of the tuple that has the largest
key less than or equal to key_q.

7/11

As compared to a scalar code, we resolve dK (= log2(NK +1)) levels simultaneously.
Hence theoretically, a maximum of 2X (=dK) speedup is possible (in terms of number
of instructions).

6. Performance Analysis

We did benchmark for SIMD optimized FAST on energon1.cims.nyu.edu server, whose
architectural parameters relevant to the performance are listed below.

CPU Name: Intel Xeon L5320
Number of Cores: 4
SIMD width: 4
Cache Size: 4096KB
Cache Line Size: 64B
Page Size: 4096B

A list of tuples are generated with 32-bit key and value. The tuples are sorted according
to the key. Then a normal tree and a FAST are constructed based on it. The size of
tuple varies from 2^6 to 2^22, corresponding to tree size that varies from 1KB to 64MB.
One hundred thousand searches are run for each tree. Search keys are generated
randomly to avoid coherence between subsequent searches.

We run the benchmark for 10 times and average the time consumed. Each benchmark
involves 10^5 random searches applied on both trees. The result of benchmark is
shown in table 1. Search performances are compared between the normal tree and on
the optimized FAST in Figure 3.

Tree Size 1KB 4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB
Normal Tree

Elapsed Time
(s)

0.0293 0.0356 0.0389 0.0440 0.0533 0.0591 0.0761 0.0936 0.163

FAST Tree
Elapsed Time

(s)
0.0228 0.0267 0.0330 0.0420 0.0480 0.0547 0.0739 0.1032 0.165

 Table 1. Time consumed by searches on trees of different sizes

8/11

The benefit of SIMD optimization on search is more noticeable for small trees than large
trees. The reason is that small trees do not suffer as much latency of memory I/O as
large trees. We could observe, from table 1, that, for tree size of 1KB and 4KB,
searches on FAST are 22% and 25% faster than normal tree, respectively. When tree
size is smaller than page size (4KB), the number of accessed memory pages is
minimized. There is little memory latency. Thus, the data-level parallelism exploited by
SIMD optimization gains performance by 20%-30%. This performance improvement
shows agreement with what addressed in [1]. However, with tree size increasing, the
performance difference between FAST and normal tree gradually shrinks and finally
disappears. Probably it results from that search on small trees is compute bound while
search on large trees is not. When tree size become larger than page size or even
cache size, it is necessary to bring in data from memory after only a few computations.
Access to memory also need more address computation for large trees. In this situation,
the latency coming from cache or memory access becomes performance bottleneck.
Then search on large trees switches from compute bound to latency bound, thus it does
not exploit additional compute resources provided by SIMD instructions.

To verify the above hypothesis about performance, we ran the benchmark again with
Linux profiling tool “perf” and tried to find out the primary reason of the performance
decrease for large trees. 10^7 searches were carried out in the benchmark to amplify
the possible effect caused by the hardware events. A variety of hardware events were
analyzed, including instructions, cache misses and page faults. Finally, it turned out that
elapsed time showed similar trend with number of bus cycles, as shown in table 2 and

Figure 1. Throughput (million searches per second) of Normal Tree and Fast Tree

9/11

tree size Normal Tree
bus cycle

Fast Tree bus
cycle

Normal Tree
elapsed time

Fast Tree
elapsed time

1k 430,502,606 382,000,321 1.663833406 1.503150901

2k 460,804,589 425,113,382 1.951052939 1.668005499

4k 498,377,832 451,082,235 2.115594736 1.766830354

8k 535,990,005 497,048,714 2.240976779 2.098979892

16k 574,567,859 514,587,931 2.256231695 2.158809217

32k 615,431,845 595,555,330 2.330204714 2.246055118

64k 660,218,516 656,586,118 2.515943729 2.36383442

128k 708,707,604 701,287,043 2.869222885 2.826380779

256k 761,954,913 715,888,286 3.030701338 2.988343545

512k 799,936,717 813,487,022 3.130861292 3.19864613

1M 897,151,742 831,481,712 3.448993999 3.226389534

2M 993,904,764 1,268,572,088 3.952918245 5.102762455

4M 1,187,185,549 1,356,143,392 4.588148258 5.261571795

8M 1,509,162,112 2,036,208,446 5.792797421 7.968207739

16M 1,852,235,495 2,186,256,315 7.441925196 8.467376134

32M 2,091,114,732 2,842,514,412 8.743061693 11.13028249

64M 2,837,744,858 3,120,498,274 10.83473015 12.14902355

Table 2. Elapsed Time and number of Bus Cycles generated by benchmark with
“perf stat event=bus cycle”

figure 3. Because the SIMD optimization search requires that four tree nodes are
computed simultaneously, the processor needs to read four tree nodes from memory for
every two levels. For normal tree search algorithm, it is necessary to read two tree
nodes from memory for every two levels. Therefore, SIMD optimization tree search
have to read more tree nodes from memory than normal tree search. When tree size is
small, the whole tree may be located in one or a few pages, not many bus cycles are
needed even SIMD optimization search requires more tree nodes. However, when tree

10/11

size increases, tree nodes are distributed very dispersedly in memory. Thus, the
number of bus cycles called by SIMD optimization search is increasing rapidly and
surpassing normal search.

Figure 3. Elapsed Time and number of Bus Cycles (According to data from table 2)

11/11

SIMD optimization search is advantageous in hardware events other than bus cycles.
For example, there are fewer instructions, CPU clocks in SIMD optimization search.
Although these differences are tiny, they still help SIMD optimization search. Therefore,
in conclusion, the analysis result with perf partly proves our hypothesis we raised about
search performance. It clearly shows that the failure of SIMD optimization search in
large trees is resulted from the large amount of memory I/O.

7 Future work.

Since Fast tree algorithm’s bottleneck is memory I/O, we propose following ways to
improve performance.

Because __m128 data type could store four float numbers and we only used three of
them, to utilize the memory space, we could reconstruct the FAST tree that each node
contains four nodes of normal tree. The total number of nodes in FAST would be
reduced, hopefully that could improve memory efficiency.

The cache line blocking and page blocking techniques reported by [1] seem to be
helpful to this problem. We could add more hierarchy block (cache line size, page size)
to FAST to utilize the hardware.

Reference
[1] Changkyu Kim. et al FAST: Fast Architecture Sensitive Tree Search on Modern
CPUs and GPUs., 2010
[2] Comp D. Comer. Ubiquitous b-tree., 1979.

