
LBNL-62756

1

Bitmap Index Design Choices and Their Performance
Implications

Elizabeth O’Neil and Patrick O’Neil

University of Massachusetts at Boston

{eoneil, poneil}@cs.umb.edu

Kesheng Wu

Lawrence Berkeley National Laboratory

kwu@lbl.gov

ABSTRACT

Historically, bitmap indexing has provided an important database capability to accelerate queries.

However, only a few database systems have implemented these indexes because of the difficulties of

modifying fundamental assumptions in the low-level design of a database system and in the expectations

of customers, both of which have developed in an environment that does not support bitmap indexes.

Another problem that arises, and one that may more easily be addressed by a research article, is that there

is no definitive design for bitmap indexes; bitmap index designs in Oracle, Sybase IQ, Vertica and

MODEL 204 are idiosyncratic, and some of them were designed for older machine architectures.

To investigate an efficient design on modern processors, this paper provides details of the Set Query

benchmark and a comparison of two research implementations of bitmap indexes. One, called RIDBit,

uses the N-ary storage model to organize table rows, and implements a strategy that gracefully switches

between the well-known B-tree RID-list structure and a bitmap structure. The other, called FastBit is

based on vertical organization of the table data, where all columns are individually stored. It implements a

compressed bitmap index, with a linear organization of the bitmaps to optimize disk accesses. Through

this comparison, we evaluate the pros and cons of various design choices. Our analysis adds a number of

subtleties to the conventional indexing wisdom commonly quoted in the database community.

1. INTRODUCTION

Bitmap indexes have not seen much new adoption in commercial database systems in recent years. While

ORACLE has offered bitmap indexing since 1995, other major systems such as DB2 and Microsoft SQL

Server do not provide them. Microsoft SQL Server may create bitmaps during hash joins, but not for

general indexing; DB2 has adopted an Encoded Vector Index [16], but this is basically an encoded

projection index rather than a bitmap index. Sybase Adaptive Server Enterprise (ASE), the major Sybase

DBMS, does not have bitmap indexing, although the Sybase Adaptive Server IQ product provides quite

competitive bitmap indexing for data warehousing. This situation arises in part because there is no

definitive design for bitmap indexes. To investigate such a definitive design, we plan to explore different

design choices through a careful study of two research implementations. Since we have control over all

aspects of the research implementations, we are able to try out some new

techniques for improving performances, such as new forms of compression and

careful disk placement. In the process of studying their performance pros and

cons, we also find some surprises.

A basic bitmap index (more simply, bitmap index in what follows) is typically

used to index values of a single column X in a table. This index consists of an

ordered sequence of keyvalues representing distinct values of the column, and

each keyvalue is associated with a bitmap that specifies the set of rows in the

table for which the column X has that value. A bitmap has as many bits as the

number of rows in the table, and the kth bit in the bitmap is set to 1 if the value

of column X in the kth row is equal to the keyvalue associated with the bitmap,

and 0 for any other column value. Table 1 shows a basic bitmap index on a

table with nine rows, where the column X to be indexed has integer values

ranging from 0 to 3. We say that the column cardinality of X is 4 because it has

4 distinct values. The bitmap index for X contains 4 bitmaps, shown as B0, B1,

Table 1: A bitmap

index for a column

named X. Columns

B0 – B3 are

bitmaps.

RID X B0 B1 B2 B3

0 2 0 0 1 0

1 1 0 1 0 0

2 3 0 0 0 1

3 0 1 0 0 0

4 3 0 0 0 1

5 1 0 1 0 0

6 0 1 0 0 0

7 0 1 0 0 0

8 2 0 0 1 0

LBNL-62756

2

…, B3, with subscripts corresponding to the value represented. In Table 1 the second bit of B1 is 1

because the second row of X has the value 1, while corresponding bits of B0, B2 and B3 are all 0.

To answer a query such as “X > 1,” we perform bitwise OR (|) operations between successive long-words

of B2 and B3, resulting in a new bitmap that can take part in additional operations. Since bitwise logical

operations such as OR (|), AND (&) and NOT (~) are well-supported by computer hardware, a bitmap

index software could evaluate SQL predicates extremely quickly. Because of this efficiency, even some

DBMS systems that don’t support bitmap indexes will convert intermediate solutions to bitmaps for some

operations. For example, PostgreSQL 8.1.5 has no bitmap index, but uses bitmaps to combine some

intermediate solutions [10]. Similarly, Microsoft SQL Server has a bitmap operator for filtering out rows

that don’t participate in a join operation [5].

Let N denote the number of rows in the table T and C(X) the cardinality of column X. It is easy to see that

a basic bitmap index like the one in Table 1 requires N•C(X) bits in the bitmaps. In the worst case where

every column value is distinct, so that C(X) = N, such a bitmap index requires N
2
 bits. For a large dataset

with many millions of rows, such an index would be much larger than the table being indexed. For this

reason, much of the research on bitmap indexes has focused on compressing bitmaps to minimize index

sizes. However, operations on compressed bitmaps are often slower than on uncompressed ones, called

verbatim bitmaps. There is a delicate balance between reducing index size and reducing query response

time, which complicates the design considerations for bitmap index implementations.

Two very different approaches to reducing index sizes are used by the research prototypes we study.

FastBit implements the Word-Aligned Hybrid (WAH) compression; the WAH compressed basic bitmap

index was shown to be efficient in [18][19]. RIDBit employs a combination of verbatim bitmaps and

RID-lists composed of compact (two-byte) Row Identifiers (RIDS). Its unique ability to gracefully switch

from verbatim bitmaps to RID-lists based on the column cardinality originated with MODEL 204 [6].

The implementations of FastBit and RIDBit were quite different at the beginning of our study, which

made them ideal for contrasting the different implementation strategies and physical design choices. As

our study progressed, a number of implementation ideas found to be superior in FastBit were copied in

RIDBit; RIDBit software was also modified to better utilize the CPU. The lessons learned in this exercise

will be covered in the Summary section. The following table gives the key differences between RIDBit

and FastBit. We will discuss the detailed design of the two approaches in the next two sections.

 FastBit RIDBit

Table layout Vertical storage (columns stored separately) N-ary storage (columns stored together in row)

Index layout Arrays of bitmaps B-tree keyed on keyvalues (improved in project)

Bitmap layout Continuous Horizontally partitioned into 32K-bit Segments

Compression Word-Aligned Hybrid compression Sparse bitmap converted to RID-list

The topics covered in succeeding sections are as follows. In Sections 2 and 3, we describe the architecture

of FastBit and RIDBit. Section 4 provides a theoretical analysis of index sizes for different columns.

Section 5 describes the Set Query Benchmark [7], which is used to compare performance of RIDBit and

FastBit. Section 6 presents the detailed experimental measurements. Finally, Section 7 provides a

summary and lessons learned.

2. FASTBIT

FastBit started out as a research tool for studying how compression methods affect bitmap indexes, and

has been shown since to be an efficient access method in a number of scientific applications [12][17]. It

organizes data into tables (with rows and columns), where each table is vertically partitioned and different

columns stored in separate files. Very large tables are also horizontal partitioned, each partition typically

consisting of many millions of rows. A partition is organized as a directory, with a file containing the

schema, followed by the data files for each column. This vertical data organization is similar to a number

of contemporary database systems such as Sybase IQ [9], MonetDB [1][2], Kx systems [4], and C-Store

LBNL-62756

3

[14]. Each column is effectively a projection index as defined in [9] and can sometimes be used

efficiently to answer queries without additional indexing structures. FastBit currently indexes only fixed-

sized columns, such as integers and floating-point numbers, although it can index low-cardinality string-

valued columns through a dictionary that converts the strings to integers. Because of this restriction, the

mapping from a row to a row identifier is

straightforward.

FastBit implements a number of different bitmap

indexes with various binning, encoding and

compression strategies [13]. The index used in this

study is the WAH compressed basic bitmap index.

All bitmaps of an index are stored in a single file

as shown in Table 2. Logically, an index file

contains two sets of values: the keyvalues and the

compressed bitmaps. FastBit stores both the keyvalues and bitmaps in arrays on disk. Since each keyvalue

is the same size, it can be located easily. To locate the bitmaps, FastBit stores another array starts[] to

record the starting position of all compressed bitmaps in the index file (in bitmaps[]). To simplify the

software, one extra values is used in array starts[] to record the ending position of the last bitmap.

FastBit generates all bitmaps of an entire index for one partition in memory before writing the index file.

This dictates that the entire index must fit in memory and imposes an upper bound on how many rows a

horizontal partition can hold on a given computer system. Typically, a partition has no more than 100

million rows, so that a small number of bitmap indexes may be built in-memory at once.

In general, FastBit store the array keyvalues[] in ascending order so that it can efficiently locate any

particular value. In some cases, it is possible to replace this array with a hash function. Using hash

functions typically requires fewer I/O operations to answer a query than using arrays do, but using arrays

more easily accommodates arbitrary keyvalues. FastBit uses memory maps to access the array

keyvalues[] and starts[] if the OS supports it; otherwise it reads the two arrays entirely into memory.

Since the index for a partition has to fit in memory when built, this reading procedure does not impose

any additional constraint on the sizes of the partitions.

One advantage of the linear layout of the bitmaps is that it minimizes the number of I/O operations when

answering a query. For example, to answer the range predicate “3 < KN < 10”, FastBit needs to access

bitmaps for values 4 through 9. Since these bitmaps are laid out consecutively in the index file, FastBit

reads all these bitmaps in one sequential read operation.

The linear layout of bitmaps means that FastBit is not in any way optimized for update. An update that

might add or subtract a 1-bit to one of the bitmaps would require modification of the bitmap, followed by

a reorganization of all successive bitmaps in the set. In scientific applications, changes in real time

between queries are unusual, so this limitation is not a serious drawback, and it is not a problem for most

commercial data warehousing applications either. Furthermore, we will see in Section 7 that the new

Vertica database product [14] provides a model where a fixed index for stable data can be maintained on

disk while new data is inserted to a memory resident dynamic store that takes part in all queries.

FastBit reconstitutes a C++ bitmap data structure from the bytes read into memory. This step makes it

easy to use the bitwise logical operation functions implemented in C++; however, it introduces

unnecessary overhead by invoking the C++ constructor and destructor. Additionally, since FastBit

aggregates the read operations for many bitmaps together, a certain amount of memory management is

required to produce the C++ bitmap objects.

3. RIDBIT

RIDBit was developed as a pedagogical exercise for an advance database internals course, to illustrate

how a bitmap indexing capability could be developed. The RIDBit architecture is based on index design

first developed for the Model 204 Database product from Computer Corporation of America [6]. We can

Table 2: Content of an index file.

N Number of rows

C Column cardinality

keyvalues[C] Distinct values associate with each bitmap

starts[C+1] Starting position of each compressed bit-

map (final position is end of all bitmaps)

bitmaps[C] WAH Compressed bitmaps

LBNL-62756

4

view bitmaps, representing the set of rows with a given value for a column, as providing an alternative

form for RID-lists commonly used in indexes. The column values are represented as keyvalues in a B-tree

index, and row-sets that follow each column value are represented either as RID-lists or bitmaps. Bitmaps

are more space-efficient than RID-lists when the bitmap is relatively dense, and bitmaps are usually more

CPU-efficient as well. To create Bitmaps for the N rows of a table T = {r1, r2, …, rN}, we start with a 1-1

mapping m from rows of T to Z[M], the first M positive integers. In what follows we avoid frequent

reference to the mapping m: when we speak of the row number of a row r of T, we will mean the value

m(r).

Note that while there are N rows in T = {r1, r2,..., rN}, it is possible that the number of bits M in the

bitmap representation of RIDBit is somewhat greater than N, since it associates a fixed number of rows p

with each disk page for fast lookup, even when the rows are somewhat varying in size. The advantage of

this is that for a given row r with row number j, the page number accessed to retrieve row r is j/p and the

page slot is j%p, where % denotes the modulo operator. This usually means that rows are assigned row

numbers in disk-clustered sequence during load, a valuable property. The RIDBit architecture stores the

rows in an N-ary organization, where all column values of a row are stored together. Since the rows might

have varying sizes and we may not always be able to accommodate an equal number of rows on each disk

page, the value p must be chosen as a maximum; thus for a page of larger rows, some slots on a page will

not accommodate the full set of p rows, and we will find that m-1(j) for some row numbers j in Z[M] are

undefined.

RIDBit organizes its indexes as B-trees. A bitmap index for a column A with values v1, v2, . . ., vk, is a B-

tree with entries having these keyvalues and associated data portions that contain bitmaps or RID-lists for

the properties A = v1, ..., A = vk. Bitmaps in this index are just a different way to specify lists of RIDs,

and when the density of a bitmap becomes too small to be efficient, a RID-list is used instead. Note in

particular that when we speak of a bitmap index in RIDBit, we admit the possibility that some bitmaps are

in fact RID-lists. See Figure 1 for an index example with low cardinality, where all row-sets are

represented by verbatim bitmaps. RIDBit actually stores each verbatim bitmap as a series of successive

bitmap fragments, called segments. Each box in Figure 1 is an illustration of multiple bitmap segments for

"department = 'sports'".

Recall that bitmaps are called dense if the

proportion of 1-bits in the bitmap is relatively large.

A bitmap index for a column with 32 values will

have bitmaps with average density of 1/32. In this

case the disk space to hold a column index will be

comparable to the disk space needed for a RID-list

index in products with 32-bit RIDs. While the

verbatim bitmap index size is proportional to the

number of column values, a RID-list index is about

the same size for any number of values (as long as

we can continue to amortize the key size with a long block of RIDs). For a column index with a very

small number of values, the bitmaps will have high densities (such as 50% for predicates such as

GENDER = 'M' or GENDER = 'F'), and the disk savings is enormous. On the other hand, when average

bitmap density for a bitmap index becomes too low, the bitmaps can be efficiently compressed. The sim-

plest compression method, and the one used in RIDBit, is to translate the bitmap back to a RID list (albeit

a special small-sized RID in the case of RIDBit). Boolean operations on these mixtures of bitmaps and

RID lists can be found in [6][11]. To account for the fact that some of the page slots are not used, we use

an Existence bitmap (designated EBM), which has exactly those 1 bits corresponding to existing rows1.

1 It was pointed out by Mike Stonebraker that a "non-existence bitmap" would be more efficient, and this change is planned.

B-tree Root Node for department

index

'clothes''china'... 'sports' ...

'tools'

' spor t s

'

 101101 . . . 01011 . .

.

' spor t s

'

Figure 1: A RIDBit Index on department, a

column of the SALES table.

LBNL-62756

5

Now when RIDBit needs to performs a NOT on a bitmap B, it loops through a long int array performing

the ~ operation, then AND's the result with the corresponding long int array from EBM.

In RIDBit, the sequence of rows on a table as well as the bitmaps referencing them are broken into equal-

sized fragments, called segments, so that a verbatim bitmap segment will fit on a single disk page. In its

current architecture, a RIDBit segment fits on a 4KByte page and a verbatim bitmap contains about 32K

bits; thus a table is broken into segments of about 32K rows each. As for the bitmaps, there are three

different ways to store them. The bitmaps with the highest densities are stored as segmented verbatim

bitmaps. As the bit density decreases, the bitmaps are stored as segment-relative RID-lists, as explained in

the next paragraph. At extreme low density, the segment-relative RIDs are directly stored as full-sized

RIDs in the space normally used to store segment pointers to bitmaps or RID-lists in the leaf level of the

B-tree. Since these RIDs are directly stored in the B-tree nodes, they are called "local" RID-lists.

RIDs used to access a row in a RIDBit segment, known as segment-relative RIDs (following the design of

MODEL 204) are represented by integers from 1 to 32K - m (where m bits are used to contain a count of

1-bits in a bitmap), and thus only require two bytes each, or a short int in a typical C program. RIDBit

supports verbatim bitmaps down to a density of 1/50, and a verbatim bitmap of that minimum density will

thus require only 32K/50 = 655 short ints = 1310 bytes for RID-list representation. Thus several RID-lists

with maximum size 1310 bytes or less are likely to fit on a single disk page. At the beginning of each

segmented bitmap/RID-list pointer at the leaf level of the B-tree, the segment number will specify the

higher order bits of a longer RID (4 bytes or perhaps more), but the segment-relative RIDs only use two

bytes each. This is an important form of prefix compression, which greatly speeds up most index range

searches.

A second implication of segmentation involves combining predicates. The B-tree index entry for a

particular value in RIDBit is made up of a series of pointers to segment bitmaps or RID-list, but there are

no pointers for segments that have no representative rows. In the case of a clustered index, for example,

each particular index value entry will have pointers to only a small sequence of row segments. In

MODEL 204, if several predicates involving different column indexes are ANDed, the evaluation begins

segment-by-segment. If one of the predicate indexes has no pointer to a bitmap segment for a segment,

then the segments for the other indexes can be ignored as well. Queries such as this can turn out to be

very common in a workload, and the I/O saved by ignoring I/O for these index segments can significantly

improve performance. This optimization, while present in MODEL 204, was not implemented for the

RIDBit prototype product, meaning that certain queries measured for the current paper did not take

advantage of it. A number of other improvements in RIDBit were implemented during the course of these

experiments, but this one was considered too difficult to complete in the time allotted.

We note that a RIDBit index can contain bitmaps for some index keyvalues and RID-lists for other

values, or even for some segments within a value entry, according to whether the segment’s bit density

falls over or under the current division point of 1/50. In what follows, we will assume that a bitmap index

combines verbatim bitmap and RID-list representations where appropriate, and continue to refer to the

hybrid form as a bitmap index. When we refer to the bitmap for a given value v in a bitmap index, this

should be understood to be a generic name: it may be a bitmap or a RID-list, or a segment-by-segment

combination of the two forms; the term verbatim bitmap however, specifically stands for a bitmap that is

not in RID-list form.

To retrieve the selected values from the table data, RIDBit needs to read the disk pages containing them.

Due to the horizontal data organization, the whole row is read if any value from the row is needed.

4. ANALYSIS OF INDEX SIZE

FastBit and RIDBit implement different bitmap compression algorithms. Here we look at their

effectiveness in reducing index size. For FastBit, index sizes are extensively treated in [19], where Figure

6 summarizes the index size per row over various kinds of data. Here we consider only the simple

uniform random case for both FastBit and RIDBit. Note that RIDBit compression efficiency is not much

LBNL-62756

6

affected by local clusters of bits in the bitmap, so the uniform random case is a good predictor of the

general case. FastBit can take advantage of local runs of bits, as shown in [19].

For FastBit in the uniform random case, we have the following index size expression which is derived

from equation (4) of Section 4.2 of [19], converted from size in words to size in bits. Here w = 32, for 32

bits per word in the current experiments.

 FastBit index size per row, in bits = (Cw/(w-1))(1 – (1 – 1/C)
2w-2

– (1/C)
2w-2

)

This expression can be further simplified for small C and large C as follows:

In the extreme case where C=N, each compressed bitmap is represented with 5 words, 3 of which are

used to represent the bulk of the bits and the remaining 2 are used to represent the N%31 leftover bits.

The RIDBit implementation uses pages of size 4096 = 2
12

 bytes, holding 2
15

 bits (actually, 2
15

 - 16). A

segment covers 2
15

 rows, using a bitmap or a segmented RID-list. The segment-relative RIDs of a

segmented RID-list are 16 bits long and can start at any byte in a disk page (for current 4 KByte pages,

and also for larger pages up to 8 KByte). A bitmap index has segment-relative bitmaps or RID-lists for

each of C column values, ignoring cases with only one row per segment where segmentation is not used.

Multiple RID-lists may share a page. If an index is composed entirely RID-lists, the total size is 16 bits

per row, for one segment-relative rid, while if it is entirely bitmaps, the total size is C bits per row, for 1

bit in each of C bitmaps. In the extreme case of C between a value on the close order of 32,000 and N:

k•32,000 ≤ C ≤ N, where k is some small integer, a few rows for each column value per segment, each

value requires 8 bytes for its local list entry.

Of course an index can have a mixture of bitmaps and RID-lists, but this happens only in edge cases,

since the decision is made based on a whole segment of data. The above simple formulas provide straight

lines on both linear and log-log plots, and we use the latter in Figure 2 to cover more ground and allow

easy comparison to Figure 6 in [19]. The above formula does not include the size of B-trees, which add a

contribution of O(C) with a small constant of proportionality based on the number of per-key records in a

leaf node.

We could minimize RIDBit index size by simply

choosing the minimum of C and 16 bits per row,

which suggests one to switch from bitmap to RID-

list when C ≥ 16. However, index size is not the

most important criterion in deciding when to switch

storage scheme. Experimentally, we have found that

bitmaps are faster than segmented RID-lists for

answering queries for C well above 16, even in face

of the extra I/O needed. We choose to store the data

in bitmaps for C up to 50. Possibly we should store

the data on disk as RID-lists and construct bitmaps

as we bring them into memory, but we have not

tested this option.

The internal structures of RIDBit indexes for

columns of various cardinalities C fall into three

1.00

10.00

100.00

1000.00

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

cardinality (c)

s
iz

e
 p

e
r

ro
w

,
b

it
s

Ridbit, theory Ridbit, actual Fastbit, actual

Figure 2: Index sizes versus column cardinality.

FastBit index size per row, in bits =

(w/w-1) C for small C

(Cw/(w-1))(1 – e-(2w-2)/C) ≈ 2w = 64 for large C<<N

5w = 160 for C near N

RIDBit index size per row, in bits =

C if segments are bitmaps, good for small C

16 if segments are segmented RID-lists, C < k•32,000

64 if RID-lists are local to B-tree leaves, k•32.000 ≤ C ≤ N

LBNL-62756

7

categories:

Low cardinality: C ≤ 16, where segmented bitmaps are no larger than segmented RID-lists and faster.

Medium cardinality: 16 < C < 50, where segmented bitmaps are larger than segmented RID-lists but still

faster.

High cardinality: C > 50, where segmented RID-lists are much smaller and generally more efficient.

In the extreme case where k•32,000 ≤ C ≤ N, a few rows of each value per segment, segmentation is

dropped in favor of unsegmented RID-lists of full-size local RIDs.

This analysis is easily generalized to using arbitrary p bits for segment-relative RIDs: just replace 16 with

p above. With many of today’s processors, including the Pentium 4 and its descendents, it is efficient to

access groups of bits in memory without byte-alignment. Thus we could use p=12 bits to access any byte

address in a 4 KByte page, and further compress the RID-lists.

Figure 2 shows the actual RIDBit and FastBit index sizes for the experiments reported in Section 6. The

RIDBit index sizes shown here include the sizes of the B-trees, which were not included in our simple

analysis, but became important for large cardinality (C = 1,000,000 for example). Similarly, the index

sizes for FastBit are the total size of index files including the array starts[]. Overall, we see that the

RIDBit indexes are never larger than FastBit indexes. When C ≤ 16, both indexes have the same sizes; for

larger C, FastBit indexes take about 64 bits per row while RIDBit index takes about 16 bits per row; when

C is close to N (=10
6
), FastBit index takes 192 bits per row and RIDBit index takes about 113 bits per

row. As noted before, when C = N, each WAH compressed bitmap takes 5 words and one word is needed

to store the starting position of the bitmap, which gives the total of 6 words per row. In this extreme case,

RIDBit essentially stores a B
+
-tree, which takes about 3.5 words per row.

5. THE SET QUERY BENCHMARK

We use a number of queries from the Set Query Benchmark to study performance

of RIDBit and FastBit. The Set Query Benchmark was designed for query-mostly

applications [7][8], and predates the Star-Schema data warehouse design. Since

bitmap indexes are primarily used for high-performance queries, it is a natural

choice. Due to the lack of support for join operations in both FastBit and RIDBit,

we only implemented the first five queries from the Set Query Benchmark. This

lack of join support also ruled out the well-known TPC-H Benchmark [15]. Note

that the limitation on join is due to the current implementations of the two

software package; the underlying bitmap index technology can effectively handle

joins [9].

The Set Query benchmark was defined on a BENCH table of one million 200-

byte rows, containing a clustering column KSEQ with unique values 1, 2, 3, ..., in

order of the rows, and a number of randomly generated columns whose names

indicate their cardinalities, as shown in Table 3. For example, K5 has 5 distinct

values appearing randomly on approximately 200,000 times each.

Queries of the Set Query Benchmark were modeled on marketing analysis tasks.

We briefly describe the five SQL queries used for our timing measurements.

Q1: SELECT count(*) FROM BENCH WHERE KN=2; KN is one of KSEQ,

K500K, …, K2. There are 13 different instances of Q1. Since it involves only one column at a time in the

WHERE clause, we call Q1 a one-dimensional (1-D) query.

Q2A: SELECT count (*) FROM BENCH WHERE K2=2 and KN = 3; KN is one of KSEQ, K500K, …,

K4. There are 12 instances of Q2A.

Q2B: SELECT count (*) FROM BENCH WHERE K2=2 and NOT KN = 3; KN is one of KSEQ, K500K,

…, K4. Both Q2A and Q2B are two-dimensional queries since each WHERE clause involves conditions

on two columns. At one time, the "NOT KN = 3" clause was difficult to support efficiently.

Table 3: Set

Query

Benchmark

columns and

their column

cardinalities.

Name Cardinality

KSEQ 1,000,000

K500K 500,000

K250K 250,000

K100K 100,000

K40K 40,000

K10K 10,000

K1K 1,000

K100 100

K25 25

K10 10

K5 5

K4 4

K2 2

LBNL-62756

8

Since the above three queries only count the number of rows satisfying the specified conditions, we say

they are count queries. Both FastBit and RIDBit answer count queries using INDEX ONLY.

Q3A: SELECT sum(K1K) FROM BENCH WHERE KSEQ between 400000 and 500000 and KN=3; KN

is one of K500K, K250K, …, K4. There are 11 instances of Q3A.

Q3B: SELECT sum(K1K) FROM BENCH WHERE (KSEQ between 400000 and 410000 or KSEQ

between 420000 and 430000 or KSEQ between 440000 and 450000 or KSEQ between 460000 and

470000 or KSEQ between 480000 and 500000) and KN=3; KN is one of K500K, K250K, …, K4.

Q3A0 and Q3B0: We include a variation of the above two queries

by replacing the SELECT clause with “SELECT count(*)”,

making them count queries like Q1 and Q2.

Q4: SELECT KSEQ, K500K FROM BENCH WHERE constraint

with 3 or 5 conditions. The constraints come from the Table 4.

Queries Q4A selects 3 consecutive conditions from Table 4, such

as, 1-3 and 2-4, and Q4B selects 5 consecutive conditions, such as

1-5 and 2-6. Our tests use 8 instances of Q4A and Q4B, where the

last two instances of Q4B uses the first two conditions when there

are no more conditions at the end of the list. To answer these

queries, multiple indexes are needed and results from each index

have to be combined.

The original Q4A and Q4B had a select clause with two columns, KSEQ and K500K. In our tests, we

vary the number of columns selected from 0 (an index-only query retrieving count(*)) to 13. This creates

more test cases for a better comparison between different data organizations.

Q5: SELECT KN1, KN2, count (*) GROUP BY KN1, KN2; for each (KN1, KN2) in {(K2, K100), (K4,

K25), (K10, K25)}. There are three instances of Q5.

In the following tests, this query is implemented as a set of queries of the form “SELECT count (*)

WHERE KN1=x and KN2=y,” where x and y are distinct values of KN1 and KN2. We choose to answer

Q5 this way mainly to exercise the indexing performance of FastBit and RIDBit, even though FastBit can

support this query directly [12]. Thus, this is a count query using index only.

6. INDEX PERFORMANCE EXPERIMENTS

We present the performance measurements in three parts, the time to construct the indexes, time to

answer the count queries and time to answer the retrieval queries. Before presenting the timing

measurements, we briefly describe the test setup.

6.1 Experiment Setup

We performed our tests on a number of different

Linux 2.6 machines with ext3 file systems on

various types of disk systems. Table 5 shows

some basic information about the test machines

and the disk systems. To make sure the full disk

access time is accounted for, we un-mount the

file system and then mount the file system before

each query. Under Linux, this clears the file

system cache. To avoid spending an excessive

amount of time on mount/un-mount, we

duplicated the test data four times to generate a

total of five sets of the same data files. This

allows us to run each query five times on different data between each pair of mount/un-mounts. Since the

timing measurements are performed on five copies of the data files, we also avoid potential performance

Table 5: Information about the test systems.

 CPU disk

 Type Clock

(GHz)

Type Latency

(ms)

Speed

(MB/s)

HDA Pentium 4 2.2 EIDE 7.6 38.7

MD0 Pentium 4 2.2 Software

RAID0

(2 disks)

9.4 58.8

SDA Pentium 4 2.8 Hardware

RAID0

(4 disks)

15.8 62.2

SDB PowerPC

5

1.6 SCSI 8.3 54.4

Table 4: Range conditions used

for Q4.

(1) K2 = 1

(2) K100 > 80

(3) K10K between 2000 and 3000

(4) K5 = 3

(5) K25 in (11, 19)

(6) K4 = 3

(7) K100 < 41

(8) K1K between 850 and 950

(9) K10 = 7

(10) K25 in (3, 4)

LBNL-62756

9

traps related to any peculiar disk placement of the files. All of

these operations are repeated six times to give a total of 30 runs

for each query, and the time we report is the median elapsed time

for all 30 runs, measured by the function gettimeofday.

6.2 Index Building

The total time used by RIDBit and FastBit to build indexes is

shown in Table 6. In Figure 3 we examine in detail how the time

is spent in building different indexes, taking the MD0 system as

representative of the four systems measured. The elapsed time

shown in Figure 3 is the medium value of building indexes for

five separate copies of the test data. The total time reported in

Table 6 is the sum of these medium values.

In Figure 3 we see that RIDBit requires slightly

more time to build low-cardinality indexes and

FastBit requires considerably more time to build

high-cardinality indexes. In high-cardinality cases,

FastBit generates a large number of small bitmap

objects and spends much time in allocating memory

of these bitmaps. RIDBit maintains a pre-allocated

stack of page-sized buffers, and thus avoid the same

pitfall.

6.3 Index-Only Query Performance

Here we review the time required to answer the

count queries. These timing measurements directly

reflect the performance of indexing methods. We

start with an overview of the timing results then

drill down the details as we find various aspects of

interest.

An overview of all the timing measurements on count queries is presented in Table 7. In this table, we

show the total time of all instances of each query, for example, the row for Q1 is the sum of the median

elapsed time for 13 instances of Q1. The last row in the table shows the total time of all count queries. On

three of the four test systems, the total time used by FastBit and RIDBit are within 10% of each other,

with FastBit taking less time Q1, Q2 and Q4 while RIDBit taking less time on Q5. The performance of

RIDBit was improved during this joint measurement effort by emulating some of features of FastBit, as

we will explain in Section 7. On the fourth system, SDB, the performance difference between RIDBit and

FastBit was traced to an

unexpected overhead for

per I/O operation at the

lower levels of that I/O

system apparently

impacted RIDBit more

than FastBit.

Both FastBit and RIDBit

(modified during the joint

work) have arranged index

data so that most of the

range predicates accesses

are performed by

Table 7: Total elapsed time (seconds) to answer the count queries on

four test systems.

 HDA MD0 SDA SDB

 RIDBit FastBit RIDBit FastBit RIDBit FastBit RIDBit FastBit

Q1 0.39 0.23 0.50 0.25 0.34 0.26 0.52 0.22

Q2A 0.74 0.42 0.68 0.51 0.50 0.47 0.85 0.53

Q2B 0.71 0.42 0.66 0.49 0.53 0.46 0.88 0.52

Q3A0 2.28 2.18 2.00 1.91 1.79 1.73 1.97 2.06

Q3B0 2.08 2.46 1.76 1.90 1.49 1.41 1.87 1.81

Q4A0 1.39 0.94 1.22 0.83 0.97 0.77 2.10 1.03

Q4B0 2.20 1.46 1.75 1.31 1.67 1.21 2.98 1.65

Q5 1.13 1.44 1.09 1.46 0.81 1.21 1.03 1.50

Total 10.92 9.55 9.66 8.66 8.10 7.52 12.20 9.32

Figure 3: Time (in seconds) required to build

each individual index on system MD0.

Table 6: Total index sizes (MB)

and the time (in seconds) needed

to build them.

 RIDBit FastBit

 Size 64.2 MB 93.5b MB

HDA 75.7 sec 21.7 sec

MD0 8.3 sec 27.2 sec

SDA 3.5 sec 34.8 sec ti
m

e

SDB 4.0 sec 41.7 sec

LBNL-62756

10

sequential reads of a relatively large number of disk sectors; thus the total

execution time of these accesses should be dominated by the time to read

the disk sectors. To verify this is indeed the case, we show the number of

disk sectors read in Table 8. Since the numbers of disk sectors read on

different systems are nearly identical2, we only show the values from

system MD0. We see that the indexing method that reads more disk sectors

does not always uses more time, therefore we have to investigate further.

We next examine the performance on Q1 in detail. In Figure 4 the medium

query response time is plotted against the number of hits for Q1. Since

each instance of Q1 involves only one bitmap from one index, it is

relatively easy to understand where the time is spent. The time used by

FastBit is primarily for two read operations: first, to read the starting

positions of the index structure shown in Table 2, and second, to read the

selected bitmap. These two read operations may each incur 9.4 ms I/O

latency, which leads to a total elapsed time of about 0.02 s, unless the

selected bitmap happen to be in the read-ahead buffer of the first read operation, which leads to a total

time of about 0.01 s. Among the 13 instances of Q1, most are either 0.01 s or 0.02 s. When the number of

hits is very small and the cardinality of the column is

high, it takes more time to complete the first read

operation. The I/O time of RIDBit can also be

divided into two parts: first to read the tablespace

index blocks involved (listing the positions of pages

in the tablespace), and at the same time access the B-

tree root node and a few index nodes, and second (in

all KN=2 cases where N is 100K 250K, 500K, and

SEQ, the cases using unsegmented RID-lists) to read

in the bitmap or RID-list that will determine the

count to be retrieved. Since each of these operations

requires at least 9.3 ms (and in fact the first one to

read in the index blocks of the tablespaces requires

17 ms), the total time used by RIDBit is nearly 0.028

s (28 ms) in most cases.

The time needed to answer higher dimensional count

queries is dominated by the time needed to answer each of the one-

dimensional conditions. For example, the two-dimensional queries Q2A and

Q2B involve two conditions of same form as Q1; we expect Q2A and Q2B to

take about twice as much time as that of Q1. We see from the measurements

on MD0 in Table 7 that this estimate is accurate (a ratio of 0.51/0.25 = 2.04);

on the other hand, RIDBit has a much smaller increment of elapsed time

(0.68/0.50 = 1.36), presumably because the initialization of a tablespace for a

second index is easily combined with the initialization of the first tablespace.

This observation holds for Q4A0 and Q4B0 as well. For example, the total

time for Q4B0 on MD0 is 1.31 s which is about 1.6 times of that for Q4A0.

This relative difference is close to 5/3, the ratio of dimensions of the queries.

We see that the query response time for queries Q1, Q2A, Q2B, Q4A0 and

Q4B0 follows our expectation. In these cases, the time used by FastBit is

slightly less than that used by RIDBit. Table 9 shows the CPU time used to

2 The precise number of disk sectors read may differ because there are potential differences in the number of I/O nodes involved

in different file systems. In addition, the software RAID may require additional disk accesses to resolve the file content.

Table 8: Total number of

disk sectors (in thousands)

needed to answer count

queries.

 RIDBit FastBit

Q1 10.7 4.9

Q2A 15.0 9.2

Q2B 15.0 9.2

Q3A0 52.0 64.4

Q3B0 34.4 48.8

Q4A0 27.8 35.9

Q4B0 41.3 56.5

Q5 23.0 27.4

Total 219.2 256.3

Table 9 Total CPU

time (seconds) to

answer count

queries on MD0.

 RIDBit FastBit

Q1 0.016 0.045

Q2A 0.028 0.059

Q2B 0.038 0.061

Q3A0 0.500 0.672

Q3B0 0.307 0.521

Q4A0 0.137 0.111

Q4B0 0.192 0.165

Q5 0.701 0.795

Total 1.919 2.429

Figure 4: Elapsed Time (seconds) to answer

Q1 on MD0.

LBNL-62756

11

answer the count queries on MD0. Compared with the elapsed time reported in Table 7, we see the CPU

time is usually 1/5
th
 of the elapsed time or less for queries Q1, Q2A, Q2B, Q4A0 and Q4B0. The query

processing time follows our expectation partly because the I/O time is so much more than the CPU time.

Next we examine the cases for Q3 and Q5.

Figure 5 shows the elapsed time to answer each

instance of Q3A0 on MD0. We notice that the time

values fall in a very narrow range; the maximum and

minimum values are within 20% of each other. This is

because the time to resolve the common condition on

KSEQ dominates the total query response time. To

resolve this condition on KSEQ, FastBit reads

100,001 compressed bitmaps of about 5 words each,

while RIDBit reads 100,001 leaf nodes of the B-tree

with an average size about 3.5 words each. Even

though FastBit reads more data than RIDBit, it

doesn’t always use more I/O time because it reads all

bitmaps in one sequential read operation. Since the

bitmaps selected by the conditions on KSEQ in Q3B0

can not be read in one operation, FastBit usually uses

more time than RIDBit. From Table 9, we see that

Q3A0 and Q3B0 also require more CPU time than Q4A0, Q4B0 and other. In FastBit, this CPU time is

primarily spent on reconstructing the large number of C++ bitmap objects. On Q3A0 and Q3B0, RIDBit

uses less CPU time than FastBit.

Another query where RIDBit is faster than FastBit is Q5. From Table 9 we see that RIDBit requires about

13% less CPU time on MD0, which again suggests that RIDBit is more CPU efficient than FastBit. The

difference in elapsed time is larger (about 25% on MD0) than that in CPU time because FastBit indexes

are larger than RIDBit indexes.

6.4 Table Retrieval Query Performance

Next we present measurements of table retrieval

queries. We present the measurements on Q3

before those on Q4 because Q3 only retrieves a

sum of values from one column, while Q4 retrieves

a varying number of columns.

 Figure 6 shows the time required to retrieve the

column selected in Q3A. The time values shown

are the differences between query response time of

Q3A and that of Q3A0. Overall, we see that the

time required by FastBit slowly rises as the number

of hits increases. RIDBit uses about the same

amount of time as FastBit when one or two records

are retrieved; but it uses more time when the

number of hits is larger. The time required to

retrieve the values for Q3B has similar trend as that for Q3A.

Because of the condition on KSEQ, the records selected by Q3A and Q3B are from between row 400,000

and 500,000. The second condition in Q3A controls how many records are selected and how they are

distributed. Since all columns in test data are uniform random numbers, the selected records are uniformly

scattered among rows 400,000 to 500,000. The Operating Systems on our test machines all retrieve data

from disk in pages (of either 4 KB or 8KB). To better understand the retrieval time, we compute how

many pages are accessed assuming 4 KB pages.

Figure 5 Elapsed Time (seconds) to answer

Q3A0 on MD0.

Figure 6 Time spent to retrieve the selected

records to answer Q3A on MD0.

LBNL-62756

12

Let m denote the number of rows in a data page. The RIDBit and FastBit use different organization for

the table data, which leads to different number of records to be placed on a page. RIDBit uses a horizontal

organization; FastBit uses a vertical data organization. The number of records per 4-KB page for RIDBit

is 75. The number of records per 4-KB page for FastBit is 1024. We use mh to denote the number of

records per page for the horizon data organization, and use mv to denote the number of records per page

for the vertical data organization. Let nh denote the number of pages for the 100,000 rows between

400,000 and 500,000 in the horizontal organization,

nh = 100,000/mh = 1,334. Let nv denote the number

of pages for 100,000 records in vertical

organization, nv = 100,000/mv = 98. If every page is

touched, clearly, there is an advantage to use

vertical data organization. Next, we examine a

more general case, where s records are randomly

selected. Assuming that s is much smaller than

100,000, we can use the following formulae to

estimate the number of pages to be accessed [8]: ph

= nh (1-exp(-s/nh)) and pv = nv(1-exp(-s/nv)).

Figure 7 shows the number of disk sectors accessed

for the retrieval operation. The number of disk

sectors shown is the difference of the number of

disk sectors accessed to answer Q3A and that to

answer Q3A0. In the same plot, we also show the

number of disk sectors to be accessed using the

above formulae for ph and pv. The multiplying factor of 8 is to translate the 4 KB pages to 512-byte disk

sectors. In general, the actual number of disk sectors accessed agrees with predictions. The actual disk

sectors accessed is typically more than the prediction because the I/O system performs read-ahead.

Comparing Figure 6 and Figure 7, we see that the time used for retrieval generally follows the number of

disk sectors accessed. We note two deviations. When the number of disk sectors accessed is small, the I/O

overhead, in particular, the disk seek time, dominates the total retrieval time. As the number of disk

sectors accessed increases, the retrieval time increases proportionally until nearly all of the disk sectors

are accessed. In which case, the retrieval time may actually be less because the data file can be read into

memory with large sequential read operations. This can either be accomplished by the OS or the database

software.

Our modified versions of Q4 retrieve 0, 1, 3, 5, 7, 9,

11 and 13 column values. In Figure 8 and Figure 9,

we show the total query response time against the

number of columns selected for Q4A and Q4B on

MD0. In these figures, each symbol shows the total

time of 8 instances of Q4A (or Q4B) with the same

number of columns selected.

From Figure 8, we see that the total time used with

FastBit's vertical data organization increases linearly

with the number of columns selected. In Figure 8, the

slope of the line form by FastBit is about 0.8, which

indicates that in 0.8 seconds it can read 8 copies (8

instances of Q4Ax) of the 4-MB data file. This

reading speed of about 40 MB/s is about 68% of the

asymptotic reading speed of 58.8 MB/s shown in

Table 5.

Figure 8 Total time used to answer Q4A on

MD0.

Figure 7 Number of disk sectors accessed to

retrieve the records for Q3A.

LBNL-62756

13

The timing measurements of RIDBit show the expected behavior for horizontal data organization. It takes

the same amount of time as long as some columns are retrieved. In Figure 8, we see that retrieving data in

the vertical data organization usually takes less time

than those in horizontal organization. The line for the

vertical data organization intersects that for the

horizontal organization around 11. When more than

11 (out of 13) columns are retrieved, using the

horizontal data organization takes less time.

The maximum number of hits from Q4A is about

1,100. In horizontal organization, there are 13,334

pages for the table data. Therefore, RIDBit does not

need to access all pages. For FastBit, Each data file

in the vertical data organization takes up 977 pages

and nearly all these pages are accessed by FastBit. In

this case, FastBit uses one sequential read on each

data file. In contrast, RIDBit is reading one page at a

time or a small number of pages at a time.

Depending on the relative performance of random

reads to sequential reads, the line for vertical data

organization may cross the one for horizontal data organization at different locations. Of course, this cross

over point also depends on the number records selected as illustrated in Figure 9.

Each Q4B query selects about 100 hits on average. In this case, RIDBit only needs to access 100 pages no

matter how many columns are selected as shown in Figure 9. In contrast, FastBit accesses about 100

pages per column. We expect the horizontal data organization to have an advantage over the vertical data

organization in this case. From Figure 9, we see that if less than 7 columns are selected, FastBit in fact

uses less time. This is because FastBit decides to read the whole data file if more than 1/16
th
 of the pages

are randomly selected. This option reads more pages than necessary; however, because the sequential

reads are much more efficient than random reads, reading more data sequentially actually take less time in

this case.

7. SUMMARY AND CONCLUSIONS

We outline what lessons we have learned from our performance tests. To be of value, these lessons should

indicate how we would proceed if we were implementing a new bitmap index on a commercial database

product. Though it took some time for these lessons to become clear to us, we believe the results are

worth the effort.

Vertical Data Organization Has Better Performance. It seems clear that vertical data organization

(columns stored separately) has an important architectural advantage over row-store for queries.

Certainly, were we to make a major modification of RIDBit, the first thing we would do is to adopt this

format. From Figure 8 and Figure 9, we see that the queries that retrieve one column take a much longer

elapsed time than those simply counts the number of hits, even though the WHERE clause contains five

different range conditions. This is the case even if as few as 100 records are retrieved as shown in Figure

9. Our tests also showed that for queries retrieving a small number of columns in a table the vertical data

organization is much more efficient. Only if nearly all columns are retrieved is the row-oriented

organization more efficient. Most queries that occur in commercial applications do not retrieve a large

percentage of the columns in a row, for example, most queries in TPC-H retrieve two to five columns, so

it seems clear that the vertical data organization is preferred.

Clustered Index Organization Has Better Performance. In terms of bitmap index organization, the

linear organization of FastBit shown in Table 2 is more efficient for processing range queries because the

bitmaps can be read into memory with a single sequential scan of the bitmaps[] array, once the starts[]
array has determined the start and end position of the bitmaps on disk. As it stands, this approach trades

Figure 9 Total time used to answer Q4B on

MD0.

LBNL-62756

14

flexibility of the index data structure for performance. The most severe limitation of this index

organization is that any modification to the index will cause the whole index file to be reorganized, which

would be exceedingly expensive.

We found in modifying RIDBit to reduce the number of disk scans for a single range query that we could

read the appropriate leaf nodes of the B-tree into memory (in a single sequential scan, once the initial and

terminal keyvalue leaves of the B-tree are determined), then learn the positions of the initial and terminal

bitmap/RID-list in the range. This is simple because during the initial load of the index, successive

keyvalues K and successive segments S within each keyvalue are placed in lexicographic order by (K,S)

and the B-tree is built in left-to right order while the bitmaps/RID-lists are also placed on disk in that

order. Therefore it is possible to use approximately the same approach to the RIDBit B-tree/Bitmap layout

that FastBit does, performing a few long sequential scans to access all bitmaps/RID-lists. Furthermore,

since the leaf level of the B-tree is present in memory, we can validate if some newly inserted rows lie

outside the range and access them as well; we still cannot insert an arbitrary number of new rows in the

middle of the sequence (because of the risk of a RID-list becoming too large and requiring re-

positioning), but we can insert such rows up to that point and afterward place them in a new position at

the end of all the segments, where this will be detected by an examination of leaf pages in the desired

range. While this approach is not perfect, it is comparable to what DB2 does in terms of clustered

indexes.

We note that the problems with inserts disappear entirely in the case of a product such as Vertica, where

Read-Optimized Store remains unchanged and new rows are added to Write-Optimized Store until

enough additions require a merge-out to form a new Read-Optimized Store.

Modifications For Modern Processors Are Needed. There are a number of ways in which older

indexing methods are inefficient on modern processors. Oracle's index compression approach, known as

Byte-Aligned Bitmap Code (BBC), uses a type of compression/decompression that requires a good deal

of branching; this can be terribly inefficient because it causes pipeline stalls that are much more expensive

on modern processors than they were when BBC was introduced. Indeed we found that using Branch-

Avoiding C code on Pentium 4 to precompute conditions rather than using if-then-else forms was

important for improved performance. Another change over the past fifteen years or so is that sequential

scans have become much more efficient, requiring much smaller filter factors (by a factor of fifty) before

a list prefetch of pages becomes more efficient than a sequential scan that simply picks up more rows. It

because of this that clustering has become more important, leading to such new and important capabilities

as DB2's Multi-Dimensional Clustering (MDC). All of this should be born in mind in implementing a

new indexing method for today's processors.

FastBit indexes are usually larger than RIDBit indexes, but it can answer many queries in less time

because it accesses the needed bitmaps in less I/O operations. Obviously, when a large fraction of the

bitmaps is needed, FastBit will take more time. FastBit typically spends more CPU time in answering

queries than RIDBit, though the CPU time differences are small compared with those of I/O time.

In summary, we recommend the vertical organization for base data and the linear (or packed) organization

for the bitmap indexes to achieve good query performance. To insulate the indexes from changes in the

base data, we suggest using separate Read-Optimized Store and Write-Optimized Store as with Vertica.

8. REFERENCES

[1] P. A. Boncz, M. L. Kersten. Monet: An Impressionist Sketch of an Advanced Database System. In Proceedings

Basque International Workshop on Information Technology, San Sebastian, Spain, July 1995.

[2] P. A. Boncz, F. Kwakkel, M. L. Kersten. High Performance Support for OO Traversals in Monet. Technical

Report CS-R9568, CWI, Amsterdam, The Netherlands, 1995.

[3] T. Johnson. Performance Measurements of Compressed Bitmap Indexes. In VLDB, Edinburgh, Scotland,

September 1999. Morgan Kaufmann.

[4] Kx Systems. http://kx.com. 2006.

LBNL-62756

15

[5] Microsoft. SQL Server Database Engine: Logical and Physical Operators Reference.

http://msdn2.microsoft.com/en-us/library/ms191158.aspx.

[6] P. O’Neil. Model 204 Architecture and Performance. In 2nd International Workshop in High Performance

Transaction Systems, Asilomar, California, USA, September 1987. Springer-Verlag.

[7] P. O'Neil. The Set Query Benchmark. In The Benchmark Handbook For Database and Transaction Processing

Benchmarks, Jim Gray, Editor, Morgan Kaufmann, 1993.

[8] P. O’Neil and E. O’Neil. Database Principles, Programming, and Performance. 2
nd

 Ed. Morgan Kaufmann

Publishers. 2001.

[9] P. O’Neil and D. Quass. Improved Query Performance with Variant Indexes. In SIGMOD, Tucson, AR, USA,

May 1997. ACM Press.

[10] PostgreSQL: PostgreSQL 8.1.5 Documentation, Chapter 13. Performance Tips.

http://www.postgresql.org/docs/8.1/interactive/performance-tips.html.

[11] D. Rinfret, P. E. O'Neil and E. J. O'Neil. Bit-Sliced Index Arithmetic. In SIGMOD, Santa Barbara, CA, USA,

May 2001. ACM Press.

[12] K. Stockinger, E. W. Bethel, S. Campbell, E. Dart, K. Wu. Detecting Distributed Scans Using High-

Performance Query-Driven Visualization. Supercomputing 06. 2006.

[13] K. Stockinger and K. Wu. Bitmap Indices for Data Warehouses. In Data Warehouses and OLAP. 2007. IRM

Press. London.

[14] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E.

O'Neil, P. O'Neil, A. Rasin, N. Tran and S. Zdonik. C-Store: A Column Oriented DBMS. VLDB, pages 553-

564, 2005.

[15] TPC-H Version 2.4.0 in PDF Form from http://www.tpc.org/tpch/default.asp

[16] R. Winter. Indexing Goes a New Direction. 1999. http://www.wintercorp.com/rwintercolumns/ie_9901.html.

[17] K. Wu, J. Gu, J. Lauret, A. M. Poskanzer, A. Shoshani, A. Sim, and W.-M. Zhang. Grid Collector: Facilitating

Efficient Selective Access from Data Grids. In International Supercomputer Conference 2005, Heidelberg,

Germany.

[18] K. Wu, E. J. Otoo, and A. Shoshani. Compressing bitmap indexes for faster search operations. In SSDBM'02,

pages 99-108, 2002.

[19] K. Wu, E. Otoo, and A. Shoshani. Optimizing bitmap indices with efficient compression. ACM Transactions on

Database Systems, v 31, pages 1-38, 2006.

