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Learning vector calculus techniques is one of the major missions to be accomplished by physics
undergraduates. However, beginners report various difficulties dealing with the index notation due
to its bulkiness. Meanwhile, there have been graphical notations for tensor algebra that are in-
tuitive and effective in calculations and can serve as a quick mnemonic for algebraic identities.
Although they have been introduced and applied in vector algebra in the educational context, to
the best of our knowledge, there have been no publications that employ the graphical notation to
three-dimensional Euclidean vector calculus, involving differentiation and integration of vector fields.
Aiming for physics students and educators, we introduce such “graphical vector calculus,” demon-
strate its pedagogical advantages, and provide enough exercises containing both purely mathematical
identities and practical calculations in physics. The graphical notation can readily be utilized in the
educational environment to not only lower the barriers in learning and practicing vector calculus
but also make students interested and self-motivated to manipulate the vector calculus syntax and
heuristically comprehend the language of tensors by themselves.

I. INTRODUCTION

As an essential tool in all fields of physics, vector calcu-
lus is one of the mathematical skills that physics under-
graduates have to be acquainted with. However, vector
calculus with the index notation can be challenging to
beginners due to its abstractness and bulkiness. They
report various difficulties: manipulating indices, getting
lost and being ignorant about where to proceed toward
during long calculations, memorizing the vector calcu-
lus identities, etc. Meanwhile, there have been graphical
languages for tensor algebra such as Penrose graphical
notation,1 birdtracks,2,3 or trace diagrams4 that are in-
tuitive and effective in calculations. Although they can
be readily applied to three-dimensional Euclidean vec-
tor calculus, publications covering vector calculus in a
graphical notation remain absent in our best knowledge.
Previous works3–9 only dealt with linear “algebraic” cal-
culations and did not consider vector differential and in-
tegral “calculus.”

In response to this, for physics learners and educators,
we introduce the “graphical vector calculus,” advertise
how easy and quick the graphical notation can derive vec-
tor calculus identities, and provide practical examples in
the physics context. Here, we consider differential calcu-
lus only; vector integral calculus might be covered in a
following paper, as it also frequently appears in physics.

Pedagogical advantages of the graphical notation are
numerous. First of all, it evidently resolves the aforemen-
tioned difficulties of a beginner. It serves as an intuitive
language that is easy to acquire but does not lack any
essential elements of vector calculus compared to the or-
dinary index notation. In addition, students who are ac-
quainted with the index notation would also benefit from
learning the graphical notation. The graphical notation
will increase their virtuosity in index gymnastics and pro-

mote them to develop concrete ideas of coordinate-free
tensor algebra. Lastly, the graphical notation of vector
calculus serves as an excellent primer for graphical tools
in modern physics such as perturbative diagrams in field
theories as a conceptual precursor to Feynman diagrams.
We anticipate that this “user’s manual” of graphical vec-
tor calculus we provide will lower the barriers in learning
and practicing vector calculus, as Feynman diagrams did
in quantum field theory.

II. GRAPHICAL VECTOR ALGEBRA

A. Motivation and Basic Rules

We have two vectors, ~A and ~B. We can make a scalar
from these two by the dot product. In the ordinary index

notation, we write ~B · ~A = BiAi. Now, let us give some
artistic touch to it.

Bi = BiA iAi = BiA
i (1)

The “B-atom” and the “A-atom” are pairing their “elec-
trons” (repeated index i) to form a “covalent bond!”
Analogous to chemistry, depict a “shared electron pair”
by a line connecting two “atoms.”

~B · ~A = B A (2)

Vectors ~A and ~B are graphically represented as a box
with a line attached to it. The inner product is depicted
by connecting the two lines of the two boxes. Further-
more, an additional insight from this is that scalars will
be graphically represented as objects with no “external”
lines. B A only has an “internal” line; no lines are
connected to the outside. It is isolated so that if the en-
tire diagram is put inside a black box, no lines will poke
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out from it. In other words, scalars do not have free
indices.

Scalars: f = f

Vectors: ~A = A
(3)

The basic observations here are summarized in Table I.

Index Language Graphical Language
An n-index quantity A box with n attached lines
The name of a quantity The character written inside

the box
Pairing (contracting) two
indices

Connecting two ends of lines

Free indices External lines
Contracted (dummy) indices Internal lines

TABLE I. Translation between the index language and the
graphical language.

Meanwhile, for scalar multiplication, addition, and
subtraction, we do not introduce new notational rules
to represent them but just borrow the ordinary notation;
that is, they are denoted by juxtaposition and by “+”
and “−” symbols.

Scalar multiplication: fg = f g

f ~A = fA

Addition/subtraction: f ± g = f ± g

~A± ~B = A ± B

(4)

When two objects are juxtaposed, their relative position

is irrelevant, such as f g = f
g =

f

g
= · · · etc.

However, it should be noted that in Eq. (2), ~B is de-
picted as a box with a line attached at its right side. It
turns out that it is okay to not care about which side a
line stems from a box for denoting vectors. A line can
start from the left side, right side, upper side, lower side,
or anywhere from the box, as if it freely “dangles” to be
freely repositioned. For example,

B A = A B =
A

B
=

B A
= · · · , (5)

and so on. It can be seen that an arbitrary rotation does
not affect the value of a graphical equation. Moreover,
an arbitrary rearrangement of boxes also does not. For
example, Eq. (5) can be further deformed as the follow-
ing.

A

B
=

A

B =

A

B
= A B (6)

So even if a diagram is drawn to look a little bit stiff,
please remember that it is “dancing” freely behind the

scene! Also, a line can freely pass under boxes, as you
can see in the second equality in Eq. (6). In addition,
intersections of lines have no significance; think of them
just overpassing each other. When such intersections oc-
cur, we will always draw it in a manner that no ambiguity
arises if one follows the “law of good continuation.” That
is, “ ” is an overlap of “ ” and “ ,” not “ ” and

“ .”

B. Meet the Kronecker Delta

The diagram for ~B · ~A can be interpreted from a differ-
ent perspective. The last diagram in Eq. (5) seems like

two vectors
B

and
A

are “plugged into” a -shaped

object.

B A

(7)

Then, what does the -shaped object represent? It is a
“machine”10 that takes two vectors as input and gives a
scalar; it is the inner product “ · ,” or in the index nota-
tion, “δij .” Plugging lines into the machine corresponds
to contraction of indices.

BiδijAj =
B A

= B A = · · · ; (8)

δij =
i j

= i j = · · · . (9)

In the second line, we turned on the “index markers”
to avoid confusion that which terminal of the line corre-
sponds to the index i and j, respectively.

A comment should be made about the symmetry of
the Kronnecker delta. The fact that δij = δji is already
reflected in the design of our graphical notation, that is
the appearance of δij with the dancing rule of equivalent
diagrams. In the graphical notation, δij is an undirected
line, so that there is no way to distinguish its “left” and
“right” terminals. For instance, see the first equality of
Eq. (5). If you want to write this symmetry condition
without “test vectors” plugged in, observe the second

form of ~B · ~A in Eq. (5) and the last form in Eq. (6). It
can be seen that

= . (10)

Turning on the index markers,11

=i j i j , (11)

or giving one more touch,

=i j i j . (12)
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The left hand side assigns i to the left terminal of the -
shaped and j to the right terminal; the right hand side
assigns i to the right terminal and j to the left terminal.
Just pretend for a moment that the index assigned to the
left terminal should be placed first when reading the -
shaped in Eq. (12) in the index notation; then, we have
δij = δji.

C. Meet the Cross Product Machine

Now, move on to the next important structure, the
cross product. The cross product is a machine that takes
two vectors as a input and gives a vector. Hence, two
lines are needed for input and one line for output.

~A× ~B =
A B

=

A

B
=

B A
= · · · (13)

Please do not forget the diagrams are dancing and
Eq. (13) is showing just three snapshots. There are infini-

tude of possible configurations that ~A× ~B can be drawn.

Also, note that the third diagram is read as ~A× ~B as well
as the first one. The lines attached to the cross product

machine ( ) should be read counterclockwise from

the core (the small dot) of the machine: . The left

and right arms of the cross product machine is connected

to ~A and ~B respectively in both the first and third di-
agrams in Eq. (13), so they are equivalent. Continuous
deformations does not affect the value of a diagram.

However, how about discontinuous deformations? In
case of the inner product, yanking a twist, a discontin-
uous deformation that yields a cusp during the process,
did not affect the value because the inner product is sym-
metric. In case of the cross product, it is antisymmetric

so that ~A× ~B = − ~B × ~A; therefore, when the two arms
of the first diagram in Eq. (13) are swapped—which is
the third diagram—and yanked, a minus sign pops out,
as depicted in Fig. 1. Associating a kinesthetic imagery
that the lines of the cross product machine are elastic
but particularly stiff near the core might be helpful to
intuitively remember this. Do not forget the minus sign.
Yanking a twist is a discontinuous “clank” process.

Note that in case of a general object (tensor), the value
after swap-then-yanking its two arms is by no means re-
lated to the original value, unless it bears symmetry or
antisymmetry with respect to permutation of the two in-
dices.

D. Triple Products

Having introduced the graphical notation for the cross
product, let us now graphically express triple product

B A

clank

B A
−−

FIG. 1. A minus sign pops out with a “clank!” sound when
you swap-then-yank the two arms of a cross product machine.
The plaintext equation corresponding to this action is “ ~A ×
~B = − ~B × ~A.”

identities. First, a scalar triple product ~C ·
(
~A× ~B

)
can

be drawn by connecting the free terminals of
C

and

Eq. (13):

C A B

=
C

A B

. (14)

The cyclic symmtery of the scalar triple product is al-
ready reflected in its graphical design: it looks the same
under threefold rotation.

C

A B

=
A

B C

=
B

C A

l
~C ·
(
~A× ~B

)
= ~A ·

(
~B × ~C

)
= ~B ·

(
~C × ~A

)
(15)

This is the economy of graphical notations: redundant
plaintext expressions are brought to the same or at least
manifestly equivalent diagram.

As a side note, imagine what would it mean if the
cross product machine is naked, while it is fully dressed
in Eq. (14), which is εijkCiAjBk in the index notation.
As some readers might already noticed, another name
for the cross product machine is the Levi-Civita symbol,
εijk. It is a three-terminal machine (three-index tensor),
and antisymmetric in every pair of its arms (indices).

εijk =

k

i j

(16)

Next is the vector triple product. The BAC-CAB for-
mula translates into the graphical language as the follow-
ing.

B C

A
=

B C

A
−

B C

A

l
~A×

(
~B × ~C) = ~B( ~A · ~C) − ~C( ~A · ~B)

(17)
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This holds for arbitrary ~A, ~B, and ~C; thus, one can ex-
tract the “bones” only:

= − . (18)

Until now, all graphical equations followed from defining
rules of graphical representation. However, Eq. (18) is
the first—and indeed the only—nontrivial formula relat-
ing cross product machines and Kronecker deltas. This is
the most important identity that serves as a basic “syn-
tax” of our calculations.

Eq. (18) is by no means “new.” With the index mark-
ers, it turns out that it is the well-known formula about
contracted two εijk’s.

k

ij

l m

=

ij

l m

−

ij

l m

(19)

l
εijkεklm = δjmδil − δjlδim (20)

However, the graphical way has multiple appealing
points. First, it naturally serves as a quick visual
mnemonic for Eq. (20). Also, in practical circumstances,
the graphical form avoids the bulkiness of dummy in-
dices and significantly simplifies the procedure of index
replacement by δij ’s. One does not have to say “i to
l, j to m” over and over in one’s mind organizing the
expanded terms. This makes a greater difference in cal-
culation time as the equation involves more operations
and dummy indices (proof of the Jacobi identity,12 for
example). On the other hand, classification of vector
algebraic identities is immediate if they are written in
the graphical notation, because it shows the (tensorial)
structure of equations explicitly. One can recognize iden-
tical structures within a single glance, as comprehension
of visuals is much faster than that of texts. Some may
take a critical stance to this, because mere counting of
the symbols “×” and “ · ” would also reveal the structure
of equations, albeit for simple cases. However, with the
graphical notation, generating different identities of the
same structure is also straightforward; it is accomplished
by just attaching “fleshes” (vectors or aribitrary multi-
terminal objects13) to the “bone.” For instance, one can
easily write down the equations equivalent to the BAC-
CAB rule or the Jacobi identity.12 Knowing what fun-
damental rules that identities are rooted in with being
able to generate equivalent identities will effectively pro-
mote concrete understandings of the structure of vector
algebra.

III. GRAPHICAL VECTOR CALCULUS

Now is the time for graphical vector “calculus.” Here,
we are considering not just scalars and vectors, but

“scalar fields” f(~r ), g(~r ), · · · and “vector fields” ~A(~r ),
~B(~r ), · · · ; they depend on spatial coordinates, or equiv-
alently, the position vector ~r. In this section, “(~r )” is
omitted unless there is an ambiguity whether it depends
on ~r or not.

A. The Basics

The first mission would be graphically representing
∇ = ~ei

∂
∂xi

:= ~ei∂i, where ~ei and xi are the ith Carte-
sian basis vector and coordinate, respectively. ∇ is a
“vector” (that is, it carries an index), but also a differen-
tial operator at the same time. Therefore, to accomplish
the mission, a notation that has one terminal and is ca-
pable of representing the Leibniz property (the product
rule of derivatives) should be devised. The later can be
achieved by an empty circle, which reminds of a balloon.
Things inside the balloon are subjected to differentiation.
The balloon “eats” fg by first biting f only then g only:

f g = f g + f g ↔ (fg)′ = f ′g + fg′. To

“vectorize” this, we simply attach a single tail to it.

f g

i

=

f g

i

+

f g

i

l
∂i(fg) = ∂i(f) g + f ∂i(g)

(21)

This “differentiation hook” design was previously sug-
gested by Penrose.14,15 However, he has not published
how to do the Euclidean vector calculus in three dimen-
sions using it. As you will see soon, it is powerful to dis-
tinguish vector algebraic manipulations from the range of
differentiation when an index-free format is kept, while
both are denoted without distinction by parentheses in
the ordinary notation.

The Leibniz rule, Eq. (21), can be applied regardless
of the operand type.16 For instance, a vector can be fed
to ∇.

.
A

ji

= ∂iAj =
(
“∇ ~A”

)
ij

(22)

Here, visual reasoning comes earlier, naturally suggest-

ing the concept “∇ ~A” without reference to coordinates
(before we attach index markers). This is one of the
instances where the graphical notation intuitively hints
students, who do not have abstract and rigorous mathe-
matical understanding, to enter the world of tensors with
its coordinate-free nature unspoiled.

The expression Eq. (22) can be physically or geometri-
cally meaningful, but it frequently appears in a particu-
lar encoding: div ergence and curl.17 They are obtained
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when we let the two tails of Eq. (22) “interact” with each
other with the machines we have seen in Section II.

A
= ∇ · ~A ,

A
= ∇× ~A . (23)

A final note: the differentiation apply only on boxes,
not lines. It is because δij ’s and εijk’s are all constants.
So, one can freely rearrange the balloons (differentiation)
relative to connecting lines and cross product machines
regardless of how they are entangled with each others.
An imagery that the balloon membrane is impermeable
to boxes but do not care whether lines or cross product
machines pass through can be helpful.

B. First Derivative Identities

Finally, we will now show how easy deriving vector cal-
culus identities is with the graphical notation! Essential
examples are demonstrated; the remaining identities are
worked on the supplementary material12 as exercises.

1. ∇ ·
(
~A× ~B

)
From the diagrams for the cross product (Eq. (13)) and

the divergence of a vector field (Eq. (23)), ∇ ·
(
~A × ~B

)
can be easily represented graphically. Then, apply the
Leibniz rule Eq. (21).

B A = B A + B A (24)

The second term is a contraction of B and A ,

which is ~B · (∇ × ~A). The first term is a contraction of

B = − B and A , which is (−∇× ~B) · ~A.

Thus, we obtain ~B · (∇ × ~A) − ~A · (∇ × ~B). We do
not need to memorize the tricky minus sign or look up a
vector identity list all the time. All we need to do is just
to doodle the diagrams and see what happens.

2. ∇×
(
~A× ~B

)
∇×

(
~A× ~B

)
can readily be written in a graphical form

from the diagrams for the cross product (Eq. (13)) and
a curl of a vector field (Eq. (23)). The formula is rather

complex-looking: ∇×
(
~A× ~B

)
= (∇ · ~B) ~A+ ( ~B · ∇) ~A−

(∇ · ~A) ~B − ( ~A · ∇) ~B. While proving this in the index
notation, you may frown at equations to recognize which
indices corresponds to which epsilon and delta; however,

it is much neater in the graphical notation. The proof
proceeds by applying the Leibniz rule Eq. (21) and the
“ = − ” identity Eq. (18).

B A
=

B A − B A
(25)

=
B A

+
B A − B A − B A

Translating back to the ordinary notation gives the de-
sired result. Note that the second term in the bottom line

translates into ( ~B · ∇) ~A, since B (· · · ) is the derivative

“modified” by ~B: it “ ~B-likely” differentiates (· · · ), that

is, the directional derivative with respect to ~B, Bi∂i(· · · ).

3. ∇
(
~A · ~B

)
Lastly, we will demonstrate a graphical reasoning on

the notorious vector calculus identity: ∇
(
~A · ~B

)
. The

formula is given by Eq. (28). It is perhaps the most com-
plicated among all vector calculus identities. However,
a bigger problem is that it is not clear how to massage

∇
(
~A · ~B

)
into smaller expressions. In the graphical nota-

tion, one can see the motivation of each step more trans-

parently. Start from the diagram for ∇
(
~A · ~B

)
:

A

B =

A

B
+

B

A
. (26)

We aim to express Eq. (26) in tractable terms; we must
transform it into vectorial terms that can be written in a
coordinate-free manner in the ordinary notation (such as
divergence, curl, or directional derivatives).18 The second
term in the right hand side is identical to the first term if
A is substituted toB andB is substituted to A; therefore,
we may work on the first term first then simply do the
substitution to obtain the result for the second term.

The central observation that guides us is that if the

first term was
A

B
, it can be written as ( ~B ·∇) ~A. Then,
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interchanging two lines is readily possible by = − .

A

B

=

A

B

−
A

B

=

A

B

+

A

B

= ( ~B · ∇) ~A + ~B × (∇× ~A)

(27)

In the second line, the upper cross product machine is
“clanked.” Finally,

∇
(
~A · ~B

)
= ( ~B · ∇) ~A+ ~B × (∇× ~A) + ( ~A↔ ~B). (28)

This trick of interchanging two lines, = − , is
often useful. With the graphical notation, utilizing it and
recognizing when to use it is achieved without difficulty.

C. Second and Higher-order Derivative Identities

Graphical proofs of second and higher order iden-
tities can be easily proceeded analogously. Second-
order derivatives are depicted as double-balloon dia-
grams. There are no new graphical rules introduced ex-
cept the following “commutativity of derivatives,”

= , (29)

where anything smooth that the derivatives commute can
be go inside the balloons. This is translated into the
ordinary notation as ∂j∂i = ∂i∂j as an operator identity.

One of the most immediate results in second order
derivatives is the following.

= = = − = 0 (30)

At the first equality, the inner balloon is rearranged to
be the outer one according to Eq. (29); the second equal-
ity comes from the dancing rule; at the third equality,
the “clank” process is used. One can easily see that

∇ × (∇f) = 0 and ∇ · (∇ × ~A) = 0 are all the conse-
quences of this property. The details are contained in the
supplementary material12 with the proof of other second
and higher order identities.

IV. PRACTICAL EXAMPLES

So far, this is the story of the graphical notation, a
beginners’ companion to vector calculus. In this section,
we provide practical examples in the physics context.

A. The Economy of the Graphical Notation: The
Same Diagram, Different Readings

Remember the economy of the graphical notation in
Section II C? In music, there are musical objects that
have multiple names in ordinary notation. For exam-
ple, D] and E[ are the same when they are aurally rep-
resented. Likewise, there are situations that different
plaintext equations are represented as a single graphical
expression so that one can easily recognize their equiva-
lence. The following two, which appears when one deals
with the equations of motion of a rigid electric dipole
translating and rotating in a magnetic field,19 are equal
in their values but spelled differently in the ordinary no-
tation.

~v ·
(
(~ω × ~p)× ~B

)
, −

(
~p× (~v × ~B)

)
· ~ω (31)

To see the equivalence of them, one should spend time
on permuting the vectors according to properties of the
triple products. However, it is strikingly easy if one draws
a diagram corresponding to them.

ω

p B

v

(32)

Eq. (31) are just two different readings (groupings) of
Eq. (32). It is the matter of grouping the left branch

(~ω× ~p) first or the right branch (~v× ~B) first in Eq. (32).
Permuting the vectors in the ordinary notation and in
the graphical notation are just two different ways of ma-
nipulating an identical tensor structure, but it is much
easier in the graphical notation. Then, why not use the
graphical notation, at least as a mnemonic?

B. Cross Your Fingers

The capacity of the graphical notations is more than
a mnemonic. It is a calculation tool equipped with its
own syntax so that one can proceed the entire process
of vector calculus in the graphical notation without ref-
erence to indices. Let us demonstrate such calculational
advantages.

The trick of interchanging lines introduced in Sec-
tion III B 3 has an objective to reassign contractions be-
tween indices to obtain a more convenient form. For
an example of its practical usage, consider the electro-
static force formula for an point electric dipole ~p in an

electric field ~E(~r). It is given by ∇
(
~p · ~E(~r)

)
, but also



7

(~p · ∇) ~E(~r). It would be an overkill to look up the vec-
tor calculus identity table and apply the general formula
Eq. (28), because ~p is not differentiated by ∇. Simply,
the following graphical equations completes the proof of
the equivalence of the two.

E

p =

E

p

=

E

p

−
E

p

(33)

Note that
E

= ∇× ~E(~r) = 0. This shows the inten-

tion of the calculation evidently, without memorizing the
whole formula. In case of a point magnetic dipole ~m in

a magnetic field ~B(~r),

B

m =

B

m

−
B

m

=

B

m

− µ0

m

J
, (34)

so the force exerted on the dipole is ∇
(
~m · ~B(~r)

)
= (~m ·

∇) ~B(~r)−µ0 ~m× ~J(~r), where ~J(~r) = 1
µ0
∇× ~B(~r) is current

density at ~r.

C. Identities Involving ~r

As a specific and important example, consider the vec-
tor calculus with the position vector, ~r. First, note that

r = , (35)

which is ∂ixj = δij in the ordinary notation. If the two
terminals are connected by Kronecker delta, a “vacuum
bubble” is obtained:

r
=

i

j

= δijδij = 3 . (36)

If a cross product machine is used,

r
= = − = − = 0 , (37)

as you know that ∇ × ~r = 0. The second and the third
equality proceed by “swap-then-yanking” the cross prod-
uct machine and the Kronecker delta part, respectively.

Lastly, note that r = n , where ~n := ~r/r

(r := |~r |) is the unit radial vector.

With these basic graphical equations, one can graph-
ically prove identities involving r and ~r such as the fol-
lowing.

( ~A∇)~r = ~A ↔ rA = A (38)

∇2~r = 0 ↔ r = = 0 (39)

Here, the fact that ∂kδij = 0 ↔
i

jk = 0 is used.20

Also, expressions such as ∇×(r sin θ~eφ̂) (~eφ̂ := ∇φ/|∇φ|,
where φ is the azimuthal angle) can be calculated by
recasting it into a coordinate-free expression: ∇×(~ez×~r).

rez
=

rez

=

ez

= −
ez

= 2

ez

(40)

The last step is due to = −2 , which can be proved
by the following.

= − = − 3 = − 2 (41)

Rather than using coordinate expressions of gradient,
curl, and divergence in particular coodinates, working in
a coordinate-free manner has several benefits. In complex
cases, it can be faster and has a lower possibility to make
mistakes.21 Also, it offers an algebraic way to find the
δ(3)(~r) term in the divergence or curl of a vector field.12

It is notable that such advantages are doubled with the
graphical notation that significantly lowers the difficulty
of handling higher-rank index manipulations. For var-
ious physical examples such as dipolar electromagnetic
fields and flow configurations in fluid dynamics, refer to
the supplementary material.12

D. A First Look on Tensors

Lastly, we want to comment about tensors, since they
occasionally appears in undergraduate physics. Students
are likely to develop the ideas of tensors by themselves
while utilizing the graphical vector calculus; the exten-
sion from zero and one-terminal objects to multi-terminal
objects is straightforward, and the graphical notation
naturally involves the manipulation of multiple termi-
nals. Also, graphical representations are useful to ex-
plain the concept of tensors to students, utilizing the
“machine view.” For example, think about the inertia
tensor, Iij = Ii j . It is simply a two-terminal device
that “modulates” a one-terminal input (angular velocity,

ω ) into a one-terminal output (angular momentum,
L = I ω ). Imagine as if a “signal” generated

from the ω box propagates from right to left. Swapping



8

the two arms of the inertia tensor does not affects the
value), because it is symmetric: Ii j = Iij = Iji =

I
i j

= I
i

j
. However, this is not the case for

a general multi-terminal object unless it is symmetric, as
we have already discussed in Section II C. For the details
of graphical representations of such general objects, refer
to the supplementary material.12 Here, we restrict our
attention to symmetric rank-2 tensors.

At least there are three of the practical benefits of us-
ing graphical notation for tensor equations. First, it is
convenient to calculate the trace22 and related quantities
of a tensor.12 Next, the graphical notation provides a
transparent and unambiguous way to denote contraction
structures. For example, consider the two expressions be-
low denoting K = 1

2ωiIijωj and εijkωjLk = εijkωjIklωl
respectively,

K = 1
2 Iω ω , L

ω

= I ω
ω

, (42)

or the following more complex example that appears in
the formula for the angular profile of electric quadrupole
radiation power.[

n Q Q∗ n −
n Q∗ n

n nQ
]

(43)

Here, Qi j = Qij is the electric quadrupole moment
which is also a symmetric tensor. The asterisk stands for
complex conjugation. For a calculus example, consider
the divergence of the stress tensor σ, ∇·σ. Which index
of σ is in charge of the inner product in the expression
“∇ · σ?’—find the answer in the following diagram.

σ (44)

The contraction structures and their symmetry are
clearly evident at a glance and can be quickly denoted
in an unambiguous and less-bulky form, in comparison
to ordinary notations. Moreover, as one finds in the
supplementary material,12 one can wisely calculate enor-
mous tensor expressions in a shortcut with the guidance
of the graphical notation. Lastly, the graphical notation
is considerably useful in denoting and explaining the in-
variance property of tensorial expressions. As elaborated
in the supplementary material,12 one can easily exam-
ine how the terminals of a tensor expression transforms
under rotation intuitively by “arrow pushing”—the pair
creation/annihilation and propagation of arrowheads.

V. CONCLUSIONS

Graphical notations of tensor algebra have a history
spanning over a century.2 The basic idea can be traced

back to the late 19th century works on invariant theory
that related invariants to graphs.23–26 In the mid-20th

century, diagrammatic methods such as Levinson and
Yutsis’ diagrams for 3n-j symbols27,28 and Cvitanović’s
birdtracks2,29,30 are devised to conduct group-theoretic
calculations and applied to quantum theory.3,31–33 Ac-
cording to Levinson,27 one of the major motivations to
develop such apparatus was “the extreme inconvenience
due to the bulkiness” of the ordinary plaintext notation.
On the other hand, Penrose1,34 devised a graphical no-
tation for tensor algebra and utilized it in tensors and
spinors in general relativity, theory of angular momen-
tum and spin networks, and twistor theory.14,15,35 Simi-
lar to Levinson,27 one of his motivation was also to sim-
plify the complicated equations and to effectively grasp
the various interrelations they have by visual reasoning;36

however, he was also intended to introduce the concept
of “abstract tensor system” by a coordinate-free notation
that transparently retains the full syntactic structures of
tensor equations.1,14,15 The concept of the abstract ten-
sor system and the Penrose graphical notation motivated
the study of category theory and its graphical language
in algebraic geometry,37–40 and served as a background40

to “language engineering” works to physics,41–43 such as
diagrams in tensor network of states44–49 or quantum in-
formation and computing.40,41,50

So, why is the three-dimensional Euclidean vector cal-
culus so quiet with such “graphicalism?” Perhaps it has
been already being used as a private calculation tech-
nique, but its intractability to be printed due to graphi-
cal format might hindered its publication.37,51 However,
regarding the popularity of Feynman diagrams that is
also a graphical notation, it is worth casting light on the
graphical tensor notation, as graphical vector calculus
has its own pedagogical benefits. (Moreover, it conceptu-
ally precedes to Feynman diagrams.) On the other hand,
educators, already well-acquainted with the index nota-
tion and less sensible to beginners’ difficulties, might have
not tried to employ a graphical machinery to do vector
calculus. However, there are introductory materials for
graphical vector algebra and linear algebra,5–8,52 where
differentiation does not comes into play. Therefore, pub-
lishing an educator’s manual for the application of the
graphical notation in vector calculus would be a useful
thing to do.

What is newly proposed in this work is the graphical
derivations and tricks of the vector differential calculus.
No previous publications have dealt with the differentia-
tion and integration of vector fields, while the graphical
vector algebra introduced in this paper can be found also
in other publications.2,3,5,6,53 Also, pedagogical values of
the graphical notation are demonstrated, and sufficient
exercises containing both mathematical and physical cal-
culations are provided. Overall, this paper will serve as
a self-contained educational material.

The graphical notation has a lot of advantages. First,
it provides a quick mnemonic or derivation for identities
(e.g. Eq. (18) or the vector calculus identities). It also
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enhances the calculation speed, giving a birds eye view
to calculation scenario. The strategy of reducing compli-
cated expressions can be wisely decided. Although they
are best performed in the graphical environment, such
techniques on index gymnastics gained from graphical
representations are inherited altogether into the index
notation environment. An index notation user also will
benefit from association of a tensorial expression with a
graphical image.

Next, it has advantages in denoting and comprehend-
ing tensors. If it is unambiguous, an index-free notation

is preferred, that is, “∇× ~A is preferred over “~eiεijk∂jAk,
probably because it is more simple and easy to read off
the tensorial structure in groups of semantic units (such

as parsing ~B · ∇ × ~A into “ ~B dot ∇× ~A,” not “( ~B cross

∇) dot ~A”). Particularly, the graphical notation is prefer-
able to other index-free notations, because it can flexibly
represent tensor equations which become bulky in the
ordinary index-free notation and transparently displays
the contraction structure. The symmetry of a tensorial
expression also can be grasped at a single glance. More-
over, students will automatically discover the concept of
tensors as an invariant n-terminal object and develop es-
sential ideas of tensors in a coordinate-free setting using
the graphical notation. For example, students will re-
alize themselves interpreting the first term in the right

hand side of Eq. (26) as Eq. (22) cotracted with ~B at
its second terminal (“input slot”). As a result, the idea

of the tensor “∇ ~A” can be understood without leaving
a vague impression, as its graphical representation pro-
vides a concrete comprehension of its functionality (as a
“machine”). As parse trees (graphs) can promote under-
standing syntactic structures and generating sentences
of the same structure, the graphical representation can
do the same in tensor calculus and its education.54 Fur-
thermore, an unsupervised acquisition of tacit knowledge
during graphical manipulation experiences such as “the
equations are also valid after undressing test vectors from
them (Section II D) or “a compound n-terminal object
that has a permutation symmetry can be reduced into a
simpler expression of the same symmetry up to a propor-
tionality constant12 is also notable.55

Finally, it serves as an excellent primer to the graphical
languages of advanced physics for undergraduates. After
learning the graphical vector algebra, one can easily learn
the birdtracks notation that is capable of group-theoretic
calculations in quantum theory. Also, the graphical vec-
tor calculus provides exercises of “diagrammatics,” trans-
lating equations into graphics and vice versa that is an
everyday task when one learns quantum field theory. En-
thusiastic undergraduates who have always been curious
about the working principles of Feynman diagrams will
quench their thirst by learning the graphical tensor alge-
bra. In essence, graphs for tensorial expressions of var-
ious symmetry groups, birdtracks, is a group-theoretic
portion of Feynman diagrams. It is easy to learn Feyn-
man diagrams after learning birdtracks or graphical ten-

sor algebra and vice versa because the way they denote
mathematical structures is alike: loop diagrams for trace
(“vacuum bubbles,” Eq. (36)) or etc. Meanwhile, bird-
tracks may leave a more concrete impression because it
has graphical “progression rules”56 that enables to jump
from an expression to another via equality unlike Feyn-
man diagrams. Furthermore, when one considers a se-
ries expansion of a tensorial expression, one encounters
the exact parallel with diagrammatic perturbation in sta-
tistical mechanics or quantum field theory. Pedagogical
examples can be found in the supplementary material.12

The core characteristic that provides a background to
all these advantages is the “physically implemented syn-
tax of the notation. It is believed that Feynman dia-
grams work because it is indeed a faithful representation
of the physical reality (to the best of our knowledge)—
the nature is implemented by worldlines of particles that
are isomorphic to Feynman diagrams. In the graphi-
cal notation of tensors, the grammar of tensors is “em-
bodied in the lines, 3-junctions, nodes, beads, and all
that: the symbols behave as its physical appearance
(self-explanatory design of symbols in Section II B and
Section II C). Consequently, the language is highly in-
tuitive and automatically simplifies tensorial expressions
(the economy of the graphical notation). The association
of a kinesthetic imagery further simplifies the perception
and manipulation of the elements (the dancing rule and
the “clank” in Section II C). As Feynman diagrams are
the most natural language to describe the microscopic
process of elementary particles, the graphical notation is
the canonical language of the vector calculus system.

Last but not least, the graphical notation will change
a vector calculus class into an enjoyable game. As a child
playing with educational toys such as Lego blocks or mag-
netic building sticks, it will be an entertaining experience
to “doodle with the dancing diagrams. Even a calcula-
tion of complicated tensorial invariants can be a challeng-
ing task that thrills a person; one would feel as if he or
she is doing cats cradle or literally “gymnastics involv-
ing their visual, kinesthetic, or even multimodal neural
substrates. Such an amusing character can attract stu-
dents interest and offer a motivation to study vector cal-
culus. Students would voluntarily build various tensorial
structures, heuristically find the identities, and gain in-
tuitions. One possible “creative classroom scenario can
be suggested is to present students only the basic gram-
mar of the graphical notation and letting them sponta-
neously and exploratively find the “sentences (identities),
perhaps in a group. The teacher can collect their results
and have a group presentation, then introduce missing
identities if any. This will turn a formula-memorizing
class into an amusing voluntary learning experience. So,
how about boosting your education by the graphical no-
tation?
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29 P. Cvitanović, Physical Review D 14, 1536 (1976).
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32 P. Cvitanović, P. Lauwers, and P. Scharbach, Nuclear

Physics B 186, 165 (1981).
33 J. Paldus, B. G. Adams, and J. Č́ıžek, International Jour-

nal of Quantum Chemistry 11, 813 (1977).
34 R. Penrose, Tensor methods in algebraic geometry, Ph.D.

mailto:joonhwi.kim@snu.ac.kr
mailto:osang@gist.ac.kr
mailto:fortoe@gist.ac.kr
https://sites.google.com/view/gctpb202/
http://hdl.handle.net/1903/3500
http://dx.doi.org/10.1109/38.988750
http://dx.doi.org/10.1109/38.988750
http://arxiv.org/abs/0910.1362
http://arxiv.org/abs/0712.2058
https://arxiv.org/pdf/0907.2364.pdf
https://arxiv.org/pdf/0907.2364.pdf
http://arxiv.org/abs/0907.2364v1
http://dx.doi.org/10.1007/s00454-009-9188-9
http://dx.doi.org/10.1007/s00454-009-9188-9
http://dx.doi.org/10.2307/2369436
http://dx.doi.org/10.2307/2369436
http://dx.doi.org/10.2307/2369303
http://dx.doi.org/10.2307/2369303
http://dx.doi.org/10.1112/plms/s1-17.1.107
http://dx.doi.org/10.1112/plms/s1-17.1.107
http://dx.doi.org/10.1080/14786445708642275
http://dx.doi.org/10.1080/14786445708642275
http://www.cns.gatech.edu/GroupTheory/refs/Levinson/
http://www.cns.gatech.edu/GroupTheory/refs/Levinson/
http://dx.doi.org/10.1103/PhysRevD.14.1536
http://dx.doi.org/10.1088/0031-8949/26/1/001
http://dx.doi.org/10.1088/0031-8949/26/1/001
https://inis.iaea.org/search/search.aspx?orig{_}q=RN:9416023
https://inis.iaea.org/search/search.aspx?orig{_}q=RN:9416023
http://dx.doi.org/10.1016/0550-3213(81)90098-5
http://dx.doi.org/10.1016/0550-3213(81)90098-5
http://dx.doi.org/10.1002/qua.560110511
http://dx.doi.org/10.1002/qua.560110511


11

thesis, St John’s College, Cambridge (1957).
35 R. Penrose and M. MacCallum, Physics Reports 6, 241

(1973).
36 R. Penrose, Roger Penrose: Collected works, slp ed., Vol. 1

(Oxford University Press, 2010) p. 25.
37 A. Joyal and R. Street, Advances in Mathematics 88, 55

(1991).
38 P. J. Freyd and D. N. Yetter, Advances in Mathematics

77, 156 (1989).
39 P. Selinger, in New structures for physics (Springer, Berlin,

Heidelberg, 2010) pp. 289–355.
40 B. Coecke and R. Duncan, New Journal of Physics 13,

043016 (2011).
41 B. Coecke, in AIP Conference Proceedings (AIP, 2006) pp.

81–98.
42 B. Coecke, New Structures for Physics (Lecture Notes in

Physics) (Springer, 2010).
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