
Broadword Implementation of Parenthesis Queries

Sebastiano Vigna
Dipartimento di Scienze dell’Informazione

Università degli Studi di Milano, Italy

Abstract

We continue the line of research started in [Vig08] proposing broadword (a.k.a.
SWAR—“SIMD Within A Register”) algorithms for finding matching closed paren-
theses and the k-th far closed parenthesis. Our algorithms work in time O(logw)
on a word of w bits, and contain no branch and no test instruction. On 64-bit (and
wider) architectures, these algorithms make it possible to avoid costly tabulations,
while providing a very significant speedup with respect to for-loop implementations.

1 Introduction

A succinct data structure (e.g., a succinct tree) provides the same operations of its stan-
dard counterpart (and sometimes more), but occupies space that is asymptotically near to
the information-theoretical lower bound. A classical example is the (2n + 1)-bit repre-
sentation of a binary tree with n internal nodes proposed by Jacobson [Jac89]. Recent
years have witnessed a growing interest in succinct data structures, mainly because of the
explosive growth of information in various types of text indexes (e.g., large XML trees).

In this paper we discuss practical implementations of two basic building blocks: given
a string of w bits, where w is the machine word, representing open (1) and closed (0)
parentheses, we are interested in solving the following two problems:

• assuming the first bit is a one, finding the matching closed parenthesis;

• finding the k-th far closed parenthesis in the string (a parenthesis is far if its match-
ing parenthesis is not in the string).

Trivial solutions require scanning the string in O(w) time. For the necessities of data
structures supporting operations on balanced parenthesis, usually representing trees (see,
e.g., [Jac89, MR01, JSS07, GRRR06]), the two operations can be implemented by tables
that in principle use o(n) bits for a structure with n parentheses. However, the tables are
actually very big, unless n is very large, and they do not usually fit the processor cache.

In this paper we push further the work started in [Vig08], where we argued that on
modern 64-bit architecture a much more efficient approach uses broadword program-
ming. The term “broadword” has been introduced by Don Knuth in the fascicle on bit-
wise manipulation techniques of the fourth volume of The Art of Computer Program-
ming [Knu07]. Broadword programming uses large (say, more than 64-bit wide) registers

1

as small parallel computers, processing several pieces of information at a time. An alter-
native, more traditional name for similar techniques is SWAR (“SIMD Within A Regis-
ter”), a term coined by Fisher and Dietz [FD99]. One of the first techniques for manipu-
lating several bytes in parallel were actually proposed by Lamport [Lam75]. The famous
HAKMEM memo [BGS72] contains several examples of broadword programming.

We are also very careful of avoiding tests whenever possible. Branching is a very
expensive operation that disrupts speculative execution, and should be avoided when pos-
sible. All broadword algorithms we discuss contain no test and no branching.

While broadword programming and careful consideration of testing and cache side-
effects are by now quite common in practical implementations of succinct data structures
(see, e.g., [DR06]), to the best of our knowledge no one has proposed broadword algo-
rithms for the problems we study. See [Gog09] for other applications of the same ideas.

We concentrate on 64-bit and wider architecture, but we cast all our algorithms in
a 64-bit framework to avoid excessive notation: the modification for wider registers are
trivial. We have in mind modern processors (in particular, the very common Opteron pro-
cessor) in which multiplications are extremely fast (actually, because the clock is slowed
down in favour of multicores), so we use them occasionally. They can be safely replaced
by O(logw) basic operation, but in practice experiments show that on the Opteron replac-
ing multiplications by shifts and additions, even in very small number, is not competitive.

The C++/Java code implementing all data structures in this paper is available under
the terms of the GNU Lesser General Public License at http://sux.dsi.unimi.it/.

2 Notation

Consider a string s of n bits numbered from 0. We write si for the bit of index i . When
can view s as a string of parentheses by stipulating that 1 represent an open parenthesis,
and 0 a closed parenthesis. We define the closed excess function

Es(i) = |{sj | j < i ∧ sj = 0}| − |{sj | j < i ∧ sj = 1}|,

which represent the excess of closed w.r.t. open parentheses at position i (excluded). The
string s is balanced if the excess function is always negative, except for 0 and n, where it
is zero.

We use a \ b to denote integer division of a by b, � and� to denote right and left
(zero-filled) shifting,�+ denotes right shifting with sign extension, &, | and⊕ to denote
bit-by-bit not, and, or, and xor; x denotes the bit-by-bit complement of x . We perva-
sively use precedence to avoid excessive parentheses, and we use the same precedence
conventions of the C programming language: arithmetic operators come first, ordered in
the standard way, followed by shifts, followed by logical operators; ⊕ sits between | and
&.

We use Lk to denote the constant whose ones are in position 0, k, 2k, . . . that is, the
constant with the lowest bit of each k-bit subword set (e.g, L8 = 0x01010101010101010101).
This constant is very useful both to spread values (e.g., 0x12∗L8 = 0x1212121212121212)

2

and to sum them up, as it generates cumulative sums of k-bit subwords if the values con-
tained in each k-bit subword, when added, do not exceed k bits. (e.g., 0x030702 ∗ L8 =

0x30A0C0C0C0C0C0C0902—look carefully at the three rightmost bytes). We use Hk to
denote Lk�k−1, that is, the constant with the highest bit of each k-bit subword set (e.g,
H8 = 0x8080808080808080).

We use the notation
µk :=

(
22w
− 1

)
\
(
22k
+ 1

)
,

where \ denotes integer division. More intuitively,µ0 = 0x5555 . . . 5555,µ1 = 0x3333 . . . 3333,
µ1 = 0x0F0F . . . 0F0F, µ2 = 0x00FF . . . 00FF, and so on.

Our model is a RAM machine with w-bit words that performs logic operations, addi-
tions and subtractions in unit time using 2-complement arithmetic. In our algorithms we
also use a constant number of multiplications, which can be substituted with O(logw)
shifts and adds without altering the running time.

3 Basic operations

We recall the expression for computing in parallel the differences modulo 2k of each k-bit
subword (see [Knu07]):

x −k y := ((x | Hk)− (y & Hk))⊕ ((x ⊕ y)& Hk).

If we know in advance that the blocks in x and y contain positive entries, this simplifies
to

((x | Hk)− y)⊕ Hk .

Another important operation we will use is blockwise nonzero test:

x 6=k 0 :=
((
((x | Hk)− Lk) | x

))
& Hk .

Finally, truncated difference of positive entries:

x .
−k y = (x −k y)& ((x −k y)� k − 1)−k 1

The subexpression after the & is simply a mask that cancels out every block in which a
negative result was obtained. The common subexpression x −k y should be, of course,
computed just once.

4 Matching open parentheses

Assume we have a string s such that s0 = 1. We would like find the associated matching
closed parenthesis, if it lies in s, or get some special value otherwise. The general strategy
to obtain this result in O(logw) time and O(1) additional space is to consider the excess
function, as clearly we are interested in computing

min
0≤ j<w

Es(j) = 0.

3

We operate in the following manner: we will sample Es each 2dlog logwe positions. Then,
we will scan linearly in parallel each of the resulting w/2dlog logwe blocks from the end,
recording whether in some block the function crosses zero, and where this happens. Fi-
nally, we find the first block that hit a zero and return the corresponding position.

Let us first consider a 64-bit sampling phase on input x ; blocks are just bytes this case.
We start with a small variant of the standard broadword algorithm for sideways additions:

0 b = x − (x & 0xAAAAAAAAAAAAAAAA)� 1
1 b = (b & 0x3333333333333333)+ ((b� 2)& 0x3333333333333333)
2 b = (b + (b� 4))& 0x0F0F0F0F0F0F0F0F0
3 b = (b ∗ L8)� 1

At this point, each byte of b contains twice the number of open parentheses appearing up
to that block, included. Note that the excess function satisfies

Es(j) = |{sj | j < i ∧ sj = 0}| − |{sj | j < i ∧ sj = 1}| = j − 2|{sj | j < i ∧ sj = 1}|,

so getting a sample of Es each 8 bits just requires parallel subtraction with a suitable
constant:

b = (H8 | 0x4038302820181008)−8 b.

Note the presence of H8, which avoid propagation of the sign bit, and in practice let us
represent each sample in two’s complement in the seven lower bits of each byte. We now
set up an update mask u that contains, for each byte of b, zero, if the byte is nonzero in
the lower seven bits, but 0x7F otherwise:

u = ((((b | H8)− L8)� 7 & L8)|H8)− L8

Using u we set up our last variable z, that throughout the computation will contain,
for each byte of b, either zero, if the byte was never equal to zero (in the lower seven bits),
or a counter expressing the position of the parenthesis that caused the excess function to
go to zero. If we find a zero byte initially, the position is clearly 7:

z = (H8� 1 | L8 ∗ 7)& u.

We now update b, modifying the values of the excess function two bits at a time: this is
correct, as a balanced string has necessarily even length, so the excess function cannot go
to zero at an odd position. In the first round we thus compute

b = b − (L8 ∗ 2− ((x � 6 & L8� 1)+ (x � 5 & L8� 1)))

We now recompute u as above, but update z as follows:

z = z & u | (H8� 1 | L8 ∗ 5)& u.

Due to the update rule, even nonzero bytes of z will be updated. This is correct, as we
want to find the zero of the excess function that is closer to the first bit. We continue in
this way until we have completed scanning each byte: the next update of b is thus

b = b − (L8 ∗ 2− ((x � 4 & L8� 1)+ (x � 3 & L8� 1))),

4

and so on. Finally, we gather our result by locating the relevant block using an LSB
operator (e.g., Brodal’s [Knu07]), which we assume to return −1 in case no bit is set:

0 p = LSB(z� 6 & L8)

1 ((p + (z� p & 0x3F)) | (p� 8)))& 0x7F

The last line contains the expression returned (we will return 127 in case no matching
parenthesis exists).

The algorithm is best followed on an example: consider the first two bytes of a 64-bit
string:

1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 . . .

Note that the left most bit is bit zero. We are representing the string of parentheses

(()) () (()))) () () . . .

The excess function behaves as follows:

In the first computation step, we sample the excess function at each byte, so the first bytes
of b (in two’s complement) are -2 and +2. No result is thus stored in z. However, in the
first update we modify the samples of the excess function by subtracting the contribution
of the underlined parentheses:

1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 . . .

Now the first byte of b changes to 0, so we store in z our result as follows:

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 . . .

The sixth bit records that there is a value, and for the time being the candidate result is 5.
Note that the current result is spurious, because there is another zero to be found.

We now update again b, subtracting another pair of parentheses:

1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 . . .

The first byte of b is now 0, the second byte +2. Thus, z is updated as follows:

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 . . .

In the last update, the second byte of b becomes 0. The final value of z is thus

0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 . . .

5

Now the LSB operator detects that the first zero is in the first byte, and the correct value
(3) is extracted from z and returned.

The construction of the first sample requires O(log logw) instructions and a single
multiplication (which could be substituted with O(logw) operations). The parallel linear
scan clearly requires O(logw) operations.

5 Finding far closed parentheses by index

In this section we discuss the problem of finding the p-th far closed parenthesis. The
simple combinatorial idea at the heart of the algorithm is the following, easily proved
statement:

Proposition 1 Let t , u be bit strings, #open/#closed the operators returning the number of
far open/closed parenthesis in a string, and .

− truncated subtraction. Then:

#open tu = (#open t .
− #closedu)+ #openu

#closed tu = (#closedu .
− #open t)+ #closedu

Since it is easy to compute the number of far open/closed parenthesis in 2-bit blocks
using masking, and it is also easy to do parallel truncated subtraction, using additional
O(logw) words we can compute the number of far open/closed parentheses in blocks
of length 2i , 2 ≤ i < logw. At that point, we can use the above property backwards:
if we are searching from the k-th far closed parenthesis in tu, this must be either in t , if
k < #closed t , or in u, but in position k−#closed t+#open t . We will assume for the time being
that a p-th far closed parenthesis does exist in the string. Results will be unpredictable
otherwise.

In general, each 2k-bit block of the variables ok and ck will keep track of the number of
far open/closed parentheses in the corresponding 2k-bit block of the input x . We bootstrap
our computation by filling o1 and c1:

0 b0 = x & 0x5555555555555555
1 b1 = (x & 0xAAAAAAAAAAAAAAAA)� 1
2 l = (b0⊕ b1)& b1
3 o1 = (b0 & b1)� 1 | l
4 c1 = ((b0 | b1)⊕ 0x5555555555555555)� 1 | l

These operations implements the mappings

00→ 00 00→ 10

01→ 01 01→ 01

10→ 00 10→ 00

11→ 10 11→ 00

6

They send each 2-bit substring to the number of far open, or closed, respectively, paren-
theses.

The k-th phase, 1 < k < logw, records in temporary variables eo and ec the number
of far open and far closed parentheses in each half of 2k+1-bit blocks. These numbers are
then combined using Proposition 1:

0 eo = ok & µk

1 ec = (ck & µk � 2k)� 2k

2 ok+1 = ((ok & µk � 2k)� 2k)+ (eo
.
−8 ec)

3 ck+1 = (ck & µk)+ (ec
.
−8 eo)

Finally, we work backwards, isolating the part of the string containing the required paren-
thesis. At the k-th step, k = logw − 1, logw − 2, . . . , 1 we operate as follows:

0 b = ((p − (ck � s & 22k
− 1))�+ w − 1)− 1

1 m = b & 22k
− 1

2 p −= ck & m
3 p += ok & m
4 s += 2k & b

The variable s keeps track of the left (i.e., lowest) extreme of the interval of width 2k+1 in
which we are performing our binary search. Initially, s is zero and k = logw − 1, which
means that we are searching for the p-th far closed parenthesis in the whole string s.

In each phase, we first of all set b so that it is 0 if the p-th far closed parenthesis
appears in the block of length 2k starting at position s, 0 otherwise. Note that we can
do this because the far closed parentheses in the first half are true, global far closed
parentheses. We then set up our mask m, which will be used to update p: if m is zero,
there is no update to do—we just have to restrict our search interval. Otherwise, we have
to decrease p by ck & m (as we are skipping ck & m far closed parentheses) and increase
it by ok & m (as there are ok & m far open parentheses before the block we’re moving in,
so we must offset p). Finally, s must be updated and moved forward by 2k in case b 6= 0.

In the last phase, we are left with a two-bits string and a value p. It is easy to check
that the following hand-crafted expression gives the correct result:

s + p + ((x � s & ((p� 1) | 1))� 1).

Finally, it is easy to see that be performing an additional phase in the first part of the
algorithm we can obtain the overall number of far closed parentheses in the whole string,
making it easy to return a special value in case the requested parenthesis does not exist.

6 Experiments

We performed a number of experiments on a Linux-based system sporting a 64-bit Opteron
processor running at 2814.501 MHz with 1 MiB of first-level cache. The tests show that

7

on 64-bit architectures broadword programming provides significant performance im-
provements. We compiled using gcc 4.1.2 and options -O9.

Our previous experience with similar code shows that testing in isolation very tight
code can produce paradoxical results. It is much more informative to embed the code
in a typical simple application: in our case, we implemented Jacobson’s classical O(n)
balanced parentheses representation [Jac89] and performed tests measuring the time re-
quired to find a matching closed parenthesis using our broadword algorithms and a tuned
for-loop implementation.

The experimental setting for benchmarking operations that require nanoseconds must
be set up carefully. We generate at random bit arrays containing correctly parenthesised
strings, and store a million test positions. During the tests, the positions are read with a
linear scan, producing minimal interference; generating random positions during the tests
causes instead a significant perturbation of the results, mainly due to the slowness of the
modulo operator. The tests are repeated ten times and averaged. We measure user time
using the system function getrusage().

Generating random balanced strings of parenthesis requires some attention. We use
Arnold and Sleep’s classical algorithm [AS80], but with a twist. The algorithm chooses
at each step whether to add a closed parenthesis with probability

Pr,k =
1
2

r(k + r + 2)
k(r + 1)

,

where r is the number of open parentheses still to be closed, and k the remaining number
of symbols to be generated. Note that when k = r we have Pr,k = 1, so we just generate
closed parentheses.

To estimate better the behaviour of our algorithms, we introduce a twist, that is, a
number 0 ≤ t ≤ 1 that shifts the probability so that open parentheses are more likely to
be generated. In other words,

Pr,k,t =

{
1 if Pr,k = 1;
t Pr,k otherwise.

The result is that when t < 1 we will tend to generate strings with deeper nesting. We are
interested in experimenting with the behaviour at different deepness levels because trivial
(for-loop) solutions behave very well on random strings because most open parentheses
are near, and moreover their matching parenthesis is a few bits away. But if you consider a
typical application, for instance, binary search trees, then a search going down into a large
tree has to find a far matching parenthesis for most of the search. More precisely, it is not
difficult to see that for a complete binary tree the average (over all paths going from the
root to a leaf) distance between the open and closed parenthesis of a query is2(n/ log n)
(assuming the binary tree is mapped to a forest using the inverse of the first-child/next-
sibling isomorpshism, and that the forest is represented using balanced parentheses in the
standard way). To simulate this fact, we use a skewed distribution: we plan to enlarge,
however, our test set with more realistic large search trees or XML trees.

8

1 .75 .50 .25
1 Ki 62.10/89.90 68.50/116.80 76.50/130.40 86.50/142.60
4 Ki 62.90/95.40 68.80/115.00 77.30/123.60 87.70/152.20

16 Ki 63.10/100.30 68.70/113.50 78.00/127.20 87.10/153.20
64 Ki 63.70/100.70 69.40/113.10 79.00/128.50 88.20/154.30

256 Ki 69.20/105.40 75.50/119.50 86.20/134.70 96.00/161.60
1 Mi 78.70/116.30 87.50/130.30 97.00/144.90 109.30/173.50
4 Mi 179.20/213.20 190.20/231.60 211.80/261.50 237.40/301.20

16 Mi 246.30/278.20 281.50/320.60 327.50/376.10 424.30/489.30

Table 1: Timings in nanoseconds for a parenthesis matching operation in Jacobson’s data
structure. The first value is obtained used the broadword algorithms presented in this
paper, whereas the second value is obtained using a for-loop implementation. Column
labels show the amount of twisting, whereas row labels show the number of parentheses
in the string.

We compare our structures against tuned for-loop implementations: results are shown
in Table 1 and Figure 1, which clearly show the advantage of the broadword implemen-
tation, in particular for longer matchings (e.g., for low twist). We expect, of course, that
figures will improve as w gets larger.

7 Conclusions

Extending some previous work of ours [Vig08], we have introduced some two new broad-
word algorithms that implement two basic operations typical of succinct static data struc-
tures for balanced parentheses. We have also presented experiments that compares our
results with a for-loop baseline. We discussed our algorithms in the case of closed paren-
theses, but they can be immediately modified to find matching open or far open parenthe-
ses.

We leave for future work experimentation with tabulated implementations. The latter
tend to be, of course, very fast when tested, but they engage the processor cache sig-
nificantly, and their global impact cannot be measured easily. For-loop implementations
have a cache footprint similar to that of our broadword versions, so they are first natural
candidate for comparisons.

A Java version of this code is currently distributed by the Sux4J project1 as part
of a highly compressed implementation of a monotone minimal perfect hash function
(see [BBPV09]).

1http://sux4j.dsi.unimi.it/.

9

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1000 10000 100000 1e+06 1e+07 1e+08

fi
nd

 c
lo

se
 ti

m
e

(n
s)

bits

broad (1)
for loop (1)

broad (0.75)
for loop (0.75)

broad (0.5)
for loop (0.5)
broad (0.25)

for loop (0.25)

Figure 1: A graph displaying the data shown in Table 1. Up to around one million bit
the timings remain constant even in practice; after that, memory access becomes signif-
icant and size has a significant effect on speed (as in the case of rank/select queries—
see [GGMN05]).

10

References
[AS80] D. B. Arnold and M. R. Sleep. Uniform random generation of balanced parenthesis

strings. ACM Trans. Program. Lang. Syst., 2(1):122–128, 1980.

[BBPV09] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Theory
and practise of monotone minimal perfect hashing. In Proceedings of the Tenth
Workshop on Algorithm Engineering and Experiments (ALENEX), pages 132–144.
SIAM, 2009.

[BGS72] Michael Beeler, Ralph William Gosper, and Rich Schroeppel. HAKMEM. Report
A. I. MEMO 239, Massachusetts Institute of Technology, A.I. Lab., Cambridge,
Massachusetts, 1972.

[DR06] O’Neil Davion Delpratt and Rajeev Raman. Engineering the louds succinct tree
representation. In Proceedings of the 5th International Workshop on Experimental
Algorithms, pages 134–145. Springer, 2006.

[FD99] Randall J. Fisher and Henry G. Dietz. Compiling for SIMD within a register. In Sid-
dhartha Chatterjee, Jan Prins, Larry Carter, Jeanne Ferrante, Zhiyuan Li, David C.
Sehr, and Pen-Chung Yew, editors, Languages and Compilers for Parallel Comput-
ing, (11th LCPC’98), number 1656 in Lecture Notes in Computer Science, pages
290–304. Springer–Verlag, 1999.

[GGMN05] R. Gonzàlez, S. Grabowski, V. Mäkinen, and G. Navarro. Practical implementation
of rank and select queries. In Poster Proceedings Volume of 4th Workshop on Effi-
cient and Experimental Algorithms (WEA’05), pages 27–38. CTI Press and Ellinika
Grammata, 2005.

[Gog09] Simon Gog. Broadword computing and fibonacci code speed up compressed suffix
arrays. In Experimental Algorithms: 8th International Symposium Sea 2009, Dort-
mund, Germany, June 4-6, 2009, Proceedings, page 161. Springer-Verlag New York
Inc, 2009.

[GRRR06] R.F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation
for balanced parentheses. Theoretical Computer Science, 368(3):231–246, 2006.

[Jac89] Guy Jacobson. Space-efficient static trees and graphs. In 30th Annual Symposium
on Foundations of Computer Science (FOCS ’89), pages 549–554, Research Triangle
Park, North Carolina, 1989. IEEE Computer Society Press.

[JSS07] Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Ultra-succinct represen-
tation of ordered trees. In SODA ’07: Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 575–584, Philadelphia, PA, USA,
2007. Society for Industrial and Applied Mathematics.

[Knu07] Donald E. Knuth. The Art of Computer Programming. Pre-Fascicle 1A. Draft of
Section 7.1.3: Bitwise Tricks and Techniques, 2007.

[Lam75] Leslie Lamport. Multiple byte processing with full-word instructions. Communica-
tions of the ACM, 18(8):471–475, 1975.

[MR01] J.I. Munro and V. Raman. Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing, 31(3):762–776, 2001.

11

[Vig08] Sebastiano Vigna. Broadword implementation of rank/select queries. In Catherine C.
McGeoch, editor, Experimental Algorithms. 7th International Workshop, WEA 2008,
number 5038 in Lecture Notes in Computer Science, pages 154–168. Springer–
Verlag, 2008.

12

