
Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 1

Cache Memory

• memory hierarchy

• CPU memory request presented to
first-level cache first

• if data NOT in cache, request sent to
next level in hierarchy…

• and so on

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 2

Cache Hierarchy

• for a system with a first level cache and memory ONLY

teff = htcache + (1-h)tmain

• assuming tmain = 60ns and tcache = 5ns

• small changes in hit ratio [as h1] are amplified by tmain/tcache

• if tmain/tcache is 10 then a decrease of 1% in h [as h1] results in a 10% increase in teff

h teff (ns)
1.00 5.0
0.99 5.6
0.98 6.1
0.89 11.1
0.50 32.5
0.00 60.0

where teff = effective access time
h = probability of a cache hit [hit rate]
tcache = cache access time
tmain = main memory access time

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 3

Temporal and Locality of Reference

• exploit the temporal locality and locality of reference inherent in typical programs

• high probability memory regions

 recently executed code
 recent stack accesses
 recently accessed data

• if the memory references occur randomly, cache will have very little effect
• NB: see average on graph

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 4

A real example collected from an early IA32 PC running OSF/1

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 5

K-way Set Associative Cache with N Sets

0326 1234 9876
set 0
set 1
set 2
set 3

set N-1

directory 0 directory 1 directory K-1

TAGS DATA

state

L = 16
4 x 32bit words
per cache line

 L bytes

N sets, K directories and L bytes per cache line

 K

N

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 6

Searching a K-way Cache

• address mapped onto a particular set [set #]…
• by extracting bits from incoming address
• NB: tag, set # and offset

• consider an address that maps to set 1

• the set 1 tags of all K directories are compared with the incoming address tag
simultaneously

• if a is match found [hit], corresponding data returned offset within cache line

• the K data lines in the set are accessed concurrently with the directory entries so that
on a hit the data can be routed quickly to the output buffers

• if a match is NOT found [miss], read data from memory, place in cache line within set
and update corresponding cache tag [choice of K positions]

• cache line replacement strategy [within a set] - Least Recently Used [LRU], pseudo LRU,
random…

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 7

Searching a K-way Cache…

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 8

Cache Organisation

• the cache organisation is described using the following three parameters

L bytes per cache line [cache line or block size]
K cache lines per set [degree of associativity K-way]
N number of sets

• cache size LKN bytes

• N = 1

 fully associative cache, incoming address tag compared with ALL cache tags
 address can map to any one of the K cache lines

• K = 1

 direct mapped cache, incoming address tag compared with ONLY ONE cache tag
 address can be mapped ONLY onto a single cache line

• N > 1 and K > 1

 set-associative [K-way cache]

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 9

Write-Through vs Write-Back [Write-Deferred]

• WRITE-THROUGH

 write hit

update cache line and main memory

 write miss

update main memory ONLY [non write allocate cache]

OR

select a cache line [using replacement policy]
fill cache line by reading data from memory
write to cache line and main memory [write allocate cache]

NB: unit of writing [e.g. 4 bytes] likely to be much smaller than cache line size [e.g.
16 bytes]

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 10

Write-Through vs Write-Back [Write-Deferred]…

• WRITE-BACK [WRITE-DEFERRED]

 write hit

update cache line ONLY
ONLY update main memory when cache line is flushed or replaced

 write miss

select a cache line [using replacement policy]
write-back previous cache line to memory if dirty/modified
fill cache line by reading data from memory
write to cache line ONLY

NB: unit of writing [e.g. 4 bytes] likely to be much smaller than cache line size [e.g.
16 bytes]

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 11

Typical Cache Miss Rates

• data from Hennessy and Patterson

• shows miss rate rather than hit rate

• miss rate more interesting!

• note how data [address trace] was
collected

• trace fed through a software cache
model with

 L = 32
 LRU replacement policy

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 12

Typical Cache Miss Rates

• plot of miss rate vs cache size using Hennessy and Patterson data

• note that the 2:1 cache rule of thumb

"the miss rate of a direct mapped cache of size X is about the same as a 2-way set-
associative cache of size X/2"

• rule supported by data [although not perfectly]

normally

• miss rate decreases as
cache size increased [or
hit rate increases as cache
size increased]

• miss rate decreases as K
increased [or hit rate
increases as K increased]

0.00

0.05

0.10

0.15

0.20

0.25

1 2 4 8 16 32 64 128

1-way

2-way

4-way

8-way

K

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 13

The 3 Cs

• Hennessy and Patterson classify cache misses into 3 distinct types

 compulsory
 capacity
 conflict

• total misses = compulsory + capacity + conflict

• assume an address trace is being processed through a cache model

• compulsory misses are due to addresses appearing in the trace for the first time, the
number of unique cache line addresses in trace [reduce by prefetching data into cache]

• capacity misses are the additional misses which occur when simulating a fully
associative cache [reduce by increasing cache size]

• conflict misses are the additional misses which occur when simulating a non fully
associative cache [reduce by increasing cache associativity K]

• see Hennessy and Patterson data

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 14

Direct Mapped vs Associative Caches

• will an associative cache always outperform a direct mapped cache of the same size?

• consider two caches

K=4, N=1, L=16 [64 byte fully associative]
K=1, N=4, L=16 [64 byte direct mapped]

LxKxN equal…

and the following repeating sequence of 5 addresses

a, a+16, a+32, a+48, a+64, a, a+16, a+32…

• increase address by 16 each time, as this is the line size [L = 16]

• caches can contain 4 addresses, sequence comprises 5 addresses
• 5 addresses won't fit into 4

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 15

Direct Mapped vs Associative Caches….

• fully associative: only 4 addresses can fit in the 4-way cache so, due to the LRU
replacement policy, every access will be a miss

• direct mapped: since ONLY addresses a and a+64 will conflict with each other as they
map to the same set [set 0 in diagram], there will be 2 misses and 3 hits per cycle of 5
addresses

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 16

Direct Mapped vs Associative Caches…

• the 3 Cs means that the conflict misses can be negative!

• consider previous example with 10 addresses [5 address sequence repeated twice]

• calculate conflict misses from total, compulsory and capacity misses which are known

• conflict misses = total misses – compulsory misses - capacity misses

• for direct mapped cache, conflict misses = 7 – 5 – 5 = -3

fully associative direct mapped

compulsory 5 5

capacity 5 5

conflict 0 -3

total 10 misses 7 misses

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 17

Victim Cache [Norman Jouppi]

• cost-effective cache organisation

• large direct mapped cache and a small fully-
associative victim cache

• on direct-mapped cache miss, search victim cache
before searching next level cache in hierarchy

• when data ejected from direct mapped cache save
in victim cache

• studies indicate performance of a 2-way cache with
implementation cost of a direct-mapped cache

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 18

Cache Coherency

• consider an I/O processor which transfers
data directly from disk to memory via an
direct memory access [DMA] controller

• if the DMA transfer overwrites location X in
memory, the change must somehow be
reflected in any cached copy

• the cache watches [snoops on] the bus and if
it observes a write to an address which it has
a copy of, it invalidates the appropriate cache
line [invalidate policy]

• the next time the CPU accesses location X, it
will fetch the up to date copy from main
memory

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 19

Virtual or Physical Caches?

• can both be made to work?

• possible advantages of virtual caches

 speed? (i) no address translation required before virtual
cache is accessed and (ii) the cache and MMU can operate in
parallel [will show later that this advantage is not necessarily
the case]

• possible disadvantages of virtual caches

• aliasing [same problem as TLB], need a process tag to
differentiate virtual address spaces [or invalidate complete
cache on a context switch]

• process tag makes it harder to share code and data

• on TLB miss, can't walk page tables and fill TLB from cache

• more difficult to maintain cache coherency?

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 20

A Fast Physical Cache

• organisation allows concurrent MMU and cache access [as per virtual cache]

• cache look-up uses low part of address which is NOT altered by the MMU

• K directories, K comparators and K buffers needed for a K-way design

• cache size = K x PAGESIZE [if L = 16, N = 256]

• negligible speed disadvantage compared with a virtual cache

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 21

Cache Coherency with a Virtual Cache

• address stored in cache
by virtual address, but
addresses on bus are
physical

• need to convert physical
address on bus to a
virtual address in order
to invalidate appropriate
cache line

• could use an inverse
mapper [as in diagram]

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 22

Cache Coherency with a Virtual Cache…

• alternatively store a physical and a virtual tag for each cache line

• CPU accesses match against virtual tags
• bus watcher accesses match against physical tags

• on a CPU cache miss, virtual and physical tags updated as part of the miss handling

• cache positioned between CPU and bus, needs to look in two directions at once [think
rabbit or chameleon which has a full 360-degree arc of vision around its body]

• even with a physical cache, normal to have two identical physical tags

 one for CPU accesses and one for bus watching

set 0 physical tag virtual tag data

set 1 physical tag virtual tag data

set n physical tag virtual tag data

http://en.wikipedia.org/wiki/Chameleon

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 23

Intel 486 [1989]

• 8K physical unified code and data cache

• write-through, non write allocate

• 4-way set associative 16 bytes per line L=16, K= 4 hence N=128 [a fast physical cache]

• pseudo LRU

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 24

Pseudo-LRU access sequence

• consider line accesses made in following order 1, 2, 0, 1, 3

• assume pseudo LRU bits initially 0

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 25

Implementing Real LRU

• method due to Maruyama [IBM]

• keep a K2 matrix of bits for each set

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 26

Implementing Real LRU…

• consider line accesses made in following order 1, 2, 0, 1, 3

• line 2 is LRU after access sequence

• K-1 bits per set for pseudo LRU
• K2 bits per set for real LRU

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 27

Intel 486 [1989]…

• TLB

 32 entry fully associative, pseudo LRU

• non-cacheable I/O devices [e.g. polling a serial interface]

 will not see changes if always reading cached copy [volatile]

 can set bit in PTE to indicate that page is non-cacheable

OR…

 assert hardware signal when accessed to indicate that memory access should be
treated as non-cacheable

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 28

Intel Core i7-3820 CPU @ 3.60GHz [Q1 2012]

• 32nm, 4 core [8 threads], L1, L2 and L3 line size 64 bytes

• L1 instruction 32K 8-way write-through per core [fast physical cache]
• L1 data 32K 8-way write-back per core [fast physical cache]
• L1 cache latency 3 clock cycles

• L2 256KB 8-way write-back unified cache per core [fast physical cache]
• L2 cache latency 12 clock cycles

• L3 10MB 20-way write-back unified cache shared by ALL cores [fast physical cache]
• L3 cache latency 26-31 clock cycles

• L1 instruction TLB , 4K pages, 64 entries, 4-way
• L1 data TLB, 4K pages, 64 entries, 4-way

• L2 TLB, 4K pages, 512 entries, 4-way

• ALL caches and TLBs use a pseudo LRU replacement policy

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 29

Cache Trace Analysis

• empirical observations of typical programs has produced the simple
30% rule of thumb:

"each doubling of the size of the cache reduces the misses by 30%"

• good for rough estimates, but a proper design requires a thorough
analysis of the interaction between a particular machine architecture,
expected workload and the cache design

• some methods of address trace collection:

 logic analyser [normally can't store enough addresses]
 s/w machine simulator [round robin combination of traces as

described in Hennessy and Patterson]
 instruction trace mechanism
 microcode modification [ATUM]

• ALL accesses [including OS] or application ONLY
• issue of quality and quantity

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 30

Trace File Size

• how many addresses are required to obtain statistically significant results?

• must overcome initialisation transient during which the empty cache is filled with data

• consider a 32K cache with 16 bytes per line => 2048 lines

 to reduce transient misses to less than 2% of total misses, must generate at least 50 x
transient misses [50 x 2048 100,000] when running simulation

 if the target miss ratio is 1% this implies 100,000 x 100 10 million addresses

• evaluating N variations of cache a design on separate passes through a large trace file
could take reasonable amount of CPU time

• will examine some techniques for reducing this processing effort

• in practice, it may no longer be absolutely necessary to use these techniques, but
knowledge of them will lead to a better understanding of how caches operate [eg can
analyse 2 million addresses in 20ms on a modern IA32 CPU]

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 31

Multiple Analyses per run

• if the cache replacement policy is LRU then it is possible to evaluate all k-way cache
organisations for k < K during a single pass through the trace file

4-way cache directory (for one set) maintained with a LRU policy

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 32

Multiple Analyses per run…

• to keep track of the hits of a 1-way to a K-way cache must simply note the position of
each hit in the cache directory

• keep a vector of hit counts int hits[K]

• if a hit occurs at position i then increment hits[i]

• Increment hits for directory[0] in hits[0], directory[1] in hits[1], …

• to find the hits for a k-way cache simply sum hits[i] for i = 0 to k-1

• NB: as k increases so does the cache size

• NB: collecting hits for 1K 1-way, 2K 2-way, 3K 3-way, 4K 4-way, …

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 33

Trace Stripping

• generate a reduced trace by simulating a 1-way cache
with N sets and line size L, outputting only those
addresses that produce misses

• reduced trace 20% the size of full trace [see Hennessy
and Patterson table for miss rate of a 1K 1-way cache]

• what can be done with the reduced trace?

• since it's a direct mapped cache, a hit doesn't change
the state of the cache [no cache line tags to re-order]

• all the state changes are recorded in the file of misses

• simulating a k-way cache with N sets and line size L on
the full and reduced traces will generate the same
number of cache misses [simple logical argument]

• NB: as k increases so does the cache size [again]

??? identical to file of misses
what goes in come out!

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 34

Trace Stripping…

• not only can k be varied on the reduced trace but also N in multiples of 2

• consider a reduced trace generated from a 1-way cache with 4 sets

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 35

Trace Stripping…

• reduced trace will contain addresses where the previous set number is identical, but
the previous least significant tag bit is different

• this means that all addresses that change set 0 and set 4 will be in the reduced trace

• hence any address causing a miss on the 8 set cache is present in the reduced trace

• can reduce trace further by observing that each set behaves like any other set

• Puzak's experience indicates that for reasonable data, retaining only 10% of sets [at
random] will give results to within 1% of the full trace 95% of the time

• see High Performance Computer Architecture Harold S. Stone for more details

Caches

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 36

Summary

• you are now able to

 explain why caches work

 explain the organisation and operation of caches

 calculate hits, misses and the 3 Cs given an address trace and cache organisation

 know the difference between virtual and physical caches

 explain how LRU and pseudo LRU replacement algorithms are implemented

 write a cache simulation

 use a number of techniques to speed up cache simulations

