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Lecture 5:  CUDA Threads 



Software <-> Hardware 

• From a programmer’s perspective: 
– Blocks 
– Kernel 
– Threads 
– Grid 

• Hardware Implementation: 
– SMs 
– SPs (per SM) 
– Warps 



Some Restrictions First 

• All threads in a grid execute the same kernel 
function 

• A grid is organized as a 2D array of blocks  
(gridDim.x and gridDim.y) 

• Each block is organized as 3D array of threads 
(blockDim.x, blockDim.y, and blockDim.z) 

• Once a kernel is launched, its dimensions cannot 
change. 

• All blocks in a grid have the same dimension 
• The total size of a block is limited to 512 threads 
• Once assigned to an SM, the block must execute in 

its entirety by the SM 
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Figure 3.2. An Example of CUDA Thread Organization.
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• Thread ID is unique within a block 
• Using block ID and thread ID we can make unique ID for 
  each thread per kernel 



Revisiting Matrix Multiplication 

This is what we did 
before… 

What is the main 
shortcoming?? 



Revisiting Matrix Multiplication 

Can only handle 16 
elements in each 

dimension! 

Reason:  
We used 1 block, 
and a block is limited to 512 threads 



Revisiting  
Matrix Multiplication 
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• Break-up Pd into tiles 

• Each block calculates 
one tile 
– Each thread calculates 

one element 

– Block size equals tile size 



Revisiting  
Matrix Multiplication 
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Revisiting Matrix Multiplication 



Synchronization 

__syncthreads() 
• called by a kernel function 
• The thread that makes the call will be 

held at the calling location until every 
thread in the block reaches the location 

• Beware of if-then-else 
• Threads in different blocks cannot 

synchronize -> CUDA runtime system 
can execute blocks in any order 
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Each block can execute in any order relative to other blocks.  

time 

The ability to execute the same application code on hardware  
with different number of execution resources is called 
 transparent scalability  



Thread Assignment 

• Threads assigned to execution resources on a 
block-by-block basis. 

• CUDA runtime automatically reduces number of 
blocks assigned to each SM until resource usage is 
under limit. 

• Runtime system:  
– maintains a list of blocks that need to execute  
– assigns new blocks to SM as they compute previously 

assigned blocks   
• Example of SM resources 

– computational units 
– number of threads that can be simultaneously tracked 

and scheduled. 
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GT200 can accommodate 8 blocks/SM  and up to 1024 threads can be 
 assigned to an SM. 
What are our choices for number of blocks and number of threads/block? 

Thread scheduling is an implementation concept. 



FERMI 



Warps 

• Once a block is assigned to an SM, it is 
divided into units called warps. 
– Thread IDs within a warp are consecutive 

and increasing 

– Warp 0 starts with Thread ID 0 

• Warp size is implementation specific. 

• Warp is unit of thread scheduling in 
SMs 

 

 



Warps 

• Partitioning is always the same 

• DO NOT rely on any ordering between 
warps 

• Each warp is executed in a SIMD 
fashion (i.e. all threads within a warp 
must execute the same instruction at 
any given time). 
– Problem: branch divergence 

 

 



Branch Divergence in Warps 
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• occurs when threads 
inside warps branches 
to different execution 
paths. Branch 
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50% performance loss 



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Computational Resource Utilization

32

24 to 31

16 to 23

8 to 15

1 to 7

0

32 warps, 32 threads per warp, round-robin scheduling 

Good 

Bad 

Example of underutilization 



Dealing With Branch Divergence 

• A common case: avoid divergence when branch 
condition is a function of thread ID 
– Example with divergence:  

• If (threadIdx.x > 2) { } 

• This creates two different control paths for threads in a 
block 

– Example without divergence: 
• If (threadIdx.x / WARP_SIZE > 2) { } 

• Also creates two different control paths for threads in a 
block 

• Branch granularity is a whole multiple of warp size; all 
threads in any given warp follow the same path 

• There is a big body of research for dealing with 
branch divergence 



Dealing With Branch Divergence 

 

: 

: 

if (x == 10) 

   c = c + 1; 

: 

: 

 

     : 

     : 

     LDR r5, X 

     p1 <- r5 eq 10 

<p1> LDR  r1 <- C 

<p1> ADD r1, r1, 1 

<p1> STR  r1 -> C 

     : 

     : 

Predication 

 

<p1> LDR r1,r2,0 

 

• If p1 is TRUE, instruction executes normally 

• If p1 is FALSE, instruction treated as NOP 

Example of Predication 



Latency Tolerance 

• When an instruction executed by the threads in 
a warp must wait for the result of a previously 
initiated long-latency operation, the warp is not 
selected for execution -> latency hiding 

• Priority mechanism used to schedule ready 
warps 

• Scheduling does not introduce idle time -> zero-
overhead thread scheduling 

• Scheduling is used for tolerating long-latency 
operations, such as: 
– pipelined floating-point arithmetic 
– branch instructions 

 



This ability of tolerating long-latency operation is the main reason why GPUs 
do not dedicate as much chip area to cache memory and branch prediction mechanisms 
as traditional CPUs. 
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Exercise:  Suppose 4 clock cycles are needed to dispatch the same instruction  

for all threads in a Warp in G80. If there is one global memory access  every 4  

instructions, how many warps are needed to fully tolerate 200-cycle memory latency? 
 



Exercise 

The GT200 has the following specs 
(maximum numbers): 

• 512 threads/block 
• 1024 threads/SM 
• 8 blocks/SM 
• 32 threads/warp 

What is the best configuration for thread 
blocks to implement matrix multiplications 

8x8, 16x16, or 32x32? 



Myths About CUDA 

• GPUs have very wide (1000s) SIMD machines 
– No, a CUDA Warp is only 32 threads 

• Branching is not possible on GPUs 
– Incorrect.  

• GPUs are power-inefficient 
– Nope, performance per watt is quite good 

• CUDA is only for C or C++ programmers 
– Not true, there are third party wrappers for Java, 

Python, and more 

 



G80, GT200, and Fermi 



Conclusion 

• We must be aware of the restrictions 
imposed by hardware:  
– threads/SM 
– blocks/SM 
– threads/blocks 
– threads/warps 

• The only safe way to synchronize threads 
in different blocks is to terminate the 
kernel  and start a new kernel for the 
activities after the synchronization point 


