
Graphics Processing Units (GPUs):
Architecture and Programming

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-GA.3033-012

Lecture 5: CUDA Threads

Software <-> Hardware

• From a programmer’s perspective:
– Blocks
– Kernel
– Threads
– Grid

• Hardware Implementation:
– SMs
– SPs (per SM)
– Warps

Some Restrictions First

• All threads in a grid execute the same kernel
function

• A grid is organized as a 2D array of blocks
(gridDim.x and gridDim.y)

• Each block is organized as 3D array of threads
(blockDim.x, blockDim.y, and blockDim.z)

• Once a kernel is launched, its dimensions cannot
change.

• All blocks in a grid have the same dimension
• The total size of a block is limited to 512 threads
• Once assigned to an SM, the block must execute in

its entirety by the SM

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

• Thread ID is unique within a block
• Using block ID and thread ID we can make unique ID for
 each thread per kernel

Revisiting Matrix Multiplication

This is what we did
before…

What is the main
shortcoming??

Revisiting Matrix Multiplication

Can only handle 16
elements in each

dimension!

Reason:
We used 1 block,
and a block is limited to 512 threads

Revisiting
Matrix Multiplication

8

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

bx

tx
0 1 TILE_WIDTH-1 2

0 1 2

by
ty

2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W

ID
T

H

• Break-up Pd into tiles

• Each block calculates
one tile
– Each thread calculates

one element

– Block size equals tile size

Revisiting
Matrix Multiplication

9

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

bx

tx
0 1 TILE_WIDTH-1 2

0 1 2

by
ty

2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W

ID
T

H

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Block(0,0) Block(1,0)

Block(1,1) Block(0,1)

TILE_WIDTH = 2

Revisiting Matrix Multiplication

Synchronization

__syncthreads()
• called by a kernel function
• The thread that makes the call will be

held at the calling location until every
thread in the block reaches the location

• Beware of if-then-else
• Threads in different blocks cannot

synchronize -> CUDA runtime system
can execute blocks in any order

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks.

time

The ability to execute the same application code on hardware
with different number of execution resources is called
 transparent scalability

Thread Assignment

• Threads assigned to execution resources on a
block-by-block basis.

• CUDA runtime automatically reduces number of
blocks assigned to each SM until resource usage is
under limit.

• Runtime system:
– maintains a list of blocks that need to execute
– assigns new blocks to SM as they compute previously

assigned blocks
• Example of SM resources

– computational units
– number of threads that can be simultaneously tracked

and scheduled.

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1 SM 0

GT200 can accommodate 8 blocks/SM and up to 1024 threads can be
 assigned to an SM.
What are our choices for number of blocks and number of threads/block?

Thread scheduling is an implementation concept.

FERMI

Warps

• Once a block is assigned to an SM, it is
divided into units called warps.
– Thread IDs within a warp are consecutive

and increasing

– Warp 0 starts with Thread ID 0

• Warp size is implementation specific.

• Warp is unit of thread scheduling in
SMs

Warps

• Partitioning is always the same

• DO NOT rely on any ordering between
warps

• Each warp is executed in a SIMD
fashion (i.e. all threads within a warp
must execute the same instruction at
any given time).
– Problem: branch divergence

Branch Divergence in Warps

18

• occurs when threads
inside warps branches
to different execution
paths. Branch

Path A

Path B

Branch

Path A

Path B

50% performance loss

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Computational Resource Utilization

32

24 to 31

16 to 23

8 to 15

1 to 7

0

32 warps, 32 threads per warp, round-robin scheduling

Good

Bad

Example of underutilization

Dealing With Branch Divergence

• A common case: avoid divergence when branch
condition is a function of thread ID
– Example with divergence:

• If (threadIdx.x > 2) { }

• This creates two different control paths for threads in a
block

– Example without divergence:
• If (threadIdx.x / WARP_SIZE > 2) { }

• Also creates two different control paths for threads in a
block

• Branch granularity is a whole multiple of warp size; all
threads in any given warp follow the same path

• There is a big body of research for dealing with
branch divergence

Dealing With Branch Divergence

:

:

if (x == 10)

 c = c + 1;

:

:

 :

 :

 LDR r5, X

 p1 <- r5 eq 10

<p1> LDR r1 <- C

<p1> ADD r1, r1, 1

<p1> STR r1 -> C

 :

 :

Predication

<p1> LDR r1,r2,0

• If p1 is TRUE, instruction executes normally

• If p1 is FALSE, instruction treated as NOP

Example of Predication

Latency Tolerance

• When an instruction executed by the threads in
a warp must wait for the result of a previously
initiated long-latency operation, the warp is not
selected for execution -> latency hiding

• Priority mechanism used to schedule ready
warps

• Scheduling does not introduce idle time -> zero-
overhead thread scheduling

• Scheduling is used for tolerating long-latency
operations, such as:
– pipelined floating-point arithmetic
– branch instructions

This ability of tolerating long-latency operation is the main reason why GPUs
do not dedicate as much chip area to cache memory and branch prediction mechanisms
as traditional CPUs.

…
t0 t1 t2 … t31
…

…
t0 t1 t2 … t31
… Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

warp 8 instruction 11

SM multithreaded
Instruction scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

.

.

.

time

warp 3 instruction 96

Exercise: Suppose 4 clock cycles are needed to dispatch the same instruction

for all threads in a Warp in G80. If there is one global memory access every 4

instructions, how many warps are needed to fully tolerate 200-cycle memory latency?

Exercise

The GT200 has the following specs
(maximum numbers):

• 512 threads/block
• 1024 threads/SM
• 8 blocks/SM
• 32 threads/warp

What is the best configuration for thread
blocks to implement matrix multiplications

8x8, 16x16, or 32x32?

Myths About CUDA

• GPUs have very wide (1000s) SIMD machines
– No, a CUDA Warp is only 32 threads

• Branching is not possible on GPUs
– Incorrect.

• GPUs are power-inefficient
– Nope, performance per watt is quite good

• CUDA is only for C or C++ programmers
– Not true, there are third party wrappers for Java,

Python, and more

G80, GT200, and Fermi

Conclusion

• We must be aware of the restrictions
imposed by hardware:
– threads/SM
– blocks/SM
– threads/blocks
– threads/warps

• The only safe way to synchronize threads
in different blocks is to terminate the
kernel and start a new kernel for the
activities after the synchronization point

