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Abstract—CUDA is a parallel computing platform and pro-
gramming model for Graphics Processing Unit (GPU) of
NVIDIA. With CUDA programming, General Purpose computing
on GPU (GPGPU) is possible. However, the correctness of CUDA
programs relies on the correctness of CUDA compilers, which is
hard to test due to its complexity. In this work, we propose
CUDAsmith, a fuzzing framework for CUDA compilers. The
CUDAsmith tool can randomly generate deterministic and valid
CUDA kernel code with several different strategies. Moreover, it
adopts random differential testing and EMI testing techniques
to solve the test oracle problems of CUDA compiler testing. In
particular, we lift live code injection to CUDA compiler testing
to help generate EMI variants. Our fuzzing experiments with
both the NVCC compiler and the LLVM compiler for CUDA
have detected thousands of failures and compiler developers have
already confirmed several of them. Finally, the cost-effectiveness
of CUDAsmith is also thoroughly evaluated in our fuzzing
experiment.

Index Terms—fuzzing, compiler, CUDA, GPGPU, EMI testing,
differential testing

I. INTRODUCTION

CUDA (Compute Unified Device Architecture) is a paral-
lel computing platform and programming model developed
by NVIDIA for General Purpose computing on Graphical
Processing Units (GPGPUs). With CUDA, developers can
dramatically speed up computing applications by harnessing
the power of GPUs. The CUDA programming model has
successfully accelerated computation in different domains such
as computational chemistry, machine learning, bioinformatics,
data science, etc.

However, the correctness of the CUDA applications relies
on the correctness of the underlying CUDA compiler. A bug in
compiler can either lead to compile-time errors where the com-
piler fails to generate executable output. Or it may also lead to
runtime errors to silently produce wrong executable code. In
fact, developers have reported CUDA compiler bugs in CUDA
developer forums [1] as well as in NVIDIA Developer website
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[2]. The CUDA compiler bugs may lead to build failures [3],
[4], wrong code generation failures [5] and timeout failures
[6], [7]. This can seriously affect the productivity of the CUDA
application developers. Therefore, extensive testing of CUDA
compiler implementations is crucial for the flourish of CUDA
ecosystem. In this work, we are focusing on fuzz testing (i.e.
fuzzing) techniques to generate random valid kernels to test
CUDA compilers for failures.

However, there are two challenges for fuzzing CUDA com-
pilers. The first challenge is to generate effective and determin-
istic kernel code as inputs to CUDA compilers. For a CUDA
compiler, it must support the memory hierarchies, the vector
data types and the synchronization primitives specified by
CUDA programming model. A good fuzzing input generator
must generate kernel code with those features to fully exercise
the compiler under test. The second challenge is to determine
the test oracle when fuzzing CUDA compiler. Indeed, the
output of the compiler is binary code, whose conformance with
the source code is hard to verify manually or automatically.
Although differential testing techniques and EMI (Equivalence
Modulo Inputs) testing techniques are reported to be effective
to solve the test oracle problem for compiler testing in previous
works [8] [9], there is still no work on the adaptation of these
techniques into CUDA compiler testing context. The idea of
EMI [9] is to take existing real-world code and transform it in
a systematic way to produce different, but equivalent variants
of the original code for the same input. In this way, the test
oracle problem with compiler testing can be mitigated.

In previous work, Lidbury et al. [8] proposed the CLsmith
tool to fuzz OpenCL compilers. CLsmith used a stochastic
grammar approach to generate valid OpenCL kernels for
fuzzing. Furthermore, they proposed to use differential testing
and dead code mutation (a kind of EMI) to address the test
oracle problem for compiler testing. At one side, OpenCL and
CUDA share similar computing architectures targeted at GPU
devices. At the other side, there are still nontrivial differences
between their execution models. Therefore, CLSmith cannot
be used for CUDA compiler testing directly. Moreover, we
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want to further realize live code mutation strategies (another
kind of EMI) to better address the test oracle problem of
compiler testing.

In this work, we propose CUDAsmith, a fuzzing framework
for CUDA compilers. Due to the similarity of CUDA and
OpenCL computation architecture, we choose to adapt the
kernel code generation logic of CLsmith to CUDA execu-
tion model. The CUDAsmith tool can randomly generate
deterministic and valid CUDA kernel code based with a
scholastic grammar approach. To solve the test oracle problem
of compiler testing, in addition to the differential testing and
dead code mutation techniques, CUDAsmith tool also lifts the
live code injection mechanisms into CUDA compiler testing
context. Moreover, we have performed a large scale fuzzing
on several versions of NVCC and Clang compilers for CUDA
with different optimization levels. The experimental results
showed that CUDAsmith were effective to detect compiler
errors based on random differential testing. Furthermore, we
have also evaluated CUDAsmith in EMI testing mode, which
is also effective to expose CUDA compiler bugs.

The contributions of this work are three fold. First, we have
proposed an effective fuzzing tool for CUDA compilers by
generating deterministic and valid CUDA kernel code. Second,
we have enabled live code injection techniques to perform
EMI testing on CUDA compilers. Third, we have performed
the first comprehensive fuzzing campaign on CUDA compilers
with different optimization levels, our CUDAsmith tool has
found thousands of CUDA compiler failures in both NVCC
and Clang. And the NVCC and Clang compiler developers
have already confirmed several of our reported bugs.

The organization of the remaining sections is as follows.
In Section 2, we will present our tool CUDAsmith in detail,
including both its input generation strategies and test oracle
checking strategies. In section 3, we will perform a com-
prehensive experimental study to evaluate the effectiveness
of CUDAsmith in detecting compiler failures. Then we will
analyze some NVCC and Clang compiler bugs confirmed by
developers in section 4 followed by the related work in Section
5. Finally, we conclude our work in Section 6.

II. CUDASMITH: THE CUDA COMPILER FUZZER

In this section, we first present the general workflow of our
CUDAsmith tool. Then we will present its kernel function
generation strategies, its differential testing strategy, and its
EMI variants generation strategies.

A. The general workflow of CUDAsmith

The general workflow of CUDAsmith is shown in Figure
1. At first, the CUDA kernel generator of CUDAsmith tool
will randomly generate a pool of CUDA kernel functions.
CUDAsmith can generate CUDA kernels in different mode
with different language features. The default configuration of
CUDAsmith is to use the All mode to generate kernels with
the most comprehensive features. Some of these generated
kernel functions will be fed into the EMI variants generator
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Fig. 1. Overview of CUDAsmith Workflow

to generate EMI variants of the kernel function with dead-
code injection and live-code injection. Both the CUDA kernel
functions and the EMI kernel function variants are respectively
merged with a general host code to generate a mixed host
and device code ready for compilation. Then CUDAsmith
will use the mixed CUDA code to perform differential testing
on different compiler configurations (i.e., different compiler
versions and optimization options). Furthermore, CUDAsmith
will also use the mixed CUDA code of EMI variants to
perform EMI testing. Finally, CUDAsmith will analyze the
fuzzing logs to report build failures, wrong code failures, and
timeout failures. In summary, CUDAsmith combines CUDA
program generation techniques, differential testing techniques,
and EMI testing techniques to address the CUDA compiler
testing problem.

B. The Host Code of CUDAsmith

As shown in the Table I below, the host code of CUDAsmith
follows the basic design pattern of the host-side code of
CUDA. It first parse of arguments for launching the kernel
(line 1). Then it queries the attributes of CUDA device, its
capabilities and memory size (line 2). After that, it creates the
CUDA context and checks whether the number of threads and
the block size are within the maximum limit of the device
(line 3 and 4). Then, it allocate and initializes host and device
memory based on the mode of kernel generation (line 5). At
line 5 to 7, the kernel launch performs its main task: copy
data from host to device, invoke the kernel function, and copy
data from device to host. Finally, the launcher calculates the
results and releases the memory.

Within this workflow, the API functions used by CUD-
Asmith and CLsmith are syntactically different. We have
listed the mappings of the key API functions between CUDA
and OpenCL used by host code as shown in Table II. The
API functions in Table II involves device information query,
memory operations, and kernel launch functions. In particular,
the memory manipulation functions and kernel launch func-
tions must be adapted to CUDA specification. Moreover, the
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TABLE I
THE WORKFLOW OF HOST CODE

1 Parse arguments.
2 Query device, capability and memory.
3 Create Context.
4 Check number of threads and block number.
5 Allocate host and device memory for different mode.
6 CuMemcpyHtoD(...) //copy data from host to device
7 Kernel<<< ... >>> () //invoke kernel function
8 CuMemcpyDtoH(...) //copy data from device to host
9 Calculate results.

10 Release Memory.

TABLE II
THE MAPPING OF MAJOR API FUNCTIONS IN HOST CODE

CUDA OpenCL
cudaGetDeviceProperties() clGetDeviceInfo()

cudaMalloc() clCreateBuffer()
cudaMemcpy() clEnqueueRead(Write)Buffer()

cudaFree() clReleaseMemObj()
Kernel<<< ... >>> () clEnqueueNDRangeKernel()

CUDAsmith tool also provides different options when running
different types of kernels. In the host code, the main function
must also parse the options specified by the users to launch
the kernel accordingly.

C. The CUDA kernel function generator

In this section, we will present the technical details of
the CUDA kernel function generator. In general, based on
the syntactic characteristics of the kernel functions generated,
the CUDA kernel function generator can work in different
modes. More specifically, CUDAsmith can generate kernels
in basic mode, vector mode, barrier mode, atomic mode, and
the all mode. The design of different kernel generation modes
follows that of the CLsmith [8] but adapted for CUDA context.
The basic and the vector mode both generate embarrassingly
parallel random kernels. The difference is that the vector mode
will generate and use vector data types within the kernel. The
atomic and barrier modes will generate communicating yet
deterministic kernels. Finally, the all mode is the combination
of the features of all different modes. Each mode will enable
different syntactic characteristics in the generated kernels,
which we will present below in details.

1) Basic mode: Since the execution model of CUDAsmith
and CLsmith is similar, we follow the workflow of the basic
mode of CLsmith to build the basic mode of CUDAsmith.
In basic mode, each thread independently executes the same
logic in the kernel and writes its own result (aggregated with
CRC calculation) into an array called result with its own linear
global id as index. The result array holds the final result after
kernel execution. Therefore, the basic mode represents the
most simple form of data-parallel computing problems.

On the other side, the execution model of CUDA and
OpenCL also has many differences. Fortunately, there is a
mapping between them which we summarizes in Table III.
For example, the hierarchy of computing unit of CUDA
includes Grid, Thread Block, and Thread, which corresponds

TABLE III
MAPPING OF EXECUTION MODEL

CUDA OpenCL
Grid NDRange

Thread Block Work Group
Thread Work Item

gridDim get num groups()
blockDim get local size()
blockIdx get group id()
threadIdx get local id()

blockIdx*blockDim+threadIdx get global id()
gridDim*blockDim get global size()

TABLE IV
MAPPING OF MEMORY MODEL

CUDA OpenCL
Host memory Host memory

Global or Device memory Global memory
Local memory Global memory

Constant memory Constant memory
Shared memory Local memory

Registers Private memory

to NDRange, Work Group, and Work Item in OpenCL, respec-
tively. Similarly, the variables describing the size and indices
of computing unit in CUDA also have their counterparts in
OpenCL. So we borrow the workflow of the basic mode of
CLsmith, and then we build the basic mode of CUDAsmith by
referencing the syntax mapping between CUDA and OpenCL.

Another major difference between CUDA and OpenCL is
their memory model. However, because the memory hierar-
chies of CUDA and OpenCL are both abstractions of the same
set of memory resources (i.e., host memory, graphics memory,
registers, etc), there is also a mapping between CUDA and
OpenCL in terms of memory model as shown in Table IV.
Based on this memory mapping, we manage to adapt each
memory related kernel code generation in CLsmith into CUDA
coding convention. For example, kernels are decorated with

global in CUDA and with kernel in OpenCL. And
for functions containing device code, CUDA uses device
modifier while OpenCL uses no explicit modifier.

After carefully handling the execution model and the mem-
ory model mappings between OpenCL and CUDA (as well
as some other small syntactic differences), CUDAsmith is
able to generate kernels in basic mode conforming to CUDA
programming paradigm.

2) Vector mode: For data-parallel problems, vectors data
types with different dimensions (1D, 2D, and 3D) are fre-
quently used by CUDA programs for parallel processing on
computation units. Therefore, it is important to enhance the
basic mode with vector data types and operations support. So
in vector mode, CUDAsmith aims at generating kernels with
valid vector data types and corresponding operations.

There are several differences between OpenCL and CUDA
in vector support. OpenCL supports signed and unsigned char,
short, int and long vectors that can be declared with length
2, 3, 4, 8 and 16. While CUDA also provides a similar
set of vector data types, the supported vector length only
ranges from 1 to 4. Another difference between CUDA and
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OpenCL vector data type is their constructor. CUDA provides
a constructor function of the form make 〈typename〉. For ex-
ample, “make int2(int x, int y)” will creates a vector of type
int2 with value(x, y). For OpenCL kernels, the constructor is
usually in the form of vector literals such as int2(int x, int y).
So when adapting the kernel generation logic of vector mode
from CLsmith, we must not only control the length of the
vector data types for CUDA, but we also need to change the
vector constructor statements from OpenCL style to CUDA
style.

Moreover, OpenCL also supports built-in operators and
functions for vector datatype while CUDA has no such sup-
port. So we must also handle appropriately in the generated
CUDA kernel in vector mode. Finally, to avoid undefined
behaviors arising from vector computations, we still reused
the well-defined “safe math” vector macros realized within
CLsmith in CUDAsmith.

3) Barrier mode: The basic mode and the vector mode only
generate the embarrassingly parallel kernels. But in reality,
different threads often needs to communicate or synchronize
after each iteration of computation. The CUDAsmith in barrier
and atomic mode tries to generate such communicating yet
deterministic code.

The basic pattern for barrier mode is simple: the kernel
uses a barrier function (i.e., synchthreads) just before redis-
tributing the ownership of elements within global or shared
array among threads in a block. The barrier primitive can
ensure race-freedom and deterministic result. An A offset
value is used by the thread to index into a shared array A
for computation. And a 2D array called permutations provides
each thread its unique A offset value identified by its linear
local id and a random number. The generated code for the ith
such synchronization point is as follows:

s y n c t h r e a d s ( ) ;
A o f f s e t = p e r m u t a t i o n s [ rnd i ] [ l i n e a r l o c a l i d ( ) ] ;

In this way, each time after thread synchronization, a thread
get a new A offset with its own linear thread id and a new
random number for the ith round. The barrier primitive ensures
race freedom upon offset redistribution.

OpenCL uses barrier primitive to synchronize work-
items within a work-group. Similarly, CUDA also uses
barrier primitive to synchronize threads within a thread
block. The differences is that CUDA uses syncthreads()
while OpenCL uses barrier() as the barrier primitive.
The barrier() primitive in OpenCL has arguments spec-
ifying the memory address space to perform synchro-
nization. For CUDA, the syncthreads() has no argu-
ments, but it works for both global and shared vari-
ables. So CUDAsmith uses syncthreads() to replace
barrier(cl mem fence flags flags) for thread synchro-
nization and declares both global and shared variables to
synchronize on.

4) Atomic mode: The atomic functions are important instru-
ments for threads to synchronize with each other for many-
core computing. So the atomic mode of CUDAsmith aims at

TABLE V
MAPPING OF ATOMIC FUNCTIONS

CUDA OpenCL
atomicAdd atomic add
atomicSub atomic sub
atomicCAS atomic cmxchg
atomicMin atomic min
atomicMax atomic max
atomicInc atomic inc
atomicDec atomic dec
atomicAnd atomic and
atomicOr atomic or
atomicXor atomic xor

generating communicating yet deterministic kernels with those
atomic functions. Both OpenCL and CUDA provide a rich set
of atomic functions. The mapping between them are shown in
Table V. Each pair of atomic functions in OpenCL and CUDA
provides similar atomic operations, the difference mainly lies
in their function signature.

In particular, the atomic functions in OpenCL explicitly
differentiate the global and local variables. While the atomic
functions for CUDA are applicable to both global and shared
variable in CUDA. Therefore, when generating atomic func-
tion code in CUDAsmith, we must take special care of the
variable types.

Within the kernel generated by CUDAsmith, we use shared
variables as communication vehicles across threads. To avoid
unintended compiler optimizations of shared variable into
registers (accessible by one thread only), we must declare these
shared variable as volatile. However, these atomic functions
cannot directly accept pointers of volatile shared variables as
arguments. Therefore, we choose to write wrapper functions
to perform typecasts on pointers of volatile shared variables
for those atomic functions.

Similar to CLsmith, the atomic mode of CUDAsmith has
two sub-modes: the atomic section mode and the atomic
reduction mode, which we describe in detail as follows.

The workflow of the code generated in the atomic section
mode is similar to that of CLsmith [8]. Basically, CUDAsmith
will randomly insert several atomic sections within the kernel
code. The ith atomic section is shown in the code snippet
below. The rndi is a random literal value for atomic section
i. And input is a shared volatile uint value. One and only one
thread within a block will execute the atomic section guarded
by the conditional containing atomicInc based on thread
schedule. Within the atomic section, the thread will execute the
statements and store the result in the variable result. And the
result will be added to another shared variable s of type volatile
uint. After the atomic sections, one of the threads will finally
output the result on behalf of the thread block. Furthermore,
different thread block will use different variables such that
they are independent from each other. So whatever the thread
schedule is, the results of the kernel execution is deterministic.

i f ( a t o m i c I n c ( i n p u t ) == rndi ){
/ * s t a t e m e n t s * /
atomicAdd ( s , r e s u l t ) ;

}
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For atomic reduction mode, the threads within a thread
block first perform a atomic reduction on a volatile shared
variable v and expression i using one of the commutative and
associative atomic operations supported by CUDA: add, min,
max, or, and xor. Then the threads synchronize via barrier
primitives and one of the threads with local id equal to 0
calculates the sum for all threads. Due to the commutability
and associativity of atomic operations, the relative order of the
threads execution will not affect the final result. So the results
is still deterministic.

a t om icOpi(&v , expri ) ;
s y n c t h r e a d s ( ) ;

i f ( g e t l i n e a r l o c a l i d ( ) = = 0 ) {sum+=v ;}
s y n c t h r e a d s ( ) ;

5) All mode: Finally, the all mode of CUDAsmith is the
combinations of all previous modes for kernel generation.
Therefore, in all mode, we can generate a deterministic kernel
with most of the CUDA programming features enabled with a
certain probability. Compared with other modes, the kernel
generated by all mode has a higher probability to cover
compiler code and trigger compiler failures. Note that the
occurrence of different program features are controlled by
probabilities configurable within CUDAsmith. In this way,
CUDAsmith can be configured to generate kernel with high-
lights on different features. It would be interesting to study
the impact of different configurations on the fault detection
ability of the generated kernels in future work.

D. EMI testing with CUDAsmith

To solve the test oracle problem, we further enabled EMI
testing techniques with CUDAsmith. To generate EMI vari-
ants, we inject code into a kernel function generated by
CUDAsmith with two strategies. One strategy is to inject
always false conditional block (FCB, i.e., dead code mutation)
and the other strategy is to inject always-true guard (TG, i.e.,
live code mutation). The dead code mutation is borrowed from
CLsmith while the live code mutation is newly supported in
this work.

1) Injecting always False Conditional Block (FCB): To
generate always False Conditional Block, we follow the strat-
egy realized in CLsmith [9] to inject dead code into existing
kernels rather than prune existing dead code from the kernel.
This is because recording CUDA kernel coverage is hard and
dead code is rare in real world kernel.

For an initial kernel, CUDAsmith first randomly generates
and injects a set of EMI-FCB blocks into it. And then it prunes
the EMI-FCB blocks according to a set of probabilities to
produce variants of the kernel. This strategy is also used in
previous works in EMI testing [8], [9]. We follows the pruning
strategies of [8] to perform the pruning.

To construct a always false condition block, CUDAsmith
equips a kernel with an additional array parameter called dead
and randomly inserts into the kernel a number of EMI-FCB
blocks, where the ith FCB block to be generated has the
following form:

i f ( dead [rndi,1 ] < dead [rndi,2 ] ) {
/ * Any s t a t e m e n t s * /

}

The runtime values of elements of dead are initialized in the
host application so that dead[j] = j, which is unknown to the
CUDA compiler. The predicate of the if statement is designed
to be false: where rndi,1 and rndi,2 are selected randomly
during program generation to ensure rndi,1 > rndi,2. In this
way, CUDAsmith can ensure the statements within the EMI
block are dynamically unreachable.

2) Injecting always True Guard (TG): To inject always
True Guard (TG) into an existing kernel, CUDAsmith follows
one of the strategy proposed by [10]. For an existing executed
statement s in the original program, CUDAsmith introduces
an if statement to guard s, of which the predicate p is always
true, (i.e., if(p) s; ). This strategy injects live code while
still preserving the original semantics. The construction of
predicate p is the similar to the idea of EMI-FCB but with
an array called live:

And the array live is also initialized in host code so that
live[j] = j. The only difference between FCB and TG is
that rndi,1 and rndi,2 are selected randomly during program
generation to ensure rndi,1 < rndi,2. In this way, CUDAsmith
can ensure the if statements inserted is always true. Different
form FCB, to ensure simplicity, CUDAsmith will generate
only one TG variant for each original kernel. To ensure the
validity of the kernel code after live code injection, when
choosing the statement s to add always true if statement,
CUDAsmith tries to avoid choosing conditional statements as
s.

i f ( l i v e [rndi,1 ] < l i v e [rndi,2 ] ) {
s ; / * s i s an e x e c u t e d s t a t e m e n t * /

}

Finally, for both dead code injection and live code injection,
we follow [8] to perform filtering on base kernels to avoid
injection on dead code. Basically, we invert the values of dead
or live array and check whether the execution results of kernel
is affected to perform filtering. This can help filter out many
ineffective EMI base kernels.

III. EXPERIMENT AND RESULTS ANALYSIS

In this section, we present the details of our experiment as
well as the results analysis.

A. Research Questions

• RQ1: Is differential testing effective to detect CUDA
compiler bugs?

• RQ2: Are EMI techniques effective to detect CUDA
compiler bugs?

• RQ3: Which activity in fuzzing consumes most of the
time during compiler testing?

For RQ1, we want to evaluate the effectiveness of differ-
ential testing techniques on detecting CUDA compiler bugs.
For RQ2, we want to evaluate the fault detection ability of
the two EMI techniques: dead-code injection and live-code
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TABLE VI
COMPILER CONFIGURATIONS IN DIFFERENTIAL TESTING

Compiler Version Opt. Options Total Config.
8.0 O0, O1, O2, O3 12

NVCC 9.0 O0, O1, O2, O3 12
9.2 O0, O1, O2, O3 12

Clang 6.0 O0, O1, O2, O3 12
7.0(trunk) O0, O1, O2, O3 8

injection. Finally, the compiler testing process involves test
case generation, invalid kernel filtering (for EMI), compilation,
and execution. For RQ3, we want to understand which of these
activities consumes most of the time.

B. Experiment setup

We performed our compiler fuzzing experiment on two
workstations and one desktop. Both workstations are equipped
with Intel(R) Xeon(R) CPU E5-2620 and Quadro K2200 while
the desktop is equipped with Intel Core i7-6700 and GeForce
GTX 1060. For operating system, we used Ubuntu 16.04.2
LTS on the workstations and the desktop. We also installed
different versions of NVCC and Clang compilers on these
machines for differential testing.

C. Experiment procedure and compiler configurations

When performing differential testing, we combine compiler
versions with compiler optimization options to form the basic
compilation configurations for comparison. As shown in Table
VI, we use NVCC and Clang compilers in differential testing,
each with different versions and different optimization options.
For NVCC, we use its official released version 8.0, 9.1 and
9.2. Moreover, there are 4 optimization levels for ptxas, its
PTX optimization assembler. For Clang, we use its official
version 6.0 and the current trunk version (which is the 7.0
version to release). For Clang, the optimization of kernel code
is mainly performed by the LLVM IR optimizer [11] and
the corresponding optimization options is integrated with the
optimization options of Clang. When combined these versions
and options together, we have 12 compiler configurations for
NVCC and 8 compiler configurations for Clang. So for each
kernel generated, we have 20 compilation configurations used
for differential testing in total.

For the FCB mode of EMI testing, we used the EMI module
to generate 40 EMI variants (kernels) for each valid base
kernel generated by CUDAsmith in ALL mode. In total, we
generated 1726 valid kernels with CUDAsmith after filtering
invalid ones, and finally had 69040 EMI variants (kernels) for
testing. When performing EMI testing on each group of 40
EMI variants, we used optimization level O0 for NVCC 9.2
and optimization level O3 for Clang.

For the TG mode of EMI testing, CUDAsmith only gener-
ates one TG variant for each kernel generated by all mode. So
we generated 76111 valid base kernel for TG after filtering.
For each of the 76111 base kernel, we generated a TG
variant for it to conduct EMI testing. For NVCC 9.2, we used
optimization level O0. And for the Clang trunk version we
used optimization level O3.

When performing fuzzing, we wanted to use the same input
source files for NVCC and Clang compilers. NVCC supports
both whole program compilation and separate compilation
[12] while Clang only supports the compilation of the whole
program containing mixed host and kernel code [11]. So we
built a general host code and merged it with the kernels
generated by CUDAsmith to form a whole program as the
uniform input to the compilers under test.

For each compiler configurations or EMI variant, we first
compiled the mixed CUDA code and compared their compi-
lations results to detect any build errors at compilation time.
Then we executed the generated binary files and compared
their outputs. If there were discrepancies among their outputs,
we had successfully triggered a wrong code failure in the com-
piler under test. Since the kernels generated by CUDAsmith
normally took only a few seconds to execute, we set a timeout
of one minute for execution. If the execution of a kernel took
more than one minute, we marked the kernel as triggering
a timeout failure. After that, we manually inspected and re-
executed the same test case to confirm the failure. Finally, we
reduced the failure-triggering kernel for reporting to NVCC
or Clang compiler developers.

D. Answering RQ1

In this section, we first summarize the results for differential
testing. The differential testing results for the NVCC compiler
and the Clang compiler are shown in Table VII and Table VIII,
respectively.

As shown in Table VII, the first three columns show the
compiler configurations including the compiler under test,
the compiler version and the optimization level used during
fuzzing. While the last four columns show the number of build
failures, the number of wrong code failures, the number of
timeout failures, and the total number of valid cases for each
configuration. When generating test cases, the total number of
test cases were the same for different configurations. However,
a small amount of the test cases (less than 0.5% on average)
were syntactically invalid and removed after compilation.
The last row shows the average number of build failure,
wrong code, timeout failure and valid test cases over all
configurations. We can find that on average, the majority of
failures detected by differential testing are of type wrong code,
followed by timeout failures. And no build failures are detected
on NVCC compilers. The average percentage of wrong code
and timeout failures are 6.1% and 0.3% on NVCC compiler. In
general, the results show that the wrong code failures are most
prevalent in NVCC compilers. Furthermore, the timeout failure
is also an important problem to pay attention to since it may
seriously affect the performance of the CUDA application.

When comparing different compiler versions, there were
more wrong code failures for NVCC 8.0 and NVCC 9.2 than
for NVCC 9.0. In contrast, the number of timeout failures
exposed in NVCC 9.0 and NVCC 9.2 are much higher than
NVCC 8.0. Therefore, it seems different compiler versions
have different distributions of failure types. It seems that
the NVCC version 9.0 is relatively more stable among the
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TABLE VII
RESULTS FOR DIFFERENTIAL TESTING ON NVCC COMPILER

Version Opt.
Level

Build
Failure

Wrong
Code Timeout Total

O0 0 1583 11 19429
O1 0 1583 11 19430

8.0 O2 0 1576 11 19430
O3 0 1576 11 19430
O0 0 579 88 19473
O1 0 885 95 19473

9.0 O2 0 153 96 19473
O3 0 161 95 19473
O0 0 1602 87 19940
O1 0 1598 87 19922

9.2 O2 0 1599 87 19924
O3 0 1602 87 19924

Average / 0 1208 64 19610

TABLE VIII
RESULTS FOR DIFFERENTIAL TESTING ON CLANG COMPILER

Version Optimization
Level

Build
Failure

Wrong
Code Timeout Total

O0 1 595 67 19940
O1 1 519 523 19922

6.0 O2 1 500 85 19924
O3 1 497 85 19924
O0 0 1930 118 19941

trunk O1 1 1702 138 19920
(7.0) O2 1 1603 99 19729

O3 1 1621 82 19925
Average / 1 1120 149 19903

three versions under test. And the version 9.2 of NVCC
seems to have introduced some new bugs during its feature
enhancement.

When we focus on the optimization options, within each
compiler version, different optimization options in general
have similar number of failures for a specific failure type. For
example, for NVCC 9.2, the four optimization levels (O0, O1,
O2, O3) have 1602, 1598, 1599, 1602 wrong code failures,
which are quite close to each other. There is an exception for
NVCC 9.0, where optimization O0 and O1 have much more
wrong code failures than O2 and O3.

As shown in Table VIII, the meanings of the different
columns for Clang is the same as that in Table VII. On
average, 1120 wrong code failures, 149 timeout failures,
and 1 build error are exposed on Clang compilers for each
compiler configuration. The average percentage of wrong code
and timeout failures are 5.6% and 0.7% for Clang compiler,
respectively. The percentage of wrong code failure of Clang
is close to that of NVCC but the timeout failure is doubled.

When comparing different compiler versions, the trunk
version in general has much more wrong code failures than
Clang 6.0. This results is consistent with the common devel-
opment scenarios: the trunk version usually introduces more
bugs while adding new features. This is also true for timeout
bugs except for the configuration Clang 6.0 with optimization
level O1, which has much more timeouts than any other
configuration.

When we focus on the optimization options, within each

compiler version, different optimization levels in general also
have similar number of failures for a specific failure type.
For example, for Clang trunk version, the four optimization
levels (O0, O1, O2, O3) have 1930, 1702, 1603, 1621 wrong
code failures, which are quite close. For timeout failures, the
Clang 6.0 with optimization level O0, O2, and O3 have similar
numbers, with the exception of O1. For the trunk version of
Clang, the optimization level O0 and O1 have higher number
of timeouts than the other two optimization level, however, the
difference is small.

Since the number of valid test cases for Clang and NVCC
are close to each other (19903 v.s. 19610), we proceed to
compare them in terms of the number failures exposed. On
average, CUDAsmith exposed similar number of wrong code
failures in NVCC (1208) and Clang (1120). Furthermore, the
number of build failures exposed on the two compilers are
both very small. However, CUDAsmith exposed 149 timeout
failures on Clang, which is more than two times the number
of timeout failures (64) exposed on NVCC.

To summarize, the differential testing mode of CUDAsmith
can detect a significant number wrong code failures and time-
out failures on both Clang and NVCC compilers. Therefore,
we can answer RQ1 that differential testing is an effective way
to trigger CUDA compiler failures.

E. Answering RQ2

In this section, we will evaluate the effectiveness of EMI
testing on detecting CUDA compiler bugs. For EMI testing,
we have two modes, i.e., FCB and TG. To control the scale of
fuzzing, we have to fix the compiler configurations to specific
setting. For each mode, we perform fuzzing with both the
trunk-version of Clang (Clang 7.0.7) as well as NVCC version
9.2 (i.e., the newest release version of CUDA Tookit at the
time of experiment). Furthermore, We use the optimization
level of O3 for Clang and optimization level O0 for NVCC,
respectively.

The EMI fuzzing results are shown in Table IX. The first
two columns show the Compiler and EMI testing modes while
the following four columns have the same meaning as the table
for differential testing. When comparing TG mode and FCB
mode, we can find that FCB mode can expose more failures
than TG mode on both Clang and CUDA. The last row shows
the average number of failure exposed over all compiler and
EMI configuration. We can see that on average, EMI detected
19 build failure, 14 wrong code failure, and 17 timeout failure
with around 72377 test cases for each compiler version and
EMI mode configuration. At one side, the failure detection
rate of EMI testing is relatively small when compared with
differential testing. At the other side, the EMI testing approach
can detect different failures from differential testing. Indeed,
EMI detects much more build failures than differential testing.
And a manual analysis on the wrong code failures and timeout
failures detected by EMI and differential testing shows that the
most of the bugs found are also different.

To summarize, the EMI testing mode of CUDAsmith is also
effective to detect different types of CUDA compiler bugs.
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TABLE IX
RESULTS FOR EMI TESTING

Compiler Mode Build
Failure

Wrong
Code Timeout Total

CUDA TG 0 13 17 76111
Clang TG 3 5 9 71877
CUDA FCB 0 27 32 69040
Clang FCB 72 16 12 72480

Average / 19 15 20 72377

And the differential testing mode and EMI testing mode of
CUDAsmith are complement to each other in terms of failure
detection.

F. Answering RQ3

In this section, we want to understand which activity during
the fuzzing process consumes most of the time. Since the
compilation and execution time are highly dependent on
the hardware configuration, we will show the time cost of
each activity on two hardware configurations separately. One
hardware configuration is our workstation, which is equipped
with Intel(R) Xeon(R) CPU E5-2620 and GPU model Quadro
K2200. The other is a desktop equipped with Intel Core i7-
6700 and GeForce GTX 1060. For each hardware configura-
tion, we measured the mean time of test case generation, test
case compilation, test case execution, and test case filtering
for 10000 test cases. During our fuzzing process, we set a one
minute timeout for the execution of one test case. In another
word, we will stop the execution process when it takes more
than one minute.

The time cost of different fuzzing activity is shown in Figure
2. The y-axis shows different activities of fuzzing on the
two hardware configurations named with their GPU models,
respectively. The x-axis shows the time cost of different
activities for fuzzing 10000 test cases in minutes. In general,
we can see that on both GPU model, the time costs for test case
generation are both very small. Furthermore, the time costs
for compilation and execution are both much higher than test
case generation. Finally, the filtering cost of EMI FCB mode
is small while the filtering cost of EMI TG mode is relative
large. This is because, for the EMI FCB mode, we only need
to verify the base kernel to check the validity of all kernels
generated. Since we generate 40 kernels for each base kernel,
the cost of filtering for FCB mode is approximately 1/20 of
the time cost of executing all the kernels. For EMI TG mode,
each base kernel will only generate two kernels. Therefore, its
filtering cost is close to the execution cost, which is a little
bit high.

For the desktop with GeFore GTX 1060, the compilation
cost is much higher than the execution or filtering cost. In
contrast, for the desktop with Quadro K2200, the compilation
cost is smaller than execution or filtering cost. This difference
results from the difference in their computation abilities.

On our workstation, it roughly takes 650 minutes to finish
the fuzzing of 10,000 test cases on CUDA compiler in
differential testing (note filtering is not needed). Combining
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Fig. 2. Time Cost of Different Fuzzing Activities

the 6.1% and 0.3% failure rate for wrong code failures and
timeout failures in differential testing, about 9 wrong code
failures and 0.46 timeout failures can be exposed in every 10
minutes of fuzzing by CUDAsmith on average, which is cost-
effective.

However, compared with the time to perform fuzzing,
reducing the kernel to reproduce the failure (i.e., the first step
in debugging) is in fact the most time-consuming activity.
The kernels generated by CUDAsmith are generally large
in size and complex to understand. To make it possible
for developer to debug the compiler bugs, it is crucial to
reduce the failure-triggering kernel as much as possible while
ensuring to reproduce the same failure. However, there is
still no practical tool to do this. We have tried the Berkeley
delta tool to reduce the kernel. However, the tool is hard to
terminate during reduction due to the complexity of the kernel
generated. Therefore, we have to manually reduce the kernels
for reporting. Based on our experiences, it may takes more
than 14 hours to reduce a single kernel manually, which is
tedious and frustrating. Therefore, we consider it is crucial to
build an effective reducer for failure-triggering CUDA kernels,
which we left as a future work.

To sum up, the time cost of the CUDAsmith tool is rea-
sonable on our workstation. Considering its failure-triggering
ability, the CUDAsmith tool is in general cost-effective for
practical use on compiler testing. On the other hand, an
effective test case reduction tool for reducing the failure
triggering kernels is desired for debugging.

IV. ANALYSIS OF COMPILER BUGS DETECTED

In this section, we will analyze some of the confirmed
compiler bugs by NVCC or Clang developers detected by
CUDAsmith.1

1The links to the confirmed compiler bugs on the Web are removed for
double-blind review.
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A. Wrong code bug with vector data type

During differential testing, we have identified one wrong
code bug related to logical operations on vector data type on
CUDA toolkit version 9.0 and 9.1 when performing differ-
ential testing. The results on CUDA toolkit version 8.0 and
on Clang were the correct. With non-trivial manual effort,
we managed to reduce the failure-triggering test case into
a small code snippet for filing bugs to CUDA development
community. The NVIDIA developers later confirmed the bug.
And they planned to fix the bug in future releases.

The reduced failure triggering code snippet is shown in the
listing below. At line 1, the variable val is assigned with a
value. Then at line 2, we build a 2D vector < 10, 2 > with
make int2 and perform OR operation with val. The expected
value for a is 1 since y is 2. However, during our fuzzing,
the value of a is 2. At line 3, we build another 2D vector
< 10, 0 > with make int2 and perform OR operation with
val. Since the y component of the vector is 0, the value of b
should be dependent on val. However, the value of b is always
0 when the code is compiled with NVCC version 9.0 and 9.1.
We have also tested 4D vectors with make int4 with the same
operation, and similar bugs also manifested on the y, z, w
component of the 4D vector. The workaround provided by
NVIDIA experts was to first store the vector value into a non-
const temporary variable and then perform logical operation
on the variable.

1 . i n t v a l = SOME VAL;
2 . i n t a = make in t2 ( 1 0 , 2 ) . y | | v a l ;

/ / t h e e x p e c t e d v a l u e o f a i s 1 .
/ / However , t h e a c t u a l v a l u e i s 2 .

3 . i n t b = make in t2 ( 1 0 , 0 ) . y | | v a l ;
/ / The v a l u e o f b i s a lways 0 .
/ / However , when v a l i s 1 ,
/ / b i s e x p e c t e d t o be 1 .

B. Wrong code with ptxas tool within NVCC 8.0

We also identified a bug with ptxas tool within NVCC
8.0. When performing differential testing on Clang compiler
front end, CUDAsmith triggered a wrong code bug with ptxas
at optimization level “-O1”. Note the Clang compiler just
provides the front end to compile CUDA source code into
PTX intermediate code, while the PTX intermediate code is
in turn translated and optimized by the ptxas tool provided
in NVCC toolchain into the final binary code. So the whole
compilation process is the joint effort of Clang front-end and
ptxas back end provided CUDA toolkit.

Initially, we thought it is a bug in Clang front end related
to optimization. But it turns out to be a bug with the ptxas
tool provided by CUDA Toolkit version 8.0. If we update the
CUDA Toolkit to version 9.0 or 9.1, the bug will disappear.
Both NVIDIA and LLVM engineers confirmed the bug.

As discussed by LLVM engineers, the problem is with the
ptxas tool in CUDA-8. The PTX code generated by Clang is
identical for both CUDA-8 and CUDA-9. However, the SASS
generated by ptxas tool from CUDA-8 and CUDA-9 is sig-
nificantly different. With CUDA-9 the code is straightforward

and there are two writes, 8 bytes apart, both with the same
value. With CUDA-8, func3 messes up the store to *l 302 and
writes zero to the should not change field instead.

C. Wrong code with printf output in NVCC

We also identified a wrong code bug related to the debug
flag and printf option in NVCC version 9.2. When performing
reduction on a kernel, we found that the debug flag (the “-G”
option) or the printf statement can independently affect the
result when inspecting or outputting the value of one variable.
The kernel function itself has no illegal operations, however,
the result is always wrong. But once we begin to observe
(with debug option) or output the value of a variable (with
printf), the results will be correct. This bug can make the life of
developers very hard as it may seriously affect their judgement
during debugging and coding. We have reported this bug to
NVCC engineers. They confirmed this bug and planned to fix
it in future releases.

D. Timeout Failures of NVCC Compiler

During our fuzzing, we also identify many timeout failures
in NVCC and Clang compilers. In particular, our EMI-TG
testing mode triggered one timeout failure on both version
9.2 and 10.0 of NVCC compiler with GeFore 940MX. The
kernel with an always true condition (always true guard)
inserted should have generated the same result as the original
kernel. However, the kernel with always true guard returns an
error ”CUDA ERROR LAUNCH TIMEOUT = 702”. Based
on the CUDA Driver API documentation, this means that the
kernel took tool long to execute. In contrast, the original
kernel executes normally without exceeding time limit. We
manually reduced the kernel and filed the bug to the NVCC
compiler developers. The NVCC developers have no GeFore
940MX at hand, so they try reproducing the case with both
GeForce GTX 980 and GeForce GTX 1080 Ti. Although
they did not get the ”CUDA ERROR LAUNCH TIMEOUT
= 702” error message, they still got a surprising result on
performance: the execution time on the more powerful GeFore
GTX 1080Ti is significantly slower than GeFore GTX 980.
And the execution time also exceeded our one minutes timeout
criteria. Therefore, the developers also confirmed our bug
report on this timeout issue. Considering the large number
timeout failures exposed in our experiment, we believe the
performance issues with CUDA compilers is also an important
problem to solve for compiler developers in the future.

V. RELATED WORKS

In this section, we briefly review related works on compiler
testing and the test oracle problem of software testing.

Csmith [13], [14] is a well-known testing tool for C com-
piler. Csmtih randomly generates deterministic C programs as
test cases containing complex code that covers a large subset
of C while avoiding the undefined and unspecified behaviors.
Using this tool, The Csmith found more than 325 bugs in
mainstream Compilers including GCC, LLVM and commercial
tools. In [15], Regehr et al. further proposed test case reduction
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techniques to further reduce the failure triggering test cases
such that the following up debugging activities could be made
easier.

Lidbury et al. [8] proposed CLSmtih to find OpenCL
compiler bugs. Based on Csmith, CLsmith can randomly gen-
erate deterministic, communicating, and feature-rich OpenCL
kernels. CLsmith used both random differential testing and
EMI testing to handle the test oracle problem. In contrast,
our CUDAsmith tool is adapted and enhanced based on the
CLsmith tool in many aspects to handle the CUDA program-
ming model. CUDAsmith also introduces live-code mutation
to handle the test oracle problem.

The random differential testing has proved successful at
hunting compiler bugs. A deterministic program should al-
ways have a unique and well-defined result so that random
differential testing can circumvent the test oracle problem with
majority voting. The random testing has been widely used in
the domain of compiler testing, e.g. C compiler [14], C++
compiler [16], JavaScript and PHP interpreter [17]. Eide [18]
proposed a tool called randprog, which was a significantly
enhanced version of a program generator written by Brian
Turner [19]. The randprog tool can detect the miscompilations
of volatiles via generating random c programs that contain
volatile variables. In [20], Chen et al. proposed an approach
to differential testing JVM implementations. They adopted
mutation testing strategy and code coverage information to
guide the class files selection process. Finally, the selected
class files are used as inputs to differential testing.

Equivalence Modulo Inputs (EMI) is a recent promising
approach for compiler validation proposed by Le et al. [9].
They have developed many tools such as Orion [9], Athena
[21] using this approach to find bugs in compilers. Both Orion
and Athena relied on deleting code from or inserting code
into code regions which are not executed under the inputs.
Then they further proposed a novel technique [10] that allowed
mutation in the live code regions. Using this approach, they
effectively found 168 confirmed bugs in GCC and LLVM in 13
months. The CLsmith tool [8] introduced an injection of dead-
by-construction code mechanism that enabled EMI testing of
OpenCL compilers.

VI. CONCLUSION

CUDA is one of the most popular general-purpose parallel
computing platform and programming model. The correctness
of CUDA compilers is the basis for the correctness of CUDA
applications. In this work, we propose CUDAsmith, a practical
CUDA compiler fuzzing tool to generate grammatically valid
CUDA kernels, to perform differential testing, and to conduct
EMI testing. Our CUDAsmith tool has successfully triggered
thousands of compiler failures (including build failures, wrong
code, and timeout) in both the NVCC CUDA compiler and
the LLVM CUDA compiler with reasonable time cost. Fur-
thermore, CUDAsmith identified failures not only in the trunk
version of the CUDA compilers, but also the previous stable
releases of the CUDA compilers. Finally, the NVIDIA and
LLVM compiler developers have confirmed several compiler

bugs based on our test report. For future of works, we will
work on automatic test case reduction tools on CUDA kernels
to facilitate more efficient bug reporting and debugging.
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