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Anders Gidenstam1, Håkan Sundell1, and Philippas Tsigas2

1 School of Business and Informatics, University of Borås, Borås, SWEDEN
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Abstract. A lock-free FIFO queue data structure is presented in this paper. The
algorithm supports multiple producers and multiple consumers and weak mem-
ory models. It has been designed to be cache-aware and work directly on weak
memory models. It utilizes the cache behavior in concert with lazy updates of
shared data, and a dynamic lock-free memory management scheme to decrease
unnecessary synchronization and increase performance. Experiments on an 8-
way multi-core platform show significantly better performance for the new algo-
rithm compared to previous fast lock-free algorithms.

1 Introduction

Lock-free implementation of data structures is a scalable approach for designing con-
current data structures. Lock-free data structures offer high concurrency but also immu-
nity to deadlocks and convoying, in contrast to their blocking counterparts. Concurrent
FIFO queue data structures are fundamental data structures that are key components in
applications, algorithms, run-time and operating systems. This paper presents an effi-
cient lock-free queue data structure for multiple producers and consumers. The algo-
rithm is cache-aware in order to minimize its communication overhead. It works also
on weak memory consistency models (due to out-of-order execution) without need for
additional fence [4] instructions for reads and writes done in the algorithm towards the
shared memory.

With the strongly emerging multi-core architectures for main-stream as well as
high-performance computing, there is an increasing interest for efficient concurrent
data structures that allow maximal exploitation of the available parallelism. With the
evolving more complex multithreaded architectures of applications and systems, there
is also likely to be an increasing need for stronger progress and safety guarantees of
components in supporting frameworks, and consequently non-blocking synchroniza-
tion would fit very well thanks to both its possible advantages in performance and its
progress properties.

Two basic non-blocking methods have been proposed in the literature, lock-free and
wait-free [3]. Lock-free implementations of shared data structures guarantee that at any
point in time in any possible execution some operation will complete in a finite num-
ber of steps. In cases with overlapping accesses, some of them might have to repeat
the operation in order to correctly complete it. However, real-time systems might have



stronger requirements on progress, and thus in wait-free implementations each task is
guaranteed to correctly complete any operation in a bounded number of its own steps,
regardless of overlaps of the individual steps and the execution speed of other processes;
i.e., while the lock-free approach might allow (under very bad timing) individual pro-
cesses to starve, wait-freedom strengthens the lock-free condition to ensure individual
progress for every task in the system.

Large efforts have been made on designing efficient concurrent queue data struc-
tures and blocking (or mixed with non-blocking techniques) implementations are avail-
able in most contemporary programming language frameworks supporting multithread-
ing. In this paper, we focus only on strictly non-blocking queue algorithms as imple-
mentations being just ”concurrent” (and possibly efficient as e.g. ”lock-less”) are still
prune to problems as e.g. deadlocks. Absence of explicit locks does not imply any
non-blocking properties, unless the latter are proven to be fulfilled. A large number of
lock-free (and wait-free) queue implementations have appeared in the literature, e.g.
[6][1][11][8][9][5] being the most influential or recent and most efficient results. These
results all have a number of specialties or drawbacks as e.g. limitations in allowed
concurrency, static in size, requiring atomic primitives not available on contemporary
architectures, and scalable in performance but having a high overhead. This paper im-
proves on previous results by combining the underlying approaches and designing the
new algorithm cache-aware and tolerant to weak memory consistency models in or-
der to maximize efficiency on contemporary multi-core platforms. The new lock-free
algorithm has no limitations on concurrency, is fully dynamic in size, and only re-
quires atomic primitives available on contemporary platforms. Experiments on an 8-
way multi-core platform show significantly better performance for the new algorithm
compared to previous lock-free implementations.

The rest of the paper is organized as follows. In Section 2, related work is discussed.
Section 3 presents the new algorithm. The corresponding proofs and analysis are out-
lined in Section 4. In Section 5, some benchmark experiments are described. Finally,
Section 6 concludes this paper.

2 Related Work

Lamport [6] presented a lock-free (actually wait-free) implementation of a queue based
on a static array, with a limited concurrency supporting only one producer and one
consumer. In this algorithm, synchronization is done via shared indices indicating the
current head and tail array element. Giacomoni et al. [1] presented a cache-aware mod-
ification which instead synchronize directly on the array elements. Tsigas and Zhang
[11] presented a lock-free extension of [6] where synchronization is done both directly
on the array elements and the shared head and tail indices using CAS3, thus supporting
multiple producers and consumers. In order to avoid the ABA problem when updating
the array elements, the algorithm exploits using two (or more) null values; the ABA

3 The Compare-And-Swap (CAS) atomic primitive will update a given memory word, if and
only if the word still matches a given value (e.g. the one previously read). CAS is generally
available in contemporary systems with shared memory, supported mostly directly by hard-
ware and in other cases in combination with system software.
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Fig. 1. A lock-free queue implemented using a linked list of arrays, where each thread is avoiding
accesses to global pointers in order to reduce number of cache misses.

problem is due to the inability of CAS to detect concurrent changes of a memory word
from a value (A) to something else (B) and then again back to the first value (A). More-
over, for lowering the memory contention the algorithm alternates every other operation
between scanning and updating the shared head and tail indices.

In resemblance to [6][1][11] the new algorithm uses arrays to store (pointers to) the
items, and in resemblance to [11] it uses CAS and two null values. Moreover, shared
indices [1] are avoided and scanning [11] is preferred as much as possible. In contrast
to [6][1][11] the array is not static or cyclic, but instead more arrays are dynamically
allocated as needed when new items are added, making our queue fully dynamic.

Michael and Scott [8] presented a lock-free queue based on a linked list, supporting
multiple producers and consumers. Synchronization is done via shared pointers indi-
cating the current head and tail node as well via the next pointer of the last node, all
updated using CAS. The queue is fully dynamic as more nodes are allocated as needed
when new items are added. The original presentation used unbounded version counters,
and therefore required double-width CAS which is not supported on all contemporary
platforms. The problem with the version counters can easily be avoided by using some
memory management scheme as e.g. [7]. Moir et al. [9] presented an extension where
elimination is used as a back-off strategy and increasing scalability when contention
on the queue’s head or tail is noticed via failed CAS attempts. However, elimination is
only possible when the queue is close to be empty during the operation’s invocation.
Hoffman et al. [5] takes another approach to increase scalability by allowing concur-
rent Enqueue operations to insert the new node at adjacent positions in the linked list
if contention is noticed during the attempted insert at the very end of the linked list.
To enable these ”baskets” of concurrently inserted nodes, removed nodes are logically
deleted before the actual removal from the linked list, and as the algorithm traverses
through the linked list it requires stronger memory management than [7] and a strategy
to avoid long chains of logically deleted nodes.

In resemblance to [8][9][5] the new algorithm is dynamic, and in resemblance to [5]
removed blocks are logically deleted, blocks are being traversed and creation of long
chains are avoided. In contrast to [9][5] the new algorithm employs no special strategy



Program 1 The functionality supported by the memory management scheme.

1 node_t * NewNode(int size);
2 void DeleteNode(node_t *node);
3 node_t * DeRefLink(node_t **link);
4 void ReleaseRef(node_t *node);
5 bool CASRef(node_t **link, node_t *old, node_t *_new);
6 void StoreRef(node_t **link, node_t *node);

Program 2 Callback procedures for the memory management.

1 void TerminateNode(block_t *node) {
2 StoreRef(&node->next,NULL);
3 }
4 void CleanUpNode(block_t *node) {
5 block_t *next = DeRefLink(&node->next);
6 block_t *next2 = DeRefLink(&globalTailBlock);
7 CASRef(&node->next, next, next2);
8 }

for increasing scalability besides allowing disjoint Enqueue and Dequeue operations to
execute in parallel.

3 The New Algorithm

The underlying data structure that our algorithmic design uses is a linked list of arrays,
and is depicted in Figure 1. In the data structure every array element contains a pointer to
some arbitrary value. Both the Enqueue and Dequeue operations are using increasing
array indices as each array element gets occupied versus removed. To ensure consis-
tency, items are inserted or removed into each array element by using the CAS atomic
synchronization primitive. To ensure that a Enqueue operation will not succeed with a
CAS at a lower array index than where the concurrent Dequeue operations are operat-
ing, we need to enable the CAS primitive to distinguish (i.e., avoid the ABA problem)
between ”used” and ”unused” array indices. For this purpose two null pointer values
[11] are used; one (NULL) for the empty indices and another (NULL2) for the removed
indices. As each array gets fully occupied (or removed), new array blocks are added to
(or removed from) the linked list data structure. Two shared pointers, globalHeadBlock
and globalTailBlock, are globally indicating the first and last active blocks respectively.
These shared pointers are also concurrently updated using CAS operations as the linked
list data structure changes. However, as these updates are done lazily (not atomically
together with the addition of a new array block), the actually first or last active block
might be found by following the next pointers of the linked list.

As a successful update of a shared pointer will cause a cache miss to the other
threads that concurrently access that pointer, the overall strategy for improving perfor-
mance and scalability of the new algorithm is to avoid accessing pointers that can be
concurrently updated [5]. Moreover, our algorithm achieves fewer updates by not hav-
ing shared variables with explicit information regarding which array index currently
being the next active for the Enqueue or Dequeue. Instead each thread is storing its



Program 3 The block structure and auxiliary functions.

1 struct block_t : public node_t {
2 void * nodes[BLOCK_SIZE];
3 int head;
4 int tail;
5 bool deleted;
6 block_t * next;
7 };
8 block_t * NewBlock() {
9 block_t * block = NewNode(sizeof(block_t));

10 block->next = NULL;
11 block->head = 0;
12 block->tail = 0;
13 block->deleted = false;
14 for(int i=0;i<BLOCK_SIZE;i++) block->nodes[i]=NULL;
15 return block;
16 }
17 void InitQueue() {
18 block_t * block = NewBlock();
19 StoreRef(&globalHeadBlock,block);
20 StoreRef(&globalTailBlock,block);
21 }
22 void InitThread() {
23 threadHeadBlock = DeRefLink(&globalHeadBlock);
24 threadTailBlock = DeRefLink(&globalTailBlock);
25 threadHead = threadHeadBlock->head;
26 threadTail = threadTailBlock->tail;
27 }
28 // Shared variables
29 block_t * globalHeadBlock, globalTailBlock;
30 // Thread-local storage
31 block_t * threadHeadBlock, threadTailBlock;
32 int threadHead, threadTail;

own4 pointers indicating the last known (by this thread) first and active block as well
as active indices for inserting and removing items. When a thread recognizes its own
pointers to be inaccurate and stale, it performs a scan of the array elements and array
blocks towards the right, and only resorts to reading the global pointers when it’s ben-
eficial compared to scanning. The Dequeue operation to be performed by thread T3 in
Figure 1 illustrates a thread that has a stale view of the status of the data structure and
thus needs to scan. As array elements are placed next to each other in memory, the scan
can normally be done without any extra cache misses (besides the ones caused by con-
current successful Enqueue and Dequeue operations) and also without any constraint
on in which order memory updates are propagated through the shared memory, thus
allowing weak memory consistency models without the need for additional memory
fence instructions.

For our implementation of the new lock-free queue algorithm, we have selected the
lock-free memory management scheme proposed by Gidenstam et al. [2] which makes
use of the CAS and FAA atomic synchronization primitives. The interface defined by
the memory management scheme is listed in Program 1 and are fully described in [2].
Using this scheme we can assure that an array block can only be reclaimed when there

4 Each thread have their own set of variables stored in separate memory using thread-local stor-
age (TLS).



Program 4 The new Enqueue operation.

1 void Enqueue(void *item) {
2 int head = threadHead;
3 block_t *block = threadHeadBlock;
4 for(;;) {
5 if(head==BLOCK_SIZE) {
6 block_t *oldBlock = block;
7 block->head = head;
8 block = DeRefLink(&block->next);
9 if(block == NULL) {

10 block = (queueblock_t *) NewBlock();
11 while(globalHeadBlock != oldBlock && oldBlock->next==NULL) {
12 queueblock_t *headBlock = DeRefLink(&globalHeadBlock);
13 if(headBlock->next != oldBlock) break;
14 if(CASRef(&globalHeadBlock,headBlock,oldBlock)) break;
15 }
16 if(CASRef(&oldBlock->next,NULL,block))
17 CASRef(&globalHeadBlock,oldBlock,block);
18 else {
19 DeleteNode(block);
20 block = DeRefLink(&oldBlock->next);
21 }
22 }
23 else if(block->head==BLOCK_SIZE && block->next!=NULL)
24 block = DeRefLink(&globalHeadBlock);
25 threadHeadBlock = block;
26 head = block->head;
27 }
28 else if(block->nodes[head]==NULL) {
29 if(CAS(&block->nodes[head],NULL,item)) {
30 threadHead = head+1;
31 return;
32 }
33 }
34 else head++;
35 }
36 }

is no next pointer in the linked list pointing to it and that there are no local references
to it from pending concurrent operations or from pointers in thread-local storage. By
supplying the scheme with appropriate callback functions, the scheme automatically
reduces the length of possible chains of deleted nodes (held from reclamation by late
threads holding a reference to an old array block), and thus enables an upper bound on
the maximum memory usage for the data structure. The task of the callback function
for breaking cycles, see the CleanUpNode procedure in Program 2, is to update the
next pointer of a deleted array block such that it points to an active array block, in
a way that is consistent with the semantics of the Enqueue and Dequeue operations.
The TerminateNode procedure is called by the memory management scheme when the
memory of an array block is possible to reclaim.

The specific fields of each array block are described in Program 3 as it is used in
this implementation. Note that the linked list data structure always contains at least one
array block. Note also that the additional fields head and tail in the array block are
only used for indicating either fullness or emptiness of the whole array, and not any
intermediate status. In order to simplify the description of our new algorithm, we have
omitted some of the details of applying the operations of the memory management [2].



Program 5 The new Dequeue operation.

1 void * Dequeue() {
2 int tail = threadTail;
3 block_t *block = threadTailBlock;
4 for(;;) {
5 if(tail==BLOCK_SIZE) {
6 block_t *oldBlock = block;
7 block->tail = tail;
8 block=DeRefLink(&block->next);
9 if(block == NULL)

10 return NULL;
11 else {
12 if(!oldBlock->deleted) {
13 while(globalTailBlock != oldBlock && !oldBlock->deleted) {
14 block_t *tailBlock= DeRefLink(&globalTailBlock);
15 if(tailBlock->next != oldBlock) continue;
16 if(CASRef(&globalTailBlock,tailBlock,oldBlock))
17 DeleteNode(tailBlock);
18 }
19 if(CAS(&oldBlock->deleted,false,true)) {
20 if(CASRef(&globalTailBlock,oldBlock,block))
21 DeleteNode(oldBlock);
22 }
23 }
24 if(block->deleted)
25 block=DeRefLink(&globalTailBlock);
26 }
27 threadTailBlock = block;
28 tail = block->tail;
29 }
30 else {
31 void *data = block->nodes[tail];
32 if(data==NULL2)
33 tail++;
34 else if(data==NULL && CAS(&block->nodes[tail],NULL,NULL)) {
35 threadTail = tail;
36 return NULL;
37 }
38 else if(CAS(&block->nodes[tail],data,NULL2)) {
39 threadTail = tail+1;
40 return data;
41 }
42 }
43 }
44 }

In actual implementations, ReleaseRef calls should be inserted at appropriate places
whenever a variable holding a safe pointer goes out of scope or is reassigned.

The Enqueue operation is described in Program 4. After scanning for the first empty
(i.e., an array element containing NULL) array index, it tries to insert the new item
by updating the array element with CAS. If this fails (due to a concurrent successful
Enqueue), it continues scanning until the end of the array. If the end of the array is
reached, it first assures lock-freedom and accuracy of the global head pointer:

1. If the global head pointer is not pointing to the current block, the operation (after it
verifies that the global head pointer is pointing to the previous block) updates the
head pointer to do so by using a CAS operation.



2. If the global head pointer is pointing to the current array block, the algorithm tries to
insert a new array block by updating the next pointer using a CAS. If this fails, this
is due to some concurrent Enqueue operation having already added a new block,
henceforth the operation continues scanning for an empty array index in that block.

The Dequeue operation is described in Program 5. After scanning for the first non-
empty (i.e., an array element with neither NULL or NULL2) array index, it tries to
remove the found item by updating the array element with a CAS. If this fails (due to
a concurrent successful Dequeue), it continues scanning until the end of the array. If
NULL is found during scanning, the queue is (after also ensuring the NULL value to
be globally consistent using CAS) recognized to be empty and the operation returns an
empty value. If the end of the array is reached, the algorithm first assures lock-freedom
and accuracy of the global tail pointer:

1. If the global tail pointer is pointing to the current array block, it tries to logically
mark the block as deleted using a CAS.

2. If the global tail pointer was not pointing to the current block, it is (after verified that
it is pointing to the previous block) updated to do so using a CAS. Whenever the
global tail pointer is successfully updated (either when helping or after a successful
logical deletion), the previously global tail-block is sent for memory reclamation.

Whenever an array element is successfully updated with NULL2 using CAS, the
found item is returned by the Dequeue operation.

4 Correctness and Analysis

In this section we show that the new queue algorithm is linearizable and lock-free.
Line numbers given for actions in Enqueue operations refer to Program 4, while line
numbers for actions in Dequeue operations refer to Program 5. Due to space limitations
some of the detailed proofs have been omitted in this version of the paper.

Assumption 1 (Memory order) All CAS operations are atomic.
A CAS operation behaves as a memory barrier for a thread’s memory reads and

writes. All reads and writes done before the CAS in program order are committed to
memory before the CAS takes effect and none of the reads and writes following a CAS
are visible in memory before the CAS takes effect.

Definition 1. The linearization point of an Enqueue operation is the successful CAS at
line 29 in Enqueue.

Definition 2. The linearization point of a Dequeue operation is either:
i) the CAS at line 34 in Dequeue (Program 5) iff NULL is returned; or
ii) the successful CAS at line 38 in Dequeue otherwise.



4.1 Properties of an array block

Definition 3. A full array block is a block where all array elements have been changed
from NULL to another value (i.e., there is no array element with value NULL). An array
block is marked full when its head field is set to BLOCK SIZE.

Definition 4. An emptied array block is a block where all array elements have been
changed to NULL2. An array block is marked emptied when its block.tail field is set to
BLOCK SIZE.

Lemma 1 (Block array element life cycle). An array element in a block can change
value at most two times during the life time of the block in the following order:
i) first from initial value NULL to an item; and subsequently
ii) from an item to NULL2.

Lemma 2 (Thread-local head lag). The thread-local static variable threadHead is
never ahead of the true head index (i.e., the index of the first NULL value in the block)
of the block at the starting point of an Enqueue operation.

Lemma 3 (Thread-local tail lag). The thread-local static variable threadTail is never
ahead of the true tail position (i.e., the index after the last NULL2 in the block) of the
block at the starting point of a Dequeue operation.

4.2 Properties of the chain of array blocks

Definition 5. An active array block is a block that has been created, has been published
in a shared variable (i.e., in globalHeadBlock, globalTailBlock or the next pointer) and
not yet been marked as deleted by setting the block’s deleted flag.

Definition 6. A valid array block is a block that has been created and has not (yet)
become reclaimable.

Lemma 4 (Block next pointer). The next pointer in an active block initially contains
NULL and can change at most once while the block is active, from NULL to a pointer to
a new block.

Lemma 5 (Unique head block). At any time there is exactly one valid block that has
a next pointer with the value NULL.

Lemma 6 (At least one active block). There is always at least one active block in the
queue.

Lemma 7 (globalHeadBlock). The global variable globalHeadBlock always points to
either:
i) the block at the head of the chain of blocks; or
ii) the block immediately before the head of the chain of blocks.

Lemma 8 (globalTailBlock). The global variable globalTailBlock always points to ei-
ther:
i) the first active block in the chain of blocks; or
ii) the block immediately before the first active block in the chain of blocks.



4.3 Linearizability

Lemma 9 (Linearizability I). The operation Enqueue is linearizable with respect to
other Enqueue and Dequeue operations with linearization points according to Defini-
tion 1 and Definition 2.

Proof. First observe that from Lemma 5 and Lemma 6 there is always a well defined
array block at the head of the chain of array blocks.

Consider two concurrent Enqueue operations Enq1(A) and Enq2(B), enqueuing
the elements A and B respectively. According to Lemma 2 we can, without loss of
generality, assume that both operations start with their threadHead variables set to 0.
Both operations do a linear search for the first array element in the block at the head of
the chain of blocks that contains NULL and will try to update that array element using
CAS (line 29 in Program 4). Only one can succeed and that Enqueue will be linearized
at that point. The other will retry from line 4.

Consider an Enqueue operation Enq(A) and a concurrent Dequeue operation Deq.
The critical case is when the queue is initially empty. According to Lemma 2 and
Lemma 3 we can, without loss of generality, assume that the operations start with their
threadHead and respectively threadTail variables set to 0. Assume towards a contradic-
tion that Deq returns A despite being linearized before Enq(A). The contradiction is
obvious since there is no way that Deq can return A before A is written into the array
block, which occurs at the linearization point of Enq(A) (line 29 in Program 4).

For the opposit case assume towards a contradiction that Deq returns NULL despite
being linearized after Enq(A). To return NULLDeq must traverse the array block until
it finds NULL. In particular, it must have read the first index that contained NULL,
which is where Enq(A) will write A using CAS (Enqueue line 29). Since CAS is
atomic according to our assumption on memory order a read returning NULL must have
occured before the CAS. Since this read is the linearization point of Deq we have a
contradiction with the assumption that Deq was linearized after Enq(A). ut

Lemma 10 (Linearizability II). The operation Dequeue is linearizable with respect
to other Dequeue and Enqueue operations with linearization points according to Defi-
nition 1 and Definition 2.

Proof. Consider two Dequeue operations, Deq1 and Deq2 on a non-empty queue. The
operations will first search the first active block, via their threadTailBlock variables and
globalTailBlock, where the latter is guaranteed to point to the first active block or the
block immediately before it by Lemma 8. Once a Dequeue has reached the first ac-
tive block it will scan it, looking for an array element that is not NULL2. If such an
array element is found the Deq operation tries to change that element to NULL2 using
CAS (line 38). Assume towards a contradiction that the Deq1 returning B is linearized
before Deq2 returning A where A was enqueued before B (in the same array block).
From Lemma 9 we know that A is in an array element with lower index than B. Since
Dequeue only scans past NULL2 values (line 32), Deq1, which must have scanned past
the index of A to reach B, must have read NULL2 from A’s array element. According
to our memory order assumption all local memory reads that precede a CAS must have
occured before the CAS. Hence, Deq1 read NULL2 from the array element of A before



its linearization point. From Lemma 1 we know that an array element can only change
to NULL2 once which contradicts our assumption that Deq2 which is linearized after
Deq1 returns A.

Consider two Dequeue operations, Deq1 and Deq2 on a queue containing exactly
one item A. Assume towards a contradiction that Deq1 returns NULL despite being
linearized before Deq2 returning A. As above by Lemma 1 NULL can only occur at a
higher array element index than that of A and consequently Deq1 have to read NULL2
from that location before its CAS operation from NULL to NULL at line 34 succeeds
giving a contradiction.

That Dequeue is linearizable with respect to concurrent Enqueue operations is
shown in the proof of Lemma 9 above.

Note that the scan procedure in Dequeue is performing speculative reads that might
have taken effect out of program order. If the scan was performing at least one search
step, the preceding speculative reads in the steps before the last step must have read the
NULL2 value (as line 34 must have been executed). These speculative NULL2 reads
must have taken effect before the last atomic NULL read during the CAS at line 34,
as the CAS implies a memory barrier and must have taken effect after the previous
speculative reads. ut

4.4 Lock-freedom

Lemma 11 (Lock-free I). The operation Enqueue is lock-free.

Proof. The Enqueue operation contains two nested loops. There are three cases to con-
sider:

First consider the case where threadHeadBlock points to a block that is not marked
full. According to Lemma 2 the value of the threadHead variable will be smaller or
equal to the index of the first NULL value in the block when the Enqueue operation
starts. The operation will finish if it finds an array element in the block containing
NULL and successfully puts its item there using a CAS.The index it looks at increases
in each iteration, except when an unsuccessful CAS occurs, something that according
to Lemma 1 can only happen once per array element. Thus the search index will reach
the end of the block after at most 2*BLOCK SIZE iterations and would find a free array
element if there is any left. That is, progress is made unless concurrent operations fill
the block first. If the block is found to be full the next iteration will mark the block full
(line 7) and continue in one of the cases below.

Second, consider the case where threadHeadBlock points to a block that is marked
full and has a next pointer that isn’t NULL. Finding out that the block is full takes at most
BLOCK SIZE iterations. After that Enqueue will read the full block’s next pointer into
block (line 8). Since block isn’t NULL the Enqueue operation tests if the new block is
marked as full (line 23). If it is full and isn’t the last block (i.e., block.next is not NULL)
the Enqueue operation moves to the block that globalHeadBlock points to. According
to Lemma 7 this is either the last or second last block of the chain. If block is full and is
the last block the next iteration will enter case three below.

Third, consider the case where threadHeadBlock points to a block that is full (oldBlock)
and has a next pointer that is NULL. This case proceeds as the second case until the En-
queue reads the oldBlock.next pointer to be NULL at line 8. When it does that, it enters



the inner loop at line 11. To remain in the loop globalHeadBlock must not be equal to
oldBlock and oldBlock must remain the last block in the chain. Further globalHeadBlock
must point to the block before oldBlock at line 13 and not at line 14 since the CAS
would succeed and exit the loop otherwise. With Lemma 7 in mind this can clearly only
occur once since in the next iteration either globalHeadBlock is equal to oldBlock or, if
globalHeadBlock has moved further, oldBlock.next is not NULL anymore. Past the inner
loop the Enqueue tries to add a new block. Regardless of whether it succeeds or not the
next iteration of the outer loop will be done on a new block. ut

Lemma 12 (Lock-free II). The operation Dequeue is lock-free.

Proof. The Dequeue operation contains two nested loops. There are three cases to con-
sider:

First consider the case where threadTailBlock points to a block that has not been
marked emptied. According to Lemma 3 the value of the threadTail will be smaller or
equal to the index of the first value not equal to NULL2 in the block when the Dequeue
operation starts. At worst the operation has to search from the beginning of the block
(i.e., threadTail was 0). Each array element in the block is read (line 31 in Dequeue) and
depending on the value found at the current array element the operation either moves
to the next array element if the value was NULL2 (line 33), returns NULL (line 36) if
the value was NULL and then verified to be NULL by the CAS at line 34, or attempts to
change the value of the location to NULL2 using a CAS (line 38). If the CAS succeeds
the removed item is returned, otherwise the Dequeue operation will do another iteration
in which it will move to the next array element in the block (since according to Lemma 1
the only possible reason for the CAS to fail is that a concurrent Dequeue operation
changed the value to NULL2). In all at most 2*BLOCK SIZE iterations of the outer loop
is required to either find and successfully dequeue an item or find the block emptied. If
the block is found to be emptied the next iteration will mark the block emptied (line 7)
and continue in one of the cases below.

Second, consider the case where threadTailBlock points to a block that has been
marked emptied and has a next pointer that is NULL. In this case the queue is empty
and NULL is returned (line 10).

Third, consider the case where threadTailBlock points to a block that has been marked
emptied and has a next pointer that is not NULL. In this case the current block is ref-
erenced by oldBlock (line 6) and its next pointer is read into block (line 8). There are
two cases depending on whether oldBlock is marked deleted or not (line 12). If old-
Block is marked deleted the Dequeue operation checks if the next block is also marked
deleted (line 24) in which case it moves directly to the block that globalTailBlock points
to, which according to Lemma 8 is the first active block of the queue or the block im-
mediately before it. Otherwise the Dequeue moves the next block (which at least was
active at line 24). If oldBlock is not marked deleted the Dequeue will enter the inner
loop (line 13). To remain in this loop, the variable globalTailBlock has to be different
from oldBlock and oldBlock must not be marked deleted. From Lemma 8 we know that
globalTailBlock points to the first active block or the block immediately before that. At
the time the inner loop is entered oldBlock is the first active block so globalTailBlock
is the block immediately before oldBlock or else the loop would not be entered (since



globalTailBlock would be equal to oldBlock). In this case the CAS at line 16 in this or
a concurrent Dequeue can advance globalTailBlock to oldBlock and terminate the loop.
Further, Lemma 8 shows that it is impossible to advance globalTailBlock past oldBlock
without marking oldBlock deleted and thereby making sure the inner loop cannot con-
tinue. Once clear of the inner loop the Dequeue tests if the next block is marked deleted
(line 24) and acts as described above, continuing with either the next block or the block
pointed to by globalTailBlock. ut

4.5 Concurrent FIFO queue

Theorem 1. The algorithm implements a lock-free and linearizable FIFO queue data
structure.

Proof. The minimal set of operations5 necessary for implementing a FIFO queue is
consisting of the Enqueue and Dequeue operations. Correspondingly, given by Lem-
mas 11 and 12 our implementation is lock-free, and given by Lemmas 9 and 10 our
implementation is linearizable.

5 Experiments

We have evaluated the performance of our lock-free queue algorithm by the means of
some custom micro-benchmarks. The purpose of these experiments is to help estimate
how well the new algorithm compares with other known lock-free queues under high
contention and increasing concurrency. The benchmarks are the following:

1. Random 50%/50%. Each thread is randomly (the sequence is decided in forehand)
executing either an Enqueue or a Dequeue operation.

2. Random 50%/50% Bias 1000. Performed as the previous benchmark, besides that
the queue is initialized with 1000 items.

3. 1 Producer / N-1 Consumers. Each thread (out of N) is either a producer or con-
sumer, throughout the whole experiment. The producer is repeatedly executing En-
queue operations, whereas the consumers are executing Dequeue.

4. N-1 Producers / 1 Consumer. Same as the previous benchmark, with the producer
and consumer distributions interchanged.

For comparison we have also implemented the dynamic lock-free queues by Michael
and Scott [8], ditto with elimination [9], the baskets queue [5], and the static cyclic array
lock-free queue presented in [11]. All dynamic queues (including the new algorithm)
have been implemented to support queue sizes only limited by the system’s memory,
i.e., using lock-free management schemes [7] or [2] and lock-free free-lists where ap-
propriate. For the new implementation, the size of the array block (BLOCK SIZE) is
chosen to fit within one cache line. All implementations are written in C and com-
piled with the highest optimization level. In our experiments, each concurrent thread

5 If required, operations as Peek and IsEmpty can be derived straight-forwardly out of the
Dequeue algorithm by omitting the update part of the CAS operation in line 38 combined
with other minor changes.
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Fig. 2. Experiments on a 8-way Intel Core i7 processor system.



is started at the very same time and each benchmark runs for one second for each im-
plementation. Exactly the same sequence of operations was performed for all different
implementations compared. A clean-cache operation was also performed just before
each run.

The results from the experiments with up to 8 threads are shown in Figure 2. The
benchmarks have been executed on an Intel Core i7 920 2.67 GHz with 6 GB DDR3
1333 MHz system running Windows 7 64-bit. This processor has 4 cores, capable of
executing 2 threads each. The results of benchmarks 1-2 show the number of successful
(failed Dequeues are not counted) operations executed per second in the system in total.
The results of benchmarks 3-4 show the number of items per second that have passed
through the queue (i.e., the number of successful Dequeue operations). In all of the
benchmarks, the two array-based implementations perform significantly better than the
other implementations. The worse performance of the other implementations compared
to the static array-based implementation can be explained to be mainly due to the costs
of having dynamic allocation of nodes. Interestingly, the new dynamic implementation
performs significantly better than the implementation with a static array. This can be
explained by the benefits of the cache-awareness (also causing fewer shared updates)
apparently being significantly higher than the corresponding costs of having dynamic
allocation of arrays.

6 Conclusions

We have presented a new algorithm for implementing a lock-free queue data structure.
To the best of our knowledge, this is the first lock-free queue algorithm with all of the
following properties:

– Cache-aware algorithmic handling of shared pointers including lazy updates to de-
crease communication overhead.

– Linked-list of arrays as underlying structure for efficient dynamic algorithmic de-
sign.

– Exploitation of thread-local static storage for efficient communication.
– Fully dynamic in size via lock-free memory management.
– Lock-free design for supporting concurrency.
– Algorithmic support for weak memory consistency models, resulting in more effi-

cient implementation on contemporary hardware.

The algorithm has been shown to be lock-free and linearizable. Experiments on a
contemporary multi-core platform show significantly better performance for the new
algorithm compared to previous state-of-the-art lock-free implementations. We believe
that our implementation should be of highly practical interest to contemporary and
emerging multi-core and multi-processor system thanks to both its high performance,
its strong progress guarantees, and its support to weak memory consistency models. We
are currently incorporating it into the NOBLE [10] library.
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