
30 Journal of Digital Information Management � Volume 6 Number 1 � February 2008

Cluster based Mixed Coding Schemes for Inverted File Index Compression

Jinlin Chen1, Ping Zhong2, Terry Cook3

1Computer Science Department
Queen College, City University of New York
USA
jchen@cs.qc.edu

2Computer Science Department
Graduate Center, City University of New York
USA
pzhong@gc.cuny.edu

3Computer Science Department
Graduate Center, City University of New York
USA
terrycookd1@aol.com

taking consecutive differences, d
i+1

 - d
i
. In this way it is possible

to code inverted lists using fewer bits per pointer on average.

Many codes have been proposed for compressing inverted
lists. These codes use different codewords for different d-
gaps. The performance of a code is decided by whether the
implicit d-gap distribution model conforms to that of the
document collection.

One way to improve inverted file compression is to use the cluster
property [1] of document collection, which states that term
occurrences are not uniformly distributed. Some terms are more
frequently used in some parts of the collection than in others.
The corresponding part of the inverted list will consequently be
small d-gap values clustered. Interpolative code [9] exploits the
cluster property of term occurrences and achieves very good
performance. Other codes that favor small d-gaps also perform
well on document collections with cluster property.

A major feature of most previous approaches is that they use
the same code within a given inverted list, without considering
the difference in between clustered and non-clustered d-gaps.
Actually the knowledge of cluster and non-cluster property of
d-gaps provides valuable information for improving index
compression. By clustering d-gaps of an inverted list strictly
based on a threshold, and then encoding clustered and non-
clustered d-gaps using different methods, we can tailor to the
specific properties of different d-gaps and achieve better
compression ratio. Based on this idea, in this paper we
propose a cluster based approach and present two new mixed
codes for inverted file index compression: mixed k-base
gamma/k-flat binary code and mixed k-base delta/k-flat binary
code. Experiment results show that the two new codes achieve
better or equal performance in terms of compression ratio
comparing to interpolative code which is considered as the
most efficient bitwise code at present. Besides, the two new
codes have much lower complexity comparing to interpolative
code and therefore enable faster encoding and decoding. By
adjusting the parameters for the mixed codes, even better
result may be achieved.

The rest of this paper is organized as follows. Section 2
describes related work on inverted file indexing. Section 3
presents the motivation of this paper. Section 4 discusses
the concept of cluster based mixed code and presents two
new mixed codes. Section 5 presents experiment results for
performance evaluation. Section 6 concludes the paper.

ABSTRACT: The cluster property of document collections in
today’s search engines provides valuable information for index
compression. By clustering d-gaps of an inverted list based
on a threshold, and then encoding clustered and non-clustered
d-gaps using different methods, we can tailor to the specific
properties of different d-gaps and achieve better compression
ratio. Based on this idea, in this paper we propose a cluster
based approach and presents two new codes for inverted file
index compression: mixed gamma/flat binary code and mixed
delta/flat binary code. Experiment results show that the two
new codes achieve better or equal performance in terms of
compression ratio comparing to interpolative code which is
considered as the most efficient bitwise code at present.
Besides, the two new codes have much lower complexity
comparing to interpolative code and therefore enable faster
encoding and decoding. By adjusting the parameters for the
mixed codes, even better results may be achieved.
Experiments show promising results with our approaches.

Categories and Subject Descriptors
H.3.2 [Information Storage] File Organization; H.3.1 [Content
analysis and indexing]; I.7.3 [Index generation]

General Terms
Document processing, Index generation

Keywords: Inverted file, d-gap, Index compression, inverted list
Received 28 Aug. 2006; Revised and accepted 29 August 2007

1. Introduction

Today Web search engines play an important role for people to
access Web information. The large amount of information
available on the Web requires an efficient indexing mechanism
for search engines. Among the many indexing techniques,
inverted file has been the most popular one due to its relative
small size and high efficiency for keyword-based queries
[10][16][17]. An inverted file index on a document collection maps
each unique term to an inverted list of all the documents
containing the term. For a term t, the inverted list has the structure
<ft; d1, d2, d3, … , dft>, where ft is the number of documents
containing t, di is a DocID that identifies the document
associated with the ith occurrence of t, and di < di+1. Since the
inverted list is in ascending order of DocIDs, and all processing
is sequential from the beginning of the list, the list can be
stored as an initial position followed by a list of d-gaps by

 Journal of Digital
 Information Management

Journal of Digital Information Management � Volume 6 Number 1 � February 2008 31

2. Related work

Approaches for compressing inverted lists can be grouped
into global methods which use the same model for all inverted
lists and local methods which use different models for
different inverted lists [16].

The simplest global code is flat binary code which requires
�log N� bits for each pointer in a collection with N documents
(Note: we will use base 2 logarithm throughout this paper).
The implicit probability model is that each d-gap size is
uniformly random in 1 … N. However, in reality frequent words
are likely to have small d-gaps while infrequent words tend to
have larger d-gaps. Thus variable length code should be
considered in which small values are considered more likely
and coded more economically than larger ones. One such
code is the unary code, which codes a d-gap x with x – 1 ‘1’
bits followed by a ‘0’ bit. The corresponding probability model
is binary exponential decay, which favors small d-gaps
extremely.

There are many codes whose implicit probability distributions
lie somewhere between the uniform distribution of flat binary
code and the binary exponential decay distribution of unary
code. Elias gamma code [5] represents an integer x by 1 +
�log x� stored as a unary code, followed by �log x� bits binary
representation of x without its most significant bit (x - 2�log x�).
Gamma code is efficient for small integers but inefficient for
larger integers. Elias delta code [5], instead, is suitable for
large integers but inefficient for small ones. For an integer x,
a delta code stores the gamma code representation of 1 +
�log x� and then the binary representation of x without its most
significant bit.

Gamma and delta codes use the same model for every
inverted list. Parameterized local methods, on the contrary,
take advantage of the different average d-gaps in different
lists. Golomb code [6] is such an example. Coding of an integer
x using Golomb code with respect to a parameter b is as
follows. First, a zero-origin unary code of a quotient q is
emitted, where q = �(x - 1) / b�; second, a binary code is emitted
for the remainder r, r = (x – 1) – q × b. This binary code requires
either �log b� (if r < p), or �log b� (if r � p) bits to be represented,
where p is the pivot point, and p = 2�log b�+1 – b.

Golomb code is effective when the probability distribution of
d-gap is geometric, however, it does not adapt well to the
cluster property which is quite normal in many of today’s
document collections [1]. The cluster property indicates that
term occurrences are not uniformly distributed. Some terms
are more frequently used in some parts of a collection than in
others. The corresponding part of the inverted list will mainly
be small d-gaps clustered. A mechanism that is sensitive to
clustering may outperform Golomb code on non-uniform
inverted lists. Interpolative code [9] is such an example.
Interpolative code encodes a monotonic increasing sequence
of integers using knowledge of its neighbors. If in a sequence
of integers X, for a given integer xi, the preceding integer xi-1

and following integer xi+1 are known, then because xi must be
in the interval [xi-1 + 1, xi+1 - 1], the maximum number of bits
required for xi is �log (xi+1 - xi-1 - 2 + 1)�. For typical document
collections, the interpolative code achieves better
compression than Golomb code. The major problem is its
high encoding and decoding complexity [16].

All the above mentioned codes are bitwise schemes, in
which each posting is stored using a bit-aligned code.
Generally speaking, bitwise codes achieve very good
compression ratios. The problem is the relatively high
decoding time. Anh and Moffat [1] proposed fixed binary codes

to enhance the decoding performance. Fixed binary code
splits an inverted list into multiple segments, each of which
includes d-gaps at similar scale. Thus each segment can
be encoded with a fixed number of bits which best
accommodate the segment. This idea of dividing an inverted
list into segments is quite interesting and related to the work
presented in this paper. However, the major interest of fixed
binary code is to improve decoding performance without
sacrificing too much encoding performance. And because
of this, fixed binary code focuses on building efficient data
structures for future decoding at encoding stage. Generally
speaking it yields larger index due to the additional cost of
storing selector and length information for each segment.
Our research, instead, focus on how to build efficient
encoding schemes to improve index compression by making
better use of cluster property.

Another type of codes is bytewise codes [2][11][14], in
which each posting is stored employing a byte-aligned
code. In bytewise encoding, each integer is represented
using a fixed and integral number of bytes. Thus retrieving
a codeword doesn’t involve expensive shi f t -mask
operations. Bytewise codes generally gain low decoding
time with the cost of lower compression ratio comparing
to bitwise codes.

3. Motivation

Clustering property of d-gaps has been exploited to improve
compression ratio [4][8][9]. However, previous approaches use
the same code within a given inverted list without considering
the difference of clustered and non-clustered d-gaps.

Actually the knowledge of clustered and non-clustered d-gaps
provides valuable information for index compression. For
example, given an inverted list <12; 38, 17, 13, 34, 6, 4, 1, 3, 1,
2, 3, 1>, if we define a cluster as continuous d-gaps that are
less than 4, we can break the list into two segments <12; (38,
17, 13, 34, 6, 4), (1, 3, 1, 2, 3, 1)>. For the first segment, since
every d-gap is larger than or equal to 4, we can represent a d-
gap x in two parts: a gamma code (or any other suitable code)
of x/4, followed by two bits binary code for the remainder of x/
4. Gamma code of x has 1 + 2�log x� bits, while in our new
approach the total number of bits is: 1 + 2�log (x/4)� + 2 = 1 +
2�log x� – 2, which is two bits less than the original gamma
code. For the second segment, since every d-gap is smaller
than 4, we can exploit codes that favor small d-gaps to minimize
the total number of bits. For example, we can use two bits flat
binary code to represent the possible d-gaps in a cluster, i.e.,
00 (1), 01 (2), and 10 (3).

In this way mixed codes are used for the inverted list (gamma
for non-cluster d-gaps and flat binary for d-gaps in a cluster).
Here the major issue is how to indicate the start and end of a
cluster, so that during decoding we know which decoding
scheme to use. For this example, since gamma code for any
integer larger than 1 always starts with bit ‘1’, this gives us the
idea of using ‘0’ as the starting bit of a cluster. Inside a cluster
the two bits binary code ‘11’ is never used, which can be used
to indicate the end of a cluster. Comparing to gamma coding,
which use 2.33 bits in average to represent integer 1 (coded as
0), 2 (coded as 100), and 3 (coded as 101) if they occur uniformly,
our two bits flat binary code only uses two bits in average.
However, this comes at the cost of three additional bits (one
starting and two ending bits). Fortunately, we can offset the cost
of the two ending bits based on the observation that the d-gap
x following the cluster is surely larger than 3. Based on this
observation, we can encode x using gamma for x/4 plus two
bits binary code for the remainder, which needs two less bits

32 Journal of Digital Information Management � Volume 6 Number 1 � February 2008

than normal gamma code, so that the two ending bits of the
cluster are offset. In case the cluster is at the end of an inverted
list, there is no need to use the two ending bits, and the additional
cost vanishes. Based on this analysis the only additional cost
of representing a cluster is the one bit starting indicator, which
is not a big issue because in average each d-gap inside a
cluster uses 0.33 less bit, and each non-cluster d-gap uses 2
less bits comparing to normal gamma code.

A remaining issue is, if a non-clustered d-gap x is smaller
than 8 (i.e., 4, 5, 6, or 7.), the quotient of x/4 will then be 1,
whose gamma code is 0, which is the same as the proposed
starting bit for a cluster and causes conflict. To solve this
problem, we observe that the binary code ‘011’ is never used
in the first three bits of any cluster (otherwise it means a
cluster with no d-gap inside, which is impossible). Therefore
we can use ‘011’ to indicate the starting bits of a d-gap 4, 5, 6,
or 7. And because only these four values need special
consideration (a non-clustered d-gap is always larger than or
equal to 4 as defined. For a d-gap x larger than 7 the
corresponding gamma code of x/4 is led by bit ‘1’, which is
distinguishable from the leading bit ‘0’ of a cluster), we need
only two additional bits after ‘011’ to represent these four values
(‘00’, ‘01’, ‘10’, and ‘11’ for 4, 5, 6, and 7, respectively). In this
case each of these four integers needs five bits, which is the
same as its corresponding gamma code.

The above analysis can be further generalized in two aspects.
First, instead of using 3, we can use any appropriate number
as the maximal distance inside a cluster, preferably 2k - l,
where k is a positive integer. The larger k is, the more bits we
can save for a non-clustered d-gap, at the cost of more bits for
a clustered d-gap. Second, instead of using gamma code,
we can also use other codes such as delta code for non-
clustered d-gaps.

Since our approach makes use of clustering property of
document collections, it will also benefit from those DocID
reassignment algorithms [3][12][13] which have the purpose
of increasing clustering property.

4. Cluster based mixed codes

In this section we first give formal definition of cluster based
mixed code, we then present two mixed codes – mixed k-
base gamma/k-flat binary code and mixed k-base delta/k-flat
binary code.

Definition 1 For a segment of d-gaps < di, di+1, … , dj > (i � j) in
an inverted list, if for k, i � k � j, dk � T, (T is a positive integer),
the segment is called a Cluster with Maximal Cluster
Distance (MCD) T. A d-gap larger than MCD is called a Non-
Clustered d-gap. (Note: unless otherwise specified, in this
paper we represent an inverted list in its d-gap format.)

Definition 2 For an inverted list <f
t
; d

1
, d

2
, d

3
, … , d

ft
>, if we

cluster all the possible clusters based on a given MCD, and
re-write the inverted list as <f

t
; g

1
, g

2
, g

3
, … , g

ft’
>, where g

i
 is

either a non-clustered d-gap or a cluster, and f’
t
 is the total

number of clusters and non-clustered d-gaps, we call this
new list the Clustered Representation of the original list.

Definition 3 For the clustered representation of an inverted
list, if we encode non-clustered d-gaps and clustered d-gaps
with different codes, we call this encoding approach a Cluster
based Mixed Code.

Definition 4 A cluster with MCD T, T = 2k – 1, k � 1, is called a
k-base Cluster. A k-base cluster can have at most 2k – 1
different d-gap values inside the cluster, i.e., 1, 2, …, 2k - 1.

Definition 5 For a k-base cluster, if each d-gap inside the
cluster is coded using k bits one-origin binary code, we call
this code k-flat Binary Code for the cluster, in which d-gap
value 1 is coded as 0, 2 is coded as 1, … and 2k - 1 is coded
as 2k – 2 (all with k bits). The binary code 2k – 1 is never used
and can be used for other purpose.

4.1 Mixed Gamma/Flat Binary Code

Definition 6 For a d-gap x, x � 2k, if x is coded as gamma code
of x/2k, followed by k bits binary representation of the remainder
of x/2k, we call this coding scheme k-base Gamma Code.

Algorithm 1 For an inverted list, a Mixed k-base Gamma/k-
flat Binary Code (for simplicity, we will call it mixed gamma
code) is defined as follows,

Input: an inverted list; Output: mixed k-base gamma/k-flat
binary code;

Algorithm:
1) Rewriting the inverted list in its k-base clustered repre-

sentation;
2) Starting from the beginning of the clustered representa-

tion, each item is encoded sequentially as follows,
2.1) If the current item is a cluster, it is encoded with a

starting bit ‘0’, and k ‘1’ bits as ending bits if there is
a non-clustered d-gap following the cluster. Each d-
gap inside the cluster is encoded using k-flat binary
code sequentially following the starting bit;

2.2) If the current item is a non-clustered d-gap that
follows a cluster, it is encoded using k-base gamma
code;

2.3) If the current item is a non-clustered d-gap x that
does not follow a cluster, and if x � 2 × 2k, it is encoded
using k-base gamma code; if x < 2 × 2k, it is encoded
as follows: a leading bit ‘0’, followed by k ‘1’ bits,
followed by k bits binary code of x – 2k. Here the first
bit ‘0’ together with the following k ‘1’ bits are called
Special Leading Sequence of x.

Algorithm 2 For an inverted list coded with mixed k-base
gamma/k-flat binary code, a Mixed k-base Gamma/k-flat
Binary Decoding algorithm is defined as follows,
Input: mixed gamma code of an inverted list; Output: the
original inverted list;

Algorithm: Starting from the beginning of the code,
1) If a leading bit is ‘0’, and the following k bits are not all ‘1’s,

then it means the bits following the starting bit ‘0’ are for a
cluster, and we decode the cluster based on coding
scheme defined by k-flat binary code, i.e., following the
starting bit ‘0’, each time we take k bits and the corre-
sponding d-gap is 1+ binary value of the k bits. This pro-
cess is continued until k all ‘1’ bits are read, or the end of
the inverted list is met;
1.1) If k bits of all ‘1’s at the end of a cluster are read, it

means that the following d-gap x is a non-clustered
d-gap. We then decode the bits following the ending
bits of the cluster using gamma decoding (assume
the decoded value is y), and further decode the
following k bits after the gamma code using binary
decoding (assume the decoded value is z). Then
we have x = 2k × y + z;

2) If a leading bit is ‘0’, and the following k bits are all ‘1’s,
then it means the k bits following all ‘1’s are for a non-
clustered d-gap x, x < 2 × 2k, and x � 2k. We decode x as x
= 2k + binary value of the k bits following the k ‘1’ bits.

A

Journal of Digital Information Management � Volume 6 Number 1 � February 2008 33

3) If a leading bit is ‘1’, it means the following bits together
with the leading bit ‘1’ are for a non-clustered d-gap x, x �
2 × 2k. We first decode the bits starting from the leading bit
‘1’ using gamma decoding (assume the decoded value is
y), and further decode the following k bits after the gamma
code using binary decoding (assume the decoded value
is z). And we have x = 2k × y + z.

Theorem 1 There is no ambiguity to decode a mixed k-base
gamma/k-flat binary code using mixed k-base gamma/k-flat
binary decoding algorithm, and the decoded result is the same
as the original inverted list.

Proof: The value of a d-gap x falls into one of the following
three intervals:

(1) x < 2k, (2) 2k � x < 2 × 2k, (3) 2 × 2k � x.

Based on the location of x relative to clusters, the following
three cases exist:

(a) x is inside a cluster; (b) x is outside a cluster and a
successor of a cluster; (c) x is outside a cluster and not a
successor of a cluster.

Based on the above partitions and the definition of mixed k-
base gamma/k-flat binary code, only the following
combinations can exist: 1a, 2b, 2c, 3b, 3c. During encoding,
for case 1a, the corresponding cluster is led with bit ‘0’, and
the following k bits are guaranteed to be not all ‘1’s; for case
2c, the leading bit is ‘0’, followed by k bits all ‘1’s; for case 3c,
since 2 × 2k � x, x/2k � 2, the corresponding k-base gamma
code of x is guaranteed to have the leading bit ‘1’ (all gamma
codes for x > 1 has a leading bit ‘1’). So there is no ambiguity
for these three cases during decoding. For case 2b and 3b,
since x is a direct successor of a cluster, the implicit leading
bits are the ending bits of the precedent cluster. Therefore
there is no ambiguity in between these two cases and the
other three cases for decoding. Besides, since 2k � x, k base
gamma coding ensures no ambiguity for corresponding
decoding in between these two cases.

For each of the above cases, the decoding procedure defined
in Algorithm 2 is a direct reverse of the corresponding encoding
procedure defined in Algorithm 1, so the decoded list is the
same as the original one.

Example 1 Using the same inverted list as used for fixed
binary code in [1], <12; 38, 17, 13, 34, 6, 4, 1, 3, 1, 2, 3, 1>
1) Gamma, delta, Golomb (b=3), interpolative, and fixed bi-

nary codes need 60, 62, 64, 55, and 57 bits, respectively;
Note: to test interpolative code, we need know the size of
the document collection, which is not given in [1]. Here we
take a reasonable assumption that the document collec-
tion size is the sum of all d-gaps in this inverted list plus
the average d-gap of the list. In this way we use 134 as the
collection size.

2) If we use mixed 2-base gamma/2-flat binary code, MCD =
22 – 1 = 3. There exists one cluster <1, 3, 1, 2, 3, 1> inside
the list, and the mixed gamma code is 1110001 10 (38)
11000 01 (17) 101 01 (13) 1110000 10 (34) 011 10 (6) 011
00 (4) 0 00 (1) 10 (3) 00 (1) 01 (2) 10 (3) 00 (1), which has
53 bits. Comparing to gamma code, we save 7 bits. Com-
paring to interpolative code which performs best among
all codes in 1), we save 2 bits here.

3) If we use mixed 3-base gamma/3-flat binary code, MCD =
23 – 1 = 7. There exists one cluster <6, 4, 1, 3, 1, 2, 3, 1>
inside the list, and the mixed gamma code is 11000 110
(38) 100 001 (17) 0111 101 (13) 11000 010 (34) 0 101 (6)
011 (4) 000 (1) 010 (3) 000 (1) 001 (2) 010 (3) 000 (1),

which has 54 bits. Comparing to gamma code, we save 6
bits. Comparing to interpolative code, we save 1 bit here.

This example indicates that different bases (k) have different
effects for the coding results. Below are two theorems describing
the number of bits consumed by mixed gamma code.

Theorem 2 For a d-gap x encoded with mixed k-base gamma/
k-flat binary code, the number of bits (b) consumed is,
1) If x < 2k, b = k;
2) If x is a direct successor of a cluster, b = 1 + 2�log x� – k;
3) If x is not a direct successor of a cluster, and x � 2 × 2k, b =

1 + 2�log x� – k;
4) If x is not a direct successor of a cluster, x � 2k, and x < 2 ×

2k, b = 1 + 2�log x�.

Proof: 1) If x < 2k, it is inside a cluster, and encoded with k-flat
binary code. Therefore b = k;
2) If x is a direct successor of a cluster, it is encoded with k-

base gamma code, which includes two parts. The first
part is gamma code of x/2k, which needs 1 + 2�log (x/2k)� =
1 + 2�log x� – 2k bits. And the second part is k bits binary
code of the remainder of x/2k. Therefore b = 1 + 2�log x� –
2k + k=1 + 2�log x� – k;

3) If x is not a direct successor of a cluster, and x � 2 × 2k, x is
encoded with k-base gamma coding. Similar to 2), we
have b = 1 + 2�log x� – k;

4) if x is not a direct successor of a cluster, x � 2k, and x < 2 ×
2k, its code is led with a special leading sequence, which
needs k + 1 bits, and followed by k bits binary representa-
tion of x – 2k. Therefore b = 1 + 2k. Since x � 2k, and x < 2 ×
2k, we have k = �log x�. Therefore b = 1 + 2�log x�.

Theorem 3 The additional bits (b) other than coding d-gaps
for a cluster encoded with mixed k-base gamma/k-flat binary
code is, 1) If the cluster has no successor, b = 1; 2) If the
cluster has a successor, b = 1 + k.

Proof: 1) If the cluster has no successor, it is encoded with a
starting bit ‘0’, and no ending bits, therefore b = 1.
2) If the cluster has a successor, it is encoded with a starting
bit ‘0’, and k ‘1’ ending bits, thus b = 1 + k.

Using gamma code, an integer x requires 1 + 2�log x� bits.
Based on the above theorems, comparing to gamma code, the
bits that mixed gamma code saves (bs) for each d-gap x is:

1) If x < 2k, bs = 1 + 2�log x� – k;
2) If x is a direct successor of a cluster, bs = 1 + 2�log x� - (1 +

2�log x� – k) = k;
3) If x is not a direct successor of a cluster, and x � 2 × 2k, bs

= 1 + 2�log x� - (1 + 2�log x� - k) = k;
4) If x is not a direct successor of a cluster, x � 2k, and x < 2 ×

2k, bs = 1 + 2�log x� - (1 + 2�log x�) = 0.

This analysis does not count the additional cost of cluster starting
and ending bits, which may be 1 or 1 + k as illustrated in Theorem
3. Based on this analysis, for a mixed gamma code, the larger
the average d-gap is, the more possible we save more bits per
pointer in average comparing to gamma code.

4.2 Mixed Delta/Flat Binary Code

Definition 7 For a d-gap x, x � 2k, if x is coded as delta code of
x/2k, followed by k bits binary representation of the remainder
of x/2k, we call this coding scheme k-base delta Code.

Algorithm 3 For an inverted list, a Mixed k-base delta/k-flat
Binary Code (for simplicity, we will call it mixed delta code) is
defined as follows,

34 Journal of Digital Information Management � Volume 6 Number 1 � February 2008

Input: an inverted list; Output: mixed k-base delta/k-flat binary
code;
Algorithm: 1) Rewriting the inverted list in its k-base clustered
representation;
2) Starting from the beginning of the clustered representa-

tion, each item is encoded sequentially as follows,
2.1) If the current item is a cluster, it is encoded with a

starting bit ‘0’, and k ‘1’ bits as ending bits if there is
a non-cluster d-gap following the cluster. Each d-
gap inside the cluster is encoded using k-flat binary
code sequentially following the starting bit;

2.2) If the current item is a non-cluster d-gap that follows
a cluster, it is encoded using k-base delta coding;

2.3) If the current item is a non-cluster d-gap x that does
not follow a cluster, and if x � 2 × 2k, it is encoded
using k-base delta coding; if x < 2 × 2k, it is encoded
as follows: a leading bit ‘0’, followed by k ‘1’ bits,
followed by k bits binary code of x – 2k.

Algorithm 4 For an inverted list coded with mixed k-base
delta/k-flat binary code, a Mixed k-base delta/k-flat Binary
Decoding Algorithm is defined as follows,

Input: mixed k-base delta/k-flat binary code of an inverted list;
Output: the original inverted list;

Algorithm: Starting from the beginning of the code,
1) If a leading bit is ‘0’, and the following k bits are not all ‘1’s,

then it means the bits following the starting bit ‘0’ are for a
cluster, and we decode the cluster based on coding
scheme defined by k-flat binary code, i.e., following the
starting bit ‘0’, each time we take k bits and the corre-
sponding d-gap is 1+ binary value of the k bits. This pro-
cess is continued until k all ‘1’ bits are read, or the end of
the inverted list is met;
1.1) If k bits of all ‘1’s at the end of a cluster are read, it

means that the following d-gap x is a non-cluster d-
gap. We then decode the bits following the ending
bits of the cluster using delta decoding (assume the
decoded value is y), and further decode the following
k bits after the delta code using binary decoding
(assume the decoded value is z). Then we have x =
2k × y + z;

2) If a leading bit is ‘0’, and the following k bits are all ‘1’s,
then it means the k bits following all ‘1’s are for a non-
cluster d-gap x, x < 2 × 2k, and x � 2k. We decode x as x =
2k+ binary value of the k bits following the k ‘1’ bits.

3) If a leading is bit ‘1’, it means the following bits together with
the leading bit ‘1’ are for a non-cluster d-gap x, x � 2 × 2k.

We first decode the bits starting from the leading bit ‘1’ using
delta decoding (assume the decoded value is y), and further
decode the following k bits after the delta code using binary
decoding (assume the decoded value is z). And we have x =
2k × y + z.

Theorem 4 There is no ambiguity to decode a mixed k-base
delta/k-flat binary code using mixed k-base delta/k-flat binary
decoding algorithm, and the decoded result is the same as

the original inverted list.

We skip the proof of Theorem 4 as it is similar to that of
Theorem 1.

Example 2 For the inverted list shown in Example 1, <12; 38,
17, 13, 34, 6, 4, 1, 3, 1, 2, 3, 1>,
1) The mixed 2-base delta/2-flat binary code is 11000 001 10

(38) 101 00 01 (17) 100 1 01 (13) 11000 000 10 (34) 011
10 (6) 011 00 (4) 0 00 (1) 10 (3) 00 (1) 01 (2) 10 (3) 00 (1),
which has 56 bits. Comparing to delta code (62 bits), we
save 6 bits. Comparing to interpolative code (55 bits), we
use one bit more.

2) The mixed 3-base delta/3-flat binary code is 10100 110
(38) 1000 001 (17) 0111 101 (13) 10100 010 (34) 0 101 (6)
011 (4) 000 (1) 010 (3) 000 (1) 001 (2) 010 (3) 000 (1),
which has 55 bits. Comparing to delta code, we save 7
bits. Comparing to interpolative code, we have the same
performance.

Similar to Example 1, we can find that different bases (k) have
different effects for mixed delta code. Table 1 summarizes the
performance of our mixed codes as well as other codes for
the inverted list from [1].

Below are two theorems describing the number of bits
consumed by mixed delta code.

Theorem 5 For a d-gap x encoded with mixed k-base delta/k-
flat binary code, the number of bits (b) consumed is,
1) If x < 2k, b = k;
2) If x is a direct successor of a cluster, b = 1 + 2�log (log (2x)

- k)� + �log x�;
3) If x is not a direct successor of a cluster, and x � 2×t; 2k, b

= 1 + 2�log (log (2x) - k)� + �log x�;
4) If x is not a direct successor of a cluster, x � 2k, and x < 2 ×t;

2k, b = 1 + 2�log x�;
Proof: 1) If x < 2k, it is inside a cluster, and encoded with k-flat

binary code. Therefore b = k;
2) If x is a direct successor of a cluster, it is encoded with k-

base delta code, which includes two parts. The first part is
delta code of x/2k, which needs 1 + 2�log log (2x/2k)� + �log
(x/2k)� = 1 + 2�log (log (2x) – k)� + �log x� – k bits. And the
second part is k bits binary representation of the remain-
der of x/2k. Therefore b = 1 + 2�log (log (2x) – k)� + �log x� –
k + k = 1 + 2�log (log (2x) – k)� + �log x�;

3) If x is not a direct successor of a cluster, and x � 2×t; 2k, x is
encoded with k-base delta code. Similar to the proof of 2),
we have b = 1 + 2�log (log (2x) – k)� + �log x�;

4) if x is not a direct successor of a cluster, x � 2k, and x < 2 ×t;
2k, its code is led with a special leading sequence, which
needs k + 1 bits, and followed by k bits binary representa-
tion of x – 2k. Therefore b = 1 + 2k. Since x � 2k, and x < 2 ×t;
2k, we have k = �log x�. Therefore b = 1 + 2�log x�.

Theorem 6 The additional cost (b) other than coding d-gaps
for a cluster encoded with mixed k-base delta/k-flat binary
code is, 1) If the cluster has no successor, b = 1; 2) If the
cluster has successor, b = 1 + k.

Method Gamma Delta Golomb Interpolative Fixed Mixed Mixed Mixed Mixed
(b=3) binary Gamma (k=2) Gamma (k=3) Delta (k=2) Delta (k=3)

Code length 60 62 64 55 57 53 54 56 55
(bits)

Table 1. Comparison of different codes for the example inverted list

Journal of Digital Information Management � Volume 6 Number 1 � February 2008 35

We skip the proof of Theorem 6 as it is similar to that of
Theorem 3.

Using delta coding, an integer x requires 1 + 2�log log 2x� +
�log x� bits. Based on the above theorems, comparing to
normal delta code, the bits that mixed delta code saves (bs)
for each d-gap is:
1) If x < 2k, bs = 1 + 2�log log 2x� + �log x� – k (this may be a net

loss since 1+2�log log 2x� + �log x� may be less than k);
2) If x is a direct successor of a cluster, bs = 1 + 2�log log 2x�

+ �log x� – (1 + 2�log (log (2x) – k)� + �log x�) = 2�log log 2x�
– 2�log (log (2x) – k)�;

3) If x is not a direct successor of a cluster, and x � 2 ×t; 2k,
similar to 2), bs = 2�log log 2x� – 2�log (log (2x) – k)�;

4) If x is not a direct successor of a cluster, x � 2k, and x < 2 ×t;
2k, bs = 1 + 2 �log log 2x� + �log x� – (1 + 2�log x�) = 2�log log
2x� – �log x�.

The above analysis does not count the additional cost of
cluster starting and ending bits, which may be 1 or 1 + k as
illustrated in Theorem 6. Comparing to the gain of mixed
gamma code from gamma code, generally speaking, the gain
of mixed delta code from delta code is not that large when the
average d-gap is large. This is due to the fact that delta code
itself compresses more than gamma code when d-gap is
large. Our experiments in next section confirm this analysis.

5. Experiments

TREC-8 web track data WT2g [7] is used as testing data. The
collection contains 250,000 documents, 2 Gigabytes data,
1,002,779 distinct terms, and 76,147,063 pointers. We ran
our tests on a Dell Inspiron 8600 laptop with 1.80 GHz Pentium
M CPU, 1GB memory, and Ultra-ATA 80GB hard disk. The
operating system is Windows XP.

We first built inverted file index using gamma code, and then
built new indices using mixed codes based on existing index.
In our system the time to build the inverted file index using
gamma code for WT2g data set is around 40 minutes, and
the additional time to build new indices using mixed gamma
or mixed delta code is around 100 seconds, which is only
about 4% additional cost. Generally speaking, the time
complexity of compressing inverted file index using gamma
code or delta code is much lower comparing to that of
interpolative code [16]. Based on our experiment results, mixed
gamma (delta) code has similar time complexity as gamma
(delta) code, therefore it also has much lower time complexity
comparing to interpolative code.

5.1 Compression Ratio Comparison of Different Codes

Table 2 shows the compression ratios in terms of bits per
pointer (which is used for all the rest experiments) of our
mixed gamma and mixed delta codes as well as other codes.

The first four methods are various base-line methods for
comparison purpose. Generally speaking, Interpolative code
is the most efficient one of these four traditional bitwise
approaches, and delta code is more efficient than gamma
code for large data collections. These are verified in Table 2.
One interesting exception is Golomb code. Williams and Zobel
[15] suggests that Golomb code is more space-efficient than

gamma and delta codes. However, in our experiment Golomb
code has the worst performance. The reason is that Golomb
code does not adapt well to the apparent cluster property of
WT2g data set, in which many related documents are closely
located.

Compared to Interpolative code, both mixed gamma and
mixed delta codes have better or equal compression ratio,
and a much lower encoding and decoding complexity.
Compared to their counterpart (mixed gamma vs. gamma,
and mixed delta vs. delta), both mixed gamma and mixed
delta have promising improvements, and the additional costs
for encoding and decoding are almost neglectable (4%) at
run time.

5.2 Comparison of Mixed Gamma and Gamma Codes

Based on the analysis in Section 4, for an inverted list with
small average d-gap, mixed gamma code may not always
outperform gamma code. However, when the average d-gap
is large enough, it will almost always outperform gamma
code. The larger the average d-gap is, the better mixed gamma
code performs. This trend is verified in Table 3 when average
d-gap increases from 10 to more than 50,000. Based on the
analysis in section 4, the limit of improvement of mixed gamma
code to gamma code should be k bits per pointer. This is also
verified in Table 3.

Ave. d-gap Gamma Mixed Improvement of
gamma mixed gamma

10-11 4.33 4.25 0.08

100-110 8.05 7.29 0.76

1000-1100 11.7 10.69 1.01

10000-11000 15.97 14.77 1.2

50000-130000 23.11 21.4 1.71

Table 3. Mixed gamma (k=2) and gamma code for inverted lists with
different average d-gaps

5.3 The impact of k to Mixed Gamma Code

Table 4 shows testing results of four settings of different k
values for mixed gamma code. For setting 1, all inverted lists
are encoded with mixed 2-base gamma/2-flat binary code.
For setting 2, inverted lists with average d-gap � 128 are
encoded with 2-base mixed gamma/flat binary code, 129 �
d-gap � 256 with 3-base, 257 � d-gap � 512 with 4-base, and
d-gap > 512 with 5-base. Similarly we have setting 3 and 4.
Table 4 shows that further improvement can be achieved if
larger ks are used for inverted lists with larger average d-
gaps. This conforms to our analysis in Section 4.

5.4 Comparison of Mixed Delta and Delta Codes

Similar to mixed gamma code, mixed delta code may not
always outperform delta code. However, when the average
d-gap is large enough, it will almost always outperform delta
code. Generally speaking, the larger the average d-gap is, the
better mixed delta code performs. This trend is verified in

Method Gamma Delta Golomb Interpolative Mixed Gamma (k=2) Mixed Delta (k=2)

Compression ratio 6.21 5.91 6.24 5.83 5.83 5.70

Table 2. Compression ratio (bits per pointer) of various codes

36 Journal of Digital Information Management � Volume 6 Number 1 � February 2008

Table 5 when average d-gap increases from 10 to more than
50,000. From Table 5, we can further find that mixed delta
code does not save that much from delta code as mixed
gamma code does from gamma code. This conforms to our
analysis in section 4.

Ave. d-gap Delta Mixed Delta Improvement
of mixed Delta

10-11 4.57 4.4 0.17

100-110 7.63 7.24 0.39

1000-1100 10.15 9.89 0.26

10000-11000 12.95 12.64 0.31

50000-130000 18.05 17.35 0.7

Table 5. Mixed delta (k=2) and delta code for inverted lists with
different average d-gaps

5.5 The impact of k to Mixed Delta Code

Table 6 shows testing results of four settings of different ks
for mixed delta code. In this table the settings of k for different
d-gaps are similar to those in Table 4. Table 6 shows that for
mixed delta code the best compression ratio is achieved when
k is set to 2 for all inverted lists (setting 1).

6. Conclusions

By clustering d-gaps of an inverted list strictly based on a
threshold, and then encoding clustered and non-clustered d-
gaps using different methods, we can tailor to the specific
properties of different d-gaps and achieve better compression
ratio. In this paper we have verified this idea and presented
two new codes for index compression: mixed gamma code
and mixed delta code. Experiment results show that the two
new codes achieve better or equal performance in terms of
compression ratio comparing to interpolative code which is
considered as the most efficient bitwise code at present.
Besides, the two new codes have much lower complexity
comparing to interpolative code and therefore enable faster
encoding and decoding. By adjusting the parameters for the
mixed codes, even better results may be achieved.

References

[1] Anh V. N.,Moffat, A (2004). Index compression using fixed
binary codewords. In: Proc. 15th Australasian Database
Conference (Dunedin, New Zealand, Jan. 2004. 61-67.

[2] Anh V. N., Moffat A. Inverted Index Compression Using Word-
Aligned Binary Codes, Information Retrieval, 8, 1 (Jan. 2005),
151-166.

[3] Blandford, D., Blelloch, G (2002). Index compression

k Ave. d-gap S1 Ave.d-gap S2 Ave. d-gap S3 Ave. d-gap S4

2 All �128 �128 �128

3 129-256 129-256 129-256

4 257-512 257-512 257-512

5 >512 513-1024 513-1024

6 >1024 1025-2048

7 >2048

Comp. ratio 5.83 5.664 5.662 5.661

Table 4. The impact of k to mixed gamma code

k Ave. d-gap S1 Ave. d-gap S2 Ave. d-gap S3 Ave. d-gap S4

2 All �128 �128 �128

3 129-256 129-256 129-256

4 257-512 257-512 257-512

5 >512 513-1024 513-1024

6 >1024 1025-2048

7 >2048

Comp. ratio 5.70 5.75 5.77 5.78

Table 6. The impact of k to mixed delta code

Journal of Digital Information Management � Volume 6 Number 1 � February 2008 37

through document reordering. In: Proceedings of the Data
Compression Conference (Snowbird, UT, USA, 342-351.

[4] Bookstein A., Klein S., Raita, T (1995). Modeling word
occurrences for the compression of concordances. In: Proc.
IEEE Data Compression Conference. Snowbird, UT, USA,
March 29-30, 462-462

[5] Elias, P (1975). Universal codeword sets and
representation of the integers. IEEE Transactions on
Information Theory, 21, 2 (Feb. 1975), 194-203.

[6] Golomb, S (1966). Run-length encodings, IEEE Trans. on
Information Theory, 12, 399-401.

[7] Hawking, D., Voorhees E., Craswell N., Bailey, P (2000).
Overview of the TREC-8 Web Track. In: Proc. of the Eighth Text
REtrieval Conference, NIST Special Publication 500-246,
2000. 131-150.

[8] Moffat, A., Stuiver. L (1996). Exploiting clustering in inverted
file compression. In: Proceedings of the 1996 IEEE Data
Compression Conference, Snowbird, Utah, March 31 - April 3.
82-91.

[9] Moffat A., Stuiver, L (2000). Binary interpolative coding for
effective index compression. Information Retrieval, 3, 1 (July
2000), 25–47.

[10] Rillof, E., Hollaar, L (1966). Text database and information
retrieval. ACM Comput. Surveys. 28, 1 (1996), 133-135.

[11] Scholer F., Williams H. E., Yiannis H., Zobel. J (2002).
Compression of inverted index for fast query evaluation. In:
ACM SIGIR02 (Tampere, Finland, Aug. 2002). 222-229.

[12] Shieh W. Y., Chen T. F., Shann J. J., Chung, C. P (2003).
Inverted file compression through document identifier
reassignment. Information Processing and Management, 39,
1 (Jan. 2003), 117–131.

[13] Silvestri, F., Perego R., Orlando, S (2004). Assigning
document identifiers to enhance compressibility of web search
engine indexes. In Proceedings of the 19th Annual ACM
Symposium on Applied Computing - Data Mining Track,
Nicosia, Cyprus. 600-605.

[14] Trotman, A (2003). Compressing inverted files. Information
Retrieval, 6 (2003), 5-19.

[15] Williams H. E., Zobel, J (1999). Compressing integers for
fast file access. The Computer Journal, 42, 3, 193-201.

[16] Witten I. H., Moffat A., Bell T. C (1999). Managing Gigabytes
– Compressing and Indexing Documents and Images.
Morgan Kaufmann Publishing, San Francisco, second edition,
1999.

[17] Zobel, J., Moffat, A., Ramamohanarao, K (1998). Inverted
files versus signature files for text indexing. ACM Transactions
on Database Systems, 23, 4, 453-490.

