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Abstract

Large inverted indices are by now common in the construction of web-scale search
engines. For faster access, inverted indices are indexed internally so that it is possible to
skip quickly over unnecessary documents. The classical approach to skipping dictates that
a skip should be positioned every

√
f document pointers, where f is the overall number of

documents where the term appears. We argue that due to the growing size of the web more
refined techniques are necessary, and describe how to embed a compressed perfect skip list
in an inverted list. We provide statistical models that explain the empirical distribution of
the skip data we observe in our experiments, and use them to devise good compression
techniques that allow us to limit the waste in space, so that the resulting data structure
increases the overall index size by just a few percents, still making it possible to index
pointers with a rather fine granularity.

1 Introduction

Inverted indices are one of the most commonly used techniques to organise very large (web-
scale) document collections. They provide high-speed access to sets of documents satisfying
queries, which can be subsequently ranked and returned to the user. If properly built, they are
also extremely compact [11].

The birth of web search engines has brought new challenges to traditional inverted index
techniques. In particular, eager (or term-at-a-time) query evaluation has been replaced by lazy
(or document-at-a-time [10]) query evaluation. In the first case, the inverted list of one of the
terms of the query is computed first (usually, choosing the rarest term [11]), and then, it is
merged or filtered with the other lists. When evaluation is lazy, instead, inverted lists are scanned
in parallel, retrieving in sequence each document satisfying the query. The latter approach is
essential in very large document collections, where the actual number of documents that could
be retrieved is guessed (usually with a statistical approach), documents are reordered using

∗[This work has been partially supported by a “Finanziamento per grandi e mega attrezzature scientifiche”
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some kind of static ranking, and the scan for documents satisfying the query is stopped as soon
as enough documents have been retrieved.

Lazy evaluation requires keeping constantly in sync several inverted lists. To perform this
operation efficiently, it is essential that a skip method is available that allows the caller to quickly
reach the first document pointer larger than or equal to a given one. The classical solution to
this problem [6] is that of embedding skipping information in the inverted list itself: at regular
intervals, some additional information describe a skip, that is, a pair given by a document pointer
and the number of bits that must be skipped to reach that pointer. The analysis of skipping given
in [6] concludes that skips should be spaced as

√
ft , where ft is the frequency of term t (i.e., the

number of documents containing t), and that one level of skip is sufficient for most purposes.
Nonetheless, the abovementioned analysis has two important limitations. First of all, it does

not contemplate the presence of positions, e.g., of a description of the exact position of each
occurrence of a term in a document (something which is necessary to evaluate proximity), or of
application-dependent additional data: as a result, the estimate of the cost of not skipping a doc-
ument record is severely underestimated; second, it is fundamentally based on eager evaluation,
and its conclusions cannot be extended to lazy evaluation.

Not only lazy evaluation is necessary for easier ranking (especially with the long and com-
plex queries that arise in automated query preprocessing): new techniques applied to inverted
indices, such as document sampling [1], require that skips are generated by a random source. In
that case, it is even more difficult to predict the usage pattern of skip methods.

Motivated by these reasons, we are going to present a generic method to self-index inverted
lists with a very fine level of granularity. Our method does not make any assumption on the
structure of a document record, or on the usage pattern of the inverted index. Skips to a given
pointer (or by a given amount of pointers) can always be performed with a logarithmic number of
low-level reads and bit-level skips: nontheless, the size of the index grows just by a few percents,
thanks to a sophisticated analysis of the skip structure that eliminates redundant information, and
predicts with high precision the remaining data, so that compression techniques can be used to
further reduce the space occupied by the skip structure.

Our techniques are particularly useful for in-memory indices, that is, for indices kept in
core memory (as it happens, for instance, in Google), where most of the computational cost of
retrieving document is scanning and decoding inverted lists (as opposed to disk access), and at
the same time a good compression ratio is essential.

All results described in this paper have been implemented in MG4J, a full-text indexing
engine that is available as free software at http://mg4j.dsi.unimi.it/.

2 Perfect Embedded Skip Lists for Inverted Indices

Inverted indices. Inverted indices are a basic tool for querying textual document collec-
tions [11, 3]. Consider a collection of N documents, where documents are numbered from
0 to N − 1; each document is seen as a sequence of term occurrences. An inverted index for
the collection is a data structure made of one inverted list for each term. The inverted list for
term t contains one item (sometimes called a posting) for each document where t appears, in
increasing order of document; every item contains the (document) pointer p (i.e., the number of
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ft p0 DATA p1 DATA p2 DATA p3 DATA p4 DATA · · ·

c o0 o1 o2 o3 · · ·

Figure 1: An inverted list without skips.
the document), plus possibly some additional data, such as

• the count, that is, the number of occurrences of term t in document p;

• the positions, that is, the list of integers representing the positions where the term t appears
in document p.

The number of items contained in the inverted index for term t (i.e., the number of documents
where t occurs) is called the frequency ft of t , and it is usually written at the beginning of the
inverted list. A graphical example is shown in Figure 1.

Inverted lists are accessed sequentially, as their purpose is exactly to retrieve a sequence of
documents containing a term; usually, when trying to match a query, several inverted lists are
read and merged. Introducing skips in these lists, as suggested in [6], may allow one to save
time because in conjunctive queries one can skip over useless postings.

When a skip structure is embedded in an inverted list, we can tell how quickly a skip can be
performed by counting the number of record read, the number of integer read, and the number
of jumps, that is, low-level (usually, filesystem-level) calls that skip over a given number of
bits. In the rest of this paper, we shall describe a data structure that is the natural evolution of
the one-level skip described in [6], and show how this structure can be compressed and used
efficiently.

Perfect skip lists. Skip lists [9] are a data structure in which elements are organised as in an
ordered list, but with additional references1 that allow one to skip forward in the list as needed.
More precisely, a skip list is a singly linked list of items 〈x0, x1, . . . , xn−1〉, such that:

• items in the list are increasingly ordered w.r.t. some fixed order relation, that is, x0 ≤ x1 ≤
· · · ≤ xn−1;

• every item xi appearing in the list contains a reference to the next item xi+1 (as in any
linked list);

• moreover, item xi contains a certain number hi ≥ 0 of extra references, that are called the
skip tower of the item; the t-th reference in this tower addresses the first item j > i such
that h j ≥ t .

1The term reference used here can be taken to mean “memory address”; in the data structure and programming
literature this is usually called pointer. Unfortunately, in the papers on inverted indices, pointer is used for “document
number”, and we shall adhere to this tradition.
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Figure 2: An infinite perfect skip list; the first tower is really infinite.
When searching a skip list for an item x , we scan the first tower from the top, stopping at the first
reference pointing at an item smaller than or equal to x ; then we follow the reference and restart
the process until x is found, the current item is larger than x or no more items are available.

Skip lists are a probabilistic structure (albeit deterministic versions do exist [7]): a parameter
0 < p < 1 is fixed, and then the height of each tower is chosen by tossing a p-biased coin
until the outcome is positive. This probabilistic construction ensures that the structure can be
updated dynamically, still maintaining logarithmic access time on average. An additional fixed
upper bound avoids excessively tall towers.

We are now going to describe perfect skip lists, a deterministic version of skip lists that
is suitable for inverted lists. Much like probabilistic skip lists can be thought of as a way to
represent a search tree, a perfect skip list resembles a complete binary search tree; the big
advantage of this representation is that it can be easily embedded into an inverted list with a
high compression ratio, and that it is apt to sequential scanning.

For sake of simplicity, we start by describing an ideal, infinite version of a perfect skip list.
Let LSB(x) be defined as the least significant bit of x if x is a positive integer, and ∞ if x = 0.
Then, define the height of the skip tower of item xi as hi = LSB(i). In this idealised version,
the tower of the first element has infinite height, as it must be able to skip arbitrarily forward.
Note that by choosing heights in this way, we can find any element in a logarithmic (in the list
size) number of steps.

We now fix two limiting parameters: the number of items in the list, and the maximum
height of a tower. Both parameters are fundamental in an actual implementation. We say that a
finite skip list is perfect w.r.t a given height h and size T when:

1. no tower contains more than h + 1 references;

2. all references that would exist in the infinite perfect skip list are present, provided that
they refer to an item with index smaller than or equal to2 T , and that they do not violate
the first requirement.

Theorem 1 In a perfect skip list with T items and maximum height h, the height of a tower at
element i is

min(h, LSB(k), MSB(T − i)) + 1

where k = i mod 2h , and MSB(x) is the most significant bit of x > 0, or −1 if x = 0. In
particular, if i < T − T mod 2h the tower has height

min(h, LSB(k)) + 1,

2This means that occasionally there might be a reference pointing just after the end of the list.
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whereas if i ≥ T − T mod 2h the tower has height

min(LSB(k), MSB(T mod 2h − k)) + 1.

Proof. Let i = t2h + k, with 0 ≤ k < 2h . The requirements for a perfect skip list claim that
item i has a reference of level s only if











s ≤ h

i + 2s ≤ T

s ≤ LSB(i).

The second inequality is easily turned into s ≤ MSB(T − i). We notice that LSB(i) =
LSB(t2h + k): thus, when k = 0, LSB(i) ≥ h, because t2h has at least h trailing zeroes in
its binary expansion; for the same reason, LSB(i) = LSB(k) when k > 0 (as k < 2h). We
conclude that min(LSB(i), h) = min(LSB(k), h), hence the first claim.

Let T = v2h + r with 0 ≤ r < 2h . If i < T − T mod 2h , then T − i > r , so T − i =
(v − t)2h + r − k > r . We conclude that v > t , so T − i ≥ 2h and MSB(T − i) ≥ h. Finally,
if i ≥ T − T mod 2h then v = t , so MSB(T − i) = MSB(r − k) < h.

A tower at i whose height is less than LSB(i) + 1 will be called truncated, because its height
is strictly smaller than the height it would have in the infinite list; in particular, the tower at 0 is
always truncated.

Addressing directly all pointers in an inverted list would create unmanageable indices. Thus,
we shall index only one item out of q, where q is a fixed quantum that represents the minimally
addressable block of items. Summarising, a perfect skip list with quantum q and maximum
height h can be described as follows:

• items appearing in the list are logically grouped from left to right into blocks of B = q2h

elements; the last block may contain less than B elements, in which case it will be called
defective;

• within each block, only items whose index is a multiple of q will have a non-empty skip
tower;

• an item appearing in position kq (where k = 0, 1, . . . , 2h − 1) within its non-defective
block contains a skip tower of height h̄ = min{ h, LSB(k) } + 1: the s-th reference in this
tower (s = 0, 1, . . . h̄ − 1) addresses the item appearing q2s items ahead (this is always
an item in the same block, or the first item in the next block, or a virtual item appearing
immediately after the end of the list);

• for a defective block with L items, the height of the skip tower at kq (where k =
0, 1, . . . , b(L − 1)/qc) is min{ LSB(k), MSB(bL/qc − k) } + 1; note that, in particular, if
after kq there are less than q items there will be no tower at all.

Figure 3 shows a perfect skip list with T = 31 items, q = 2 and h = 3; in this case every block
contains B = q2h = 16 items, so the example shows one non-defective block (items 0–15) and
one defective block (items 16–28).
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Figure 3: A perfect skip list with T = 31 items, q = 2 andh = 3; the ghosted references do
not exist (they are truncated by minimisation with MSB(bL/qc − k)). The first line show the
values of k; the second line their h-bit binary expansion; for the defective block, also the binary
expansion of bL/qc − k is shown.

p0 Q E L0 p1 p2 p3 p4 p5 p6 L2 p7 p8 p9 p10 p11 p12 Q

Figure 4: One block in an inverted list with skips (q = 3, h = 2).
2.1 Embedding skip lists into inverted indices

The first problem that we have to deal with when trying to embed skip lists into an inverted
index is that we want to access data in a strictly sequential manner, so the search algorithm we
described cannot be adopted directly: we must store not only the bit offset of the referenced
item, but also the pointer contained therein.

In Figure 4 the reader can see a portion of an inverted list with skips; in this example, q = 3,
h = 2 and the figure shows a single block, containing exactly q ·2h = 12 item, plus the beginning
of the next block. Every item is made by a document pointer p0, p1, . . . and the data section,
which is represented as a light grey small rectangle. The skip tower, if any, appears between the
document pointer and the data section, and it is dark grey in the figure.

Tower entries are written from the top, and every tower with more than one entry starts with
an indication, in bit, of the length of the forthcoming tower (L0, L2 etc.). Every entry refers to
an item appearing further on in the list, and contains

• the pointer skip, that is, the referenced pointer;

• the bit skip, that is, the number of bits that should be skipped to move to the referenced
pointer (more precisely, the number of bits from the end of the tower to the point just after
the referenced pointer).

At the beginning of each block, we write two extra items: the quantum bit length Q, that is, the
average length of a quantum in bits in the forthcoming block (excluding the space occupied by
the skip towers), and the entry bit length E , that is, the average length of a tower entry in bits in
the forthcoming block.

Since tower entries are written starting from the top, we can in principle replicate exactly
the standard skip list scanning algorithm. When searching for p, we have a climb-up phase in
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which we reach the highest tower pointing before p; a block-jump phase in which we skip entire
blocks; and finally a climb-down phase in which we reach the quantum possibly containing p.

Both the climb-up and the climb-down phases require at most q record reads, 3h̄ integers
reads and h̄ jumps, where h̄ is the height of the tallest tower in the list (since we know the tower
lengths, we can read only that part of the tower we are actually interested in); the block-jump
phase requires at most 5b ft/Bc integer reads and b ft/Bc jumps. In particular, if B ≥ maxt ft ,
no block jump phase will occur: in that case, the number of record read is bounded by 2q, the
number of integer read by 6 log( ft/q) and the number of jumps by 2 log( ft/q).

3 Representing and Compressing Skip Lists

Even with a reasonable quantum (e.g., q = 64), a perfect skip list requires a significant amount
of space to be stored in raw form. In this section we show how to reduce this space drastically.

Pointer skips. Let us consider a document collection of N documents, where each term t
appears with frequency (number of documents in which the term appears) f t and relative fre-
quency pt = ft/N ; according to the Bernoulli model [11], every term t is considered to appear
independently in each document with probability pt . As a result, the random variable G t repre-
senting a gap between document pointers, that is, the difference between consecutive document
pointers containing the term t , is distributed as follows

Pr[G t = x] =

{

pt(1 − pt)
x−1 for x > 0

0 otherwise.

In other words, G t − 1 is a random variable with geometric distribution. Let us now define
a pointer skip of level ` for term t as the difference between a pointer containing the term t
and a pointer appearing ` position later in the inverted list, and denote the random variable
representing a pointer skip of level ` for term t by St,l . Clearly, St,` is the sum of ` i.i.d. random
variables G t , so St,` − ` has negative binomial distribution with parameters pt and `. Since we
are interested in reasonably large values of `, we will approximate it with a normal distribution3

with mean `/pt and standard deviation
√

`(1 − pt)/pt (which are exactly the mean and standard
deviation of St,`). In other words:

St,` ∼ 8

(

`/pt ,
√

`(1 − pt)/pt

)

where 8(µ, σ) represents, as usual, a normal distribution with parameters µ and σ . A first
approach could just store the difference with the mean (which we expect to be distributed nor-
mally around 0) using some suitable universal code. Experiments show, however, that there
are a few problems with this approach. A first problem is that the Bernoulli model is a good
model, but not a perfect one: in particular, actual document collections may sport correlation
between adjacent documents. Moreover, the lack of truncation (a geometric distribution has a

3In this application of the Central Limit Theorem, when we say that the discrete variable X is approximated with
a normal distribution 8 we mean that Pr[X = x] ≈

∫ x+1/2
x−1/2 8(t) dt .
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nonnegative probability for any positive integer, but no gap may actually be larger than N ) tends
to make the empirical mean slightly smaller than the theoretical mean. The effect on gaps is not
so noticeable, but it becomes very visible on high-level skips. On the contrary, the theoretical
and empirical variances agree very well.

To minimise these inaccuracies, we suggest to predict the top pointer skip of a tower using
the Bernoulli model, but to predict the remaining pointer skips using a halving model, in which
a pointer skip of level s is stored as the difference from the skip of level s + 1 that contains it,
divided by 2.

How will be the differences distributed? If we were just comparing two arbitrary skips of
different level, the two variables would be independent, and the resulting random variable would
be St,s+1/2 − St,s ; but this is not the case, as the larger skip actually comprises the smaller skip,
so the actual distribution is

(

St,s + S̄t,s
)

/2 − St,s = St,s/2 − S̄t,s/2,

where S̄t,s is distributed as St,s . The resulting mean is 0, as in the independent case, but the
resulting variance,

√
k(1 − pt)/2/pt , is much smaller.

Gaussian Golomb Codes. We are now left with the problem of coding integers normally
distributed around 0. Contrarily to what happens for geometric and double-sided geometric
distributions [4, 5], there is no simple, instantaneous code for the normal distribution. Thus,
when faced with the task of encoding skips, we must resort to some approximation (Huffman
coding is, of course, out of question). More precisely, we shall compute approximately the best
Golomb code for a given normal distribution. This is not, of course, an optimal code for the
distribution, but we shall see that we are not losing much, and that the correct parameter for the
Golomb code can be approximated easily in closed form.

Recall that x ≥ 0 is encoded by a Golomb code of modulus b as bx/bc in unary (i.e., bx/bc
zeroes followed by a one) followed by a minimal binary coding of x mod b [11]. Since we need
to code numbers from Z, we shall map them through ν : Z → N, where

ν(x) =

{

2x if x ≥ 0
2|x | − 1 otherwise.

Let us define γ (x) = e−x2/(2σ 2) and recall the definition of the error function

erf(x) = (2/
√

π)

∫ x

0
et2

dt.

We are going to approximate the expected length of a Golomb coding of modulus b applied to
such integers as

∫ − 1
2

−∞

1
√

2πσ
γ (x)`b(−2[x] − 1) dx +

∫ ∞

− 1
2

1
√

2πσ
γ (x)`b(2[x])) dx

where `b(−) represents the number of bits required to encode a given natural number using a
Golomb code with modulus b, and [−] denotes the rounding function. Dropping the rounding,
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σ 1 4 7 10 13 16 19 22 25
b∗ avg. length 2.43 4.16 4.94 5.48 5.84 6.14 6.40 6.62 6.79

loss vs. optimal b 12.64% 0.54% 0.% 0.10% 0.04% 0.17% 0.05% 0.% 0.05%
loss vs. entropy 18.56% 2.78% 1.70% 2.14% 1.62% 1.53% 1.75% 1.69% 1.51%

gain w.r.t. δ coding 16.91% 25.84% 27.61% 27.03% 26.91% 26.49% 25.89% 25.58% 25.45%

Table 1: A comparison of average lengths of Golomb codes for various normal distributions.
and approximating `b(x) with x/b + log b + 1, we have to minimise a sum of integrals:

∫ − 1
2

−∞
γ (x)

(

−2x − 1
b

+ log b + 1
)

dx +
∫ ∞

− 1
2

γ (x)

(

2x

b
+ log b + 1

)

dx .

Now, differentiating w.r.t. b we get

∫ − 1
2

−∞
γ (x)

(

2x

b2 +
1

b ln 2
+

1
b2

)

+
∫ ∞

− 1
2

γ (x)

(

−
2x

b2 +
1

b ln 2

)

dx =

2
b2

(

∫ − 1
2

−∞
γ (x)x dx −

∫ ∞

− 1
2

γ (x)x dx

)

+
1

b ln 2

∫ ∞

−∞
γ (x) dx +

1
b2

∫ − 1
2

−∞
γ (x) dx =

−
4σ 2e−1/(8σ 2)

b2 +
√

2πσ

b ln 2
+
√

π

2
σ

b2

(

1 − erf
(√

2
4σ

))

,

and value that makes the last expressions zero is

b̄ = 2 ln 2
√

2
π

σe−1/(8σ 2) +
ln 2
2

(

erf
(√

2
4σ

)

− 1
)

.

However, ignoring the multiplicative factor e−1/(8σ 2) and the second summand yields the much
simpler (and almost equivalent, at least when σ � 1)

b∗ = 2 ln 2
√

2
π

σ ≈ 1.106 σ.

Figure 5 shows the two predictions (that, as the reader can verify, are practically indistinguish-
able when σ � 1) against the optimal value computed experimentally. In Table 1 we show an
empirical comparison of the average length produced by b∗.

Bit skips. The strategy we follow for bit skips is absolutely analogous to that of pointers,
but with an important difference: it is very difficult to model correctly the distribution of bit
skips. Remember that we are considering indices containing arbitrary data after the document
pointers (e.g., the occurrence list): this means that the number of bit skips may depend on several
variables, such as the number of occurrences of the term in each document.

It is possible that in some specific situations (e.g., very regular document collections, or
indices with very predictable data blocks) such an analysis can be carried out with success, and
we leave it for future work. Presently, however, we suggest that a preview scheme similar to
that of document pointers, coupled with a universal code such that γ or δ, is a viable solution.
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Figure 5: The optimal value of the Golomb modulus b for integers distributed as 8(0, σ ) while
varying σ (computed experimentally) plotted against analytic predictions.

More precisely, as explained in Section 2.1, at the beginning of each block the index contains
the number Q of bits consumed on the average by every quantum in the block, and the number
E of bits consumed on the average by every tower entry.

A skip of level s will skip over 2s quanta, hence it will occupy 2s Q bits on the average, plus
the space occupied by the skip entries. Since the bit skip specifies the number of bits from the
end of the current tower, after the entry of level s we will have a whole tower with s entries, 2
towers with s − 1 entries, 4 towers with s − 2 entries etc.; all in all, we will have 2s+1 − s − 2
entries, occupying about (2s+1 − s − 2)E bits.

Summarising, the expected number of bits for a skip of level s is 2s Q + (2s+1 − s − 2)E ,
and top skips are stored as a difference from this quantity, using a δ code. For skips of lower
levels, we use the same technique adopted for pointers: a bit skip of level s can be predicted
from the bit skip of level s + 1 reducing the latter by (s + 1)E and dividing the result by 2,
because

(

2s+1 Q + (2s+2 − (s + 1) − 2)E − (s + 1)E
)

/2 = 2s Q + (2s − s − 2)E .

4 Inherited Towers

As remarked in the previous sections, the part of a tower that has greater variance (and thus is
more difficult to compress) is the tower top. However this might seem strange, our next goal is
to avoid writing tower tops at all.

The usage pattern of an inverted list is a sequence of reads and skips that start from the
first document pointer, and possibly reach the end of the list. Perfect skip lists accelerate this
process, but introduce more data than it is actually necessary. Indeed, if we assume that we shall
always read an inverted list from the start (and this is necessary, if we want to compress docu-
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ment pointers), it is possible to maintain an inherited tower that represent all “skip knowledge”
gathered so far. For instance, the top entry of the first tower of a block remains valid for the
whole block length, and it points to the next block: we have just to update the entry as we move
across the block. This idea resembles that of search fingers [8] for skip lists, but we have to
adapt it because we do not assume direct access and hence cannot skip backwards in the list.

Whenever we read a tower entry we keep that entry (updating its pointer and bit skips) until
we read another entry at the same level (see Figure 6). As a result, the climb-up phase is no
longer necessary, as it is replaced by a scan of the inherited tower. This actually halves the
number of jumps due to climbing.

Note that inherited entries might not reach height h if the block is defective (see the right
half of Figure 3). Supposing without loss of generality that q = 1 (since inherited towers for
positions in the middle of a quantum are obviously identical to those available at the start of the
quantum), we have:

Theorem 2 The highest valid entry in an inherited tower for a defective block of length L is

MSB(L ⊕ k),

where ⊕ denotes bit-by-bit exclusive or.

Proof. Assume w.l.o.g. q = 1. If an inherited entry at level t ≤ h exists in position x , it
must have been inherited by the last tower containing an entry at level t , that is, by the tower
positioned at y = x − x mod 2t . Such an entry actually exists only if h(y) is larger than or equal
to t , that is, if For non-defective blocks, the above inequality always holds, as MSB(T − y) ≥
LSB(y) ≥ t . Otherwise, there might be entries that are not inherited because they do not exist:
this happen when MSB(T − y) = MSB(L − x mod 2h + x mod 2t) < t , where L is the length
of the block. For instance, in Figure 3 the inherited tower at position 26 would not contain an
entry at level 2 because MSB(13 − 12 + 2) < 2.

What we need is an analytic form for the highest inherited entry available in defective blocks.
Letting k = x mod 2h , the inequation conditioning the existence of an inherited entry at level t
becomes L − k + k mod 2t = L − bk/2tc2t ≥ 2t . This easily leads to bL/2tc > bk/2tc, which
is true when

t ≤ MSB(L ⊕ k),

where ⊕ denotes bit-by-bit exclusive or.

It is a pleasant fact that this number is always h if L = 2h , which means that we can use it to
bound the height of the inherited tower even in non-defective blocks.

Where does a (inherited) tower entry point to? As shown in Figure 6, it might happen that
consecutive entries refer to the same item. More precisely, the t-th level and the s-th level of
the tower (including the inherited entries) at x refer to the same item iff x + 2t − x mod 2t =
x + 2s − x mod 2s , that is, 2t − 2s = x mod 2t − x mod 2s (note that the x + 2t − x mod 2t is a
correct estimate of the pointed item also for non-inherited entries, as in that case x mod 2t = 0).
This happens exactly when all the bits of x between the t-th and the s-th are 1’s.

The above computation leads us the following, fundamental observation: a non-truncated
tower with highest entry h̄ inherits an entry of level h̄ + 1 that is identical to its top entry. As
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Figure 6: Scanning the list (q = 1, h = 5), we are currently positioned on element x = 22, with
a tower of height 2; its inherited tower is represented in grey, and the items it is inheriting from
are in bold.

p0 Q E L0 p1 p2 p3 p4 p5 p6 L2 p7 p8 p9 p10 p11 p12 Q

Figure 7: The block shown in Figure 4 with tower top elimination.
a consequence, if lists are traversed from their beginning, top entries of non-truncated towers
can be omitted. The omission of top entries halves the number of entries written, and, as we
observed at the start of the paragraph, reduces even further the skip structure size. The final
form of an embedded perfect skip list is shown in Figure 7.

5 Writing Blocks and Towers

It is now time to explain how a block containing a skip structure can be actually written. When
writing out an inverted index, data relative to a single block are retained in a cache and written
out only at the end of the block, or when the inverted list is over: the limiting parameter h
is fundamental in containing the size of this cache, which should be kept in core memory for
faster processing (actually, only pointers and block lengths are necessary to compute the skip
structure). At this point, we know the average quantum bit length Q, but we do not know the
the average number of bits per tower entry E . There is a form of recursion here, because the
way skip towers are coded depends on the length in bits that will be necessary to code them. As
a matter of fact, the value E does not need to be really the average number of bits per entries,
but a value that is close enough will certainly reduce the overall space occupied by skip towers
and to make the prediction described in Section 3 more precise.

Given a tentative value E0 = 0 for E , we compute the tower entries from the end: in this
way, whenever we have to write a bit skip in a tower entry, we know exactly the number of bits
it must specify, and we can also predict it using the formulae described in Section 3. At the end
of this process, we compute the number of bits E1 that a tower entry occupies on the average;
then, we try again and compute E2, etc. This series of attempts stops as soon as the number of
bits predicted coincides with the number of bits actually written; in any case, there is an upper
bound on the number of possible attempts. At the end, the value of E that is actually used is the
one that produced the best compression ratio (in practise, no more than a couple of attempts are
actually necessary). Once the value of E is fixed, the block can be written.
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6 Experimental data

We gathered statistics indexing a partial snapshot of 13 Mpages taken from the .uk domain
containing about 50GiB of parsed text (the index contained counts and occurrences). We report
some preliminary date gathered using disk-based indices: more investigation is needed with
significantly larger collections, and testing both disk-based and in-memory indices.

The document distribution in the snapshot was highly skewed, as documents appeared in
crawl order. Adding an embedded perfect skip list structure with arbitrary tall towers caused an
increase in size of 2.3% (317 MiB) with q = 32 and 1.23% when q = 64; indexing one every√

ft elements caused an increase of 0.85%.
Compressing the same skip structures using a γ or δ code instead of Gaussian Golomb codes

for pointer skips caused an increase in pointer-skip size of 42% and 18.2%, respectively. This
shows the efficiency of Gaussian Golomb codes; however, if the quantum is not very small, due
to the small footprint of embedded skip list δ codes might be a viable choice.

Speed is, of course, at the core of our interests. The bookkeeping overhead of skip lists
increases by no more than 5% (and by .5% on the average) the time required to perform a linear
scan. On the contrary, tests performed on synthetically generated queries in disjunctive normal
form show an increase in speed between 20 and 300% w.r.t. the classical (square-root spaced)
approach.

7 Conclusions

All in all, compressed embedded perfect skip lists are a simple and elegant way to skip quickly
in an inverted list. They have a very small footprint, and nonetheless provide logarithmic-
time access to each quantum. Future research will concentrate on obtaining even better codes
for highly skewed collection, on a more comprehensive set of statistical tests based on real-
world search-engine queries, and on comparisons with advanced indexing systems such as those
described in [2].
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