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Abstract

Web architectures are an important asset for various large-scale web applications, such as social
networks or e-commerce sites. Being able to handle huge numbers of users concurrently is
essential, thus scalability is one of the most important features of these architectures. Multi-
core processors, highly distributed backend architectures and new web technologies force us to
reconsider approaches for concurrent programming in order to implement web applications and
ful�l scalability demands. While focusing on di�erent stages of scalable web architectures, we
provide a survey of competing concurrency approaches and point to their adequate usages.
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Preface

About this Work

My name is Benjamin Erb and I have been studying Media Informatics at Ulm University since
2006.�is work represents a major requirement for the completion of my diploma course in 2012.
For a long time, I have been taking a great interest in web technologies, scalable architectures,
distributed systems and programming concurrency.
As a consequence, the topic of my thesis covers most of these interests. In fact, it considers

the overlap of these subjects when it comes to the design, implementation and programming of
scalable web architectures. I hope to provide a comprehensive introduction to this topic, which I
have missed so far. As such a primer might also be interesting for many others, I am happy to
release my thesis under a free license to the general public.
�is thesis incorporates both academic research papers and practically orientated publications

and resources. In essence, I aimed for a survey of di�erent approaches from a conceptual and
theoretical perspective. Hence, a quantitative benchmarking of concrete technologies was out of
scope for my work. Also, the extents of the subjects brought up only allowed for a brief overview.
�e bibliography and the referenced resources provide a good starting point for further readings.

I am very interested in your feedback, your thoughts on the topic and your ideas! Feel free
to contact me (http://www.benjamin-erb.de) or get in touch with me via Twitter: @b_erb
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1 Introduction

1.1 Motivation

Computers have been increasingly in�uencing our lives in the last decades. Distinct eras of
computing have elapsed, driven by technological progress and a�ecting the way we are using
computers. �ese shi�s of paradigms were motivated mostly by advances in hardware and
so�ware technology, but also by changes in the way humans interact with computers.
�e �rst computers were large machines solely built for dedicated applications such as numeric

computations.�ere was no real distinction between so�ware and hardware, and new applications
could not be executed without changing the physical con�guration. �e instructions were
executed directly without any operating systems underneath and the program had direct access
to all system resources. Also, there was no interaction between the running program and the user.
With the advent of punch cards and batch processing, computers became more �exible tools for
processing jobs. Not just data—executable programs, too—were now used as input, de�ned in
low-level, imperative languages.�ere was still no interaction during execution and jobs could
only be executed sequentially.
Machines were expensive but in great demand.�e next innovations were thus in�uenced by

concepts allowing multiple users to work on the same machine and multiple programs to run at
the same time—mainframe computers, operating systems, and time-sharing. Terminal-based
command line interfaces provided the �rst interactive systems. New programming languages
such as FORTRAN or ALGOL allowed the development of larger and more reliable applications
without using pure assembly code.
�e arrival of networking was also the beginning of a new kind of computing. Distributed

applications not just take advantage of the resources of multiple machines, they also allow the exis-
tence of federated systems that consist of multiple machines remotely located. It promptly became
apparent that in order to support such systems, additional so�ware on top of a network operating
system was necessary. Others favored a distributed operating system which provided a high
degree of transparency and supported migration functions as part of the operating system. Early
middleware systems based on transaction monitors and remote procedure calls emerged, easing
the development of distributed applications. Existing networks were linked and a global network
was formed; the Internet.�e evolution from mainframes to mini computers, then workstations

1



2 1 Introduction

and personal computers, not just urged networking. It also introduced new user interaction
mechanisms. Consoles were replaced by graphical displays and enabled more sophisticated forms
of interaction such as direct manipulation.

At that time, the idea of object-oriented programming arose and quickly gainedmuch attention.
New programming languages such as Simula and Smalltalk emerged and embraced this principle.
A�er a short time, objects were also considered as distributable units for distributed middleware
systems.
�e following era of desktop computing was shaped by personal computers, growing micro-

processor clock speeds, graphical user interfaces and desktop applications. At the same time, the
old idea of non-linear information networks was rediscovered and its �rst real implementation
appeared. Dating back to Vannevar Bush’s MEMEX device and later Ted Nelson’s concept of
documents interconnected through hypertext, the World Wide Web represented a truly novel
distributed information architecture in the Internet.
With the �rst commercial usage, the World Wide Web scored an instant success and soon

hit a critical mass of users to become the most popular service within the whole Internet.�is
also motivated a complete transformation of our information economy. Technological advances
at that time predicted the rise of mobile computing that should eventually proceed into an era
of ubiquitous computing. Computers were not only going to become smaller and smaller, but
also omnipresent and produced in various sizes and shapes.�is introduced the notion of calm
technology—technology that immerses into everyday life. Ubiquitous computing also heavily
changes the way we are interacting with computers. Multi-modal and implicit interactions
are favored and provide more natural interactions. Devices such as laptops, tablet computers,
pad computers, mobile phones and smartphones have already blurred the boundaries between
di�erent types of computing devices. Combined with wireless broadband internet access, they
have introduced new forms of mobility, providing connectivity at all times.
While we are currently on the verge of ubiquitous computing, there are other trends as well

that are in�uencing the way we think about and do computing right now. �e progress of
microprocessors has saturated in terms of clock cycles due to physical constraints. Instead,modern
CPUs are equipped with increasing numbers of cores.�is trend has forced developers, architects
and language designers to leverage multi-core architectures.�e web has already started to oust
desktop applications. Modern browsers are becoming the new operating systems, providing the
basic runtime environment for web-based applications and unifying various platforms.�e web
is changing and provides continuously more user-centric services. Being able to handle and
process huge numbers of users is common for social platforms such as Facebook and Twitter
and corporations like Amazon or Google. Hosting such applications challenges traditional
architectures and infrastructures. Labeled as so-called “Cloud Computing”, highly available,
commercial architectures emerged.�ey are built on large clusters of commodity hardware and
enable applications to scale with varying demand over time on a pay-per-use model.
Now let us take a step back and summarize a few important developments:
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1. �e web is a dominant and ubiquitous computing technology. It will replace many tradi-
tional desktop application environments and provide ubiquitous information access.

2. Web applications have to cope with increasing demand and scale to larger user bases.
Applications that incorporate features such as collaboration and web real-time interaction
are facing new challenges as compared to traditional web applications.

3. Multi-core and multiprocessor architectures will dominate the processor landscape. At
least for the next decades, performance gains of processors will mostly be attributed to
increasing numbers of cores or processors and not to increased clock cycle frequencies.

4. Large, scalable systems can only be designed when taking into account the essence of
distributed and concurrent systems. Appropriate programming languages, frameworks
and libraries are necessary to implement such systems.

In this thesis, we will bring together these individual developments to have a comprehensive
analysis of a particular challenge: How can we tackle concurrency when programming scalable
web architectures?

1.2 Scope of this Thesis

Concurrency is an essential part of network services, and it is of outstanding importance for
scalable web architectures. �us we will have a detailed look on concurrency in three distinct
areas of web architectures—connection handling, application logic and backend persistence. For
each stage, we will discuss its main challenges and issues and explain existing approaches to tackle
concurrency. We will then compare and assess the di�erent solutions, while illustrating their
advantages and disadvantages.

By dedicating our analysis to concurrent programming for scalable web architectures and their
applications, to some extent we will also have a look at general concurrency techniques. However,
topics such as parallel programming, parallel algorithms and high performance computing are
out of scope for this review. We will also focus on pragmatic concurrency approaches instead
of theoretical concurrency models. In a later chapter, we will dare to take a glance at possible
concurrency concepts in future programming languages.
Furthermore, we will solely consider scalability in regard to concurrency, not taking into

account other design and architectural decisions in detail.

1.3 Methodology of the Study

�is thesis brings together di�erent resources on concurrency, web architectures and scalable
network infrastructures. �e primary sources are research publications and technical analy-
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ses. Additionally, documentations of design patterns, systems, programming languages and
frameworks are considered.
As the main contribution of this thesis, we provide a comprehensive survey on the myriads

of di�erent concepts and techniques of concurrency inside web architectures. We compare and
evaluate approaches based on their characteristic features and impacts, and provide guidelines
for choosing the right approach for a given problem.

1.4 Road Map

We start o� with a brief introduction to the World Wide Web, concurrency and scalability in
chapter 2. We then focus on web architectures in chapter 3 and elaborate a general architectural
model for scalable web architectures based on existing systems. Next, we have an isolated look
at di�erent stages of this model and get to know their relevant concurrency challenges and
available approaches to adopt.�is includes web servers in chapter 4, applications and business
logic in chapter 5 and backend storages in chapter 6. In chapter 7, we provide a guideline for
choosing a decent approach or concept for di�erent scenarios. Next, we discuss the results of our
considerations as part of chapter 8 and take a look at the essence of concurrency and scalability
in distributed systems. We �nally dare an outlook on the near future of web architectures and
how it will be a�ected by new web technologies and programming concepts in chapter 9.�e
conclusion in chapter 10 sums up our survey on concurrency in web architectures.



2 The World Wide Web, Concurrency
and Scalability

�is chapter introduces the basic concepts of theWorldWideWeb, web applications, concurrency
and scalability. It thus lays the foundation for our later analysis in the subsequent chapters 4,5
and 6.

2.1 The World Wide Web

�e Internet and theWorldWideWeb (WWW) have become the backbone of our modern society
and economy. �e WWW is a distributed system of interlinked hypermedia resources in the
Internet. It is based on a set of di�erent, related technologies. We will have a brief look on themost
important protocols and formats in this section, including Uniform Resource Identi�ers (URIs),
HTTP and HTML.

2.1.1 Uniform Resource Identifiers

URIs, currently speci�ed in RFC 3986 [BL05], are strings that are used to reference resources. In
terms of distributed systems, a URI has three distinct roles—naming, addressing, and identifying
resources. We will focus on URIs identifying resources in the WWW, although they can be used
for other abstract or physical entities as well. According to the speci�cation, a URI consists of �ve
parts: scheme, authority, path, query and fragment. However, only scheme and path are mandatory,
the other parts are optional. Scheme is declaring the type of the URI and thus determines the
meaning of the other parts of the URI. If used, authority points to the responsible authority of
the referenced resource. In case of http as scheme, this part becomes mandatory and contains
the host of the web server hosting the resource. It can optionally contain a port number (80 is
implied for http) and authentication data (deprecated). �e mandatory path section is used
to address the resource within the scope of the scheme (and authority). It is o�en structured
hierarchically. �e optional query part provides non-hierarchical data as part of the resource
identi�er. Fragments can be used to point to a certain part within the resource. �e following
example is adapted from RFC 3986 [BL05] and makes use of all �ve parts:

5



6 2 The World Wide Web, Concurrency and Scalability

http://example.com:8080/over/there?search=test#first

\_/ \______________/\_________/ \_________/ \__/

| | | | |

scheme authority path query fragment

It identi�es a web resource (scheme is http), that is hosted on the example.com (on port
8080).�e resource path is /over/there and the query component contains the key/value pair
search=test. Furthermore, the first fragment of the resource is referenced.

2.1.2 The Hypertext Transfer Protocol

�e Hypertext Transfer Protocol (HTTP) is an application-level protocol that represents the foun-
dation of communication for theWWWon top of TCP/IP. HTTP, as de�ned in RFC 2616 [Fie99],
is a stateless protocol and complies with a client/server architecture and a request/response
communication model. Servers host resources that are identi�ed by URIs and can be accessed
by clients.�e client issues an HTTP request to the server which in return provides an HTTP
response.�e communication model limits the possible message patterns to single request/re-
sponse cycles that are always initiated by the client. Apart from clients and servers, HTTP also
describes optional intermediaries, so called proxies.�ese components provide additional fea-
tures such as caching or �ltering. Proxies combine features of a client and a server and are thus
o�en transparent for the clients and servers in terms of communication.

HTTP requests and responses have a common structure. Both start with a request line respec-
tively status line.�e next part contains a set of header lines that include information about the
request respectively response and about the entity.
�e entity is an optional body of an HTTP message that contains payload such as a representa-

tion of the resource. While the �rst two parts of an HTTP message are text-based, the entity can
be any set of bytes. HTTP request lines contain a request URI and a method.�ere are di�erent
HTTP methods that provide di�erent semantics when applied to a resource, as shown in table 2.1.

In the subsequent HTTP response, the server informs the client about the outcome of a request
by using prede�ned status codes.�e classes of status codes can be seen in table 2.2. A simple
request/response exchange shown in listing 2.1 as example. We will now have a closer look at two
advanced features of HTTP that are interesting for our later considerations, namely connection
handling and chunked encoding.

HTTP Connection Handling

As already mentioned, HTTP uses TCP/IP as underlying transport protocol. We will now
examine the exact usage of TCP sockets for HTTP requests. �e previous speci�cations of
HTTP have suggested a separate socket connection for each request/response cycle. Adding
the overhead of establishing a TCP connection for each request leads to poor performance and
missing reusability of existing connections. �e non-standard Connection: Keep-Alive
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Method Usage Safe Idempotent Cachable
GET �is is the most commonmethod

of the WWW. It is used for fetch-
ing resource representations.

✓ ✓ ✓

HEAD Essentially, this method is the
same as GET, however the entity
is omitted in the response.

✓ ✓ ✓

PUT �is method is used for creat-
ing or updating existing resources
with new representations.

✓

DELETE Existing resources can be re-
moved with DELETE

✓

POST POST is used to create new re-
sources. Due to its lack of idem-
potence and safety, it also o�en
used to trigger arbitrary actions.

OPTIONS Method providesmeta data about
a resource and available represen-
tations.

✓ ✓

Table 2.1: A table of the o�cial HTTP 1.1 methods. In terms of RFC 2616 a method is safe, when
a request using this method does not change any state on the server. If multiple dispatches of
a request result in the same side e�ects than a single dispatch, the request semantics is called
idempotent. If a request method provides cacheability, clients may store responses according to the
HTTP caching semantics.

header was a temporary workaround, but the current HTTP 1.1 speci�cation has addressed this
issue in detail. HTTP 1.1 introduced persistent connections as default. �at is, the underlying
TCP connection of an HTTP request is reused for subsequent HTTP requests. Request pipelining
further improves throughput of persistent connections by allowing to dispatch multiple requests,
without awaiting for responses to prior requests.�e server then responds to all incoming request
in the same sequential order. Both mechanisms have improved the performance and decreased
latency problems of web applications. But the management of multiple open connections and the
processing of pipelined requests has revealed new challenges for web servers as we will see in
chapter 4.

HTTP Chunked Transfer Encoding

An HTTP message must contain the length of its entity, if any. In HTTP 1.1, this is neccessary
for determining the overall length of a message and detecting the next message of a persistent
connection. Sometimes, the exact length of an entity cannot be determined a priori. �is is



8 2 The World Wide Web, Concurrency and Scalability

Range Status Type Usage Example Code
1xx informational Preliminary response

codes
100 Continue

2xx success �e request has been suc-
cessfully processed.

200 OK

3xx redirection �e client must dispatch
additional requests to com-
plete the request.

303 See Other

4xx client error Result of an erroneous re-
quest caused by the client.

404 Not Found

5xx server error A server-side error oc-
cured (not caused by this
request being invalid).

503 Service Unavailable

Table 2.2: A table of the code ranges of HTTP response codes.�e �rst digit determines the status
type, the last two digits the exact response code.

GET /html/rfc1945 HTTP/1.1
Host: tools.ietf.org
User-Agent: Mozilla/5.0 (Ubuntu; X11; Linux x86_64; rv:9.0.1) Gecko/20100101

Firefox/9.0.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: de-de,de;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip, deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Connection: keep-alive
If-Modified-Since: Sun, 13 Nov 2011 21:13:51 GMT
If-None-Match: "182a7f0-2aac0-4b1a43b17a1c0;4b6bc4bba3192"
Cache-Control: max-age=0

HTTP/1.1 304 Not Modified
Date: Tue, 17 Jan 2012 17:02:44 GMT
Server: Apache/2.2.21 (Debian)
Connection: Keep-Alive
Keep-Alive: timeout=5, max=99
Etag: "182a7f0-2aac0-4b1a43b17a1c0;4b6bc4bba3192"
Content-Location: rfc1945.html
Vary: negotiate ,Accept-Encoding

Listing 2.1: Example HTTP request/response
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especially important for content that is generated dynamically or for entities that are compressed
on-the-�y. �erefore, HTTP provides alternative transfer encodings. When chunked transfer
encoding is used, the client or server streams chunks of the entity sequentially.�e length of the
next chunk to expect is prepended to the actual chunk. A chunk length of 0 denotes the end of
the entity.�is mechanism allows the transfer of generated entities with arbitrary length.

2.1.3 Web Formats

HTTP does not restrict the document formats to be used for entities. However, the core idea of
the WWW is based on hypermedia, thus most of the formats are hypermedia-enabled.�e single
most important format is the Hypertext Markup Language (HTML) and its descendants.

Hypertext Markup Language

HTML [Jac99] is a markup language derived from the Standard Generalized Markup Language
(SGML) [fS86] and in�uenced by the Extensible Markup Language (XML) [Bra08]. HTML
provides a set of elements, properties and rules for describing web pages textually. A browser
parses the HTML document, using its structural semantics for rendering a visual representation
for humans. HTML supports hypermedia through hyperlinks and interactive forms. Also,
media objects such as images can be used in an HTML document.�e appearance and style of
an HTML document can be customized by using Cascading Style Sheets (CSS) [Mey01]. For
more dynamic user interfaces and interactive behavior, HTML documents can be enriched with
embedded code of scripting languages, such as JavaScript [ECM99]. For instance, it can be used
to programmatically load new contents in the background, without a complete reload of the page.
�is technique, also known as Asynchronous JavaScript and XML (AJAX), has been one of the
keys for more responsive user interfaces. It thus enables web applications to resemble interfaces
of traditional desktop applications.

HTML5

�e ��h revision of the HTML standard [Hya09] introduces several markup improvements (e.g.
semantic tags), better multimedia content support, but most notably a rich set of new APIs.
�ese APIs address various features including client-side storage, o�ine support, device sensors
for context awareness and improved client-side performance. �e Web Sockets API [Hic09a]
complements the traditional HTTP request/response communication pattern with a low latency,
bidirectional, full-duplex socket based on the WebSocket protocol [Fet11]. �is is especially
interesting for real-time web applications.
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Generic Formats

Besides proprietary and customized formats, web services o�en make use of generic, structured
formats such as XML and JavaScript Object Notation (JSON) [Cro06]. XML is a comprehensive
markup language providing a rich family of related technologies, like validation, transformation
or querying. JSON is one of the leightweight alternatives that focuses solely on the succinct
representation of structured data. While there is an increasing interest in leightweight formats
for web services and messages, XML provides still the most extensive tool set and support.

2.2 Web Applications

�ere is a huge number of di�erent applications available in the web. In the following, we
distinguish two separate types of web applications—web sites and web services. Web sites are
web-based applications that are designed for humans and browser-based access. By contrast,
web services are web-based interfaces for machine-to-machine communication. Although this
distinction is rather arbitrary, it will help us to identify di�erent requirements and features.

2.2.1 Web Sites

Web sites have evolved from hyper-referenced, text-based research documents to highly interac-
tive, social and collaborative applications for many di�erent purposes. Web content has become
increasingly dynamic and based on content provided by the users. Web technologies such as
JavaScript (JS), AJAX, and HTML5 have introduced more interactive user interfaces and boosted
this transition. �anks to powerful APIs provided by modern browsers, web applications are
already starting to replace traditional desktop applications and native mobile applications.

Examples

We will now introduce some popular types for web sites that are interesting in terms of scalability
and concurrency.

Social Network Sites Social networks are sites that transfer social interactions to the web.�ey
o�en try to re�ect real world social relations of its users (e.g. Facebook1) or focus on speci�c
topics (e.g. dopplr for travelling2). Social network sites motivate their users to interact, for
instance via instant messaging. Also, social networks heavily rely on user generated content and
context-speci�c data, such as geo-tagged content. User content and actions are o�en published
into activity streams, providing a “real-time” feed of updates that can be watched live by other
users.

1 http://facebook.com/
2 http://www.dopplr.com/

http://facebook.com/
http://www.dopplr.com/
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Collaborative Web Applications �ese web applications allow a group of people to collaborate
via the web. Traditional examples are wiki systems, where users can collectively edit versions of
text documents. More recent collaborative applications incorporate so� real-time aspects. For
example, Etherpad1 is a web-based word processor that supports multiple users working on the
same document concurrently.

E-Commerce Sites E-Commerce sites such as Amazon2 are traditional commercial sites in
the web selling products online. Interestingly enough, many sites have adopted features known
from social sites for business purposes. By commenting, rating and tagging products, users can
participate on these sites beyond just buying items. User-generated content is then used to cluster
product items and compute accurate recommendations. �us, commercial sites face similar
challenges to social sites to some extent.

2.2.2 Web Services

Web services provide access to application services usingHTTP.�us, web services o�en resemble
traditional mechanisms for distributed computing such as Remote Procedure Call (RPC) or
message passing, though based on web technologies.
Opposed to web sites, web services are not targeting direct (human) user access in a �rst

place. Instead, web services enable machine-to-machine communication and provide application
features via an interface and structured messages. Several web applications provide both, a web
site and a web service interface (API). While the web site is used for browser-based access, the
web service can be used for custom applications such as mobile client applications or scripted
program-based service interactions.

XML-RPC

XML-RPC has been one of the �rst attempts to transfer traditional RPC-based services to the
web. It makes use of HTTP POST requests for dispatching procedure calls and an XML-based
serialization format for call parameters and return values. Listing 2.2 provides an example taken
from the original speci�cation [Win99].

It is important to clarify that XML-RPC is using HTTP as a generic transport protocol for RPC
calls. It does not take advantage of any HTTP features such as caching, status codes for error
handling or header �elds for negotiation.

1 http://etherpad.org/
2 http://www.amazon.com

http://etherpad.org/
http://www.amazon.com
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POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-Length: 181

<?xml version="1.0"?> <methodCall > <methodName >examples.getStateName </
methodName > <params> <param> <value><i4>41</i4></value> </param> </
params> </methodCall >

HTTP/1.1 200 OK
Connection: close
Content-Length: 158
Content-Type: text/xml
Date: Fri, 17 Jul 1998 19:55:08 GMT
Server: UserLand Frontier/5.1.2-WinNT

<?xml version="1.0"?> <methodResponse > <params> <param> <value><string>South
Dakota </string ></value> </param> </params> </methodResponse >

Listing 2.2: Example XML-RPC call

SOAP, WSDL and WS-*

�e stack of SOAP [Gud07], WSDL [Liu07], UDDI [Cle04] and a myriad of additional extensions
(WS-*) forms a more comprehensive approach for machine-to-machine communication, mostly
based on web technologies. It is widely used and particularly popular in enterprise environments.
As previously mentioned, SOAP is a successor of XML-RPC. It speci�es the format, call semantics
and exchange patterns of XML-encoded messages between parties. Various extension speci�-
cations, o�en labeled as WS-*, address additional features of SOAP-based web services such as
security or orchestration.�e Web Services Description Language (WSDL) is another important
speci�cation for this kind of web services. It provides XML-based, machine-readable service
descriptions, comparable to interface de�nition languages of traditional RPC protocols. Universal
Description, Discovery and Integration (UDDI) was originally a third component providing
registry functions for web services, but it has almost entirely lost its signi�cance in practice.

Although the SOAP/WSDL stack is generally known as web service stack, it dismisses parts of
the original idea of the web. For instance, the stack uses HTTP as a pure communication protocol
for exchanging messages, that can be replaced by other protocols. Similarly to XML-RPC, this
web service stack does not use HTTP as an application-level protocol.

Representational State Transfer

Representational State Transfer (REST) is an architectural style that embraces the fundamentals
of the WWW. It has been introduced as part of the doctoral thesis of Roy T. Fielding [Fie00],
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who was also responsible for the HTTP speci�cations to some extent. Not surprisingly, the REST
style takes full advantage of HTTP features. Fielding suggests a resource-oriented architecture
that is de�ned by a set of constraints:

Client-server �e client-server style is motivated by a separation of concerns. It promotes to sep-
arate user interfaces and data storage of the system. It also simpli�es dedicated component
design and allows an independent evolution of client and server components.

Statelessness Statelessness promotes scalability and reliability. It also makes the server-side devel-
opment easier.

Cache Optional non-shared caching is a constraint that helps to reduce latency and improves
scalability and e�ciency.

Layered System Using a layered system enables a set of interesting architectural extensions such
as legacy encapsulation, load balancing and (shared) caching.

Code-on-Demand �is optional constraint provides extensibility by simplifying client updates.

Uniform Interface �e uniform interface is the most important constraint of the REST style and
determines the resources as central entities that can be operated on using a �xed set of
verbs (the HTTP methods).�is constraint can be divided into four sub-constraints:

• Identi�cation of resources is accomplished by the usage of URIs inside a RESTful web
service.

• Manipulation via representations promotes the change of resources through the sub-
mission of altered representations by the client.

• Self-descriptive messages provide enough information so that they can be processed
without further external knowledge.

• Most importantly, hypermedia as the engine of application state promotes the usage of
hypermedia inside the representations. State transitions are triggered by accessing
resources through their uniform interface and by following hyperlinks inside their
representations.

�e broad interest in REST and its recent popularity is not the only reason it is listed here.
�e conceptual ideas behind REST are taken from HTTP and based on the lessons learned
from the WWW.�e ideas promote loose coupling, stateless communication, reusability and
interoperability.�us, they establish a great basis for scalability of architectures that are complying
with the REST style.
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2.3 Concurrency

Concurrency is a property of a system representing the fact that multiple activities are executed at
the same time. According to Van Roy [Roy04], a program having “several independent activities,
each of which executes at its own pace“. In addition, the activities may perform some kind
of interaction among them. �e concurrent execution of activities can take place in di�erent
environments, such as single-core processors, multi-core processors, multi-processors or even
on multiple machines as part of a distributed system. Yet, they all share the same underlying
challenges: providing mechanisms to control the di�erent �ows of execution via coordination
and synchronization, while ensuring consistency.

Apart from recent hardware trends towards multi-core and multiprocessor systems, the use of
concurrency in applications is generally motivated by performance gains. Cantrill et al. [Can08]
describe three fundamental ways how the concurrent execution of an application can improve its
performance:

Reduce latency A unit of work is executed in shorter time by subdivision into parts that can be
executed concurrently.

Hide latency Multiple long-running tasks are executed together by the underlying system.�is
is particularly e�ective when the tasks are blocked because of external resources they must
wait upon, such as disk or network I/O operations.

Increase throughput By executing multiple tasks concurrently, the general system throughput
can be increased. It is important to notice that this also speeds up independent sequential
tasks that have not been speci�cally designed for concurrency yet.

�e presence of concurrency is an intrinsic property for any kind of distributed system. Pro-
cesses running on di�erent machines form a common system that executes code on multiple
machines at the same time.
Conceptually, all web applications can be used by various users at the same time.�us, a web

application is also inherently concurrent.�is is not limited to the web server that must handle
multiple client connections in parallel. Also the application that executes the associated business
logic of a request and the backend data storage are confronted with concurrency.

2.3.1 Concurrency and Parallelism

In the literature, there are varying de�nitions of the terms concurrency and parallelism, and their
relation. Sometimes both terms are even used synonymously. We will now introduce a distinction
of both terms and of their implications on programming.
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Concurrency vs. Parallelism

Concurrency is a conceptual property of a program, while parallelism is a runtime state. Con-
currency of a program depends on the programming language and the way it is coded, while
parallelism depends on the actual runtime environment. Given two tasks to be executed concur-
rently, there are several possible execution orders.�ey may be performed sequentially (in any
order), alternately, or even simultaneously. Only executing two di�erent tasks simultaneously
yields true parallelism. In terms of scheduling, parallelism can only be achieved if the hardware
architecture supports parallel execution, like multi-core or multi-processor systems do. A single-
core machine will also be able to execute multiple threads concurrently, however it can never
provide true parallelism.

Concurrent Programming vs. Parallel Programming

Di�erentiating concurrent and parallel programming is more tedious, as both are targeting
di�erent goals on di�erent conceptual levels. Concurrent programming tackles concurrent
and interleaving tasks and the resulting complexity due to a nondeterministic control �ow.
Reducing and hiding latency is equally important to improving throughput. Instead, parallel
programming favors a deterministic control �ow and mainly reaches for optimized throughput.
�e internals of a web server are the typical outcome of concurrent programming, while the
parallel abstractions such as Google’s MapReduce [Dea08] or Java’s fork/join [Lea00] provide
a good example of what parallel programming is about. Parallel programming is also essential
for several specialized tasks. For instance, a graphics processing unit is designed for massive
�oating-point computational power and usually runs a certain numerical computation in parallel
on all of its units at the same time. High-performance computing is another important area of
parallel programming. It takes advantage of computer clusters and distributes sub-tasks to cluster
nodes, thus speeding up complex computations.

Computer Architectures Supporting Concurrency

�e previous di�erentiation can also be backed by a closer look on the architectures where physical
concurrency is actually possible. We will therefore refer to Flynn’s taxonomy [Fly72], which is
shown in table 2.3. �is classi�cation derives four di�erent types of computer architectures,
based on the instruction concurrency and the available data streams. �e Single Instruction,

Single Instruction Multiple Instruction
Single Data SISD MISD
Multiple Data SIMD MIMD

Table 2.3: Flynn’s taxonomy classifying di�erent computer architectures.
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Single Data stream (SISD) class is represented by traditional single processor machines. We
do not consider them further due to their lack of physical concurrency. Multiple Instruction,
Single Data stream (MISD) is a rather exotic architecture class, sometimes used for fault-tolerant
computing where the same instructions are executed redundantly. It is also not relevant for our
considerations. Real parallelism can only be exploited on architectures that support multiple data
streams—Single Instruction, Multiple Data streams (SIMD) and Multiple Instruction, Multiple
Data streams (MIMD). SIMDrepresents the aforementioned architecture class targeting dedicated
parallel executions of computations such as graphics processing unit and vector processors. SIMD
exploits data-level parallelism which is not suitable for handling web requests. Accordingly, this
type of architecture is not relevant for our consideration. We will focus on the last remaining
class, MIMD. It represents architectures that rely on a shared or distributed memory and thus
includes architectures possessing multiple cores, multiple CPUs or even multiple machines. In
the following, we will primarily focus on concurrent programming (parallel execution of subtasks
is partially relevent in chapter 5) and only on the MIMD class of architectures.

2.3.2 Models for Programming Concurrency

Van Roy [Roy04] introduces four main approaches for programming concurrency that we will
examine brie�y (see �gure 2.1). �e more important models will be studied later as potential
solutions for programming concurrency inside web architectures, especially in chapter 5.

Concurrency

Sequential Declarative Message-passing Shared-state

Figure 2.1: Models for Programming Concurrency (Van Roy [Roy04])

Sequential Programming

In this deterministic programming model, no concurrency is used at all. In its strongest form,
there is a total order of all operations of the program. Weaker forms still keep the deterministic
behaviour. However, they either make no guarantees on the exact execution order to the program-
mer a priori. Or they provide mechanisms for explicit preemption of the task currently active, as
co-routines do, for instance.

Declarative Concurrency

Declarative programming is a programming model that favors implicit control �ow of compu-
tations. Control �ow is not described directly, it is rather a result of computational logic of the
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program. �e declarative concurrency model extends the declarative programming model by
allowing multiple �ows of executions. It adds implicit concurrency that is based on a data-driven
or a demand-driven approach. While this introduces some form of nondeterminism at runtime,
the nondeterminism is generally not observable from the outside.

Message-passing Concurrency

�is model is a programming style that allows concurrent activities to communicate via messages.
Generally, this is the only allowed form of interaction between activities which are otherwise
completely isolated. Message passing can be either synchronous or asynchronous resulting in
di�erent mechanisms and patterns for synchronization and coordination.

Shared-state Concurrency

Shared-state concurrency is an extended programming model where multiple activities are
allowed to access contended resources and states. Sharing the exact same resources and states
among di�erent activities requires dedicated mechanisms for synchronization of access and
coordination between activities. �e general nondeterminism and missing invariants of this
model would otherwise directly cause problems regarding consistency and state validity.

2.3.3 Synchronization and Coordination as Concurrency Control

Regardless of the actual programming model, there must be an implicit or explicit control over
concurrency (at least within the runtime environment). It is both hazardous and unsafe when
multiple �ows of executions simultaneously operate in the same address space without any kind
of agreement on ordered access. Two or more activities might access the same data and thus
induce data corruption as well as inconsistent or invalid application state. Furthermore, multiple
activities that work jointly on a problem need an agreement on their common progress. Both
issues represent fundamental challenges of concurrency and concurrent programming.
Synchronization and coordination are two mechanisms attempting to tackle this. Synchro-

nization, or more precisely competition synchronization as labeled by Sebesta [Seb05], is a mech-
anism that controls access on shared resources between multiple activities. �is is especially
important when multiple activities require access to resources that cannot be accessed simultane-
ously. A proper synchronization mechanism enforces exclusiveness and ordered access on the
resource by di�erent activities. Coordination, sometimes also named cooperation synchronization
(Sebesta [Seb05]), aims at the orchestration of collaborating activities.

Synchronization and coordination are sometimes con�ated in practice. Both mechanisms can
be either implicit or explicit (VanRoy [Roy04]). Implicit synchronizationhides the synchronization
as part of the operational semantics of the programming language. �us, it is not part of the
visible program code. On the contrary, explicit synchronization requires the programmer to add
explicit synchronization operations to the code.



18 2 The World Wide Web, Concurrency and Scalability

2.3.4 Tasks, Processes and Threads

So far, our considerations of concurrencywere based on computer architectures and programming
models. We will now show how they interrelate by introducing the actual activity entities used
and provided by operating systems and how they are mapped to the hardware. Note that we will
use the term task as a general abstraction for a unit of execution from now on.

Concurrent Task Execution

Multitasking Multiprocessing Preemption

preemptive cooperative

Figure 2.2: Orthogonal concepts for the concurrent execution of multiple tasks.

�e ability to execute multiple tasks concurrently has been a crucial requirement for operating
systems. It is addressed bymultitasking.�is mechanism manages an interleaved and alternating
execution of tasks. In case of multiple CPU cores or CPUs, multitasking can be complemented
by multiprocessing, which allocates di�erent tasks on available cores/CPUs. �e key concept
for both mechanisms is scheduling, which organizes the assignment of processing time to tasks
using scheduling strategies. Appropriate strategies can have di�erent aims, such as fair scheduling
between tasks, �xed latencies for task executions or maximum utilization. Another distinction of
scheduling strategies is their preemption model. In the preemptivemodel, the scheduler assigns
processing time to a task and eventually revokes it.�e task has no control over the preemption.
In a cooperativemodel, the task itself has the responsibility of yielding a�er some time to allow
another task to run. Scheduling is an important duty of any operating system. However, it is
also noteworthy that applications themselves can provide some kind of scheduling of their own
internal tasks, as we will see in chapter 4 and 5.

Operating systems generally provide di�erent types of tasks—processes and threads. Essentially,
they represent di�erent task granularities. A process is a heavyweight task unit and owns system
resources such as memory and �le descriptors that are allocated from the operating system.
�reads are leightweight task units that belong to a certain process. All threads allocated within
the same process share memory, �le descriptors and other related resources. Creating threads is a
relatively cheap operation compared to the creation of new processes.
Most concurrent applications make heavy use of multiple threads. However, this does not

imply the availability of threads as explicit entities of the programming language itself. Instead,
the execution environment might map other concurrency constructs of a programming language
to actual threads at runtime. Similarly, the shared-state property of multithreading might be
idiomatically hidden by the language.
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2.3.5 Concurrency, Programming Languages and Distributed Systems

Next, we consider the strong relationship between concurrent programming, programming
languages and distributed systems when building large architectures. Programming distributed
systems introduces a set of additional challenges compared to regular programming.�e “Fallacies
of Distributed Computing” [RGO06] provide a good overview on some of the important pitfalls
that must be addressed. For instance, not anticipating errors in a network or ignoring the di�erent
semantics of local and remote operation are common misconceptions that are described.

From a so�ware engineering perspective, the major challenges are fault tolerance, integration
of distribution aspects and reliability. As we have already seen before, distributed systems are
inherently concurrent and parallel, thus concurrency control is also essential.

Programming languages to be used for distributed systems must either incorporate appropriate
language idioms and features to meet these requirements. Otherwise, frameworks are necessary
to provide additional features on top of the core language.
Ghosh et al. [Gho11] have considered the impact of programming languages on distributed

systems.�ey pointed out that mainstream languages like Java and C++ are still the most popular
choice of developing distributed systems.�ey are combined with middleware frameworks most
of the time, providing additional features. However, the strengths of general purpose languages
do not cover the main requirements of distributed systems to a great extent. �e experiences
with RPC-based systems (see Kendall et al. [Ken94]) and their object-based descendents (see
Vinoski [Vin08]) have raised some questions to this approach. Middleware systems providing
distributability compensate for features missing at the core of a language. �us, the systems
actuallymeet the necessary requirements, but they are o�en also cumbersome to use and introduce
super�uous complexity.
Recently, there has been an increasing interest in various alternative programming languages

embracing high-level concurrency and distributed computing. Being less general, these languages
focus on important concepts and idioms for distributed systems, such as component abstractions,
fault tolerance and distribution mechanisms. It is interesting for our considerations that most of
these languages oriented towards distributed computing also incorporate alternative concurrency
approaches. We will have a brief look on some of these languages as part of chapter 5.

2.4 Scalability

Scalability is a non-functional property of a system that describes the ability to appropriately
handle increasing (and decreasing) workloads. According to Coulouris et al. [Dol05], “a system is
described as scalable, if it will remain e�ective when there is a signi�cant increase in the number
of resources and the number of users”. Sometimes, scalability is a requirement that necessitates
the usage of a distributed system in the �rst place. Also, scalability is not to be confused with
raw speed or performance. Scalability competes with and complements other non-functional
requirements such as availability, reliability and performance.
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2.4.1 Horizontal and Vertical Scalability

�ere are two basic strategies for scaling—vertical and horizontal. In case of vertical scaling,
additional resources are added to a single node. As a result, the node can then handle more
work and provides additional capacities. Additional resources include more or faster CPUs, more
memory or in case of virtualized instances, more physical shares of the underlying machine. In
contrast, horizontal scaling adds more nodes to the overall system.
Both scaling variants have di�erent impacts on the system. Vertical scaling almost directly

speeds up the system and rarely needs special application customizations. However, vertical scal-
ing is obviously limited by factors such as cost e�ectiveness, physical constraints and availability
of specialized hardware. Horizontal scaling again requires some kind of inherent distribution
within the system. If the system cannot be extended to multiple machines, it could not bene�t
from this type of scaling. But if the system does support horizontal scaling, it can be theoretically
enlarged to thousands of machines. �is is the reason why horizontal scaling is important for
large-scale architectures. Here, it is common practice to focus on horizontal scaling by deploying
lots of commodity systems. Also, relying on low cost machines and anticipating failure is o�en
more economical than high expenses for specialized hardware.
Considering a web server, we can apply both scaling mechanisms. �e allocation of more

available system resources to the web server process improves its capacities. Also, new hardware
can provide speed ups under heavy load. Following the horizontal approach, we setup additional
web servers and distribute incoming requests to one of the servers.

2.4.2 Scalability and other Non-functional Requirements

In so�ware engineering, there are several important non-functional requirements for large
so�ware architectures. We will consider operational (runtime) requirements related to scalability:
high availability, reliability and performance. A system is available, when it is capable of providing
its intended service. High availability is a requirement that aims at the indentured availability
of a system during a certain period. It is o�en denoted as percentiles of uptime, restricting the
maximum time to be unavailable.

Reliability is a closely related requirement that describes the time span of operational behavior,
o�en measured as meantime between failures. Scalability, anticipating increasing load of a system,
challenges both requirements. A potential overload of the systems due to limited scalability
harms availability and reliability.�e essential technique for ensuring availability and reliability
is redundancy and the overprovisioning of resources. From a methodical viewpoint, this is very
similar to horizontal scaling. However, it is important not to con�ate scalability and availability.
Spare resources allocated for availability and failover can not be used for achieving scalability at
the same time. Otherwise, only one requirement can be guaranteed at once.
Performance of so�ware architectures can have multiple dimensions such as short response

times (low latencies) and high throughput along with low utilization. Again, increasing load
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of an application may a�ect the requirement negatively. Unless an application is designed with
scalability in mind and there are valid scaling options available, performance may degrade
signi�cantly under load.

Note that in most web architecture scenarios, all of the requirements mentioned are desirable.
However, especially when resources are limited, there must be some kind of trade-o� favoring
some of the requirements, neglecting others.

2.4.3 Scalability and Concurrency

�e relation between scalability and concurrency is twofold. From one perspective, concurrency
is a feature that can make an application scalable. Increasing load is opposed to increasing
concurrency and parallelism inside the application.�anks to concurrency, the application stays
operational and utilizes the underlying hardware to its full extent.�at is, above all, scaling the
execution of the application among multiple available CPUs/cores.

Although it is important to di�erentiate between increased performance and scalability, we can
apply some rules to point out the positive impacts of parallelism for scalability. Certain problems
can be solved faster when more resources are available. By speeding up tasks, we are able to
conduct more work at the same time.�is is especially e�ective when the work is composed of
small, independent tasks.
We will now have a look at a basic law that describes the speed-up of parallel executions.

Amdahl’s law [Goe06], as seen in equation 2.1, describes the maximum improvement of a system
to expect when resources are added to a system under the assumption of parallel execution. A
key point hereof is the ratio of serial and parallel subtasks. N is the number of processors (or
cores) available, and F denotes the fraction of calculations to be executed serially.

speedup ≤
1

F + 1−F
N

(2.1)

Note that in case of a web server, parallelizable tasks are predominant. However, highly
interactive and collaborative web applications require increasing coordination between requests,
weakening the isolated parallelism of requests.

From a di�erent angle, concurrency mechanisms themselves have some kind of scalability
property.�at is basically the ability to support increasing numbers of concurrent activities or
�ows of execution inside the concurrency model. In practice, this involves the language idioms
representing �ows of executions and corresponding mappings to underlying concepts such as
threads. For our considerations, it is also interesting to relate incoming HTTP requests to such
activities. Or more precisely, how we allocate requests to language primitives for concurrency
and what this implies for the scalability of the web application under heavy load.
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2.4.4 Scalability of Web Applications and Architectures

It is the main scalability challenge of web applications and architectures to gracefully handle
growth.�is includes growth of request numbers, tra�c and data stored. In general, increasing
load is a deliberate objective that testi�es increasing usage of the application. From an architectural
point of view, we thus need so-called load scalability. �at is the ability to adapt its resources
to varying loads. A scalable web architecture should also be designed in a way that allows easy
modi�cation and upgrade/downgrade of components.

2.5 Summary

Wehave seen that theWorldWideWeb is a distributed systemof interlinked hypermedia resources,
based on URIs, HTTP and hypertext document formats like HTML.�e persisting success of the
web has pushed web-based applications into the limelight. Browsers are becoming the most used
local applications for computers, providing access to a myriad of di�erent applications via the
web. Even in the mobile area, web applications designed for mobile usage successfully challenge
native mobile apps.
Web applications designed for millions of users are faced with extraordinary challenges, in-

cluding the reasonable handling of inherent parallelism and the profound ability to scale.
Hence, concurrency is not just a trait of a web architecture. It is also a mandatory and crucial

principle when programming and implementing large-scale web applications in order to utilize
hardware capacities to the fullest. As concurrent programming is a non-trivial procedure, we are
in need of appropriate abstractions and usable programming models.
�e scalability requirement of large web architectures obliges us to think about growth from

the beginning.�e provision of additional resources later on should provide us with the maximal
increase in performance and power possbile for our application. As the vertical scalability of
a single node is limited, we must take into account horizontal growth, which also brings in
distribution compulsively.
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tures

�is chapter features a look behind the architectures that provide web applications. Before we
examine the more recent cloud-based architectures, we will outline several technologies that
have emerged to serve dynamic web content. We will then see how these technologies have
been integrated into common architectures. A�erwards, we go to load-balancing, an established
and important mechanism for scalability in web architectures. We will then learn about the
infrastructure and services provided by popular cloud vendors.
Based on that, we will come up with our own generic architectural model for scalable web

applications as an important contribution of this chapter.�e model is the foundation for our
further considerations, focusing on concurrency. A separation into the di�erent architectural
components does not just provide a clearer scalability path for each component. It also helps us
to reason about particular concurrency challenges inherent to the distinct components.

3.1 Traditional Web Architectures

Although current web architectures use almost the same application protocol as �rst web servers
did, their internals have changed considerably. Especially the rise of dynamic web content has had
a reasonable impact on architectural concepts. As the web has been growing, tiered architectures
appeared that separate di�erent responsibilities of architectural components. Growing architec-
tures also demanded for ways of scaling web applications, and load-balancing has established
itself as a decent mechanism. We now have a look at the integration of dynamic content into web
applications and consequences for servers by giving an overview of di�erent technologies.�en
we examine the concept of tiered architectures and load-balancing.

3.1.1 Server-Side Technologies for Dynamic Web Content

In the early 90s, the �rst web servers were network servers that provided access solely to static
�les via HTTP. Within a short time, there was an increasing demand in more dynamic contents.
For instance, enriching static HTML �les with mutable server state, generating complete HTML

23



24 3 The Quest for Scalable Web Architectures

�les on-the-�y or dynamically responding to form submissions was requested to improve the
user experience. One way to do this was altering the web servers and including mechanisms for
dynamic content creation deep inside the code of web servers. Of course, this was a cumbersome
approach and con�ated web server internals and web application programming. As a result, more
general solutions were needed and soon emerged, as for instance CGI.

Common Gateway Interface

�e Common Gateway Interface (CGI) [Rob04] is a standardized interface for delegating web
requests to external applications that handle the request and generate a response. CGI can
be used when the interface is supported by both the web server and the external application.
In practice, most of these applications are implemented using scripting languages. For each
incoming request against a URI mapped to a CGI application, the web server spawns a new
process.�is process executes the CGI application and provides speci�c variables such as request
headers and server variables via environment variables. Request entities can be read by the
CGI process via STDIN, and the the generated response (both headers and the response entity)
are written to STDOUT. A�er generating the response, the CGI process terminates. Only using
external processes and communication via environment variables, STDIN and STDOUT provides
a simple interface. It allows any application to handle and generate web content when supporting
these basic mechanisms. Especially Perl and other scripting languages such as PHP: Hypertext
Preprocessor (PHP) have been used later extensively to build web applications based on CGI.
�ese languages can be directly embedded into existing HTML markup, and the code added is
executed on each request. Alternatively, they provide ways to generate HTML documents, o�en
using template engines.

However, the CGImodel has several problems, in particular scalability and performance. As we
have seen previously, processes are heavyweight structures for tasks (see also 2.3.4).�ey require
reasonable overhead and resources for creation.�us, mapping each dynamic request to a new
process to be spawned is a very costly operation. It not just increases the latency due to process
creation, it also wastes server resources due to the spawning overhead and limits the number
of concurrent request that can be handled. Given the fact that most CGI applications are script
�les that have to be interpreted on each execution, average latencies deteriorate even more.�e
communication via STDIN/STDOUT o�ers another severe problem.�is way of communication
between processes limits the distributability of components, since both processes must be located
on the same machine.�ere is no way of decoupling both components in a distributed way when
using CGI.

FastCGI

FastCGI mitigates the main issues of CGI by specifying an interface protocol to be used via local
sockets or TCP connections. �us, web servers and applications generating the responses are
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decoupled and can be located on di�erent machines. Making no restrictions on the concurrency
model, the backend application can be implemented as a long-running process with internal
multithreading. In e�ect, the overhead of per-request process creation is gone and the concurrency
can be increased by a great extent.

Web Server Extension Modules

Another alternative to CGI are server extension modules. Instead of external interfaces, internal
module interfaces of the web server are provided that allow to plug inmodules.�ese modules are
regularly used to embed interpreters for scripting languages into the server context. In particular,
the concurrency model of the server is o�en applied to the script execution. As a result, request
handling and dynamic content generation can be executed within the same thread or process.�e
tight integration into the server can improve performance and generally provides better speed
results than CGI-based scripts. However, this model again prevents loose coupling and makes
the separation of web server and backend application more di�cult.

Web Application Containers

�e original CGI model was not appropriate for some languages such as Java. �e dedicated
process-per-request model and the startup times of the JVMmade it completely unusable. As a
result, alternative approaches emerged, such as the Java Servlet speci�cation. �is standard
speci�es a container, that hosts and executes web applications and dispatches incoming re-
quests to a pool of threads and corresponding objects for request handling. Special classes
(javax.servlet.Servlet) are used that provide protocol-speci�cmethods.�eHttpServlet
class provides methods such as doGet or doPost to encapsulate HTTP methods. JavaServer
Pages (JSP) provide an alternative syntax and allows to inline code into HTML �les. On startup,
these �les are then converted into regular Servlet classes automatically.�e internal multithread-
ing provides better performance and scalability results than CGI, and web application containers
and web servers can also be decoupled. In this case, a connecting protocol like Apache JServ
Protocol [Sha00] is needed.

3.1.2 Tiered Architectures

Patterns for remotely accessible, interactive applications and a separation of concerns such as
the model-view-controller or the presentation–abstraction–control pattern have been developed
a long time before the web has emerged. An important architectural pattern for web in this
regard is the concept of a multi-tier architecture [Fow02]. It describes the separation of di�erent
components or component groups as part of a client-server architecture.�is separation is o�en
twofold—it either describes a logical decomposition of an application and its functionality. Or it
describes a rather technical split of deployment components.�ere are also di�erent granularities
of this separation. Nominating tiers for dedicated purposes (e.g. business process management)
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or further breaking down tiers (e.g. splitting data access and data storage) yields additional tiers.
We will now have a look at the most common separation of web architectures, a logical separation
of concerns into three distinct tiers.

Presentation tier �e presentation tier is responsible for displaying information. In terms of a
web application, this can be done either by a graphical user interface based on HTML (web
sites), or by providing structured data representations (web services).

Application logic tier �is tier handles the application logic by processing queries originated
from the presentation tier and providing appropriate (data) responses. �erefore, the
persistence tier is accessed. �e application tier encapsulates business logic and data-
centric functionalities of the application.

Persistence tier �e last tier is used for storing and retrieving application data. �e storage is
usually persistent and durable, i.e. a database.

When mapping these logical tiers to application components, there are o�en a number of
di�erent possibilities. Traditional web applications allocate all tiers to the server side, expect for
the rendering of HTML pages that takes place in the browser.�is resembles a traditional thin
client architecture. Modern browser technologies such as the Web Storage API or IndexedDB
now allow applications to be located entirely within the client side, at least during o�ine usage.
�is temporarily pushes all conceptual tiers into the browser and resembles a fat client. For the
most part of current web applications, tiers are balanced and presentation is mainly a task of
the browser. Modern web applications o�en try to provide as much functionalities as possible
on client side for better user experience, and rely on server-side functions in case of missing
browser support. �is is known as graceful degradation1, a term borrowed from fault-tolerant
system design [Ran78]. To some extent, application logic is also available on client side, but
most functionality is on the server. Sometimes, features are also provided redundantly.�is is
especially important for security-critical tasks such as input validation. Persistence is assigned to
the server side with a few exceptions such as temporarily o�ine usage.
Focusing on the server-side architecture, the tiers provide a basic set of components. Compo-

nents for the presentation, application and persistence tier can be placed on a single machine, or
deployed to dedicated nodes. We will elaborate a more detailed architectural model based on
components in section 3.3.

3.1.3 Load-Balancing

�e limitations of vertical scaling force us to deploymultiple web servers at a certain scale. We thus
need a mechanism of balancing workload from incoming requests to multiple available servers.

1 http://accessites.org/site/2007/02/graceful-degradation-progressive-enhancement/

http://accessites.org/site/2007/02/graceful-degradation-progressive-enhancement/
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As a result, we want an e�ective resource utilization of all servers (this is the primary target of
load-balancing, and not high availability as we have seen in subsection 2.4.2). Handling a request
is a rather short-living task, but the huge number of parallel requests makes the appropriate
allocation and distribution of requests to servers a decent challenge. Several strategies have been
developed to address this, as we will see soon. When implementing a load-balancing solution,
another decision concerns the technical implementation level of connection forwarding [Sch06].

Network-level vs. Application-level Balancing

In HTTP, web servers are distinguished by hostname and port. Hostnames are resolved to IP
addresses using the DNS protocol. However, a single IP address cannot be assigned to multiple
online hosts at the same time. A �rst way of mapping a single hostname to multiple servers is
a DNS entry that contains multiple IP addresses and keeps a rotating list. In practice, this is a
naive load-balancing approach, as DNS has several unwanted characteristics such as the di�cult
removal of a crashed server or the long dissemination times for updates. Frequently changing
hostname-to-IP resolutions interferes with secured connections via SSL/TLS. While DNS-based
balancing can help to some extent (e.g. balancing between multiple load-balancers), we generally
need more robust and sophisticated mechanisms. With reference to the ISO/OSI model, both the
application layer and lower-level layers are reasonable approaches.

Layer 2/3/4 Load balancers operating on layer 3/4 are either web switches—dedicated, propri-
etary network appliances (“black-boxes”)—or IP virtual servers operating on commodity server
hardware.�eir functionality resembles a reverse NAT mapping or routing. Instead of mapping
Internet access for multiple private nodes via a single IP, they provide a single externally accessible
IP mapped to a bunch of private servers. Layer 2 balancers use link aggregations and merge
multiple servers to a single logical link. All these approaches use mechanisms such as transparent
header modi�cations, tunneling, switching or routing, but on di�erent layers. Dedicated network
appliances can provide impressive performances in terms of throughput, alas with a heavy price
tag. Solutions based on IP virtual servers running on regular hardware o�en provide a more
a�ordable solution with reasonable performance up to a certain scale.

Layer 7 Load balancers operating on the application layer are essentially reverse proxies in
terms of HTTP. As opposed to the balancers working on lower layers, the layer 7 load balancers
can take advantage of explicit protocol knowledge.�is comes with clear performance penalties
due to a higher overhead of parsing tra�c up to the application layer. Bene�ts of this technique
are the the possibility of HTTP-aware balancing decisions, potential caching support, transparent
SSL termination and other HTTP-speci�c features. Similar to IP virtual servers, layer 7 balancers
are less performant than web switches. But being hosted on commodity hardware results in a
decent horizontal scalability.
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Balancing Strategies

Various load-balancing strategies have been developed [Sch06, Sch08] and the design of e�ective
balancing algorithms is still a matter of academic interest in the era of Cloud Computing [Ran10].
A major challenge of strategies is the di�culty to anticipate future requests.�e missing a priori
knowledge limits the strategies to make only a few assumptions based on the recent load, if any
assumptions are made at all.

Round Robin All servers are placed in a conceptual ring which gets rotated on each request. A
drawback of this simple mechanism is the unawareness of overloaded servers.

Least Connections Following this strategy, the balancer manages a list of servers and their active
connection count. New connections are forwarded based on this knowledge. �e idea
rests on the fact that connections seize machine resources and the machine with the least
connections or the smallest backlog has still the most capacities available.

Least Response Time �is strategy is similar to the previous one, but uses the response times
instead of connection counts. �e rationale behind the metering via response times is
based on the expressiveness of latencies for the server load, especially when the workloads
per connection di�er.

Randomized In a randomized strategy, the load balancers picks a backend web server by chance.
�is mechanism achieves suprisingly good results, thanks to probabilistic distribution.

Resource-aware A resource-aware strategy utilizes external knowledge about the servers’ utiliza-
tions, but also metrics suchs as connection counts and response times.�e values are then
combined to weight all servers and distribute load correspondingly.

Besides these basic strategies, there are various advanced algorithms that o�en combine di�er-
ent approaches. Furthermore, load-balancing strategies become more di�cult, when there are
more than one load balancers deployed at the same time. Some of the strategies estimate utiliza-
tion based on their forwarding decisions. Multiple load balancers might interfere the individual
assumptions. As a result, cooperative strategies are o�en required that share knowledge between
balancers.

According to Schlossnagle [Sch06], a 70% per-server utilization is a respectable goal in a larger
architecture. Higher utilizations are unrealistic due to short-liveness of tasks, the high throughput
rate and missing future knowledge about incoming requests.

Session Stickiness

Session stickiness is a technique to map a certain user accessing a web application to the same
backend web server during his browsing session. Hence, it is su�cient to store session states
on the respective servers. While session stickiness is inherently provided in single server setups,
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this concept is very di�cult when it comes to load balancing. Essentially, session stickiness
requires the load balancer to forward a request according to the session used (i.e. parsing a cookie,
reading a session variable or customized URI). As a result, the load balancer starts to distribute
sessions to machines instead of single connections and requests. While this setup is attracting
and handy for web application developers, it represents are severe challenge from a scalability and
availability perspective. Loosing a server equates a loss of associated sessions.�e granularity of
single requests enables a sound distribution mechanism when demand increases. New servers
can be added to the architecture, but splitting and reallocating existing sessions already bound
to distinct machines is complex. As a result, the concepts of e�ective resource utilization and
allocation of session data should not be con�ated, otherwise scalability and availability are in
danger. In terms of load balancing, session stickiness is regarded as a misconception and should
be avoided [Sch06]. Instead, a web architecture should provide means to access session data
from di�erent servers. A more stateless communication, where the clients manage session state,
further mitigates the problem of session stickiness.

3.2 Cloud Architectures

Within the last years, the increasing presence of large-scale architectures has introduced the era
of Cloud Computing.

3.2.1 Cloud Computing

�ere is a huge number of di�erent de�nitions available towards Cloud Computing.�e term
“cloud” itself is derived from the �gurative abstraction of the internet represented as a cloud.�e
available de�nitions of Cloud Computing range from reductions it to be “the next hype term"
over pragmatic de�nitions focusing on special aspects to de�nitions, that see Cloud Computing
as a general paradigm shi� of information architectures, as an ACM CTO Roundtable [Cre09] has
shown in 2009. Of the various features that are attributed to the “cloud”, scalability, a pay-per-use
utility model and virtualization are the minimum common denominators.
�e key concept of Cloud Computing is the resourcing of services. �ese services can be

generally di�erentiated into three vertical layers:

Infrastructure as a Service �e provision of virtualized hardware, in most cases as virtual com-
puting instances, is termed Infrastructure as a Service (IaaS). �e particular feature of
this form of cloud service is the ability to change these instances on demand and at any
time.�is includes spawning new computing instances, altering existing ones by resizing
or reassigning resources or shutting down unneeded instances dynamically. Basic working
units for IaaS are virtual images, that are instantiated and deployed in the cloud and exe-
cuted within virtual machines.�ey contain an operating system and additional so�ware
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implementing the application. Due to complete virtualization, the physical infrastructure
of the data centers of IaaS providers is totally transparent to their customers.

Platform as a Service Platform as a Service (PaaS) provides an additional level of abstraction
by o�ering an entire runtime environment for cloud-based applications. PaaS typically
supplies a so�ware stack of dedicated components where applications can be executed on,
but also tools facilitating the development process.�e platform hides all scalability e�orts
from the developer, thus it appears as one single system to the user, although it transparently
adapts to scale. Most of the platforms realize this feature through elaborate monitoring and
metering. Once an application is uploaded onto the platform, the system automatically
deploys it within the nodes of the data center of the PaaS. When the application is running
under heavy load, new nodes will be added automatically for execution. If demand declines,
spare nodes will be detached from the application and returned into the pool of available
resources.

So�ware as a Service So�ware as a Service (SaaS) provides a web-centric supply of applications.
Due to various technological trends, web-based applications mature and become powerful
pieces of so�ware running entirely within the browser of the user. By replacing traditional
desktop applications that run locally, SaaS providers are able to publish their applications
solely in the web. Cloud architectures allow them to cope with a huge number of users
online. It allows users to access the applications on demand and they can be charged merely
by usage without having to buy any products or licenses.�is re�ects the idea to consider
the provision of so�ware as a service.

Referring to the terminology of Cloud Computing, a scalable web application is essentially a
SaaS that requires appropriate execution/hosting environments (PaaS and/or IaaS).

3.2.2 PaaS and IaaS Providers

In the following, we will consider some exemplary hosting providers and outline their service
features.

Amazon Web Services

Amazon was one of the �rst providers for dedicated, on-demand and pay-per-use web services1. It
is currently dominating the multi-tenant Cloud Computing market.�eir main product is Elastic
Compute Cloud (EC2), a service providing di�erent virtualized private servers.�e provision of
virtualized machines in scalable amounts forms an architectural basis for most of their clients.
Instead of growing and maintaining own infrastructure, EC2 clients can spin up new machine

1 http://aws.amazon.com/

http://aws.amazon.com/
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instances within seconds and thus cope with varying demand.�is traditional IaaS hosting is
complemented by a set of other scalable services that represent typical architecture components.
Elastic Block Storage (EBS) provides block-level storage volumes for EC2 instances. Simple

Storage Service (S3) is a key-value web-based storage for �les. More sophisticated data storage
systems available are SimpleDB, DynamoDB and Relational Database Service (RDS).�e former
two services represent non-relational database management systems with a limited set of features.
RDS currently supports MySQL-based and Oracle-based relational databases.
Elastic Load Balancing (ELB) provides load-balancing functionalities on transport protocol

level (e.g. Transmission Control Protocol (TCP)) and application level (e.g. HTTP). As a message
queue, Simple Queue Service (SQS) can be used. For complex MapReduce-based computations,
Amazon has introduced Elastic MapReduce.

ElastiCache is an in-memory cache system that helps speeding up web applications. CloudFront
is a Content Delivery Network (CDN), complementing S3 by replicating items geographically.
For monitoring purposes, Amazon has come up with CloudWatch, a central real-time monitoring
web service.

Besides these services, Amazon has introduced their own PaaS stack, called Elastic Beanstalk.
It is essentially a bundle of existing services such as EC2, S3 and ELB and allows to deploy and
scale Java-based web applications. Furthermore, there are additional services that cover business
services such as accounting or billing.

Google App Engine

�e Google App Engine1 is a PaaS environment for web applications. It currently provides
support for Python, Go and several JVM-based languages such as Java. Applications are hosted
and executed in data centers managed by Google. One of its main features is the automatic scaling
of the application.�e deployment of the application is transparent for the user, and applications
encountering high load will be automatically deployed to additional machines.
Google provides free usage quotas for the App Engine, limiting tra�c, bandwidth, number

of internal service calls and storage size among others. A�er exceeding these limits, users can
decide to add billable resources and are thus getting charged for additional capacities.
�e runtime environment of the application is sandboxed and several language features are

restricted. For instance, JVM-based applications cannot spawn new threads, use socket connec-
tions and access the local �le system. Furthermore, the execution of a request must not exceed a
30 seconds limit.�is restrictions are enforced by modi�ed JVMs and altered class libraries.

Besides an application container, the App Engine provides several services and components as
part of the platform.�ey are accessible through a set of APIs. We will now have a brief look at
the current Java API.

1 https://appengine.google.com/

https://appengine.google.com/
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�e Datastore API is the basic storage backend of the App Engine. It is schemaless object
datastore, with support for querying and atomic transaction execution. Developers can access the
datastore using Java Data Objects, Java Persistence API interfaces or via a special low-level API.
A dedicated API provides support for asynchronous access to the datastore. For larger objects,
and especially binary resources, the App Engine provides a Blobstore API. For caching purposes,
theMemcache API can be used. Either using a low-level API or the JCache interface.
�e Capabilities API enables programmatical access to scheduled service downtimes and can

be used to develop applications that prepare for the unavailablity of capabilities automatically.�e
Multitenancy API provides support for multiple separated instances of an application running in
the App Engine.

Images can bemanipulated using the dedicated Images API.�eMail API allows the application
to send and receive emails. Similarly, theXMPPAPI allowsmessage exchange based on Extensible
Messaging and Presence Protocol (XMPP).�e Channel API can be used to establish high-level
channels with clients over HTTP and then push messages to them.
�e Remote API opens an App Engine application for programmable access using an external

Java application. Other web resources can be accessed using the URLFetch API.
�anks to the Task Queue API, there is some support for tasks decoupled from request handling.

Requests can add tasks to a queue, and workers asynchronously execute the background work.
�e Users API provides several means to authenticate users, including Google Accounts and
OpenID identi�ers.

3.3 An Architectural Model for Scalabale Web Infrastructures

�e need for scalable web architectures is much older than the set of concepts that is subsumed
as cloud computing. Pioneer web corporations have learned their own lessons when interest
in their services gradually increased and existing capacities where exploited.�ey were forced
to design and build durable infrastructures that were able to keep up with increasing demands.
We have a look at some of the more important guidelines and requirements in the following.
�en we introduce an architectural model for scalable web infrastructures that is derived from
existing cloud infrastructures and addresses the requirements.�e resulting model will provide
the conceptual basis for our further considerations and allows us to survey concurrency in speci�c
components in the following chapters.

3.3.1 Design Guidelines and Requirements

Let us �rst make some assumptions on the general design of our infrastructure. We are targeting
scalability, thus we need to provide a proper scalability path. Although vertical scalability can help
us here, it is not ourmajor vehicle for scaling. When replacing a single-core CPUwith a quad-core
machine, we may quadruple the overall performance of that node (if at all). However, we will
quickly hit technical constraints and especially limitations of cost e�ectiveness when following
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this path to scale up further. �us, our primary mean of growing is horizontal scaling. In an
ideal situation, this enables us to scale our infrastructural capacities linearly with the provision
of additional nodes. Horizontal scale inherently forces some kind of distribution. Being much
more complex than regular systems, distributed systems introduce a lot of additional problems
and design issues to keep in mind (see subsection 2.3.5). Above all, this is the acceptance and
graceful handling of failures within the system.�ese two requirements form our fundamental
design basis for the infrastructure: We must design for scale, and we must design for failure. It is
tremendously hard to scale a running system that has not been designed for it. It is neither easy
to �x a complex system that fails due to partial failures of con�ated subcomponents. As a result,
we will now introduce some guidelines to build a scalable infrastructure from ground up.

When designing for scale, we are targeting horizontal scalability. �us, system partitioning
and component distribution are essential design decisions right at the start. We begin with
allocating the components into loosely coupled units and overplanning of capacities and resources.
Decoupling of components prevents the (accidental) development of an irreducibly con�ated,
and highly complex system. Instead, a decoupled architecture suggests a simpli�ed model that
eases capacity planning, and induces less coherency requirements between components. Isolating
components and subservices allows to scale them independently and enables the system architect
to apply di�erent scaling techniques for the components, such as cloning, splitting and replicating.
�is approach prevents overengineering a monolithic system and favors simpler and easier
components. Abbott et al. [Abb11] suggest to deliberately overplan capacities during design,
implementation and deployment. As a ballpark �gure, they recommend factor 20x during the
design phase, factor 3x for the implementation and at least factor 1.5x for the actual deployment
of the system.

Designing for failure has several impacts on the architecture. An obvious statement is to avoid
single points of failure. Concepts like replication and cloning help to build redundant components
that tolerate the failure of single nodes without compromising availability. From a distribution
perspective, Abbott et al. [Abb11] further recommend a breakdown into failure domains.�ese
are domains that group components and services in a way that a failure within does not a�ect or
escalate to other failure domains. Failure domains help both to detect and isolate partial faults in
the system.�e concept of so-called fault isolative swim lanes takes this idea to the extreme and
disallows synchronous calls between the domains entirely and also discourages asynchronous
calls. Sharding the complete architecture for di�erent groups of users is an example of fault
isolative swim lanes.
Next, we need a way to communicate between components. It is common practice ([Abb09,

Hel12]) to use messaging since it provides an adequate communicationmechanism for integrating
loosely coupled components. Alternatives such as RPC are less applicable because they require
stronger coupling and coherency between components.
Another set of advices for scalable architectures concerns time and state, fundamental chal-

lenges of distributed systems. As a rule of thumb, all temporal constraints of a system should be
relaxed as far as practicable and global state should be avoided whenever possible. Of course, the
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applicability of these advices depends on the actual use case blatantly. For instance, a large-scale
online banking system cannot even temporarily tolerate invalid account balances. On the other
hand, many applications describe use cases that allow to weaken temporal constraints and con-
sistency to some extent. When a user of social network uploads an image or writes a comment,
there is no degradation of service when it takes some seconds until it eventually appears for other
users. If there are means for relaxing temporal constraints, using asynchronous semantics and
preventing distributed global state, they should be considered in any case. Enforcing synchronous
behavior and coordinating shared state between multiple nodes are among the hardest problems
of distributed systems. Bypassing these challenges whenever possible greatly increases scalability
prospects.�ese advices have not only implications for implementations, but also for the general
architecture. Asynchronous behavior and messaging should be used unless there is a good reason
for synchronous semantics. Weakening global state helps to prevent single point of failures and
facilitates service replication.
Caching is another mechanism that helps to provide scalability at various spots. Basically,

caching is about storing copies of data with higher demand closer to the places it is actually needed
inside the application. Caching can also prevent multiple executions of an idempotent operation
by storing and reusing the result. Components can either provide their own internal caches.
Alternatively, dedicated caching components provide caching functionalities as a service to other
components of the architecture. Although caching can speed up an application and improve
scalability, it is important to reason on appropriate algorithms for replacement, coherence and
invalidation of cached entries.
In practice, it is very important to incorporate logging, monitoring and measuring facilities

into the system. Without detailed data about utilization and load, it is di�cult to anticipate
increasing demand and detect bottlenecks before they become critical. Taking countermeasures
such as adding new nodes and deploying additional component units should be always grounded
on a comprehensive set of rules and actual measurements.

3.3.2 Components

Following these guidelines, we now introduce an architectural model for scalabale web infras-
tructures. It is based on separated components, that provide dedicated services and scale inde-
pendently. We group them into layers with common functionalities.�e components are loosely
coupled and use messaging for communication.

For each class of component, we describe its task and purpose and outline a suitable scalability
strategy. Also, we name some real-world examples that �t into the particular class and refer to
cloud-based examples from the popular platforms mentioned before.
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Figure 3.1: An architectural model of a web infrastructure that is designed to scale. Components
are loosely coupled and can be scaled independently.

HTTP Server

�e �rst component of our model is the actual HTTP server. It is a network server responsible for
accepting and handling incoming HTTP requests and returning responses.�e HTTP server is
decoupled from the application server.�at is the component that handles the real business logic
of a request. Decoupling both components has several advantages, primarily the separation of
HTTP connection handling and execution of application logic .�is allows the HTTP server to
apply speci�c functions such as persistent connection handling, transparent SSL/TLS encryption1
or on-the-�y compression of content without impact on the application server performance.
It also decouples connections and requests. If a client uses a persistent connection issuing
multiple requests to a web server, the requests can still be separated in front of the application
server(s). Similarly, the separation allows to scale both components independently, based on
their individual requirements. For instance, a web application with a high ratio of mobile users
has to deal with many slow connections and high latencies. �e mobile links cause slow data
transfers and thus congest the server, e�ectively slowing down its capability of serving additional
clients. By separating application servers and HTTP servers, we can deploy additional HTTP
servers upstream and gracefully handle the situation by o�oading the application server.
Decoupling HTTP servers and application servers requires some kind of routing mechanism

1 Applicability depends on load-balancing mechanism used.



36 3 The Quest for Scalable Web Architectures

that forwards requests from a web server to an application server. Such a mechanism can be a
transparent feature of the messaging component between both server types. Alternatively, web
servers can employ allocation strategies similiar to the strategies of load balancers (cf. subsection
3.1.3). Another task for some of the web servers is the provision of static assets such as images and
stylesheets. Here, local or distributed �le systems are used for content, instead of dynamically
generated contents provided by the application servers.

Scalability strategy:�e basic solution for HTTP servers is cloning. As they do not hold any state
in our case, this is straightforward.
Real world examples:�e ApacheHTTP Server1 is currently themost popular web server, although
there is an increasing number of alternatives that provides better scalability, such as nginx2 and
lighttpd3.
Cloud-based examples:�eGoogleAppEngine internally uses Jetty4, a Java-based, high-performance
web server.

�e implications of scalability and concurrency in case of huge amounts of parallel connections
and requests is the main topic of chapter 4.

Application Server

�e application server is a dedicated component for handling requests at application level. An
incoming request, which is usually received as preprocessed, higher-level structure, triggers
business logic operations. As a result, an appropriate response is generated and returned.
�e application server backs the HTTP server and is a central component of the architecture,

as it is the only component that incorporates most of the other services for providing its logic.
Exemplary tasks of an application server include parameter validation, database querying, com-
munication with backend systems and template rendering.

Scalability strategy: Ideally, application servers adhere to a shared nothing style, which means that
application servers do not share any platform resources directly, expect for a shared database. A
shared nothing style makes each node independent and allows to scale via cloning. If necessary,
coordination and communication between application servers should be outsourced to shared
backend services. If there is a tighter coupling of application server instances due to inherent
shared state, scalability becomes very di�cult and complex at a certain scale.
Real world examples: Popular environments for web application include dedicated scripting

1 http://httpd.apache.org/
2 http://nginx.org/
3 http://www.lighttpd.net/
4 http://jetty.codehaus.org/jetty/

http://httpd.apache.org/
http://nginx.org/
http://www.lighttpd.net/
http://jetty.codehaus.org/jetty/
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languages such as Ruby (on Rails), PHP or Python. In the Java world, application containers like
RedHat’s JBoss Application Server or Oracle’s GlassFish are also very popular.
Cloud-based examples:�e Google App Engine as well as Amazon’s Elastic Beanstalk support the
Java Servlet technology.�e App Engine can also host Python-based and Go-based applications.

Programming and handling concurrency inside an application server is subject of chapter 5.

Load Balancer & Reverse Cache

So far, our outer component was the HTTP server. For scaling via multiple web servers, we need
an upstream component that balances the load and distributes incoming requests to one of the
instances. Such a load balancer works either on layer 3/4 or on the application layer (layer 7).

An application layer load balancer represents a reverse proxy in terms of HTTP. Di�erent load
balancing strategies can be applied, such as round-robin balancing, random balancing or load-
aware balancing (also see subsection 3.1.3). A reverse cache can further improve the performance
and scalability by caching dynamic content generated by the web application.�is component is
again an HTTP reverse proxy and uses caching strategies for storing o�en requested resources.
�us, the reverse proxy can directly return the resource without requesting the HTTP server or
application server.
In practice, load balancers and reverse caches can both appear in front of a web server layer.

�ey can also be used together, sometimes even as the same component.

Scalability strategy: Load balancers can be cloned as well. However, di�erent strategies are
required to balance their load again. A popular approach to balance a web application is to
provide multiple servers to a single hostname via DNS. Reverse caches can be easily cloned, as
they provide an easy parallelizable service.
Real world examples: �ere are several products used by large-scale web applications. Popu-
lar load balancers are HAProxy1, perlbal2 and nginx. Reverse proxies with dedicated caching
functionalities include Varnish3 and again nginx.
Cloud-based examples: Amazon provides a dedicated load-balancing service, ELB.

Some of the considerations of chapter 4 are also valid for load balancers and reverse proxies.

Message Queue System

Some components require special forms of communication, such as HTTP-based interfaces
(e.g. web services) or low-level socket-based access (e.g. database connections). For all other

1 http://haproxy.1wt.eu/
2 http://danga.com/perlbal/
3 https://www.varnish-cache.org/

http://haproxy.1wt.eu/
http://danga.com/perlbal/
https://www.varnish-cache.org/
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communication between components of the architecture, a message queue system or message
bus is the primary integration infrastructure. Messaging systems may either have a central mes-
sage broker, or work totally decentralized. Messaging systems provide di�erent communication
patterns between components, such as request-reply, one-way, publish-subscribe or push-pull
(fan-out/fan-in), di�erent synchronicity semantics and di�erent degrees of reliability.

Scalability strategy: A decentralized infrastructure can provide better scalability, when it has
no single point of failure and is designed for large deployments. Message-oriented middleware
systems with a message broker require more sophisticated scaling approaches.�ese may include
partitioning of messaging participants and replication of message brokers.
Real world examples: Advanced Message Queuing Protocol (AMQP) [AMQ11] is a popular
messaging protocol with several mature implementations, such as RabbitMQ1 . A popular broker-
free and decentralized messaging system is øMQ2.
Cloud-based examples: Amazon provides a SQS, a message queueing solution.�e Google App
Engine provides a queue-based solution for the handling of background tasks and a dedicated
XMPP messaging service. However, all of these services have higher latencies (up to several
seconds) for message delivery, are thus designed for other purposes. It is not reasonable to use
these services as part of HTTP request handling, as such latencies are not acceptable. However,
several EC2-based custom architectures have rolled out their ownmessaging infrastructure, based
on the aforementioned products such as øMQ.

Backend Data Storage

�ese components allow to store structured, unstructured and binary data as well as �les in a
persistent, durable way. Depending on the type of data, this includes relational database manage-
ment systems, non-relational database management systems, and distributed �le systems.

Scalability strategy: Scaling data storages is a challenging task, as we will learn in chapter 6.
Replication, data partitioning (i.e. denormalization, vertical partitioning) and sharding (horizon-
tal partitioning) represent traditional approaches.
Real world examples: MySQL3 is a popular relational database management system with clustering
support. Riak4, Cassandra5 and HBase6 are typical representatives of scalable, non-relational

1 http://www.rabbitmq.com/
2 http://www.zeromq.org/
3 https://www.varnish-cache.org/
4 https://github.com/basho/riak
5 http://cassandra.apache.org/
6 http://hbase.apache.org/

http://www.rabbitmq.com/
http://www.zeromq.org/
https://www.varnish-cache.org/
https://github.com/basho/riak
http://cassandra.apache.org/
http://hbase.apache.org/
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database management systems. HDFS1, GlusterFS2 and MogileFS3 are more prominent examples
for distributed �le systems used inside large-scale web architectures.
Cloud-based examples: �e Google App Egnine provides both a data store and a blob store.
Amazon has come up with several di�erent solutions for cloud-based data storage (e.g. RDS,
DynamoDB, SimpleDB) and �le storage (e.g. S3).

Chapter 6 addresses the challenges of concurrency and scalability of storage systems.

Cache System

In contrast to durable storage components, caching components provide a volatile storage.
Caching enables low-latency access to objects with high demand. In practice, these compo-
nents are o�en key/value-based and in-memory storages, designed to run on multiple nodes.
Some caches also support advanced features such as publish/subscribe mechanisms for certain
keys.

Scalability strategy: Essentially, a distributed cache is a memory-based key/value store. �us,
vertical scale can be achieved by provisioning more RAM to the machine. A more sustainable
scale is possible by cloning and replicating nodes and partitioning the key space.
Real world examples: Memcached4 is a popular distributed cache. Redis5, another in-memory
cache, supports structured data types and publish/subscribe channels.
Cloud-based examples:�e Google App Engine supports a Memcache API and Amazon provides
a dedicated caching solution called ElastiCache.

Some of the considerations of chapter 6 are also valid for distributed caching systems.

Background Worker Service

Computationally-intensive tasks should not be executed by the application server component. For
instance, transcoding uploaded video �les, generating thumbnails of images, processing streams
of user data or running recommendation engines belong to these CPU-bound, resource-intensive
tasks. O�en, these tasks are asynchronous, which allows them to be executed in the background
independently.

1 http://hadoop.apache.org/hdfs/
2 http://www.gluster.org/
3 http://danga.com/mogilefs/
4 http://memcached.org/
5 http://redis.io/

http://hadoop.apache.org/hdfs/
http://www.gluster.org/
http://danga.com/mogilefs/
http://memcached.org/
http://redis.io/
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Scalability strategy: Adding more resources and nodes to the background worker pool gen-
erally speeds up the computation or allows the execution of more concurrent tasks, thanks to
parallelism. From a concurrency perspective, it is easier to scale worker pools when the jobs are
small, isolated tasks with no dependencies.
Real world examples: Hadoop1 is an open-source implementation of the MapReduce platform,
that allows the parallel execution of certain algorithms on large data sets. For real-time event
processing, Twitter has released the Storm engine2, a distributed realtime computation system
targeting stream processing among others. Spark [Zah10] is an open source framework for data
analytics designed for in-memory clusters.
Cloud-based examples:�e Google App Engine provides a Task Queue API, that allows to submit
tasks to a set of background workers. Amazon o�ers a customMapReduce-based service, called
Elastic MapReduce.

Integration of External Services

Especially in an enterprise environment, it is o�en required to integrate additional backend
systems, such as CRM/ERP systems or process engines.�is is addressed by dedicated integration
components, so-called enterprise service buses. An ESB may also be part of a web architecture or
even replace the simpler messaging component for integration. On the other hand, the backend
enterprise architecture is o�en decoupled from the web architecture, and web services are used
for communication instead. Web services can also be used to access external services such as
validation services for credit cards.

Scalability strategy:�e scalability of external services depends �rst and foremost on their own
design and implementation. We will not consider this further, as it is not part of our internal
web architecture. Concerning the integration into our web architecture, it is helpful to focus on
stateless and scalable communication patterns and loose coupling.
Real world examples: Mule3 and Apache ServiceMix4 are two open-source products providing
ESB and integration features.
Cloud-based examples: Both of the providers we regarded make integration mechanisms for
external services available only on a lower level. �e Google App Engine allows to access ex-
ternal web-based resources via URLFetch API. Furthermore, the XMPP API may be used for
message-based communication. Similarly, the messaging services from Amazon may be used for
integration.

1 http://hadoop.apache.org/
2 https://github.com/nathanmarz/storm
3 http://www.mulesoft.org/
4 http://servicemix.apache.org/
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3.3.3 Critical Reflection of the Model

We have now introduced a general architectural model of a web infrastructure that has the
capabilities to scale. However, the suggested model is not entirely complete for direct implemen-
tation and deployment. We neglected components that are not necessary for our concurrency
considerations, but that are truly required for operational success. �is includes components
for logging, monitoring, deployment and administration of the complete architecture. Also, we
omitted components necessary for security, and authentication due to simplicity. When building
real infrastructures, it is important to also incorporate these components.

Another point of criticism targets the deliberate split of components. In practice, functionality
may be allocated di�erently, o�en resulting in fewer components. Especially the division of web
server and application server may seem arbitrary when regarding certain server applications in
use today. However, a con�ated design a�ects our concurrency considerations and o�en states a
more di�cult problem in terms of scalability.

3.4 Scaling Web Applications

We have regarded the scalability of web applications from an architectural point of view so far. In
the next chapters, we will focus on scalability within web architectures, based on the usage of
concurrency inside web servers, application servers and backend storage systems.

However, there are other factors which in�uence the scalability and perceived performance of
web applications.�erefore, we will provide a brief overview of factors relevant for web site setup
and client-side web application design.�e overview summarizes important strategies outlined
in relevant books[All10, Abb11, Abb09] and a blog article from the Yahoo Developer Network1.

From a user’s perspective, a web applications appears scalable, when it continues to provide the
same service and the same quality of service independent of the number of concurrent users and
load. Ideally, a user should not be able to draw any inferences from his experience interacting
with the application about the actual service load.�at is why constant, low-latency responses are
important for the user experience. In practice, low round-trip latencies of single request/response
cycles are essential. More complex web applications mitigate negative impacts by preventing
full reloads and through dynamic behaviour, such as asynchronous loading of new content and
partial update of the user interface (c.f. AJAX). Also, sound and reliable application functions
and graceful degradation are crucial for user acceptance.

3.4.1 Optimizing Communication and Content Delivery

First and foremost, it is very important to minimize the number of HTTP requests. Network
round trip times, perhaps preceded by connection establishing penalties, can dramatically increase

1 http://developer.yahoo.com/performance/rules.html

http://developer.yahoo.com/performance/rules.html
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latencies and slow down the user experience.�us, as few requests as necessary should be used in
a web application. A popular approach is the use of CSS sprites or images maps1. Both approaches
load a single image �le containing multiple smaller images.�e client then segments the image
and the smaller tiles can be used and rendered independently.�is technique allows to provide
a single image containing all button images and graphical user interfaces elements as part of
a combined image. Another way of reducing requests is the inlining of external content. For
instance, the data URI scheme [Mas98] allows to embed arbitrary content as a base64-encoded
URI string. In this way, smaller images (e.g. icons) can be directly inlined into an HTML
document. Browsers o�en limit the number of parallel connections to a certain host, as requested
in RFC 2616 [Fie99]. So when multiple resources have to be accessed, it can help to provide
several domain names for the same server (e.g. static1.example.com, static2.example.com).�us,
resources can be identi�ed using di�erent domain names and clients can increase the number of
parallel connections when loading resources.

Another important strategy is to embrace caching whenever possible. As a rule of thumb static
assets should be indicated as not expiring. Static assets are images, stylesheet �les, JavaScript
�les and other static resources used to complement the site.�ese assets are generally not edited
anymore, once online. Instead, they get replaced by other assets when the site gets updated.�is
yields some immutable character for static assets, that allows us to cache aggressively. Conse-
quently, static asset caching narrows the tra�c between web browsers and web servers almost
exclusively to dynamically generated content a�er some time. For dynamic content, web servers
should provide useful headers (e.g. ETag, Last-Modified) allowing conditional semantics in
subsequent requests. Reverse caching proxies as part of the web architecture can also cache
generated content and speed up responses.
�e use of CDNs helps to o�-load the machines serving static assets and shortens response

times. As CDNs are not just caching reverse proxies, they also provide geographical distribution
and route requests to the nodes in the closest proximity of the client. Using public repositories
for popular assets such as JavaScript libraries (e.g. jQuery) is also bene�cial.�ese repositories
are not just backed by large CDNs, their use also increases the chance of being already cached.

On-the-�y compression of content can further reduce size with marginal CPU overhead.�is
is helpful for text-based formats and especially e�cient in case of formats with verbose syntax
(e.g. HTML, XML).

3.4.2 Speeding up Web Site Performance

�ere are also some advice for the structure of HTML �les, improving the user experience. It is
preferable to reference external stylesheets at the top of the HTML �le, and reference JavaScript
�les at the bottom. When parsing and rendering the site, the browser will �rst load stylesheets and
then the scripts, depending on the number of parallel requests allowed (see above).�is order

1 http://www.alistapart.com/articles/sprites

http://www.alistapart.com/articles/sprites
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helps to render the page progressively and then include interactive elements. Also, JavaScript
and CSS resources should not be inlined in the HTML �le, but externalized to �les.�is helps
caching e�orts andminimizes the HTML �le size. Text-based assets like stylesheets and JavaScript
�les should also be textually mini�ed by removing whitespaces and renaming variable names
to shortest names possible, e�ectively reducing �le sizes in production environments. Di�erent
timings of content loading can also a�ect the user experience. Rich user interfaces relying on
AJAX-based content o�en provide a basic user interface on the �rst load. A�er that, actual content
is accessed and �lled into the user interface.�is order results in a gradual site composition, that
appears to be more responsive than larger HTML �les with complete reloads. Opposed to this
post-loading of content, also preloading techniques can speed up the user experience. HTML5
provides a prefetch link relation, allowing the browser to load the linked resources in advance.
As rich, web-based interfaces increasingly use the browser for application features and parts of
the business logic, it is also important to handle computations and concurrent tasks e�ciently.
�is has been addressed with the WebWorker API [Hic09c], that allows to spawn background
workers. For communication and coordination, workers use message-passing, they do not share
any data.
Concerning the application, it is helpful to have a clear separation of di�erent states. Ideally,

the server handles the persistent states of application resources, while the clients handle their own
session states and communication is stateless. Traditionally, entirely stateless communication
has been di�cult, as HTTP cookies have been the primary way of stateful web applications.�e
Web Storage API [Hic09b], related to HTML5, provides an alternative mechanism for client-side
state handling.�is API essentially allows to store key/value pairs via JavaScript in the browser.
�e API provides persistent state per domain, or scoped to a single browser session. As opposed
to HTTP cookies, Web Storage API operations are not placed into HTTP headers, hence they
keep the communication stateless.�is browser storage can also be used to cache data inside the
client-side application layer.

3.5 Summary

We have seen that delivering dynamic content represents a di�erent challenge than serving
static �les. Techniques like CGI, FastCGI and dedicated web server modules have evolved to
integrate dynamic content, and scripting languages are very popular in this context. Alternatively,
containers that host dynamic web applications can be used for deployment, which is the preferred
way for Java-based applications. A tiered view on web architectures not merely helps to split
up deployment-speci�c components. It can also provide a logical separation of concerns by
layering presentation, application logic and persistence. We also learned that load balancing is a
fundamental concept for scalability in web architectures, as it enables the distribution of load to
multiple servers.
We then introduced the general principles of Cloud Computing, the resourcing of services
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with a pay-per-use utility model and on demand, using virtualization techniques. Being geared
towards seamless scalability, Cloud Computing platforms and infrastructures relate well to our
endeavor of scalable web architectures.

Based on similar components from existing Cloud services, we have introduced an architectural
model for scalabale web infrastructures. Instead of a single, monolithic architecture, our model
adheres to a set of dedicated service components with loose coupling.�e separation allows us
to scale di�erent service components using appropriate scaling strategies and makes the overall
architecture more robust, reliable and agile. �e isolation of web servers, applications servers
and backend storage systems also enables us to bene�t from a more precise view on concurrency
challenges inside each component type.
Other attempts at improving performance and scalability have been mentioned, aiming at

optimized communication, better content delivery and faster web sites. However, they are not
part of further considerations in the subsequent chapters.



4 Web Server Architectures for High
Concurrency

In this chapter, we have a closer look at concurrency when handling multiple connections inside a
web server. As outlined in our architecturalmodel, request handling is decoupled from application
logic.�us, the creation of dynamic content is out of scope here, andwill be investigated separately
in the subsequent chapter 5. From a web server perspective, there is also no coordination required
between two distinct requests. If there are dependencies between requests on the application
level—e.g. a long-polling request waiting for application events and another request triggering
an application event—they must be handled inside the application server in our model.
�is chapter features an overview on the challenges of concurrency for high-performance web

servers with huge numbers of simultaneous connections. Next, we learn how di�erent server
architectures handle parallelism, using di�erent programming models for concurrency and I/O
operations. We �nally take a step back and compare the prevalent concurrency models—thread-
based and event-driven—more generally.

4.1 Overview

�e main issue we address in this chapter is the appropriate mapping of connections/requests to
concurrent �ows of executions in a programming model. As we are targeting multiple parallel
HTTP requests, this mainly involves highly I/O-bound operations. Concerning web infras-
tructures, we want to make sure that our so�ware implementation does not easily become the
bottleneck and a high utilization of hardware resources is achieved under load on each deployed
server. In terms of request/response and connection handling, there are several interestingmetrics
for describing a server’s performance:

• Request throughput (#/sec)

• Raw data throughput (Mbps)

• Response times (ms)

• Number of concurrent connections (#)

45
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Furthermore, there are the following performance statistics to be observed locally on the
server’s machine:

• CPU utilization

• Memory usage

• Number of open socket/�le handles

• Number of threads/processes

To restate our problem, we want to handle as many requests in parallel as possible, as fast as
possible and with as few resources as necessary. In other words, the resource utilization is to be
scaling with increasing work.

4.1.1 Request Handling Workflow

Based on the web server requirements we outlined in our previous chapter, we can list the
following steps as the minimal work�ow for handling a request. Additional features such as
request logging or caching are le� out on purpose.

1. Accept the incoming request – In case of a new HTTP connection, an underlying TCP
connection must be established �rst.

2. Read the request – Reading the raw bytes from the socket (I/O-bound) and then parsing
the actual HTTP request (CPU-bound) is necessary for all requests. If a request contains
an entity, such as POST parameters or a �le upload, this additional content must be
read as well. Depending on the implementation, the web server either bu�ers the entity
until loaded completely or pipes it directly to the application server. �e former allows
content o�oading and is important for slow connections, the latter is interesting because
of decreased latencies.

3. Dispatch the request tp the application level – Based on our architectural model, the parsed
request is then issued to the application server. We use decoupled components, so this is
generally a network-based task, using messaging (or alternatives such as RPC). In case of
a web server handling static content, we access a local or remote �le system instead. All
operations are I/O-bound.

4. Write the generated response to the socket, once available – Once the response is generated
(e.g. a generated HTML �le from the application server or a static image from the �le
system), it can be returned to the client by writing to the socket. Again, the web server can
either bu�er the response and thus provide o�oading for the application servers. Or it
pipes the generated response directly to the client.
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5. Finish the request – Depending on the connection state negotiated via the request/response
headers and the HTTP defaults, the web server either closes the connection, or it starts
from the beginning and awaits the next request to be send from the client.

4.1.2 The C10K Problem

Kegel has published a seminal article [Keg06] in 1999 on this problem, proclaiming that “it is time
for web servers to handle ten thousand clients simultaneously”, hence coining the term of the
C10k problem.�e original article was updated several times and became an in�uential resource
on web server scalability.
He motivates his considerations by showing that hardware might no longer be the bottleneck

for high connection concurrency to a certain extent. Based on reasonable hardware at that time
(i.e. 500 MHz, 1 GB of RAM, 6 x 100Mbit/s), Kegel argues that 10.000 parallel clients are totally
feasible, yielding 50KHz, 100Kbytes, and 60Kbits/sec per request – quite enough for 4kb of
payload data. In practice, most servers were far away from that number at that time. He then
examined web server internals and evaluated common I/O strategies and threading models in
particular.
�e C10k term has been reinforced ten years later, when the the company Urban Airship

struggled to serve 500.000 concurrent connections on a single node1.�eir interest in solving the
C500k problemwas based on their businessmodel. Providing noti�cation services to huge numbers
of mobile devices requires them to handle extraordinary high numbers of idle connections in
parallel.

4.1.3 I/O Operation Models

For regular desktop applications, handling �le-based or network-based input and output is o�en
a sporadic task. For our web servers, it is the primary task to handle I/O operations. Operating
systems provide di�erent means for I/O operations, and we will now have a closer look at I/O
operation models.
�e terms blocking and synchronous resp. non-blocking and asynchronous are o�en used

exchangeable in the literature and both describe very similar concepts. Also, the terms are used
on di�erent levels on di�erent operating systems with di�erent meanings. We separate them at
least for the description of I/O operations.

blocking vs. non-blocking Using these properties, the application can tell the operating system
how to access the device. When a blocking mode is used, the I/O operation does not return
to the caller unless the operation has �nished. In a non-blocking mode, all calls return
immediately, but only indicate the call status of the operation or the errors.�us, multiple
calls may be required to await the successful end of the operation.

1 http://urbanairship.com/blog/2010/08/24/c500k-in-action-at-urban-airship/

http://urbanairship.com/blog/2010/08/24/c500k-in-action-at-urban-airship/
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synchronous vs. asynchronous �ese properties are used to describe the control �ow during the
I/O operation. A synchronous call keeps control in the sense of not returning unless the
operation has �nished. An asynchronous call immediately returns, allowing to execute
further operations.

Combining these modes yields four distinct operation models for I/O. Sometimes, an addi-
tional so�ware layer is used to provide a di�erent model than the actual underlying model for
convenience.

synchronous blocking I/O �is is the most common operational mode for many regular applica-
tions. In this case, an I/O operation is a single operation, resulting in a blocked application
state until the operation has completed and data has been copied from kernel space to user
space (i.e. read operation). On kernel level, the actual raw operation is o�en multiplexed
with other operations. But it represents a single, long-running operation for the application
itself.�is model is not just a straight-forward one for developers. It also results in a time
span where the application process issuing the I/O operation does not require CPU time.
�is is a convenient time for the operating system scheduler to switch to other processes.

synchronous non-blocking I/O In this mode, the application accesses the I/O device in a non-
blocking mode. As a result, the kernel space immediately returns the I/O call. Usually, the
device is not yet ready and the call response indicates that the call should be repeated later.
By doing this, the application code o�en implements a busy-wait behavior, which can be
extremely ine�cient. Once the I/O operations has �nished and the data is available in user
space, the application can continue to run and use the data (in case of a read operation).

asynchronous blocking I/O Surprisingly, the asynchronous blocking model does still use a non-
blocking mode for I/O operations. However, instead of a busy-wait, a dedicated blocking
system call is used for noti�cations of the I/O state. Several system calls provide such a
functionality, including select, poll, epoll and kqueue [Ste03]. In so doing, multiple I/O
descriptors can be passed to the system call. When the implementation of the blocking sys-
tem call for noti�cations is sound and performant, this is good model for highly concurrent
I/O.

asynchronous non-blocking I/O �is I/O model immediately returns from I/O calls. On comple-
tition, an event is emitted or a callback is executed.�e interesting characteristics of this
model is the fact there is no blocking or busy-waiting on user level.�e entire operation is
shi�ed to the kernel space.�is allows the application to take advantage of additional CPU
time while the I/O operations happens in the background on kernel level. In other words,
the application can overlap the I/O operations with additional CPU-bound operations
or dispatch additional I/O operations in the meantime. Unsurprisingly, this model also
provides good performance under highly concurrent I/O.
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blocking non-blocking
synchronous read/write read/write using O_NONBLOCK
asynchronous I/O multiplexing AIO

Table 4.1: I/O Models in Linux

�ese models only describe I/O operations for Linux-based operating systems on a low level.
From a more abstract programmer’s perspective, models can be substituted by others, o�en
with some performance penalties. An application framework can provide I/O access using
synchronous blocking via background threads, but provide an asynchronous interface for the
developers using callbacks, and vice versa.
From now on, we di�erentiate the synchronous blocking approach and the other three ap-

proaches in most cases. Being based on some kind of signaling, noti�cation or callback execution,
we refer to the latter as event-driven or event-based approaches.

4.2 Server Architectures

We have seen di�erent models for socket I/O—and �le I/O, in case of a web server for static
content. Now, we are now in need of models merging I/O operations, CPU-bound activities such
as request parsing and request handling into general server architectures.
�ere are traditionally two competitive server architectures—one is based on threads, the

other on events. Over time, more sophisticated variants emerged, sometimes combining both
approaches.�ere has been a long controversy, whether threads or events are generally the better
fundament for high performance web servers [Ous96, vB03a, Wel01]. A�er more than a decade,
this argument has been now reinforced, thanks to new scalability challenges and the trend towards
multi-core CPUs.

Before we evaluate the di�erent approaches, we introduce the general architectures, the corre-
sponding patterns in use and give some real world examples.

4.2.1 Thread-based Server Architectures

�e thread-based approach basically associates each incoming connection with a separate thread
(resp. process). In this way, synchronous blocking I/O is the natural way of dealing with I/O. It is
a common approach that is well supported by many programming languages. It also leads to a
straight forward programming model, because all tasks necessary for request handling can be
coded sequentially. Moreover, it provides a simple mental abstraction by isolating requests and
hiding concurrency. Real concurrency is achieved by employing multiple threads/processes at
the same time.

Conceptually, multi-process and multi-threaded architectures share the same principles: each
new connection is handled by a dedicated activity.
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Multi-Process Architectures

A traditional approach to UNIX-based network servers is the process-per-connection model,
using a dedicated process for handling a connection [Ste03].�is model has also been used for
the �rst HTTP server, CERN httpd1. Due to the nature of processes, they are isolating di�erent
requests promptly, as they do not share memory. Being rather heavyweight structures, the
creation of processes is a costly operation and servers o�en employ a strategy called preforking.
When using preforking, the main server process forks several handler processes preemptively on
start-up, as shown in �gure 4.1. O�en, the (thread-safe) socket descriptor is shared among all
processes, and each process blocks for a new connection, handles the connection and then waits
for the next connection.

Request Handler Process

Request Handler ProcessMain Server Process

Prefork

Figure 4.1: Amulti-process architecture that make use of preforking. On startup, the main server
process forks several child processes that will later handle requests. A socket is created and shared
between the processes. Each request handler process waits for new connections to handle and
therea�er blocks for new connections.

Some multi-process servers also measure the load and spawn additional requests when needed.
However, it is important to note that the heavyweight structure of a process limits the maximum
of simultaneous connections.�e large memory footprint as a result of the connection-process
mapping leads to a concurrency/memory trade-o�. Especially in case of long-running, partially
inactive connections (e.g. long-polling noti�cation requests), the multi-process architecture
provides only limited scalability for concurrent requests.
�e popular Apache web server provides a robust multi-processing module that is based on

process preforking, Apache-MPM prefork. It is still the default multi-processing module for
UNIX-based setups of Apache.

1 http://www.w3.org/Daemon/Implementation/

http://www.w3.org/Daemon/Implementation/
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Multi-Threaded Architectures

When reasonable threading libraries have become available, new server architectures emerged
that replaced heavyweight processes with more leightweight threads. In e�ect, they employ
a thread-per-connection model. Although following the same principles, the multi-threaded
approach has several important di�erences. First of all, multiple threads share the same address
space and hence share global variables and state. �is makes it possible to implement mutual
features for all request handlers, such as a shared cache for cacheable responses inside the web
server. Obviously, correct synchronization and coordination is then required. Another di�erence
of the more leightweight structures of threads is their smaller memory footprint. Compared to
the full-blown memory size of an entire process, a thread only consumes limited memory (i.e.
the thread stack). Also, threads require less resources for creation/termination. We have already
seen that the dimensions of a process are a severe problem in case of high concurrency.�reads
are generally a more e�cient replacement when mapping connections to activities.

Pool of Worker Threads

Request
Dispatching

Acceptor 
Thread

Figure 4.2: Amulti-threaded architecture that make use of an acceptor thread.�e dedicated ac-
ceptor blocks for new socket connections, accepts connections and dispatches them to the worker
pool and continues.�e worker pool provides a set of threads that handle incoming requests.
Worker threads are either handling requests or waiting for new requests to process.

In practice, it is a common architecture to place a single dispatcher thread (sometimes also
called acceptor thread) in front of a pool of threads for connection handling [Ste03], as shown
in �gure 4.2. �read pools are a common way of bounding the maximum number of threads
inside the server.�e dispatcher blocks on the socket for new connections. Once established, the
connection is passed to a queue of incoming connections. �reads from the thread pool take
connections from the queue, execute the requests and wait for new connections in the queue.
When the queue is also bounded, the maximum number of awaiting connections can be restricted.
Additional connections will be rejected. While this strategy limits the concurrency, it provides
more predictable latencies and prevents total overload.
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Apache-MPM worker is a multi-processing module for the Apache web server that combines
processes and threads.�e module spawns several processes and each process in turn manages
its own pool of threads.

Scalability Considerations for Multi-Threaded Architectures

Multi-threaded servers using a thread-per-connection model are easy to implement and follow a
simple strategy. Synchronous, blocking I/O operations can be used as a natural way of expressing
I/O access.�e operating system overlaps multiple threads via preemptively scheduling. In most
cases, at least a blocking I/O operation triggers scheduling and causes a context switch, allowing
the next thread to continue.�is is a sound model for decent concurrency, and also appropriate
when a reasonable amount of CPU-bound operations must be executed. Furthermore, multiple
CPU cores can be used directly, as threads and processes are scheduled to all cores available.

Under heavy load, a multi-threaded web server consumes large amounts of memory (due to a
single thread stack for each connection), and constant context switching causes considerable losses
of CPU time. An indirect penalty thereof is increased chance of CPU cache misses. Reducing
the absolute number of threads improves the per-thread performance, but limits the overall
scalability in terms of maximum simultaneous connections.

4.2.2 Event-driven Server Architectures

As an alternative to synchronous blocking I/O, the event-driven approach is also common in
server architectures. Due to the asynchronous/non-blocking call semantics, othermodels than the
previously outlined thread-per-connection model are needed. A common model is the mapping
of a single thread to multiple connections.�e thread then handles all occurring events from I/O
operations of these connections and requests. As shown in �gure 4.3, new events are queued and
the thread executes a so-called event loop—dequeuing events from the queue, processing the
event, then taking the next event or waiting for new events to be pushed.�us, the work executed
by a thread is very similar to that of a scheduler, multiplexing multiple connections to a single
�ow of execution.
Processing an event either requires registered event handler code for speci�c events, or it is

based on the execution of a callback associated to the event in advance.�e di�erent states of the
connections handled by a thread are organized in appropriate data structures— either explicitly
using �nite state machines or implicitly via continuations or closures of callbacks. As a result,
the control �ow of an application following the event-driven style is somehow inverted. Instead
of sequential operations, an event-driven program uses a cascade of asynchronous calls and
callbacks that get executed on events.�is notion o�en makes the �ow of control less obvious
and complicates debugging.
�e usage of event-driven server architectures has historically depended on the availability of

asynchronous/non-blocking I/O operations on OS level and suitable, high performance event



4.2 Server Architectures 53

Event Loop
(single-threaded)

Event Queue Event Handler

Event Emitters

States

Figure 4.3:�is conceptual model shows the internals of an event-driven architecture. A single-
threaded event loop consumes event a�er event from the queue and sequentially executes asso-
ciated event handler code. New events are emitted by external sources such as socket or �le I/O
noti�cations. Event handlers trigger I/O actions that eventually result in new events later.

noti�cation interfaces such as epoll and kqueue. Earlier implementations of event-based servers
such as the Flash web server by Pai et al [Pai99].

Non-blocking I/O Multiplexing Patterns

Di�erent patterns have emerged for event-based I/O multiplexing, recommending solutions for
highly concurrent, high-performance I/O handling.�e patterns generally address the problem
of network services to handle multiple concurrent requests.

Reactor Pattern �e Reactor pattern [Sch95] targets synchronous, non-blocking I/O handling
and relies on an event noti�cation interface. On startup, an application following this pattern
registers a set of resources (e.g. a socket) and events (e.g. a new connection) it is interested
in. For each resource event the application is interested in, an appropriate event handler must
be provided—a callback or hook method.�e core component of the Reactor pattern is a syn-
chronous event demultiplexer, that awaits events of resources using a blocking event noti�cation
interface. Whenever the synchronous event demultiplexer receives an event (e.g. a new client
connection), it noti�es a dispatcher and awaits for the next event.�e dispatcher processes the
event by selecting the associated event handler and triggering the callback/hook execution.
�e Reactor pattern thus decouples a general framework for event handling and multiplexing

from the application-speci�c event handlers.�e original pattern focuses on a single-threaded
execution. �is requires the event handlers to adhere to the non-blocking style of operations.
Otherwise, a blocking operation can suspend the entire application. Other variants of the Reactor
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pattern use a thread pool for the event handlers. While this improves performance on multi-core
platforms, an additional overhead for coordination and synchronization must be taken into
account.

Proactor Pattern In contrast, the Proactor pattern [Pya97] leverages truly asynchronous, non-
blocking I/O operations, as provided by interfaces such as POSIX AIO1. As a result, the Proactor
can be considered as an entirely asynchronous variant of the Reactor pattern seen before. It
incorporates support for completition events instead of blocking event noti�cation interfaces.
A proactive initiator represents the main application thread and is responsible for initiating
asynchronous I/O operations. When issuing such an operation, it always registers a completition
handler and completition dispatcher.�e execution of the asynchronous operation is governed
by the asynchronous operation processor, an entity that is part of the OS in practice. When the
I/O operation has been completed, the completition dispatcher is noti�ed. Next, the completition
handler processes the resulting event.
An important property in terms of scalability compared to the Reactor pattern is the better

multithreading support. �e execution of completition handlers can easily be handed o� to a
dedicated thread pool.

Scalability Considerations for Event-driven Architectures

Having a single thread running an event loop and waiting for I/O noti�cations has a di�erent
impact on scalability than the thread-based approach outlined before. Not associating connections
and threads does dramatically decrease the number of threads of the server—in an extreme case,
down to the single event-looping thread plus some OS kernel threads for I/O. We thereby get rid
of the overhead of excessive context switching and do not need a thread stack for each connection.
�is decreases the memory footprint under load and wastes less CPU time to context switching.
Ideally, the CPU becomes the only apparent bottleneck of an event-driven network application.
Until full saturation of resources is archived, the event loop scales with increasing throughput.
Once the load increases beyond maximum saturation, the event queue begins to stack up as
the event-processing thread is not able to match up. Under this condition, the event-driven
approach still provides a thorough throughput, but latencies of requests increase linearly, due to
overload.�is might be acceptable for temporary load peaks, but permanent overload degrades
performance and renders the service unusable. One countermeasure is a more resource-aware
scheduling and decoupling of event processing, as we will see soon when analysing a staged-based
approach.
For the moment, we stay with the event-driven architectures and align them with multi-

core architectures. While the thread-based model covers both—I/O-based and CPU-based

1 http://www.kernel.org/doc/man-pages/online/pages/man7/aio.7.html
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concurrency, the initial event-based architecture solely addresses I/O concurrency. For exploiting
multiple CPUs or cores, event-driven servers must be further adapted.
An obvious approach is the instantiation of multiple separate server processes on a single

machine.�is is o�en referred to as the N-copy approach for using N instances on a host with
N CPUs/cores. In our case a machine would run multiple web server instances and register all
instances at the load balancers. A less isolated alternative shares the server socket between all
instances, thus requiring some coordination. For instance, an implementation of this approach is
available for node.js using the cluster module1, which forks multiple instances of an application
and shares a single server socket.
�e web servers in the architectural model have a speci�c feature—they are stateless, shared-

nothing components. Already using an internal cache for dynamic requests requires several
changes in the server architecture. For the moment, the easier concurrency model of having a
single-threaded server and sequential execution semantics of callbacks can be accepted as part of
the architecture. It is exactly this simple execution model that makes single-threaded applications
attractive for developers, as the e�orts of coordination and synchronization are diminished
and the application code (i.e. callbacks) is guaranteed not to run concurrently. On the other
hand, this characteristic intrinsically prevents the utilization of multiple processes inside a single
event-driven application. Zeldovich et al. have addresses this issue with libasync-smp [Zel03], an
asynchronous programming library taking advantage of multiple processes and parallel callback
execution. �e simple sequential programming model is still preserved. �e basic idea is the
usage of tokens, so-called colors assigned to each callback. Callbacks with di�erent colors can
be executed in parallel, while serial execution is guaranteed for callbacks with the same color.
Using a default color to all non-labelled callbacks makes this approach backward compatible to
programs without any colors.
Let us extend our web server with a cache, using the coloring for additional concurrency.

Reading and parsing a new request are sequential operations, but di�erent requests can be handled
at the same time.�us, each request gets a distinct color (e.g. using the socket descriptor), and
the parsing operation of di�erent request can actually happen in parallel, as they are labelled
di�erently. A�er having parsed the request, the server must check if the required content is
already cached. Otherwise, it must be requested from the application server. Checking the cache
now is a concurrent operation that must be executed sequentially, in order to provide consistency.
Hence, the same color label is used for this step for all requests, indicating the scheduler to run all
of these operations always serially, and never in parallel.�is library also allows the callback to
execute partially blocking operations. As long as the operation is not labelled with a shared color,
it will not block other callbacks directly.�e library is backed by a thread pool and a set of event
queues, distinguished by colors.�is solution allows to adhere to the traditional event-driven
programming style, but introduces real concurrency to a certain extent. However, it requires the

1 http://nodejs.org/docs/latest/api/cluster.html
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developer to label callbacks correctly. Reasoning about the �ows of executions in an event-driven
program is already di�cult sometimes, and the additional e�ort may complicate this further.

4.2.3 Combined Approaches

�e need for scalable architectures and the drawbacks of both general models have led to alterna-
tive architectures and libraries incorporating features of both models.

Staged Event-driven Architecture

A formative architecture combining threads and events for scalable servers has been designed by
Welsh et al. [Wel01], the so called Staged Event-driven Architecture (SEDA). As a basic concept,
it divides the server logic into a series of well-de�ned stages, that are connected by queues, as
shown in �gure 4.4. Requests are passed from stage to stage during processing. Each stage is
backed by a thread or a thread pool, that may be con�gured dynamically.

Event Handler

Thread Pool

Event Queue

Controller

Event Handler

Thread Pool

Event Queue

Controller

Outgoing
Events

Stage Stage

Figure 4.4:�is illustration shows the concept of SEDA. In this example, there are two stages,
each with a queue for incoming events, an event handler backed by thread pool and a controller
that monitors resources.�e only interaction between stages is the emission of events to the next
stage(s) in the pipeline.

�e separation favors modularity as the pipeline of stages can be changed and extended easily.
Another very important feature of the SEDA design is the resource awareness and explicit control
of load.�e size of the enqueued items per stage and the workload of the thread pool per stage
gives explicit insights on the overall load factor. In case of an overload situation, a server can
adjust scheduling parameters or thread pool sizes. Other adaptive strategies include dynamic
recon�guration of the pipeline or deliberate request termination. When resource management,
load introspection and adaptivity are decoupled from the application logic of a stage, it is simple
to develop well-conditioned services. From a concurrency perspective, SEDA represents a hybrid
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approach between thread-per-connectionmultithreading and event-based concurrency. Having a
thread (or a thread pool) dequeuing and processing elements resembles an event-driven approach.
�e usage of multiple stages with independent threads e�ectively utilizies multiple CPUs or cores
and tends to a multi-threaded environment. From a developer’s perspective, the implementation
of handler code for a certain stage also resembles more traditional thread programming.
�e drawbacks of SEDA are the increased latencies due to queue and stage traversal even in case

of minimal load. In a later retrospective [Wel10], Welsh also criticized a missing di�erentiation of
module boundaries (stages) and concurrency boundaries (queues and threads).�is distribution
triggers too many context switches, when a requests passes through multiple stages and queues.
A better solution groups multiple stages together with a common thread pool. �is decreaes
context switches and improves response times. Stages with I/O operations and comparatively
long execution times can still be isolated.
�e SEDAmodel has inspired several implementations, including the generic server framework

Apache MINA1 and enterprise service buses such as Mule ESB2.

Special-Purpose Libraries

Other approaches focused on the drawbacks of threads in general and the problems of available
(user-level) threading libraries in particular. As we will see soon, most of the scalability problems
with threads are associated with shortcomings of their libraries.

For instance, the Capriccio threading library by von Behren et al. [vB03b] promises scalable
threads for servers by tackling the main thread issues.�e problem of extensive context switches
is addressed by using a non-preemptive scheduling.�reads eithers yield on I/O operations, or
on an explicit yield operation. �e stack size of each thread is limited based on prior analysis
at compile time. �is makes it unnecessary to overprovide bounded stack space preemptively.
However, unbounded loops and the usage of recursive calls render a complete calculation of stack
size apriori impossible. As a workaround, checkpoints are inserted into the code, that determine
if a stack over�ow is about to happen and allocate new stack chunks in that case.�e checkpoints
are inserted at compile time and are placed in a manner that there will never be a stack over�ow
within the code between two checkpoints. Additionally, resource-aware scheduling is applied
that prevents thrashing.�erefore, CPU, memory and �le descriptors are watched and combined
with a static analysis of the resource usage of threads, scheduling is dynamically adapted.

Also, hybrid libraries, combining threads and events, have been developed. Li andZdancewic [Li07]
have implemented a combined model for Haskell, based on concurrency monads.�e program-
ming language Scala also provides event-driven and multi-threaded concurrency, that can be
combined for server implementations.

1 http://http://mina.apache.org
2 http://www.mulesoft.com/

http://http://mina.apache.org
http://www.mulesoft.com/
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thread-based event-driven
connection/request state thread context state machine/continuation
main I/O model synchronous/blocking asynchronous/non-blocking
activity �ow thread-per-connection events and associated handlers
primary scheduling strategy preemptive (OS) cooperative
scheduling component scheduler (OS) event loop
calling semantics blocking dispatching/awaiting events

Table 4.2: Main di�erences between thread-based and event-driven server architectures.

4.2.4 Evaluation

So far, we have regarded di�erent architectural principles for building concurrent web servers.
When implementing a server for highly concurrent usage, one of these models should be applied.
However, there are other factors that also in�uence the actual performance and scalability of
the implementation.�is includes the programming language, the execution environment (e.g.
virtual machine) the operating system, the thread libraries that can be used and the available
means for I/O operations (e.g. support for true asynchronous I/O). For each server architecture,
scalable server implementations can be implemented—however, the actual requirements di�er.
Pariag et al. [Par07] have conducted a detailed performance-oriented comparison of thread-

based, event-driven and hybrid pipelined servers. �e thread-based server (knot) has taken
advantage of the aforementioned Capriccio library.�e event-driven server (µserver) has been
designed to support socket sharing andmultiprocessor support using the N-copy approach. Lastly,
the hybrid pipelined server (WatPipe) has been heavily inspired by SEDA, and consists of four
stages for servingweb requests. Pariag and his team then tested and heavily tuned the three servers.
Finally, they benchmarked the servers using di�erent scenarios, including deliberate overload
situations. Previous benchmarks have been used to promote either new thread-based or event-
driven architectures[Pai99, Wel01, vB03a], o�en with clear bene�ts for the new architecture.
�e extensive benchmark of Pariag et al. revealed that all three architectural models can be
used for building highly scalable servers, as long as thorough tuning and (re-)con�guration is
conducted.�e results also showed that event-driven architectures using asynchronous I/O have
still a marginal advantage over thread-based architectures.
Event-driven web servers like nginx (e.g. GitHub, WordPress.com), lighttpd (e.g. YouTube,

Wikipedia) or Tornado1 (e.g. Facebook, Quora) are currently very popular and several generic
frameworks have emerged that follow this architectural pattern. Such frameworks available for
Java include netty2 and MINA.

1 http://www.tornadoweb.org/
2 http://www.jboss.org/netty
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Please note that we do not conduct our own benchmarks in this chapter. Nottingham, one of
the editors of the HTTP standards, has written an insightful summary, why even handed server
benchmarking is extremely hard and costly [Not11]. Hence, we solely focus on the architecture
concepts and design principles of web servers and con�ne our considerations to the prior results
of Pariag et al. [Par07].

4.3 The Case of Threads vs. Events

We have outlined a special set of requirements for our servers such as statelessness.�is eases not
just actual implementations, but it also biases our considerations of threads vs. events to some
extent. In chapter 5, we will focus on concurrent programming from a more general perspective.
For the rest of this chapter, we take some time for a closer look on the general argument of
threads vs. events.�e discussion is a very old one that emerged long ago in the �eld of operating
systems. However, high performance network servers have always been a challenging topic and
the argument has been repeatedly revisited several times in this context.

We introduce the duality argument of Lauer andNeedham that reasons the intrinsic relationship
between threads and events.�en, we review some of the more recent publications comparing
both models or campaigning for one of them, o�en painting black the other one at the same
time. Finally, we provide a neutral view on both models and conclude on their strengths and
weaknesses.

4.3.1 The Duality Argument

In the late seventies, Lauer and Needham [Lau79] took an extensive look on two predominant
programming models for operating system designs in terms of processes and synchronization
and communication. More precisely, they compare message-oriented systems with procedure-
oriented systems. �e former uses a small number of processes that use explicit messaging,
and the latter is based on large numbers of small processes using shared data instead. �us,
message-oriented systems resemble event-driven systems, while procedure-oriented systems
correspond to thread-based systems [vB03a, Li07].�eir main contribution are three important
observations:

1. Both models are duals of each other. A program written in one model can be mapped
directly to an equivalent program based on the other model.

2. Both models are logically equivalent, although they use diverging concepts and provide a
di�erent syntax.

3. �e performance of programs written in both models is essentially identical, given that
identical scheduling strategies are used.
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Consequently, Lauer and Needham come up with a mapping of both models, allowing to
confront building blocks of both concepts.�e most important mappings are shown in table 4.3.
�e �owof control in an application using either one of themodels generates a unique graph that

contains certain yielding or blocking nodes (e.g. awaiting a reply resp. a procedure return).�e
edges between such nodes represent code that is executed when traversing the graph. According
to the duality argument, both thread-based and event-driven programs yield the same blocking
points, when equivalent logic is implemented and the programs are thus duals. Von Behren refers
to this graph representation as a blocking graph [vB03a].
Lauer and Needham argue that by replacing concepts and transforming a program from one

model into the other, the logic is not a�ected and the semantic content of the code is thus invariant.
As a result, they claim that both conceptual models are equivalent and even the performance
of both models is the same, given a proper execution environment. As a consequence, they
suggest that the choice of the right model depends on the actual application, and neither model
is preferable in general.
While the general concepts are accepted to be comparable [vB03a, Li07], there is also some

criticism to the mapping, especially when it is applied to event-based systems that mix in other
programming concepts. Von Behren [vB03a] points out that Lauer and Needham ignore coop-
erative scheduling for event-based systems, which is an important part of many event-driven
systems today. Lauer and Needham also disallow any kind of shared memory or global data in
their mapping. But many event-driven systems indeed use shared memory in a few places.
Despite these remarks, the duality argument generally allows us to relax our considerations

on both systems in terms of intrinsic performance characteristics. In fact, we can focus on
the applicability and suitability of both models based on actual requirements of an application.
Furthermore, the duality argument motivates us to question the implementation of the models
instead of the models themselves when it comes to performance and scalability.

Next, we have a look at some popular pleadings for one model or the other, complemented by
a compilation of prevalent criticism for each model.

thread-based event-driven
monitor ∼ event handler

scheduling ∼ event loop
exported functions ∼ event types accepted by event handler

returning from a procedure ∼ dispatching a reply
executing a blocking procedure call ∼ dispatching a message, awaiting a reply

waiting on condition variables ∼ awaiting messages

Table 4.3: Amapping of thread-based and event-driven concepts based on Lauer and Need-
ham [Lau79], adapted and restated to resemble event-driven systems [vB03a, Li07].
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4.3.2 A Case for Threads

Proponents of threads argue that threads are the natural extension of the dominant sequential
programming style in most programming languages for providing concurrency [vB03a, vB03b,
Gus05]. From a developer perspective, threads map work to be executed with associated �ows
of control. More precisely, a thread represents work from the perspective of the task itself.�is
allows to develop concurrent code while focusing on the sequential steps of operations required
to complete the task. Transparently executing blocking operations and I/O calls relieves the
developer from low-level scheduling details. Instead, he can rely on the operating system and the
runtime environment.
�reads are well-known and understood entities of operating systems and are general purpose

primitives for any kind of parallelism. �reads are also mandatory for exploiting true CPU
concurrency. Hence, even other concurrency approaches rely on underlying, thread-based
implementations, although they hide this trait from the developer.
�e abstraction that threads provide appears to be simple and especially powerful when tasks

are mostly isolated and only share a limited amount of state (cf. multi-threaded web servers).
�reads also provide a solid structuring primitive for concurrent applications in terms of syntax.

�e opponents of thread-based systems line up several drawbacks. For Ousterhout, who probably
published the most well-known rant against threads [Ous96], the extreme di�culty of developing
correct concurrent code—even for programming experts—is the most harmful trait of threads.
As soon as a multi-threaded system shares a single state between multiple threads, coordination
and synchronization becomes an imperative. Coordination and synchronization requires locking
primitives, which in turn brings along additional issues. Erroneous locking introduces deadlocks
or livelocks, and threatens the liveness of the application. Choosing the right locking granularity is
also source of trouble. Too coarse locks slow down concurrent code and lead to degraded sequen-
tial execution. By contrast, too �ne locks increase the danger of deadlocks/livelocks and increase
locking overhead. Concurrent components based on threads and locks are not composable. Given
two di�erent components that are thread-safe, a composition of them is not thread-safe per se.
For instance, placing circular dependencies between multi-threaded components unknowingly
can introduce severe deadlocks.

Lee [Lee06] focuses on the lack of understandability and predictability of multi-threaded code,
due to nondeterminism and preemptive scheduling. Multithreading appears to be error-prone,
and very di�cult to debug. �e state explosion as a result from all possible interleavings of
multiple threads renders a reasonable execution analysis of concurrent code virtually impossible.
�is is primarily caused by the unpredictability of preemptive scheduling. So, contrary to von
Behren [vB03a], Lee argues that threads are precisely not a good abstraction for concurrent
�ows of execution. Quite the opposite, the oversimplifying abstraction of threads appears to be
misleading, as it pretends a continuous execution of code that may not match any real runtime
behavior.
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Concerning performance, we have already got to know the downside of extensive context
switching. Similarly, huge numbers of threads require large amounts of memory due to their
thread stacks.�e usage of locks yields an additional overhead.
In return, the pro-thread camp argues that a couple of the drawbacks mentioned are actually

the result of poor threading library implementations and the essence of preemptive scheduling.

4.3.3 A Case for Events

�e campaigners for events like Ousterhout[Ous96] regard event-driven systems as the more
appropriate foundation for high concurrency servers when compared to thread-based systems.
�e fundamental idea of a single-threaded event loop eases concurrency concerns by providing a
simple, and straight model of parallelism.
By not using blocking/synchronous I/O, multiple I/O operations overlap, although a single

thread is used.�is enables I/O parallelism without requiring CPU parallelism at the same time.
�is yields the illusion of multi-threaded concurrency, because multiple conceptual �ows of
execution appear to happen at the same time (at least their I/O operations do). Event handler
code and callbacks can be developed without the immanent fear of concurrent access on state.
�e execution of a callbacks is guaranteed to be deterministic, as long as no yielding operation is
triggered in the callback.�is provides a feeling of deterministic reasoning. Scheduling becomes
an explicit operation and happens inside the application itself. Fine-grained tuning of scheduling
is possible and can take into account application-speci�c requirements.
�e usage of events and event handlers yields an asynchronous behavior, which is favored by

some developers. Instead of giving the abstraction of an isolated sequential �ow of executions, the
asynchronous style makes the di�erences between I/O operations and CPU-bound operations
obvious.

However, there are also serious concerns over event-driven systems.�e most common reason
why event-driven systems are rejected is their programming style.�e idea of an event loop and
registered event handlers yields an inversion of control. Instead of sequential operations, code is
organized as a fragmented set of event handlers and callbacks. In non-trivial applications, this
leads to heavy chaining of callbacks. Gustafsson refers to the notion of an event loop sequentially
executing callbacks on events as a form of “delayed GOTO” [Gus05]. Compared to threads, that
provide higher abstractions, event-driven systems hence appear as a step backwards.
Existing sequential algorithms can not be used directly in event-driven systems. Instead,

whenever an I/O operation is triggered, the code must be split up and moved into di�erent
callbacks, creating large cascading callback chains.
�e obfuscated control �ow is o�en accompanied by the necessity of saving and restoring

state before yielding and a�er resuming.�is is especially obvious when imperative, low-level
programming languages are used that do not support mitigating language idioms like closures.
A thread can store state as part of its thread stack, independently of any scheduling. In an
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event-driven system, it is the developer’s responsibility to handle and recover state between event
handlers.

While threads are endangered by deadlocks or livelocks, single-threaded, event-driven applica-
tions can be scuttled by long running, CPU-bound callbacks, blocking operations or callbacks
that refuse to yield.
While the single-threaded event-loop model �ts for mostly I/O-bound applications, it is very

di�cult by default to take advantage of real CPU concurrency and utilize multiple cores (cf.
subsection 4.2.2).

4.3.4 A Conflation of Distinct Concepts

Another substantial argument for the case of threads vs. events has been made by Adya et
al. [Ady02]. Debating about thread-based and event-based programming styles, they derive
di�erent management concepts that these programming styles make use of for concurrency.
However, they argue that these concepts are o�en con�ated and also confused with the actual
programming styles themselves. Adya et al. state that this makes it harder to reason about
appropriate approaches towards concurrent programming.�e separation of concepts yields �ve
distinct concepts, most of them orthogonal to each other.

Task Management

�e �ows of execution within a program are o�en divided into separate tasks that coexist. Man-
aging the concurrent execution of these tasks requires a management concept on how to switch
between tasks like scheduling does. Serial task management sequentially runs a task to completi-
tion, then switching to the next task. While this strategy prevents state con�icts due to isolated
execution, it does not allow to exploit true parallelism. Also, long-running tasks or tasks waiting
for I/O will delay the execution of other pending tasks. Preemptive task management instead
enables an overlapping execution of multiple tasks at the same time and makes use of multiple
cores. However, tasks will be scheduled externally, thus a task is not aware of task management.

An interesting alternative is cooperative task management, preserving some of the advantages
of both models. Tasks yield cooperatively and explicitly, but make it still easier to reason about
the code. Single-threaded cooperative task management facilitates to deal with invariants and
state. For multi-threaded code, cooperative task management o�en decreases the number of
context switches.

Stack Management

Another concept governs the relationship between �ows of execution and associated states. In
a thread-based model, tasks have their own stacks, hence (automatic) stack management is an
inherent feature. Systems based on events require a di�erent handling of task stacks. As the
�ow of execution of a logical task is in this case represented by a sequence of dispatched events
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and corresponding executions of event handlers, there is no direct notion of a stack. Moreover,
di�erent procedures handle the sequence of events corresponding to the logical task, so state
handling must be broken across several event handlers. As a result, the stack must be provided
explicitly by the developer. Adya et al. refer to this duty as stack ripping. Before yielding, the stack
of a task must be serialized and stored. When an event handler later continues the execution, it
must �rst load and reconstruct the stack of the corresponding task.
Some functional languages such as Scheme provide languages idioms for that, like closures

or continuations. Closures are functions that encapsulate their referencing environment (i.e.
“stack”). Continuations are special closures used for encapsulating control state. Most low-level
languages such as C do not support these functional mechanisms, and stack ripping therefore
remains as a mandatory workaround.

I/O Management

I/Omanagement is responsible for the I/O operations, and can be separated into synchronous and
asynchronous management interfaces. We have already considered both concepts in detail earlier
in this chapter. However, it is important to notice that I/O management and task management
are orthogonal concepts. While computational operations may share state between tasks, this
is generally not true for I/O. Consequently, tasks executing I/O operations concurrently can
be overlapped. Furthermore, each of the task management concepts can be used either with a
synchronous or asynchronous I/O management concept.

Conflict Management

Di�erent task management concepts provide speci�c agreements on the granularity of atomicity
of operations.�is is important for guaranteeing consistent data when state is shared between
tasks. Serial and to some extent (i.e. single-threaded) cooperative task management concepts
provide a very simple form of con�ict management. Serial tasks are exclusively executed, and
cooperative tasks provide atomic semantics between all yielding operations.�is makes it very
easy to reason about invariants. Ensuring that invariants hold is more complex for preemptive
task management and requires synchronization mechanisms.

Data Partitioning

We have seen that shared state and the preservation of consistency correlates to both task and
con�ict management. As a result, partitioning data and restrictively allowing access to state may
reduce the possibilities of con�icts. For instance, thread-local state does not have to be shared
and can be partitioned explicitly.
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Looking for the Sweet Spots

Adya et al. propose the separation ofmanagement concepts to argue purposefully for themost con-
venient form of concurrent programming, aside from the coarse thread vs. event debate [Ady02].
�ey pay special attention to the �rst two management principles. While traditional event-based
systems are mostly based on cooperative task management and manual stack management requir-
ing stack ripping, thread-based systems o�en use preemptive task management and automatic
stackmanagement. Eventually, they favor amodel thatmakes use of cooperative taskmanagement,
but releases the developer from the burden of stack management, as shown in �gure 4.5. Such a
model eases concurrency re�ections, requires minimal con�ict management and harmonizes
with both I/O management models.
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Figure 4.5:�e sweet spot of task management and stack management by using cooperative task
management and automatic stack management, according to Adya et al. [Ady02].

Some of the recent event-driven systems such as node.js come very close to this intended
model. �ey rely on closures as language primitives that encapsulate stack data into callback
functions, mitigating stack ripping e�orts.
Gustafsson [Gus05] comes to a similar result. It is not the nature of threads that makes their

usage cumbersome, but preemptive scheduling. A cooperative scheduling of threads eases much
of the pain of threads. Non-preemptive scheduling let us preserve invariants without extensive
locking. Gustafsson also backs Adya by noting that the question of threads or events is orthogonal
to the question of cooperative or preemptive scheduling.

4.3.5 Conclusion

Before we value the di�erent models, let us restate our original question. We are in search of
appropriate programming models for high concurrency and high performance network servers,
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in our case web servers.
We had a detailed look on both thread-based and event driven approaches. We also learned

about hybrid approaches such as SEDA, and highly optimized threading libraries that employ
compiler optimizations for thread stack sizes and adaptive scheduling. We have seen that various
servers using di�erent approaches can be tuned and optimized to give at least roughly a similar
performance.
However, for large-scale connection concurrency, event-driven server architectures using

asynchronous/non-blocking I/O operations seem to be more popular, as they provide a slightly
better scalability under heavy concurrency. Such servers demand less memory, even when they
handle thousands of concurrent connections. Also, they do not require specialized threading
libraries. On the other hand, mature threading implementations such as the Native POSIX
�read Library [Mol03] still provide reasonable performance, even for highly concurrent server
implementations.

Concerning the everlasting argument between the pro-threads camp and pro-events camp, we
have seen that both programming models are actually duals of each other and can be transformed
under certain restrictions. So the actual performances of a server using either one of the models
depends to a large extent on the real environment it is executed on, including the operating
system and hardware features. As the duality argument dates back to a time where asynchronous,
non-blocking I/O operations, multi-core CPUs have not been available yet, the in�uence of the
environment must not be underestimated.
Next, we took a look behind the essence of threads and events, realizing that the di�erent

management concepts are o�en con�ated, when arguing about both models. It is primarily
the cooperative scheduling nature that makes event-driven systems so interesting for highly
concurrent servers.�e downside of many low-level event-driven systems is the required e�ort
for stack ripping, a concept that is not necessary for threads, as the thread stack frame encapsulates
state. Today, functional and multi-paradigm languages mitigate the problem of stack ripping
by language idioms like closures.�is allows a more decent programming style in event-driven
systems, although the style is still very di�erent compared to the sequential structuring of threads.

4.4 Summary

�e challenge of scalability for web servers is characterized by intense concurrency of HTTP
connections.�e massive parallelism of I/O-bound operations is thus the primary issue. When
multiple clients connect to a server simultaneously, server resources such as CPU time, memory
and socket capacities must be strictly scheduled and utilized in order to maintain low response
latencies and high throughput at the same time. We have therefore examined di�erent models for
I/O operations and how to represent requests in a programming model supporting concurrency.
We have focused on various server architectures that provide di�erent combinations of the
aforementioned concepts, namely multi-process servers, multi-threaded servers, event-driven
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servers and combined approaches such as SEDA.
�e development of high performance servers using either threads, events, or both emerged as a

viable possibility. However, the traditional synchronous, blocking I/Omodel su�ers a performance
setback when it is used as part of massive I/O parallelism. Similarly, the usage of large numbers of
threads is limited by increasing performance penalties as a result of permanent context switching
and memory consumption due to thread stack sizes. On the other hand, event-driven server
architectures su�er from a less comprehensible and understandable programming style and
can o�en not take direct advantage of true CPU parallelism. Combined approaches attempt to
speci�cally circumvent inherent problems of one of the models, or they suggest concepts that
incorporate both models.

We have now seen that thread-based and event-driven approaches are essentially duals of each
other and have been dividing the network server community for a long time. Gaining the bene�ts
of cooperative scheduling and asynchronous/non-blocking I/O operations is among the main
desires for I/O-bound server applications—however this is o�en overlooked in a broader and
con�ated argument between the thread camp and the event camp.





5 ConcurrencyConcepts forApplications
and Business Logic

�e previous chapter 4 has dealt with connection concurrency as an issue for web servers.�e
challenge is characterized by massively I/O-bound operations, but very limited mutable state. In
this chapter, we have a look at concurrency from a di�erent angle, by focusing on application
servers.�at is, the component responsible for executing the actual business logic of an application,
stimulated by incoming requests.
�e inherent parallelism of requests in a large-scale web architecture is inevitable. Multiple

users access the application at the same time, creating large numbers of independent requests. In
consequence, application servers are components that must cope with a high degree of concur-
rency.�e main issues we want to address in this chapter are the implications and consequences
of di�erent concurrency paradigms when used for business logic of application servers.�is not
just includes the impact of handling state in concurrent applications, but also the simplicity and
accessibility of the particular paradigms for developers.
Moreover, we are not focusing on speci�c application server implementations or web applica-

tion frameworks. Instead, we have a more general showdown with concurrency and paradigms
for concurrent programming.�e re�ections are applicable for distributed and concurrent pro-
gramming in general. Eventually, we are in search of an appropriate programming abstraction
for the inherent concurrency of an application that allows us to develop scalable and performant
applications, but tames the trouble of concurrency at the same time.

5.1 Overview

An application server provides a reactive behavior that generates responses as a result to incoming
requests. �e application server component receives invocations from upstream web servers
in form of high-level messages (alternatively RPC calls or similar mechanisms). It is thus de-
coupled from low-level connection handling or request parsing duties. In order to generate a
proper response, the application server executes business logic mapped to request URIs. �e
�ow of execution for a request inside an application server includes interactions with di�erent

69
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components of the architecture, such as databases and backend services, but also computational
operations as part of the application logic:

CPU-bound activities CPU-bound activities are tasks that primarily consume CPU time during
execution. In general, these tasks are computationally heavy algorithms operating on in-
memory data. In terms of a web applications, this applies to tasks such as input validation,
template rendering or on-the-�y encoding/decoding of content.

I/O-bound activities I/O-bound activities are tasks mainly limited by I/O resources, such as
network I/O or �le I/O. I/O-bound activities o�en take place when tasks operates on
external data that is not (yet) part of its own memory. In case of our architectural model,
this includes access to most platform components, including storage backends, background
services and external services.

HTTP Server Application
Server

Cache System Storage Backend A Storage Backend B HTTP Server Application
Server

Cache System Storage Backend A Storage Backend B

Figure 5.1: A �ow of execution for request handling.�e application server �rst queries a cache,
then dispatched two independent database queries, and �nally accesses the cache again. On the le�
side, execution is strictly sequential. On the right side, the independent operations are parallelized
in order to improve latency results.

A request to a web application typically triggers operations of both types, although the actual
ratio depends on the application internals. Many content-rich web applications (e.g. blogs,
wikis) primarily rely on database operations, and to some extend on template rendering. Other
applications are mainly CPU-bound, like web services that provide computational services or
web services for media �le conversions. Low latencies of responses are favored in both cases, as
they are important for a good user experience.
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�e application logic associated to a request is o�en implemented in a sequential order. In
order to minimize latencies, the parallelization of independent operations should be considered,
as shown in �gure 5.1. In a directed graph representation, a �rst node represents the arrival of the
request and a last node the compiled response. Nodes in between represent operations such as
database operations or computation functions. Splitting up the �ow of control results in parallel
operations, that must be synchronized at a later time. �is pattern, also known as scatter and
gather [Hoh03], is particularly viable for I/O-bound activities, such as database operations and
access to other architecture components (network I/O).

204 No Content

GET /newmessages

User A User BWeb Application

Timeout

200 OK

GET /newmessages

POST /message

201 Created

Message

Figure 5.2: A coordination between pending requests as part of an interactive web application.
�e browser of user A continuously sends requests for noti�cations by using long polling. Once
user B posts a new message, the web application coordinates the noti�cation and responds to both
pending requests, e�ectively notifying user A.

Furthermore, request processing might include coordination and communication with other
requests, either using external messaging components, or using a built-in mechanism of the
application server component. For instance, this is necessary for collaborative, interactive andweb
real-time applications. Dedicated requests are then dispatched enabling the server to eventually
send a response at a later time triggered by the actions of other requests or other server-side
events.

In essence, modern web applications make use of concurrency properties that di�er from the
notion of entirely isolated requests of earlier applications, as shown in �gure 5.2. Application state
is not entirely harbored inside database systems anymore, but also shared in other components to
some extent, andmaybe even between requests. Features for collaboration and interactivity as well
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as the demand for low latencies do not allow to eschew synchronization and coordination anymore.
Instead, true concurrency must be embraced for the application logic of web applications. For
the rest of this chapter, we study di�erent approaches towards concurrent programming and how
they manage state, coordination and synchronization.�en, we examine how concurrent web
applications can take advantage of these concepts.

5.2 Concurrency Based on Threads, Locks and Shared State

Imperative programming, the most popular form of structured programming, is built around the
notion of sequential execution and mutable state. It directly deduces from the conceptions of
the Von Neumann architecture.�reads are o�en regarded as a consequential extension of this
notion that enable multiple �ows of control simultaneously. Next to heavier processes, threads
are the main constructs for parallelism provided by operating systems and hardware architectures
(i.e. hyperthreading). Unsurprisingly, threads are the prevailing building blocks for concurrency
in most programming languages. However, concurrent programming based on threads, locks
and shared state is said to be di�cult and error-prone [Sut05].

5.2.1 The Implications of Shared and Mutable State

Conceptually, a thread describes a sequential �ow of control, that is isolated from other activities
at �rst glance. Unlike processes, threads share the same address space though.�at implies that
multiple independent threads may access the same variables and states concurrently. Even worse,
sequential programming is built on the concept of mutable state, which means that multiple
threadsmay compete for write operations, too. Multithreading is principally usedwith preemptive
scheduling. As a result, the exact switches and interleavings between multiple threads are not
known in advance.�is represents a strong form of indeterminacy. Without further care, mutable
state and indeterminacy introduce the strong hazard of race conditions.
A race condition occurs when two or more thread compete for access to critical section, a

section that contains state shared between threads. Due to the variety of possible interleavings,
the race condition may result in various inconsistent states. For instance, a thread may read
stale state while another thread is already updating it. When multiple threads alter the state at
the same time, either one of the changes may last and the others get lost, or even a inconsistent
state a�ected by multiple changes may persist. Eventually, we need mechanisms to guard critical
sections and enforce synchronized access.

Locking Mechanisms

�e general primitives for synchronization are locks, that control access to critical sections.�ere
are di�erent types of locks with di�erent behaviors and semantics. Semaphores [Dij65] are simple
locks that provide a wait and signal function. Before entering a critical section or using a
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shared resource, the wait function must be called. Once the critical section has been traversed, it
is freed using signal.�e semaphore prevents multiple threads from acquiring the semaphore
at the same time by blocking other contenders in the wait call. Other semaphore implementations,
so-called counting semaphores, allow a bounded number of threads to pass. Hence, a binary
semaphore can be considered as a counting semaphore limited to a single active thread. Other
constructs for mutual exclusion provide the concept of an ownership, which means that the
critical section is temporarily possessed by a distinct thread, which is also the only instance able
to unlock it later.
A more advanced construct for mutual exclusion is the monitor [Hoa74, Lam79b] that mod-

ularly protects sections using condition variables. O�en, these sections have the granularity
of objects, or methods/functions. �e internal condition variable allows a blocking thread to
yield temporarily and wait for a modi�cation of the condition triggered by other threads. A
property of a locking mechanism is reentrancy. When a lock supports reentrancy, a thread that
has already obtained a certain lock can pass the lock again. �is is an important property for
recursive functions, that may repeatedly access critical sections. Besides counting locks, there are
also locks that di�erentiate between di�erent access semantics. Read/write locks allow shared
access for reading threads, but exclusive access for threads that demand write access.

The Consequences of Locking

Locks allow us to serialize access to critical sections.�e usage of mutual exclusions yields an
atomic behavior of threads within critical sections, because its execution appears as a single
operation to other waiting threads. Identifying sections of code vulnerable to race conditions
and carefully placing locks around tames indeterminacy and enforces serialized access.
However, the concept of locks has introduced another danger for multi-threaded code. Im-

proper locking may actually break the application, when obtained locks are not released or locks
to acquire never become available. It is obvious that faulty locking can occur when developers
must explicitly place wait and signal functions to guard sections. Higher-level abstractions
like monitors o�en provide means to mark entire sections of code for mutual exclusion and
implicitly acquire and release locks. However, they can still fall victim to locking issues.�e most
notorious locking issue is the so-called deadlock. It occurs when two or more threads compete
for locks with cyclic dependencies. In the simplest scenario, two threads both own a separate
lock, but additionally need to acquire the lock of the other thread. As no thread can advance
without acquiring a second lock, both threads are blocked and cannot continue.

Other locking issues include livelocks and lock starvations. Similar to deadlocks, livelocks
prevent threads to continue. However, threads are not blocked in a livelock situation. Instead,
they steadily change states in response to other state changes of other threads involved, which
in turn also change states. In an example scenario, two threads must acquire two resources in
order to continue. When they cannot obtain both resources, they will return the �rst one and
retry to obtain both.�e livelock appears when two threads simultaneously start to claim a �rst
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resource, then restart again. Livelocks can be considered as special case of starvation. It generally
describes the scenario when a thread is repeatedly unable to acquire a lock or resource, because
other greedy threads are constantly claiming it.
While some starvation issues such as livelocks might be handled at runtime using random

backo�s for retries, potential locking issues are generally very di�cult to detect due to non-
determinism. �e risk of a deadlock increases when multiple locks with �ne granularities are
used. Accordingly, the use of coarse locks is o�en recommended in order to avoid deadlocks.
Identifying large critical sections and guarding them by locks not just ensures serialized access.
In fact, coarse locks result in an eventually sequential execution of threads.�is is contrary to
our prior goal of increased parallelism.
For concurrency with true hardware parallelism, we need to choose very �ne locking granu-

larities, that enable multiple threads to continue in independent critical sections. Many small
critical sections not just increase the overhead of locking management, since locking is not free in
terms of management resources. Yet again, the extensive use of locks emphasises the risk of the
aforementioned dangers. It becomes clear that it is not easy to pick the right locking granularity.
Besides the issues of livelocks, deadlocks and starvations, there is also another di�culty with

locks in practice. Givenmultiple pieces of code with critical sections protected by locks, we cannot
guarantee that the composition of these pieces of code does not yield a deadlock. Essentially,
we cannot compose thread-safe implementations without the risk of new locking issues. �is
is especially signi�cant for larger code fragments such as framework components or modules.
Locking issues may be tackled by resolute development policies, that strictly govern the usage,
obtain order and conditions of locks. However, such policies cannot be enforced programmatically.
Moreover, when external or closed-source components are used, it becomes impossible to ensure
correct locking.
Nevertheless, concurrent programming based on threads, shared state and locking is still

prevailing and available in most languages. It is important to recognize that this approach
represents a low-level concept towards concurrency. It is closer to the bare metal than the other
concepts we will see soon. However, all of these concepts still use threads under the hood.

5.2.2 Case Study: Concurrency in Java

�e Java programming language has been providing thread-based concurrency from the begin-
ning of its existence. It implements Mesa monitors [Lam79b] for locking and mutual exclusion,
and provides several synchronization primitives as part of the language core.�e concurrency
behavior is de�ned in the Java Language Speci�cation [Gos12] which describes the Java Memory
Model (JMM) in detail. Java’s consistency is based on a happens-before order and the notion of
an implicit memory barrier. However, it does not provide sequential consistency for threads, as
many developers erroneously assume. In fact, the JMM resembles symmetric multi-processing,
where multiple CPUs have their own cache, but share a common maim memory. When CPUs
access memory, they refresh their cache and eventually �ush changes. In a metaphorical sense,
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Java threads resemble the CPUs, the main memory is the shared memory between threads and
the CPU caches are thread local copies of data.�e procedure of �ushing or refreshing represents
the traversal of a so-called memory barrier. Besides the aforementioned ordering, JMM de�nes
also which operations cannot be interrupted by other threads (atomicity) and when changes have
to be propagated to other threads (visibility), based on the memory barrier. For instance, starting
and ending a thread or using synchronization primitives touches the memory barrier, but also
access to several variables with speci�c traits (see below).
�e synchronized keyword allows to guard an entire method or a distinct code block, using

the callee resp. a given object as monitor object. Java monitors are reentrant and recursive calls
are supported. Furthermore, every Java Object can be used as a monitor and hence provides
means for condition signaling.�e method wait() blocks the thread holding the monitor and
releases the monitor in order to allow other threads to proceed and change the condition. In this
case the other threads can use notify() and notifyAll() for signaling a waiting thread.
�e volatile keyword circumvents the thread-local copy of a variable and enforces a fresh

copy from the shared memory on each access. It can only be used for single atomic operations.
For instance, incrementing a value (multiple operations) is not atomic. �e final keyword
makes a variable immutable.�e bene�t of immutable values for concurrency is obviating the
need for refreshing values, as they cannot be changed anymore. It is recommended always to
set �elds to �nal, unless there is a reason not to do so [Blo08]. Furthermore, Java provides a set
of atomic entities (java.util.concurrent.atomic), similar to volatile variables. However,
these entities are objects, ensure atomicity of all operations and use very e�cient mechanisms
internally such as compare and swap.

Activities are represented by the Thread class, that provides methods for thread handling such
as start(). �is class also has several coordination methods such as resume() and stop(),
that are unfortunately broken and should not be used [Blo08].�e Runnable interface abstracts
from the�read class and only possesses a run()method, the method eventually executed by a
thread once started.
While this is the foundation of concurrent programming in Java, several higher-level abstrac-

tions have been introduced, starting with Java 5.�e main reason was to to facilitate the devel-
opment of concurrent applications. Explicit locks (java.util.concurrent.locks) provide
more extensive locking operations (e.g. read-write locks) than the implicit monitior-based locks
of synchronized. Concurrent collections, such as ConcurrentMap or BlockingQueue, ex-
tend existing collections and provide thread-safe operations as well as operations for coordinated
access. Another abstraction is provided by Runnable, Callable and the Executor framework.
Essentially, these classes decouple tasks to be executed from the actual entities that execute them.
In combination with thread pool entities (e.g. ExecutorService), this is a very helpful abstrac-
tion for many concurrent applications. Futures allow to asynchronously execute a Callable in
another thread, immediately returning a proxy object to the eventual result. For more complex
coordinations between threads, several high-level coordination primitives have been supplied.
�is includes primitives such as an explicit counting Semaphore, a CountDownLatch (a barrier
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triggered by a countdown) and a CyclicBarrier (a barrier point for recurring coordination
of threads). In Java 7, the fork/join framework [Lea00] has been introduced. �is framework
aims for easy parallelization of computationally heavy tasks by spawning subtasks and using
divide-and-conquer strategies. It provides implicit task coordination and employs work-stealing.
Listing 5.1 shows an exemplary web application, written in Java, and using jetty1 and Java

Servlets2. On startup, the CountingRequestHandler gets instantiated a single time. Requests
are internally handled in a threadpool, so concurrent requests may trigger the simultaneous
invocation of the handle() method of CountingRequestHandler.�e shared variable count
is accessed by each thread and must be hence protected, using a synchronized block. �is
demonstrates the usage of monitors (in this speci�c case, the usage of the AtomicLong class
would represent a more elegant and performant solution).

5.2.3 Multithreading and Locks for Concurrent Application Logic

Multi-threaded application servers assign a dedicated thread for each application request to
handle. As long as there is no coordination needed between other threads, this programming
model is very simple.�e isolated view makes it easy to program the request logic as a sequence
of operations. Also, when the request mainly executes CPU-bound operations, this approach
is a valid choice. When the request logic contains I/O-bound operations, latency is generally
hidden inside the server, as there are multiple requests to handle concurrently. However, this
does not speed up request handling for a single request, it only increases general throughput
of the server. For reducing the actual latency of a single request, we need to further parallelize
operations of a single request. Additional threads help executing more work at the same time,
as long as operations are independent and thus can run in parallel. �e more operations are
actually I/O-bound, the more we run into the same problem as seen in chapter 4. Using more
threads in order to parallelize I/O yields issues due to heavy context switching and high memory
consumption. In our architecture, the services are separated components that are accessed via
the network, which result in a strong focus on I/O-bound operations. In essence, latency can be
reduced by parallelizing work, but this works generally better for CPU-bound operations. For
I/O-bound operations, this approach does not scale well.
Concerning coordination between requests, we have seen that locking, supplemented with

conditional variables, can be used to coordinate threads. However, the di�culties of locking
and the strong nondeterminism of incoming requests in an application server makes it rather
di�cult to implement completely correct inter-request coordination patterns. Instead, it is more
advisable to rely on external pub/sub message components (e.g. redis), although this still blocks
threads. Similarly, it is recommended to share state between requests using external facilities
such as key/value stores, in order to circumvent explicit locking inside the application server.

1 http://jetty.codehaus.org/jetty/
2 http://www.oracle.com/technetwork/java/javaee/servlet/index.html

http://jetty.codehaus.org/jetty/
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
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import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.eclipse.jetty.server.Request;
import org.eclipse.jetty.server.Server;
import org.eclipse.jetty.server.handler.AbstractHandler;

public class CountingRequestHandler extends AbstractHandler {

//Variable for counting requests handled so far
private long count = 0;

public void handle(String target, Request baseRequest ,
HttpServletRequest request, HttpServletResponse response)
throws IOException , ServletException {

response.setContentType("text/plain");
response.setStatus(200);
baseRequest.setHandled(true);

final long current;
//Access and modification of a variable shared between threads.
synchronized (this) {
current = ++count;

}

response.getWriter().println(""+current);
}

public static void main(String[] args) throws Exception {
Server server = new Server(8080);
server.setHandler(new CountingRequestHandler());

server.start();
server.join();

}
}

Listing 5.1: Aminimalistic, concurrent web application written in Java that returns the number of
requests handled so far.
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Another advantage of this approach is the possibility to transparently scale out by instantiating
new application servers.

5.3 Concurrency via Software Transactional Memory

We have seen that lock-based concurrency has several drawbacks. Indeterminacy and shared state
requires a protection from race conditions.�e concept of locks holds the developer responsible
for guarding critical sections by explicitly placing locks. In turn, this may yield unpredictable
locking issues at runtime due to lock orders and indeterminacy. Also composability of concurrent
code is not guaranteed when locks are used.
We now examine an alternative approach, that is still built on the concept of shared state and

locks, but does not rely on the developer’s reasoning for correct locking. Instead, locking becomes
part of the underlying runtime environment, and the programming language provides higher
abstractions for concurrent sections of code.

5.3.1 Transactional Memory

A lock-free alternative for shared state concurrency is Transactional Memory (TM). It goes back
to a well-known concept in computer science, transactions.�e idea of concurrent, yet isolated
operations is an established concept for database systems [Hel07]. TM takes up this idea and
applies it to shared state concurrency [Kni86, Her93]. While database transactions read and
write on database rows, TM transactions read and write on state shared with other threads.�e
concept of TM can be implemented in various ways. Hardware Transactional Memory (HTM)
provides an hardware implementation of TM, that extends CPU architectures by transactional
components such as transactional caches and an extended instruction set. So�ware Transactional
Memory (STM) does not require any hardware changes and supports transaction handling entirely
in so�ware. Hybrid TM is essentially an STM implementation that takes advantage of progressing
hardware support for TM. Due to high development and implementation costs of HTM, TM is
primarily available in the form of STM. However, some believe that hybrid models may eventually
appear, once this programming model has been established [Cas08].
Traditional transactions (see chapter 6) provide several guarantees, namely atomicity, con-

sistency, isolation and durability. Hence, transactions appear as single operations that do not
yield inconsistent state while running but not having committed or aborted yet.�ey also do not
interfere with other running transactions and their outcome is always persisted. Note that this
kind of durability di�ers from transactions for database systems and TM.�e latter only keeps
the transaction outcome in memory, but does not recover state from application crashes. As a
consequence of these properties, transactions are serializable.�e outcome of transactions can be
reproduced by an equivalent sequential execution of seemingly atomic operations. Concurrency
control for transactions can either be pessimistic or optimistic. Pessimistic concurrency control
forces conservative locking of resources and results in low transaction throughput. Optimistic
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concurrency control delays the integrity checks of a transaction to its end. In case of a con�ict,
the transaction is aborted and gets restarted. When transactions are not long-running and do
not con�ict too o�en, optimistic concurrency control provides a very good performance with a
negligible overhead of retries.

5.3.2 Software Transactional Memory

We will now solely focus on STM, as there are already several implementations available. Opti-
mistic concurrency control is preferred by existing STM implementations. In order to integrate
STM concepts into a language and implement an underlying STM runtime, it is important to
realize what constructs are necessary on language level. On one hand, we need a way to label
sections of code as transactional. On the other hand, we might want to di�erentiate variables
and resources that are shared between threads and need transactional call semantics and non-
transactional, thread-local variables. Otherwise, any read or write operation would result in a
transaction.

Once a transaction has been started at runtime, the underlying implementation starts to keep a
read set and a write set [Her93]. Both sets contain all variables and states that the transaction has
read or altered.�is is necessary for a later integrity check before committing. Also, as long as the
transaction is pending, changes are not applied to the actual share variables, but on thread-local
copies, o�en in form of a transaction log. Once the transaction has been veri�ed as not con�icting,
all of its changes are then �ushed to the actual shared states in an atomic step. While this o�en
contains some forms of locking, this behavior is entirely transparent for the developer. In order
to detect con�icting transactions, the STM implementation compares the read and write sets of
a transaction with the actual states before committing. When another transaction has already
altered a state and has committed successfully, the STM detects the discrepancy and aborts the
transaction. Instead, the old read and write sets get discarded and refreshed, and the transactions
restarts. To some extent, starvation situations can still occur, especially when a long-running
transaction is steadily outpaced by other transactions that successfully commit �rst. Apart from
that, STM provides mutual exclusion without explicit locking, and without the danger of the
aforementioned locking issues so far.

In order to represent a valuable concurrencymodel, additional features are still needed. We have
seen that lock-based multithreading lacks support for composability. Also, we need mechanisms
to coordinate di�erent threads using STM. Both requirements have been addressed in an extended
STMmodel [Har08].�e granularity of transactions allows to glue together di�erent transactional
operations, yielding a new, again transactional composite operation. More advanced compositions
can be implemented using operators such as retry and orElse.�e former operator is based
on a concept similar to that of condition variables for monitors. When a running transaction
checks a condition containing a state that di�ers from the expected value, the transaction can
“yield” by calling retry.�anks to the read set, the underlying runtime detects which variables
have been accessed so far. Once one of these variables has been altered in other transactions, the
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runtime resumes the prior transaction and checks if the condition evaluates to true.�e orElse
operator allows to compose two or more transactions. When the the �rst transaction calls yields
via retry, the next transaction is executed instead. In essence, these operators introduce the
concept of blocking coordinations into the transactional model. Hence, transactions can now
wait for events to occur, or include alternative control �ow in a single transaction behavior.
�ere are important limitations of STM. As TM transactions are limited to memory operations,

they can only be used when coordinating access to shared state, but not to external resources.
Furthermore, the transactional character requires operations to be irrevocable, so transactions
must not have any side e�ects apart from modi�cations of shared state. For example, the usage of
I/O operations inside transactions is disallowed.

Furthermore, the length of transactions and the ratio of con�icting transactions have a lasting
e�ect on the performance of STM deployments.�e longer transactions take to execute, the more
likely they cause con�icts and must be aborted, at least in case of many contending transactions.

However, STM provides a bene�cial extension of the traditional concurrency model of shared
state and threads that evades the burden of locking. It allows to compose concurrent operations
without the danger of deadlocks. However, contention and starvation can still occur in a STM
system.�e former is o�en the result of many simultaneous transactions altering the same values.
�e latter might become apparent when a very lengthy transaction continuously competes with
multiple short transactions.
When implemented with optimistic concurrency control, STM provides reasonable perfor-

mance, as long as there are not many concurrent and con�icting write operations.

5.3.3 The Transactional Memory / Garbage Collection Analogy

�e idea of TM and the STM approach for lock-based programming are still controversial. Critics
argue that STM continuously faces several challenges [Cas08], and that’s why it is still primarily
of academical interest so far. For instance, it is still unclear how to handle transactional and
nontransactional access to the same variable, and how to privatize variables (i.e. switching from
transactional to thread-local access). Also, the drawbacks of requiring side-e�ect free code raises
the question, how to incorporate code that cannot be de�ned as a transaction into transactional
operations. Still the most prominent argument against STM is the performance overhead induced
by the so�ware-based implementation of transaction handling.

Proponents of STM counter that the performance of recent STM systems has vastly increased
and STM already represents a robust solution [Dra11]. Various implementations also came upwith
di�erent approach to privatization. Last but not least, the continuing success of Clojure1 testify
the maturity of newer STM implementations. Clojure is the �rst programming language that has
a STM as �rst-class, built-in concurrency concept. Prior to Clojure, STM implementations were
mainly found as extensions to Concurrent Haskell, based on special monads.

1 http://clojure.org/

http://clojure.org/
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Probably the most interesting notion in this argument around TM is the analogy to garbage
collection [Gro07]. While garbage collection addresses managed references, TM addresses
managed state. Both concepts operate on the memory at runtime and take di�cult work out
of the hands of application developers. Compared to TM, very similar objections have been
raised against garbage collection, when it has been suggested for the �rst time. Also, the �rst
garbage collectors su�ered from observable performance overheads compared tomanual memory
management. However, garbage collectors have been vastly improved over time are now an
integral part of many high-level languages. As the model of shared memory will continue to
prevail in the near future, time will tell if the analogy goes on and TM will establish itself as a
reasonable high-level abstraction for shared state concurrency.

5.3.4 Case Study: Concurrency in Clojure

Clojure1 is a programming language that runs on the JVM and is heavily in�uenced by Lisp. It
has a strong focus on functional programming concepts. Another de�ning feature of Clojure is
its elaborate approach towards concurrency. In fact, concurrent programming has been one of
the main reasons for developing Clojure in the �rst place [Hic08]. Like Scala, Clojure builds on
Java and internally uses Java concurrency primitives. Clojure provides a very strong immutability
concept combined with asynchronous agents and a mature implementation of STM.

In order to understand the cooperation between those concepts, it is necessary to elaborate the
notions of identity, state, references and values for Clojure in detail. A value is an immutable piece
of data that does never change.�is is even true for imperative programming to some extent. For
instance, we don’t directly change the value (i.e. number) of a numeric variable, we rather assign
another value to the variable instead.�is does not a�ect the old value though. Object-oriented
programming obfuscates this concept by unifying identity and state. In Clojure, an identity is “a
stable logical entity associated with a series of di�erent values over time”2. In other words, an
identity is an entity with a mutable association to a value, an the state of an identity is captured
by its value at a given time. A reference points to an identity, which in turn points to a value,
depending on the current state. State changes are reassignments of identities to other values.

While this is self-explanatory for values such as numbers, Clojure applies this principle to data
structures as well. When a list is changed by adding a new element, the new value is the old list
appended with the new element. However, the old list still remains unchanged. For supporting
this concept for non-primitive data types such as lists and maps, Clojure makes use of so-called
persistent data structures [Oka96]. In this context, persistent does not denote durable storage.
Instead, persistent data structures preserve their history. E�cient implementations that hold
multiple versions of a data structure without redundant values represent the main challenge for
persistent data structures.�is indirection is an important property for the concurrency concept

1 http://clojure.org/
2 http://clojure.org/state

http://clojure.org/
http://clojure.org/state
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of Clojure and preserves the immutability of values.
�e runtime system of Clojure supports state changes based on values and identities auto-

matically. �erefore, Clojure provides four di�erent types of references to mutable state, that
have di�erent impacts, as shown in table 5.1.�e var reference primitive resembles traditional
variables of imperative programming languages that can be reassigned to other values. However,
vars are only thread-local, and cannot be accessed by other threads. Consequentially, state is
mutable, but not shared.
�e atom reference primitive is very similar to the atomic entities of Java. �ey allow to

manage shared, synchronous, independent state.�e state of an atom can be accessed by explicit
dereferencing. For changing the value, there are three operations, namely reset (setting a new
value), swap (applying a modi�cation function) and compare-and-set (lower-level variant).
�e ref primitive de�nes references that can be accessed for a read operation by using deref-

erencing. Modifying operations can only be executed as part of a STM transaction. �e STM
implementation of Clojure uses Multiversion Concurrency Control (MVCC) [Ber81, Ree78],
a concurrency control mechanism based on timestamps. �e dosync function is used for en-
capsulate transactional operations and all function calls in its function body run in the same
transaction. For operating on refs inside a transaction, there are di�erent functions. ref-set is
used for directly setting the ref to a new value.�e alter operation applies a function which
implements the exchange of state of the ref. �e commute operations works the same way
like alter, but implies that the modifying function is commutative, e�ectively allowing more
concurrency internally (using in-transaction values). Finally, ensure prevents other transactions
from setting an in-transaction value for the ref.�is avoids write skews: multiple transactions
read overlapping data sets, but make disjoint modi�cations without seeing the changes of other
transactions. As already mentioned, transactions should not contain operations with side e�ects,
such as I/O operations. �at’s because the internal STM implementation may abort and retry
transactions.
�e last primitive is agent, providing independent, asynchronous and shared access tomutable

state. Agents isolate state that can be dereferenced by threads for read access.�reads can also
send actions (i.e. modifying functions) to an agent.�e agent then executes incoming actions
sequentially. Execution happens asynchronously in regard to the sender of the action, and
execution is always guaranteed to run single-threaded per agent.�e agent concept is di�erent
from the idea of an actor, as we will see soon. An agent executes incoming functions on its

synchronous asynchronous
coordinated ref
independent atom agent
thread-local var

Table 5.1: Clojure primitives for handling mutable state.
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internal state. Hence, the sent functions de�ne a behavior. An actor provide its own internal
behavior and waits for handling incoming immutable messages.

Clojure forces developers to explicitly label mutable state. Otherwise, state cannot be modi�ed
at all. Only this makes Clojure applications more robust, as it prevents accidental and unintended
mutability. It requires the developers to pick an appropriate concurrency primitive for state
handling.
Avout1 is an external contribution to Clojure that provides a distributed MVCC STM imple-

mentation based on Apache ZooKeeper2 for coordination. It enables the usage of atom and ref
primitives between multiple (remote) JVM instances.
Listing 5.2 provides a Clojure-based solution to our previous web application example.�e

solution takes advantage of the noir web framework3, which in turn uses the jetty web server.
�e minimalistic application de�nes a counter of type ref and a registers a function for request
handling. On each request, this functions executes an STM transaction within the dosync block.
In this case, the commute operation is used, which increments the counter value transactionally.
Usually, the altermethod is used instead of commute. However, the increment operation is
commutative, hence wemight speed up the transaction execution when using commute. A�er the
transaction has �nished, the value of counter is dereferenced (@), converted into a string and
returned as response. We deliberately dereference the value of the counter ref outside rather
than inside the actual transaction, in order to demonstrate the possibility non-transactional read
access to refs (this yields a short window in which the value might have already been changed
by another request). Like in the previous Java example, it would be more elegant to use a Clojure
atom instead, as the counter is the only variable to be modi�ed.

(ns counting.server
(:use noir.core)
(:require [noir.server :as server]))

(def counter (ref 0))

(defpage "/" []
(dosync (commute counter inc))
(str @counter))

(server/start 8080)

Listing 5.2: Aminimalistic, concurrent web application written in Clojure that returns the number
of requests handled so far.

1 http://avout.io/
2 http://zookeeper.apache.org/
3 http://webnoir.org/

http://avout.io/
http://zookeeper.apache.org/
http://webnoir.org/
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5.3.5 STM for Concurrent Application Logic

Like in the previous lock-based approach, application servers using STM also map requests to
threads. We have seen that this approach becomes increasingly inadequate, when I/O-bound
operations dominate. STM does not provide a solution to this issue, in fact, it disallows I/O
operations inside transactions at all. However, STM can support concurrent application logic,
when state is shared in an application server. Depending on the type of application, application
state may be sharded and isolated to several distinct servers (e.g. multiplayer games with small
parties hosted on a distinct server), or it must be available for all application servers (e.g. instant
message noti�cations in social web applications). In the latter case, distributed STM variants allow
for distribution aspects. When the STM implementation provides mechanisms that are similar to
condition variables, coordination between threads as part of transactions is also supported.
As a result, STM renders shared state inside application servers more manageable, thanks to

the absence of explicit locking, but does not solve I/O-bound parallelization issues.

5.4 Actor-based Concurrency

�e concurrency models we have considered so far have the notion of shared state in common.
Shared state can be accessed by multiple threads at the same time and must thus be protected,
either by locking or by using transactions. Both, mutability and sharing of state are not just
inherent for these models, they are also inherent for the complexities. We now have a look at an
entirely di�erent approach that bans the notion of shared state altogether. State is still mutable,
however it is exclusively coupled to single entities that are allowed to alter it, so-called actors.

5.4.1 The Actor Model

�e actor model has its theoretical roots in concurrency modelling [Hew73] and message passing
concepts [Hoa78]. �e fundamental idea of the actor model is to use actors as concurrent
primitives that can act upon receiving messages in di�erent ways:

1. Send a �nite number of messages to other actors.

2. Spawn a �nite number of new actors.

3. Change its own internal behavior, taking e�ect when the next incoming message is handled.

For communication, the actor model uses asynchronous message passing. In particular, it does
not use any intermediate entities such as channels. Instead, each actor possesses a mailbox and
can be addressed.�ese addresses are not to be confused with identities, and each actor can have
no, one or multiple addresses. When an actor sends a message, it must know the address of the
recipient. In addition, actors are allowed to send messages to themselves, which they will receive
and handle later in a future step. Note that the mapping of addresses and actors is not part of the
conceptual model (although it is a feature of implementations).
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Mailbox

Actor

Isolated
State

Figure 5.3: An example network of several actors. Each actor has its own mailbox and isolated
state. Based on its designated behavior, the actor responds to incoming messages by send new
messages, spawn new actors and/or changing its future behavior.

Messages are sent asynchronously and can take arbitrarily long to eventually arrive in the
mailbox of the receiver. Also, the actor models makes no guarantees on the ordering of messages.
Queuing and dequeuing of messages in a mailbox are atomic operations, so there cannot be a
race condition. An actor processes incoming messages from his mailbox sequentially using the
aforementioned possibilities to react.�e third possibility, changing its own internal behavior,
eventually allows to deal with mutable state. However, the new behavior is only applied a�er
the current message has been handled.�us, every message handling run still represents a side-
e�ect free operation from a conceptual perspectice.�e actor model can be used for modelling
inherently concurrent systems, as each actor is entirely independent of any other instances.�ere
is no shared state and the interaction between actors is purely based on asynchronous messages,
as shown in �gure 5.3.

5.4.2 Actor Implementations for Concurrent Programming

Besides a theoretical model for concurrent systems, the idea of actors also represents the blueprint
for a concurrent programming model. Several conceptual implementations have been consid-
ered [Agh90], ranging from strictly functional adaptions to extensions of the object-oriented
paradigm [Gue07].�e �rst, fairly popular programming language that has incorporated the ac-
tor model for concurrency was Erlang [Vin07].�e actor model has recently become increasingly
popular and �nds its way into many new programming languages, o�en as �rst-class language
concept. In many other languages, the actor model is available using third-party libraries that
build on top of conventional multithreading.
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When implementing the actor model, it is important to adhere to the set of rules de�ned by
the original idea. First and foremost, actors must not share any state. �is disallows actors to
pass references, pointers or any other kind of shared data as part of a message. Only immutable
data and addresses (i.e. “names”) of actors should be sent. Message passing between actors
is o�en enriched with a few more guarantees compared to the entirely best-e�ort style. Most
implementations ensure that two messages sent from one actor to another maintain their order
at arrival. Messaging is always asynchronous and the interleaving of incoming messages sent by
multiple actors is indeterminate.
For message handling, most implementations provide pattern matching. �is enables the

developer to distinguish between di�erent types of messages and supply di�erent handling code
associated to the type of message. While receiving messages is a blocking operation from the
actor’s perspective, sending new messages is always non-blocking. Some implementations also
provide selective receive semantics. Depending on its behavior, an actor may then wait for a
speci�c message in the mailbox and temporarily defer others.
�e underlying runtime platform must allocate possibly huge numbers of actors to restricted

numbers of CPU cores and resources and schedule the execution of actors with pending mes-
sages. Most systems employ a principally lock-free implementation, as atomic behavior is only
required for the mailbox operations. For instance, the Erlang virtual machine starts a single
process and spawns a pool of threads based on the number of cores available [Lar08]. �e in-
ternal scheduler organizes actors in process queues and works preemptively. When a running
actor has handled a message or has executed a certain number of reductions (i.e. function calls),
the scheduler switches to the next actor ready to run. For I/O operations, the Erlang virtual
machine spawns decoupled operating system threads.�e reduction limits and background I/O
operations promote fairness and liveness, because no actor can bind CPU time for a longer period.

Many implementations of the actor model provide additional features that are also rami�ca-
tions of the actor model, namely distribution support and fault tolerance. Concurrency concepts
normally target single machines.�e actor model does not postulate many guarantees for mes-
saging. Asynchronous, unbounded messaging in fact resembles network-based communication.
�e isolation of states to actors does not require shared access between multiple actor instances.
Actors are designated using addresses, that can easily provide location transparency.�e actor
model is inherently parallel, thus it is very easy to extend implementations of the actor model to
support distributed deployments. For instance, distributed Erlang systems make use of multiple
nodes running an Erlang virtual machine and transparently provide distributed messages passing.
Conventional, thread-based concurrency gives fault tolerance a hard �ght. Nondeterminism

and unpredictable scheduling combined with shared state and locking requires very complex
strategies for replication and snapshotting. �e actor model comes up with other primitives
that makes replication much easier. Isolated states and incoming messages queued in actors’
mailboxes are very similar to snapshots and logs. Message handling of an actor is single-threaded
and provides implicit yielding points. Erlang embraces a “let is crash” philosophy [Arm07].�e
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isolated, shared nothing trait of actors allows a single actor to fail without a�ecting any other
actors. Furthermore, the actor model itself can be used for fault tolerance, by spawning hierarchy
trees of actors for supervision. Once an actor crashes, the supervising actor receives a messages
and can react. A supervisor might restart the actor, stop other actors or escalate by sending an
error message to its own supervisor.

Actors have an isolating impact on state and e�ectively prevent shared mutabale state. Also, no
locks are necessary for concurrent programming. However, concurrency issues like deadlocks
and race conditions are still not entirely expelled in this programming model, as they can be
reintroduced by incorrect applications. Two actors waiting for amessage from each other represent
a cyclic dependency. In practice, the impending deadlock can be prevented by using timeouts.
�e arbitrary ordering of messages send by actors might be interpreted as a traditional race
condition by some developers. However, it is a characteristic property of the actormodel testifying
asynchrony. Hence, these developers ignore fundamental ideas of the actor model and the
resulting “race condition” is actually a manifestations of inappropriate application design.

5.4.3 Programming with Actors

�e actor model for concurrency is very di�erent than thread-based concurrency with locks or
STM. Isolated mutable state and asynchronous messaging yield other programming patterns that
threads do.

First of all, it is important to understand that actors represent very lightweight primitives com-
pared to threads.�ey can be spawned and destroyed with minimal overhead.�us, it is totally
feasible to create and use large numbers of instances in parallel. Actors can also execute arbitrarily
complex computations in response to a message. Actors can send messages to themselves, which
allows messaging patterns that recreate recursion. Furthermore, actors can send messages to
other actors known by their address, so an actor-based program is essentially a highly dynamic
network of actors (a directed graph). As a result, existing message-based patterns for application
integration [Hoh03] provide a comprehensive set of patterns that can be used for concurrent
programming with actors as well.�is includes popular messaging patterns for routing, �ltering,
transformation and composition.

Isolating mutable state and enforcing immutable messages guarantees implicit synchronization.
However, the concept of asynchronous messaging and no global state challenges coordination.
An application may require consensus or a concerted view of state between multiple actors.
When multiple actors must be strictly orchestrated in order to provide a distinct application
function, correct messaging can become very demanding.�us, many implementations provide
higher-level abstractions that implement low-level coordination protocols based on complex
message �ows, but hide the internal complexity from the developer. For Erlang, OTP is a standard
library that contains a rich set of abstractions, generic protocol implementations and behaviors.
Another common approach is the transactor. For example, multiple actors may require to

modify their internal state in a coordinated manner. A transactor, which is a dedicated actor
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for coordinating transactional operations of multiple actors, can help in this situation by pro-
viding abstract transaction logic. Some transactors also apply STM concepts for transactional
behavior [Les09, Les11].

5.4.4 Case Study: Concurrency in Scala

Scala1 is a general purpose, object-functional language that runs on the JVM. It interoperates with
Java, but provides enhanced expressiveness, advanced programming concepts and many features
of functional programming. For concurrency, Scala implements an actor-based concurrency
model and supports explicit immutability of values. However, Scala applications can also fall
back to concurrency primitives of the Java programming language.
While Erlang spawns multiple low-level threads and implements a custom scheduler for run-

ning actors, Scala is somehow caught by themultithreading implications of the JVM. Furthermore,
the actor implementation of Scala is not part of the language core, but part of its standard library.
�is means that actor library itself is implemented in Scala. One initial challenge of Scala actors
has been introduced by the constraints of multithreading in the JVM.�e number of possible
threads is limited, there is no cooperative scheduling available and threads are conceptually less
leightweight than actors are supposed to be. As a result, Scala provides a single concept of an
actor, but two di�erent mechanisms for message handling [Hal06, Hal08].

�read-based Actors When the receive primitive is used, the actor is internally backed by a
dedicated thread.�is obviously limits scalability and requires the thread to suspend and
block when waiting for new messages.

Event-driven Actors �e react primitive allows and event-driven execution strategy, which does
not directly couple actors to threads. Instead, a thread pool can be used for a number of
actors. �is approach uses a continuation closure to encapsulate the actor and its state.
However, this mechanism has several limitations and obscures the control �ow [Hal08].
Conceptually, this implementation is very similar to an event loop backed by a threadpool.
Actors represent event handlers and messages resemble events.

Generally, react should be preferred, as it does not couple each actor to a dedicated thread.
�e react primitive thus yields better scalability results.
�e syntax of Scala actors for messaging follows the Erlang style. Messages are supposed to be

immutable values, but this is not enforced so far. O�en, case classes are used, a special type of
wrapper class.�ey are especially helpful when pattern matching is used to determine the type of
message on arrival. Scala also supports the distribution of actors, by supplying remote actors,
that communicate over TCP/IP and rely on Java serialization.

1 http://www.scala-lang.org/

http://www.scala-lang.org/
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package actors

import akka.actor.Actor
import Actor._

class CoutingActor extends Actor {

var count = 0;

def receive = {
case "visit" =>
count = count+1
sender ! ""+count

}
}

Listing 5.3: An actor in scala, based on the akka actor implementation.�e actors encapsulates
a counter state, and responds to each “visit” message by returning the number of overall visits
counted so far.

Listing 5.3 and 5.4 illustrate an actor-based solution to our prior exemplary web application.�e
solution is written in Scala and uses the Play web application framework1.�e framework does
not use regular Scala actors, but actor implementations provided by the akka library2. As shown
in listing 5.4, the application starts a single actor and registers a method for handling requests.
�is method sends an asynchronous "visit"message to the actor. By using the ? operator, a
Future is returned that represents the eventual reply. If no timeout occurs, the actor reply is then
used as response body of the SimpleResult, once available.�e internals of CoutingActor,
as shown in listing 5.3, are very simple.�e actor provides a single counter variable and responds
to “visit” messages by incrementing the value and sending it back to the original sender.

5.4.5 Actors for Concurrent Application Logic

When the application servers use the actor model, each incoming request represents a new actor.
For parallelizing request operations, the actor spawns new actors and assigns work via messages.
�is enables parallel I/O-bound operations as well as parallel computations. O�en, the �ow of a
single request represents a more or less complex message �ow between multiple actors, using
messaging patterns such as scatter/gather, router, enricher or aggregator [Hoh03].

However, implementing request logic using actors di�ers clearly from sequential request logic
implementations. �e necessary coordination of multiple actors and the less apparent �ow
of execution due to asynchronous messaging provides an arguably less comfortable, but more

1 http://www.playframework.org/
2 http://www.akka.io/

http://www.playframework.org/
http://www.akka.io/
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package controllers

import akka.util.Timeout
import akka.pattern.ask
import akka.actor._
import akka.util.duration._
import actors.CoutingActor
import play.api._
import play.api.mvc._
import play.api.libs.concurrent._
import play.api.libs.iteratee.Enumerator

object Application extends Controller {

val system = ActorSystem("counter")
val actor = system.actorOf(Props[CoutingActor])

def index = Action {
AsyncResult {
implicit val timeout= Timeout(5.seconds)
(actor ? "visit").mapTo[String].asPromise.map { result =>
SimpleResult(
header = ResponseHeader(200, Map(CONTENT_TYPE -> "text/plain")),
body = Enumerator(result)

)
}

}
}

}

Listing 5.4: Aminimalistic, concurrent web application written in Scala that returns the number
of requests handled so far, using the Play web framework.

realistic abstraction towards concurrency
Another feature of the actor model is the possibility to scale the actor system as a whole by

adding new machines. For instance, Erlang enables virtual machines to spawn a distributed
system. In this case, remote actors can hold isolated application state, but accessible via messaging
for all other actors of the entire system.

5.5 Event-driven Concurrency

We have already got to know the concept of event-driven architectures in chapter 4. Although
event-driven programming does not represent a distinct concurrencymodel per se, the concepts of
event loops and event handlers and their implementations have strong implications on concurrent
programming. Events and event handlers are o�en confused with messages and actors, so it is
important to point out that both concepts yield similar implementation artifacts. However, they
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do not have the exactly same conceptual idea in common. Actor-based systems implement the
actor model with all of its characteristics and constraints. Event-driven systems merely use events
and event handling as building blocks and get rid of call stacks. We have now a look at the original
idea of event-driven architectures “in the large”, and examine the event-driven programming
model a�erwards.

5.5.1 Event-driven Architectures

Whether in small application components or in large distributed architectures, the concept of
event-driven architectures [Hoh06] yields a speci�c type of execution �ow. Conventional systems
are built around the concept of a call stack that bears on several assumptions. Whenever a caller
invokes a method, it waits for the method to return, perhaps yielding a return value. Finally, the
caller continues with his next operation, a�er his context has been restored.�e invoked method
in turn might have executed other methods on its own behalf. Coordination, continuation and
context are thus inherent features of the call stack.�e imperative model assumes a sequential
execution order as a distinct series of maybe nested invocations. A caller knows in advance which
methods are available and which services they expose. A program is basically a path of executions
of instructions and method invocations. Hence, a call stack is very formative for programming
concepts and it so pervasive, that many developers take it for granted.
Surprisingly, event-driven architectures reject the concept of a call stack and consequently

lose its inherent features. Instead, these architectures promote more expressive interaction styles
beyond call/return and a looser coupling of entities. Basic primitives of this concept are events.
Events occur through external stimuli, or they are emitted by internal entities of the system.
Events can then be consumed by other entities.�is not just decouples callers and callees, it also
obviates the need for the caller to know who is responsible for handling the invocation resp. event.
�is notion obviously causes a shi� of responsibilities, but allows more versatile compositions and
�ows.�e event-driven architecture is also inherently asynchronous, as there is neither a strong
coupling between event producers and event consumers, nor a synchronous event exchange.
In essence, the event-driven model represents an approach for designing composable and

loosely coupled systems with expressive interaction mechanisms, but without a call stack. Event-
driven architectures do not represent or nominate a certain concurrency model. Unsurprisingly,
thread-based event loops and event handlers are o�en used for implementations of event-driven
architectures, next to message passing approaches.

5.5.2 Single-threaded Event-driven Frameworks

Several platforms and frameworks use event-driven architectures based on event loops and
event handlers for the implementation of scalable network services and high-performance web
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applications. Popular solutions include node.js1, Twisted Python2, EventMachine (Ruby)3 and
POE (Perl)4.
�e programming languages used by these systems still provide a call stack. However, these

systems do not use the call stack for transporting state and context between event emitters and
event handlers.
While it is generally possible to apply multithreading [Zel03], most of the aforementioned

frameworks and platforms rely on a single-threaded executionmodel. In this case, there is a single
event loop and a single event queue. Single-threaded executionmakes concurrency reasoning very
easy, as there is no concurrent access on states and thus no need for locks. When single-threading
is combined with asynchronous, non-blocking I/O operations (see chapter 4), an application can
still perform very well using a single CPU core, as long as most operations are I/O-bound. Most
web applications built around databases operations are indeed I/O-bound, and computationally
heavy tasks can still be outsourced to external processes. When applications are designed in a
shared-nothing style, multiple cores can be utilized by spawning multiple application instances.
In chapter 4, we have seen that single-threaded event-driven programming does not su�er

from context switching overheads and represents a sweet spot, when cooperative scheduling is
combined with automatic stack management. We have also seen previously that the missing call
stack in event-driven architectures relinquishes free coordination, continuation and context.
�e event-driven programming style of these frameworks provide di�erent means to structure

application code andmanage control �ow.�e event loop sequentially processes queued events by
executing the associated callback of the event. Callbacks are functions that have been registered
earlier as the event handler for certain types of events. Callbacks are assumed to be short-
running functions that do not block the CPU for a longer period, since this would block the
entire event loop. Instead, callbacks are usually short functions that might dispatch background
operations, that eventually yield new events. Support for anonymous functions and closures
are an important feature of programming languages for event-driven programming, because
the �rst-class functions are used to de�ne callbacks, and closures can provide a substitute for
context and continuation. Due to the fact that closures bind state to a callback function, the
state is preserved in the closure and is available again once the callback is executed in the event
loop.�e notion of single-threaded execution and callbacks also provides implicit coordination,
since callbacks are never executed in parallel and each emitted event is eventually handled using
a callback. It is safe to assume that no other callback runs in parallel, and event handlers can
yield control and thus support cooperative scheduling. Once a callback execution has �nished,
the event loop dequeues the next event and applies its callback. Event-driven frameworks and
platforms provide an implicit or explicit event loop, an asynchronous API for I/O operations and

1 http://nodejs.org/
2 http://twistedmatrix.com/
3 http://rubyeventmachine.com/
4 http://poe.perl.org/

http://nodejs.org/
http://twistedmatrix.com/
http://rubyeventmachine.com/
http://poe.perl.org/
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system functions, and means to register callbacks to events.
Using a single thread renders the occurrence of a deadlock impossible. But when developers

do not fully understand the implications of an event loop, issues similar to starvations and race
conditions can still appear. As long as a callback executes, it consumes the only thread of the
application. When a callback blocks, either by running blocking operations or by not returning
(e.g. in�nite loops), the entire application is blocked. When multiple asynchronous operations
are dispatched, the developer must not make any assumptions on the order of execution of
their callbacks. Even worse, the executions of the callbacks can interleave with other callbacks
from other events. Assumptions on callback execution ordering are especially fatal when global
variables instead of closures are used for holding state between callbacks.

5.5.3 Case Study: Concurrency in node.js

Node.js is a platform built on the v8 JavaScript engine of Google’s Chrome browser, an event
library for asynchronous, non-blocking operations and some C/C++ glue code [Til10]. It provides
a lightweight environment for event-driven programming in JavaScript, using a non-blocking
I/O model. Compared to other event-driven frameworks and platforms, node.js sticks out due
to several reasons. Unlike many other programming languages, JavaScript has neither built-
in mechanisms for I/O, nor for concurrency. �is allows to expose a purely asynchronous,
non-blocking API for all operations and prevents the accidental use of blocking calls (in fact,
there are also blocking API calls for special purposes). With its good language support for
anonymous functions, closures and event handling, JavaScript also supplies a strong foundation
of primitives for event-driven programming.�e event loop is backed by a single thread, so that
no synchronization is required at all. Merging multiple event sources such as timers and I/O
noti�cations and sequentially queueing events is also hidden inside the platform.
Node.js does not expose the event loop to the developer. A node.js application consists of

a sequence of operations that might provide asynchronous behavior. For each asynchronous
operation, a proper callback should be speci�ed. A callback, in turn, can dispatch further
asynchronous operations. For instance, a node.js web server uses a single asynchronous function
to register an HTTP server, passing a callback. �e callback de�nes function to be executed
each time a new request is received.�e request handling callback in turn might execute �le I/O,
which is also asynchronous. �is results in heavy callback chaining and an obvious inversion
of control due to the callback-centric style. �is outcome requires strict coding rules or the
assistance of libraries in order to keep code readable and manageable without losing track of the
�ow of execution. One of these libraries is async1, which makes heavy use of functional properties
of JavaScript. It provides support for control �ow patterns such as waterfall, serial and parallel
execution, functional concepts like map, reduce, �lter, some and every, and concepts for error
handling. All these abstractions make callback handling more reasonable. Although node.js is

1 https://github.com/caolan/async

https://github.com/caolan/async
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a rather new platform, there are already many libraries and extensions available, especially for
web application development. One of the most distinguished libraries for node.js is socket.io1. It
provides web realtime communication mechanisms between a server and browsers, but abstracts
from the underlying transport. Hence, the developer can use send functions and message event
handlers both for server-side and client-side application code.�e underlying communication
uses WebSockets, but supports several fallbacks such as long polling, when not available.
Listing 5.5 illustrates, how shared application state is handled in a single-thread event-driven

application, in this case node.js.�e application de�nes a global count variable.�en, a server
is created with a callback for request handling.�e callback responds to every request by incre-
menting the count variable and returning its value. �anks to the single-threaded execution
model, there is no synchronization required when accessing or modifying the variable.

5.5.4 Event-driven Concurrent Application Logic

It is obvious that single-threaded, event-driven application servers cannot reduce latencies of
CPU-bound requests. Most platform components are part of our distributed architecture, hence
most of the operations of a request are in fact I/O-bound. For complex computations, we also
provide a decoupled background worker pool. �us, the event-driven approach is a suitable
concept when the application logic primarily dispatches work tasks, calls, and requests to the
platform components and later combines the results without high computational e�orts. �e
advantages of the event-driven approach for I/O-boundparallelismhave already been illustrated in
chapter 4. When shared application state and pub/sub coordination mechanisms are outsourced
to platform components, this mechanism �ts well into the event-driven approach. Actually,
if application state can be isolated to separate application servers (e.g. sessions of interactive
web applications), another bene�t of the event-driven approach comes even more handy.�e
single-threaded execution models makes it very easy to access and modify mutable state between
requests, because no real concurrency is involved.

var http = require('http');

var count = 0;

http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.end((++count)+'\n');

}).listen(8080);

Listing 5.5: Aminimalistic, concurrent web application written in JavaScript that returns the
number of requests handled so far, using the node.js platform.

1 http://socket.io/

http://socket.io/
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5.6 Other Approaches and Concurrency Primitives

We have now seen four common concurrency concepts that can be used for programming
concurrent application logic. However, there are still other concurrency concepts and language
primitives for concurrent programming. We will now introduce the more interesting ones brie�y.
We give hints how they relate to the former concepts and how they can be used in practice.

5.6.1 Futures, Promises and Asynchronous Tasks

Promises [Fri76, Lis88] and futures [Bak77] generally describe the same idea of decoupling a
computation and its eventual result by providing a proxy entity that returns the result, once
available. In concurrent programming, promises and futures are o�en used for asynchronous
background tasks. Once a task is dispatched, the proxy entity is returned and the caller’s �ow
of execution can continue, decoupled from the new computation.�e proxy entity can later be
queried to return the result of the decoupled computation. If the result is not yet available, the
proxy entity either blocks or provides a noti�cation, when non-blocking.
Promises and futures also introduce a synchronization mechanism, as they allow to dispatch

independent computations, but synchronize with the initial �ow of control, once the result is
requested and eventually returned. Futures and promises are available in many programming
languages using threads for concurrency. In this case, the execution of the background task is
scheduled to another thread, allowing the initial thread to continue its execution. Actor-based
systems o�en use an actor as a proxy entity of a computation, which is essentially the same as a
future [Hew73]. Sending a message to another actor and awaiting its eventual response is also
o�en abstracted using futures. In event-driven systems, eventual results are represented by events,
and handled by associated callbacks.
When programming web applications, promises or futures can be used to decrease latency.

�e scatter-gather pattern dispatches multiple independent operations (scatter) and waits for
all operations to yield results (gather). For instance, multiple independent database queries
can be parallelized using this pattern. �is can be implemented by scattering all operations
as background tasks yielding proxy entities, then gathering all results by accessing the proxy
entities. In e�ect, this converts a sequence of operations into parallel execution of operations.
Data�ow programming provides a similar execution strategy, but hides the notion of futures in
the implementation.

5.6.2 Coroutines, Fibers and Green Threads

Coroutines [Con63], and similarly �bers and green threads, are a generalization of subroutines.
While a subroutine is executed sequentially and straightly, a coroutine can suspend and resume
its execution at distinct points in code. �us, coroutines are good primitives for cooperative
task handling, as coroutines are able to yield execution. We have identi�ed the advantages of
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cooperative task handling in chapter 4, especially in case of massive parallelism of asynchronous
operations such as I/O.
Coroutines are o�en used as low-level primitives, namely as an alternative to threads for

implementing high-level concurrency concepts. For example, actor-based systems and event-
driven platforms may use coroutines for their underlying implementation.
�ere are also several programming languages and language extensions that introduce corou-

tines or their variants to high-level programming languages. For instance, greenlet1 is a coroutine
framework for Python, that is heavily used by high performance event loop frameworks such as
gevent2.
Google Go3 is a general-purpose programming language from Google that supports garbage

collection and synchronous message passing for concurrency (see below). Go targets usage
scenarios similar to C/C++ by tendency. It does not supply threads for concurrent �ows of
executions, but a primitive called goroutine, which is derived from coroutines. Goroutines are
functions that are executed in parallel with their caller and other running goroutines.�e runtime
system maps goroutines to a number of underlying threads, which might lead to truely parallel
execution. In other circumstances, multiple goroutines might also be executed by a single thread
using cooperative scheduling. Hence, they are more powerful than conventional coroutines, as
they imply parallel execution and communicate via synchronous message passing, and not just
by yielding.

5.6.3 Channels and Synchronous Message Passing

Message passing is a theoretical model for concurrent systems that became well-known thanks to
Hoare’s CSP [Hoa78]. It is also the theoretical foundation for concurrent programming concepts.
�ere are two di�erent �avors of message passing—synchronous and asynchronous. We have

already got to know the latter one, because the actor model is essentially built on asynchronous
message passing between actors. Asynchronous message passing decouples communication
between entities and allows senders to send messages without waiting for their receivers. In
particular, there is no synchronization necessary between senders and receivers for message
exchange and both entities can run independently. On the other hand, the sender can not know
when a message is actually received and handled by the recipient.
�e other variant, synchronous message passing, uses explicit message exchanging. Both the

sender and receiver have to be ready and block while the message is getting exchanged. As a
consequence, synchronous message passing yields a form of synchronization, because message
exchanges are explicit synchronization points for di�erent �ows of control.
�ere are several other di�erences between both models. In asynchronous message passing

1 http://codespeak.net/py/0.9.2/greenlet.html
2 http://www.gevent.org/
3 http://golang.org/
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models, the communicating entities have identities, while their synchronous counterparts are
anonymous. Synchronous messaging uses explicit, named channels for communication between
entities, while asynchronous messaging does not have intermediaries.
Google Go makes heavy use of synchronous message passing for concurrent programming,

very similar to the way pipes are used in Unix (also synchronous). Channels are �rst-level
languages primitives that are used for data exchange between goroutines. As goroutines can
be scheduled to multiple threads and might actually run in parallel, channels are also the main
synchronization primitive assuring that multiple goroutines meet in a mutually known state.

5.6.4 Dataflow Programming

Data�ow programming with declarative concurrency is a very elegant, yet rather uncommon
approach to tackle concurrency. Imperative programming is based on the idea of describing a
sequence of explicit operations to execute. Instead, data�ow programming de�nes the relations
between necessary operations, yielding an implicit graph of dependencies, the �ows of execution.
�is allows the runtime systems to automatically identify independent steps of operations and
parallelize them at runtime. Coordination and synchronization are hidden in the runtime system,
o�en by using channels in order to wait for multiple input data and then initiate the next steps
of computation. Although this programming concept allows true parallelism, coordination and
synchronization e�orts are hidden due to the declarative style.
Mozart/Oz [Roy04] is a programming language that supports multiple paradigms and has

strong support for data�ow programming with declarative concurrency. GPars1 is a Java concur-
rency library that also supplies a rich set of data�ow concurrency primitives.

Data�ow programming is also interesting for web application development. Application-level
request handling can be de�ned as a �ow of operations.�anks to the implicit parallelization,
independent operations are then executed in parallel and later synchronized without any locking.
Hence, this style helps to decrease latencies.

5.7 Summary

Conventional web applications are primarily “embarrassingly parallel”, because requests are
entirely isolated and easy to execute independently. Highly interactive and collaborative web
applications, as well as real-time web applications, require more challenging concurrency proper-
ties. On the one hand, these applications need to coordinate actions and communicate between
di�erent concurrent requests.�ey also share a common state between requests as part of the
application logic. �is enables features such as instant noti�cations, asynchronous messaging
and server-sent events—important building blocks for a wide range of modern web applications

1 http://gpars.codehaus.org/
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including social web applications, multiplayer browser games, collaborative web platforms and
web services for mobile applications. On the other hand, modern applications require increasingly
low latencies and very high responsiveness.�is can be tackled by parallelizing the application
logic operations which are necessary for a request as much as possible. In turn, this requires
synchronization of the request logic for each request. Hence, the application logic of modern,
large-scale web applications is inherently concurrent. We have therefore presented and analyzed
the most popular concurrency concepts for programming concurrent systems in general.
�e concept of threads and locks is based on mutable state shared by multiple �ows of exe-

cution. Locks are required to enforce mutual exclusion and prevent race conditions. In turn,
locks introduce the hazard of deadlocks, livelocks and starvation. Choosing the right locking
granularity becomes a trade-o� between the danger of race conditions and deadlocks, and be-
tween degenerated sequential execution and unmanageable nondeterminism.�e combination
of nondeterminism and mutable shared state makes it extremely hard to reason about lock-based
concurrency and its correctness. Furthermore, compositions of lock-based components are not
guaranteed to be deadlock-free. Concurrent programming based on threads, locks and shared
state is still essential. It represents the low-level foundation for all higher concurrency abstrac-
tions and cannot be ignored. However, it is o�en the wrong level of abstraction for high-level
application programming because it is too di�cult and too error-prone.
STM addresses these problems of lock-based concurrency by introducing transactional op-

erations for concurrent code. Transactions isolate operations on mutable shared state and are
lock-free and composable. However, transactional code must not contain any side e�ects (e.g.
no I/O operations), as it might be aborted and retried. STM hides the complexity of transaction
handling in a so�ware layer, which introduces some computational overhead at runtime.
�e actor model represents an entirely di�erent approach that isolates mutability of state.

Actors are separate, single-threaded entities that communicate via immutable, asynchronous and
guaranteed messaging.�us, actors encapsulate state and provide a programming model that
embraces message-based, distributed computing.

Common event-driven architectures evict the danger of deadlocks by using a single-threaded
event loop.�e event loop dequeues piled-up events and sequentially executes each event with
its associated event handler (i.e. callbacks). Hence, application logic is de�ned as a set of event
handlers, which results in an inversion of control when compared to purely sequential code.
When applications are primarily I/O-bound and event handlers do not execute computationally
complex operations, this concept utilizes a single CPU core very well and makes concurrency
reasoning very easy.

We have also seen that data�ow programming uses declarative concurrency based on implicit
dependency graphs. Synchronous message passing provides channel-based points for data ex-
change, which can also be used for synchronizing and coordinating di�erent �ows of execution.
Coroutines represent primitives for cooperative task handling. Futures and promises are helpful
for decoupling background tasks and later synchronizing with their eventual result.
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In the previous chatpers, we have always to evade state as much as possible. Our considerdations
for web server internals are based on a shared-nothing architecture. For programming application
logic, we have given the preference to reduce the usage of shared, mutuable state to the bare
minimum. However, only a handful of web applications can completely disregard any kind of
state. Statelessness is viable for validation or computation services, and a few other applications.
For virtually all other web applications, some type of persistent state represents an essential part
of the overall application. In our architectural model, we have edged away state handling to
dedicated backend services.

In this chapter, we consider the impact of concurrency and scalability to storage backends. We
illustrate the challenge of guaranteeing consistency in distributed database systems and point to
di�erent consistency models. We then outline some internal concepts of distributed database
systems and describe how they handle replication and partitioning. Finally, we introduce di�ernt
types of distributed database systems and assess their features.

6.1 The Challenge of Distributed Database Systems

As we think about large-scale web applications, we need storage backends that scale and support
concurrency. By scalability, we aim for increasable data capacity and growing read/write through-
put of a high degree. �e application servers in our model handle huge numbers of requests
in parallel. As they, in turn, rely on the backend storage systems, we need to cope with highly
concurrent access at this level as well.
�roughput and capacity increases can only be sustainably achieved by employing a horizontal

scale mechanism. A single database server would only be able to scale up to a certain load, even
with specialized hardware equipment. As a consequence, we need a concurrent and distributed
system for scalable backend storage.
�e backend storage must persistently hold the application state, thus we are also expecting

some kind of data consistency when reading/writing data in our application. We are dealing
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with a distributed system, so we must expect failures in advance. In case of a failure of a single
node, we still want the overall storage system to operate seamlessly and maintain its availability.
Likewise, we are executing storage operations as part of web requests, thus we demand low latency
of operations.
�ese general requirements lead us to an important barrier of distributed systems, Brewer’s

theorem on the correlation of consistency, availability and partition tolerance.

6.1.1 The CAP Theorem

�e CAP conjecture was introduced by Brewer in 2000 [Bre00] and later con�rmed by Gilbert
and Lynch [Gil02] as a theorem. Brewer argues that distributing computations is relatively easy,
but the hard part of distributed systems is actually persisting state. Moreover, he postulates three
distinct properties for distributed systems with an inherent correlation.

Consistency �e consistency property describes a consistent view of data on all nodes of the
distributed system.�at is, the system assures that operations have an atomic characteristic
and changes are disseminated simultaneously to all nodes, yielding the same results.

Availability �is property demands the system to eventually answer every request, even in case
of failures.�is must be true for both read and write operations. In practice, this property
is o�en narrowed down to bounded responses in reasonable time. However, Gilbert and
Lynch have con�rmed the theorem even for unbounded, eventual responses.

Partition tolerance �is property describes the fact that the system is resilient to message losses
between nodes. A partition is an arbitrary split between nodes of a system, resulting
in complete message loss in between. �is a�ects the prior properties. Mechanisms for
maintaining consistency must cope with messages losses. And according to the availability
property, every node of any potential partition must be able to respond to a request.

�e core statement of Brewer’s theorem now goes as follows:

“You can have at most two of these properties for any shared-data system."

We have seen that all properties are desirable. But any real system must trade o� the properties
and dismiss at least one of them, as shown in �gure 6.1. So we have three distinct combinations
with signi�cantly di�erent characteristics.

Consistency & Availability (CA)

�e group of distributed systems following this model provides a consistent and available service,
but does not tolerate partitions. In case of a partition, these systems may become inconsistent, as
we will see soon.�e combination is also known as high-availability consistency.
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Figure 6.1: Di�erent properties that a distributed system can guarantee at the same time, accord-
ing to Brewer’s theorem [Bre00].

Contenders following this approach include most of the traditional relational database manage-
ment systems. Replication is an important mechanism for achieving highly available consistency
and transaction protocols such as the two-phase commit protocol are applied to ensure con-
sistency. �e separation into partitions may lead to so-called “split brain” scenarios, in which
di�erent partitions create con�icting replicas as a result of isolation.

Recovering from such scenarios would require some kind of consensus protocol.�is in turn
would disallow nodes to service requests unless a consensus is available. We would thus convert
our CA approach into a CP approach at the sacri�ce of availability.�e shortcomings of coping
with network errors renders the CA approach less suitable for larger distributed database systems.

Consistency & Partition Tolerance (CP)

Distributed systems at the intersection of consistency and partition tolerance provide a strongly
consistent service. Consistency is guaranteed even in the presence of a partition. However, nodes
of a partition may not be able to respond to requests as long as they have not yet agreed with other
nodes that may be temporarily unreachable. As a result, availability cannot be always provided.
�is combination of properties is also known as enforced consistency.

In practice, this approach is important when consistency must be enforced at any costs, and
the system is still inherently distributed by design. �at is for instance a banking application,
where the balance of all accounts is a primary constraint. Database systems implementing this
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model are also o�en based on relational database systems. Supporting consistent states even in
case of network errors requires the usage of sophisticated algorithms for quorum and majority
decisions. Such a protocol for solving consensus is the Paxos protocol [Lam98].

Availability & Partition Tolerance (AP)

Distributed systems that are always available and tolerate partitions maintain their service even
when partitions occur. However, a reachable node may then hold (temporarily) inconsistent state.
�us, this intersection of properties is also known as eventual consistency.

In terms of data and state, the sacri�ce of strong consistency guarantees appears to be ques-
tionable at �rst glance. However, many applications can indeed tolerate deferred consistency
properties when favoring availability at all costs. In this case, it is important to keep in mind
potential issues due to eventually consistent data on application level during development. Well
known examples following this approach are the Domain Name System (DNS) or web caches.
Stale data (e.g. host mappings resp. cached responses) are acceptable for a while, but eventually
the latest version of the data disseminates and purges older entries.

Criticism and an Alternative Model to the CAP Theorem

With the beginning of the NoSQL movement and increasing interest in eventually consistent data
stores, some criticism has been leveled at the CAP theorem. A central issue of the CAP theorem
results from the simplifying error model that only targets network failures. It is especially the
premature dropping of consistency as the answer to network errors, that is raised to question by
members of the database community such as Stonebraker[Sto10].
Abadi targets other shortcomings of the CAP theorem, namely the asymmetry of availability

and consistency and the generalising trade-o� between consistency and availability [Aba10].
According to Abadi, this becomes obvious when regarding systems in the absence of partitions.
As a result, Abadi proposes an alternative model: PACELC. It can be used to describe whether a
system, in case of a partition (P), either focuses availability (A) or consistency (C), and whether a
system else (E) focuses on latency (L) or consistency (C). As a consequence, systems can now be
categorized more precisely. As an example, eventually consistent systems (AP in terms of CAP)
can be split up into PA/EL or PA/CL systems, yielding more details on their regular operational
mode in the absence of partitions.

6.1.2 Consistency Models

We have seen that consistency, availability and partition tolerance cannot be guaranteed at the
same time for a distributed system. From our perspective of large-scale web architectures, this
is mainly important for the storage backends, as these components keep our application states
persistently. When building a large web architecture, we have to choose storage components
while keeping in mind the prior limitations. Consistency is the most de�ning constraint for our
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application logic, as it determines the type of consistency to expect from the database system.
�us, we need to consider di�erent consistency models and their impacts on the application.
We limit our review to the two important main consistency models, from the perspective of our
application, which is the client of the database.
While the following two models are generally opponents of each other, it is noteworthy that

Brewer mentions they in fact form a spectrum. As a result, there are some means for trade-
o�s in between. Several distributed database systems allow to �ne-tune consistency trade-o�s
via con�guration parameters. Also, a large-scale web application can o�en split data storage
requirements into functional groups. For instance, an e-commerce site can tolerate relaxed
consistency guarantees for product ratings and comments, while stronger consistency is required
for goods in stock and orders.

ACID

Relational Database Management Systems (RDBMSs) are the predominant database systems
currently in use for most applications, including web applications.�eir data model and their
internals are strongly connected to transactional behaviour when operating on data. However,
transactional behaviour is not solely related to RDBMSs, but is also used for other systems. A set
of properties describes the guarantees that database transactions generally provide in order to
maintain the validity of data [Hae83].

Atomicity �is property determines that a transaction executes with a “all or nothing” manner.
A transaction can either be a single operation, or a sequence of operations resp. sub-
transactions. As a result, a transaction either succeeds and the database state is changed, or
the database remains unchanged, and all operations are dismissed.

Consistency In context of transactions, we de�ne consistency as the transition from one valid
state to another, never leaving behind an invalid state when executing transactions.

Isolation �e concept of isolation guarantees that no transaction sees premature operations
of other running transactions. In essence, this prevents con�icts between concurrent
transactions.

Durability �e durability property assures persistence of executed transactions. Once a transac-
tion has committed, the outcome of the transaction such as state changes are kept, even in
case of a crash or other failures.

Strongly adhering to the principles of ACID results in an execution order that has the same
e�ect as a purely serial execution. In other words, there is always a serially equivalent order of
transactions that represents the exact same state [Dol05]. It is obvious that ensuring a serializable
order negatively a�ects performance and concurrency, even when a single machine is used. In fact,
some of the properties are o�en relaxed to a certain extent in order to improve performance. A



104 6 Concurrent and Scalable Storage Backends

weaker isolation level between transactions is the most used mechanism to speed up transactions
and their throughput. Stepwise, a transactional system can leave serializablity and fall back
to the weaker isolation levels repeatable reads, read committed and read uncommitted. �ese
levels gradually remove range locks, read locks and resp. write locks (in that order). As a result,
concurrent transactions are less isolated and can see partial results of other transactions, yielding
so called read phenomena. Some implementations also weaken the durability property by not
guaranteeing to write directly to disk. Instead, committed states are bu�ered in memory and
eventually �ushed to disk.�is heavily decreases latencies at the cost of data integrity.
Consistency is still a core property of the ACID model, that cannot be relaxed easily. �e

mutual dependencies of the properties make it impossible to remove a single property without
a�ecting the others. Referring back to the CAP theorem, we have seen the trade-o� between
consistency and availability regarding distributed database systems that must tolerate partitions.
In case we choose a database system that follows the ACID paradigm, we cannot guarantee
high availability anymore.�e usage of ACID as part of a distributed systems yields the need of
distributed transactions or similar mechanisms for preserving the transactional properties when
state is shared and sharded onto multiple nodes.

Now let us reconsider what would happen if we evict the burden of distributed transactions. As
we are talking about distributed systems, we have no global shared state by default. �e only
knowledge we have is a per-node knowledge of its own past. Having no global time, no global
now, we cannot inherently have atomic operations on system level, as operations occur at di�erent
times on di�erent machines.�is so�ens isolation and we must leave the notion of global state
for now. Having no immediate, global state of the system in turn endangers durability.
In conclusion, building distributed systems adhering to the ACID paradigm is a demanding

challenge. It requires complex coordination and synchronization e�orts between all involved
nodes, and generates considerable communication overhead within the entire system. It is not for
nothing that distributed transactions are feared by many architects [Hel09, Alv11]. Although it is
possible to build such systems, some of the original motivations for using a distributed database
system have been mitigated on this path. Isolation and serializablity contradict scalability and
concurrency.�erefore, we will now consider an alternative model for consistency that sacri�ces
consistency for other properties that are interesting for certain systems.

BASE

�is alternative consistency model is basically the subsumption of properties resulting from a
system that provides availability and partition tolerance, but no strong consistency [Pri08]. While
a strong consistency model as provided by ACID implies that all subsequent reads a�er a write
yield the new, updated state for all clients and on all nodes of the system, this is weakened for
BASE. Instead, the weak consistency of BASE comes up with an inconsistency window, a period
in which the propagation o� the update is not yet guaranteed.
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Basically available �e availability of the system even in case of failures represents a strong feature
of the BASE model.

So� state No strong consistency is provided and clients must accept stale state under certain
circumstances.

Eventually consistent Consistency is provided in a “best e�ort” manner, yielding a consistent
state as soon as possible.

�e optimistic behaviour of BASE represents a best e�ort approach towards consistency, but is
also said to be simpler and faster. Availability and scaling capacities are primary objectives at the
expense of consistency. �is has an impact on the application logic, as the developer must be
aware of the possibility of stale data. On the other hand, favoring availability over consistency has
also bene�ts for the application logic in some scenarios. For instance, a partial system failure of an
ACID systemmight reject write operations, forcing the application to handle the data to be written
somehow. A BASE system in turn might always accept writes, even in case of network failures, but
they might not be visible for other nodes immediately.�e applicability of relaxed consistency
models depends very much on the application requirements. Strict constraints of balanced
accounts for a banking application do not �t eventual consistency naturally. But many web
applications built around social objects and user interactions can actually accept slightly stale data.
When the inconsistency window is on average smaller than the time between request/response
cycles of user interactions, a user might not even realize any kind of inconsistency at all.
For application development, there are several more speci�c variants of eventual consistency

that give the developers certain types of promises and allow to reason more easily about relaxed
consistency inside the application logic [Vog08]. When causal consistency is provided, operations
that might have a causal relation are seen in the same sequence by all nodes. Read-your-writes
consistency ensures that a client will always see the new value a�er having updated it, and never
again an older value. Session consistency is a variant of the read-your-writes consistency, that
limits the behavior to a certain client session. It hence requires session a�nity inside the system,
but can be helpful for developers.�e guarantee ofmonotonic read consistency is that a�er a read
operation, any subsequent read must not yield older values. Similarly,monotonic write consistency
guarantees to serialize write operations of a single client. Not providing this guarantee represents
a severe issue for application developers, making it very di�cult to reason about states.
Some of these consistencies can be combined or are subset of others. Providing both mono-

tonic read and read-your-writes consistency provides a reasonable foundation for developing
applications based on eventual consistency.
As eventual consistency entails the possibility of data con�icts, appropriate resolution mecha-

nisms must be employed. O�en, con�ict resolution is also part of the application logic, and not
only provided by the database system. In general, con�icts are resolved either on read or write
operations, or asynchronously in the background, decoupled from client operations.
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6.2 Internals of Distributed Database Systems

Developing distributed database systems is not a simple task, and it requires concepts from both
the database community and the distributed systems community. In our brief overview, we
examine additional building blocks that are necessary when designing databases with distribution
support. We also list some replication and partitioning strategies for distributed database systems.

6.2.1 Building Blocks

Hellerstein and Stonebraker provide a very comprehensible introduction to traditional database
internals [Hel07]. Such internals include indexes and data structures, I/O handling components,
transaction handling, concurrency control, query processing and client communication interfaces.
As these concepts are common for database systems, we focus on some of the necessary building
blocks for distributed database systems instead, including transactiobnmanagement, concurrency
control, data versioning, interfaces, and scalable data partitioning and parallel data processing.

Distributed Transaction Management

In a non-distributed scenario, handling concurrent transactions is generally easier, because
everything happens locally on a single machine. Distributed transactions handle operations
with transactional behavior between multiple nodes.�us, a transaction in a distributed system
must either be applied to all participating nodes, or to no one at all. Distributed transactions
are more di�cult to implement due to the risk of network errors, (partial) failures of nodes
and non-locality. A basic component for distributed transactions is a coordinating service that
manages and coordinates transactions between all participants, based on a transaction protocol.
Popular protocols are the Two-phase Commit Protocol (2PC) [Lam79a] and the�ree-phase

Commit Protocol (3PC) [Ske83]. 2PC separates a voting phase and a completion phase, but it is
blocking and not fault-tolerant. 3PC addresses the drawbacks of 2PC by additional coordination
steps. However, 3PC cannot cope with network partitions.
Alternatively, quorum-based voting protocols can be used for committing transactions in

distributed setups [Ske82].�e underlying idea is to mark a transaction as executed, when the
majority of nodes have executed it. So either the abort quorum or the commit quorum must be
obtained for termination.�e Paxos [Lam98] protocol family provides consensus solving that
can be used for quorum-based voting.

Concurrency Control and Data Versioning

�e inherent parallelism states a problem for distributed database systems, especially when
concurrent write operations are allowed on di�erent nodes. In particular, relaxed consistency
guarantees and the acceptance of network partitions require concepts for data versioning and
controlling concurrent operations on data.
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Distributed concurrency control mechanisms can be generally divided into pessimistic and
optimistic algorithms and—ortoghonally—into locking-based, timestamp-based or hybrid algo-
rithms. Pessimistic algorithms provide con�ict prevention by strict coordination of concurrent
transactions, while optimistic algorithms do not expect regular con�icts and delay con�ict
checking to the end of a transaction life-cycle. Locking-based algorithms use explicit locks for
operations in order to prevent con�icts. Popular locking-based algorithms include traditional
two-phase-locking [Esw76] and its variants. Also quorum-based voting can be applied, using
read and write quorums for the corresponding operations [Gif79].
Distributed database systems also take advantage of timestamp-based concurrency control

mechanisms, such as MVCC [Ber81, Ree78]. We have already encountered MVCC as an underly-
ing implementation for STM systems in chapter 5. Timestamp-based mechanisms use logical
clocks to identify either data changes or transactions over time. �e logical ordering allows
to reason about the sequence of operations and to protect from con�icts. Several distributed
database systems use vector clocks [Lam78] for versioning data entries in face of a network
partition [DeC07].�e version history then allows to reason about con�icts and facilitate merges.

Data Interfaces and APIs

Traditional database systems are sometimes entirely embedded into an application, or they
use arbitrary protocols for access. So�ware components such as Java Database Connectivity
API (JDBC) or Open Database Connectivity (ODBC) abstract from concrete database protocols
and supply generic APIs. For distributed database systems, interfaces for remote access are
obligatory. Hence, established distributed technologies for communication and data serialization
are o�en integrated from the beginning.�ese technologies facilitate application integration and
testing.
Database calls and queries are o�en dispatched using RPC invocations or HTTP requests.

�e RPC approach uses framework bindings like�ri� [Aga07]. Data is interchanged using
serialization technologies such as�ri�’s own serialization1 or Google’s Protocol Bu�ers2. HTTP-
based APIs o�en emulate some of the REST principles. For serialization, formats like JSON,
BSON3 (a binary JSON representation) or XML are then used. While low-level RPC calls generally
provide a slightly better performance due to less overhead, the usage of HTTP-based APIs
introduces HTTP concepts like caching for free.

1 http://thrift.apache.org/
2 http://code.google.com/p/protobuf/
3 http://bsonspec.org/

http://thrift.apache.org/
http://code.google.com/p/protobuf/
http://bsonspec.org/


108 6 Concurrent and Scalable Storage Backends

Scalable Data Partitioning
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Figure 6.2: Consistent hashing maps nodes and data items into the same ring for partitioning.
�e le� illustration shows a set of data items (gray) mapped to three nodes. On the right side, the
additional Node D has joined the system and is also mapped into the ring. As a consequence, only
a small sector of the ring is a�ected from repartitioning. Node D takes over two data items that
have formerly been assigned to Node A.

Allocating large amounts of data to a number of nodes becomes more complex, if data scalability
is required and the number of available nodes changes. Scaling out means supplying additional
nodes, o�en at runtime in the �rst place. Sometimes, also scaling back to less nodes is interesting,
when the amount of data decreases. Appropriate strategies are required, how to partition and
how to allocate data when scaling in and out.

Traditional setups with a �xed number of hosts o�en allocate data by applying a hash function
on a data item (e.g. the key), then using the result modulo the number of nodes in order to
calculate the node responsible for the item.�e strategy is straightforward, but it fails when the
number of nodes changes. Recalculating and redistributing all items due to changed partitioning
keys is then necessary, but not reasonable in practice. One way to approach this problem is
consistent hashing [Kar97].�e fundamental idea of consistent hashing is to hash data items and
nodes into a common ring using the same hash function.�e algorithm determines that each
data item has to be stored by the next clockwise adjacent node in the ring, as shown in �gure 6.2.
When new nodes are added to the ring, or nodes leave the ring, a small sector of the ring is
a�ected and only the data items in this sector must be reallocated. In essence, consistent hashing
is a partitioning strategy that works with varying number of nodes and provides a consistent
mapping that prevents an unnecessary reallocating of data when the amount of nodes scales.
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Parallel Data Processing

Processing data entries in a distributed database system is necessary for several operations. For
instance, generating indexes requires the execution of the same operations on all data entries
and machines. In several non-relational database systems, it is the developer’s task to implement
index generating, hence appropriate programming models are required for such embarrassingly
parallel tasks.

Data Item
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Figure 6.3: A schematic illustration of the phases of a MapReduce computation.�e map() func-
tion is applied to all items and produces intermediate results. Grouped by their key, these interme-
diate results get merged using the reduce() function.

A popular approach is the MapReduce model [Dea08], which is inspired by functional pro-
gramming languages. It separates parallel processing of possibly large data sets into two steps,
as shown in �gure 6.3. �e map function takes data entries and emits intermediate key-value
pairs. Next, all intermediate pairs are grouped by keys.�e reduce function is then applied to all
intermediate pairs with the same key, yielding simple values as a result. Distribution, coordination
and execution is managed by the framework resp. database system, so the developer only has
to provide the map and reduce function.�is principle easily allows tasks such as counting or
sorting on large data sets. MapReduce is also used for building indexes, either using the sorted
intermediate key-value pairs, or using the sorted reduced results.
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6.2.2 Replication and Partitioning Strategies

Replication and partitioning are necessary concepts for distributed database systems. Replication
is responsible for data distribution between nodes. On the basis of replication, availability can be
increased and fail-over mechanisms can be deployed for fault-tolerance. Replication can also
help to scale read operations. Partitioning deals with the challenge of scaling out large amounts
of data.

Replication

�ere are various forms of replication for distributed systems, but not all are applicable for
database systems that target availability and highly concurrent access. Replication mechanisms
can be either synchronous or asynchronous, active or passive, and they have di�erent propagation
characteristics [Dol05, Moi11].
Synchronous replication provides atomic semantics for operations, that are backed by all run-

ning replicas. �is requires distributed transaction protocols for coordination. Asynchronous
replication allows a single node to acknowledge an operation independently. Other nodes will
eventually receive the updates. But, as opposed to synchronous replication, immediate updates of
all nodes are not guaranteed. Asynchronous replication works either periodically or aperiodically.

In active replication, all nodes receive and process a request (e.g. write operation), and coordi-
nate their response. Passive replication favors a designated primary that processes the request and
updates the other nodes a�erwards. In case of a fail-over, a secondary takes over the service.
�e propagation aspects determine, how read and write operations from clients are handled,

and how updates disseminate to the replicas. In amaster-slave setup, writes are processed by a
single master. As web applications tend to issue more read requests than write requests, many
setups take advantage of this inherent property and provide a single master server and multiple
slaves [Sch08]. �e master server is solely issued for write requests, and all read requests are
load-balanced to one of the slaves. Obviously, this setup does only help to scale read operations,
but not write operations. Amulti-master setup allows multiple nodes to accept writes.�is indeed
increases write scalability. However, it requires con�ict management strategies, as simultaneous
writes on the same data may lead to inconsistencies. Quorum-based systems [Gif79] allow to
�ne tune, how many replicas must be accessed for reading operations, how many replicas store
the data, and how many replicas must acknowledge update operations.�ese three parameters
directly a�ect the strengths of consistency and fault-tolerance. In �gure 6.4, we can see two
exemplary replication strategies in use for web applications.
Common replication strategies include snapshot replication, transactional replication, merge

replication and statement-based replication [Moi11]. Snapshot replication is based on periodic
copying of all data entries.�ese snapshots are then forwarded and applied on replicas. Transac-
tional replication employs a transactional behavior for changes using distributed transactions
between servers. Merge replication allows for partition tolerance and o�ine nodes, since it
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Figure 6.4: Two replication setups for the backend of web application. On the le� side, we can see
a master-slave setup that is o�en used by MySQL.�e master handles writes and asynchronously
updates the slaves. Read requests are load-balanced to the slaves. On the right side, a common
replication setup for CouchDB is depicted. Multiple masters handle all requests and perform
asynchronous merge replication that might require con�ict resolution.

synchronizes data when nodes eventually become available. Con�ict resolution strategies are
necessary to handle con�icting changes. Statement-based replication forwards database queries
to replicas. Read queries can be forwarded to a single instance, while queries including write
operations are forwarded to all instances.

Partitioning

�ere are di�erent partitioning approaches for scaling out large amounts of data: functional,
vertically and horizontal [All08, Sch08]. Functional partitioning separates distinct parts of the
application data that are not dependent on each other. For instance, customer data, product
data and inventory data are not just stored in di�erent tables, but can also be stored on di�erent
instances of database nodes. Vertical partitioning targets data partitioning, that is the e�cient
allocation of a complex data row into tables. Normalization and denormalization are typical
mechanisms for vertical partitioning. For instance, “row splitting” separates a single table into
multiple tables, thereby separating columns that change o�en from columns that are rather static.
Such a split can also improve performance. Horizontal partitioning, also known as sharding,
addresses the problem of large numbers of rows in a table. Instead of splitting existing rows across
columns, an existing table is split into several structurally equivalent tables and the rows are
portioned. While partitioning improves performance in many cases and makes large amounts



112 6 Concurrent and Scalable Storage Backends

of data more manageable, it has also some drawbacks. Providing a consistent logical view
on partitioned data sets o�en requires multiple join operations or even merge operations on
application level. As a result, �nding the partitions, both vertical and horizontal, is o�en not
trivial and requires speci�c knowledge, how the data is accessed and used by the application.
�e design of shards heavily in�uences the performance for �nding and retrieving data.�us,

the partitioning strategy in use a�ects the system. Partitioning is usually realized using a partition-
ing key that allocates rows to shards. When hash partitioning is used, the result of a hash function
applied to the key states which shard should be used. List partitioning provides a �xed mapping
of keys to shards. Similarly, range partitioning assigns numerical ranges to shards. Combining
di�erent criteria is called composite partitioning. For instance, the aforementioned mechanism of
consistent hashing can be considered as a combination of hash and list partitioning.

Although we explained partitioning using tables, rows and columns, most of the concepts are
valid for non-relational database systems as well. A storage organization solely based on keys
makes this concept even more apparent.

Replication, data partitioning and sharding represent orthogonal concepts, and they are partially
contradictory. However, in large-scale database systems, all of these concepts are inevitable as
fundamental mechanisms. Otherwise, systems could not be able to accept huge amounts of data
and simultaneous read/write requests, deal with faults or provide low latency responses at the
same time. Hence, deliberate trade-o�s are required in practice.

6.3 Types of Distributed Database Systems

�is section lists the major database system types that are in use for large-scale web applications.
�e general concept of each type is described and an exemplary product is introduced.

6.3.1 Relational Database Management System

�e most common and predominant model for storing data is based on the idea of a relational
model, introduced by Codd [Cod70] in the early seventies. �e model stores data as tuples,
forming an ordered set of attributes. In turn, a relation consists of sets of tuples. In terms of
relational database systems, a tuple is a row, an attribute is a column and a relation forms a
table. Tables are de�ned using a static, normalized data schema and di�erent tables can be
referenced using foreign keys. Structured Query Language (SQL) has established itself as generic
data de�nition, manipulation and query language for relational data (e.g. SQL 99 [Eis99]). It
has been adopted by almost all relational database management systems. Relational database
implementations typically rely on the support of transaction and locking mechanisms in order
to ensure atomicity, isolation, consistency and durability.�ese properties are essential for the
relational model and can not be removed due to referential integrity and data consistency issues.
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�e great success of RDBMSs, especially for business applications, has led to increasing scala-
bility requirements for many deployments over time.�is not just includes scalability in terms
of user load, concurrent queries and computational complexities of queries, but also in terms
of plain data load. �e traditional scale-up approach, using better hardware equipment, has
absorbed further needs for growth for a certain time. But it soon became obvious that sooner or
later, scaling out must be considered as well [Rys11].
�e implications of the ACID paradigm combined with distributed systems make it very

di�cult to build distributed database systems based on the relational model. It requires the usage
of complex mechanisms such as distributed transactions, that are feared by many developers,
most of the time with good reason [Hel09, Alv11]. Enforcing ACID properties requires high
complexity costs and in e�ect, they promptly hinder low latency and high availability. While
replication and especially partitioning provide the basic tools for scaling out, it is the notion of
distributed joins that makes distribution so painful. Join operations in a single instance database
can be e�ciently handled thanks to data locality. In case of distributed database systems, joins
may require potentially large amounts of data to be copied between nodes in order to execute
the necessary table scans for the join operations.�is overhead renders such operations in many
cases unusable. However, join operations are an inherent feature of the relational data model and
can not be easily abandoned. On the other hand, the maturity of the relational model and several
decades of experience make it still worth to spend extraordinary e�ort and apply complexity to
scale out existing relational systems, as outlined by Rys [Rys11].

Apart from the big players from the commercial database world, MySQL1 is a decent open-
source RDBMS and it is very popular for web applications. It supports multiple backend storage
engines, a broad subset of ANSI SQL 99 [Eis99] and several query extensions. Many web applica-
tions primarily struggle with read concurrency and scalability in terms of user load.�erefore,
MySQL provides a simple yet powerful strategy using a master-salve architecture and replica-
tion. Incoming queries are then forwarded to instances according to the query type. Read-only
operations (i.e. SELECT) are load-balanced to one of the slaves, while all other operations that
contain write operations are forwarded to the master. Updates are then asynchronously replicated
from the master to the slaves.�is removes unnecessary load from the master, and helps to scale
read operations. Obviously, it does not scale write operations. Master-slave setups can be further
scaled using partitioning strategies and more complex replication setups [Sch08].
�ere also exists MySQL Cluster, a cluster variant of MySQL. It is based on a shared nothing

architecture of nodes and uses synchronous replication combined with automatic horizontal
data partitioning. Nodes can be either data nodes for storage, or management nodes for cluster
con�guration and monitoring. Due to the issues of distributed setups, MySQL Cluster has a very

1 http://www.mysql.com/

http://www.mysql.com/
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limited set of features compared to regular MySQL instances1.

6.3.2 Non-Relational Database Management Systems

�ere is a plethora of distributed, non-relational storage systems. We outline four of the most
popular types for large-scale web applications, although there are many others including RDF
stores, tuple stores, object databases or grid-based storages.

Key/Value Stores

�e idea of key/value-based storage system is very old and it relates to the concept of hash tables
or maps in many programming languages.�e storages allow to record tuples only containing a
key and a value. While the key uniquely identi�es an entry, the value is an arbitrary chunk of
data and in most cases opaque for the database. In order to provide distribution and scalability,
key/value stores apply concepts from distributed hash tables [Tan06].�e simple data model of
key/value stores provides good scalability and performance. However, query opportunities are
generally very limited, as the database only uses keys for indexes.
A very prominent storage system design based on the key/value principle is Dynamo from

Amazon [DeC07]. It incorporates several other techniques to provide a database systems that
always allows writes, butmay return outdated results on reads.�is eventual consistency is tackled
with vector clocks for versioning in case of partitions and application-level con�ict resolution.

Redis2 is an open-source key/value store that works in-memory, but supports optional per-
sistence. As an advanced key/value store, it provides a data model for values and integrates
publish/subscribe message channels. Persistence of key/value tuples can be achieved either using
snapshots or by journaling. Redis supports master-slave replication that can be cascaded, resulting
in a replication tree.

Document Stores

Document stores are similar to key/value stores. However, they require structured data as values
using formats like XML or JSON.�ese values are referred to as documents, hence the name.
Although the documents are using a structured format, there are o�en no �xed schema def-
initions. As a result, di�erent documents with complex, varying structures can be stored in
the same database, and structures of documents can evolve over time. Compared to key/value
stores, document stores allow for more complex queries, as document properties can be used for
indexing and querying.

1 http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-limitations.html
2 http://redis.io

http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-limitations.html
http://redis.io
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A popular open-source document store is CouchDB1. It is written in Erlang and uses JSON
as document format. CouchDB only provides an HTTP-based interface, which is inspired by
REST. It makes use of di�erent HTTP methods for create/read/update/delete operations on docu-
ments and query operations. CouchDB uses MapReduce-based functions for generating indexes
over all documents.�ese functions, also written in JavaScript, allow the developer to produce
indexes while iterating over the arbitrarily complex structures of each document. An exceptional
feature of CouchDB is its powerful replication. CouchDB provides bidirectional replication, com-
plex multi-master replication and is designed for o�ine usage with later data synchronization.
As replication and concurrent writes may lead to con�icts, CouchDB applies an adapted variant
of multiversion concurrency control [Ber81, Ree78]. As a consequence, con�icting writes lead
to revision trees of document changes, that can be handled or merged later [And10]. Sharding
is not a built-in feature of CouchDB, but there are external solutions that provide horizontal
partitioning [And10].

Wide Column Stores

Wide column stores, sometimes also called sparse tables or column-oriented database systems,
are database systems that store data by columns rather than by rows. Many wide column stores
are inspired by BigTable [Cha06], a system designed by Google. BigTable is described as a “sparse,
distributed, persistent multidimensional sorted map.”�e map character resembles key/value
stores, but the keys are sorted. Persistence and distribution are obvious features of a distributed
database systems.�e traits of multidimensional and sparse are more important, as they de�ne
the essence of a wide column store. Multidimensional maps are essentially maps of maps, allowing
nested data models.�is concept is also known as column families. Sparseness describes the fact
that a row can have arbitrary numbers columns in each column family, or even no column at all.
Besides the di�erent data organization with deep structures and sparseness, the column-

oriented storage has several impacts on database behavior. A major bene�t is the e�ciency of
I/O operations during data access, when the column-oriented layout speeds up aggregation or
column-based search/�lter operations. As a column sequentially contains multiple values from
di�erent rows, e�cient compression techniques can be applied.
In essence, wide column stores allow to e�ciently store and query on very large, structured

data sets. By reducing I/O overhead, queries can be executed faster and compression reduces
storage requirements, compared to row-oriented systems.�us, wide column stores are especially
interesting for data warehousing and for big data sets, that must be queried. However, wide
column stores have also several drawbacks.�e column orientation increases the costs for insert
and update operations, especially when not executed as bulk operations for multiple entries. A
single insert/update results in multiple write operations in spread columns.

1 http://couchdb.apache.org/

http://couchdb.apache.org/
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Apache Cassandra1 is an open source implementation of Google’s BigTable [Cha06] that also
incorporates several design principles of Amazon’s Dynamo [DeC07] for fault-tolerance and data
replication. Cassandra has been initially developed by Facebook, but has been released as open
source. An interesting feature is its tunable consistency. By selecting quorum levels, consistency
can be exactly chosen, ranging from aggressive eventual consistency models to strongly consistent
blocking reads.

Graph Databases

Graph database systems are based on graph theory.�ey use graph structures for data modeling,
thus nodes and edges represent and contain data. Nodes are o�en used for the main data entities,
while edges between nodes are used to describe relationships. Both types can be annotated
with properties. Graph databases have heavily bene�ted from the emergence of the Semantic
Web [BL01] and the increasing popularity of location-based services. Both domains require data
modeling with multiple relationships between entities, which becomes cumbersome in relational
database systems. A notable strength of graph databases is the e�cient traversal of data sets
for certain queries. �is permits, for example, fast queries for the shortest path between two
nodes and other well-known graph-based computations. As opposed to many other database
concepts, graph databases have no kind of primary index of all stored items, as the graph structure
represents a purely associated data structure.�at is why many graph databases employ external
indexes in order to support text-based searches. Graph databases are also used for object-oriented
persistence, as the notion of nodes and edges can be applied to objects and references. Graph
databases thus circumvent the traditional object-relational impedance mismatch [Ire09] that
occurs when object-oriented data is stored in relational database systems.
In terms of scalability, graph databases encounter a decent challenge. Sharding graph-based

data sets means partitioning the graph structure onto di�erent machines. As graphs are highly
mutable structures, it is very di�cult to �nd reasonable partitions that allocates graph nodes to
available machines while minimizing traversal costs between remote nodes.

A popular open-source graph database for Java is neo4j2. It provides a native mapping of graph
entities to Java objects and a transparent, disk-based persistence of these structures. Other features
include transaction support, built-in graph traversers and graph algorithm implementations.
Besides the native integration as part of a Java application, neo4j also provides a REST-based
HTTP interface for data access. It ships with replication and (limited) sharding support.

1 http://cassandra.apache.org/
2 http://neo4j.org/

http://cassandra.apache.org/
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6.4 Summary

Large-scale web applications require solid backend systems for persistent storage. Essential
requirements are availability, high performance and of course scalability for both read and write
operations and for data volumes.�ese requirements cannot be addressed with a single database
instance. Instead, distributed database systems are needed in order to support fault-tolerance, to
scale out and to cope with highly concurrent read/write operations.
�e CAP theorem challenges distributed database systems, as it rules out guaranteeed con-

sistency, availability and partition tolerance at the same time. In distributed systems, failures
cannot be avoided, but must rather be anticipated, so partition tolerance is virtually mandatory.
Consequently, web applications are required to �nd a trade-o� between strict consistency and
high availability.�e traditional ACID paradigm favors strong consistency, while the alternative
BASE paradigm prefers basic availability and eventual consistency. Although exact consistency
requirements depend on the actual application scenario, it is generally feasible to develop web
applications with either one of them. However, the application must be aware of the consistency
model in use, especially when relaxed guarantees are chosen and must be tolerated.
�e internals of distributed database systems combine traditional database concepts with

mechanisms from distributed systems, as the database consists of multiple communicating
machines.�is includes algorithms for consensus, distributed transactions or revisioning based on
vector clocks. Replication is an important feature for availability and fault-tolerance. Partitioning
addresses the need to handle large amounts of data and to allocate them to di�erent physical
nodes.
Relational database systems are built around the concept of relational data tuples and trans-

actional operations. Although this model �ts many business applications and can be used in
various scenarios, there are other database concepts that provide di�erent characteristics and
their own bene�ts. �ese concepts include simple key/value data organization, relaxed or no
schema de�nitions, column-oriented table alignment or the usage of graphs as the underlying
data structure.





7 Recommendations

We have reviewed di�erent concepts for concurrency and concurrent programming for com-
ponents of a scalable web architecture in the previous three chapters. We will summarize our
results by providing recommendations for each stage. As we have reviewed the components with
varying details, also the scope of the advices di�er. Understanding the implications of di�erent
server architectures helps to provide insights on the expected performance.
�e application logic represents the core of a web application. It is usually the part of the

architecture that contains the speci�c code implemented by own developers. Application code is
o�en based on web frameworks or application containers. We limit our guidelines to concurrency
concepts for this component. For distributed database systems, the impacts of di�erent consistency
guarantees and data models are in our main focus.

7.1 Selecting a Web Server Architecture

In chapter 4, we have considered mechanisms for I/O handling and connection concurrency for
web servers. Popular architectures that incorporate di�erent I/O and concurrency mechanisms
have been reviewed. We have seen that su�cient performance result can be achieved with various
models and there are solid implementations for most of them. In our architectural scenario, the
web servers are challenged with highly concurrent connections, extreme I/O parallelism, but
virtually not shared state. In this particular case, event-driven architectures using asynchronous
I/O tend to provide better scalability under load, by requiring less memory and gaining better
CPU utilization. Yet, this does not displace thread-based servers in general. When web servers
are used in general-purpose setups, perhaps also executing the application logic in the same
server instance, thread-based web servers are still a valid contender.
If there is the urgent necessity to implement a custom web server, the choice of the right

concepts is o�en constrained by the platform and the programming language. If available, I/O
multiplexing strategies (asynchronous/non-blocking) and cooperative scheduling should be
considered. Also, low-level frameworks should be reviewed, as described in the evaluation part
of chapter 4.�ey o�en implement the basic building blocks of a network server and allow the
developer to focus on protocol-dependant and application-speci�c features.
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7.2 Picking the Right Concurrency Concepts for Application Logic

�e main focus of chapter 5 lies on concurrency concepts for application logic programming. In
order to recommend appropriate concepts, we need to recap the di�erent concurrency require-
ments that a web application might imply. On one hand, we might want to reduce the latency of
request handling by parallelizing independent operations of a request. On the other hand, we
might want to coordinate di�erent pending requests in order to provide noti�cation mechanisms
and support server-initiated events. Furthermore, interactive and collaborative applications
cannot rely on state that is solely isolated in the storage backend. Instead, some applications
require to share highly �uctuating and variable state inside the application servers.

�e reduction of latency of a request can mainly be achieved by parallelizing independent op-
erations. For instance, parallel database queries and subdivided computations decrease the
overall latency. An important property for accelerating requests is the ratio of CPU-bound and
I/O-bound operations. Note that access to our platform components represents an I/O-bound
operation.�e latency of independent, CPU-bound operations can only be decreased by using
more threads on more cores. When additional threads are used for heavy I/O parallelism, we
roughly approach the same problem as seen previously for web servers. Using too many threads
for I/O-bound operations results in decreasing performance and scalability issues due to context
switching overhead and memory consumption. For thread-based programming models, the
notion of futures or promises helps dispatching independent tasks and eventually collecting their
results, without the need for complex synchronization. Actors can be used for I/O-bound and
CPU-bound operations, although the e�ciency depends on the underlying implementation.
Event-driven architectures go nicely with primarily I/O-bound tasks, but they are entirely un-
usable for computationally heavy operations, as long as these operations are not outsourced to
external components.

Coordinating requests and synchronizing shared application state are related. A �rst distinction
is the scope of these operations. Some applications allow to partially isolate some application
state and groups of users for interactivity. For instance, a browser multiplayer game session
with dozens of players represents a conceptual instance with a single shared application state. A
similar example is a web-based collaborative so�ware application like a real-time word processor,
running editing sessions with several users. When using session a�nity, a running application
instance can be transparently mapped to a designated application server. As a result, there is
no need to share states between application servers, because each session is bound to a single
server (a server can host multiple application sessions, though). In turn, the server can entirely
isolate application state for this session and easily coordinate pending requests for noti�cations.
In this case, event-driven architectures, actor-based systems and STM are appropriate concepts.
�e usage of locks should be avoided due to the risk of deadlocks or race conditions. Note that
binding speci�c state to a certain server is contrary to our shared-nothing design of application
servers.
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In other cases, application state is global and cannot be divided into disjoint partitions. For
instance, the instant messaging capabilities of a large social web application requires that any
user might contact any other user.�is leads to a scenario where state must be either outsourced
to a distributed backend component (e.g. a distributed key/value store with pub/sub support
such as redis), or it requires application servers to mutually share global state.�e �rst variant
works with all concurrency concepts. �e latter is only applicable when a distributed STM or
a distributed actor system is in use. Note however, these two approaches are contrary to our
preferred shared-nothing style, as they introduce dependencies between application servers.

�e conventional concept of a thread-based request execution model is still a valid approach
when none of the aforementioned concurrency requirements are actually needed. In this case,
the idea of a simple sequence of operations provides a very intuitive model for developers. If
there is no imperative need to share state inside the application logic, dedicated backend storages
should always be preferred. When retaining to a thread-based model and shared state inside
the application logic is acutally needed, the usage of STM should be favored in order to prevent
locking issues.
�e actor model provides a versatile solution for multiple scenarios, but requires the developer

to embrace the notions of asynchrony and distribution. Some concurrency frameworks such
as akka1 complement the actor model with other concepts such as STM and additional fault
tolerance.�is represents a strong foundation for distributed application architectures and should
be considered when large scale is intended since the very beginning.
If the application logic of a web application primarily integrates the services provided by

other platform components and does not require computationally expensive operations, single-
threaded event-driven architectures are a good foundation. When used in a shared-nothing style,
a sustaining scale-out can be accomplished by constantly adding new instances.
�e actor model and single-threaded event-driven architecture share several principles. Both

embrace asynchrony, queueing based onmessages resp. events, and isolated state—either inside an
actor or inside a single-threaded application instance. In fact, our web architecture combined with
either one of these concepts for application logic resembles the original SEDA architecture [Wel01]
to a great extent. Unlike SEDA, which describes the internals of a single server, we are then using
very similar concepts for a distributed architecture.

7.3 Choosing a Storage Backend

We have considered several types of distributed database systems that can be used as storage
backend for large-scale web applications in chapter 6. Assuming that a single database instance
does not �t our requirements, due to missing opportunities to scale out and to provide high

1 http://www.akka.io/

http://www.akka.io/
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availability, we need to choose a proper distributed database system for our applications. We
have seen the trade-o� between strong consistency and eventual consistency.�e hype around
non-relational database systems has led to a myriad of di�erent database systems to choose from.
In practice, the quest for the right system is o�en distorted by general arguments between the
SQL camp and NoSQL camp by this time.�e following guideline provides suggestions on how
to choose the appropriate system.
�e primary question is the actual data model imposed by the application. It is essential to

focus on the intrinsic data model of the application �rst, before considering any database-speci�c
models. It may also help to identify certain groups of data items that represent independent
domains in the application. Additionally, it is helpful to keep in mind future requirements that
might change the data model. For instance, an agile development style with frequent changes to
the data model should be taken into account.
Next, the scalability requirementsmust be determined. Scaling out a blog application using

additional database instances is a di�erent undertaking than growing a large e-commerce site
that already starts with multiple data centers. Also the dimensions of scale should be anticipated.
Will the application be challenged by vastly parallel access to the persistence layer, or is it the
fast-growing amount of data to store?�e ratio of read and write operations can be important as
well as the impact of search operations.
�e third of these preliminary considerations aims at consistency requirements of the applica-

tion. It is obvious that strong consistency is generally preferred by all parties involved. However,
a review of the impact of stale data in di�erent manifestations may help to de�ne parts of the
data model that can aligned with relaxed consistency requirements.

Due to their maturity, their features and our experiential basis, relation database systems still
represent a strong foundation for the persistence layer of web applications.�is is especially true,
when the applications require strong consistency guarantees, transactional behaviors and high
performance for transaction processing. Also, the expressiveness of SQL as a query language
is conclusive and queries can be executed ad-hoc at any time. In order to tackle scalability for
relational database systems, it is important to keep in mind functional and data partitioning
strategies from the start. Sharding an unprepared relational database is extremely hard. But
when denormalization and partitioning are designed into the data model, the opportunities for a
sustainable scale-out are vastly increased.
Document stores are interesting as they provide a very �exible data modeling, that combines

structured data but does not rely on schema de�nitions. It allows the rapid evolving of data
models and �ts very well to an agile development approach. �e mapping of structured key-
value pairs (i.e. documents) to domain objects is also very natural for many web applications,
especially applications that are built around social objects. If database operations primarily involve
create/read/update/delete operations, and more complex queries can be de�ned already in the
development phase, document stores represent a good �t.�e document-oriented data formats
like JSON or XML are friendly for web developers. Moreover, many document stores allow
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storing binary �les such as images inside their document model, which can also be useful for web
applications. Due to the underlying organization of documents as key/value tuples, document
stores can easily scale horizontally by sharding the key space.
In general, key/value stores are the �rst choice when the data model can be expressed by

key/value tuples with arbitrary values and no complex queries are required. Key/value stores not
just allow easy scaling, they are also a good �t whenmany concurrent read andwrite operations are
expected. Some key/value stores use a volatile in-memory storage, hence they provide unmatched
performance.�ese systems represent interesting caching solutions, sometimes complemented
with publish/subscribe capabilities. Other durable systems provide a tunable consistency based
on quorum setups. Key/value stores that adopt eventual consistency o�en accept write operations
at any time, even in the face of network partitions. As the data model resembles distributed hash
tables, scaling out is generally a very easy task.
Graph databases are a rather speci�c storage type, but unrivaled when it comes to graph ap-

plications. Lately, social network applications and location-based services have rediscovered
the strengths of graph databases for operations on social graphs or proximity searches. Graph
databases o�en provide transaction support and ACID compliancy. When scaling out, the parti-
tioning of graphs represents a non-trivial problem. However, the data model of such applications
o�en tends to be less data-heavy. Existing systems also claim to handle several billion nodes,
relationships and properties on a single instance using commodity hardware.

When designing very large architectures that involve multiple data centers, wide column stores
become the systems of choice.�ey support data models with wide tables and extremely sparse
columns. Wide column stores perform well on massive bulk write operations and on complex
aggregating queries. In essence, they represent a good tool for data warehousing and analytical
processing, but they are less adequate for transaction processing. Existing systems come in
di�erent �avors, either favoring strong or eventual consistency. Wide column stores are designed
for easy scaling and provide sharding capabilities.

When designing large-scale web applications, also polyglot persistence should be considered. If
no database type �ts all needs, di�erent domains of the data models may be separated, e�ectively
using di�erent database systems.
As an illustration, an e-commerce site has very di�erent requirements.�e stock of products

is an indispensable asset and customers expect consistent information on product availabilities
(⇒ relational database system). Customer data rarely change and previous orders do not change
at all. Both types belong to a data warehouse storage, mainly for analytics (⇒ wide column store).
Tracked user actions in order to calculate recommendations can be stored asynchronously into a
data warehouse for decoupled analytical processing at a later time (⇒ wide column store).�e
implications for the content of a shopping cart is very di�erent. Customers expect every action
to succeed, no matter if a node in the data center fails. So eventual consistency is required in
order to accept every single write (e.g. add to chart) operation (⇒ wide column store). Of course,
the e-commerce application must then deal with the consequences of con�icting operations, by
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merging di�erent versions of a chart. For product ratings and comments, consistency can also be
relaxed (⇒ document store). Very similar considerations are advisable for most other large-scale
web applications.

7.4 Summary

�e main criteria for web server architectures are the extent of I/O operations, the necessity to
handle state, and the required robustness for connection concurrency. We have seen that it is
advisable to consider I/O multiplexing strategies and cooperative scheduling for the web servers
of our architecture.
For concurrency concepts as part of application servers, it is important to identify the actual

concurrency requirements. Reducing the latency of requests requires parallelization strategies of
the request logic. Coordinating di�erent pending requests and sharing highly �uctuating and
variable state inside application servers can either be handled using external backend components
or high-level concurrency abstractions inside the application servers.
�e choice for the appropriate storage backend depends on actual data model, the scalabil-

ity requirements, and the consistency requirements of the application. Furthermore, polyglot
persistence should be considered for large-scale web applications.



8 Discussion

We have seen how concurrency a�ects programming in di�erent stages of a scalable web architec-
ture. Also, the usage of distributed systems has been identi�ed as an imperative for scalability,
performance and availability. Let us now take a step back and re�ect on the question, why con-
current and distributed programming is in fact so demanding and so di�erent from conventional
programming.

Conventional programming is based on the idea of a Von Neumann architecture. We have
a single memory, a single processor and our program is a sequence of instructions. When the
program is running, we have a single path of execution. State can be accessed and altered without
thought, as it is exclusively used by our single �ow of execution. Consistency can never be
compromised.�is is a valid abstraction for many programs and provides very clear implications
and contracts. When the program or the machine crashes, the entire progress is basically lost,
but we never have partial failures, except for programming errors.
Once we add additional �ows of execution, multitasking is necessary for scheduling multiple

activities on a single machine. As long as both �ows do not share any state, the general abstraction
remains una�ected. But if we allow state to be shared between activities and use preemptive
scheduling, the abstraction becomes leaky. Although a path of execution is still processed
sequentially, we cannot make assumptions on the order of interleavings. In consequence, di�erent
scheduling cycles yield di�erent interleavings, which in turn a�ect the order of access of shared
data. Consistency is at risk. It is especially the notion of a shared, mutable state that is ambiguously
re�ected in this model. When state is isolated by a single �ow of execution, it can be modi�ed
without any risk. Once state is shared, its shared mutability becomes the main issue. Immutable
state can be shared, as it does not represent a consistency hazard. If we still want to keep to
our prior abstraction, we need to synchronize access to shared, mutable state using primitives
such as locks.�e moment we replace the processor with another one with multiple cores, the
extent of nondeterminism vastly increases. We can now seize true parallelism, and multiple �ows
of execution can actually run in parallel physically. As a side note, this also changes the single
memory assumption, because multiple cores introduce multiple levels of hierarchical caches,
but most programmers will not be a�ected by this low-level modi�cation. �at’s because this
circumstance is entirely covered by operating systems, compilers and runtime environments.
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Due to true parallelism, synchronization and coordination between �ows of execution becomes
imperative in case they share state or a�ect each other.
�e conceptual idea of sequential execution can still be kept up, although it has only little

in common with the actual execution environment of the hardware anymore. Especially when
concurrent programming is used, the interleavings, overlappings and synchronizations of di�erent
�ows of execution are not apparent.�e inherent nondeterminism is not re�ected in this model.
When locking is used in a too coarse granularity, we end up in an execution model that is similar
to the single core/processor system. Enforcing strict serializability eventually causes a sequential
execution of all concurrent activities. When a sequential program runs on a single core machine,
it is reasonable to have the notion of a program controlling its surrounding world entirely. When
the application pauses, the environment does not change. True parallelism breaks this perception.
�e program has not anymore the sole control over the execution environment. Independently
of any operations of a thread, other threads may change the environment.
As long as concise locking mechanisms or higher-level abstractions are used to protect from

race conditions, shared state is still manageable and basically available for multiple activities
running in parallel. Concurrency abstractions such as TM take away a lot of the actual complex-
ity in place. By adding even more CPU cores, and more hardware resources, we can scale our
application to provide additional throughput, parallelism, and gradually decrease latency.

However, at a certain point, this approach does not make sense anymore. On the one hand,
hardware resources are limited—at least, physically. According to Amdahl’s law, the maximum
expected improvement by adding additional cores is also limited. On the other hand, at a certain
scale, there are several non-functional requirements that become relevant: scalability, availability
and reliability. We want to further scale our application, although we cannot scale a single node
anymore. A crash still stops our entire application. But we might want the application to be
resilient and to continue its service, even when the machine fails.�e usage of multiple machines,
spawning a distributed system, becomes inevitable.
�e introduction of a distributed system changes the picture entirely. We now have multiple

nodes that execute code at the same time, a further enhanced form of true parallelism.�e most
aggravating change is the notion of a state. In a distributed system, we don’t have anything like a
global state at �rst glance. Each node has its own state, and can communicate with remote nodes
in order to ask for other states. However, whenever a state has been received, it re�ects a past
state of the other node, because that node might have already changed its state in the meantime.
Also, communication with remote nodes has side e�ects that do not exist when accessing local
state.�is is not limited to unbounded latencies of message responses, it also includes the results
of arbitrary message ordering. Furthermore, individual nodes may fail in a distributed system, or
the network can become partitioned.�is yields completely di�erent failure models, as compared
to local computing on a single machine.
It is obvious that our initial model—based on sequential computing—is completely broken

now.�e degree of complexity is many times higher than before. We have elemental concurrency
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and parallelism, unbounded, unordered communication and neither global state nor time. As
opposed to local calls, operations dispatched to remote nodes are asynchronous by nature. We are
in need of new abstractions for tackling these inherent properties of a distributed system in order
to build useful applications on top.�ere are generally two diametrically opposed approaches
towards this challenge.

One approach aims for reconstructing as many previous assumptions and contracts as pos-
sible. Based on complex synchronization protocols, the notion of a global state is re-established
and consistency becomes guaranteed again. By using coordination mechanisms, we can also �ght
against nondeterminsm down to enforcing the isolated, sequential execution of code fragmented
to multiple nodes in an extreme case. RPCs restore the concept of function calls and allow to call
remote functions implicitly and in the same way as local functions.
�e other major approach accepts the essential �aws of distributed systems and incorporates

them right into the programming model. �is concerns primarily the acknowledgment of
asynchrony and, as a result, the rejection of consistent global state. Eventually, asynchrony then
exposes the inherent complexity of distributed systems to the programmer.�is approach also
favors explicit semantics rather than transparencies. Nodes have only local state and potentially
stale states from other nodes, hence the notion of a global state is replaced by an individual and
probabilistic view on state.

In a nutshell, the former approach hides complexity using very sophisticated and but o�en also
laborious abstractions. However, by eluding asynchrony, this approach abandons some original
gains of distribution in the �rst place. Enforcing synchrony requires a large coordination overhead,
which in turn wastes lots of resources and capabilities of the distributed system. Also, when the
provided abstractions are not appropriate, they make the development of distributed applications
even more di�cult. For example, when RPC abstractions pretend that remote entities are in fact
local entities, the programmer cannot be aware of the consequences of inevitable network faults
at runtime.
�e latter approach exposes the complexities and forces the programmer to deal with them

explicitly. Evidently, this approach is more challenging. On the other hand, by embracing
asynchrony, failures and nondeterminism, high performance systems can be implemented that
provide the required robustness, but also the true expressiveness of distributed applications.
As a matter of course, no approach is generally superior. Many of the concepts we have

studied in the previous chapters tend to belong to either one of the camps. In fact, many existing
distributed systems incorporate ideas from both approaches by applying high level abstractions
when appropriate, but not renouncing complexity, when it is misleading.
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So far, we have considered di�erent approaches towards concurrency as part of scalable archi-
tectures, including highly concurrent connection handling, concurrent application logic and
distributed storage backends. We have become acquainted with several di�erent concepts that
address concurrency and scalability challenges and are increasingly established in the industry.
Interestingly, many of these concepts are rather old, but have been rediscovered and revamped as
existing solutions for arising problems in the era of cloud computing, big data and multi-cores.
In this chapter, we will go one step further and dare to take a glance at the future of web

architechtures and concurrent programming in distributed systems.�is overview is primarily
based on ongoing e�orts in the research community and emerging industry trends.

9.1 Emerging Web Architecture Trends

Web architectures have been considered in chapter 3.�e entire architecture is designed around
the essence of the HTTP protocol. If the protocol changes over time, this may also a�ect the
architecture. Furthermore, the design and the internals of the components of a web architecture
may be in�uenced by other trends as well.

9.1.1 The Future of the HTTP Protocol

When the web was getting increasingly popular in the themid and late nineties, the �nal HTTP/1.1
speci�cation was published under a lot of pressure. �is has led to several inaccuracies and
ambiguous statements and artifacts in the resulting standard [Not12]. Consequently, the IETF
constituted the HTTPbisWorking Group1, which is responsible for maintaining the standard.�e
working group not just collects problems with the current standard, but also revises and clari�es
the speci�cation, especially with regard to conditional requests, range requests, caching and
authentication. It is planned that these improvements eventually transition into the HTTP/2.0
speci�cation.

1 http://tools.ietf.org/wg/httpbis/
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Extension Protocols to HTTP/1.1

Besidesmisconceptions in theHTTP/1.1 speci�cation, other problems andweaknesses ofHTTP/1.1
have been manifested in the �eld. Common points of criticism include performance issues, high
latencies, verbose message formats and weak support for extensions like custom HTTP authen-
tication mechanisms.�e rigid client-initiated request/response cycle has also been criticized,
because highly interactive web applications o�en require server-initiated communication as
well. �is has not just been addressed in the WebSocket protocol [Fet11] recently, but also by
speci�c HTTP protocol extensions such as Full-Duplex HTTP [Zhu11]. Similar HTTP protocol
extensions like HTTP-MPLEX [Mat09] integrate multiplexing and header compression into the
protocol.

The waka Protocol

Fielding, who has introduced the REST architectural style [Fie00], has also identi�ed drawbacks
ofHTTPwhen using REST as an integration concept for large enterprise architectures. Drawbacks
include head of line blocking of pipelined requests and legacy issues with verbosemessage headers.
Also, Fielding denotes the absence of unsolicited responses and better messaging e�ciency,
especially for low-power and bandwidth-sensitive devices. Consequently, Fielding has started to
work on waka1, a token-based, binary protocol replacement for HTTP. It is deployable via HTTP,
using the Upgrade header and introduces new methods on resources like RENDER or MONITOR.
Request and transaction identi�ers are used to decouple request and response messages, allowing
more loosely coupled communication patterns. Waka can be used with di�erent transport
protocols and it is not limited to TCP. Besides binary communication, waka uses interleaved
messages for better performance. Fielding is still working on the waka speci�cation, and there is
no dra� available yet.

SPDY

Other e�orts for more e�cient web protocols have been expended in the industry.�e most pop-
ular initiative is led by Google and works on an application-layer protocol called SPDY [Bel09].
SPDY focuses on e�cient transporting of web content, mainly by reducing request latencies. In
HTTP/1.1, performance (i.e. throughput) can be increased by using multiple persistent connec-
tions and pipelining. According to the SPDY protocol designers, this connection concurrency
is responsible for increased latencies of complex web sites.�ey argue that a single connection
between the client and the server is more e�cient, when combined with multiplexed streams,
request prioritization and HTTP header compression. Advanced features of SPDY include server-
initiated pushes and built-in encryption. SPDY is designed for TCP as the underlying transport

1 http://tools.ietf.org/agenda/83/slides/slides-83-httpbis-5.pdf
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protocol. SPDY is already in use by Amazon, Twitter and Google services, and the browsers
Google Chrome and Mozilla Firefox provide client-side protocol implementations. Microso� has
suggested an alternative HTTP replacement, called HTTP Speed+Mobility [For12]. It incorpo-
rates concepts of SPDY and the WebSocket protocol, but it is enriched with optional protocol
extensions for mobile devices.

HTTP/2.0

At the time of writing in early 2012, the HTTPbis Working Group has been rechartered1 and is
about to start work on an upcoming HTTP/2.0 dra� [Not12]. We have seen recurring concepts in
the di�erent protocols. Fortunately, most of the ideas have been acknowledged by the HTTPbis
group and their protocol designers are in close dialog.�us, the aforementioned protocols may
in�uence the design of HTTP/2.0 and boost the HTTP/2.0 speci�cation.

9.1.2 New Approaches to Persistence

�e NoSQL hype has already been shaking the database world and has led to a more versatile
toolbox for persistence in the mind of developers and architects. Still, relational database systems
are the most prominent and popular choices for persistence. However, there is some general
criticism on the essence of current RDBMSs.

Future Architectures of Relational Database Management Systems

Stonebraker et al. [Sto07] point out that RDBMSs are still carrying the legacy architecture of the
�rst relational database systems such as System R.�ese systems have been designed mainly for
the business data processing at that time, and not as a general-purpose solution for all kinds of
persistence. Also, di�erent hardware architectures prevailed at that time, and interactive com-
mand line interfaces for queries constituted the primary user interface for database access. In
order to provide high performance and throughput on machines available back then, traditional
concepts such as disk-based storage and indexing structures, locking-based concurrency control
and log-based failure recovery have been developed and implemented. Latency has been hidden
by extensive use of multithreading. Although these concepts have been complemented with other
technologies over time, they still represent the core architecture for each RDBMS available. Stone-
braker argues that this architecture is not appropriate anymore. It is especially not appropriate,
when RDBMSs are used in a “one-size-�ts-all” manner for many di�erent kinds of persistence
applications. According to Stonebraker, a “complete rewrite” is necessary in order to provide high
performance architectures for specialized database applications, with distinct requirements. Only
a rewrite would allow to get rid of architectural legacy concepts and to realign on hardware trends

1 http://lists.w3.org/Archives/Public/ietf-http-wg/2012JanMar/0098.html
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such as multi-core architectures and large main memories. Furthermore, Stonebraker campaigns
for a better integration of database access and manipulation as part of the programming model
without exposed intermediate query languages like SQL. In their work [Sto07], they introduce a
prototype for such a new database system.�e system runs multiple single-threaded instances
without any communication and resides in main memory. It is still a row-oriented relational
database and provides full ACID semantics. It appears that not just NoSQL databases will provide
more specialized solutions for di�erent usage scenarios. If Stonebraker ends up being right, we
will also see further diversi�cation of relational database management systems and engines for
online transaction processing.

In-Memory Database Systems

�e idea of in-memory database systems [Gm92] and hybrid in-memory/on-disk systems be-
comes increasingly popular, as the performance increases of new CPUs, main memory compo-
nents and harddisk technologies tend to dri� apart. When low latencies are required, for example
for interactive and real-time applications, in-memory database systems represent an attractive
solution. When durability is required, they can be combined with asynchronous, non-volatile
disk-based persistence.

Event Sourcing and Command Query Responsibility Segregation

And others again generally raise to question the way we are handling and persisting mutable
state in applications. An alternative paradigm, which is increasingly receiving attention, is the
combination of two patterns: event sourcing [Fow05] and Command Query Responsibility
Segregation (CQRS) [Dah09].
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Figure 9.1: A very simpli�ed illustration of the �ow control in an architecture that uses CQRS and
event sourcing.
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�e underlying idea of event sourcing is to capture all state changes explicitly as domain events.
�us, the current application state becomes the result of the sequence of all events captured so far.
Events are stored using a durable event log (e.g. a database). Instead of changing and updating
existing state in a database, new events are emitted when application actions take place.�is has
several bene�ts. For instance, listeners can easily be added to the stream of events and react to
speci�c events or group of events in an asynchronous manner.�e main bene�t of event sourcing
is the ability to replay state evolution. All events are persisted, hence the application can rebuild
any prior state by reapplying the events from the event log. Even alternative orderings or the
e�ect of injected additional events can be analyzed. Event sourcing also supports snapshotting,
since events natively represent incremental updates.
Traditional persistence layers provide a single model for reading, reporting, searching and

transactional behavior. �e CQRS pattern decouples di�erent concepts, namely command
operations and query operations, using separate models.�is separation of concerns improves
scalability and integrates an eventually consistent behavior into the application model.
When both patterns are combined, as shown in �gure 9.1, command operations emit new

events, which are added to the event log. Based on the event log, the current application state
is built and can be queried, entirely decoupled from commands. �is encapsulated approach
provides interesting scalability properties and may �nd its way into future web architectures.

9.1.3 Tackling Latencies of Systems and Architectures

Coping with latencies is one of the big issues of large-scale architectures and distributed systems.
Increasingly complex multi-core CPU architectures with multiple cache levels and sophisticated
optimization mechanisms have also widened the latency gap of local operations. Table 9.1 shows
the vast di�erences of latencies of various local and remote operations. When designing and
implementing low latency systems, it is inevitable to take into account these numbers—both
locally and for distributed operations.�e fact that hundreds of machines of a web architecture
may work together for responding to a single request should not be obvious for the user just by
yielding high latencies.
�e classical model of a Von Neumann architecture running sequential executions may still

provide a theoretical abstraction for programmers, but modern hardware architectures have
slowly diverged from it. For tackling latency locally, it is important to understand the implications
and properties of modern CPU architectures, operating systems and runtime environments
such as the Java Virtual Machine (JVM). �is notion, sometimes referred to as “mechanical
sympathy” [�o11], has renewed interest in approaches like cache-oblivious algorithms [Fri99].
�ese algorithms take into account the properties of the memory hierarchy of a CPU.�ey favor
cache-friendly algorithm designs over algorithms that solely re�ect computational complexity. A
recent example is the Disruptor [�o11], which is a high performance queue replacement for data
exchange between concurrent threads.�e Disruptor basically uses a concurrent, pre-allocated
ring bu�er with custom barriers for producer/consumer coordination. It does not use locks and
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Operation Latency
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes w/ cheap algorithm 3,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

Table 9.1: Common operations and their average latencies. Note that these numbers are exemplary
and platform dependent. Yet, they give a rough round-up on the impact of di�erent operations.
Source: Talk “Building So�ware Systems at Google and Lessons Learned” by Je�rey Dean (Google)
at Standford (http://goo.gl/0MznW).

heavily promotes CPU caching.
�e latency of remote operations is more di�cult to tackle. Network latencies are generally

bounded by physical constraints. Of course, e�cient infrastructure layouts for data centers are a
prerequisite. However, Rumble et al. claim that “it’s time for low latency” for the network [Rum11]
in general. �ey demonstrate that between the years 1983 and 2011, network latencies have
improved far more slowly (∼ 32x) than CPU speed (> 1,000x), memory size (> 4,000x), disk
capacity (> 60,000x) or network bandwidth (> 3,000x). According to their analysis, this is mainly
caused by legacy technology stacks. Rumble et al. argue that round trip times of 5 − 10µs are
actually possible in a few years. New network interface controllers already pave the way for such
latencies, but current operating systems still represent the major obstacle. Without an entire
redesign, the traditional network stacks are not capable of such low latencies. Rumble et al. also
note that this change requires new network protocols that are aware of such low latencies. Once
available, low latency networking may partially in�uence distributed computing, as it bridges the
gap between local and remote operations and provides better temporal transparency.

9.2 Trends in Programming Languages

Programming languages have always been heavily in�uenced by programming paradigms, which
in turn have been characterized by general computing trends.�e cumbersomeness of low-level
machine code yielded imperative programming languages.�ese languages take advantage of
compilers or interpreters in order to generate low-level machine code based on easier to handle

http://goo.gl/0MznW
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higher-level languages. As a result of increasing complexity and scale of programs, therewas a need
for �ner granularity and encapsulation of code, which led to new modularization concepts.�is
has been later complemented and extended by the object-oriented paradigm, which introduced
new concepts like polymorphism and inheritance.�e object-oriented paradigm promotes the
design and implementation of large, but manageable, so�ware systems and thus addresses the
requirements of large-scale applications. However, the prevalence of multi-core architectures
and the pervasion of distributed systems and applications in everyday life represent other trends
a�ecting upcoming programming languages. Some even believe that “the concurrency revolution
is likely to be more disruptive than the OO revolution” [Sut05]. Although this is a controversial
statement, it is remarkable that most of the new programming languages take concurrency
seriously into account and provide advanced concurrency concepts aside from basic threading
support [Gho11].
Apart from the object-oriented paradigm, there are several less common paradigms such as

declarative or functional programming that focus on high expressiveness. Programming lan-
guages following these paradigms have been considered as esoteric and academic languages by the
industry for a long time. Interestingly, there is an increasing popularity of these alternative con-
cepts, especially in functional programming and even for web application programming [Vin09];
not least because these languages provide inherently di�erent concurrency implications. As
functional languages favor immutability and side-e�ect free programming, they are by design
easier to execute concurrently.�ey also adapt other techniques for handling mutable state and
explicit concurrency.
�e gap between imperative, object-oriented languages and purely functional languages has

been bridged by another tendency: multi-paradigm programming languages. By incorporating
multiple paradigms, programming languages allow the developer to pick the right concepts
and techniques for their problems, without committing themselves to a single paradigm. Multi-
paradigm languages o�en provide support for objects, inheritance and imperative code, but
incorporate higher-order functions, closures and restricted mutability at the same time. Although
these languages are not pure in terms of original paradigms, they propose a pragmatic toolkit for
di�erent problems with high expressiveness and manageable complexity at the same time.
�e higher expressiveness is o�en a basic prerequisite for the design of so-called domain-

speci�c languages [Gho10], another trending topic in so�ware development. Domain-speci�c
languages allow to specify and express domain objects and idioms as part of a higher-level
language for programming. By providing a higher level of abstraction, domain-speci�c languages
allow to focus on the application or business domain while concealing details of the programming
language or platform. Several frameworks for web development can be considered as domain-
speci�c languages for the domain of web applications.
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9.2.1 New Programming Languages for Web Programming

�anks to the web, JavaScript has not just become the lingua franca of the web, but also the
most widespread programming language in general. Every browser, even mobile ones, act as an
execution environment for JavaScript applications, thus JavaScript is available on virtually all
computing devices. But JavaScript is also increasingly popular outside the web browser, thanks
to projects like node.js. Microso� uses JavaScript as the main programming language for Metro
applications in the upcoming Windows 8 release. JavaScript is a multi-paradigm language that
incorporates prototypal object inheritance combined with many functional aspects of Scheme.
It has been designed as a general-purpose programming language, but reached attention, and
sometimes also faced hatred1, not until it became popular through the web. However, JavaScript is
notoriously known for some of its “bad parts” [Cro08]. De�ciencies include odd scoping, global
variables, automatic syntax correction (i.e. semicolon insertion) with misleading results, and
problems with the type system and with value comparisons.

As we are somehow locked-in to JavaScript concerning browsers, there are several approaches
to circumvent these drawbacks, as long as they are not �xed in the language itself by upcoming
speci�cations. Crockford suggests a subset of the languages that makes only use of the “good parts”
of the language [Cro08]. Others attempt to transcompile (i.e. executing source-to-source compila-
tion) di�erent languages to JavaScript. Popular examples therefore are ClojureScript [McG11] and
Co�eeScript2. ClojureScript translates Clojure code into JavaScript, though some of the Clojure
features are missing. For instance, JavaScript is single-threaded, so the usage of concurrency
concepts of Clojure is limited. Co�eeScript takes a di�erent route. It is a language that exclusively
transcompiles to JavaScript and has been designed as a syntactic replacement for JavaScript.
Co�eeScript not just adds syntactic sugar, but also provides some advanced features like array
comprehension and pattern matching.
When Google was dissatis�ed with the progress on new JavaScript speci�cations and was

reasoning about the future of web programming, they identi�ed the need for a general-purpose
web programming language for both clients and servers, independent of JavaScript.�is need
was shortly a�er addressed by Google’s new Dart [Tea12] programming language. Dart is derived
from JavaScript, but incorporates several concepts from Java and other languages. It is class-based,
like Java, and supports interfaces, abstract classes and generics. Dart is dynamically typed, but
annotations can be used to enforce static typing. A core library provides common data structures
and operations, and aDOM library supports HTML5DOM. For server applications, Dart includes
an I/O library with an asynchronous, non-blocking programming model and an event loop. Dart
also ships with an HTTP library as a foundation for web servers. Concerning concurrency in
Dart, the speci�cation disallows shared-state concurrency. However, Dart proposes actor-like
structures, so-called isolates. Each isolate represents an independent �ow of control and it can

1 http://www.crockford.com/javascript/javascript.html
2 http://coffeescript.org/
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thus be assumed to be single-threaded for the developers. Multiple isolates can communicate
via message passing. �ere are di�erent ways to execute Dart applications. Google’s Chrome
browser already supports Dart. Time will tell if other browser vendors will eventually support
Dart as well. As an interim solution, there is a Dart-to-JavaScript transcompiler that generates
pure JavaScript code out of Dart sources. For usage outside of the browser, Google provides a
separate Dart virtual machine.

Dart and node.js demonstrate the possibility of natively using the same programming language for
client-side and server-side web application development. Some node.js web framworks already
support the usage of the same functions both for browsers and the server. For example, the
same template rendering functions can be used, both for complete page generation on the server
and for partial updates in the browser. Also RPC-like frameworks have emerged that allow the
client-side application to execute remote operations on the server, entirely using JavaScript.
Other frameworks like the Google Web Toolkit1 or Vaadin2 address the desire for a single

programming language by implementing web applications in Java, then generating client-side
code automatically.
Opa3 is a dedicated approach which takes this idea one step further. Opa combines a new

OCaml-inspired programming language, a web application framework and a runtime platform
consisting of a web server, a database and a distributed execution engine. All parts of a web
application can thus be implemented entirely in Opa, using a single language and a single pro-
gramming model. For deployment, the code is automatically sliced into di�erent compiled
components: JavaScript code for the browser, native code for the platform and generated database
queries/scripts.�e Opa language focuses on a strong and static type system in order to provide
security and to prevent traditional web security �aws such as SQL injections or cross-site scripting.
�e platform claims to provide a scalable architecture based on an event-driven, non-blocking
concept and messaging mechanisms similar to Erlang. Opa also supports distribution by using
multiple machines.
A downside of concepts such as Opa is, for instance, the increasing overhead of develop-

ment cycles due to steady compilation. Also, the thorough uni�cation of di�erent conceptual
layers hinders �exibility and makes it more di�cult to integrate custom components or legacy
applications.

9.2.2 The Rise of Polyglot JVM-based Languages and Virtual Machines

In the Java programming language, Java source �les are compiled to intermediary class �les, using
a byte code format. Class �les can then be executed by a JVM. �is indirection was primarily

1 https://developers.google.com/web-toolkit
2 https://vaadin.com/home
3 http://opalang.org/
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chosen for platform independence, as the same compiled class �le can be executed on multiple
architectures using the proper JVM (“write once, run anywhere”). Platform and architecture
speci�cities are thus only part of the JVM implementations.
�e separation of source code language and byte code format executed by JVMs has led to

another trend: alternative languages that compile to the JVM byte code. With the introduction
of invokedynamic [Ros11] in Java 7, the support for dynamically typed languages has been
greatly increased [�a10]. Most of the popular scripting languages and many other programming
languages are now available for the JVM, as shown in table 9.2. For web application development,
this allows the usage of frameworks very similar to Ruby on Rails, but hosted on the JVM. Erjang1
converts binary Erlang beam �les to Java class �les and executes them in the JVM.
�ere is increasing criticism addressing drawbacks of the Java programming language. New

features and enhancements are said to become integrated too slowly. For instance, the support for
closures (Project Lambda [Goe10]) has been postponed several times. Dissatisfaction with the
state of Java on the one hand, the prevalence of the powerful JVM on the other hand have given
rise to entirely new programming languages exclusively targeting the JVM.�ese languages o�en
combine common Java concepts with advanced programming features, or they even support
completely di�erent programming paradigms. Hence, most of the languages are in fact multi-
paradigm programming languages. Furthermore, they o�en provide higher-level concurrency
abstractions apart from traditional Java multithreading. Table 9.3 lists some of the most popular
JVM languages aside from Java.

Groovy2 incorporates concepts fromPython, Ruby, Perl, and Smalltalk. It is a dynamic scripting
language for the JVM. With GPars, Groovy provides a very advanced concurrency library. It
supports many of the concepts we have seen, including actors, data�ow concurrency constructs,
STM, agents, Fork/Join abstractions, asynchronous background tasks, and concurrent/parallel
data structures.
Scala is a multi-paradigm language built on functional and object-oriented concepts. We

have already seen in chapter 5 that Scala supports the actor model for concurrency. As Scala

JVM Language Inspired By
Rhino JavaScript
Jython Python
JRuby Ruby
Jacl Tcl
Erjang Erlang

Table 9.2: Examples for programming languages that have been ported to the JVM.

1 http://erjang.org/
2 http://groovy.codehaus.org/
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Language Main Paradigms Type System Main Concurrency Model
Java object-oriented, imperative static, strong �reads
Groovy object-oriented, functional dynamic, strong various concepts (GPars)
Clojure functional dynamic, strong STM, Agents
Scala functional, object-oriented static, strong Actors
Fantom object-oriented, functional static/dynamic, strong Actors
Kotlin object-oriented, functional static, strong �reads (Actors soon)
Ceylon object-oriented, imperative static, strong �reads

Table 9.3: Popular stand-alone languages for the JVM.

also supports the usage of Java APIs, also low-level threading is possible. So far, Scala is the
most popular general replacement language for Java and gains a foothold also in enterprise
environments. Clojure is a Lisp dialect for the JVM with a strong focus on concurrency and
functional concepts, as seen in in chapter 5. Ceylon1 is a Java-inspired language that is designed for
large application programming. Kotlin2 is a general-purpose language for the JVM with a strong
emphasis on concise code and typing. Kotlin uses regular Java threads for concurrency. Fantom3

incorporates object-oriented principles enhanced with mixins (partially implemented interfaces),
functional concepts and varying typing principles. Fantom provides strong concurrency support
by using the actor model and message passing. Additionally, Fantom supports the notion of
immutability as core concept of the language.

Most of the alternative JVM languages allow the usage of the standard Java library components,
either directly or indirectly via proxy constructs. Consequently, many libraries (e.g. database
drivers) originally designed for Java can be utilized.�is also works vice versa in several cases,
when components developed in a non-Java language can be integrated into Java applications,
thanks to exported Java interfaces. �e byte code compatibility of the languages does not just
allow to run application components developed with di�erent languages inside the same JVM. It
also enables the gradual redesign of legacy applications into new languages, without changing
the underlying platform.
But the concept of virtual machines for byte code execution is not limited to Java. Microso�’s

.NET platform sets similar objectives with their Common Language Runtime (CLR). �e sep-
aration of a virtual machine and di�erent programming languages that compile to the same
byte code for that virtual machine provides independence of hardware architectures, general
availability and versatility.�e virtual machine designers can thus focus on e�cient execution and
performance optimizations on various architectures. At the same time, programming languages
can be designed that strive for higher abstractions and incorporate advanced language concepts.

1 http://ceylon-lang.org/
2 http://www.jetbrains.com/kotlin/
3 http://fantom.org/

http://ceylon-lang.org/
http://www.jetbrains.com/kotlin/
http://fantom.org/
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�is is particularly interesting for web application development, where “bare metal” coding is not
required.
�e recently initiated EU project RELEASE1 evaluates the future usage of Erlang’s actor model

for architectures withmassively parallel cores.�is primarily addresses the Erlang virtualmachine,
which currently only scales to a limited number of cores available. Especially the mapping of
huge numbers of actors mapped to hundreds of cores and the performance of message passing
between actors has to be estimated.�e project also covers distribution and deployment concerns
and the capability of the virtual machine to build heterogeneous clusters.

RoarVM2, another academic project related to virtualmachines and concurrency, is amanycore
virtual machine for Smalltalk. Ongoing research evaluates how various concurrency models can
be implemented e�ciently on a single virtual machine [Mar12] for manycore systems.

9.2.3 New Takes on Concurrency and Distributed Programming

Chapter 5 outlined most of the prevailing approaches towards concurrency. Many emerging
programming languages pick up one of the concepts that provide higher abstractions than
low-level multithreading. Concurrent and distributed programming is about to become one
of the biggest challenges of our time to be faced for computing in general. As a result, there
is still much ongoing research e�ort in �nding programming models that tackle concurrency
and distribution more naturally. While some speci�cally target multi-core concurrency, others
address concurrency more generally as an intrinsic property of distributed computing. We now
take a look at some of these concepts and study their original ideas.

Harnessing Emergence and Embracing Nondeterminism

Ungar et al. [Ung10] suggest a programing model for multi-core systems that embraces nondeter-
minism and supports emergence. It follows the example of natural phenomenons such as bird
�ocks or ant colonies. In these systems, a large number of entities interact based on a common
set of rules, each one with an individual view of the world and in an asynchronous style. Still,
the systems show coordinated and robust behavior without any kind of explicit synchronization
among entities, which is known as emergence. Ungar et al. argue that existing approaches towards
concurrency focus too much on taming indeterminacy instead of accepting it.

Ungar et al. integrate the notions of emergence into an extended object-oriented programming
concept, by introducing so-called ensembles and adverbs as �rst-class language concepts. En-
sembles are essentially parallel collections of objects, that can be referenced as a single entity by
the outside world. Messages sent to an ensemble are dispatched to all of its members in parallel.

1 http://www.release-project.eu/
2 https://github.com/smarr/RoarVM

http://www.release-project.eu/
https://github.com/smarr/RoarVM
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Invocations in object-oriented programming are de�ned by the tuple of caller, callee and invoca-
tion arguments. For ensembles, this tuple is extended by adverbs that determine additional call
semantics. An adverb describes, which or how many members of an ensemble are involved, how
invocations are propagated and how results are collected and returned. Based on these concepts,
a large numbers of objects can interact without explicit application-level synchronization. Ungar
et al. have implemented an experimental virtual machine and a JavaScript-inspired language for
evaluation.�ey realized that many traditional algorithms are not compatible with this model
and have to be redesigned entirely. Also, they identi�ed several ambiguities in the language
semantics of ensembles that they want to address in their future work.

Memories, Guesses and Apologies for Distributed Systems

In their paper “Building on Quicksand” [Hel09], Helland and Campbell campaign for a paradigm
shi� for building large-scale, fault-tolerant systems. Due to increased scale and complexity of
systems, the scope of failures to deal with has reached critical dimensions. While transparent
reliability in con�ned hardware components (e.g. mirrored disks) appears appropriate, the notion
of transactional behavior and synchronous checkpointing for fault-tolerance in large, distributed
systems is too complex to be managed anymore, according to Helland and Campbell.�ey also
observe that asynchronous checkpointing in order to save latency can not be implemented without
losing a single, authoritative truth as part of the distributed system. With due regard to the CAP
theorem, they favor a di�erent approach that can also be applied to distributed programming in
general.
Instead of relying on traditional ACID properties and serializability, they prefer eventual

consistency as an integral part of the application itself. �erefore, they introduce the concept
of memories, guesses and apologies as well as probabilistic rules for application programming.
Memories are the local views that each node of the system has at a given time. Obviously, these
views can di�er between nodes. Guesses describe the notion that each action of a node is not
based on a global view, but only on its own memories. Ideally, these memories resemble the
“global truth” of the system asmuch as possible. However, actionsmay be executed based onwrong
guesses. Resulting mistakes must be handled by apologies, either automatically by the application,
or involving humans. Making guesses and handling apologies is based on probabilistic properties
and captured by prede�ned rules.
Furthermore, Helland and Campbell outline how carefully designed application operations

can facilitate this approach, when they provide the following semantics: associative, commutative,
idempotent and distributed.�ese properties inherently allow the reorderability and repeatability
of operations in the system.�ey make systems also more robust and resilient to typical failures
in message-oriented distributed systems [Hel12]. Helland and Campbell favor these operations
instead of explicit mutable states for application design. �ey demonstrate how traditional
business applications, including bank accounting, can be described and realized using this
approach.
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Consistency and Logical Monotonicity

�e group of Hellerstein addresses the challenge of consistency and parallelism in distributed
systems by applying declarative/logic programming and monotonicity analyses [Hel10]. �ey
believe that declarative database query languages, that are able to parallelize natuarlly, can provide
an appropriate programming paradigm for distributed and concurrent systems, when combined
with temporal awareness.
�e idea is to accept eventual consistency whenever possible, but identify locations where the

lack of strong consistency results in unacceptable consistency bugs.�erefore, they introduce the
notion of consistency as logical monotonicity. Based on the theory of relational databases and
logic programming, a program can be de�ned as monotonic or non-monotonic. A monotonic
program incrementally produces output elements, never revoking them at a later time due to
further procressing. For instance, a projection on a set is a monotonic operation. Instead, non-
monotonic operations require the entire processing to be completed in order to produce outputs.
Hence, non-monotonic operations are blocking operations. Aggregation or negation operations
on sets are examples for non-monotonic operations.
Applied to distributed computing, we can also di�erentiate monotonic and non-monotonic

distributed operations. Monotonic operations do not rely on message ordering and can tolerate
partial delays of messages. Instead, non-monotonic operations require coordination mecha-
nisms such as sequence numbers or consensus protocols. For instance, everything that involves
distributed counting is a non-monotonic operation with the need for coordination and wait-
ing. Hellerstein et al. further show that monotonic operations guarantee eventual consistency,
independent of the order of messages, while non-monotonic operations require coordination
principles in order to assure consistency. Based on a declarative language, consistency behaviors
can be analyzed and non-monotonic locations can be identi�ed automatically.�ese locations
are so-called points of order, that need to be made consistent by adding coordination logic.
Hellerstein et al. implemented a prototype [Alv11] based on an underlying formal temporal

logic concept. �e purely declarative prototype uses a domain-speci�c subset of Ruby due to
syntax familiarity.

Distributed Dataflow Programming

Declarative data�ow programming provides a concurrency model with inherent coordination,
entirely hidden from the developer. Massively parallel data-centric computing frameworks
such as MapReduce [Dea08] have shown the strong points of data�ow programming. However,
programming abstractions like MapReduce heavily constrain the expressiveness compared to
pure, non-distributed data�ow languages.�us, only a small amount of existing algorithms can
be applied for MapReduce-based computations. Combining an expressive programming model
including data�ow concurrency with a scalable and fault-tolerant distributed execution engine
represents a sweet spot for programming in the large.
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One approach that addresses this demand is the Skywriting scripting language [Mur10] and the
CEIL execution engine [Mur11]. Skywriting is a language that resembles JavaScript syntactically,
but is purely functional by design. As opposed to other data-centric computation languages
such as MapReduce, Skywriting is Turing-powerful. It provides support for (sub-)task spawning,
explicit future references and a dereference operator. Task spawning yields future references that
can be dereferenced later on, providing implicit synchronization. Task execution is idempotent
and deterministic, so that functional purity is not comprimised.
�e underlying CEIL execution engine provides cooperative task farming and implicitly gener-

ates acyclic graphs of task dependencies. It also schedules tasks to available worker machines and
provides transparent coordination and synchronization. A set of rules enforces schedulability by
managing the dependencies between spawned tasks and their inputs and outputs. For instance,
the dependency graph can not contain cycles, nor can a task become orphaned.�e execution
engine also provides fault-tolerant features including re-execution of tasks in case of worker
crashes and master replication for master fail-overs.
Murray et al. argue that the Skywriting language combined with the CEIL engine allows

the implementation of imperative, iterative and recursive algorithms that run on large clusters.
�anks to declarative concurrency, the implementers of algorithms do not have to reason about
coordination and synchronization.

Functional Relational Programming

Brooks and Frederick [Bro87] identify complexity as one of the four fundamental di�culties of
so�ware engineering next to conformity, changeability and invisibility. Complexity is further
divided into essential and accidental complexity. Accidental complexity is complexity that we
create by ourselves as part of a solution when building systems. In contrast, essential complexity
is an inherent part of the problem to be solved and independent of the solution.
Moseley and Marks [Mos06] take up again the notion that complexity is the single major

challenge for large-scale applications. However, they disagree with Brooks and Frederick by
rejecting the statement that most of the complexity of systems is essential. Instead, Moseley and
Marks argue that it is state, that is primarily responsible for most of the (accidental) complexity.
�ere are secondary properties like �ow of control and expressiveness, but they directly relate to
state.�us, Moseley and Marks re�ect on new ways how state can be limited and managed in
order to simplify large-scale systems.�ey propose essential logic, essential state and accidental
state and control as the three components of a simpler architecture. Essential logic (“behavior”)
is business logic, that is not concerned with state at all. It only de�nes relations, pure functions
and integrity constraints. Essential state (“state”) is a relational de�nition of stateful components
of the system. It is de�ned by schemata for system inputs and subsequential state updates and
state changes. Accidental state and control is a speci�cation, where state should be used and
what controls should be applied. However, it does not a�ect the logic. So interactions with
the system result in changes of essential state, which in turn may trigger actions in the other
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components. As a result, the essential logic may execute operations that a�ect the system output.
For implementations, Moseley and Marks suggest a relational, logic-driven programming model
for most of the parts. Pure, functional programming can be added for some parts of the essential
logic.
�is idea, also known as functional relational programming, represents an extreme approach

on how to isolate and handle state and it does not resemble any of the popular programming
models. It rejects the notion of coupling state and behavior, that characterizes object-oriented
programming. Instead, functional relational programming takes an entirely declarative route,
mainly resting upon relational principles and to minor extend the usage of side-e�ect free func-
tional programming constructs. It is still uncertain, whether this model will soon immerse into
mainstream development models for application programming. However, the strong focus on
declarative state handling represents a coining attribute that should be kept in mind.

9.3 Summary

Wehave seen various trends thatmight in�uence upcomingweb architectures.�eHTTPprotocol
will be eventually replaced by a new web protocol with better performance characteristics and
several new features, as various alternative protocols already demonstrate.
�e architecture of conventional RDBMS has been raised to question and alternative database

systems will appear that get rid of legacy internals. In-memory database systems and event-
sourced persistence represent two other and increasingly popular concepts for storage. When the
latencies between nodes in a distributed system decrease, new remote operations and distributed
computing patterns may become available.
Programming language trends are in�uenced by new web programming concepts and multi-

paradigm language designs. �e rise of virtual machines facilitates the formation of new pro-
gramming languages.
For concurrent and distributed programming, functional and especially declarative program-

ming languages are increasingly gaining attention. Some upcoming language concepts embrace
the notions of nondeterminism, data�ow concurrency or logic programming. Others urge the
developers to focus on associative, commutative and idempotent application operations in order
to tame distributed programming.
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We claim that concurrency is crucial for scalability, which in turn is inherently critical for large-
scale architectures.�e growing prevalence of web-based applications thus requires both scalable
architectures and appropriate concepts for concurrent programming. Although web-based
applications have always faced inherent parallelism, the concurrency implications for architectures
and implementations are gradually changing.
�e scalability of connection handling is not limited to increasing numbers of connections.

For web real-time applications, web architectures are frequently confronted with very strict
latency requirements. Interaction and noti�cation mechanisms also demand the ability to handle
huge numbers of mostly idle connections, in order to support server-side message pushing
over HTTP. Also, mobile web applications have a bearing on connection performance and
slow down the throughput of web servers. Similar requirements emerge for the application
logic. Interactive web applications demand communication and coordination between multiple
requests inside the business logic. In order to provide low latency responses, the application
logic must utilize hardware resources as e�ciently as possible. �is yields highly concurrent
execution environments for the business logic of web applications. Concurrency and scalability
also challenge the persistence layer of a web architecture. �e persistence layer must not only
scale to very large data volumes, it must also handle increasingly concurrent read and write
operations from the application layer. Large-scale web applications make the usage of distributed
database systems inevitable. However, distributed database systems further increase the degree
of complexity.
�is thesis focused on devising an architectural model for scalable web architectures and then

providing separate concurrency analyses of three main components: web servers, application
servers and storage backends. Horizontal scalability and high availability have been the main
requirements for the architectural design. We rejected amonolithic architecture due to complexity
and scalability issues and campaigned for a structured, loosely coupled approach. Hence, the
architecture is separated into functionally distinct components. Each of the components can
be scaled separately and independently of other components. �e components include load
balancers, reverse caches, web servers, application servers, caching services, storage backends,
background worker services, and an integration component for external services. For the most
part, components are coupled using a message-based middleware.
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We then provided a more detailed analysis of the concurrency internals for web servers,
application servers and storage backends. We determined that massive I/O parallelism is the main
challenge for web servers. We validated thread-based, event-driven and combined architectures
for highly concurrent web servers. Next, we called attention to the duality argument of threads
and events. We surmounted the general threads vs. events discussion and outlined the bene�ts of
cooperative multithreading and asynchronous/non-blocking I/O operations for programming
highly concurrent I/O-bound applications.
For the implementation of concurrent application logic, we assessed several programming

concepts for concurrency from a generic viewpoint. �e most common form of concurrent
programming, based on threads, locks and shared state, is di�cult and error-prone due to various
reasons. Its usage should be limited to components where it is essential and inevitable. �is
includes low-level architecture components and the foundations for high-level concurrency li-
braries. For the actual application logic, higher concurrency abstractions are more advisable.
So�ware transactional memory isolates operations on shared states similar to database systems.
Hence, it allows lock-free programming and mitigates many problems of traditional multithread-
ing.�e actor model represents an entirely di�erent approach that isolates the mutability of state.
Actors are separate, single-threaded entities that communicate via immutable, asynchronous and
guaranteed messaging.�ey encapsulate state and provide a programming model that embraces
message-based distributed computing. Single-threaded event-driven application components
are similar to actors—although they don’t share the same architectural mind-set. Lesser known
approaches include synchronous message passing and data�ow concepts.
Storage backends are mainly challenged by the CAP theorem. It disallows guaranteeing con-

sistency and availability at the same time, when partitions must be tolerated at the same time.
As a result, applications can either adhere to the conventional ACID properties, but must accept
temporary unavailabilities—or they choose eventual consistency and make the application logic
resilient to partially stale data. We illustrated that distributed database systems are based on
relational or non-relational concepts and incorporate mechanisms from the database community
and the distributed systems community.

We examined the relations between concurrency, scalability and distributed systems in general
and outlined the underlying coherencies. We also provided some food for thought—for instance,
which upcoming trends might in�uence future web architectures, and how distributed and
concurrent programming can be prospectively handled.
Unfortunately, there is neither a silver bullet for the design of scalable architectures, nor for

concurrent programming. We have extensively described the more popular approaches. We also
compiled a list of recommendations for the design of concurrent and scalable web architectures of
the near future. However, concurrency and scalability still remain taxing challenges for distributed
systems in general and raise interesting research questions.
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