
Cores of Randomr-Partite Hypergraphs

Fabiano C. Botelhoa,c, Nicholas Wormaldb, Nivio Zivianic

aDepartment of Computer Engineering, Federal Center for Technological Education of Minas Gerais, Belo Horizonte, Brazil
bDepartment of Combinatorics and Optimization, Universityof Waterloo, Waterloo ON, Canada
cDepartment of Computer Science, Federal University of Minas Gerais, Belo Horizonte, Brazil

Abstract

We show that the thresholdcr,k for appearance of ak-core in a randomr-partiter-uniform hypergraphGr,n,m is the same as for a
randomr-uniform hypergraph withcn/r edges without ther-partite restriction, wherer, k ≥ 2. In both cases, the average degree
is c. This is an important problem in the analysis of the algorithm presented in [2]. The algorithm constructs a family of minimal
perfect hash functions based on randomr-partite r-uniform hypergraphs with an emptyk-core subgraph, fork ≥ 2. The above
claim was not proved but was provided with strong experimental evidence. For an input key setS with m keys, the algorithm was
the first one capable of constructing a simple and efficient family of minimal perfect hash functions that can be stored inO(m) bits,
where the hidden constant is within a factor of two from the information theoretical lower bound. The caser, k = 2 was analyzed
in [3] but the general caser ≥ 3, k ≥ 2 was still open.
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1. Introduction

The study of random graphs started with Erdős and Ŕenyi
[6, 7, 9, 8]. A modern treatment is given in [1, 13]. Many
results describing statistical properties of random graphs were
obtained [10, 11, 12, 16, 17, 19, 20, 21]. For instance, distri-
bution of component sizes, existence and size of a giant com-
ponent, vertex degree distributions, arising of cycles, existence
and size of specific subgraphs, among others.

We now introduce the following definitions:

Definition 1 Let Gr,n,m = (V,E) be a random r-partite r-uniform
hypergraph where V is a disjoint union of the r parts U1, . . . ,Ur ,
|Ui | = n for i = 1, . . . , r, |E| = m = cn, r ≥ 2 and c> 0. The
edges are inserted into Gr,n,m one at a time, each being picked
at random from the all nr possible edges, allowing repetitions.

Definition 2 The k-core of a hypergraph is the largest sub-
graph of minimum degree at least k.

Definition 3 A minimal perfect hash function is a bijection from
a static key set S of size m to{0,1, . . . ,m− 1} = [m].

The objective of this paper is to prove that the thresholdcr,k

for appearance of ak-core inGr,n,m is the same as for a random
r-uniform hypergraph withcn/r edges without ther-partite re-
striction, wherer, k ≥ 2. In both cases, the average degree
of the hypergraph isc. This problem came up in the analysis
of the algorithm presented in [2], where the above claim was
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not proved but was provided with strong experimental evidence.
The algorithm constructs a family of minimal perfect hash func-
tions based on randomr-partiter-uniform hypergraphs with an
emptyk-core subgraph, fork ≥ 2. The idea of basing mini-
mal perfect hashing on random hypergraphs was not new, see
e.g. [14], but Botelho, Pagh and Ziviani proceeded differently
in [2] to construct near-optimal space functions that are stored
in O(m) bits rather thanO(mlogm) bits. The caser, k = 2 was
analyzed in [3] but the general caser ≥ 3, k ≥ 2 was still open.

In Section 1.1 we present some basic concepts and defini-
tions. In Section 1.2 we outline our results and contributions.

1.1. Preliminaries

In this section we introduce some definitions found in [4]
in order to use the same approach to prove the results summa-
rized in Section 1.2. The first determination of the threshold
of existence of ak-core in a random graph was given by Pittel,
Spencer and the second author [18].

As shown in [4] there is a connection between independent
Poisson random variables and multinomials. LetMulti (n, s) be
the probability space of nonnegative integer vectors (X1, . . . ,Xn)
whose entries sum tos, such that for any vector (d1, . . . ,dn) with
the same sum restriction, we have:

P(Xi = di for 1 ≤ i ≤ n) =
s!

ns
∏n

i=1 di !
·

We will be interested in vertices with degrees at leastk, and
accordingly define

Hn,s,k := {(h1, . . . ,hn) :
∑

hi = sandhi ≥ k for all i}, (1)

and letMulti (n, s)|≥k be the probability space obtained by re-
stricting Multi (n, s) to elements ofHn,s,k. For k ≥ 0, denote
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by Z(k, λ) a random variable which has ak-truncated Poisson
distribution with parameterλ, that is:

P
(

Z(k, λ) = j
)

=























λ j

j! fk(λ)
j ≥ k

0 j < k

(2)

where fk is defined as:

fk(λ) = eλ −
k−1
∑

i=0

λi

i!
=

∑

i≥k

λi

i!
·

Let λb denote the positive root of the equation

E Z(k, λ) =
λ fk−1(λ)

fk(λ)
= b. (3)

It is easily seen thatλb exists provided thatb > k. Let hk(µ) =
µ

e−µ fk−1(µ) and define:

ck = inf {hk(µ) : µ > 0}· (4)

Takek ≥ 3. Thenck is a positive real becausehk(µ) tends to
∞ if µ tends to 0 or∞. It is easily checked that forc > ck

the equationhk(µ) = c has two positive roots (and just one for
c = ck). Defineµk,c to be the larger one. Also definec2 = 1.

For k ≥ 2 andr ≥ 3, we are interested ink-cores of the ran-
dom r-partiter-uniform hypergraph as presented in Definition
1. LetGr,n,m denote the uniform probability space ofr-partite
r-uniform rn-vertexm-edge hypergraphs, as in that definition.
Note that thek-cores ofGr,n,m form a probability space, which
we denote byKr,n,m,k. Then, we can generalize the definition of
ck to

cr,k = inf {hr,k(µ) : µ > 0},

wherehr,k(µ) =
µ

(e−µ fk−1(µ))r−1 · As for hk(µ), hr,k(µ) tends to∞ if µ
tends to 0 or∞, socr,k is a positive real (and this applies even
whenk = 2). Defineµr,k,c to be the larger solution ofhr,k(µ) = c
for c > cr,k. We note thatcr,k is the threshold of appearance of
ak-core in a randomr-partiter-uniform hypergraph that lies in
Gr,n,m.

1.2. Results

The thresholdcr,k for appearance of ak-core for a random
r-uniform hypergraph withcn/r edges was first analyzed in [5].
In this paper we instead analyze it forr-partiter-uniform hyper-
graphs. So these results will finish the analysis of the algorithm
presented in [2].

We first consider the case whenr = 2 andk = 2, which has
been analyzed in [3] and is added here for completeness. The
result is summarized in Theorem 1.

Theorem 1 ([3], Theorem 3.5)Let G2,n,m = (V,E) be a ran-
dom bipartite 2-uniform hypergraph with2n vertices and m=
cn edges. Then, if c= m/n holds for c∈ (0,1) and n→ ∞,
the probability that G2,n,m has an empty2-core component, for
n→ ∞, is

Pra =
√

1− c2. (5)

Although it was not mentioned in [2], the version of the al-
gorithm presented there forG2,n,m can be sped up by allowing a
single cycle with length multiple of four per connected compo-
nent. This happens because the probability of generatingG2,n,m

over the condition that it does not have any cycle with a length
that is not a multiple of four is 58% higher than the probability
of generating it when cycles are not permitted (see Sections2
and 3) and the runtime of the algorithm is inversely proportional
to this probability. To analyze this version of the algorithm it is
required the following theorem.

Theorem 2 Let G2,n,m = (V,E) be a random bipartite 2-uniform
hypergraph with2n vertices and m= cn edges. Then, if c=
m/n holds for c∈ (0,1) and n→ ∞, the probability that G2,n,m

has no cycle of length congruent to 2 (mod 4), for n→ ∞, is:

Prb =

√
1− c2

(1− c4)
1
4

· (6)

We remark that forc > 1 there are a.a.s.(asymptotically almost
surely) many cycles of all short even lengths.

We now consider the case whenr andk are not both 2. Note
that in Gr,n,m, multiple edges, and edges containing repeated
vertices, are permitted. However, even if they were forbidden,
the same results would hold: it is well known by standard meth-
ods that the probability that there are no repeated verticeswithin
any edge, and no multiple edges, is bounded away from 0 (see,
e.g., [4, 14]). Hence, once we prove the theorem for this defini-
tion of G, it follows also for the other variations where multiple
edges or repetitions of vertices within edges are forbidden.

Theorem 3 Let c > 0 and integers r≥ 2, k ≥ 2 be fixed,
where r and k are not both 2. Suppose that m∼ cn, and G∈
Gr,n,m. For c < cr,k, G has empty k-core a.a.s. For c> cr,k, the
k-core of G a.a.s. has e−µr,k,c fk(µr,k,c)rn(1 + o(1)) vertices and
µr,k,ce−µr,k,c fk−1(µr,k,c)n(1+o(1)) hyperedges. Moreover, let j≥ k
be fixed, and assume c> cr,k. Then the number of vertices
of degree j inK(r,n,m, k) is a.a.s. rne−µµ j/ j! + o(n), where
µ = µr,k,c.

2. Proof of Theorem 1

Let G2,n,m = (V,E) be a bipartite random graph, where|V| =
2n and |E| = m = cn, wherec = m/n is the average degree
of G2,n,m. To build G2,n,m each edge is independently taken at
random with probabilityp from all n2 possible edges. As there
are 2n vertices, and each is connected to an average ofc edges,
then we can conclude thatp = c/n = 2c/|V|. Let ∁2l be the
set of cycles of length 2l in the complete bipartite graphK2n,
for l ≥ 1 and eachn. A cycle in ∁2l can be represented as a
sequence of 2l distinct vertices inK2n by choosing a starting
point. Therefore, the cardinality of∁2l is given by

|∁2l | =
1
2l

((n)l)
2, (7)

where (n)l = n(n − 1) . . . (n − l + 1). As each edge inG2,n,m is
selected independently of the others and with probabilityp = c

n,

2



then, each cycle in∁2l occurs with probability

Pr2l(c) = p2l · (8)

Let C2l(G2,n,m) be a random variable that measures the number
of cycles of length 2l in G2,n,m. LetCe(G2,n,m) be a random vari-
able that measures the number of cycles of any even length in
G2,n,m. The probability distribution ofC2l(G2,n,m) andCe(G2,n,m)
converges to a Poisson distribution with parametersλ2l andλe,
respectively. For a more detailed proof of a similar statement,
see [11, Page 16]. To end the proof we are going to show how
to getλ2l andλe, which represents the average number of cycles
of length 2l in G2,n,m and the average number of cycles of even
length inG2,n,m, respectively. It is easy to see that forn→ ∞

λ2l = Pr2l(c) × |∁2l | =
(c
n

)2l 1
2l

((n)l)
2 =

1
2l

c2l (9)

and

λe =

∞
∑

l=1

λ2l =
1
2

c2 +
1
4

c4 +

∞
∑

l=3

1
2l

c2l = −1
2

ln(1− c2), (10)

As in [11] we use
∑∞

l=3
1
2l x

l = − 1
2 ln(1 − x) − 1

2 x − 1
4 x2, where

x = c2. Therefore, the probability thatG2,n,m is a forest and,
consequently, has an empty 2-core is:

Pra(Ce(G2,n,m) = 0) = e−λe =
√

1− c2· (11)

Note thatc is restricted to be in the range (0,1) and, therefore,
c2,2 = 1.

This matches the experimental results presented in [2]. For
instance, whenc = 2/2.09 we have Pra = 0.29. This is very
close to 0.294 that is the value obtained in [2] by generating
1,000 random bipartite 2-graphs withn = 107 edges.

3. Proof of Theorem 2

Let G2,n,m, Ce(G2,n,m) andc > 0 be defined as in the proof of
Theorem 1 presented in Section 2. From there we now that the
random variableCe(G2,n,m) that measures the number of cycles
of any even length inG2,n,m converges to a Poisson distribution
with parameter:

λe =

∞
∑

l=1

1
2l

c2l = −1
2

ln
(

1− c2
)

· (12)

Corresponding results hold for cycles with lengths in a given
subset of{2,4,6, . . . }, as can be derived from the results of [11].
Those cycles with a length that is not a multiple of four cannot
be used to build MPHFs in the algorithm presented in [2]. Ac-
cordingly, we let define such cycles to bebad, and letCb(G) be
the random variable that measures the number of bad cycles in
G2,n,m. This converges to a Poisson distribution with parameter

λb =
∑

l=1,3,5,7,...

1
2l

c2l · (13)

From Eq. (12) we know that:

λe =
∑

l=1,3,5,7,...

1
2l

c2l +
∑

l=2,4,6,8,...

1
2l

c2l = −1
2

ln
(

1− c2
)

λb = −1
2

ln
(

1− c2
)

−
∑

l=2,4,6,8,...

1
2l

c2l

= −1
2

ln
(

1− c2
)

− 1
2

∞
∑

l=1

1
2l

(

c2
)2l

= −1
2

ln
(

1− c2
)

+
1
4

ln
(

1− c4
)

Therefore, the probability thatG2,n,m has no bad cycle is given
by:

Prb(Cb(G) = 0) = e−λb =

√
1− c2

(

1− c4
)

1
4

·

Note thatc is restricted to be in the range (0,1).

For c = 2.09 we have Prb = 0.458. Experimentally, we
obtained Prb = 0.463 by generating 1,000 random bipartite 2-
graphs withn = 107 edges, which is very close to the theoretical
value.

4. Proof of Theorem 3

Analogous results were proved for ordinary (not multipar-
tite) hypergraphs in [4, 5, 15]. We will assume the reader is
familiar with [4], and point out the simple modifications of its
proof so as to cover the present setting. Aheavyvertex is one of
degree at leastk, and a vertex islight otherwise. In the present
setting, we have to pay attention to the number and total degree
of the heavy vertices in each of the parts. So, forj = 1, . . . , r, let
t j denote the number of heavy vertices inU j , let sj denote the
sum of their degrees, and letℓ j denote the sum of the degrees
of the light vertices inU j .

Given the vectorst = (t1, . . . , tr ), s = (s1, . . . , sr ) ande =
(ℓ1, . . . , ℓr ), we consider a different model, called the hybrid
modelP. This has vertex setsV1, . . . ,Vr with |V j | = t j , and
also separate vertex setsL1, . . . , Lr with |L j | = ℓ j . Now select
them edges randomly by choosing for each edge one vertex in
each ofL j ∪ V j , j = 1, . . . , r, conditioning on the total degree
of vertices inV j beingsj , for eachj, and each vertex inL j hav-
ing degree exactly 1, and also conditioning on all vertices in V j

receiving degree at leastk (for each j). This model represents
a hypergraphGP in which each vertex inL j corresponds to the
end of an edge at a light vertex. The model does not record
which of the light vertices inGP the edges are actually incident
with.

The k-core ofGP has the same distribution as forGr,n,m,
conditioning ont, sande. (For a detailed proof of the analogous
statement in the general setting, see [4]; the proof is exactly
the same in the present setting. The same reasoning gives the
following claims.) Moreover, under the same conditioning,the
distribution of vertex degrees in the vertices inV j is precisely
multinomial conditioned on all degrees being at leastk. We call
this distribution truncated multinomial.
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The process of iteratively deleting light vertices fromGr,n,m

corresponds to the process applied toGP whereby the vertices
in the setsL j and their incident edges are iteratively deleted, and
any vertex inV j whose degree reduces tok′ < k immediately
transforms intok′ new vertices inL j . The degree distribution
in V j , conditioned on the values ofsj andt j at each step of the
process, is always truncated multinomial, which can be approx-
imated by independent truncated Poisson.

Suppose that at each step of the process applied toGP, one
light vertex is randomly selected from each of the setsL1, . . . , Lr ,
and deleted along with its incident edge. LetS j,i andT j,i denote
the random values ofsj andt j respectively afteri steps of this
process. Then deleting the edge containing a light vertex inL j

will have an effect on each of the otherr − 1 parts of the par-
tition, in each part either deleting one light vertex or reducing
the degree of a heavy vertex by 1. If in such a step, the de-
gree of a vertex drops tok − 1, it immediately fragments into
k− 1 light vertices. Thus, afteri steps, each part will have total
degreem− ri . The expected value ofT j,i+1 − T j,i , conditioned
on the values ofs and t at stepi, is (assumingm − i → ∞)
asymptotically

−
(r − 1)S j,i

m− ri

(

1−
λ j,iT j,i

S j,i

)

and forS j,i+1 − S j,i the expected change is asymptotically

−
(r − 1)S j,i

m− ri

(

k− (k− 1)
λ j,iT j,i

S j,i

)

·

Hereλ j,i is defined asλS j,i/T j,i in the terminology of [4], and the
asymptotic truncated Poisson distribution of the heavy vertex
degrees is used.

The argument of [4] can now be followed from just below
its Equation (12). In place of its Equations (15) and (16) we
now have

z′ = − (r − 1)y
c− rx

(

1− µz
y

)

, (14)

y′ = − (r − 1)y
c− rx

(

k− (k− 1)
µz
y

)

= (k− 1)z′ − 1, (15)

and [21, Theorem 1] gives that a.a.s.

S j,i = ny(i/n) + o(n) and T j,i = nz(i/n) + o(n).

These are exactly the same equations as occur for hyper-
graphs in the proof of [4, Theorem 3]. Hence, the equations
have the same solution, and the solution reaches a point where
c − rx − y = 0 beforey = 0 if and only if c > cr,k. It fol-
lows that forc > cr,k the k-core exists a.a.s. Its size in each
of the r parts is given asymptotically byyn, and the value ofy
whenc− rx − y = 0 is the same as for the standard hypergraph
case. Moreover, the asymptotic distribution of degrees is also
the same, which gives the other statements in the theorem on
the number of edges and number of vertices of given degrees.

For the lower bound, we use the same argument, which
shows that forc < cr,k, the k-core, if it exists, a.a.s. has size
at mostǫn for any fixedǫ > 0. One can also observe that if

ǫ is sufficiently small, then a randomr-partite hypergraph with
cn+ o(n) edges a.a.s. has nok-core of size less thanǫn. This
comes from a simple first moment calculation, which shows
that the expected number of sets of at mostǫn vertices that con-
tain at leastkǫn/r hyperedges tends to 0 asn→ ∞.
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